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Preface

Vibration phenomena are omnipresent: many occur in nature, and many in man-made devices
and structures. Quite often vibration is not desirable and the interest lies in reducing it. Before
such a task can be undertaken, it is necessary to have a good understanding of the vibration
characteristics. This requires the construction of a mathematical model acting as a surrogate
for the actual system, where models range from simple singlc-degree-of-freedom systems to
multi-degree-of-freedom lumped systems and continuous systems. The term mathematical
model implies a mathematical formulation, which consists of ordinary differential equations
of motion for lumped, or discrete systems and boundary-value problems for continuous, or
distributed systems. Of course, to study the vibration phenomena, it is necessary to solve the
equations of motion, or the boundary-value problem, for the system response.

The area of vibrations, and in particular analytical vibrations, has experienced signif-
icant progress in the last few decades. A great deal of this progress can be attributed to
the development of increasingly powerful digital computers. Indeed, this rapidly increas-
ing power of solving complex problems has stimulated the development of many numerical
methods, which in turn has encouraged the development of more refined theories.

For many years, the theory of vibrations was a subject for physicists and mathematicians.
As vibration problems became more and more critical, the interest in the subject among
engineers grew rapidly. In addressing these challenging problems, engineers have created
a modern approach to vibrations by developing a variety of techniques for solving complex
problems. In the process, they have not been merely building on an existing mathematical
foundation but also extending this foundation, incorporating the best of the old into the new.
It is in this spirit that this book has been written.

The main objective of the book is to present a mathematically rigorous approach to vi-
brations, one that not only permits efficient formulations and solutions to problems but also
enhances the understanding of the physics of the problem. To this end, various principles
and techniques for formulating and solving vibration problems are presented. To enhance
understanding, a broad view is adopted whereby emphasis is placed on the similarity of the
dynamic characteristics exhibited by various types of vibrating systems, a similarity that may
not be obvious to the uninitiated. This similarity has significant practical implications, as
solutions for different types of systems can be obtained in analogous manner. As with any
profession, tasks are made appreciably easier by working with the right tools. In this regard,
this book strives to strike a proper balance between problem formulations and solutions
by providing effective methods for both. For the derivation of the equations of motion or
boundary-value problems for complex systems, the principles and techniques of analytical
dynamics have few peers. For solving ordinary differential equations of motion for lumped,
or discrete systems, concepts from linear system theory and linear algebra prove indispens-
able. In treating boundary-value problems for continuous, or distributed systems, operator
notation is very useful, as it permits the treatment of whole classes of systems, instead of indi-
vidual cases. Closed-form solutions for systems with distributed parameters are not plentiful,
so that there is a great deal of interest in approximate solutions. This invariably amounts

vii



viii Preface

to approximating distributed systems by discrete qnes, which further amounts to replacing
partial differential equations by sets of ordinary differential equations, a task that can be
carried out conveniently by variational techniques.

A chapter-by-chapter review of the book should help develop a better appreciation for
some of the statements made above. The review is as follows:

Chapter 1 is devoted to concepts and techniques from linear system theory. It is con-
cerned with the relation between excitation and response and includes selected topics from
the theory of ordinary differential equations and matrix theory. Concepts such as the superpo-
sition principle, frequency response, impulse response, convolution integral, state equations,
transition matrix and discrete-time systems are presented. C

Chapter 2 provides a review of Newtonian mechanics and a comprehensive discussion
of analytical dynamics. Concepts such as linear and angular momentum, work and energy,
generalized coordinates and degrees of freedom, are reviewed and topics such as the virtual
work principle, d'Alembert's principle, Hamilton's principle, Lagrange's equations, Hamil-
ton's equations and conservation laws are presented in great detail.

Chapter 3 contains a discussion of single-degree-of-freedom systems, typical of a first
course on vibrations. It represents an application of the developments of Chapter 1 to the
vibration of simple systems. Many of the results obtained in this chapter are to be used in
later chapters.

Chapter 4 is concerned with the vibration of discrete systems. A geometric description
of the motion in the state space is used to explain concepts such as equilibrium points, motion
stability and linearization about equilibrium points. It is here that the algebraic eigenvalue
problem is first introduced. The solution of this problem is pivotal to the modal analysis for
system response. Derivation of the system response is carried out both in continuous and in
discrete time; Procedures for the numerical solution of nonlinear differential equations are
presented for the case in which linearization is not suitable.

Chapter 5 begins the process of building a mathematical foundation for modern vibra-
tions. Ironically, some of the material can be traced to developments over a century old.
Topics considered are the geometric interpretation of the eigenvalue problem, Rayleigh's
quotient and its stationarity, Rayleigh's principle, the Courant-Fischer maximin theorem and
the separation theorem all helping characterize the eigenvalues of natural and gyroscopic
conservative systems. Some of these concepts are essential to the variational approach to the
eigenvalue problem. Also included is a perturbation of the eigenvalue problem, a subject
somewhat apart from the rest of the chapter.

Chapter 6 contains a variety of computational algorithms for the algebraic eigenvalue
problem, both for conservative and noIiconservative systems, which translates into symmetric
and nonsymmetric problems. Some of the algorithms, such as Gaussian elimination, Cholesky
decomposition, matrix tridiagonalization and reduction to Hessenberg form, playa support-
ing role only. Actual algorithms for solving the symmetric eigenvalue problem include the
power method, the Jacobi method, Givens method, the QR method, inverse iteration, the
Rayleigh quotient iteration and simulataneous iteration. Algorithms for the nonsyinmetric
eigenvalue problem include the power method, the QR method and inverse iteration, all suit-
ably modified to accommodate complex eigensolutions .. Although some of the algorithms
can be found in computer software packages, such as IMSL, Matlab, etc., the reader can only
benefit from a closer exposure to the methods presented in this chapters;
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Chapter 7 is devoted entirely to formulations and solutions of boundary-value problems
for distributed-parameter systems. This chapter contains a great deal of information, some of
it basic and some more specialized in nature. Fundamental material includes the derivation of
boundary-value problems for strings, rods, shafts and beams using the extended Hamilton's
principle, Lagrange's equation for distributed systems, the differential eigenvalue problem,
closed-form solutions of the eigenvalue problem, membrane and plate vibration, variational
and integral formulations of the eigenvalue problem and system response. More specialized
material (that can be omitted at a first reading) includes extensions of Lagrange's equations,
generalization of the differential eigenvalue problem, systems with boundary conditions de-
pending on the eigenvalue, Timoshenko beam and systems with nonhomogeneous boundary
conditions.

Chapter 8 is concerned with techniques for the approximate solution of eigenvalue prob-
lems for distributed systems. All techniques approximate differential eigenvalue problems
by means of algebraic ones, some through lumping the system parameters at discrete point
and others by assuming a solution in the form of a finite series of trial functions. Methods
of the first type included in this chapter are the lumped-parameter method using influence
coefficients, Holzer's method and Myklestad's method. Methods of the second type are
Rayleigh's energy method, the Rayleigh-Ritz method and methods of weighted residuals,
such as Galerkins' method and the collocation method. Two other closely related series
discretization procedures, component-mode synthesis and substructure synthesis, extend the
Rayleigh-Ritz method to structures in the form of assemblages of substructures.

Chapter 9 is devoted exclusively to the most versatile and widely used of the series
discretization techniques, the finite element method. The chapter begins by demonstrating
that the finite element method is a potent version of the Rayleigh-Ritz method. Coverage
includes a matrix approach for the generation of interpolation functions for strings (and
henee for rods and shafts), beams, membranes and plates, the derivation of element mass
and stiffness matrices for these systems and the assembly process for producing global mass
and stiffness matrices. Also discussed are an estimation of errors in the eigenvalues and
eigenfunctions, the hierarchical version of the finite element method and system response.

Appendix A presents a brief introduction to the Laplace transformation method in-
cluding the basic tools for deriving the response of linear systems with constant coefficients.
Appendix B provides elements from linear algebra of interest in a modern treatment of
vibrations, and in particular vector spaces and matrices.

TIle book is intended as a text for a one-year course on vibrations at the graduate level
and as a reference for practicing engineers. It is also suitable for self-study. A first course
can be based on material culled from the following: Ch. 1, Sees. 2.1-2.11, Ch. 3, a selection
of topics from Ch.4, Sees. 5.1 and 5.2, Sees. 6.1-6.4 and Sees. 7.1-7.7. The material for a
second course is more difficult to prescribe, but should include a review of material from the
first course, a sampling of algorithms from Sees. 6.5-6.12, a selection from Sees. 7.8-7.18,
Sees. 8.4-8.8,8.10, and perhaps a sampling from Sees. 8.1-8.3, and Ch. 9. The book contains
an ample selection of homework problems. On occasions, several problems cover the same
subject so as to permit changes in the homework assignment from year to year.

Inevitably, comparisons will be made between this book and my first book, Analytical
Methods in Vibrations (Macmillan, 1967). The idea was to combine the best of the old, mate-
rial that stood the test of time, with the new. Some of the old material included has undergone
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various improvements, such as a broader and more ,rigorous treatment of the principles of
analytical dynamics, an expanded and enhanced discussion of the qualitative aspects ofthe
eigenvalue problem and a·more complete discussion of boundary-value problems for dis-
tributed systems. The new material reflects the significant progress made in the last three
decades in the treatment of discrete systems and in approximate techniques for distributed
systems. The most noteworthy of the latter is the inclusion of a chapter on the finite element
method.

A great deal of credit for this project belongs to David E. Johnstone, Senior Editor, the
Macmillan Co., a man of great charm and dedication, well liked by all who knew him. Sadly,
Dave was not able to see the fruits of his efforts, cut down unnecessarily in the prime of his life
and his career. Fortunately, another man of great ability and dedication, and one with whom
I have been enjoying an excellent professional relation, Bill Stenquist, Executive' Editor,
Prentice Hall, Inc., has taken charge of the project, seeing it to the successful completion
Dave would have loved to see. Many thanks go to both of them ..

I would like to take this opportunity to thank Jan Hjelmgren, Virginia Polytechnic
Institute and State University, Kent L. Lawrence, University of Texas, Arlington; Fai Ma,
University of California, Berkeley, and Harold D. Nelson, Texas Christian University, for re-
viewing the manuscript and making valuable suggestions, as well as to Sungsoo Na, ,Virginia
Polytechnic Institute and State University, for reviewing an early version of the manuscript.
Special thanks are due to Timothy 1.Stemple, Virginia Polytechnic Institute and State Univerc
sity, for producing numerical solutions to many of the example problems and for generating
the computer plots. Last but not least, I wish to thank Norma B. Guynn Jorher excellent
typing of the manuscript.

Leonard Meirovitch

~
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1

CONCEPTS AND TECHNIQUES
FROM LINEAR SYSTEM THEORY

A system is defined as an assemblage of parts or components acting together as a
whole. When acted upon by a given excitation, or input, a system exhibits a certain
response, or output. Systems can be divided into two major classes, linear and non-
linear, depending on how a system responds to excitations. Broadly speaking, linear
system theory is concerned with the behavior of linear systems, and in particular
with the excitation-response relation. The theory is of fundamental importance to
the study of vibrations and control. It includes selected topics from the theory of
ordinary differential equations and matrix theory.

For the most part, the interest in vibration theory lies in linear time-invariant
systems, i.e., systems described by linear differential equations with constant coeffi-
cients. The problem of deriving the response of linear time-invariant systems to given
excitations can be treated in the frequency domain or in the time domain. Frequency-
domain techniques are most indicated when the excitation is harmonic, periodic, or
random, while the time-domain approach is recommended for initial and arbitrary
excitations. Due to the nature of the applications presented throughout this text, the
emphasis in this chapter is on time-domain techniques, with some frequency-domain
methods being introduced as demand arises. For low-order systems, the excitation-
response relation can be expressed as a scalar single-input, single-output relation.
For higher-order systems, the excitation-response is more conveniently expressed as
a matrix multi-input, multi-output relation. For integration purposes, first-order dif-
ferential equations have in general a distinct advantage over second-order equations,
which implies a formulation in terms of state variables.

This chapter is devoted largely to linear time-invariant systems. Concepts and
techniques from linear system theory fundamental to vibration theory are introduced
by means of some generic differential equations. Specific differential equations of

1



2 Concepts and Techniques from Linear System Theory

~-'

Chap. 1

(1.1)

(1.3)

(1.2)

motion for various vibrating systems are derived throughout this text, at which point
these concepts and techniques are used to solve them. Hence, in many ways, this
chapter serves asa reference source.

1.1 PROBLEM FORMULATION

The motion of simple mechanical systems, such as a single mass particle acted upon
by forces, is governed. by Newton'ssecond)aw. ,The law is commonly expressed in
terms of a differential equation, which can be written in the generic form

dZx(t) ( dX(t))ao--z- = r x(t), -'-, t
dt dt

where x(t) is the displacement at time t and r(x(t), dx(t)jdt, t) is a function
representing the resultant force. We assume that the force function can be expressed
more explicitly as

(
dX(t)) dx(t) .

r x(t), --, t = - al-- - azx(t) + J(t)
dt dt

where -al dx(t)jdt and -azx(t) are internal forces and J(t) is an external force.
We shall examine the nature of the forces later in this text. Introducing Eq. (1.2)
into Eq. (1.1), we can write the differential equation of motion in the form

dZx(t) dx(t)
ao--z- + al-- + azx(t) = J(t)

dt dt
In vibrations and controls, x is known as the response and J as the excitation, or as
output and input, respectively. The relation between the excitation and response for
a given system is given schematically,in Fig. 1.1, in which the system is represented by
a box, the excitation by an incoming arrow and the response by an outgoing arrow.
A diagram of the type shown in Fig. 1.1 is known as a block diagram. It states simply
that when the system is acted upon by the excitation J (t) it exhibits the response
x(t).

J(t)

·1
System

x(t)

Figure 1.1 Block diagram relating the output to the input in the time domain

The differential equation, Eq. (1.3), can be written in the compact operator
form

where
Dx(t) = J(t) (1.4)

(1.5)



~--',"--_ ..

Sec. 1.2 System Classification. The Superposition Principle 3

represents a differential operator. Consistent with this, the block diagram of Fig. 1.1
can be replaced by the block diagram of Fig. 1.2, in which the system is represented
by the operator D. This is quite appropriate because the operator provides a fuB
description of the system characteristics, as can be concluded from Eq. (1.5).

X(I)

I
fl~

"_D(_I) _--

Figure 1.2 Block diagram relating the input to the output through the operator D

The study of vibrations is concerned with aBaspects of the excitation-response,
or input-output relation. Clearly, the first task is to establish this relation, which
consists of the derivation of the equation of motion. Then the problem reduces to
the determination of the response, which amounts to solving the differential equation.
Before an attempt to solve the differential equation is made, however, it is important
to establish the characteristics of the system, as these characteristics determine how
the system responds to excitations. This, in turn, affects the choice of methodology to
be used in producing the solution. In particular, as we shall see in the next section, it is
very important to establish whether the system is linear or nonlinear and whether it is
time-invariant or time-varying. The choice of methodology depends also on the type
of excitation. In this chapter, we discuss various aspects of the input-output relation
by means of the generic differential equation presented above, and in Chapter 2 we
specialize the discussion to basic vibrating systems.

1.2 SYSTEM CLASSIFICATION. THE SUPERPOSITION PRINCIPLE

As pointed out in Sec. 1.1, in the study of vibrations it is important to verify early
the characteristics of a system, as these characteristics determine the manner in
which the system responds to excitations. This, in turn, permits a judicious choice of
methodology best suited for deriving the response. In Sec. 1.1,we were conspicuously
silent about the terms ao, QI and a2 in Eq. (1.3). To explore the nature of the system,
and how it affects the response, we must now break this silcnce.

Let us consider the system described by Eq. (1.4), where f(t) is the excitation,
or the input, x(t) is the response, or the output, and D is a differential operator. The
system is said to be linear if it satisfies the two conditions:

1. The response to af (t) is ax (t), where a is a constant.
2. The response to fl (t) + f2(t) is XI (t) + X2(t), where XI (t) is the response to

fl (t) and X2(t) is the response to h(t)·

The first condition is satisfied if the operator D is such that

D[ax(t)] = aDx(t) (1.6)
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..

In this case, the operator D, and hence the system, is said to possess the homogeneity
property. The second condition is satisfied if f .

\ .
D [XI(t) + X2(t)] = DXI(t) + Dxi(t) (1.7)

In this case, the operator D, and hence the system, possesses the additivity property.
A differential operator D satisfying Eqs. (1.6) and (1.7) is referred to as a linear ho-
mogeneous differential operator. If an operator D does not possess the homogeneity
and additivity properties, the system is nonlinear.

The question of whether a system is linear or nonlinear has enormous implica-
tions in vibrations, so that a simple criterion enabling us to classify a system is highly
desirable. To this end, we consider the case in which the differential operator D is
defined by

• d2x(t) dx(t) .
Dx(t) = ao(t)-2- + al(t)-' - + a2(t) [1 - EX2(t)]x(t) (1.8)

dt , dt

where E is a constant, and propose to verify of homogeneity and additivity by means
of Eqs. (1.6) and (1.7), respectively. Replacing x(t) by ax(t) in Eq. (1.8), we obtain

d2[ax(t)] , d[ax(t)]
D[ax(t)] = ao(t)dt2 + al(t) dt + a2(t) [1 - w2x2(t)]ax(t)

, [d2X(t) dx(t) ] -
= aao(t)~ + al(t)~ + a2(t)x(t)-- a2(t)w3X\t)

=1= aD(t) (1.9)

Similarly, letting x(t) = XI(t) + X2(t) in Eq. (1.8), we can write

d2XI(t) dXI(t)
D [Xl (t) + X2(t)] = ao(t) 2 + al (t)-- + a2(t) [1 - EX~(t)] Xl (t)

dt dt

d2x2(t) dX2(t)+ ao(t) d 2 + al(t)-- + a2(t) [1 - EX~(t)]X2(t)
t dt .

..!.. 3a2(t)E [X~(t)X2(t) + XI(t)X~(t)]

=1= DXI(t) ;+ DX2(t) (1.10)

It is easy to see from Eqs. (1.9) and (1.10) that the operator D possesses neither the
homogeneity nor the additivity property, so that the system is nonlinear.

A cursory examination of Eqs. (1.9) and (1.10) reveals that the nonlinearity of
the system is caused by the term containing E. In the case in which E is equal to zero,
Eq. (1.8) reduces to

(1.11)

It is not difficult to verify that the system defined by Eq. (1.11) possesses both the
homogeneity and additivity properties, so that the system is indeed linear.

~----- ----~-~-"_ .._-._-



Sec. 1.2 System Classification. The Superposition Principle 5

The above example permits us to make the following observations:

1. A system is linear if the function x (t) and its derivatives appear to the first (or
zero) power only; otherwise, the system is nonlinear.

2. A system is linear if aQ,al and a2 depend on time alone, or they are constant.

Next, we consider another important system characteristic affecting the input-output
relation. In particular, we ask the question as to how the relation is affected by a shift
in time, as this question has significant implications in the derivation of the system
response. To answer this question, we return to the system described by Eq. (1.4)
and shift the time scale in both the input I (t) and output x (t). We denote the input
and output delayed by the amount r by I (t - r) and x (t - r), respectively. Then,
if the delayed input and output satisfy the equation

Dx (t - r) = I (t - r) (1.12)

the system is said to be time-invariant. Otherwise, the system is time-varying. As an
example, we consider

d2x(t) dx(t)
Dx(t) = ao--2- + a]-- + a2 (1 - E sin t) x(t) = I(t) (1.13)

dt dt
where ao, a], a2 and E are constant. Shifting the input and output, we obtain

d2x(t - r) dx(t - r)
Dx(t - r) = ao dt2 + a] dt + a2(1- E sin t)x(t - r) :j:. l(t - r)

(1.14)

Because Eq. (1.14) contradicts Eq. (1.12), the system is time-varying. Clearly, the
term preventing the system from being time invariant is -a2E sin t, which is the
only term in Eq. (1.13) in which the time t appears explicitly. This permits us to
draw the conclusion that if at least one of the coefficients of the differential equation
depends explicitly on time, the system is time-varying. TIme-varying systems are also
known as systems with time-dependent coefficients. Similarly, if the coefficients of
the differential equation are constant, the system is time-invariant, more commonly
known as a system with constant coefficients. The coefficients represent the system
parameters. In future discusstons, we will refer to the property reflected by Eq. (1.12)
as the time-in variance property. For the most part, the classification of a system can
be carried out by mere inspection of the differential equation. In vibrations, there is
considerable interest in linear time-invariant systems.

At this point, we propose to extend our discussion to linear systems of nth
order. To this end, we consider the differential equation (1.4), where

dll dn-I d
D = ao(t)- + a] (t)--j + ... + an-I (t)- + an(t) (1.15)

dtn dtn- dt
is a linear homogeneous differential operator of order n. The assumption of linearity
implies that the excitation and response can be written in the form of the linear
combinations

III

I(t) = L aj fi(t) , x(t)
j=l

IIIL ajxj(t)
j=l

(1.16a,b)
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(1.18)

where Xj (t) represents the response of the system described by Eq. (1.4) to the
excitation fJ (t)(j = 1, 2, ... , m). Inserting Eqs. (1.16) into Eq. (1.4), considering
Eq. (1.15) and carrying out the indicated operations, we can separate the result into
the independent set of equations

DXj(t) = fJ(t) , j = 1,2, ... , m (1.17)

Equations (1.16) and (1.17) permit us to make a very important statement, namely,
if a linear system is acted upon by a linear combination of individual excitations, the
individual responses can be obtained separately and then combined linearly. This
statement is known as the superposition principle and it applies'to linear systems
alone. It makes the determination of the response of linear systems to complex inputs
considerably easier than for nonlinear systems., Indeed, quite often it is possible to
decompose a complex input into a linear combination of simple inputs, thus reducing
the response problem to a series of simple problems. The superposition principle is
fundamental to linear system theory. This text is devoted largely to linear systems,
and in particular to linear systems with constant coefficients.

Before leaving this subject, we should point out that in many cases the distinc-
tion between linear and nonlinear systems is not as sharp as the foregoing discussion
may have implied. Indeed, quite often the same system can behave both as linear
and nonlinear, although not at the same time. As an example, for sufficiently small
values ofx that EX

2 « 1, the term EX2 can be ignored in Eq. (1.8), so that the system
can be approximated by a linear system. As x increase s, the term EX2 increases in
value relative to 1, so that it can no longer be ignored. Cleaily, there is no sharp
point at which the system changes from linear into nonlinear, and the shift is very
gradual.

1.3 EXCITATION AND RESPONSE CHARACTERIZATION

The response of a system depends on the system and on the excitation characteristics.
In Sec. 1.2, we explored ways of ascertaining the system characteristics by examining
the coefficients of the differential equation. In this section, we turn our attention to
the characterization of the excitation, as various types of excitations call for different
approaches to the derivation of the response. It should be pointed out here that
nonlinear systems require different methodology from linear systems, although some
of the methodology for nonlinear systems relies on that for linear systems. Unless
otherwise stated, over the balance of this chapter, we consider linear systems only,
and in particular time-invariant linear systems. Moreover, we confine our discussion
to second-order systems. Hence, we consider the differential equation

d2x(t) dx(t)
ao~ + a1~ + a2x(t) = J(t)

in which the coefficients aJi = 0, 1,2) are constant. For the moment, we keep the
discussion fairly general, in the sense that we do not .enterinto details as to how the
response to a given excitation is derived.

The solution of differential equations consists of two parts, namely, the ho-
mogeneous solution and the particular solution. With reference to Eq. (1.18), the

....•.~
t._ ~ ,_._. ._ ...~_--:.... .._~~ . __ T - _
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homogeneous solution corresponds to the case in which the external force is zero,
f(t) = O. Hence, the homogeneous solution is the solution to initial conditions
alone. Because the order of the system is two, the solution requires two initial
conditions, x(O) and dx(t)/dt 11=0' In the case of a mechanical system, the initial
conditions can be identified as the initial displacement and velocity, respectively.
On the other hand, the particular solution is the response to the external excitation
alone, which implies the solution in the absence of the initial conditions. The homo-
geneous solution and the particular solution complement each other, so that the total
solution is the sum of the homogeneous solution and the particular solution. This
is a direct reflection of the superposition principle, according to which the response
of linear systems to different excitations can be first obtained separately and then
combined linearly. At this point, it is appropriate to inject a note of caution, as the
above distinction between initial excitations and external excitations is not as airtight
at it may appear. Indeed, in some cases the distinction is artificial, as some initial
conditions are generated by external forces. We will have the opportunity to verify
this statement in Sec. 3.5.

As pointed out earlier, the response depends not only on the system character-
istics but also on the type of excitation. We begin our discussion with the response to
external excitations. To this end, it is convenient to distinguish between steady-state
response and transient response. The steady-state response can be defined broadly
as a long-term response, which implies a response that persists long after short-term
effects have disappeared. This implies further a steady-state excitation, such as con-
stant, harmonic, or periodic. In describing the steady-state response, time becomes
incidental. In fact, the steady-state response can be defined as the response of a sys-
tem as time approaches infinity. On the other hand, the transient response depends
strongly on time, and its presence is closely linked to the presence of the excitation.
The excitation can be any non periodic function of time, which excludes steady-state
functions, such as constant, harmonic and periodic functions. It is common practice
to regard the response to initial excitations as transient, even when the effect persists
indefinitely. Consistent with this, it is meaningless to add the response to initial exci-
tations to a steady-state response. Indeed, the steady-state response is not materially
affected by a shift in the time scale, while the response to initial excitations implies
a certain initial time.

The various excitation functions discussed above have one thing in common,
namely, their value at any given time can be specified in advance. Such functions
are said to be deterministic. Yet there are cases in which it is not possible to specify
the value of a function in advance. Indeed, in some cases there are so many un-
known contributing factors that the function tends to acquire a certain randomness.
Such functions are known as nondeterministic, or random; they are also known as
stochastic. An example of a random function is runway roughness. Nondeterministic
functions are described in terms of statistics, such as expected value, mean square
value, etc., rather than time. If the excitation is nondeterministic, so is the response.

It is clear from the above that the system can be subjected to a large variety
of inputs. Hence, it should come as no surprise that, to obtain the system response,
it is necessary to employ a variety of approaches. Some of these approaches are
discussed in this chapter and many others are presented in later chapters.
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1.4 RESPONSE TO INITIAL EXCITATIONS

In Sec. 1.3,we established that the response of linear systems to initial excitations and
external excitations can be first obtained separately and then combined linearly. In
this section, we propose to derive a general expression for the response to initial
excitations, and in subsequent sections we consider the response to a variety of
external excitations.

Our interest lies in the case of linear, time-invariant systems. In the absence of
external excitations, f(t) == 0, Eq. (1.18) reduces to the homogeneous equation

where

Dx(t) = 0 (1.19)

(1.21)

dZ d
D = ao dtZ + a] dt + az (1.20)

is a homogeneous differential operator, in which the coefficients ai (i = 0, 1,2) are
constant. The solution x (t) is subject to the initial conditions

dx(t) I -- Vox(O) = xo,
dt t=O

in which xo is the initial displacement and Vo is the initial velocity.
Because Eq. (1.19) is homogeneous and possesses constant coefficients, its so-

lution can be expressed in the exponential form

x(t) = Aest (1.22)

where A ands,are constants yet to be determined. Inserting Eq. (1.22) into Eq. (1.19),
we obtain

Recalling that D involves derivatives with respect to time and observing that

dr
_est = sr est r = 1,2
dtr..

we can iewrite Eq. (1.23) in the form

ADest = AZ(s)est = 0

(1.23)

(1.24)

(1.25)

where Z (s) is a polynomial in s known as the generalized impedance. It is obtained
from D by replacing derivatives with respect to time by s raised to a power 'equal
to the derivative order, in conformity with Eq. (1.24). Recognizing that A and est
cannot be zero, we conclude from Eq. (1.25) that

Z(s) = aosz + a]s + az = 0 (1.26)
'r·.

Equation' (1.26) is known as the characteristic equation, and it has in general as many
roots as the order of Z, where the roots are called characteristic values. In the case
at hand, the system is of order two, so that there are two roots, s] and Sz. Introducing
these toots into Eq. (1.22), we can write the solution of Eq. (1.19) as

x(t) = A]es1t+ Azes2t (1.27)
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The exponents .\"1 and .\"2 depend on the system parameters, so that they rep-
resent inherent characteristics of the system. On the other hand, A] and A2 are
constants of integration, and they depend on the initial conditions. Hence, their val-
ues are determined by factors external to the system. To evaluate the constants of
integration, we use Eqs. (1.21) in conjunction with Eq. (1.27) and write

dx(t) I-- = sIAl + S2A2 = Vo
dt 1=0

Equations (1.28) represent two nonhomogeneous algebraic equations in the un-
knowns A] and A2 and have the solution

x(O) = A] + A2 = XO, (1.28)

I
Xo 1 I
Vo S2

I:] }21
S2XO - Vo

S2 - S]

1

1 Xo I
S] Vo

I:] :21
-S]XO + Vo

S2 - S]
(1.29)

Finally, inserting Eqs. (1.29) into Eq. (1.27) and rearranging, we obtain the response
of our second-order system to the initial excitations Xo and Vo in the form

(1.30)

(a)

(b)

and we recall that the exponents s] and S2 are determined by solving the characteristic
equation, Eq. (1.26). Hence,.\"I and S2 depend on ao, a] and a2 and represent in
general complex numbers.

Example 1.1

Obtain the response of the system described by the differential equation

d2x(t) dx(t) b-- + a-- + x(t) = 0
dt2 dt

to the initial excitations x(O) = Xa, dx(t)/dtll=o= Va. The coefficients a and hare
constant.

Using Eq. (1.20), the system differential operator can be written as

d2 d
D = - + a- + h

dt2 dt

so that
0'( ( (P d ) ,( 2 'IDe> = - + a- + h e' = (.I' + as + b)e

dt2 dt

Hence, using Eq. (1.26), the characteristic equation is

Z(s) = .1'2 + as + b = 0

(c)

(d)

where Z(.I') is the generalized impedance. Equation (d) represents a quadratic equation
and its roots are the characteristic values

.I'J a 1J 2= - - ± - a - 4b

.1'2 2 2
(e)
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The general expressibnJor the response of a second-order system to initial excitations
is given by Eq. (1.30). Hence, inserting Eqs. (e) into Eq. (1.30), we obtain

1
x(t) = --- [(s2e~jt - Sle,'zt) Xa - (eSjt" eszt) va]

. S2 - Sl

__ -;:==;;;::-1=;:;: { [(_~ _ ~J a2 _ 4b) e(-1+~.JaZ-4b)t
.J a2 - 4b 2 2

- (-~ + ~Ja2 - 4b)e(-1-~.JaL4b)t]xa

- [e(-1+~.Jaz-4b)t _ e(-1~~.JaL4b)t] va}

e-
atj2

[(a sinh ~J a2 :- 4b t + J a2 - 4b cosh ~J a2 - 4b t) Xa.J a2 - 4b 2 2

+2va sinh ~Ja2 - 4bt] (f)

His not difficult to verify that the response given by Eq. (f) satisfies both initial conditions.

1.5 RESPONSE TO HARMONIC EXCITATIONS. FREQUENCY RESPONSE

The interest lies in the response of linear time-invariant systems to harmonic excita-
tions. In Sec. 1.1, we have shown that the differential equation can be written in the
operator form

Dx(t) = J(t) (1.31)

(1.33)

and the corresponding block diagram should be as in Fig. 1.3. The idea expressed by
Eq. (1.33), or by the block diagram of Fig. 1.3, is that the response can be obtained by
operating on the excitation with the operator D-1, where D-1 can be interpreted
as the inverse of the operator D. But, because D is a differential operator, D-1

must be an integral operator. Still, in spite of the fact that the direction of the flow
is correct, Fig. 1.3 represents only a symbolic block diagram, because in a genuine I

t

j
';".'.

I
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block diagram the output is equal to the input multiplied by the quantity in the box
and not merely to the input operated on by the quantity in the box. Moreover,
whereas the idea embodied by Eq. (1.33) has esthetic appeal, it is not very helpful in
producing a solution, because no method for generating D-1 eXplicitly exists. This
should not cause undue pessimism, however, as there are various methods permitting
one to achieve the same result in an implicit fashion. The various methods differ in
details, depending on the type of excitation. In this section we consider an approach
suitable for harmonic excitations, i.e., excitations in the form of sinusoidal functions of
time. Approaches suitable for other types of excitations are discussed in subsequent
sections.

f(t)
'1__ D_-l x(t) -

Figure 1.3 Symbolic block diagram relating the output to the input through the
inverse operator D-1

We consider the case in which the system described by Eq. (1.31) is subjected
to a harmonic force, which can be expressed in one of the two forms

or

f(t) = fo cos (V(

f(t) = fo sin wt

(1.34a)

(1.34b)

where fo is the amplitude and w is the excitation frequency, or driving frequency. We
note that the units of f are pounds (Ib) or newtons (N) and those of ware radians
per second (rad/s).

The response of a system to harmonic excitations can be derived more expe-
ditiously by using complex variables. This approach also permits treating the two
forms of harmonic excitation simultaneously. To this end, we consider the complex
unit vector given by

eiw( = cos wt + i sin wt, i2 = -1 (1.35)

The vector is plotted in the complex plane shown in Fig. 1.4, and we note that the
vector has unit magnitude and makes the angle wt with the real axis. The projections
of the unit vector on the real and imaginary axes are

Re eiw( = cos wt, 1m eiw( = sin wt (1.36)

,. .....

',': ,.
•• ,M~. \

j·'{:.>.-h<
?'~J~~'".:

As time unfolds, the angle wt increases linearly, causing the vector to rotate counter-
clockwise in the complex plane with the angular velocity w. In the process, the two
projections vary harmonically with time, as can also be concluded from Eqs. (1.36).
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I
I

i sin wt

Re
cos wt

Figure 1.4 Unit vector eiwt rotating in the complex plane

In view of the above, we shall find it convenient to express the harmonic exci-
tation in the complex form

(1.37)

where A is a constant having the same units as x(t) and an is the coefficient of x(t)
in Dx(t). Then, inserting Eq. (1.37) into Eq. (1.31), we have

(1.38)

with the understanding that, if the excitation is given by Eq. (1.34a), we must retain
Re x (t) as the response. Similarly, ifthe excitation is given by Eq. (1.34b), we must
retain 1m x(t) as the response. Observing that

r = 1, 2, ... , n (1.39)

it is not difficult to verify that the solution of Eq. (1.38) can be expressed as

x(t) == X(iw)eiwt (1.40)

Indeed, if we insert Eq. (1.40) into Eq. (1.38) and consider Eqs. (1.39), we can write

where

Dx(t) = X(iw)Deiwt = X(iw)Z(iw)eiwt = Aaneiwt

Z(iw) = ao(iwt + al(iwt-1 + ... + an

(1.41)

(1.42)
"

is known as the system impedance. The concept is analogous to the generalized
impedance Z (s) introduced in Sec. 1.4, except that here s is replaced by iw. Equation
(1.41) yields simply

X(iw)
Aan

Z(iw)
(1.43)

_._-~-- - - -,. __ .~------
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Inserting Eq. (1.43) into Eq. (1.40) and considering Eq. (1.42), we can write thei ~~
solution in the form ~ .~.. \

x(t) = AG(iw)e1Wl (1.44) ,''''.",'
.• .......:.<

where ~~,

G(iw) = an an 0.45)1 ~.~' j
Z(iw) ao(iw)n + al (iw)'z-l + ... + an l".~' ::

is known as the system admittance, or the frequency response, a dimensionless quan-; ':.~ [
. !\ • itl ty. ; .•.~ t ,

The input-output relation represented by Eq. (1.44) is displayed schematically f .E ~
in the block diagram of Fig. 1.5. In contrast with Fig. 1.3, however, Fig. 1.5 represents; .', ~ r
a genuine block diagram, as the output is obtained by merely multiplying the inputi \ ~
(divided by an) by the frequency response, an algebraic operation. Like the operator! ~':!I
D, the frequency response G(iw) contains all the system dynamic characteristics. \J
Unlike D, however, G represents an algebraic expression in the frequency domain .
rather than a differential operator in the time domain. Of course, the input-output
relation in the frequency domain is valid only for harmonic excitations.

J(t) = Aalle
iw1

G(iw)
x(t) = AG(iw)eiw1

Figure 1.5 Block diagram relating the output to the input through the frequency
response function

Equation (1.44) is a complex expression, and we know that the response is a
real quantity. To resolve this apparent conflict, we recall that we must retain either
Re x(t) or 1m x(t) from the solution given by Eq. (1.44), depending on whether the
excitation is given by Eq. (1.34a) or by Eq. (1.34b) with fo replaced by Aan. This
task is made easier by writing

where

G(iw) = IG(iw)1 e-i<t>(w) (1.46)

(1.47)

(1.48 )

is the magnitude of the frequency response, in which G (i w) is the complex conjugate
of G(iw), and

-I -1m G(iw)
¢(w) = tan Re G(iw)

is the phase angle of the frequency response. Inserting Eq. (1.46) into Eq. (1.44), we
ohtain

xU) = A /G(iw)1 ei(wl-<t» 0.49)
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Hence; retaining the real part in Eq. (1.49), we conclude that the response to the
'harmonic excitation given by J(t) = Aan cos wt is

x(t) = A IG(iw)1 cos(wt - </J)

Similarly, the response to J(t) = Aan sin wt is simply

x(t) = A IG(iw)1 sin(wt - ¢)

(1.50a)

(1.50b)

It is possible, to plot the response x(t) ..given by Eqs. (1.50a) and (1.50b) as
a function of time, but this would not be very informative. Indeed, a great deal

, more information can be extracted ,from plots IG(iw)1 versus wand ¢(w) versus w;
they are known as frequency response plots. The concept of frequency response is
very important in vibrations and control, and in Sec. 3.2 we will see how frequency
response plots can be used to study the behavior of mechanical systems subjected to
harmonic excitations.
Example 1.2

Obtain the steady-state response of the system described by the differential equation

dx(t)
---;jf + ax.(t) = .Aa sin wt (a)

where a and A are constants. Use the complex notation.
The desired steady-state response is given by Eq. (1.5Gb), or

xU) = A IG(iw)1 sin(wt - ¢) (b)

I

where IG(iw)1 is the magnitude and ¢ the phase angle of the frequency response. To
derive an explicit expression for the frequency response for the case at hand, we first
consider the impedance, Eq. (1.42), which for the system described by Eq. (a) reduces
to

Then, using Eq. (1.45\ we can write the frequency response

a all - iWi 1
G(iw) = -- = - - .. ==. i = - (d)

Z(iw) iw + a 1+ iWi 1+ (Wi)2 ' a
where i is known as the time constant of the system. Moreover, using Eq. (1.47), the
magnitude of the frequency response can be written as

IG(iw)1 = {[Re G(iw)f + [1m G(iw)f}1/2

_ . -. 1/2 _ 1
- [G(IW)G(IW)] - [1 + (Wi)2]l/2 (e)

in which G(iw) is the complex conjugate of the frequency response. Moreover, using
Eq. (1.48), we obtain the phase angle

-1m G(iw)
¢(w) = tan-1 = tan-1 Wi (f)

Re G(iw)

The generic system given by Eq. (a) is shown in Sec. 3.2 to describe the response
of a simple mechanical system to harmonic excitations. In fact, Figs. 3.7 and 3.8 in
Sec. 3.2 represent the frequency response plots IG(iw)1 versus Wi and ¢(w) versus Wi
corresponding to Eqs. (e) and (f), respectively.

..
Z(iw) = iw + a (c)
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--

(1.52)

where s is a complex variable.
the evaluation of the integral

1 lY
+

ix

x(t) = .C) X(s) = -. X (s)e"Hds
2Jrl "I-ioo

where the path of integration is a line in the complex s-plane parallel to the imaginary
axis, crossing the real axis at Re s = y and extending from -00 to +00. Under
certain circumstances, the line integral can be replaced by a contour integral, which

1.6 RESPONSE TO ARBITRARY EXCITATIONS BY THE LAPLACE
TRANSFORMATION

The problem of deriving the response of linear time-invariant systems to arbitrary
excitations can be approached in several ways. In this section, we propose to use
the approach most commonly used in linear system theory, namely, via the Laplace
transformation method. As always, the general idea behind a solution by means of
a transformation is to take a difficult problem, transform it into a relatively simple
problem, solve the simple problem and finally carry out an inverse transformation
to recover the solution to the original problem. In many cases, the inverse transfor-
mation can cause considerable difficulty, and this can be the case with the inverse
Laplace transformation. More often than not, however, these difficulties can be
avoided, which makes the Laplace transformation a preferred tool in linear system
theory.

Let us consider once again the linear, time-invariant system described by Eq.
(1.31), in which the operator D has the form given by Eq. (1.32). We confine ourselves
to the case in which the input f(t) is defined for t > 0 only. Moreover, in this text,
we are concerned exclusively with systems for which the past affects the future, but
not conversely. This implies that the system cannot react to inputs that have not yet
been initiated, so that the output x(t) must also be defined for t > 0 only. Such
systems are said to be causal or nonanticipatory. For simplicity, we assume that the
initial conditions are zero, so that the interest lies in the particular solution alone. In
this regard, it should be recalled that, by virtue of the superposition principle, in the
case of linear systems, the homogeneous solution and the particular solution can be
derived separately and combined linearly to obtain the complete solution.

We propose to solve Eq. (1.31) by means of the Laplace transformation. To this
end, we transform Eq. (1.31) into an algebraic equation, so that the problem of solving
a differential equation for the actual response is replaced by the simpler problem of
solving an algebraic equation for the transformed response. Finally, carrying out an
inverse transformation of the transformed response, we obtain the actual response.
It should be pointed out here that the Laplace transformation is perfectly capable of
producing the response to the initial conditions at the same time (see Appendix A).
Because this is not essential to the concepts to be introduced here, we postpone this
task to a later time.

The unilateral Laplace transformation, or transform of the output is defined as

X(s) = .£x(t) = roo x(t)e-S1dt (1.51)10
In general, the inverse Laplace transform involves

-------~
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can be evaluated by means of the residue theorem (see Sec.A.5). In most cases of
interest, however, evaluation of the inverse transform by such elaborate means is
not really necessary, and the inversion can be carried out by resolving X (s) into the
sum of simpler functions and using tables of Laplace transforms (Appendix A). By
analogy withEq. (1.51), we can define the Laplace transform of the input as

F(s) = Lf(t) = 100

f(t)e-stdt (1.53)

Before we proceed with the solution of Eq. (1.31) by means of the Laplace
transformation method, we must address the question of transforming time deriva-
tives. This question is addressed in Appendix A, from which we can write

, dr x (t) r
L--=sX(s), r=1,2, ... ,n (1.54)

dtr
in which it is assumed thatthe initial conditions are zero. Carrying out the Laplace
transformation on both sides of Eq. (1.31) and considering Eqs. (1.32), (1.51), (1.53)
and (1.54), we obtain the algebraic expression

Z(s)X(s) F(s) (1.55)

where the polynomial

Z( ) n + 11-1 + +s = aos alS ... an (1.56)

represents the generalized impedance, encountered in Sec. 1.4 in connection with the
response to initial excitations obtained by a classical approach. Equation (1.55) can
be rewritten as

. 1
G(s) = -

Z(s) aosn + a1Sn~1 + ... + an
is known as the transfer function of the system, a concept of fundamental importance
in linear system theory. Contrasting Eq. (1.58) with Eq. (1.45), we conclude that the
transfer function can be obtained from the frequency response G(iw) by replacing
iw by s. Because s is a complex variable, while iw is merely an imaginary variable,
.it is possible to interpret the transfer function as a generalization of the frequency
response. This interpretation is quite appropriate in view of the fact that the fre-
quency response applies to harmonic inputs only and the transfer function applies to
arbitrary inputs.

Equation (1.57) represents an algebraic relation in the s-domain, which is also
known as the Laplace domain. This relation can be displayed in the block diagram
of Fig. 1.6. This diagram represents in the Laplace domain the same relation as
the block diagram of Fig. 1.3 represents in the time domain. But, whereas Fig. 1.3
represents only a symbolic block diagram, Fig. 1.6 represents a genuine block diagram
with practical implications. Indeed, the block diagram of Fig. 1.6 states that the
transformed output X (s) can be obtained by merely multiplying the transformed
input F(s) by the transfer function G(s). This basic idea is used widely in linear
system theory.

L

in which

Xes) = G(s)F(s)

1

(1.57)

(1.58)
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F(s)

I

XW

0,----. _G(,\') _ ~-

i'1gure 1.6 Block diagram relating the transformed output to the transformed
input through the transfer function

Finally, inserting Eg. (1.57) into Eg. (1.52), we obtain a general expression for
the response in the form of the inverse Laplace transform

(1.59)

Before addressing the problem of deriving the general response of linear, time-
invariant systems to arbitrary inputs by means of Eg. (1.59), in the next section we
consider several inputs of significant importance in linear system theory in general
and vibration theory in particular.

1.7 GENERALIZED FUNCTIONS. RESPONSE TO GENERALIZED
FUNCTIONS

In the time-domain analysis of linear systems, and in particular in vibrations and con-
trols, there is a family of functions of special significance. 'Ibese functions are known
as generalized functions, 1 or singularity functions and they are characterized by the
fact that every generalized function and all its derivatives are continuous, except at
a given value of the argument. Another characteristic of the generalized functions
is that they can be obtained from one another through successive differentiation or
integration. The generalized functions are based on a mathematical theory known as
distribution theory.2 The importance of the generalized functions can be attributed
to the fact that a large variety of complicated excitations can be expressed as linear
combinations of such functions. But for many linear time-invariant systems of in-
terest, the response to a given generalized function is known. In fact, the response
represents a system characteristic. Hence, invoking the superposition principle, the
response of linear time-invariant systems to these linear combinations of generalized
functions can be derived with relative case.

The most important and widely used of the generalized functions is the unit
impulse, or the Dirac delta function. The mathematical definition of the unit impulse
IS

8(1 - a) = 0, t :f: ai:8(t - a)dt = 1

(l.60a)

(1.60b)

Lighthill, M. J.,/ntroductionlo Fourier Analysis and Genl!/'alized fimctions, Cambridge Univer-
sity Press, New York, 1951:(

2 Zemanian, A. H .. Distriblllion ThMry and TWIlS/imll Analysis: Anll1lroduction to Generalized
Functiom; with Applications, McGraw-HilL New York, 1965.
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The unit impulse is plotted in Fig. 1.7 as a function of time. It can be regarded as
a thin rectangle of width E and height liE in the neighborhood of t = a, where E
is a small time increment. In the limit, as the increment E; and hence the width of
the rectangle, approaches zero, the height approaches infinity in a way that the area
under the curve remains constant and equal to unity, which explains the term "unit"
impulse. The units of the unit impulse are seconds-::-1(s-1).

8(t-a)

T
1-
E

o

--------. "

, a --:-1 ~
E

Area = 1

Figure 1.7 Unit impulse initiated at t = a

The impulse response, denoted by get), is defined as the response of a linear
time-invariant system to a unit impulse applied at t = 0, with the initial conditions
being equal to zero. In this case, the input is J(t) = 8(t) and the output is x(t) =
get). Using Eqs. (1.53) and (1.60), we obtain the Laplace transform of the unit
impulse in the form

.6.(s) = L8(t) = roo 8(t)e-stdt = e-stl (00 8(t)dt
o t=O 10

Then, inserting Eq. (1.61) into Eq. (1.59), we obtain

get) = L-1G(s).6.(s) = L-1G(s)

1 (1.61)

(1.62)

from which we conclude that the impulse response is equal to the inverse Laplace
transform of the transfer function, or the impulse response and the transfer function
form a Laplace transform pair.' .

Another very important generalized,function in vibrations and controls is the
unit step function, defined mathematically as

u(t - a) = 0,

u(t - a) =;=),

t < a

t > a

(1.63a)

(1.63b)

The unit step function is displayed in Fig. 1.8. Clearly, the function is defined for all
times, except at t = a, where it experiences a discontinuity. The unit step function
is dimensionless. It is easy to verify that the unit step function can be obtained by
integrating the unit impulse, or

L--

u(t - a) = it 8(r - a)dr (1.64)
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Conversely, the unit impulse can be obtained by differentiating the unit step function,
or

duet - a)
o(t - a) = ---

dt

u(f - a)

1 ---------..-------

o a

Figure 1.8 Unit step function initiated at f = a

(1.65)

(1.66)

0.67)

The step response, denoted by d-(t), is defined as the response of a linear time-
invariant system to a unit step function applied at t = 0, with the initial conditions
being equal to zero. Letting f (t) = u(t) in Eq. (1.53) and considering Eq. (1.63b),
we obtain the Laplace transform of the unit step function in the form

l1(s) = £a(t) = roo u(t )e-st dt = rx; e-·H dt = e-
S

( 1

00

= ~Jo Jo -s 0 s
Then, letting x (t) = d-(t) in Eq. (1.59) and considering Eq. (1.66), we can write

d-(t) = £-IG(s)l1(s) = £-1 G(s)
s

or the step response is equal to the inverse Laplace transform of the transfer function
divided by s.

Yet another generalized function of interest in vibrations and control is the unit
ramp function, described by

r(t - a) = 0, t < a

r(t - a) = t - a, t > a

(1.6Ra)

(1.68b)

0.69)

The function is shown in Fig. 1.9. At t = a, the slope of r(t - a) experiences a
discontinuity. The function has units of seconds (s). The unit ramp function can be
obtained by integrating the unit step function, i.e.,

r(t - a) = r uel' - a)drIn
Consistent with this, the unit step function is equal to the time derivative of the unit
ramp function, or

dr(t - a)
u(t - a) = dt (1. 70)

I

________ J
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l r(t-a)

Chap. 1

o

Slope = 1

Figure 1.9 Unit ramp function initiated at t = a

The ramp response -z-(t) is defined as the response of a linear time-invariant sys-
tem to a unit ramp function applied at t = 0, with zero initial conditions. Integrating
by parts, we obtain the Laplace transform of the unit ramp function as follows:

R(s) = Lr(t) = 100

r(t)e-stdt = 100

te~stdt

I. = t e-
st

[00 ~ ~ 100

e-Hdt = 1
2~s 0 S 0 S

so that, using Eq. (1.59), we can write the ramp response in the form

G(s)
It(t) = L-1G(s)R(s) = L-1-

2
-. S

(1.71)

(1. 72)

or the ramp response is equal to the inverse Laplace transform of the transfer function
divided by S2. '

As indicated in the beginning of this section, and verified by Eqs. (1.64) and
(1.69), generalized functions can be obtained from one another through successive
integration. This property carries over to the response to generalized functions as
well. To prove this statement, we write the relation between the impulse response
and the unit impulse for a linear time-invariant system in the operator form

j:

Dg(t) = oCt) , , (1.73)

(1. 74)

where D is a linear homogeneous differential operator with constant coefficients of
the type given by Eq. (1.32). Next, 'we integrate Eq. (1.73) with respect to time, as-
sume that the integration and differentiation processes are interchangeable, consider
Eq. (1.64) and write

t ( .(,10 Dg(r)dr '= D10 g(r)dr = 'Jo o(r)dr = u(t)

In view of the fact that the relation between the step response and the unit step
function has the operator form

D1..(t) = u(t)

we conclude from Eq. (1.74) that
(1.75)

1..(t) (1. 76)
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(1. 77)

or the step response is equal to the integral of the impulse response. Integrating
Eq. (1.75), repeating the preceding process and considering Eq. (1.69), we obtain

it D:i-(r)dr = D l':i-(r)dr = it u(r)dr = r(t)

with the obvious conclusion that

(1.78)

or the ramp response is equal to the integral of the step response. Equations (1.76)
and (l.78) can provide at times an expedient way of deriving the response to some
important generalized functions.

The unit step function can be used to express certain functions in a compact
manner. The unit ramp function given by ~qs. (1.68) is a case in point. Indeed,
because the ramp function begins at t = a, and is identically zero for t < a, it
is necessary to describe the function by means of two expressions, one for t < a
and one for t > a. But, recalling the definition of the unit step function /1-(t - a),
we conclude that the effect of multiplying an arbitrary function J(t) by u(t - a) is
to annihilate the portion of J(t) corresponding to t < a and leave unaffected the
portion for which t > a. In view of this, the unit ramp function can be expressed in
the compact form

r (t - a) = (t - a )uU - a) (1. 79)

which is valid for all times.
As pointed out earlier in this section, the response of linear time-invariant sys-

tems to some complicated excitations can be obtained with relative ease by working
with generalized functions. As an example, we consider the trapezoidal pulse shown
in Fig. 1.10. The function can be described in terms of four expressions, one for t < 0,
one for 0 < t < t], one for t1 < t < f2 and one for t > f2. It can also be described
by the linear combination

(l.80)

f(t)

o

Figure 1.10 A trapezoidal pulse

I

-------- I!!!!!!!~~~!!!!!!!!!!!!!!!!!!~=::::=I~
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1
G(s) = (c)

S2 + as + b
To carry out the inversion indicated by Eq. (b), it is advisable to decompose G(s) into
partial fractions as follows:

which is significantly more convenient for deriving the response than the more tra-
ditional description mentioned above. Indeed, in view of the various definitions in-
troduced earlier, we can invoke the superposition principle and the time-invariance
prope~ty and write the response to f(t) in the general form

x(t) = fo [,z,(t) - ,z,(t - t1) - t1d-(t - t2)] (1.81)
t1 .

and we should point out that, unlike Eq. (1.80), it is not necessary to multiply the
various responses in Eq. (1.81) by unit step functions, because this effect is already
included in ,z,(t), ,z,(t - t1) and d-(t - t2).
Example 1.3

Derive the impulse response of the second-order system described by

d2x(t) dx(t)-- + a- - + bx(t) == f(t) (a)dt2 .. dt .,
From Eq. (1.62), the impulse response is given by the inverse Laplace transform

g(t)= r1G(s) (b)

where G(s) is the transfer function. Using Eq. (1.58), the transfer function for the
system at hand is

1
G(s) =

(s - S1)(S - S2)

A B--+--
S - Sl S - S2

(d)

where
Sj a 1 /

= -- ± -ya2 - 4b (e)
S2 2· 2

are the roots of the characteristic equation and A and B are coefficients yet to be
, determined. Bringing the right side of Eq. (d) to a common denominator, we obtain

G(s) = A(s - S2) + B(s - Sl)

(s - Sj) (s - S2) (f)

so that, comparing Eqs. (d) and (f), we conclude that A and B must solve the two
equations

A + B = 0, (g)

Sj - S2

Inserting Eq. (h) into Eq. (d), we obtain the transfer function

1 (1 1)G(s) = -- --.---
Sj - S2 S - Sj S - S2

so that, introducing Eq. (i) into Eq. (b), we can rewrite the impulse response as

-1 1 (1 1)get) = L -- -- - --
Sl - S2 S - S1 S - S2

which yield

A = -B = 1
(h)

(i)

(j)
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(k)

To carry out the inverse transformation indicated by Eq. U), we turn to the table
of Laplace transforms of Appendix A, where we find

L-l_l_ = ewt

S-U)

so that, considering Eqs. (e), we obtain the desired impulse response

g(t) = _1_ (eStt _ eS2') u(t)
Sl - S2

e-ar
/2 (ei .Ja2-4b' _ e- ~.Ja2-4b t) u(t)

.Ja2 - 4b

2e-at /2 1
= ---==== sinh - Ja2 - 4b t u(t).Ja2 - 4b 2

(I)

where we multiplied the result by u(t) in recognition ofthe fact that the impulse response
is zero for t < O.

At this point, we observe that the impulse response given by Eq. (I) is identical
to the response to the initial velocity Vo = 1 obtained in Example 1.1. This is no
coincidence, and in Sec. 3.5 we discuss the relation between impulsive excitations and
initial conditions.

Example 1.4

Derive the response of the first-order system

dx(t)dt + ax(t) = f(t) (a)

(c)

(b)

for the case in which f(t) has the form of the trapezoidal pulse shown in Fig. 1.10.
Equation (1.80) expresses the function f(t) as a linear combination of two ramp

functions and one step function. Consistent with this, Eq. (1.81) expresses the response
x (t) as a corresponding linear combination oftwo ramp responses and one step response.
Both types of response require the transfer function, as can be concluded from Eqs.
(1.67) and (1.72). From Eq. (1.58), the transfer function for the system described by
Eq. (a) is simply

(e)

1
G(s) = --

s+a

Hence, using Eq. (1.67), the step response is

<i-(t) = r1G(s) = r1 1
S s(s + a)

As in Example 1.3, we decompose the function on the right side of Eq. (c) into partial
fractions and carry out the inverse transformation to obtain the step response

<i-(t) = r1 1 = rl~(~__1_) = ~ (1 - e-at)u(t) (d)
s(s + a) ass + a a

Moreover, using Eq. (1.72), the ramp response is

1.(t) = r1G(s) = r1 1
S2 S2(S + a)

------===-~j
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Because the characteristic equation has a double root at s = 0, the partial fractions
expansion has the form

ABC=-+-+--
S2(s + a) S2 s s + a

Bringing the right side of Eq. (f) to a common denominator a,ndcomparing with the left
side, we conclude that

1

1
A = -, B =

a
A

a
1 1= C = -B =- a2' aZ

(f)

(g)

"

Then, introducing Eqs. (f) and (g) into Eq. (e) and referring to the table of Laplace
transforms in Appendix A, we obtain the ramp response

1
1-(t) = r1 --::---

s2(S + a)

= r 1:Z (;Z - ~ + s ~ a)
I'

= 2 (at - 1+ e-at)u(t) (h)
a

Finally, inserting Eqs. (d) and (h) into Eq. (1.81), the response to the trapezoidal pulse
given by Eq. (1.80) can be written in the explicit form

x(t) = fo {~(at - 1 + e-at)u(t) - ~ [aCt - t1) - 1 + e-a(t-t1)]u(t - t1)
t1 a2 a2

- ~ (1 - e-a(t-tz)) u(t - tz) } (i)

It should be pointed out here that the ramp response, Eq. (h), could have been
obtained more expeditiously by integrating the step response, Eq. (d), with respect to
time.

1.8 RESPONSE TO ARBITRARY EXCITATIONS BY THE CONVOLUTION,
INTEGRAL

Invoking the superposition principle and the time-invariance property, we were able
in Sec. 1.7 to derive the response of a linear time-invariant system to some compli-
cated excitation with relative ease by decomposing the excitation and response into
linear combinations of simple excitations and responses, respectively. But the power
of this approach extends well beyond such examples. Indeed, the superposition prin-
ciple and the time-in variance property can be used to derive a general formula for
the response of linear systems to any arbitrary excitation.

We consider an arbitrary exCitation J(t), such as the one depicted in Fig. 1.11.
Without loss of generality, we assume that J(t) is defined for t > 0 only. Focusing
our attention on an incremental area, identified as the shaded area in Fig. 1.11,
and assuming that the width L\ r is relatively small, the area can be regarded as an
increment of force representing an impulse of magnitude J( r) L\ r acting at t = r,
or

L\J(t, r) = J(r)L\r8(t - r) (1.82)
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J(t)
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tn

Area = J(r)tn

Figure 1.11 An arbitrary excitation function

In view of this, the function f (t) can be expressed as a linear combination of impulses
of the form

f(t) = L b.f(t, r) = L f(r)b.r8(t - r) (l.83)

But, invoking the homogeneity and time-invariance properties (Sec. 1.2), the re-
sponse of a linear time-invariant system to an impulse of a given magnitude and
acting at t = r is an impulse response of the same magnitude and shifted by the
amount t = r. Hence, the increment in the system response corresponding to the
excitation increment given by Eq. (1.82) is simply

b.x(t, r) = f(r)b.rg(t - r) (1.84)

where get) is the impulse response defined in Sec. 1.7. Then, invoking the superpo-
sition principle, the response of a linear system to the linear combination of impulses
given by Eq. (1.83) is a linear combination of impulse responses of the form

x(t) = L f(r)b.rg(t - r) (l.85)

In the limit, as b. r ~ 0, the response of a linear system to an arbitrary excitation
can be expressed as

x(t) = 100

f(r)g(t - r)dr (1.86)

But, get - r) is equal to zero for t - r < 0, which is the same as r > t. Hence, the
upper limit of the integral can be replaced by t, or

x(t) = r f(r)g(t - r)dr
()

(l.87)

(l.88)

The right side of Eq. (1.87) is known as the convolution integral or, quite appropri-
ately, the superposition integral.

Next, we consider the change of variables

t - r = 0", r = t - 0", dr = -dO"

r = 0 ~ 0" = t, r = t ~ 0" = 0
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Inserting Eqs. (1.88) into Eq. (1.87), we obtain

x(t) = [0J(t - a)g(a)(-da) ~ it J(t - a)g(a)da (1.89)

(1.90)

Then, recognizing that a is a mere dummy variable of integration, and replacing a
by r, we can combine Eqs. (1.87) a nd (1.89) into

x(t) = it J(r)g(t - r)dr = it J(t - r)g(r)dr

so that the convolution integral is symmetric in J and g, with the implication that it
does not matter whether we shift the excitation or the impulse response. Clearly, it
is more advantageous to shift the simpler of the two functions.

The above derivation ()f the convolution integral was based on physical con-
siderations, and it relates the response to the excitation and the dynamical system,
the latter being represented by the impulse response. In Appendix A, we derive
the convolution integral more abstrac~ly as the inverse Laplace transformation of a
product of two arbitrary Laplace transforms, not necessarily those of the excitation
and of the impulse r~sponse.

The convolution integral can :begiven an interesting and sometimes useful
geometric interpretation. To this end, we propose to examine the various operations
involved in the convolution integral. For the purpose of this discussion, we shift the
impulse response rather than the excitation, so that we work with the convolution
integral in the form given by Eq. (1.87). We begin by considering a typical excitation
J (r) and a typical impulse response g (r), shown in Figs. 1.12a and 1.12b, respectively.
Shifting g (r) backward by the amount r = t results in the function g (r + t) shown
in Fig. 1.12c. Taking the mirror image of the function g(r + t) about the vertical
axis, which amounts to replacing r by -r, yields the function get - r) depicted in
Fig. 1.12d. The next operation is the multiplication of J(r) by get - r), resulting
in the function J(r)g(t -r) shown in Fig. 1.12e. Then the integral of the product
J (r)g (t - r) over r from 0 to t, which is equal to the area under the curve, represents
the response x(t) corresponding a given value t of time, as shown in Fig. 1.12f. The
complete response is obtained by letting t vary from zero to any desired value.

If the excitation J(t) is a smooth function of time, the preceding geometric
interpretation is primarily of academic interest. However, if the excitation J(t) is
only sectionally smooth, 'such as the function depicted in Fig. 1.10, then the geometric
interpretation is essential to the successful evaluation of the convolution integral. We
will verify this statementin Example 1.6.

Example 1.5

Derive the general response of the first-order system

dx(t) .
-- + ax(t) = f(t)

dt (a)

by means of the convolution integral. Then use this expression to obtain the ramp
response.
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r

(e)

Area = X(t)

r

I

P T-

" !
" X(t)

I I1/ _~_,-L-
( f)

Figure 1.12 Geometric interpretation of the convolution integral (a) Excitation
function (b) Impulse response (c) Impulse response shifted backward
(d) Mirror image of the impulse response shifted backward (e) Multiplication
of the excitation by the mirror image of the shifted impulse response (I) The
response at time t resulting from the convolution integral

From Example lA, the system transfer function is

1
G(s) = --

s + a
so that, according to Eq. (1.62), the impulse response is given by

1
g(t) = .c1G(s) = .c1 __ = e-a1u(t)

s + a

(b)

(c)
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Hence, using the first form of the convolution integral in Eq. (1.90), we obtain the
general response

x(t) = it f(r)g(t - r)dr = it f(r)e-a(t-T)u(t - r)dr

= it f(r)e-a(t-T)dr (d)

The unit ramp function has the expression

f(t) = r(t) = tu(t)

so that, inserting Eq. (e) into Eq. (d), we obtain the desired ramp response

/i.(t) = it r(r)g(t - r)dr = it ru(r)e-a(t-T)dr

(e)

(f)

where we multiplied the result by u(t) in recognition of the fact that the ramp response
is zero for t < O. It is easy to verify that the result obtained here is identical to that
obtained in Example 1.4.

Example 1.6

In Example 1.4, we derived the response of the first-order system

dx(t)dt + ax(t) = f(t) (a)

for the case in which f(t) has the form of the trapezoidal pulse shown in Fig. 1.10,
by regarding the pulse as a combination of two ramp functions and one step function.
In this example, we propose to solve ,the same problem by means of the convolution
integral as given by Eq. (1.87).

From Example 1.5, we recall that the impulse responSe of the first-order system
described by Eq. (a) is given by

get) = e-atu(t) (b)

The excitation, the impulse response and the impulse response shifted and folded are
shown in Figs.1.13a, 1.13b and 1.13c, respectively. To evaluate the convolution integral,
we express the excitation as follows: '

fer) = I~,'
0, r > t2

Hence, the function f (r) entering into the convolution integral and the limits of inte-
gration depend on the amount of shift t inthe impulse response. Consistent with this, we
determine three expressions for the response corresponding to 0 < t < t1, t1 < t < t2
and t > t2-

o < r < t1

(c)

['---'---------~._-
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Figure 1.13 The convolution process (a) Excitation in the form of a trapezoidal
pulse (b) Impulse response for a first-order system (c) Mirror image of the
impulse response shifted hackward

Inserting Eqs. (b) and (c) into Eq. (1.87) and considering Figs. 1.13a and 1.l3c,
we obtain for 0 < t < 11

h [r e-a(r-r) 1/

tl a 0

(d)

For t1 < t < t2, we observe that the integration extends over time intervals in which
f (r) has different expressions. Hence, for t1 < 1 < t2, we obtain the response

x(t) fo 1/] -a(r-r)d + fi 11
-a(l-r)d=- re roe r

t1 0 ti

= fo [r e-a(t-r) _ e-a(l-r)] III
t1 a a2

o

fil [ -at -aft -II)]=-- atl + e - e
11a2

e-a(r-r) It
+ fo--a

t]

(e)

i

I-------------------==========~!!!!!!!!!~~
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Finally, for t > t2, the response is

x(t) = fo 111
re-a(I-T) dr + fo 112

e-a(t-T) dr
t] 0 11

1<,0 [e-a(I-::) e-a(I-T)] 111 e-a(I-T) IIZ
=- r. - ---::-- + fo---

t] a a2 a
o 11

fo [ -al -aCt-Ill + t -a(I-IZ)]=- e - e a Ie
tla2

Chap. I

(f)

(1.91)

It is not difficult to verify that Eqs. (d), (e) and (f) are equivalent to Eq. (i) obtained in
Example 1.4.

This example makes it clear that extreme care must be exercised in using the
convolution integral to determine the response to discontinuous excitations. To this
end, the geometric interpretation of the operations involved in the convolution integral,
and in particular Fig. 1.13c, proves indispensable. Clearly, as the time t increases, the
folded impulse response moves to the right, which makes the task of choosing the proper
expressions for fer) and the proper integration limits relatively easy.

1.9 STATE EQUATIONS. RESPONSE BY THE TRANSITION MATRIX

In our previous discussions, we were concerned with systems for which the excita-
tion and response were characterized by a single function of time each. Such systems
are commonly known as single-input, single-output systems. In linear system theory,
there is considerable interest in systems with several inputs and several outputs, re-
ferred to as multi-input, multi-output systems. In particular, we wish to consider a
linear time-invariant system described by the set of simultaneous first-order differ-
ential equations

n r

LaijXj(t) + LbijfJ(t), i = 1,2, ... ,n
j=l j=l

where we used the customary overdot to denote a derivative with respect to time,
Xi = dxddt (i = 1,2, ... , n). Equations (1.91) are known as state equations and
can be written in the compact form

x(t) = Ax(t) + Bf(t) (1.92)
in which

x(t) = [XI(t)X2(t) ... xn(t)f, f(t) = [f1(t)fz(t) ... Jr(t)f (1.93a,b)

represent an n-dimensional state vector and an r-dimensional excitation vector, re-
spectively, where the symbol T denotes a transposed quantity (see Appendix B); the
components Xi(t) of x(t) are called state variables. Moreover,

A [~~~ ~~~ :~.~~], B [:::~:.:~] (1.94a,b)
anI an2 ann bnl bn2 ... bnr
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are n x nand n x r coefficient matrices, respectively. Equation (1.92) defines an
nth-order system, and it represents an extension and generalization of the first-order
system described by Eq. (a) of Example 1.4. We observe, however, that for the
analogy to be more complete the term ax(t) in the first-order system given by Eq. (a)
of Example 1.4 should have had a minus sign.

Our interest lies in deriving a general formula for the response of the nth-
order system described by Eq. (1.92). Unlike earlier derivations, here we propose to
derive the homogeneous and particular solutions at the samc time. To this end, we
first multiply both sides of Eq. (1.92) on the left by the yet to be determined matrix
K(t), so that

K(t)x(t) = K(t)Ax(t) + KU)BfU)

Then we consider
d .
- fK(t)x(t)] = K(t)x(t) + K(t)x(t)
dt

Inserting Eq. (1.96) into Eq. (1.95), we obtain

d .
- fK(t)x(t)] - K(t)x(t) = K(t)Ax(t) + KU)Bf(t)
dt .

Next, we require that the matrix K (t) satisfy

K(t) = -AK(t)

which has the solution
K(t) = e-At K(O)

where

(1.95)

(1.96 )

(1. 97)

(1.98)

(1. 99)

(1.100)

represents a matrix series, in which I is the identity matrix, and K (0) is the initial
value of K (t). For convenience, we choose

K (0) = I

so that
K(t) = e-At

It is easy to verify that the matrices K (t) and A commute, or

AK(t) = K(t)A

so that Eq. (1.98) can also be written as

K(t) = -K(t)A

In view of Eq. (1.104), Eq. (1.97) reduces to

d
- [K(t)x(t}] K(t)Bf(t)
dt

(1.101)

(1.1 02)

(1.103)

(Ll 04)

(1.105)

.J
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(1.106)

which can be integrated readily. Taking into consideration Eq. (1.101), the result is

K(t)x(t) = K(O)x(O) + it K(r)Bf(r)dr

= x(O) + it K(r)Bf(r)dr

PremultiplyingEq. (1.106)through by K-1(t) and considering Eq. (1.102), we obtain
the desired response .

x(t) K-1(t)x(0) + K-1(t) it K(r)Bf(r)dr

<P(t)x(O) + it <P(t - r)Bf(r)dr

where x(O) is the initial state. Mbreover, the matrix

(1.107)

(t r)2 (t r)3
<P(t - r) = eA(t-,) = f + (t - r)A + - , A2 + - A3 + ... (1.108)2! 3!

is known as the transition matrix. The series converges always, but the number of
terms in the series required for a given accuracy depends on the time interval t - rand
the eigenvalue of A of largest modulus. At times, the transition matrix can be derived
more conveniently by means of an approach based on th~ Laplac~ transformation.
To this end, we consider the homogeneous part of the Eq. (1.92), namely,

x(t) = Ax(t)

which has the solution
x(t) = eAt x(O) = <P(t )x(O)

The Laplace transform of Eq. (1.109) is simply

sx(s) - x(O) = Ax(s)

where xes) = .£x(t), so that the transformed state vector has the form

xes) = (sf - A)-l x(O)

(1.109)

(1.110)

(1.111)

(1.112)

Inverse transforming both sides of Eq. (1.112), we obtain the homogeneous solution

x(t) = .£-1 (sf - A)-l x(O) (1.113)

so that, comparing Eqs. (1.110) and (1.113), we conclude that the transition matrix
can also be obtained by writing

'----- - -

(1.114)
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The inverse Laplace transform in Eq. (1.114) can be carried out entry by entry.
A more detailed discussion of the transition matrix, including an algorithm for its
computation, is presented in Sec. 4.10.

Clearly, the first term on the right side of Eq. (1.107) represents the response to
the initial excitation, or the homogeneous solution of Eq. (1.92), and the second term
represents the response to the external excitation, or the particular solution. The
latter has the form of a convolution integral, and it represents an extension of the
convolution integral of Sec. 1.8 to multi-input, multi-output systems. Using the same
procedure as in Sec. 1.8, it is not difficult to verify that the value of the convolution
integral in Eq. (1.107) does not change if f is shifted instead of <1>,so that

x(t) = <l>U)x(O) + r <I>(t - T)Bf(T)dT10
<I>(t)x(O) + r <I>(T)Bf(t - T)dT. 10 (1.115)

Equation (1.92) represents an nth-order system described by n simultaneous
first-order differential equations. In Sec. 1.2, however, we encountered a different
form of an nth-order system, namely, one described by a single equation, Eq. (1.4),
in which the highest derivative in D was of order n, as stated by the accompanying
equation, Eq. (1.15). The question arises whether one form can be reduced from the
other, and in particular whether Eq. (1.4), in conjunction with Eg. (1.15), can be cast
in state form so as to permit a solution of the type given by Eg. (1.107). Indeed, this
is possible, and to carry out the conversion we first rewrite Eq. (1.4), in conjunction
with Eq. (1.15), in the form

dnx(t)

dtn
01 dn-1x(t)

ao dtll-I
a'2 dll-z(t) all-I dx(t) all 1

-- - ... - --- - -x(t) + -/(1)
ao dtn-Z 00 dt ao ao

(1.116)

Then, introducing the transformation

x(t) = XI(I)

dx(t) dXl (0
-- --- = xzU)

dt dt

dZx(t) dxz(t)
-- = -- = x,(t)

dtZ dt .
(1.117)

dll
-
I x(t)
dtll-I

dn x(t)

dtn

dXIl-l (1)

dt
dxn(t)

dt
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we can write the desired state equations as follows:

Xl(t) = X2(t)

X2(t) = X3(t)

Xn-l(t) = Xn(t)

t. • I

(1.118)
• , ,,' f

Equations (1.118) can be expressed in the special form of Eq. (1.92) given by

x(t) = Ax(t) ~ bJ(t) (1.119)

(1.121)

where the state vector is as given by Eq. (1.93a), the excitation vector is a mere scalar,
f(t) = J(t), and the coefficient matrices have the form

0 1 0 0 0 0 0
0 0 1 0 ... 0 0 0
0 0 0 1 0 0 0

A ............................................... b-:::::
0 O· 0 0 0 1 0
an an-l an-2 an-3 a2 al- l

...
ao ao ao ao ao ao ao

(1.120a,b)

where the second is merely a column matrix, i.e., a vector. Consistent with this, the
response given by Eq. (1.107) reduces to

x(t) = <P(t)x(O) + it <P (t - r) bf(r)dr

More often than not, in vibrations the system is likely to be described by n
simultaneous second-order linear equations with constant coefficients, rather than
by a single equation of order n. In this case, using the analogy with Eq. (1.18), we
can write the governing equations in the form

(1.122)

(1.123a,b)

where

q(t) = [:~~~~1 Q(t) = [g~~~~1
qn~t)' Q,:(t)

are n-dimensional output and input vectors, respectively, and Ao, Al and A2 are
n x n coefficient matrices. It should be noted that the notation for the input and
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output in Eq. (1.122) differs from that in Eq. (1.18) so as not to conflict with the
notation for the state equations, Eq. (1.92). Then, adjoining the identity

q(tl == q(t)

and rewriting Eq. (1.122) as

ij(tl = -Ao] Atq(t) - A()l A2q(t) + AolQ(t)

(1.124 )

(1.125)

where Ao] is the inverse of Ao, it is not difficult to verify that Eqs. (1.124) and
(1.125) can be expressed in the state form (1.92) in which the state vector and the
corresponding excitation vector are given by

x(t) = [4~~n' f(t) = Q(t)

respectively, and the coefficient matrices have the form

(l.126a,b)

(l.I27a,b)

in state form and derive the step response by means of the transition matrix.
The state equations for the system at hand has the form (1.119), where the state

vector is simply

Example 1.7

Recast the second-order differential equation

q(t) + bq(t) = QU)

x(t)=[q(t) q(t)f

(a)

(b)

in which u(t) is the unit step function. Moreover, using Eqs. (1.120), the coefficient
matrices are

and the excitation is given by

jU) = Q(t) = u(t)

b = [n
(el

(d)

Using Eq. (1.108), we obtain the transition matrix

t2 t3
<l>(t) = eAt = I + tA + _A2 + _A3 + ...

2! 3!

=[10] t[O 1]_t
2
h[1 0]_t

3
h[0 01]° 1 + -h ° 2! ° 1 3!-b

t
4b2[10]+41 01 + ...

[

1 2 1 4 21 - -t b + -t b - ...2! 4!

-tb + 2-t3h2 - ~t5b3 + ...
3! 5!

1 1 ]t - -t3h + _t5b2 - ...
3! 5!

1 2 1 4 21 - -t b + -t b - ...2! 4!



[

cos .Jb t

-.Jb si~.Jb t
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~ .sin../b t ]

cos .Jb t

Letting x(O) = 0 and inserting Eqs. (c)-( e) into Eq. (1.121), we obtain

x(t).= it eA(H:)bf(r)dr

Chap. I

(e)

= it [ r cos.Jb (t - r)

o ~.Jbsin.Jb (t -,r)
vb u(r)drb u(r)dr

cos.Jb (t - r) . 1

[

~cos../b(~ - i).] t [~(1-COS../bt)]
u(t) = u(t)

~sin../b (r - t) 0 ~ sin../b t

The step response is simply the top component of x(t), or

1
d-(t) = - (1 - cos../b t)u(t)

b

(f)

(g)

where we multiplied the result by u(t) to account for the fact that d-(t) = 0 for t < O.

Example 1.8

Use Eq. (1.114) to derive the transition matrix for the second-order system of Example
1.7.

Using the first of Eqs. (d) of Example 1.7, we can write

(sf - A)-] = [S _1]-1= _1_ [S sl] (a)
. b s SZ + b -b

Hence, using the Laplace transform tables of Appendix A, and considering Eq. (1.114),
we obtain the entries of the desired transition matrix <t> as follows:

)

_]. s j,
<Pll = <P22 = £ :-z-- = cos vbt

s + b
l' 1·

<P12 = £-1 -Z-- = fL sin ../bt, <PZ1
s + bv b

= r]~ = -../b sin../bt
SZ + b

(b)

Clearly, the results agree with those obtained in Example 1.7, and we observe that they
were obtained here with less effort. This seems to be true for low-order systems, but
not for high-order,ones. In fact, for high-order systems the transition matrix must be
obtained numerically.

1.10 DISCRETE-TIME SYSTEMS

In Sees. 1.8 and 1.9, we discussed methods for;deriving the response of linear, time-
invariant systems to arbitrary excitations. IIi particularLwe demonstrated that the
response to external excitations can be expressed in the form of a convolution in-
tegral. In the case of single-input, single-output systems, the convolution integral
involves the impulse response and in the case of multi-input, multi-output systems,
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it involves the transition matrix. Only in very few cases, evaluation of convolution
integrals can be carried out in closed form. Indeed, in the vast majority of cases,
evaluation of convolution integrals must be carried out numerically by means of a
digital computer.

In processing numerical solutions on a digital computer, it is necessary to pro-
vide the information in a form acceptable to the computer. To this end, it is desirable
to introduce a number of concepts. Functions of time such as the excitation and
response, or input and output, are referred to in system theory as signals. Previous
discussions have been concerned with inputs and outputs in the form of continuous
functions of time. We refer to such functions as continllolls-time signals. The concept
of a continuous signal is somewhat broader than that of a continuous function, in the
sense that a discontinuous function with a denumerable number of discontinuities
represents a continuous signal. Digital computers cannot work with continuous-
time signals but with signals defined for discrete values of time only. Such signals are
known as discrete-time signals. A system involving continuous-time signals is called
a continuous-time system, and one involving discrete-time signals is referred to as a
discrete-time system.

Discrete-time functions can arise naturally. As an example, the amount of
currency in a bank at the close of each business day can be regarded as a discrete
function of time. The amount represents a sequence of numbers. In our ca::e, the
interest in discrete-time systems is due to our desire to process information on a digital
computer. To this end, we must convert continuous-time systems into discrete-time
systems, and vice versa.

j(t) Conversion f(n) Discrete x(n) Conversion x(t)
to discrete time to continuous

time processing time

Figure 1.14 The process of computing the response of continuous-time systems
in discrete time

The process of computing the response on a digital computer consists of three
cascaded operations, as shown in Fig. 1.14. The first operation represents a conversion
of the input signal from continuous time to discrete time. This operation is carried
out by means of a sampler, which converts a continuous-time signal into a sequence
of numbers corresponding to the value of the input signal at the sampling instances tn
(n = 0, 1, 2, ... ). The sampler can be modeled as a switch, where the switch is open
for all times except at the sampling instances tn, when it closes instantaneously to let
the signal pass through. Normally, the sampling instances tn are spaced uniformly
in time, so that tn = nT (n = 0,1,2, ... ), where T is the sampling period. The
second operation shown in Fig. 1.14 is the discrete-time processing, which implies the
computation on a digital computer. The resulting output is a discrete-time signal. The
third operation consists of reconstruction of a continuous-time output signal from
the discrete-time signal. This operation can be carried out by a data hold circuit. The
simplest and most frequently used hold is the zero-order hold. which maintains the
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discrete-time signal at the same level until the next sample arrives. The zero-order
hold is defined mathematically by

x(t) = x(tn) = x(nT) = x(n), nT :S t :S nT + T (1.128)

where for simplicity of notation we omitted the sampling period T from the argu-
ment. The zero-order hold generates asignal in the form of a staircase, as shown in
Fig. 1.15. It should be pointed out here that the staircase is continuous when regarded
as a signal but discontinuous when regarded as a function. Clearly, the jumps tend
to disappear as the sampling period T becomes very small.

~.

o T 2T 3T nT nT+T

Figure 1.15 Reconstruction of a continuous-time signal from a discrete-time
signal by means of a zero-order hold

Strictly speaking, the conversion of continuous-time information to discrete is
not sufficient for processing on a digital computer, and some intermediate steps are
necessary. To discuss these extra steps, we must introduce additional concepts. An
analog signal is a signal whose amplitude is not restricted in any particular way. In
contrast, a digital signal is a signal whose amplitude is restricted to a given set of
values. Clearly, both continuous-time and discrete-time signals are analog signals.
But digital computers can accept only digital signals, ordinarily encoded in a binary
code. Hence, to use a digital computer, we must change the format of the signals from
discrete analog to discrete digital, a task carried out by an analog-to-digital converter.
Of course, after the computations on a digital computer have been completed, digital
signals must be converted back to analog signals, which is done by a digital-to-analog
converter. Hence, in a more complete description of the computational process, the
'single operation corresponding to the discrete-time processing in Fig. 1.14 is replaced
by three cascaded operations, discrete analog-to-discrete digital conversion, digital
processing and discrete digital-to-discrete analog conversion. The conversion from
discrete analog signals to discrete digital signals involves certain quantization, which
implies that the analog signal is rounded so as to coincide with the closest value from
the restricted set. Hence, the quantization introduces errors, which depend on the
number of quantization levels. This number depends on the number of bits of the
binary word used by the digital computer. For practical purposes, these errors are
mathematically insignifiqmt. In view of this, in subsequent discussions, we make no
particular distinction between discrete analog and discrete digital signals and refer

. to them simply as discrete-time signals.
Next, we turn our attention to the mathematical formalism for computing the

response in discrete time. Our interest lies in discrete-time systems obtained through



discretization of continuous-time systems. Hence, alI discrete signals represent se-
quences of sample values resulting from sampling continuous-time signals. Assuming
that the continuous-time signal shown in Fig. 1.11 is sampled every T seconds be-
ginning at t = 0, the discrete-time signal f (n T) = f (n) consists of the sequence
f(O). f(1), f(2), .... To describe this sequence mathematicalIy, it is convenient to
introduce the discrete-time unit impulse, or unit sample, as the discrete-time Kro-
necker delta

Sec. 1.10 Discrete-Time Systems

8(n - k) = {~:
n = k
n i k

39

(1.129)

The unit impulse is shown in Fig. 1.16. Then the discrete-time signal fen) can be
expressed mathematicalIy in the form

00

fen) = L f(k)8(n - k)
k=O

The discrete-time signal fen) is shown in Fig. 1.17.

8(n - k)

n

o 12k

Figure 1.16 Discrete-time unit impulse

f(n) I

11

o 123 n

Figure 1.17 Discrete-time signal

(1.130)

Next, we propose to derive the response of a discrete-time system to the excita-
tion f(l1) given by Eq. (1.130). To this end, it is important to recognize that a linear
time-invariant system in continuous time remains a linear time-invariant system in
discrete time, i.e., the various inherent system properties are not affected by the
discretization process. Hence, invoking the analogy with continuous-time systems,
we can define the discrete-time impulse response g(n) as the response of a linear
time-invariant discrete-time system to a unit sample 8(11) applied at k = 0, with
alI the initial conditions being equal to zero. Due to the time-invariance property,
the response to 8 (11 - k) is g(n - k) and, due to the homogeneity property, the
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response to f(k)8(n -'-'-kHs f(k)g(n - k). It follows that the response of a linear
time-invariant discrete-time system to the excitation given by Eq. (1.130) is simply

,I

00 11

x(n) = .L j(k)g(n - k) = .L f(k)g(n - k)
k=O k=O

(1.131)

and we note that we replaced the upper limit in the series by n in recognition of the
fact that g(n - k) = 0 for n - k < 0, which i~the same as k > n. Equation (1.131)
expresses the respon'se of linear time-invariant discrete-time systems in the form of a
convolution sum, and it represents the discrete-time counterpart of the convolution
integral given by Eq. (1.87). Here too it can be shown that it does not matter which
of the two discrete-time signals, fen) or g(n), is shifted.

Equation (1.131) represents a discrete-time signal, i.e., a sequence of numbers
x(O), x(l), x(2), .... Using a hold, the sequence of numbers can be used to generate
a continuous-time signal, thus completing the task of deriving the system response.

Computation of the response by means of the convolution sum has several
drawbacks. In the first place, the approach is confined to single-input, single-output
systems, whereby the computation of every number x(n) in the response sequence
is carried out independently of the previously computed numbers x(O), x(l), ... ,
x(n - 1), and it requires all the values of f(k) and g(k) up to that instant (k =
0, 1, 2, ... , n - 1). Hence, one must save the excitation and impulse response se-
quences until the last number in the response sequence has been computed. The
reason for this is that the computational process is not recursive. In a recursive pro-
cess the computation of x(n) requires only the value of x(n - 1) and fen - 1),
so that the previous values can be discarded. Moreover, the computation of x(n)
by the convolution sum becomes progressively longer, as the sum involves n + 1
products of f(k) and g(n - k)(k = 0,1, ... , n). By contrast, in a recursive pro-
cess the computational effort is the same for each term in the response sequence.
In view of the above, we propose to develop a recursive algorithm for the compu-
tation of the response in discrete time. The algorithm is based on the transition
matrix approach, so that the response consists of a sequence of state vectors. In
this regard, it should be pointed out that a state vector contains velocities, which
may not be required. Clearly, the approach is suitable for multi-input, multi-output
systems.

The differential equation for a linear time-invariant continuous-time system is

x(t) = Ax(t) + Bf(t) (1.132)

where x(t) and f(t) are n-dimensionalstate vector and r-dimensional input vector,
respectively, and A and Bare n x nand n x r constant cdefficient matrices, respec-
tively. Inserting Eq. (1.108) into Eq. (1.107), we can write the solution of Eq. (1.132)
as

x(t) = eAtx(O) +'lteACt-r) Bf(r)dr , (1.133)...
where x(O) is the initial state vector and exp[ A (t - r)] is the transition matrix. Letting
t = kT in Eq. (1.133), where T is the sampling period, we obtain the state at that
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particular sampling time in the form
(kT

x(kT) = eAkTx(O) + 10 eA(kT-T) Bf(r)dr (1.134)

(1.135)

(1.136)

(1.137)

At the next sampling, the state is given by

tT+T
x(kT + T) = eA(kHT)x(O) + 10 eA(kT+T-T) Bf(r)dr

= eAT [eAkT x(O) + lkT
eA(kT-T) Bf(r)dr]

lkT+T+ eA(kT+T-T) Bf(r)dr
kT

Assuming that the sampling period T is sufficiently small that the input vector f(t)
can be regarded as constant over the time interval kT < t < kT + T (k =
0,1,2, ... ), we can write

lkT+T eA(kT+T-T) Bf(r)dr ~ [lkT
+

T
eA(kT+T-r)dr] Bf(kT)

kT kT
Moreover, using the change of variables kT + T - r = a, the integral on the right
side of Eq. (1.136) can be reduced to

kT+T 0 T
iT eA(kT+T-r)dr = i eAa(-da) = 1 eMda

lT A2a2
= (J + Aa + -- + ...)da

o 2!
AT2 A2T3

=IT + - + -- + ...
2! 3!

A2T2 A3T3

=A-1(AT + -- + -- + ...)
2! 3!

=A -1(eAT - J)

Then, introducing the notation

eAT = <1>,iT eM dO'B = A -1 (eAT - I) B = r (1.138a,b)

dropping T from the argument of x and f and combining Eqs. (1.134)- (1.137), we
obtain the discrete-time state vector sequence

x(k + 1) = <l>x(k) + reek), k = 0,1. 2, ... (1.139)

where <I>is known as the discrete-time transition matrix. Its value can be computed
by simply replacing t - r by T in Eq. (1.108). Clearly, Eqs. (1.139) represent a

___________________________ --====== IIIIIIIIl...l



42 Concepts and Techniquesfr~m Linear System Theory . Chap. I

recursive algorithm, lending itself to easy programming ona digital computer. Note
that <I>and r are constant matrices and that x(k) and f(k) can be discarded as soon
as x(k + 1) has been computed. Moreover, it is easy to see that each state vector
requires the same computational effort.

In the case of a single-degree-of-freedom system, we can use the analogy with
Eq. (1.119) and rewrite Eq. (1.139) in the single-input fo;m - .

x(k + 1) = <l>x(k) + 'Yf(k), k = 0,1,2, ... (1.140)

(1.141)

(c)

,
where x(k) is the two-dimensional discrete-time state vector and f(k) is the scalar
input. Moreover, <I>is the 2 x 2 tra~sition matrix and

. 'Y = A-l(eAT - I)b

is a two-dimensional coefficient vector, in which b = [0 aD 1] T .

.Example 1.9 . t

Use the convolution sum to obtain the discrete-time step response of the second-order
system of Example 1.7 for b = 4 S-2. Use T = 0.05 s as the sampling period.

By analogy with continuous-time systems, the discrete-time step response 1-(n) is
defined as the response to the unit step sequence

I

u(n) = {O, n < 0 (a)
, ' 1, n::: 0 ..
• I

Moreover, it is shown in Example 1.10 that the discrete-time impulse response is
T

g(n). = . fL sin n.JbT , n ,= 0,1,2, ... (b)., -vb

Using Eq. (1.131), the discrete-time step response has the general form
n

1-(n) ='Lu(k)g(n - k)
k=O

Hence, inserting Eqs. (a) and (b) into Eq. (c), we obtain the discrete-time response
sequence

1-(0) = u(O)g(O) = 0
] •. T

1-(1) = L u(k)g (1 - k) = fJj sin.JbT = 0.002496
k=O v 0

2 _

1-(2) = L u(k)g(2 - k) = : (sin 2.JbT + sin.JbT) = '0.007463
k=O vb

3

1-(3) = Lu(k)g(3 - k)
k=O

= ~ (sin3.JbT'+ sin2.JbT+ sin.Jbi) ,:= 0.014851

4

1-(4) = Lu(k)g(4 - k)
k=O

_--- ._~_. --_~ _. __ .-' n • ~ _

(d)
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= ~ (sin 4.JbT + sin 3.JbT + sin 2.JbT + sin .JbT) = 0.024586

..................................................

The response sequence is plotted in Fig. 1.18.
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Figure 1.18 Step response of a second-order system in continuous time and in discrete time
by the convolution sum.

(a)

Example 1.10
Use the transition matrix approach to derive the discrete-time impulse response for the
system of Example 1.7.

The discrete-time response is given by Eqs. (1.140), in which the discrete-time
transition matrix <l>can be obtained from Eq. (e) of Example 1.7 in the form

[
cos.JET ~b sin.JET]

<l>= eAT = v 0

-.JE sin .JET cos.JET
Moreover, recognizing that au = 1, we can use Eq. (1.141) and write

=~ [0 -1] [COS.JET - 1
'Y b b 0

-.JE sin .JET
1 [1 - cos.JET]

=b .JE sin.JET

~sin.JbT] [~]
cos.JET - 1

(b)

In addition, the initial state vector is zero and the discrete-time excitation has the form
of the scalar sequence

f(O) = 1, f(n) =0, n=1,2, ... (c)

Hence, inserting Eqs. (a)-(c) into Eq. (1.140), we obtain the discrete-time response

sequence

1 [1 - cos.JET] 1 [1 - cos.JET]
x(1) = 'Yf(O) = - . 1 = -b .JE sin.jf b.JE sin.JET
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x(2) = <f>x(l) + "11(1)

1 [ cos.../bT

b -.../b sin.../bT
~Sin.../bT] [1- cos.../bT]

cos.../bT .../b sin.../bT

1 [ cos.../bT - cos 2.../bT ]
(d)

b -.../b(sin.../bT - sin 2.../bT)
x(3) <f>x(2) + "I 1(2)

~ [COS.../bT ~ Sin.../bT] [ COS~T - cos~.../bT ]
-.../b sin.../bT cos.../bT -.../b(sm.../bT - sm 2.../bT)

1 [ cos 2.../bT - cos 3.../bT .]
b -.../b(sin 2.../bT - sin 3.../bT)

...........................................................
The impulse response is the upper entry in x(n). By induction, we can write

g(n) = ~ [cos(n - l)-JbT - cosn-JbTJ
Then, recalling that T is relatively small, we can make the approximation

cos(n - l)-JbT ;:: cos n-JbT + -JbT sin n-JbT

(e)

(f)

so that, introducing Eq. (f) into Eq. (e), the desired discrete-time impulse response is
simply

T
g(n) = .../bsinn-JbT (g)

1.11 SYNOPSIS

The basic question in the study of vibrations is how systems respond to given excita-
tions. Depending on the excitation-response characteristics, systems can be classified
broadly as linear or nonlinear. Linear system theory is concerned with the excitation-
response characteristics, or input-output characteristics, oflinear systems. Low-order
systems can often be described by a single differential equation, but higher-order sys-
tems require a set of simultaneous equations, which can be conveniently cast in matrix
form. Consistent with this, linear system theory represents a selection of material
from the theory of ordinary differential equations and matrix theory. Of particu-
lar interest in vibrations are linear time-invariant systems, or systems with constant
coefficients, for which a time shift in the input causes a like time shift in the output.

The solution of differential equations for the response of linear time-invariant
systems can be obtained in a variety of ways. Our interest lies in methods of solution
capable of extracting the largest amount of information possible about the system
behavior. Of course, the choice of methodology depends largely on the nature of
the excitation. Indeed, there is a significant difference between the approach to
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steady-state problems and the approach to transient problems, where the first in-
clude harmonic, and in general periodic excitations, and the second include initial
and nonperiodic excitations. As indicated in Sec. 1.5, in the case of harmonic exci-
tations, frequency response plots, i.e., plots of the magnitude and phase angle of the
response as functions of the frequency, are significantly more informative than time
descriptions of the response. On the other hand, in the case of transient excitations
time descriptions of the response are more indicated. The transient response can be
obtained conveniently by means of the Laplace transformation method, which leads
to a convolution integral. The concept of transfer function and the intimately related
impulse response playa pivotal role in the derivation of the convolution integral. In
the case of multi-input, multi-output systems, it is often advisable to cast the equa-
tions in state form. Then, the response to arbitrary excitations can be conveniently
produced by means of a matrix form of the convolution integral using the transition
matrix.

In most cases of practical interest, it is necessary to evaluate the response on
a digital computer. But the excitation and response are continuous functions of
time, and digital computers cannot handle continuous-time variables. Hence, to
process the solution on a digital computer, the problem must be discretized in time.
In Sec. 1.10, the formalism for converting systems from continuous time to discrete
time, computing in discrete time and converting back to continuous time is presented
under the title of discrete-time systems.

This chapter represents a selection of topics from linear system theory of par-
ticular interest in the study of vibrations. The various concepts and techniques are
introduced by means of generic differential equations, without any attempt to derive
these equations. Methods for deriving differential equations of motion for general
dynamical systems are presented in great detail in Chapter 2. Then, the concepts and
techniques presented here are applied in Chapters 3 and 4 to study the excitation-
response characteristics of vibrating systems.

PROBLEMS

1.1 Determine whether the system described by the differential equation

d2 x dx
t2 _ + t - + (t2 - c2

) X = 0
dt2 dt

is linear or nonlinear by checking the homogeneity and the additivity properties.
1.2 Repeat Problem 1.1 for the differential equation

d2xdf2 + sin3t = 0

1.3 Repeat Problem 1.1 for the differential equation

d2x
dt2 + (sin3t)x = 0

1.4 Repeat Problcm 1.1 for the differential equation
d2x
dt2 + sin3x = 0
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1.5 Repeat Problem 1.1for the differential equation
f·, d2x . <

T-_ + (SIll X) X = 0
" dt2

1.6 Repeat Problem 1.1 ~or the differential equation

'I d2x' dx, ; I;'

- - + - + (t2 -;C, c2x2) x = 0
i' dt2 dt", ' . '

1.7 RepeafProblem 1.1 for'ihe diifer~ntial equation

d2x
--2 + (3 +2 cost) x· = 0
dt,' ',',

1.8 Repeat Problem 1.1 for the differential equation

d2x
-2 + (3 + 2cosx)x = 0dt

J {,., •. 'J" '.~, ,

1.9 Repeat Problem 1.1 for the diffei"~Iltialequation

d3x·,' 2 ,dx •
'dt2 + d~ -~)dt + x=:O

1.10 Determine whether or not the system described by the differential equation'

d2x dx", ,
-2 + -.+ (3+ 5cos2t)x = 0
dtdt, . ,',

I.

:," i

is time-invariant.
1.11 Repeat Problem 1.10 for the system of Problem 1.3.
1.URepeatProblem 1.10 for the system of Problem 1.4. ','
1.13 Repeat Problem Lio for the system of Problem 1.6.'
1.14 Repeat Problem 1.10'tor the system of Problem 1.9.
1.15 Derive and plot the response;{the'sy~{J~described by tile differential equation

dx
-+x=O
dt

" ,'-.

f

to the initial ~ondition x(O) = 2.
1.16 Derive and plot the response of the system described by the differential equation

d2x dx- + 8- + 25x = 0dt?- dt
to the initial conditions x(O) = 2,i(0) = 3. I;.

1.17 A system is described by the differential equation

dx
2- + 4x=. 3 cos wt

dt '
Determine the impedance, the frequency response and the system response. Then plot
the magnitude and the phase angle of the frequency response.

1.18 Repeat Problem 1.17 for the system

d2x dx
-' + 0.4- + 4x = 5sinwt
dt2 dt
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1.19 Determine the response of the system described by the differential equation

d2 x dx
dt2 + dt + 25x = 5 sin (wt - 1/1)

Draw conclusions concerning the effect of the phase angle 1/1.
1.20 Determine the response of the system described by the differential equation

d2x dx ( d ).- + 2- + 25x = - + 2 5e""1
dt2 dt dt

1.21 Derive the transfer function for the system described by the differential equation

d2x dx- + 0.4- + 4x = f
dt2 dt

1.22 Repeat Problem 1.21 for the system

d4x d3x dx2 dx- + 2- + 3- + - + x f
dt2 dt3 dt2 dt

1.23 Repeat Problem 1.21 for the system

d
2

X dx ( d )- + 2- + 25x = - + 2 f
dt2 dt dt

1.24 Derive the impulse response for the system described by the differential equation

dx
- +2x = f
dt

1.25 Repeat Problem 1.24 for the system

d3x d2x dx- + - + 4- + 4x = f
dt3 dt2 dt

1.26 Derive the step response for the system of Problem 1.24.
1.27 Derive the step response for the system of Problem 1.21.
].28 Derive the step response for the system of Problem 1.25.
1.29 Dcrive the step response of the system of Example 1.3by integrating the impulse response

obtained in Example 1.3.
1.30 Dcrive the ramp response for the system of Problem 1.24.
1.31 Derive the ramp response for the system of Problem 1.24by integrating the step response

obtained in Problem 1.26 with respect to time.
1.32 Dcrive the ramp response of the system described by the diffcrential equation

d2x
dt2 + 4x = f

in two ways, first by means of Eq. (1.72) and then by integrating the step response.
1.33 Determine the response of the system of Problem 1.32 to the rectangular pulse shown in

Fig. 1.19 by regarding it as a superposition of two step functions.
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Figure 1.19 Rectangular pulse

Chap. 1

1.34 Repeat Problem 1.33 for the system of Problem 1.21.
1.35 Determine the response of the system of Problem 1.32 to the trapezoidal pulse shown in

Fig. 1.20 by regarding it as a superposition of one step function and two ramp functions.

f(t)

fa
,
i'

o
Figure 1.20 Trapezoidalpulse

1.36 Repeat Problem 1.35 for the system of Problem 1.21.
1.37 Derive the step response of the system of Problem 1.32by'means of the convolution

integral.
1.38 Derive the step response of the system of Problem 1.21 by means of the convolution

integral.
1.39 Solve Problem 1.33 by the convolution integral, as outlined in Example 1.6.
1.40 Solve Problem 1.35 by the convolution integral, as outlined in Example 1.6.-
1.41 Derive the impulse response for the system described by the differential equation

d2x dx
dt2 + 2 dt + 25x = f,

by means of the' approach based onthe transition matrix:
1.42 Derive the impulse response for the system of Problem 1.21 by means of the approach

based on the transition matrix.
1.43 Repeat Problem 1.42 for the system of Problem 1.25.
1.44 Derive the step response for the system of Problem 1.41 by means of the approach based

on the transition matrix.
1.45 Repeat Problem 1.44 for the system of Problem 1.21.
1.46 Repeat Problem 1.44 for the system of Problem 1.25.

. 1.47 Derive the ramp response for the system of Problem 1.32 by means of the approach
based on the transition matrix.
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1.48 Repeat Problem 1.47 for the system of Problem 1.21.
1.49 Show that the discrete-time impulse response for the system of Problem 1.24 is

g(n) = Te-ZnT

Then use the convolution sum to derive the discrete-time response.
1.50 Determine the discrete-time response of the system of Problem 1.24 to the trapezoidal

pulse of Fig. 1.20 by means of the convolution sum.
1.51 Use the convolution sum to derive the discrete-time response of the system of Example

1.8 to the rectangular pulse of Fig. 1.19 for the case in which t] = 0.5 s. Plot the response
for 0 ::::n ::::20.

1.52 Repeat Problem 1.51 for the case in which the excitation is as shown in Fig. 1.20, where
t1 = 0.5 s, tz = 1.0 s. Plot the response for 0 ::::n ::::30.

1.53 Solve Problem 1.51 by the approach based on the discrete-time transition matrix. Com-
pare results with those obtained in Problem 1.51 and draw conclusions.

1.54 Repeat Problem 1.54 for the system of Problem 1.52.
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.PRINCIPLES OF NEWTONIAN
AND ANALYTICAL' DYNAMICS

tl'"

Mechanics is the oldest and most fundamental part of physics. It is concerned with
the equilibrium and motion of bodies. Mechanics has'inspired the development of
many elegant areas of mathematics. Problems of mechanics have aroused the interest
of ancient Greek physicists, such as Aristotle, who lived in the fourth century RC. The
idea behind the principle of virtual work, which is concerned with the equilibrium
of a body, is attributed to Aristotle. Also attributed to him is the concept of virtual
displacements, although Aristotle based his ideas on virtual velocities. Aristotle was
less successful in explaining the motion of bodies, as he advanced a law of motion
that in modern terms implies that force is the product of mass and velocity.

The first step toward placing the study of dynamics on a firm scientific foun-
dation was taken by Galileo about two millennia after Aristotle. Galileo developed
the concepts of acceleration and inertia, or mass, as well as inertial space. He based
his laws of motion on results of experiments with falling bodies, thus establishing
experimental methods as an integral part of scientific research.

Toward the end of the seventeenth century, expanding on the ideas of Galileo,
Newton enunciated his laws of motion (Philosophiae Naturalis Principia Mathemat-
ica, 1687). Newton's laws were formulated for single particles, and can be extended
to systems of particles and rigid bodies. Like Galileo, he postulated the existence of
an absolute space relative to which motions must be measured. Moreover, time is
absolute and independent of space. In the Caseof a single particle, Newton's second
law leads to a differential equation, which must be integrated to obtain the motion
of the particle. In the case of a system of particles, a differential equation must be
written for each particle. These equations contain constraint forces resulting from
kinematical conditions, and solutions tend to be difficult to obtain. One of the diffi-
culties can be traced to the presence of constraint forces in the equations of motion,
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although in most cases these forces present no particular interest. Basic concepts in
Newtonian mechanics are displacement, force and momentum, all vector quantities.
For this reason, Newtonian mechanics is also known as vectorial mechanics. Another
important feature of Newtonian mechanics is that the motion is described in terms
of physical coordinates.

Pioneering work on dynamics was carried out by Leibniz, a contemporary of
Newton. He proposed an alternative to Newton's laws of motion in the form of a
statement that the work performed by a force over a given path causes a change in
the kinetic energy from its value at the initial point to its value at the final point.
By replacing the concepts of force and momentum by work and kinetic energy, the
approach permits an easy extension from single particles to systems of particles and
rigid bodies. Indeed, this obviates the need for free-body diagrams, required of
each particle in Newtonian mechanics, and eliminates constraint forces internal to
the system automatically. It should be noted that force and momentum are vector
quantities and work and kinetic energy are scalar quantities. Without a doubt, many
of the concepts developed by Leibniz lie at the foundation of analytical mechanics.

TIle importance of d' Alembert's contributions to dynamics in the eighteenth
century is acknowledged widely, although there is some controversy concerning the
nature of these contributions. By creating the concept of inertia forces, he reduced
the problems of dynamics to problems of equilibrium. This step by itself is of marginal
value, as little is gained beyond what can be obtained by the Newtonian approach.
What is important is the fact that this step permits the extension of the virtual work
principle to problems of dynamics. Indeed, according to this approach, referred to as
the generalized principle of d'Alemhert, the derivation of the equations of motion is
formulated as a variational problem, thus providing another element essential to an-
alytical mechanics. The generalized d'Alembert's principle has the advantages over
the Newtonian approach that it considers the system as a whole, without breaking
it into components, and constraint forces performing no work are eliminated from
the problem formulation. The controversy surrounding d' Alembert's contribution
relates to the generalized principle, which is referred to by some as Lagrange's form
of d'Alembert's principle.

Another serious contributor to analytical mechanics is Euler, a contemporary
of d'Alembert. Euler's contributions lie in his fundamental research on variational
problems known as isoperimetric problems. Of particular note is Euler's equation,
an implicit solution to a large class of variational problems.

Whereas Leibniz, d'Alembert and Euler provided many of the ideas and de-
velopments, it is Lagrange, a mathematical genius who lived during the eighteenth
century and the beginning of the nineteenth century, who must be considered as
the real father of analytical mechanics. Indeed, it is Lagrange who used these ideas
and developments, including many more of his own, to create a revolutionary ap-
proach to the field of dynamics (Mecanique Analytique, 1788), and one of extreme
beauty. Lagrange recognized that the variational approach has the advantages that
it treats the system as a whole, it eliminates constraint forces performing no work
and it permits a formulation that is invariant to the coordinates used to describe the
motion. In particular, the concept of coordinates is expanded to include the more
abstract generalized coordinates, scalar coordinates not necessarily having physical
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meaning. In essence, he took dynamics from the physical, vectorial world of Newton
to the abstract world of analytical mechanics, in which all the equations of motion of
a generic dynamical system can be derived by means of Lagrange's equations using
just two scalar expressions, the kinetic energy and the virtual work. In the process,
he developed the necessary mathematical tools, such as the calculus of variations.

Another contributor to analytical dynamics is Hamilton, who lived in the nine-
teenth century. Among his contributions, Hamilton's principle and Hamilton's equa-
tions stand out. Lagrange's equations can be derived directly from the generalized
principle of d' Alembert. They can also be derived, perhaps more conveniently, from
the extended Hamilton's principle, an integral principle using the kinetic energy and
virtual work. Lagrange's equations are second-order differential equations and tend
to be cumbersome, particularly for nonlinear systems. Using the generalized mo-
menta as auxiliary variables, it is possible to derive from Lagrange's equations a set
of twice as many first-order differential equations called Hamilton's equations. The
latter equations have the advantages that they are simpler and are in a form suitable
for numerical integration ...

In this chapter, we begin by presenting elements of Newtonian mechanics, thus
providing the background for our real objective, a comprehensive study of analytical
dynamics; Because of its fundamental nature, the material in this chapter occupies a
special place in vibrations.

2.1 'NEWTON'S SECOND LAW OF MOTION

Newtonian mechanics is based on three laws stated for the first time by Isaac Newton .
. Of the three laws, the second law is the most important and widely used. Newton's

second law.can be stated as follows: A particle acted upon by a force moves so that
the force vector is equal to the time rate of change of the linear momentum vector.
The linear momentum vector is defined as

p = mv (2.1)

where m is' the mass and v is the velocity vector. Hence, Newton's second law can
be written niathematically as

where F is the force vector. The mass of the particle is defined as a positive quantity
whose value does not depend on time ..

In Newtonian mechanics, motions are measured relative to aninertial reference
frame, i.e., a reference frame at rest or moving uniformly relative to an average
'position of "fixed stars." Quantities measured relative to an inertial frame are said to
be absolute. Denoting by r the absolute position vector of the particle in an inertial
ffame, ~he absolute velocity vec~or is given by

dr
v=

dt

dp d
F = - =' - (mv)

dt df,

r

(2.2)

(2.3)
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in which overdots represent derivatives with respect to time, so that Newton's second
law can be rewritten in the familiar form

where

F = ma

r

(2.4)

(2.5)

is the absoLute acceleration vector. The various vector quantities are shown in Fig. 2.1,
in which the rectangular coordinates x, y and z represent an inertial system. The
units of force are pounds (lb) or newtons (N). The units of mass are pounds· second2

per inch (lb . s2/in) or kilograms (kg). Note that in SI units the kilogram is a basic
unit and the newton is a derived unit, where one newton is equal to one kilogram·
meter per second2, 1 N = 1 kg· m/s2.

j
x
/'
i

Figure 2.1 Motion of a particle relative to an inertial system

In the absence of forces acting upon the particle, F = 0, Eq. (2.2) reduces to

mv = const (2.6)

which is the mathematical statement of the conservation of Linear momentum prin-
cipLe.

Example 2.1

Use Newton's second law to derive the equation of motion for the simple pendulum
shown in Fig. 2.2a.
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(a)

m

T

(b)
.4J

Figure 2.2 (a) Simple pendulum (b) Free-body diagram for the simple
pendulum

The basic tool in deriving the equations of motion by means of Newton's second
law is the free-body diagram. A free-body diagram for the simple pendulum is shown
in Fig. 2.2b, from which we can write the force vector in terms of radial and transverse
components in the form

F = (mg cos e - T) Ur - mg sin e Ue (a)

where m is the mass, g is the acceleration due to gravity, T is the tension force in the
string and Ur and Ue are unit vectors in the radial and transverse direction, respectively.
Moreover, from kinematics, the acceleration for the case at hand has the expression

a = -Le2ur + Leue (b)

where L is the length of the pendulum. Inserting Eqs. (a) and (b) into Eq. (2.4) and
equating the coefficients of Ur and Ue on both side, we obtain

mg cos e - T = -mLe2

-mg sin e = mLe

The second of Eqs. (c) yields the equation of motion for the simple pendulum
.. g.e + - sin e = 0

L

(c)

(d)

Equation (c) represents a nonlinear differential equation, which can be solved for the
angle e. Then, if so desired, from the first of Eqs. (c), we can determine the tension in
the string

T = m (Le2 + gcose) (e)

2.2 CHARACTERISTICS OF MECHANICAL COMPONENTS

The behavior of a large number of mechanical systems can be described by means of
low-order ordinary differential equations. The corresponding mathematical models
are referred to as lumped-parameter models. The parameters appear as coefficients in
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the differential equations and they reflect physical characteristics of various mechan-
ical components. Hence, before we consider the problem of deriving the equations
of motion, a brief review of mechanical components and their characteristics is in
order.

Commonly encountered lumped mechanical components are springs, dampers
and masses (Fig. 2.3). The spring shown in Fig.2.3a is an elastic component, generally
assumed to be massless, that elongates under tensile forces, and vice versa. Because
the spring is massless, the force at both terminal points is the same. A typical force-
elongation diagram is shown in Fig. 2.4. The elongation tends to be proportional to
the force up to a certain point ~X = ~xe, where the constant of proportionality is
the ~pring constant, or the spring stiffness k. The units of k are pounds per inch (lb/in)
or newtons per meter (N/m). Of course, if the force is compressive, then the spring
contracts, as shown in Fig. 2.4. Hence, in the range defined by - ~xe < ~X < ~xe,
called the linear range, the spring is said to be linear and the force-elongation relation
has the form

(2.7)

where J, denotes the spring force and Xl and X2 are the displacements of the ter-
minal points. Outside the range -~xe < ~x < ~xe, the elongation ceases to be
proportional to the force, so that the spring behaves nonlinearly. If J:, > k ~x, the
spring is known as a hardening spring, or a stiffening spring and if is < k~x, the
spring is referred to as a softening spring. In this text, we are concerned primarily
with linear springs.

x

/, /, 1;,
ITW/I,

~

k

~ ~
c

XI

(a) (b)

m

(c)

Figure 2.3 Lumped mechanical components (a) Elastic spring (b) Viscous
damper (c) Lumped mass

The damper shown in Fig. 2.3b represents a viscous damper, or a dashpot. It
consists of a piston fitting loosely in a cylinder filled with viscous fluid so that the
viscous fluid can flow around the piston inside the cylinder. The damper is assumed
to be massless, which implies that the force at the two terminal points is the same.
If the force causes smooth shear in the viscous fluid, the force in the damper is
proportional to the relative velocity of the terminal points, or

(2.8)

where the proportionality constant c is known as the coefficient of viscous damping,
and we note that dots represent the usual derivatives with respect to time. The unit
of c are pounds· second per inch (lb . s/in) or newtons· second per meter (N . s/m).
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/, Hardening spring
"y'
" ;.--- Slope = k/~::,'

~ Softening spring

, ..
Llx

Figure 2.4 Force-elongation diagram for a spring , ,

(2.10)

L

Finally, Fig. 2.3c shows the lumped mass. By Newton's second law, a force acting
upon the mass' causes an acceleration proportional to the force where the constant
of proportionality is the mass m, or

"
1m = mx; (2.9)

The units of m are pounds .' second2 peiinch' (lb . s2/in) or newtons . second2 per
meter (N . s2/m).

On certain occasions, distributed members can be treated as if they were
lumped. As an example, we consider the torsion of the cylindrical shaft of circu-
lar cross section depicted in Fig. 2.5. The shaftis clamped at the left end and is acted
upon by the torsional mome_ntM at the right end. We assume that the shaft is mass-
less. The torque M produces atorsional angle e at the right end. From mechanics
of materials, the relation between the torque and the torsional angle is

GJ
M= -e

L

[g_~~(G~-, ~
I· L ~I

Figure 2.5 Massless shaft in torsion

.' ';

where G J is the torsional rigidity, in which G is the shear modulus and J is the
cross-sectional area polar moment of inertia, and L is the length of the shaft. But,
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consistent with Eq. (2.7), the relation between the torque and the torsional angle can
be written in the form

(2.11)

where kT is an equivalent torsional spring constant. Comparing Eqs. (2.10) and
(2.11), we conclude that the distributed shaft can be treated as a lumped one with
the equivalent spring constant

GJ
kT =-

L
(2.12)

On other occasions, several springs appear in a given combination. In this
regard, we distinguish between springs in parallel and springs in series, as shown in
Figs. 2.6a and 2.6b, respectively. Consistent with the idea that the spring constant
represents the ratio between the force and elongation, we wish to derive an equivalent
spring constant for each of the two cases. From Fig. 2.6a, we observe that the springs
kl and kz undergo the same elongation. Hence, we can write

(2.13)

where Isl and Isz are the forces in springs k} and kz, respectively. But the force I.
at the terminal points must be the sum of the two. Hence, considering Eqs. (2.13),
we can write

is = Is! + 1,2 = (kl + k2)(X2 - XI) = keq(xz - XI)

so that the equivalent spring constant for .\prings in parallel is

kcq = k] + kz

(2.14)

(2.15)

Generalizing to the case in which there are n springs in parallel, we can write simply

n

kcq = Lki
i=1

~oX2

f r
.1 f..

kz

(a)

XI Xo Xz

I, r r rI.
• w-.tY w-.tY

(2.16)

(b)

Figure 2.6 (a) Springs in parallel (b) Springs in series
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.In the case of springs in series, we observe-from Fig. 2.6b that the same force
Js acts throughout both springs. Hence, we can write the relations

(2.17)

Eliminating the intermediate variable Xo from Eqs. (2.17), we obtain'

(2.18)

where the equivalent spring constant for springs in series is

(2.19)

Generalizing, the equivalent constant for n springs in series is

(2.20), ,

The above approach can be used to derive equivalent coefficients of viscous damping
for dampers in parallel and dampers in series. In fact, the expressions are virtually
identical, except that ki are replaced by Ci.

2.3 DIFFERENTIAL EQUATIONS OF MOTION FOR FIRST-ORDER AND
SECOND-OWER SYSTEMS

One of the simplest mechanical systems is the damper-spring system shown in Fig.
2.7a. We propose to derive the differential equation ofthe system by a special case of
Newton's second law, where the term "special" is in the sense that the mass is equal
to zero. Referring to the free-body diagram of Fig. 2.7b, Newton's second law yields

L Fx = J(t) - JdCtf - !s(t) = mx(t) = 0 (2.21)

c

(a)

r-x(t)

f(t) fit.) =1- f(t) .
f,/t)

(b)

L.

Figure 2.7 (3) Damper-spring system (b) Free-body diagram for a
damper-spring system
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where, from Eqs. (2.7) and (2.8), the spring and damper forces are

f~(t) = kx(t). !d(t) = d(t) (2.22)

Inserting Eqs. (2.22) into Eq. (2.21) and rearranging, we obtain the first-order differ-
ential equation of motion

d(t) + kx(t) = f(t) (2.23)

Clearly, Eq. (2.23) represents a first-order linear time-invariant system, in which the
coefficients c and k are the system parameters.

Next, we consider the mass-damper-spring system depicted in Fig. 2.8a. The
corresponding free-body diagram is shown in Fig. 2.8b. Following the same approach
as above, it is easy to verify that now the equation of motion has the form

mx(t) + cx(t) + kx(t) = f(t) (2.24)

which is a second-order linear differential equation with constant coefficients. The
second-order system described by Eq. (2.24) is commonly known as a single-degree-
of-freedom system.

;~:; ~'- _'_n _~ /(/)

(a) (b)

Figure 2.8 (a) Mass-damper-spring system (b) Free-body diagram for a
mass-damper-spring system

Equation (2.24) may appear as describing some special type of systems, seldom
encountered in the real world. As it turns out, the equation is representative of a large
variety of systems, albeit in each case the parameters may be different. Moreover,
the equations of motion of more complex linear multi-degree-of-freedom systems
can be reduced to this forms, so that the importance of Eq. (2.24) is far greater
than it may appear at this point. In Chapter 3, we study the behavior of first-order
and second-order systems, paticularly the latter, based on solutions derived by the
methods introduced in Chapter 1.

2.4 MOMENT OF A FORCE AND ANGULAR MOMENTUM

The moment of momentum vector, or angular momentum vector, of a particle m with
respect to point 0 (Fig. 2.1) is defined as the cross product (vector product) of the
radius vector r and the linear momentum vector p, or

"0 = r x p = r x mr (2.25)
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In view ofthe fact that m is constant, the rate of. change of the angular momentum
vector is

•. 'j -,.' •. ~•••
Ho = r x mr + r x nir = r x mr

"'By definition, however, the moment of a fo;ce ab~ut 0 is

Mo = r x F = r x ma = r x mr

.;t. J
t..l'·

(2.26)

(2.27)

. in which use was made of Eqs. (2.4) and (2.5). Comparing Eqs. (2.26) and (2.27), we
" conclu.de that ., ,.".,', I ,

(2.28)

to

(c)

Example 2.2

Use the moment equation of motion, Eq. (2.28), to' obtain the equation of motion for
h , -..- 1

the simple pendulum of Example 2.1.
The moment equation about 0 is given by Eq. (2.28). In the case at hand, the

radiu~ vector is simply

or the moment of aforce abouta fixed point is equal to the time rate of change of the
angular momentum about that point.' ,I, ,

In the case in which the l!l0me,nt about Ois zero, Mo = 0, Eq. (2.28) reduces
, .

,Ho = const. i:' (2.29)
, .. ~.i' i _ ~

which represents the mathematical statement of thecOllservation of angula'rmomen-
tum principle. Note that for the moment to be zero it is notnecdsary that the force
be zero. Indeed, from Eq. (2.27) we conclude that the moment is zero if the force F
is aligned with the radius vector r, i.e., if F passes through the fixed point O.

r = LUr (a)

'so that, inserting Eqs. (a) and (b)'of Example 2.1 into Eq.' (2.28) 'anctrecalling Eqs. (2.26)
and (2.27), we obtain ..

Mo=:= LUr x [(mg co,se ;-. T) Ur - mg sine ue] ,

=': LUr x m (-Le2ur + Leue) (b)

Recognizing that Ur x Ur = 0 'and 'Ur x Ue = k, where k is a unit vector n'ormal to both
ur' and ue; and canceling k 'on both sides ~f the equatio~, we can write .

, , " I '

.,....Lmg sine = mL2e I' ., ,I

. Dividing through by mL 2 and rearranging, we obtainEq. (d) of Example 2:1.
~ •••• -<' < ··1 ~

2.5 WORK AND ENERGY
J ~,'-

We consider a particle m moving along a curve C under the action of a given force F
(Fig.2.9). By definition, the increment of work performed in moving m from position
r to position r + dris given by the dot product (scalar product).. ~

, ,

<,

dW = F .dr (2.30)
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F

Figure 2.9 Particle moving under the action of a force

where the overbar indicates that d W, which is a scalar, does not represent the true dif-
ferential of a function W but simply an infinitesimal expression. Inserting Eqs. (2.3)-
(2.5) into Eq. (2.30), we can write

_ dr (1 )dW = mr . dr = m dt . rdt = mr . dr = d 2mr. r dT (2.31)

In contrast with d W, however, the quantity on the right side of Eq. (2.31) does repre-
sent the differential of a function, namely, the kinetic energy given by the expression

T
1 ..
-mr·r
2

(2.32)

and we note that the kinetic energy is a scalar function. Then, considering the
work performed in carrying the particle from position rJ to position r2 and using
Eqs. (2.30)-(2.32), we obtain

[~ 1~(1 )F . dr = . d -mr· r
rl f1 2

where the subscripts 1 and 2 denote quantities associated with positions rl and r2,

respectively. Hence, the work performed in moving the particle from position r] to
position r2 is responsible for a change in the kinetic energy from T] to T2·

There exists one class of forces for which the work performed in moving a
particle from position rj to position r2 depends only on r] and r2, and not on the
path taken to go from rj to r2. Considering two distinct paths I and II, as shown in
Fig. 2.10, the preceding statement can be expressed mathematically in the form

[f2 [f2
F . dr = F . dr

f1 f1

path I path II

(2.34)
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path II

1

Figure 2.10 Different paths between two positions

Equation (2.34) implies that

(2.35)

or the work performed in moving a particle over a closed path (beginning at a given
point and returning to the same point) is zero. Equation (2.35) can be proved by
considering a closed path going from rl to r2 over path I and returning from r2 to
rl over path II. Forces for which the above statements are true for all possible paths
are said to b~ conservative; they'will be identified by the subscript c. ;
- . Next, we consider a conservative force Fe and choose a path from rl to r2

passing through a reference position rref (Fig. 2.10). The associated work is simply

1I2 •

Fe . dr
II

l
Irer lIrer

Fe . dr - Fe . dr
II I2

(2.36)

(2.37)

At this point, we define the potential energy as the work performed by a conservative
force in moving a particle from an arbitrary position r to the reference position rref,

or
V (r) = l,rcfFc' dr

and we note that the potential energy, as the kinetic energy, is a scalar function.
Inserting Eq. (2.37) into Eq. (2.36);'we obtain' ..

(2.38)

where Vi = V (ri) (i = 1,2). Equation (2.38) states that the work performed by
a conservative force in moving a particle from rl to r2 is equal to the negative of the
change in the potential energy from VI and V2• It should be pointed out here that our
interest lies primarily in changes in the potential energy, rather than in the potential
energy itself, so that the reference position is immaterial. It should also be pointed
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out that in the case of conservative forces the increment of work does represent the
differential of a function. Indeed, from Eq. (2.38), we can write

dWe = Fe . dr = -dV (r) (2.39)

where We = - V is known as the work function.
In general, there are both conservative and nonconservative forces, so that the

increment of work is simply

F . dr = Fe . dr + Fne . dr (2.40)

where File denotes the nonconservative force. Introducing Eqs. (2.30), (2.31) and
(2.39) into Eq. (2.40) and rearranging, we obtain

Fne . dr = F . dr - Fe . dr = dT - (-dV) = d(T + V) = dE (2.41)

where
E=T+V (2.42)

is the total energy. Integrating Eq. (2.41) over a path from position rl to position rz,
we obtain

(2.43)

or the work performed by the nonconservative forces in carrying a particle from
position rl to position rz is responsible for a change in the total energy from E1 to
Ez·

In the absence of nonconservative forces, i.e., in a conservative force field,
Fne = 0, so that Eq. (2.41) yields

E = constant (2.44)

(2.45)

Equation (2.44) represents the principle of conservation of energy, which explains
why the force field defined by Eq. (2.39) is called conservative.

Before we close this section, it is appropriate to examine the potential energy
of a very important component in mechanical systems, namely, the spring. Figure
2.11a shows a spring elongating under a force F from an initial length L, when the
spring is unstretched, to some finallcngth L + 8. Figure 2.11b depicts the relation
between force and elongation for a typical softening spring. In our particular case,
the spring remains in the linear range, so that for a given elongation x the spring
force is -kx, where we recognized that the spring force opposes the elongation.
Note that k is the spring constant, which is equal to the slope of the curve F versus
x. Hence, using Eq. (2.37) and taking x = 0 as the reference position, the potentia]
energy corresponding to the elongation x = 8 is simply

V(8) = [0 Fdx = _ [0 kxdx = ~k8z
.f~ .f~ 2

and we observe that the potential energy is equal to the shaded area under the curve
F versus x. Equation (2.45) indicates that in the linear range the shaded area is
triangular.
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(a)

I'

F

(b)

. Slope = k >./

x 0
x

Figure 2.11 (a) Spring elongating under a force (b) Force-elongation diagram
for a softening spring

2.6 SYSTEMS OF PARTICLES AND RIGID BODIES

Newton's laws of motion were formulated for single particles and can be extended to
systems of particles and bodies of finite dimensions. To this end, we must recognize
that the particles are subjected to two types of forces, external and internal. Exter-
nal forces are due to sources outside the system and internal forces are due to the
interaction among the particles.

We consider a system of N particles of mass mi (i = 1, 2, ... , N), as shown in
Fig. 2.12, in which Fi denote external forces and fi} denote internal forces exerted
by particles mj on particle mi (j = 1,2, ... , N; j =J. i). The internal forces are
subject to Newton's third law, which can' be stated as follows: The forces that two
particles exert upon one another act along the line joining the particles and are equal
in magnitude and opposite in direction. Mathematically, Newton's third law reads

fij = -fji, i,j = 1,2, ... ,N; i =J. j (2.46)

(2.47)

According to Newton's second law, the equation of motion for particle mi is

N

Fi +L fij
j=l
Ji.i

where Ti = ai is the acceleration of particle mi relative to the inertial space xyz. The
equation of motion for the system of particles is obtained by extending Eq. (2.47)
over the entire system and summing up the corresponding equations. The result is

~--_ .. _-_. __ . --

N N N

LFi + L Lei}
i=l i=l j=l

Ji.i

---------- -

(2.48)
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z

Figure 2.12 System of particles

@

j

y
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(2.49)

But by Newton's third law, Eq. (2.46), the internal forces cancel out in pairs, or

N N

LLfij = 0
i=1 j=]

Hi

Moreover, introducing the resultant of the external forces

N

F = LFi
;=]

the equation of motion for the system of particles reduces to

N N

F = Lm;ri = Lmi3i
i=] ;=]

(2.50)

(2.51)

Equation (2.51) represents a relation between the resultant force and the mo-
tion of the individual particles in the system. In many cases, however, the interest lies
not so much in the motion of the individual particles but in a measure of the motion
of the system as a whole. To this end, we introduce the concept of center of mass C,
defined as a point in space representing a weighted average position of the system,
where the weighting factor for each particle is the mass of the particle. Denoting the
radius vector from 0 to C by rc, the mathematical definition of mass center is given
by

,--..

(2.52)
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where
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.(2.53)

I

is the total mass of the system. Differentiating Eq. (2.52) twice with respect to time
and introducing the result into Eq. (2.51), we obtain the desired equation in the form

F = mrc = mac (2.54)

Equation (2.54) can be interpreted as describing the motion of a fictitious body equal
in mass to the total mass of the system and moving with the acceleration ac of the
mass center while being acted upon by the resultant F of the external forces.

For future reference, we wish to examine a certain property of the mass center.
To this end, we denote the radiu~ vector from C to mi by r; (Fig. 2.12), so that

Inserting Eq. (2.55) into Eq. (2.52) and recalling Eq. (2.53), we obtain

N

Lmir; = 0
i=1

(2.55)

(2.56)

which defines the mass center C as a point in space such that, if the position of each
particle is measured relative to C, the weighted average position is zero.

Equation (2.54) can be written in a different form. To this end, we use the
analogy with Eq. (2.1) and define the linear momentum of mi as

(2.57)

where Vi = ri is the absolute velocity of mi. Then, if we consider the time derivative
of Eq. (2.52), we can write the linear momentum for the system of particles in the
form

N N

P = LPi = Lmivi = mvc
i=1 i=1

(2.58)

in which Vc is the velocity of the mass center C. Introducing the time derivative of
Eq. (2.58) into Eq. (2.54), we obtain simply

F~p (2.59)

or the resultant of the external forces acting on the system of particles is equal to the
time rate of change of the system linear momentum.

If the resultant of the external forces is equal to zero, F = 0, Eq. (2.59) yields, .

P = canst (2.60)

, .~ ..

which represents the principle of conservation of linear momentum for a system of
particles.



Sec. 2.6 Systems of Particles and Rigid Bodies 67
1

(2.61)

Next, we define the angular momentum about 0 of a system of particles as

N N

Ho = LHOi = Lri x mivi
i=1 i=l

and the resultant moment about 0 of the external forces acting on the system of
particles as

N

Mo = L ri x Fi
i=l

(2.62)

Then, if we consider Eq. (2.47) and recognize from Fig. 2.12 that the moments about
o due to the internal forces cancel out in pairs, because ri x fij = -rj x fji, it is
not difficult to prove that

Mo = 80 (2.63)

or the moment about a fixed point 0 of the external forces acting on a system of
particles is equal to the time rate of change of the system angular momentum about
the same fixed point.

If the resultant moment about 0 is zero, Mo = 0, Eq. (2.63) yields

HO = constant (2.64)

(2.65)

which is the mathematical statement of the principle of conservation of angular
momentum about a fixed point for a system of particles.

Equation (2.63) represents a simple relation between the moment of the exter-
nal forces about a fixed point 0 and the angular momentum of a system of particles
about the same fixed point. The question arises whether such a simple relation exists
for a moving point. The answer is that there is only one point for which this is true,
namely, the mass center of the system of particles. To demonstrate this, we recall that
the radius vector from the mass center C to mi is denoted by r;, so that the angular
momentum of the system of particles is simply

N N

He = LHei = Lr; x mivi
i=1 i=l

On the other hand, the moment of the external forces about C is
N

Me = L r; x Fi
i=1

(2.66)

Taking the time derivative of Eq. (2.65), considering the time derivative of Eqs. (2.55)
and (2.56), as well as Eq. (2.47), and recognizing that L L r; x fij = 0, we obtain

Me = He (2.67)

or the moment of the external forces ahoutthe mass center C is eqllallO the rime rate
of change of rhe system angular momentum about C. It should be reiterated here
that Eq. (2.67) holds true only if the moving point is the mass center. If the reference j

-------=-----'-
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point for the moment and angular momentum of a system of particles is an arbitrary
moving point, then in general an extra term appears in the relation.

If the resultant mOf!lent about C is zero, Me = 0, Eq. (2.67) yields

He = constant (2.68)

which represents the principle of conservation of angular momentum about the mass
center C for a system of particles.

The above results provide a clear indication of the useful properties of the mass
center. The usefulness does not stop there, however. Indeed, the concept of mass
center can be used to separate the kinetic energy into two simple forms. To this end,
we write the kinetic energy for a system of particles in the form

(2.69)

Then, inserting the time derivative of Eq. (2.55) into Eq. (2.69) and considering the
time derivative of Eq. (2.56), we obtain

1 N
T - Lmi (re + r;) .'(re + r;)

2 i=l .

N N N
1.. L . L ./ 1L ./ ./-re . remi + re . mir· + - m/·r·· r·2 / 2 / I

i=l i=l i=l,

1 . 1~ ./
-mre . rc + 2 ~~ir; . ri2 i=l

Introducing the notation

(2.70)

1 ..
Ttr = -mre . re

2
1
-mVe . Vc.
2

(2.71a)

we can rewrite Eq. (2.70) as
T = Ttr + Trel

, '

(2.71b)

(2.72)

so that the kinetic energy can be separated into two parts, the first representing the
kinetic energy as if all the particles were translating with the velocity of the mass
center and the second representing the kinetic energy due to the motion of the
particles relative to the mass center. If the reference point were an arbitrary point
A, other than the mass center, then a term coupling the motion of A with the motion
relative to A would appear, as can be concluded from Eq. (2.70).

In the study of vibrations, we sometimes encounter rigid bodies. But, rigid
bodies can be regarded as systems of particles of a special type, namely, one in which
the distance between any two particles is constant .. It follows that the motion of a
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I
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particle in the rigid body relative to another is due entirely to the rotation of the rigid
body. The force equations of motion for systems of particles, Eq. (2.54), involve only
the motion of the mass center, and are not affected by motions relative to the mass
center. Hence, the force equations of motion for rigid bodies remain in the form
given by Eq. (2.54). In fact, the moment equations of motion for rigid bodies also
retain the same general form as for systems of particles, Eq. (2.63) or Eq. (2.67), as
the case may be. However, in the case of rigid bodies it is possible to derive more
explicit moment equations.

z

z

y--j
y

Figure 2.13 Rigid-body rotating relative to the inertial space

In general, it is more convenient to think of a rigid body as a continuous system
rather than a system of particles. Hence, although the concepts and definitions
presented in this section remain valid, some of the expressions require modification.
In particular, the typical mass mi is to be replaced by a differential of mass dm and
the process of summation over the system of particles is to be replaced by integration
over the rigid body. Moreover, it is convenient to refer the motion to an auxiliary
reference frame embedded in the body and known as body axes. Consistent with
this, we denote the inertial axes by X Y Z and the body axes by xyz (Fig. 2.13). Then,
by analogy with Eq. (2.61), the angular momentum about 0 is defined as

"0 = 1r x vdm (2.73)
m



70 Principles of Newtonian and Analytical Dynamics .' Chap. 2

Moreover, denoting the angular velocity vector of the rigid body by 00, the velocity
of a typical point in the body due to the rotation about 0 can be shown to be

v=wxr

so thatthe angular momentum becomes' "

Ho= Lrx(wxr)~m.

(2.74)

(2.75)

To obtain a more explicit expression for Ho, we express rand 00 in terms of rectan-
gular components as follows:

and

r = xi + yj + zk (2.76)

(2.77)

where i, j and k are unit vectors along axes x, y and z, respectively, and we recognize
that the axes are rotating with the body. Introducing Eqs. (2.76) and (2.77) into
Eq. (2.75) and carrying out the various vector operations, we can write the expression
of the angular momentum in the compact matrix form ,

where

Ho = low \ (2.78)

(2.79)

are column vectors of the angular momentum and angular velocity, respectively, and

Ixx - Ixy - Ixz

10 -Ixylyy -Iyz (2.80)

1yz dm

- Ixz - Iyz Izz

is the symmetric inertia matrix, in which

Ixx = 1(l + Z2) dm, Iyy = 1(~2 + Z2) d~, Izz

are mass moments of inertia about the body axes and. -,

Ixy = '1xy dm, Ixz = 1xz dm, I:z

1(x2 + l)dm
(2.81a)

(2.81b)

(2.82)

are mass products of inertia about the same axes.
The moment equation about 0 is given by Eq. (2.63). Because the vector Ho

is in terms of components about rotating axes, if we recognize that (Ref. 4, Sec. 3.2)

di d" dk
"j " k- = 00 X I, - = 00 x j, - = 00 x

dt dt dt
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(2.83)

then we can express the moment equation for a rigid body compactly as

dHo I . , - .-Mo = -- + w x Ho = Ho + wHo = low + wlow
dt xyz=fixed

where "0 is the time derivative of Ho regarding axes xyz as fixed, w is the angular
acceleration vector and w is the skew symmetric matrix

0 -wz wy

w = Wz 0 -Wx

-wy Wx 0

(2.84)

which is the matrix equivalent of the vector product wX. Note that body axes xyz
have the advantage that the inertia matrix in terms of these axes is constant.

The angular momentum and moment about the mass center C have the same
structure as Eqs. (2.78) and (2.83), respectively, except that the origin of the body
axes is at C, so that the mass moments of inertia and mass products of inertia must
be modified accordingly.

z

o
y

,
y

~
J

v

Figure 2.14 Rigid body translating and rotating relative to the inertial space

Finally, we wish to derive an expression for the kinetic energy for a rigid body
translating and rotating in space, as shown in Fig. 2.14. To this end, we write the
velocity of a typical point in the rigid body in the form

v = Vc + wr' (2.85)

------"~
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Then, letting r' be a skew symmetric matrix of the type given by Eq. (2.84), but with
the rectangular components of r' replacing those of 00, the kinetic energy can be
written as

. ;
where we recognized that fm r' dm = 0 and, moreover, we introduced the notation

1 T
Ttr = -mveve. 2

in which

T ~ 1vT v dm = ~ {. (ve + wr,)T (ve + w,r') dm
2 m 2 J;" .
1 T 1 T - '1· 'd 11 (- ')T - 'd'-veve dm + vew r m + - wr wr m
~ m m 2 m1 T 11 ( -, )T ( -, )= 2"mveve + '2" m -r w-r 00 dm

1 TIT
-mveve + -00 Icw-= Ttr + Trot2 2

..
1 T

Trot = -00 Iew
2

Ie = L (r'f r' dm

(2.86)

(2.87a)

(2.87b)

(2.88)

(a)

(b)

"\'Ii.

is the inertia matrix about the mass center C. It has the same form as Eq. (2.80),
except that x, y and z are replaced by x', y' and z', respectively. Hence, the kinetic
energy is the sum of the ~inetic energy of the rigid body as if it were translating with
the velocity of the mass center and the kinetic energy of rotation of the rigid body
about the mass center. Note that Eq. '(2.86) is eptirely analogous to Eq. (2.72) for a
system of particles, except that here' the kinetic energy relative to C is demonstrated
to be due entirely to rotation about C.

Example 2.3

The system shown in Fig. 2.15a consists of a uniform rigid bar suspended by a string.
Derive the system equations of motion and the kinetic energy.

This example is concerned with an oscillatory system involving a rigid body. Be-
cause the motion is planar, all rotations are about the z -axis, whose direction is constant.
Hence, in this case it is more advantageous to refer the motion to an inertial set of axes,
such as axes xyz shown in Fig. 2.15a, rather than to body axes.

The force equations of motion are given by Eq. (2.54), which requires the accel-
eration of the mass center C. From. Fig. 2.15a, ,the position vector is

rc = (L1sin81 + ~zsin8z)i - (L1COS81 + ~zCOS8z)j

'where i and j are constant unit vectors. Hence, the velocity vect<.lfis '

(
. Lz '. ') (. Lz . )"Vc = L181cos81 + Tezcosez i + L1e1sine1 + Tezsinez j
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(a)

T

mg

(b)

Figure 2.15 (a) Uniform rigid bar suspended by a string (b) Free-body
diagram for the bar

and the acceleration vector has the expression

ae =[Ll (OICOSel - e~sin81) + ~2 (e2cos82 - eisin(2)}

+ [LI (O,sinfll + iI~cosHl) + ~2 (e~sine2 + eicos82)]j (c)

Moreover, from the free-body diagram of Fig. 2.15b, the force vector is

F = -Tsin8li + (Tease, - mg)j (d)

Inserting Eqs. (c) and (d) into Eq. (2.54), the equations of motion in the x- and y-
direction are

m [LI (o,cose, - e~sinel) + 1;2 (e2COSe2 - eisin(2)] = -Tsin81

m [LI (e,sin8, + e~eos8,) + ~2 (82sin(-}2 + eicos(-}2)] = Tcosel - mg

(e)

For hodies undergoing arbitrary motions, it is advantageous to write the moment
equation ahout the mass center. Moreover, because the motion is planar, and measured
relative to an inertial reference frame, the moment equation reduces to the scalar form

Me = He = lea (f)

----------~-'~
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(h)

(g)

where Ie is the mass moment of inertia about C and Ci is the angular acceleration. For
the case at hand, they have the values .

mL2

Ie = 1/' Ci = 82

From Fig. 2.15b, the moment about the mass center is
L2

Me = -T- sin (82 - 81)
2

so that, inserting Eqs. (g) and (h) into Eq. (f), the moment equation of motion about C
is simply _'

mL~ .. L2 ..
--82 = -T- sm (82 - 81)

, 12 2
The system equations of motion consist of Eqs. (e) and (i).

According to Eq. (2.86), the kinetic energy has the form

T == Ttr + Trot

where, inserting Eq. (b) into Eq. (2.87a), the kinetic energy of translation is

1 T
Ttr = -mveve

2

1 [(. L2.)2' ( '. L2 .. )2]2m L181cos81 + 2"82coS82 .. +. Li81sm81 + 2"82sm82

1 [2 .2 L~ .2 .. ]2m L181 + 482 + L1L28182 cos (82 - 81)

Moreover, from Eq. (2.87b), the kinetic energy for planar rotation reduces to, .
1 2 1mL~'2

Trot = -Iew = ---822 2, 12 .

(i)

(k)

(1)

2.7 GENERALIZED COORDINATES AND DEGREES OF FREEDOM

In Sees. 2.1-2.6, we introduced fundamental concepts from Newtonian mechanics,
which is based on Newton's laws, and in particular on the second law. In Newtonian
mechanics, the motion is described in terms of physical coordinates. In this section,
we begin making the transition from Newtonian to Lagrangian mechanics, where in
the latter the concept of coordinates is enlarged to include more abstract coordinates,
not necessarily physical.

In Sec. 2.6, we, considered the motion of a system of N particles of mass mi,
where the position of each particle is given by the radius vector ri (i = 1, 2, ... , N).
With reference to Fig. 2.12, these positions can be given in terms of rectangular
coordinates as follows: .

ri = Xii + ,yd, + ,Zik, . i = 1,2, ... , N . (2.89)

The motion of the system is defined completely if the coordinates of all the particles
are known functions of time, or " . ' .

Xi = Xi(t), Yi = Yi(t), Zi = Zi(t), i = 1,2, ... , N (2.90)



Sec. 2.7 Generalized Coordinates and Degrees of Freedom 75

(2.91)

In many problems, the rectangular coordinates Xi, Yi, Zi (i = 1,2, ... , N) are
not all independent. In such cases, it is advisable to describe the motion in terms of
a different set of coordinates, denoted by ql, q2, ...• qn. instead of the coordinates
Xi, Yi, Zi. The relation between the coordinatcs Xi, Yi, Zi (i = 1, 2, ... , N) and the
new coordinates qk (k = 1, 2, ... , n) can be written in the general form

Xl = Xl(ql, q2,···, qn)

Yl Yl(ql,q2,.··,qn)

Zl = Zl(Ql,q2, ,qn)

X2 = X2(Ql,Q2, ,Qn)

ZN = ZN(Ql,Q2, ... ,Qn)

Equations (2.91) represent a coordinate transformation. We propose to use this
transformation to simplify the problem formulation. As a simple example, we con-
sider the double pendulum of Fig. 2.16. The motion of the system can be described
by the rectangular coordinates Xl, Yl, ZI, X2, Y2, Z2· It is not difficult to see that
Xl, Yl, Z1, XZ, Y2, 2z are not independent. as they are related by the four equations

xf + yf = Li= constant, (X2 - xd2 + (Y2 - Yl)2 = L~ = constant

Zl = 0, Z2 = 0
(2.92)

Equations (2.92) can be regarded as constraint equations reflecting the facts that the
length of the strings does not change and that the motion is planar. Rather than

y

z

Figure 2.16 Double pendulum

_____ -===----1A
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(2.94)

(2.93)

working with rectangular coordinates subject to constraints, it is more convenient to
describe the motion in terms of a smaller number of independent coordinates. To
this end, we consider the angular displacements 81 and 82. Hence, letting 81 = ql
and 82 = 42, we can write

Xl Ll sinql, Yl = -Ll cosql, Zl = 0

X2 Llsinql + L2sinq2, Y2 = -L{cosql - L2coSq2, Z2 = 0

Equations (2.93) represent the explicit version of Eqs. (2.91) for the case at hand.
Of course, it was never our intention to describe the planar motion of a double

pendulum by means of six rectangular coordinates. In fact, Eqs. (2.92) and (2.93)
can be bypassed from the start by formulating the equations of motion in terms of
the two angular displacements 81 and 82 directly. Indeed, two judiciously chosen
coordinates are sufficient to describe the motion of the system completely. In gen-
eral, if a system of N particles moving in a three-dimensional space is subject to c
kinematical constraint equations, such as those given by Eqs. (2.92), then the motion
of the system can be described completely by, n coordinates, where

n = 3N - c

is known as the number of degrees of freedom of the system. Hence, the number of
degrees of freedom can be defined as the minimum number of coordinates required
to describe the motion of a system completely. The n coordinates ql, q2, ... , qn
capable of describing the motion of the system are called generalized coordinates.
The concept of generalized coordinates enables us to expand our horizon by accepting
as coordinates given functions of physical coordinates or even quantities devoid of
physical meaning. The generalized coordinates are not necessarily unique. As an
illustration; the motion of the double pendulum can also be described completely
by the two angular displacements 8 = 81 and ¢ = 82 - 81. Moreover, later in
this text we shall see that the coefficients in a series expansion can play the role
of generalized coordinates. The use of generalized coordinates permits a shift in
emphasis from the physical world of vectorial mechanics associated with Newton to
the more mathematical world of analytical mechanics associated with Lagrange.

2.8 THE PRINCIPLE OF VIRTUAL WORK

The principle of virtual work is essentially a statement of the static equilibrium of
a mechanical system. It represents the first variational principle of mechanics. Our
interest in the principle is not for the purpose of solving problems of static equilibrium
but as a means for effecting the transition from Newtonian to Lagrangian mechanics.

Before we can discuss the virtual work principle, it is necessary to introduce a
new class of displacements known as virtual displacements. We recall from Sec. 2.6
that the position in space of a system of N particles mi is defined by the vectors
ri (i = 1,2, ... , N). Then, the virtual displacements represent imagined infinitesi-
mal changes ori (i = 1,2, ... , N) in these position vectors that are consistent with

--~,---"--~.,the constraints of the system, but are otherwise arbitrary. The virtual displacements-
are not true displacements but small variations in the system coordinates resuiting'

\from imagining the system in a slightly displaced position, a process that does)hot
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necessitate any corresponding change in time, so that the forces and constraints do
not change during this process. Hence, the virtual displacements take place instanta-
neously. This is in direct contrast with actual displacements, which require a certain
amount of time to evolve, during which time the forces and constraints may change.
Lagrange introduced the special symbol 0 to emphasize the virtual character of the
instantaneous variations, as opposed to the symbol d designating actual differentials
of positions taking place in the time interval dt. The virtual displacements, being
infinitesimal, obcy the rules of differential calculus. As an illustration, if a system of
N particles is subject to a constraint in the form of the equation

f(xl, Yl, Zl, X2,"" ZN, t) = C

then the virtual displacements must be such that

f(x! +OX1,Yl +OY1,Zl +oz!, ... ,ZN +OZN,t) = C

(2.95)

(2.96)

(2.98)

where we note that the time has not been varied. Expanding Eq. (2.96) in a Taylor's
series about the position Xl, )'1, ... , ZN, we obtain

N (of af af) 2f(Xj.yl.Z! .... ,ZN,t) + L -OX; + -oy; + -oz; + 0(0) = C
i=1 aX; aYi az;

(2.97)
where 0(02) denotes terms of order two and highcr in thc virtual displacements.
Considering Eq. (2.95) and ignoring the highcr-order terms as insignificantly small,
we conclude that for the virtual displacements to be consistent with the constraint
given by Eq. (2.95) they must satisfy

t ((Jf OX; + a~ oY; + af 02i) = 0
;=! aXi aYi az;

so that only 3N -] of the virtual displacements are arbitrary. In general, the number
of arbitrary virtual displacements coincides with the number of degrees of freedom
of the system.

Next, we assume that each of the N particles m; is actcd upon by a set of forces
with resultant Ri (i = ], 2, ... , N). For a system in cquilibrium, the resultant force
on each particlc vanishes, R; = 0, so that

OW; = R; . or; = 0, i = 1,2, ... , N (2.99)

(2.100)

where 0 W; is the virtual work performed by the rcsultant force R; over the virtual
displacement ori. Note that, consistent with Eq. (2.30), the overbar in 0 W; indicates
in general a mere infinitesimal expression and not thc variation of a function Wi,
because such a function does not exist in general; it exists only if the force field is
conservative. Summing over the entire system of particles, we obtain simply

N N

oW = LOW; = LRi . ori = 0
;=] i=]

in which 8 W denotes the virtual work for the entire system.
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Equation (2.100) appears quite trivial, and indeed it contains no new informa-
tion. The situation is different, however, when the system is subject to constraints.
In this case; we distinguish between applied, or impressed forces Fi and constraint
forces fi, so that

N

Ri = Fi + fi +L fij .= 0,
J=l
J#i

1, 2, ... , N (2.101)

where fij are internal forces exerted by particles mj on particle mi (j = 1, 2, ... , n).
Introducing Eqs. (2.101) into Eq. (2.100) and considering Eq. (2.49), we have

N N N N

8W = LFi' 8ri + Lfi' 8ri + LLfij' 8ri
i=l i=l i=l J=l

J#(

N 'N

= L Fi . 8ri + L fi . 8ri = 0
i=l i=l

(2.102)
We confine ourselves to constraint forces that are normal to the virtual displacements.
As an example, we consider a particle constrained to a perfectly smooth surface, in
which case the constraint force is normal to the surface and the virtual displacements,
to be consistent with the constraints, must be parallel to the surface. Note that this
rules out reaction forces due to friction, such as those caused by sliding on a rough
surface. It follows that the work of the constraint forces through virtual displacements
compatible with the system constraints is zero, or

NL fi . 8ri = 0
i=l

(2.103)

Virtual displacements for which Eq. (2.103) holds are referred to as reversible, be-
cause the constraint forces do not prevent replacement of 8ri by -8ri. Confining-
ourselves to reversible virtual displacements, Eq. (2.102) reduces to

NL Fi '. 8ri = 0
i=l

(2.104)

or the work performed by the applied forces in infinitesimal reversible virtual dis-
placements compatible with the system constraints is zero. This is the statement of
the principle of virtual work.

Equation (2.104) represents a substantially new result. Indeed, because for
systems with constraints the virtual displacements 8ri are not all independent, Eq.
(2.104) cannot be interpreted as implying that Fi = 0 (i = 1,2, ... , N). To derive
the equilibrium equations for such cases, we first rewrite Eqs. (2.91) in the compact
form

(2.105)

where Ql, Q2, ... , Qn are independent generalized coordinates. Then, using
Eqs. (2.105), we express the virtual displacement vectors 8ri (i = 1,2, ... , N) in
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terms of the generalized virtual displacements 8qk (k = 1, 2, ... , n) in the form

~ ar·8r; = ~ _I 8qk , i = 1,2, ... , N
k=1 aqk

Inserting Eqs. (2.106) into Eq. (2.104), we obtain

N N II a II (N a)L. Fi ·8r; = LF; .L ~8qk = L LF;' ~ 8qk
;=1 ;=1 k=1 aqk k=1 ;=1 aqk

where

(2.106)

n

L Qk8qk = 0
k=1

(2.1 07)

ar;
aqk ' k = 1, 2, ... , n (2.108)

are known as generalized forces. Because the generalized virtual displacement 8qk
are all independent, and hence entirely arbitrary, Eq. (2.107) can be satisfied if and
only if

Qk = 0, k = 1, 2, ... , n (2.109)

Equations (2.109) represent the equilibrium equations.

Example 2.4

A system consisting of a massless rigid bar of length L with both ends mounted on rollers
is constrained to move as shown in Fig. 2.17. The left end is attached to a linear spring of
stiffness k and the right end supports a hanging mass m. When the bar is horizontal the
spring is unstretched. Use the virtual work principle to derive the equilibrium equation.

x

I-
x

T
y

Figure 2.17 Constrained system in equilibrium

_______________ ....-l\\~
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The virtual work requires vector expressions for the forces and the virtual dis-
placements. In terms of rectangular components, the forces are given by

F] = -k~i, F2 = -mgj
and the displacements by

r] == xi,' r2 = -yj
so that the virtual displacements have the form

or]_ = oxi, or2 = -oyj

(a)

(b)

(c)

Using Eqs. (a) and (c), the principle of virtual work for the problem at hand has the
expression

2L F'; . or; = -kxox + mgoy = 0
i=]

(d)

In the presentform the virtual work principle is incapable of yielding the equi-
" librium equation, because x and yare not independent. Indeed, we have used two

coordinates to describe the problem, and this is a single-degree-of-freedom system,
which requires a single coordinate. The most convenient coordinate is neither x nor y,
but the angle e. The relations between x and y on the one hand and e on the other are

x = L(l- cose) , y = Lsine

so that the virtual displacements are related by

ox = L si~e oe, oy = Leos e oe
Inserting Eqs. (e) and (f) into Eq. (d) and factoring out oe, we obtain

[-k!- (1 - cos e) L sin e + ingLeos e] oe = 0

(e)

(f)

(g)

Because oe is arbitrary, Eq. (g) can be satisfied for all oe if and only if the coefficient
of oe is identically zero. Setting the coefficient of oe equal to zero and rearranging, we
obtain the desired equilibrium equation

I

Equation (h) is a transcendental equation, and its solution must be obtained numerically.
It should be noted that, whereas Eq. (h) admits an infinity of solutions, physically there
is only one solution, as e cannot' exceed n/2.

(1 - cose) tan e mg

kL
(h)

(2.110)

2.9 THE GEN~RALIZED PRINCIPLE OF D'ALEMBERT

The principle of virtual work provides a statement of the static equilibrium of a
mechanical system. Using an ingenuous idea due to d' Alembert, the principle of
virtual work can be extended to dynamical systems, thus paving the way for analytical
mechanics.

Newton's second law for a particle of mass mi can be written in the form

N

Fi + fi + L fij - m;'ii = 0
j;;'t
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where F; is an applied force, f; is a constraint force and fij (j = 1, 2, ... , n) are
internal forces. Equation (2.110) is often referred to as d'Alembert's principle. In
this context, the term -m;r; is referred to as an inertia force.

At first sight, Eq. (2.110) does not seem to provide any new information. In-
deed, if the object is to derive the equations of motion, then Eq. (2.110) does not
offer anything beyond what Newton's second law does. Under these circumstances,
one can question whether there is any justification for referring to Eq. (2.110) as a
principle. Hence, we must seek the virtue of Eq. (2.110) by pursuing a different line
of thought. Equation (2.110) can be regarded as a statement of dynamic equilibrium
of particle m;, and it is this interpretation that carries far-reaching implications. In-
deed, now the principle of virtual work can be extended to dynamics, thus producing
the first variational principle of dynamics. To this end, we refer to Eq. (2.110) and
write

(F; + f; + tf;J - m;r;) . or; = 0
)=1
Hi

(2.111)

Then, considering a system of N particles and assuming that the virtual displacements
or; (i = 1. 2 ..... N) are reversible, so that Eq. (2.1 03) holds, we can write for the
system of particles

NL (F; - m;r;) . or;
;=1

o (2.112)

where we recalled Eq. (2.49). Equation (2.112) embodies both the principle of vir-
tual work of statics and d' Alembert's principle of dynamics and is referred to as the
generalized principle of d'Alembert. The sum of the applied force and the inertia
force, F; - m;r;, is sometimes referred to as the effective force. This permits us to
enunciate the generalized principle of d'Alembert as follows: The virtual work per-
formed by the effective forces throu.gh infinitesimal virtual displacements compatible
with the system constraints is zero.

D' Alembert's principle, Eq. (2.112), represents the most general formulation
of the problems of dynamics. Its main advantage over Newton's second law is that it
obviates the need for constraint forces. Still, Eq. (2.112) is not very convenient for the
derivation of the equations of motion, particularly for more complex systems. The
generalized principle of d' Alembert is a first variational principle of dynamics, and
all other principles can be derived from it. In fact, our own interest in d' Alembert's
principle can be traced to the fact that it permits the derivation of another principle,
namely, Hamilton's principle.

'The generalized principle of d' Alembert is still a vectorial approach using phys-
ical coordinates to describe the motion. One objection to the use of physical coordi-
nates is that in many cases they are not independent. In fact, before we can obtain the
equations of motion by means of d' Alembert's principle, it is necessary to convert the
formulation from a vectorial one in terms of dependent physical coordinates subject
to constraints to a scalar one in terms of independent generalized coordinates in a
manner similar to the one in Sec. 2.8.
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'Example 2.5

Derive the equation of motion for the systems of Example 2.4 by means cifthe general-
ized d'Alembert's principle.

From Eq. (2.112), the generalized d'Alembert's principle for the case at hand has
the form

where m2 = m and
-yj

(a)

(b)

,Hence, inserting Eq. (b) from above and Eqs. (a) and (c) of Example 2.4 into Eq. (a),
we obtain

-kxox + (mg - my) 8y = 0 (c)

As in Example 2.4, we conclude that, to derive the equation of motion for this single-
degree-of-freedom system, we must transform Eq. (c) into one in terms of a single
generalized coordinate. We choose once again to work with the angle 8 as the sole
generalized coordinate, so that Eqs. (e) and (f) of Example 2.4 apply here as well and,
moreover, we can write

y = L (ecos8 ~ e2sin8) (d)

Introducing Eq. (d) from above and Eqs. (e) and (f) of Example 2.4 into Eq. (c) and
factoring out 88, we obtain

[-kL (1 - cos8) L sin 8 + mgL cos8 - mL (e cos8 - e2 sin 8) L cos8] 88 = 0

(e)

Due to the arbitrariness of 08 ,Eq. (e) can be satisfied for all 88 if and only if the
coefficient of 88 is identically zero. This yields the desired equation of motion

mL (ecos8 - e2sin8) + kL (1 - cos8)tan8 - mg = 0 (f)

\-.

Note that the equilibrium equation can be obtained from Eq. (f) by letting e = e = o.

2.10 HAMILTON'S PRINCIPLE

Although d'Alembert's principle is capable of yielding a complete formulation of
the problems of dynamics; Eq. (2.112) is not very convenient, particularly when the
virtual displacements are not independent. Indeed, a formulation in terms of gener-
alized coordinates would be more satisfactory. In this regard, we recall from Example
2.5 that, before we could derive the equation of motion, it was necessary to convert
the formulation obtained by means of d'Alembert's principle from one in terms of
the dependent rectangular coordinates x and y to one in terms of the generalized
coordinate e. Our object is to derive a formulation capable of working directly with
generalized coordinates, thus obviating the problem of coordinate transformations.

-One such formulation is an integral principle known as Hamilton's principle. Actu-
ally, we will derive a more general version of the principle, referred to as the extended
Hamilton's principle and containing Hamilton's principle as a special case. The ex-
tended Hamilton's principle is not only independent of the coordinates used but also
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(2.113)

(2.115)

permits the derivation of the equations of motion from a definite integral involving a
scalar function, the kinetic energy, and an infinitesimal scalar expression, the virtual
work performed by the applied forces.

We propose to derive the extended Hamilton's principle from the generalized
principle of d'Alembert, which for a system of N particles is given by Eq. (2.112), in
which Fi are applied forces and 8ri (i = 1,2, ... , N) are virtual displacements. We
consider the case in which all ri (t) are independent, so that 8ri are entirely arbitrary.
Referring to Eq. (2.112), we first recognize that

NL Fi . 8ri = 8 W
i=1

is the virtual work performed by the applied forces. Then, we assume that the mass
mi is constant and consider the following:

:t (miri . 8ri) = miri . 8ri + miri ·8ri = miri . 8ri + 8 (~miri . ri)

(2.114)

where T; is the kinetic energy of particle mi. Summing over the entire system of
particles and rearranging, we obtain

N d NL -d (miri . 8ri) = Lmiri . 8ri + 8T
i=] t i=1

where T is the kinetic energy of the entire system of particles. Inserting Eqs. (2.113)
and (2.115) into Eq. (2.112), we can write

_ N d
8T + 8W = L- (miri ·8ri) (2.116)

i=1 dt

The next step is the integration of Eq. (2.116) with respect to time. Before we
take this step, we must introduce some additional concepts. As indicated in Sec. 2.7,
the motion of a system of N particles is defined by the position vectors ri(t), which
represent the solution of the dynamical problem and can be written in terms of
rectangular components in the form

(2.117)

We can conceive of a 3N -dimensional space with the axes Xi, Yi, Zi and represent
the position of the system of particles in that space and at any time t as the position
of a representative point P with the coordinates Xi (1), ,vi (t), Zi (t) (i = 1. 2, ... , N);
the 3N -dimensional space is known as the configuration space. As time unfolds, the
representative point P traces a curve in the configuration space called the true path,
or the Newtonian path, or the dynamical path. At the same time, we can envision
a different representative point p' resulting from imagining the system in a slightly
different position defined by the virtual displacements 8ri (i = 1,2, ... , N). As
time changes, the point p' traces a curve in the configuration space known as the
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(2.118)

varied path. Multiplying Eq. (2.116) by dt and integrating between· the times t1 and
t2, we obtain "L

lt

2

(8T + .8W)dt = lt2

t ~'(miri . 8n)dt = tmiri .8;il
t2

t1 tl i=l .dt ", i=l t1

Of all the possible varied paths, 'o/enow consider only those that coillcide with the
true path at the two instants t1.and t2, as shown in Fig. 2.18, so that Eq. (2.118)
reduces to' - .

lt

2

(8T + 8W) dt = 0, 8ri (t1) '= 8ri (t2) = 0, i = 1,2, ... , N
~ '

We refer to Eq. (2.119) as the extended Hamilton's principle.

Figure 2.18 True path and varied path in the configuration space

(2.119)

The derivation of the extended Hamilton's principle, Eq. (2.119), was carried
outintermsofthephysicalcoordinatesri (i = 1, 2,~ .. , N). In many cases, however,
it is more desirable to work with the generalized coordinates qk (k = 1, 2, ... , n) _In
this regard, we recall that, in using the generalized d' Alembert's principle to derive
the equations of motion, the transformation from 8ri (i = 1,2, _.. , N) to 8qk (k =
1,2, ... ,n) must be carried out explicitly, as can be concluded from Example 2.4.
In contrast, no such explicit transformation is required here, as the principle has the
same form regardless of the coordinates used to express 8T and 8W. In view of this,
we can express 8T and 8W directly in terms of independent generalized coordinates,
and the same can be said about the conditions on the virtual displacements at t1 and
t2. Hence, the extended Hamilton's principle can be stated in the form

'lt2

(8T + 8W) dt = 0,
t1

1

8qk(t1) = 8qk(t2)-='0,,, k = 1,2, ... ,n (2.120)

where n is the number of degrees of freedom of the system.
The extended Hamilton's principle, Eq. (2.120), is quite general and can be used

to derive the equations of motion for a large variety of systems. In fact, although it
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was derived for a system of particles, the principle is equally valid for rigid bodies,
as we shall see in a following example, and for distributed-parameter systems, as we
shall have the opportunity to verify in Chapter 7. The only limitation is that the
virtual displacements must be reversible, which implies that the constraint forces
must perform no work. Hence, the principle cannot be used for systems with friction
forces.

In general the virtual work 8W includes contributions from both conservative
and non conservative forces, or

(2.121)

where the subscripts c and nc denote conservative and nonconservative virtual work,
respectively. Using the analogy with Eq. (2.39), however, we conclude that the virtual
work performed by the conservative forces can be expressed in the form

(2.122)

in which V = V (ql, q2, ... , qn) is the potential energy. The implication is that the
virtual work of the conservative forces represents the variation of the work func-
tion We, where the work function is the negative of the potential energy V. Then,
introducing the Lagrangian

L=T-V (2.123)

a scalar function, and considering Eqs. (2.121) and (2.122), we can rewrite Eq. (2.120)
in the equivalent form

(2.124)

In the special case in which there are no nonconservative forces, so that 8W nc = 0,
Eq. (2.124) reduces to the Hamilton:5 principle for conservative systems

[

12

8L dt = 0, 8qk Ud = 8qk (h) = o. k = 1, 2, .... n
11

(2.125)

(2.126)

A system for which the constraint equations represent relations between coor-
dinates alone, such as Eqs. (2.92), is known as holonomic. For holonomic systems
the varied path is a possible path. If the constraint equations involve velocities, and
the equations cannot be integrated to yield relations between coordinates alone, the
system is said to be nonholonomic. For nonholonomic systems the varied path is
in general not a possible path. In the case of holonomic systems, the variation and
integration processes are interchangeable, so that Eq. (2.125) can be replaced by

8/ = 8 (2 L dt = O. 8qk (tl) = 8qk (12) = o. k = 1. 2, ... , n
111

where

/ (2.127)
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Equation (2.126) represents Hamilton's principle in its most familiar form. The
principle can be stated as follows: The actual path in the configuration space renders
the value of the definite integral I = !/2 L dt stationary with respect to all arbitrary

• 1

variations of the path between two instants t1 and t2,provided that the path variations
vanish at these two instants.

Although Eq. (2.126) permits a nice mathematical interpretation of Hamilton's
principle, in 'deriving the equations of motion for conservative systems we actually
make use of Eq. (2.125).

Example 2.6

The system shown in Fig. 2.19 consists of a mass M connected to a spring of stiffness k
and a uniform link of mass m and length L hinged to M at the upper end and subjected
to a horizontal force at the lower end. Derive the equations of motion by means of the
extended Hamilton's principle.

k

f- x'--J
r--------
I
1

I I:
I I IL,_---J ~_

)1 I .1
/ / / /'

I
I
I
I
I
I
IC

.1
I
I
I
I
I
I

1 I
I I. I:
I I
I I
I~J

M

x

F

I- (x + L sin B) -l
Figure 2.19 System consisting of a mass and a link

From Fig. 2.19, we conclude that the motion can be described fully by means of the
translation x of the mass M and the rotation e of the link. Hence, we use as generalized
coordinates

(a)

Before we write the kinetic energy expression, we wish to derive the velocity of the mass
center C of the link. The position vector of point C is

(
L ). L e'rc = x + '2 sin e I - '2 cos J (b)
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so that the velocity vector is simply

(
L. ) L.

Vc= .i+2ecose i+2esinej (c)

(e)

Hence, the kinetic energy has the expression

1 2 1 ] '2
T = -M.i + -mvc . Vc + -Ice

2 2 2

] 2 1 [( L. )2 (L. )2] ImL
2
'2-M.i +-m .i+-ecose + -esine +---8

2 2 2 2 2 12

= ~[(M + m).i2 + mLXecos8 + ~mL2e2] (d)

The potential energy is the sum of the elastic potential energy of the spring and the
gravitational potential energy of the link, or

1 L
V = _kx2 + mg- (l - cose)

2 2

so that the Lagrangian is simply

L=T-V

= ~ [(M + m).i2 + mLXecose + ~mee2] - ~kx2 - mg~ (l - coseXf)
2 3 2 2

Hence, the variation in the Lagrangian has the form

1 ...
8L = (M + m).i o.i + -mL(e cos e o.i + .i cos e oe - .ie sin e oe)

2

1 2" L+ -mL eoe - kxox - mg-sineoe
3 2

= [(M + m).i + ~mLe COS8] o.i

] .. ].+ -mL(3.icos8 + 2Le)oe - kx8x - -mL(.i8 + g)sineoe (g)
6 2

Moreover, the nonconservative virtual work of the horizontal force F is simply

oWnc = Fo(x + Lsine) = Fox + FLcoseoe

Inserting Eqs. (g) and (h) into Eq. (2.124), we obtain

r (oL + oWnc)dtitl r{[ 1.]] ..= itl (M + m).i + ZmLecose ox + 6mL(3XCOSe + 2Le)oe

] . }_ kxox - ZmL(x8 + g)sineoe + Fox + FLcos'8oe dt

ox = 0, oe = 0 at t = t}, t2

(h)

= 0,

(i)
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(1)

The integrand in Eq. (i) contains 8x and 8e. Before we can obtain the equations
of motion by means of the extended Hamilton's principle, Eq. (i), it is necessary to carry
out integrations by parts of the type

1/2 !k (q, q) 8qk dt = 1/2

fk (q, q) : 8q~ dt
/) /) t

=jj ( ') 8 1/2 _1/2
dfk (q, q) r dtk q, q qk /) d oqk

/) t

= _1/2 d!k (q, q) 8qi<dt G)
/) dt

where we took into account the fact that 8qk (t1) = 8qk (t2) = O. Hence, considering
Eq. G), Eq. (i) can be rewritten as

[2({_:t [(M + m) X + ~mLe cos e]- kx + F} 8x

[
1 d .1. ])+ --mL-(3x cose + 2Le) - -mL(xe + g) sine + FL cose 8e dt

6 dt 2
= 0 (k)

But the generalized coordinates x and e are independent, so that the virtual displace-
ments 8x and 8e are entirely arbitrary. It follows that the integral can be zero for all
8x and 8e if and only if the coefficients of 8x and 8e are identically zero, which yields
the equations of motion

d [ 1.]- (M + m)x + -mLecose + kx = F
dt 2· •

1 d .1·
-mL-(3xcose + 2Le) + -mL(xe + g) sine = FLcose
6 dt 2

We should observe at this point that the right side of Eqs. (1)represents the generalized
nonconservative forces

Q1nc = X = F, Q2nc = e = FLcose (m)

and we note that Q2nc is really a moment, which is consistent with the fact that q2 is an
angle. Indeed, the product Q2nc 8q2 represents an increment of work.

2.11 LAGRANGE'S EQUATIONS OF MOTION

Lagrange's equations occupy a special place in analytical mechanics. They represent
equations of motion in terms of generalized coordinates and can be obtained solely
from two scalar expressions, the kinetic energy and the virtual work, a feature shared
with Hamilton's principle. There are several ways in which Lagrange's equations can
be derlved,directly from the generalized principle of,d' Aiembert, or by means of
Hamilton's principle. We choose the latter approach.

In deriving the equations of motion by means of Hamilton's principle, there are
two steps that must be carried out repeatedly, namely, eliminating the generalized
virtual velocities from the formulation through integrations by parts, thus obtaining
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an integral in terms of the generalized virtual displacements alone, and then invoking
the arbitrariness of the generalized virtual displacements to obtain the equations of
motion by setting the coefficients of the generalized virtual displacements equal to
zero. Lagrange's equations can be derived in a natural manner by carrying out the
two steps indicated above for a generic dynamical system, instead of deriving them
for every specific example.

The kinetic energy for a system of particles can be expressed in the general
form

(2.128)

where ri is the displacement vector and ri the velocity vector of a typical particle of
mass In i (i = 1, 2, ... , N). Our interest, however, is in a formulation in terms of the
generalized coordinates qk and generalized velocities qk (k = 1, 2, ... , n) and not
ri and ri (i = 1, 2, ... , N). We recall that the relation between ri and qk is given by
Eqs. (2.105). Moreover, using the analogy with Eqs. (2.106), we can write

Il ar.
ri = L _1 qk , i = 1,2, ... , N

k=1 aqk
(2.129)

Introducing Eqs. (2.105) and (2.129) into Eq. (2.128), we can express the kinetic
energy in terms of generalized displacements and velocities as follows:

(2.130)

Hence, the variation in the kinetic energy is simply

(2.131)

Moreover, from Eq. (2.107), the virtual work performed by the applied forces can
be written in terms of generalized forces and virtual displacements in the form

Il

8W = L Qk8qk
k=1

(2.132)

where the generalized forces Qk (k = 1,2, ... ,11) are as given by Eqs. (2.108). Intro-
ducing Eqs. (2.131) and (2.132) into the extended Hamilton's principle, Eq. (2.120),
we can write

1/2 1/2 Il [aT (aT )](8T + 8W) dt = L -.8qk + - + Qk 8qk dt = 0,
/1 /1 k=1 aqk aqk

8qk (t)) = 8qb (t2) = 0, k = 1, 2, ... , n (2.133)

The terms 8qk stand in the way of the derivation of the equations of motion. To
eliminate them, we carry out an integration by parts, consider the end conditions

___________________________ ~~!!!'!""' ••••••- ••••••-- __ ~~!!!!!!!!!!!!!!!!!!!!!_..•..4
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and obtain
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(2.135)

(2.134)= _112

~ (a~)Oqkdt, k = 1,2, ... ,n
11 dt aqk

Introducing Eqs. (2.134) into Eq. (2.133), we have

112 n [ d (a T ) aT]L -.-d· ...- . .+ - + Qk oqk dt = 0
. 11 k=l . t aqk aqk

Then, invoking the arbitrariness of the virtual displacements, we conclude that
Eq. (2.135) is satisfied for all Oqk provided

,

~ ( a~) _ aT = Qk. k = 1,2, ... , n (2.136) .
dt aqk aqk .

Equations (2.136) represent the celebrated Lagrange's equations of motion in their
most general form, and we note that Qk include both conservative and nonCOhser-
vative generalized forces.

It is common practice to distinguish between conservative and nonconservative
forces, or

Qk = Qke + Qkne, k = 1,2, ... , n (2.137)

(2.138)

But, using Eq. (2.122) and recalling that the potential energy depends on coordinates
alone, we can write

n av n
oWe = -oV = - L -oqk = L Qkeoqk

k=l aqk .. k=l

so that the conservative generalized forces have the form

av
Qke = -- , k= 1,2, ... , n (2.139)

aqk .

Hence, introducing Eqs. (2.137) and (2.139) into Eq. (2.136), we obtain

d"(aT) aT av
dt aqk - aqk + aqk = Qkne, k = 1,2, ... , ~ (2.140)

Finally, because the potential energy does not depend on velocities, Eqs. (2.140) can
be rewritten as

(2.141)

where L = T - V is the Lagrangian .
. Lagrange's equations can be used for any discrete system whose motion lends

itself to a description in terms of geneIalized coordinates, which includes rigid bodies,
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(a)

in the same manner as Hamilton's principle can. They can be extended to distributed-
parameter systems, but for such systems they are not as versatile as the extended
Hamilton's principle, as we shall see in Chapter 7.

Example 2.7
Derive the equations of motion for the system of Example 2.6 by means of Lagrange's
equations.

Letting ql = X, q2 = e, Qlnc = X and Q2nc = e in Eqs. (2.141), Lagrange's
equations for this example take the form

~ (aL) _ aL X
dt ax ax

d (aL) aL = e
d t ae - ae

From Example 2.6, we obtain the Lagrangian

L = ~ [(M + m)x2 + mLXecose + ~mL2e2]

so that

1 2 L-kx - mg- (1 - cose)
2 2

(b)

1 .
= - -mLxe sin e - mf?L sin e

2

aL
ax
aL
ax
aL
ae
aL
ae

1 .
(M + m)x + -mLecose

2

-kx

1 1 2'
-mLxcose + -mL e =
2 3

1 .
-mL(x cose + Le)
6

(c)

Moreover, the generalized nonconservative forces X and (0-) can also be obtained from
Example 2.6. Hence, inserting Eqs. (c) above and Eqs. (m) of Example 2.6 into Eqs. (a),
we obtain the explicit Lagrange's equations of motion

d [ 1.]_ (M + m)x + -mLecose + kx = F
dt 2

1 d .. 1 .'. e 1 . e-mL-(3x cose + 2Le) + -mLxe Sin + -mgL Sin
6 dt 2 2

which are identical to Eqs. (I) of Example 2.6, as is to be expected.

2.12 HAMILTON'S EQUATIONS

FLcose

(d)

Lagrange's equations, Eqs. (2.141), constitute a set of n simultaneous second-order
differential equations. On occasion, it is more desirable to work with first-order dif-
ferential equations rather than second-order equations, particularly when the object
is integration of the equations. But second-order equations can be transformed into
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first-order ones. To this end, it is common practice to introduce the generalized veloc-
ities as auxiliary variables and replace the n second-order differential equations by
2n first-order differential equations .. Of the 2n equations, n are purely kinematical
in nature, stating that the time derivative of the coordinates is equal to theveloc-
ities, and the remaining n are the original equations expressed in first-order form
by replacing accelerations by time derivatives of velocities. The resulting first-order
equations are known as state equations, encountered for the first time in Sec. 1.9. In
this section, we consider a somewhat different formulation, namely, one in which the
auxiliary variables are momenta instead of velocities.

The generalized momenta associated with the generalized coordinates

qk (k' = 1,2, ... , n)

are defined as

where

Pk
oL
-, k = 1 2 noqk' , , ... , (2.142)

(2.143)

(2.144)

is the Lagrangian. Moreover, the Hamiltonian junction is defined as follows:

. n oL n

J-{ = I>a~qk - L = LPkqk- L
k=l qk k=l

If the generalized velocities are replaced by the generalized momenta, the Hamilto-
nian can be .written in the general functional form

(2.145)

Next, we take the variation of J-{ in both Eqs. (2.144) a:~d (2.145), consider
Eqs. (2.142) and (2.143) and ~rite

from which it follows that

(2.146)

oJ-{
= - k = 1, 2, ... , n

aqk . (2.147a, b)

Using Eqs. (2.141) and (2.142); however, we can write

h = ,~ (o~) = oL, + Qkne, k = 1,2, ... , n
dt oqk oqk . (2.148)
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where Qknc are nonconservative generalized forces. Then, inserting Eqs. (2.148)
into Eqs. (2.147b), we can rewrite Eqs. (2.147) in the form

qk = aJ{, k = 1,2, ... ,n (2.149a)
apk

aJ{
Pk --a - + Qknc, k = 1,2, ... , n (2.149b)

qk
Equations (2.149) represent the desired set of 2n first-order differential equations.
They are known as Hamilton's equations. Note that, if we differentiate Eqs. (2.144)
and (2.145) with respect to time and consider Eqs. (2.142), (2.147) and (2.149a), we
conclude that

aJ{ aLat = at (2.150)

Clearly, if the Lagrangian does not depend explicitly on time, neither does the Hamil-
tonian.

The Hamiltonian function and the virtual work define the motion of the sys-
tem fully, as all the differential equations of motion can be derived from these two
expressions. The clear advantage of Hamilton's equations over Lagrange's equa-
tions is that in Hamilton's equations the time derivative of the variables, coordinates
and momenta, appear on the left side of the equations only and they are first-order
derivatives, which makes Hamilton's equations suitable for numerical integration.
Another advantage is that Hamilton's equations permit a geometric interpretation
of the solution, as discussed in Sec. 4.2.

At this point, we wish to relate the Hamiltonian to the system kinetic and
potential energy. To this end, we consider the case in which the kinetic energy of an
n-degree-of-freedom system can be written in the form

where

T = T2 + Tl + To (2.151)

(2.152)

(2.153)

is quadratic in the generalized velocities, in which mil = mji are symmetric coeffi-
cients depending on the generalized coordinates, mij = nlij (qt, q2, ... , qn),

n

Tt = LfA)
)=1

is linear in the generalized velocities, in which fJ are coefficients depending on the
generalized coordinates, fJ = fJ (qt, q2,···, qn), and

To = TO(ql,q2, ... ,qn) (2.154)

is a function of the generalized coordinates alone and contains no generalized ve-
locities. In the case in which the kinetic energy is given by Eg. (2.151) the system
is said to be nonnatural. It should be noted here that nonnatural systems are most
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commonly associated with motions relative'to rotating. reference frames, in which
case Tl gives rise to forces of the Corio lis type, or gyroscopic forces; and the term
To leads to so-called centrifugal forces. Introducing Eq. (2.151) into Eq. (2.123), we
can write the Lagrangian for nonnatural systems as

(2.155)

where

(2.156)

represents a modified potential energy known as the dynamic potential. It is generally
a nonlinear function of the generalized coordinates. Then, inserting Eq. (2.155) into
Eq. (2.144) and considering Euler's theorem on homogeneous functions, we obtain
the Hamiltonian for nonnatural systems in the explicit form

Wlien T2 = T, Tl = To = 0, the system is said to be natural and the Hamiltonian
reduces to

(2.158)

where' E 'is recognized -asthe'tdtal energy, first encountered in Sec. 2.5.

Example 2.8
r ~ ~

Derive Hamilton"s equation for the spherical pendulum shown in Fig. 2.20.

z

x

'.f

mg
" ,

Figure 2.20 Spherical pendulum
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Considering Fig. 2.20, we conclude that a suitable set of generalized coordinates
for the problem at hand has the form

Po

Moreover, from Fig. 2.20, we obtain the velocities

Vii = Le, v'" = L V, sin e
so that the kinetic energy is simply

The potential energy is due to gravity alone and has the form

v = mgL (1 - cose)

Hence, the Lagrangian has the expression

Using Eqs. (2.142), we obtain the generalized momenta

aL = mL2iJae
aL 2' 2p", =-. = mL 1/1 sin ea 1/1

(a)

(b)

(c)

(d)

(e)

(f)

Because this is a natural system, we insert Eqs. (f) into Eq. (2.158) and write the Hamil-
tonian in the form

(2)1 2 P",J-{ = T + V = --2 Po + -'-2- + mgL (1 - cose)
2m L SIn e (g)

Then, using Eqs. (2.149) and recognizing that there are no nonconservative forces
present, we obtain the desired Hamilton's equations

aJ-{ Poe = - =
apo mU

aJ-{ P.p
1/1 - =

ap", mU sin2 e
(h)

aJ-{ 2p~ cos e
Po = --- - mg L sin ()

ae mU sin3 e
aJ-{

PVI -- =0
a 1/1

and we observe that the first two of Eqs. (h) could have been obtained more directly
from Eqs. (f).
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From Sees. 2.11 and 2.12, we conclude that the motion of an n-degree-of-freedom
system can be described by n second-order Lagrange's equations or 2n first-order
Hamilton's equations. A complete. solution oOhe system,of differential equations
of motion requires 2n constants of integration, which'ordinarily consist of the ini-
tial values of the n coordinates qk and n velocities qk, or of the n coordinates qk
andn momenta Pk.· Closed-form solutions to 2n-order systems of equations can
be obtained in special cases only, primarily for linear time-invariant systems (see
Sec. 1.2). In more general cases, closed-form solutions prove elusive. Under given
circumstances, however, certain integrals of motion can be obtained. These integrals
can be used at times to lower the number of degrees of freedom. Moreover, they
can provide some insights into the system behavior.

Let us consider the case in which a given generalized coordinate, say qs, is
absent from the Lagrangian, and hence from the Hamiltonian, although the gener-
alized velocity qs does appear in the Lagrangian. A coordinate that does not appear
explicitly in the Lagrangian is said to be ignorable, or cyclic. In addition, we assume
that the nonconservative force corresponding to qs is zero, Qsnc = O. Under these
circumstances, we conclude from Eqs. (2.149b) that the system admits afirst integral
of motion having the form

Ps = constant (2.159)

(2.160)

Hence, the generalized momentum associated with an ignorable coordinate is con-
served. Equation (2.159) represents the conservation of momentum principle and
can be regarded as a generalizatio~ of the more physical conservation of linear and
angular momentum principles encountered in Sees. 2.1 and 2.4, respectively .
. . Next, we consider the case in which the Lagr.angian does not depend explicitly
on time, differentiate Eq. (2.144) with respect to time, use Eqs. (2.141) and obtain

dd:J-{t=t [ddt"(aa~) qk + aa~ ilk] - t (""a8L
qk + :~ 4k)

k=l qk qk k=l qk vqk

~ [d (aL)' aL] .( ~ .=~ dt -a. -:-a qk = ~ Qkncqk
k=l qk qk k=l

But, by analogy with Eq. (2.132), the right side of Eq. (2.160) can be identified as
the time rate of work of the non conservative forces, which represents the power
developed by the nonconservative forces. It follows that, in the case in which the
Lagrangian does not depend explicitly on time, the time derivative of the Hamiltonian
is equal to the power developed by the nonconservative forces.

In the case of a holonomicconservative system Qknc = 0 (k = 1,2, ... ,n)
and Eq. (2.160) reduces to

d:J-{
- =0
dt

which can,be integrated immediately to obtain..... ,

:J-{ = constant

l.- ~ .~.__~_~ _

(2.161)

(2.162)
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Equation (2.162) represents another kind of first integral of motion known as a Jacobi
integral. The conservation principle embodied by Eq. (2.162) can be stated as follows:
In the case in which the Lagrangian does not depend explicitly Oil time alld all the
non conservative forces are zero the Hamiltonian is conserved.

Recalling Eq. (2.157), we conclude that the conservation of the Hamiltonian
for a nonnatural system can be expressed in the explicit form

:J-( = T2 + U = constant (2.163)

Moreover, from Eq. (2.158), the conservation of the Hamiltonian for a natural system
can be expressed as

:J-( = E = T + V = constant (2.164)

(a)

which is recognized as the conservation of energy principle, first encountered in
Sec. 2.5.
Example 2.9

Consider the spherical pendulum of Examplc 2.8 and dctcrmine whether there are any
integrals of motion.

From Example 2.8, we obtain the kinetic energy

T = ~mL2 (02 + ~2sin2e)
2

and the potential energy

v = mgL (1 - cose)

so that the Lagrangian has the expression

1 ,., ., ')
L = T - V = "2mL-(e- + 1jrsin-e - mgL(1 - CaSe)

(b)

(c)

(d)

and we observe that the coordinate 1jI is absent. It follows that 1jI is an ignorable
coordinate and the associated momentum is conserved, or

BL 2· 2
Pt/I = -. = mL 1jI sin e = constant

BljI

Moreover, there are no non conservative forces and the Lagrangian does not depend
explicitly on time, so that the Hamiltonian is conserved. This being a natural system,
we insert Eqs. (a) and (b) into Eq. (2.164) and obtain a second integral of motion in the
form of the total energy

1,(., ., '):J-{ = E = T + V = -mL' e' + 1jI" sin" e + mgL (1 - case) = constant (e)
2

The presence of an ignorable coordinate permits a reduction in the number of
degrees of freedom from two to one. Indeed, Eq. (d) can be used to write

. Pt/lo
1jI = mU sin2 e (f)

where Pt/lO is the initial value of Pt/I. Then, introducing Eq. (f) into Eq. (e), we obtain

1 . 1 p2 0
_mL2e2 + - t/I 2 + mgL(1 - case) = constant (g)
22m U sin e
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Hence, the spherical pendulum can be regarded as an equivalent single-degree-of-
, freedom system characterized by the kinetic energy

and the potential energy

1 '
T. - -mL2riequiv - 2

_. - • ~'l

(h)

(i)
21 Py,o

,V...eqUiv = - 2 + mg L (1 - cos e)
2 mU sin e

and we note that, whereas the kinetic energy of the equivalent system is the same as the
kinetic energy of a simple pendulum, the potential energy is not. In fact, the potential
energy has been modified so as to include the centrifugal effect caused by the rotation
;p of the spherical pendulum about the z-axis. ' • I

2.14 SYNOPSIS i"' J

In Chapter 1, we introduced many concepts and techniques from linear system the-
orr by means of generic differential equations. To study the behavior of vibrating
systems, it is necessary to work with actual differential equations of motion for such
systems. As the equations of motion for the variety of systems considered in this
text are not readily available, it is incumbent upon us to derive them. For simple
systems, characterized by a limited number of degrees of freedom, the methods of
Newtonian mechanics are quite adequate, For more complex systems, such as multi-
degree-of-freedom discrete systems and distributed-parameter systems, the methods
of analytical mechanics are indispensable.

This chapter contains a selection of topics from Newtonian mechanics and an-
alytical mechanics essential to a serious study of vibrations. The principles and tech-
niques presented in this chapter are useful not only in the derivation of the equations
of motion for multi-degree-of-free~om systems but also for testing the stability of
such systems, as demonstrated in Chapter 4. The versatility of analytical mechanics is
not confined to discrete systems alone ...Indeed, this versatility is amply demonstrated
in Chapter 7., in which methods of analytical mechanics are used to derive boundary-
.value problems associated with distributed-parameter systems. In this regard, the
extended Hamilton's principle proves without equal, producing results where other
methods fail.

This chapter is undoubtedly the most fundamental in the entire book. It is also
the most satisfying.

f •• ~

.'
PROBLEMS

, ..
2.1 The system shown in Fig. 2.21 consists of a smooth massless hoop of radius R rotating

with the constant angular velocity n about a vertical axis. A bead of mass m can slide
freely around the hoop. Use Newton's s,econd law to derive the equation of motion.
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Figure 2.21 Mass sliding on a rotating hoop

2.2 Two masses, m) and m2, suspended on a massless string, are vibrating in a vertical plane,
as shown in Fig. 2.22. The displacements are sufficiently small that the slope of the string
at any point remains small and the tension T in the string remains constant at all times.
Derive the equations of motion by means of Newton's second law.

-------------l--------------r------------
Y) Yz

LZ --f-
Figure 2.22 Two masses on a string

2.3 A system consisting of a uniform rigid bar of mass m and length L, and with both ends
mounted on rollers, is constrained to move as shown in Fig. 2.23. The left and right ends
of the bar are attached to linear springs of stiffnesses k) and k2, respectively. When the
bar is horizontal the springs are unstretched. Use the Newtonian approach of Sec. 2.5 to
derive two equations for the translation of the mass center C and one equation for the
rotation about C. The angle e can be arbitrarily large.

Figure 2.23 Rigid bar in constrained motion
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2.4 Derive the equations of motion for the system of Example 2.6 by means of the Newtonian
approach. Then eliminate the constraint forces between the two bodies so as to obtain
two equations for x and e, thus verifying the results of Example 2.6.

2.5 Derive the equations of motion for the double pendulum shown in Fig. 2.16 by means of
Newton's second law..

2.6 Derive the equilibrium equations of the system of Problem 2.2 by means of the virtual
work principle.

2.7 Derive the equilibrium equation for the system of Problem 2.3 by means of the virtual
work principle. ~ .

2.8 The system shown in Fig.·2.24 consists of two uniform rigid links of mass m and length
L, a massless roller free to move horizontally and a linear spring of stiffness k. The links
are hinged at both ends and,when they are horizontal the spring is unstretched. Derive
the equilibrium equation by means of the virtual work principle, The angle e can be
arbitrarily large .•

, I

k

Figure 2.24 Systemconsistingof tw~ links

2.9 The system shown in Fig. 2.25 is similar to thatof Problem 2.7, except that the spring is
}eplaced by the mass M and two springs of s~iffness k1 lllld k2• Derive the equilibrium
equations by m7ans of the virtual work principle. The angle e can be arbitrarily large.

r
Figure 2.25 Systemconsistingoftwo links and a mass "

2.10 Derive the equations of motion for the double pendulum shown in Fig. 2.16 by means of
the generalized principle of d'Alembert. ,

2.11 Derive the equation of motion for the system of Problem 2.8 by means of the generalized
d' Alembert's principle. Hint: Treat the links as continuous by the approach of Sec. 2.6,
whereby sUI?matjon over systems of particles is replaced by integration over rigid bodies.

2.ll Derive the equation of motion for the system of Problem 2.1 by means of Hamilton's
principle.

2.13 Derive the equation of motion for the system of Problem 2.3 by means of Hamilton's
principle.

2.14 Derive the equation of motion for the system of Problem 2.8 by means of Hamilton's
principle.
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2.15 The system of Fig. 2.26 consists of a uniform rigid link of mass m and length L hinged
at the upper end to a linear spring of stiffness k. Use Hamilton's principle to derive the
equations of motion.

k

/////// ///////

Figure 2.26 Link suspended on a spring

2.16 Derive the equations of motion for the system of Problem 2.9 by means of Hamilton's
principle.

2.17 Derive the equations of motion for the system of Problem 2.5 by means of Hamilton's
principle.

2.18 The system of Example 2.3 is acted upon at the lower end of the bar by a horizontal force
F. Derive the equations of motion by means of the extended Hamilton's principle.

2.19 Derive the Lagrange equation of motion for the system of Problem 2.1.
2.20 Derive the Lagrange equations of motion for the system of Problem 2.2.
2.21 Derive the Lagrange equation of motion for the system of Problem 2.3.
2.22 Derive the Lagrange equation of motion for the system of Problem 2.8.
2.23 Derive the Lagrange equations of motion for the system of Problem 2.9.
2.24 Derive the Lagrange equations of motion for the system of Problem 2.15.
2.25 Derive the Lagrange equations of motion for the system of Problem 2.5.
2.26 Derive the Lagrange equations of motion for the system of Problem 2.18.
2.27 Derive Hamilton's equations for the system of Problem 2.1.
2.28 Derive Hamilton's equations for the system of Problem 2.2.
2.29 Derive Hamilton's equations for the system of Problem 2.8.
2.30 Derive Hamilton's equations for the system of Problem 2.9.
2.31 Derive Hamilton's equations for the system of Problem 2.15.
2.32 Derive Hamilton's equations for the system of Problem 2.18.
2.33 Consider the case in which the Lagrangian does not depend explicitly on time and prove

Eq. (2.160) beginning with Eq. (2.145).
2.34 Determine whether the system of Problem 2.1 possesses any integrals of motion.
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2.35 The system shown in Fig. 2.27 is similar to that in Fig. 2.21, except that the hoop is acted
upon by the torque M(t) about the vertical axis and the'angular velocity about the
vertical axis is no longer constant. Determine whether there are any integrals of motion.

M(t)

II
Figure 2.27 Mass slidingon a hoop rotating under the action of a torque

2.36 Determine whether the system of Pro~lem 2.18 possesses any integrals of motion.
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SINGLE- DEGREE-O F-FREEDOM
SYSTEMS

In Chapter 1,we introduced a variety of concepts from linear system theory regarding
the excitation-response, or input-output relation. For the most part, the discussion
was concerned with linear time-invariant systems, also known as systems with con-
stant coefficients. Such systems are of considerable importance in vibrations, as most
vibrating systems can be modeled as linear time-invariant systems.

This chapter marks the real beginning of our study of vibrations. Vibrating
mechanical systems represent a subclass of the all-encompassing class of dynamical
systems characterized by the presence of restoring forces. These forces can arise
from a variety of sources, but our interest lies primarily in restoring forces due to
elasticity, i.e., forces caused by the tendency of elastic systems to return to the original
undeformed state when disturbed.

The dynamic behavior of mechanical systems is governed by Newton's second
law. In Sec. 2.3, we derived equations of motion for simple dynamical systems, such
as first-order and second-order systems. Our interest lies primarily in second-order
systems, more commonly known as single-degree-of-freedom systems. Before solu-
tions to the differential equation of motion can be produced, it is necessary to specify
the nature of the excitation. There are basically two types of excitations, steady-state
and transient. Harmonic and periodic excitations fall in the first category and initial
and non periodic excitations fall in the second. The response to harmonic and peri-
odic excitations is conveniently derived by means of frequency-domain techniques.
On the other hand, the response to transient excitations is more conveniently ob-
tained by time-domain methods. Among these, the Laplace transformation proves
well suited for linear time-invariant systems, as it is capable to produce the response
to both initial and nonperiodic excitations at the same time. The latter has the form

103
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of a convolution integral. The response can also be obtained by a state-space tech-
nique involving a vector form of the convolution integral using the transition matrix.
If the transient response is to be evaluated numerically on a digital computer, then
discrete-time techniques are particularly effective. The convolution integral in con-
tinuous time is replaced by the convolution sum in discrete time. Moreover, the state
space approach can be extended to discrete time by replacing the vector form of the
convolution integral by some recursive equations using the discrete time transition
matrix. All these subjects are discussed in this chapter.

3.1 RESPONSE TO INITIAL EXCITATIONS

In Sec. 1.4, we derived the response of linear time-invariant systems to initial exci-
tations by first assuming an exponential solution and then adjusting the solution so
as to match the initial conditions. Then, in Sec. 1.6, we indicated that the response
to initial excitations can also be obtained by the Laplace transformation method.
This latter approach is particularly suited for linear time-invariant systems, so that
we propose to use it here.

k

c

r-x(t)

J(t)

Figure 3.1 Damper-spring system

. Figure 3.1 shows the simplest of mechanical systems,namely, a damper-spring
,system. The behavior of this system was shown in Sec. 2.3 to be governed by the
, single first-order differential equation .

cx(t) + h(t) = f(t) (3.1)

where x(t) is the displacement, c the coefficient of viscous damping, k the spring
constant and f(t) the external excitation. In the absence of external excitations,
f(t) = 0, and after dividing through by c, Eq. (3,1) reduces to

'x(t) + ax(t) = 0, a = k/c (3.2)

This being a first-order system, the solution of Eq. (3.2) is subject to a single initial
condition, namely,

x(O) = xo (3.3)

, where Xorepresents the initial displacement. Before we proceed with the solution of
Eq. (3.2), we note from Appendix A that the Laplace transform of time derivatives
of functions are given by .

d'x(t) . ' dx(t) IL-- s'Xes) - s,-lx(O) - S,-2_, --'
dt' . dt (=0
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_ s dr
-
2
x(t) I

dtr-2 t=O
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r = 1,2, ... , n (3.4)

where X(s) is the Laplace transform of x(t), and note that Eq. (3.4) is a generaliza-
tion of Eq. (1.54), in the sense that now the terms due to the initial conditions are
included. Laplace transforming both sides of Eq. (3.2) and using Eq. (3.4), we obtain

sX(s) - x(O) + aX(s) = 0

Then, considering the initial condition, Eq. (3.3), and rearranging, we have

xo
X(s) = --

s+a

(3.5)

(3.6)

Finally, from the table of Laplace transforms in Appendix A, we obtain the response
to the initial displacement xo in the form of the inverse Laplace transformation

x(t) = £.-1 X(s) = xoe-at

Quite frequently, the response of a first-order system is expressed in the form

x(t) = xoe-t/r:

where
r = l/a = c/ k

(3.7)

(3.8)

(3.9)

is the time constant of the system, first introduced in Example 1.2.
Equation (3.8) indicates that the response of a first-order system to an initial

displacement decays exponentially with time, with the decay rate depending on the
time constant r. Figure 3.2 presents several plots of x(t) versus t, with r playing
the role of a parameter. It is easy to see that the rate of decay decreases as the time
constant increases.

l-
i

I t(s)

01 2 3 4 5 6

Figure 3.2 Free response of a damper-spring system with the time constant as a
parameter

____________________________ !"'!"'------ '!""!!!!!!!!!!-!!!!!!-.A.
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Next we turn our attention to the response of a mass-damper-spring system to
t initial excitations. Such a system is sho,,:,n in Fig. 3:3 and it represents a second-order

system, commonly referred to as a single-degree-of-freedom system. Its differential
_eqqation of motion ,,:,as derived in Sec. 2.3 in the form .. I

~ t ' .' ',") !"l~. ~. :, ~ i. - f' !it

III ,.I .•• 1?1x,(t),t cx(t) + ~x(~) f'./(t):; ... .' " (3.10)

where m is the mass. The remaining quantities are as defined for the first-order
system discussed above. The simplest second-o'rder system is the undamped system; it
represents a mathematical idealization seldom encountered in practice. Quite often,

. I ~ . \ ". '" , "'

however, damping is sufficiently small that it can be ignored for all practical purposes.
The undamped single-degree-of-freedom system occupies a very important place in
vibrations, so that a separate discussion is fully justified.

"j

" "\I r-x(t) I

~H' 1
., -. ", ,'1.. - k " . ~~:"

m f(t)

.. , c
~. '~~ .1 - ,

" i J 1 ~

Figure 3.3 Damped single-degree-of-freedom system

Letting c = 0 and J(t) = 0 in Eq. (3.10) and dividing through by m, we can
write the differential equation for the free vibration of a typical undamped single-
degree-of-freedom system in the form

I,l'

where

Wn = Jk/m
" ,

(3.11)

(3.12)

is known as the natural frequency. Its units are radians per second (rad/s)~ )Because
Eq. (3.11) represents a second-order system, the solution x(t) is subject to two initial
conditions, namely,

x(O) = Xo, x(t) = Vo (3.13)

where Xo and Vo are the initial displacement and velocity, respectively.
We propose to solve Eq. (3.11) by the Laplace transformation. Hence, using

Eq. (3.4), the Laplace transform ofEq. (3.11) can be written in the form.. /

s2X(s) - sx(O) -'.£(0) + w~X(;) = '0 (3.14)
~ "'r'•••.:

Then, considering the initial conditions, Eqs. (3.13), and solving for X (s), we obtain..

s . 1
.• : .. ",X(s) = Xo +.. Vo

S2 + w2 S2 + w2
n n

(3.15)
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Both functions of s on the right side of Eq. (3.15) can be found in the table of Laplace
transforms in Appendix A, which permits us to obtain the response in the form of
the inverse Laplace transform

x(t) = .i-1X(s) = Xa coswnt + Va sinwnt
Wn

It is customary to express the response in the form

x(t) = A cos(wnt - </J)

(3.16)

(3.17)

where
(3.18)

is known as the amplitude and

(3.19)

is called the phase angle. Figure 3.4 shows a plot of x(t) versus t for given natural
frequency and initial conditions.

,x( t)

lo Slope = va

/ 27f
A /; j'E-- T= l1)n _0_->,

I I
I-,,-

:~
l ¢/wll

-A,

Figure 3.4 Free response of an undamped single-degree-of-freedom system

Equation (3.17) states that the system executes simple harmonic oscillation with
the frequency Wn. For this reason, Eq. (3.11) is said to represent a harmonic oscillator.
Regardless of how the motion is initiated, in the absence of external excitations, an
undamped single-degree-of-freedom system always oscillates at the same frequency,
which explains why Wn is called the natural frequency. The initial excitations affect
only the amplitude and phase angle. All these quantities are displayed in Fig. 3.4,
and we note that the effect of the phase angle is to shift the curve A cos wnt to the
right by an amount of time equal to </J/wll• Also from Fig. 3.4, we can identify the
period of oscillation

2rr
T= (3.20)
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defined as the amount of time between two consecutive points on the curve having
equal displacementand velocity both in magnitude and sign, such as the time between
two consecutive peaks. The period has units of seconds (s). There exists another
definition of the natural frequency, namely,

1In = -Wn
2rr

1
T

(3.21)

(3.23)

(3.24)

(3.25)

and we note that In is measured in cycles per second, where one cycle per second is
commonly known as one hertz (Hz).

The amplitude A is a well-defined quantity. It represents the maximum value
of the response. On the other hand, the phase angle 4> does not have the same degree
of physical meaning. It can be interpreted as a measure of the time necessary for the
response to reach the maximum value. When the initial velocity is zero, the phase
angle is zero, so that the response, has the maximum value at t = 0, as well as at
ti = iT (i = 1,2, ... ); it has the minimum value at ti = (2i - 1)/2 (i = 1,2, ... ).

A surprisingly large number of systems, from. a variety of areas, behave like
harmonic oscillators. Many of these systems' do so only when confined to small
motions about an equilibrium position. As an example, the simple pendulum of
Example 1.1 behaves as a harmonic oscillator with the natural frequency Wn =
.jg / L only in the neighborhood of e = O. This neighborhood covers the region
in which sin e ~ e, which is approximately true for values of e reaching 30° and
beyond, depending on the accuracy required. For larger amplitudes, the motion of
the pendulum is periodic but not harmonic.

At this point, we consider the response of damped single-degree-of-freedom
systems to initial excitations. To this end, we let J(t) = 0 in Eq. (3.10) and divide
through by m to obtain the differential equation

I

x(t) + 2~wnx(t) + w~x(t) = 0 (3.22)

where
c

~ =
2mfUn

is known as the viscous damping factor. The solution x(t) is subject to the initial
conditions given by Eqs. (3.13). Laplace transforming-Eq. (3.22) and using Eqs. (3.4),
we have

, '

s2X(s) - sx(O) - x~O) + 2~wn [sX(s) - x(O)] + w~X(s) = 0

Solving for X (s) and using Eqs. (3.13), we obtain

s + 2~Wn 1 ,
Xes) = xo+ ------vo

S2 + 2~wns + w~ S2 + 2~wns + w~

The response of the damped single-degree-of -freedom system is given by the inverse
Laplace transform of Eq. (3.25). To this end, we must distinguish between the case
in which ~ < 1, corresponding to an underdamped system, and that in which ~ > 1,
corresponding to an overdamped system.
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(3.26)

Using the table of Laplace transforms in Appendix A and inverse Laplace
transforming Eq. (3.25), the response of an underdamped single-degree-of-freedom
system to initial excitations can be shown to be

x(t) = e-t;wnl [XO (cosWdt + ~~n sinwdt) + ~: sinwdt]

The response can be rewritten in the convenient form

where now the constant A is given by

(3.27)

A (3.28)

Wd = (1 - ~2)1/2 Wn

is known as the frequency of damped free vibration. The multiplying factor

Aexp(-~wnt)

in Eq. (3.27) can be regarded as a time-dependent amplitude modulating the har-
monic oscillation at the frequency Wd, so that the motion for 0 < ~ < 1 represents
decaying oscillation. A typical plot of x(t) versus t is displayed in Fig. 3.5, with the
modulating envelope ±A exp (-~wnt) versus t shown in dashed lines. Whereas the
constant A can be identified as the magnitude of the modulating envelope, the phase
angle ¢ does not lend itself to easy interpretation.

and the phase angle by
-1 ~WnXO + Vo

tan -----
WdXO

Moreover,

(3.29)

(3.30)

I x(t)

Al/Slope = va

T
xo

I

-"'-
I

I1/////
-A j£

I

Figure 3.5 Free response of an underdamped single-degree-of-freedom system



110 Single-Degree-of-Freedom Systems, Chap. 3

(3.31)

The response of an overdamped single-degree-of-freedom system to initial ex-
.'citations Can be obtained from Eq: (3.26) by simply replacing Wd by i (~2 _ 1) 1/2 Wn.

Hence, recognizing that cos ia =cosha, ,. sin ia = i sinh a, Eq. (3.26) yields

x(t) 1= e-I;wn,t '{xo [COSh (~2 --,-1)1/2 wnt +' , ~'1/2 sinh (~2 _ 1)1/2 wntJ
' • (~2 - 1)

+ ' vo 1/2 sinh (~2 ,--; 1)1/2 wntJ
(~2 - 1) Wn

which represents aperiodically decayiftg motion. A typical plot of x(t) versus t is
shown in Fig. 3.6.

"

~' l,i

Figure 3.6 Free response of an overdamped single-degree-Of-free'dom system-
, .r.i. )

The case in which ~ ~ 1is commonly known as critical damping. Letting ~ = 1
in Eq. (3.31), the response of a critically damped single-degree-of-freedom system
can be shown to have the form (see Problem 3.5) .

x(t) = e-wnt [xo (1 + wnt) +- vot] (3.32)

As in the overdamped case, critically damped motion also decays aperiodically. In
fact, it is the fastest decaying aperiodic motion. Cle§lrly, t!1ere is nothing critical about
~ = 1. It is merely a borderline case separating oscillatory decay from aperiodic
decay.,

'",,'It may prove of intere~t at this point to contrast the approach to the response
to initial excitations presented in Sec. 1.4 to that used here. In Sec. 1.4, we assumed
the exponential solution

x(t) = Aest
(3.33)

where, in the case of the first-order system, Eq. (3.2), s is the solution of the charac-
teristic equation

(3.34)
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and A is obtained by satisfying the initial condition, Eq. (3.3). On the other hand, in
the case of the second-order system, Eq. (3.22), the characteristic equation is

s2 + 2~ Wn5 + w~ = 0 (3.35)

and the constants A) and A2 corresponding to the roots 5) and 52 of the characteris-
tic equation are determined by invoking the initial conditions, Eqs. (3.13). All these
steps are carried out automatically in the solution by the Laplace transformation.
Indeed, Eqs. (3.4) for the Laplace transform of derivatives take into account the
initial conditions automatically. Moreover, recognizing that the characteristic poly-
nomial appears at the denominator of the Laplace transform X (5) of the response,
as attested by Eqs. (3.6), (3.15) and (3.25), we conclude that the solution of the char-
acteristic equation and the combination of the various exponential terms are implicit
in the Laplace inversion process. Of course, a great deal of work is eliminated from
the inversion process by the use of Laplace transform tables.

3.2 RESPONSE TO HARMONIC EXCITATIONS

In Sec. 1.5, we discussed the response of linear time-invariant systems to harmonic
excitations in a general way. In this section, we propose to apply the theory developed
there to first-order and second-order mechanical systems.

We shall find it convenient to express the excitation in the complex form

J(t) = AkeiUJI (3.36)

and we recall from Sec. 1.5 that the complex notation has certain advantages over
the real notation, i.e., the notation in terms of trigonometric functions. Also we note
that A has units of displacement. Inserting Eq. (3.36) into Eq. (3.1), the differential
equation of motion of a damper-spring system subjected to harmonic excitations can
be written as

cx(t) + kx(t) = f(t) = AkeiltJl

Then, dividing through by c, we obtain

(3.37)

x(t) + ax(t) = AaeiltJ1, a = kjc (3.38)

But Eg. (3.38) is virtually identical to Eq. (a) of Example 1.2, except that here eiltJ1

replaces sin (ot. Hence, using the analogy with Eq. (b) of Example 1.2, we can write
the steady-state harmonic response in the form

where

x(t) = AIG(iw)lei(UJI-r/» (3.39)

IG(iw)1 (3.40)

is the magnitude and
4>(w) = tan-1 wr (3.41)
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is the phase angle of the frequency response

1
G (iw) - '1 + iWi

f·
(3.42)

a
is the time constant. Of course, if the excitation is f (t) = Ak cos wt, we retain the
real part of Eq. (3.39) as the response, and if the. excitation is f(t) =,Aksin wt we
retain the imaginary part, which w.asactually done in Example 1.2.

Equation (3.39) states th,at the response to harmonic excitation is harmonic and
has the same .frequencyas the excitation, where the amplitude and phase angle of
the response depend on the excitation frequency w. This information is not readily
accessible from plots of the response versus time~-Howevl?r, as pointed out in Sec. 1.5,
a great deal of information concerning the amplitude and phase angle of the response
can be gained from frequency-response plots, namely, IG (iw) I versus wand <P (w)
versus w.

It must be pointed out here that the nature of the amplitude and phase angle
is distinctly different in the case of response to harmonic excitation from that in the
case of response to initial excitations. Indeed, in the case at hand; we consider the
amplitude and phase angle of the response in relation to the magnitude and phase
angle of the excitation, respectively. Here the constant A-plays no particular role,
as it drops out when the ratio of the response amplitude to the excitation amplitude
is considered, leaving the nondimensional magnitude IG(iw)1 of this ratio as the
quantity of interest. Moreover, here the phase angle <p is clearly defined. It represents
a measure of the time the peak response lags behind the peak excitation.

in which

i = =
k

, -.

(3.43)

1

IG(iw)1

o
WT

Figure 3.7 Magnitude of the frequency response for a damper-spring system
versus nondimensional excitation frequency

Figure 3.7 displays the plot IG (iw) Iversus Wi for the first-order system given
by Eq. (3.38); the plot is based on Eq. (3.40).- We observe from Fig. 3.7 that the mag-
nitude is attenuated greatly for large values of Wi, and it remains largely unaffected
for small values of Wi. Hence, for a given i, the first-order system acts like a filter,
and in particular a low-pass filter. The plot <p (w) versus Wi is based on Eq. (3.41)
and is shown in Fig. 3.8. We observe that the phase angle tends to 90° as Wi increases,
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t/J(W)

o

Response to Harmonic Excitations

WT

Figure 3.8 Phase angle of the frequency response for a damper-spring system
versus non dimensional excitation frequency
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so that the response tends to be 900 out of phase with the excitation for large values
ofw!'.

Next we turn our attention to second-order systems subjected to harmonic
excitations. Inserting Eq. (3.36) into Eq. (3.10), we obtain the differential equation
of motion

mx(t) + ci(t) + kx(t) = f(t) = Akeiwt

Dividing through by m, Eq. (3.44) can be rewritten as

x(t) + 2~wnx(t) + w~x(t) = Aw~eiwt

(3.44)

(3.45)

where ~ is the viscous damping factor and Wn is the natural frequency of undamped
oscillation. Following the procedure of Sec. 1.5, the solution of Eq. (3.45) has the
same general form as for first-order systems, namely,

x(t) = A IG(iw)1 ei(WH!» (3.46)

For the second-order system at hand, however, Eq. (1.45) yields the frequency re-
sponse

G (iw)
w2

n

(iw)2 + 2~wn(iw) + w~

so that, using Eq. (1.47), the magnitude is

1
1 - (wfwn)2 + i2~wfwn

(3.47)

IG(iw)1 = [G(iw)G(iw)f/2 = 1 1/2 (3.48){[I - (wfWn)2f + (2~wfwn)2}

and, using Eq. (1.48), the phase angle is

1 -1m G(iw)
<p(w) = tan- ----

Re G(iw)
-1 2~wfwntan -----

1 - (wfwn)2
(3.49)
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• j

To gain some insight into the behavior·of single-degree-of-freedom systems as
the excitation frequency varies, we make use once again of frequency response plots.

-Based on Eq. (3.48), Fig. 3.9 shows plots of IG(iw)1 versus wlwn, with the viscous
damping factor ~ acting as"a parameter~ In the first place, we note that all curves
begin at IG(iO)1 = 1. In the special case of an undamped system, ~ = 0, the plot
experiences a discontinuity at wlwn = 1, at 'which point the displacement ampli-
tude becomes infinite, a phenomenon referred to as resonance. Of course, infinite
displacements are not possible for real physical systems"for which displacements
must remain finite. In fact, the solution on which the plot is.based rests on the as-
sumption that displacements are sufficiently small so as to remain within the linear
range. Hence, a separate solution must be produced for an undamp~d system at res-
onance. Nevertheless,.the frequency response.plot corresponding to ~ = 0 serves as
a warning that the system is likely to experience violent vibration when the excitation
frequency passes through resonance. For 0 < ~ < 1/..j2, the frequency response
,curves experience peaks at w =: (1 ~ 2~2)1/2wn' and then approach zero asymptot-
ically as w increases. For ~ 2: 1/..j2, the curves experience no peaks but, approach
'zero asymptotically"as w'increases, albeit'at a lower rate than for"~ <:: 1/..j2.

.;·~I ;> t1~l1"l', 'i; _ ~~-.' .t'),!

6

•. ~r I r

~= 6.10

• l'~'= 0.15 ,! )". I

I

~= 0.59 Q/V2

3

i ~-,

~ t· ,J

• j ,

"

..

2

t=; 0.25 '

(= 0.05
"

'r

w1/wn..! 1 '--w2/wn

( wlwn

L~jj 1

, •• 1.•..

4
!

2

a

5

1

IG(iw)1 3

. ~ I 'r 't .'

Figure 3.9" Magnitud~ of the frequency response for a da:mR~dsingle-degree-of-
, freedom system versus normalized, ~X:citationfrequency withihe damping factor
as a parameter ..
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(3.50)

(3.51)

For most systems of interest, damping tends to be light, e.g., /; < 0.05. In such
cases, the curves IG(iw)1 versus w/wn experience a maximum in the neighborhood
of w/wn = 1 and they are nearly symmetric with respect to a vertical through that
point. Denoting the peak values by Q, IG(iw)lmax = Q, it can be shown that for
small/;

Q ~ ~
2/;

Note that Q is sometimes referred to as the quality factor. Moreover, the points PI
and P2 on each side of the peak corresponding to an amplitude of IG(iw)1 equal to
Q/.j2. are called half-power points. The excitation frequencies corresponding to PI
and P2 are denoted by WI and Wz, respectively, and the frequency band /1w = W2-WI

is known as the bandwidth of the system. It can be shown that for small values of /;

Q:::::: ~:::::: WIl

- 2/; - Wz - WI

The second of the frequency response plots are phase angle plots. Figure 3.10
presents plots of <P (w) versus W / Wn for selected values of /;. All curves pass through

3

7r 1- --------
, I ~ = 0.05

~ = 0.10

~ = 0.15

7r
2"

w/w
II

i

___I~J
2

Figure 3.10 Phase angle of the frequency response for a damped single-degree-
of-freedom system versus normalized excitation frequency with the damping factor
as a parameter
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(3.52)

the point <p == 7C/2, w/wn == 1, and for w/wn < 1 they approach zero, whereas for
w/wn > 1 they approach 7C. For ~ = 0, <p = 0 for w/wn < 1, and <p = 7C for
w/wn > 1. Note that for <p =0 the displacement x(t) is in the same direction as the
force f(t). On the other hand, for <p = 7C the displacement is opposite in direction
to the excitation. At w/wn = 1, <p experiences a discontinuity, with the actual value
there being equal to 7C /2.

Now a word about an earlier statement that, according to the superposition
principle, the response to initial excitations and the response to external excitations
can be obtained separately and combined linearly. Whereas this is true in general,
such a'statement must be questioned in the case in which the external excitation is
harmonic, The reason for this lies in the different nature of the responses, Indeed,
the response to initial excitations represents a transient response, which depends

'strongly 011 time, whereas the response to harmonic excitations is a steady-state
response, which can be defined as the response that obtains after the transients have
died down, for which time plays no particular role. Hence, combining the response
to initial excitations and the response to harmonic excitations is not very meaningful.

Many systems in real life can be approximated by second-order systems sub-
jected to harmonic excitations. Some of these systems have one characteristic in
common, namely, they involve rotating eccentric masses, such as the system dis-
cussed in the example that follows.

Finally, we wish to explain the statement concerning the real part and imaginary
- part of the solution made earlier in this section. To this end, we consider a geomet~

ric representation of Eq. (3.45) in the complex plane. From Fig. 1.4, we conclude
that the excitation Aw~eiwt can be represented in the complex plane as a vector of
magnitude Aw~ and making an anglewt with respect to the real axis. Moreover,
fromEq. (3.46), the response can be represented as a vector of magnitude A IG (iw)1
and making an angle wt - <p relative to the real axis. The two vectors are shown
in Fig. 3.11. Differentiating Eq. (3.46) with respect to time, and recognizing that

7C 7C '/2i = cos - + i sin - = el1f
, we can write2 2

x(t) = iwA IG (iw)l,ei(wt-I{» = iwx(t)= wx(t)eirr/2

so that the velocity can be interpreted as a vector of magnitude w times the magnitude
of the displacement vector and preceding the displacement vector by the phase angle
7C /2. Similarly, differentiating Eq. (3.46)a second time and considering the relation
-1= CoS7C+ i sin7C= eirr, we obtain'

(3.53)

so that the acceleration can be interpreted as a vector of magnitude w2 times the
magnitude of the displacement vector and leading the displacement vector by the
phase angle 7C. In view of this, Eq. (3.45) can be represented geometrically by the
trapezoidal diagram shown in Fig. 3.11. The angle wt'increases proportionally with
time, so that the entire diagram rotates counterclockwise in the complex plane with
the constant angular velocity w. Retaining the real part of the excitation and of the
response is tantamount to projecting the diagram on the real axis, and we observe that
these projections vary harmonically with time, as they should. A similar statement
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i 1m x(t)
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Re x(t)

i(t)

Figure 3.11 Geometric representation of Eq. (3.45) in the complex plane

can be made concerning the imaginary part of the excitation and response. We note
that it was implicitly assumed that A is a real quantity. There is no loss of generality
in doing so. Indeed, if A were to be complex, we could express it in the form IA I ei

1/1 ,

thus advancing all four sides of the trapezoid by the same phase angle 1/1, without
affecting their relative positions and magnitudes. Also note that the diagram of
Fig. 3.11 is equally valid for the first-order system described by Eq. (3.38), except
that the trapezoid reduces to a right triangle.

Example 3.1

The system shown in Fig. 3.12a consists of a main mass M - m and two eccentric
masses m/2 rotating in opposite directions with the constant angular velocity w. The
system is mounted on two linear springs of stiffness k/2 each and a damper with the
viscous damping coefficient c. Derive the system response and plot the corresponding
amplitude and phase angle as functions of the driving frequency with the damping factor
as a parameter.

x(t)e sin wt

m m 1(') '!! 1
-~---------~- _~~ ___r(t) JFv FyL

F.v
tFx

Fx Fx

M-m M-m

k k k k
e

-x ex -x
2 2 2 2

(a) (b) (c)

Figure 3.12 (a) System with unbalanced rotating masses (b) Free-body diagram for the
right eccentric mass (c) Free-body diagram for the main mass
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Although there are three masses, the motion of the eccentric masses relative to the
main mass is known, so that this is only a single-degree-of-freedom system. In view of
this, we define the response as the displacement x (t) ofthe main mass. For convenience,
we measure x(t) from the static equilibrium position. In that position the springs are
compressed by the amount os't = M g 1k, where Ost represents the static deflection, so
that there is a combined constant force kOst in the springs balancing the total weight Mg
of the system at all times. As a result, in deriving the equation of motion, the weight Mg
can be ignored. We propose to derive the equation of motion by means of Newton's
second law. To this end, we consider two free-body diagrams, one for the main mass and
one for the right eccentric mass, as shown in Figs. 3.12b and 3.12c, respectively. Due
to symmetry, a free-body diagram for the left eccentric mass is not necessary. Figure
3.12b shows two pairs of forces Fx and Fy exerted by the rotating masses on the main
mass. The two horizontal forces Fy cancel each other, so that the system undergoes no

.horizontal motion. On the other hand, the two vertical forces Fx reinforce each other.
Note that, consistent with ignoring the force Mg 12 in each of the springs, we ignore the
force mg 12 in Fx·

Using' Newton's second law in conjunction with Fig. 3.12b':the equation for the
vertical motion of the main 'mass is . I

k
. -2Fx - ci(t) - 2,-,x(t) = (M- •... m)x(t)2 _

1 --.

Moreover, from Fig. 3.12c we observe that the vertical displacement of the eccentric
••. _., .:,. ( . -. c.

mass is x (t) + e sin wt , so that the equation for the vertical motion of the eccentric mass
. ' ,,~ .•.j' ~ '

IS
md2 m

Fx = 2" dt2 [x(t) + esinwt] = 2" [x(t) - ew2sinwtJ (b)

Equations (a) and (b) can be combined int~ t~e sy~te~ diffeiential equation of motion

Mx(t) + ci(t) + kx(t) =, mew2 sinwt '= '1m (mew2eiwt) (c)

Hence, the rotating eccentric masses exert a hannonic excitation on the system.
The solution of Eq. (c) can be written down directly by using results obtained

earlier in this section. To this end, we divide both sides of Eq. (c)"by M and write

'; ." f ,.~.

(a)

(d)

where
21;Wn == elM, w~ = k 1M (e)

Then, comparing Eq. (d) to Eq. (3.45) and recalling that the solution of Eq. (3.45) is
given by Eq. (3.46), we obtain the response \ I

x(t) =Im [ :e (:Y IG(i~)I'ei(~t-q\;]

= :e (:n) 2 IG(iw)1 sin(wt - }p~._ (f)

where IG(iw)1 and cP are given by Eqs. (3.48) and (3.49), respectively. Hence, in this
particular case, the magnitude plot is (WIWn)2IG(iw)1 versus wlwn• It is displayed in
Fig. 3.13 with I; playing the role ofa parameter. "The phase angle plot remains as in
Fig. 3.10.

________ . ._u_· _
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Figure 3.13 Magnitude of the frequency response for a system with unbalanced rotating
masses versus normalized excitation frequency with the damping factor as a parameter

3.3 SYSTEMS WITH STRUCTURAL DAMPING

Structural damping is generally attributed to energy loss due to the hysteresis of elas-
tic materials experiencing cyclic stress. Mathematically, structural damping is com-
monly treated as an equivalent viscous damping. To establish the analogy between
structural and viscous damping, we consider the energy dissipated by the single-
degree-of-freedom system under harmonic excitation given by Eq. (3.44) during one
cycle of motion in the general form

[ 1
2rr/w

6.Eeye = Idx = Ixdt
eye 0

(3.54)

where I is the harmonic force, w the frequency of the harmonic force and x is the
velocity. But, I is given by the right side of Eq. (3.44) and x can be obtained from
Eq. (3.46). Hence, inserting the real part of both I and x into Eq. (3.54), carrying
out the integration and recalling Eq. (3.49), we obtain

1
2rr/w 12rr/w

6.Eeye = 0 (Re f)(Rex)dt = -kwA21G (iw)1 0 coswtsin(wt - 4J)dt
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(3.55)

where c = 2m ~Wn is the coefficient of viscous damping and

X(iw) = A IG (iw)1 (3.56)

is the displacement amplitude.
At this point, we turn our attention to the concept of structural damping. Ex-

perience shows that energy is dissipated in all systems, including systems regarded
as conservative. Indeed, conservative vibrating systems represent more of a math-
ematical convehience than a physical reality. In support of this statement, we note
the fact that, in the absence of persistent excitations, the vibration of a mass-spring
system does not last forever but dies out eventually. This can be attributed to internal
friction in the spring. Unlike viscous damping, this type of damping does not depend
on the time rate of strain. Experiments performed by Kimball and Lovell (Ref. 1)
indicate that for a large variety of materials, such as metals, glass, rubber and maple
wood, subjected to cyclic stress in a way that the strains remain below the elastic
limit, the internal friction is entirely independent of the time rate of strain. Their
experiments indicate that, over a considerable frequency range, the internal friction
depends on the amplitude of oscillation. In particular, the energy loss per cycle of
stress was found to be proportional to the amplitude squared, or

. 2
/)"Ecyc = aX (3.57)

where a is a constant independent of the frequency of the harmonic oscillation. The
type of damping causing this energy loss is referred to as structural damping and
is generally attributed to the hysteresis in the elastic materials. During loading, a
piece of material in cyclic stress follows a stress-strain path that differs from the path
during unloading, as shown in Fig. 3.14, even when the strain amplitude is well below
the elastic limit of the material. The stress-strain curve forms a hysteresis loop, and
the energy dissipated during one cycle of stress is proportional to the area inside the
hysteresis loop, shown as the shaded area in Fig. 3.14. For this reason, structural
damping is also known as hysteretic damping.

Slope E
Hysteresis
loop

E

Figure 3.14 Stress-strain diagram showing a hysteresis loop
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The fact that both for viscous damping and for structural damping the energy
loss is proportional to the displacement amplitude squared, as given by Eq. (3.55) and
Eq. (3.57), respectively, suggests an analogy whereby structurally damped systems
subjected to harmonic excitation can be treated as viscously damped systems with
the equivalent coefficient of viscous damping

ex.
ceq = -

rrw
(3.58)

Under these circumstances, if we replace the parameter c in Eq. (3.44) by ceq, as
given by Eq. (3.58), we obtain the equation of motion of a structurally damped
single-degree-of-freedom system in the form

ex.
mx(t) + -x(t) + kx(t) _ Akeiwt

rrw

Then, recalling Eq. (3.52), Eq. (3.59) can be rewritten as

mx(t) + k (1 + iy) x(t) = Akeiwt

where

(3.59)

(3.60)

(3.61)

(3.62)

y =
rrk

is known as the structural damping factor. The quantity k (1 + iy) is referred to at
times as complex stiffness and at other times as complex damping. From Eq. (3.60),
it is clear that structural damping is proportional to the displacement and opposite
in direction to the velocity.

The solution of Eq. (3.60) is

x(t) =
1 - (w/Wn)2 + iy

and we note that the maximum response of structurally damped systems occurs
exactly at W = Wn, in contrast to viscously damped systems (see Sec. 3.2). It must
be stressed again that the analogy between structural damping and viscous damping
is valid only in the case of harmonic excitation.

3.4 RESPONSE TO PERIODIC EXCITATIONS

In Sec. 3.2, we derived the response of linear time-invariant systems to harmonic
excitations. It is well known, however, that periodic functions can be expanded
into Fourier series, namely, series of harmonic functions. Hence, by invoking the
superposition principle, it is possible to express the response to a periodic excitation
as a series of harmonic responses. In this section, we propose to derive such a series.

There are essentially two types of Fourier series, real and complex. The real
form is in terms of trigonometric functions and the complex form is in terms of expo-
nential functions with imaginary exponents. Although the two forms are equivalent,
and indeed one can be deduced from the other, our interest lies in the complex form,
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as in Sec. 3.2 we derived the response to harmonic excitations in complex form.
, Indeed, in Sec. 3.2 we demonstrated that the response to an excitation in the form

.• t·',.

can be expressed as

f(t) (3.63)

.x(t) = AIG (iw) lei(wt-i/» (3.64)

'. with ih'e understanding that if the actual excitation is f (t) = Ak cas wt, we retain
, Re x(t) as the response, and if the excitation is f (t) = Ak sin wt, we retain 1m x (t).

#" .. # .' . , • ~

. J(t) \ ..

, .
d)' "

T
kAo
2

'.

o T 2T 3T

Figure 3,15 Periodic functio~

Next we consider a periodic function f(t) as that depictedinHg. 3.15. For the
complex form of Fourier series to be equivalent to the real form, negative frequencies
must be included in the series. Negative frequencies can be avoided by considering
a Fourier series for the excitat~on in the form

• j

Wo = 2rr/T (3.65)

where Wo is the fundamental frequency and T is the period of f(t). For J(t) to
represent a periodic function, p must be an integer, so that pWo (p = 1,2, ... )
are higher harmonics with frequencies equal to integer multiples of the fundamental
frequency. The coefficient Ao is real and the coefficients Ap (p = 1,2, ... ) are in
general complex. They can all be obtained by means of the formula.

. 2 {T .
Ap = T 10 e-ZPWQt f(t)dt, p = 0, 1,2, ... (3.66)

and it should be noted that the integration limits can' be changed without affecting
the results, as long as the integration is carried out over a complete period. For
example, T/2 and - T/2 are equally suitable as upper and lower limit, respectively,
and in some cases they may be even more convenient. ,.
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According to the superposition principle, the response of a linear time-invariant
system to the periodic excitation given by Eq. (3.65) can be obtained in the form of a
linear combination of harmonic responses. Hence, using the analogy with Eq. (3.64),
we can write the response in the general form

1 00
x(t) = 2Ao + Re L Api Gp lei (pwoHl>p)

p=1

(3.67)

where IG p I and ¢>p are the magnitude and phase angle of the frequency response
corresponding to the excitation frequency pWo. In the case of a first-order system,
using the analogy with Eq. (3.42), the frequency response is

which has the magnitude

+ ipwor
(3.68)

and the phase angle

1

[1 + (pwor)2f/2
(3.69)

(3.70)

On the other hand, considering Eq. (3.47), the frequency response for a second-order
system is

which has the magnitude

1

1 - (pWO/wn)2 + i2~pwo/wn
(3.71)

(3.72)

and the phase angle
-I 2~pwo/wll

¢>p = tan 2
1 - (pwo/wn)

(3.73)

Once again the question arises as to how to present the information concern-
ing the response so as to gain as much physical insight into the system behavior as
possible. Of course, one can always plot x(t) versus t, but this is likely to be very
tedious and not very informative. An efficient way of presenting the information is
to plot the magnitude of the response versus the frequency, a plot known as a fre-
quency spectrum. Because the response consists of a linear combination of harmonic
components at the discrete frequencies w = pwo (p = 0, 1,2, ... ), this is a discrete
frequency spectrum. Of course, such a discrete frequency spectrum can be plotted
for the excitation as well.
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"Example3.2

Th~ first-order system described by the differential equation (3;1) is subjected to the
periodic force'shown in Fig. 3.16. Determine the system response for the time constant
r = T110 and plot the excitation and response frequency spectra.

f(t)

fo

'j

o Tr.g +TI. +T;.. r...I. +T"":\ r.I.8 8 8 8 8 8

T T T
I

Figure 3.16 Periodic force

In this particular case, it ismore convenient to work with the domain of integration
- T12 < t < T12. Hence, the Fourier series for the excitation is given by Eq. (3.65),
where in the case at hand

to,
0,

- TI8 <

- TI2 <

< TI8

< - T18, T18 < t < T12
(a)

(b)

Inserting Eq. (a) intoEq. (3.66), we obtain the coefficients

2 jT/2 to
Ao = - t(t) dt = -

kT -T/2, 2k

2 jT/2 . 2ft -iPWOIIT/8Ap = _ e-'PWOI/(t)dt = _0 _e__
kT -T/2 kT -ipwo -T/8

ilo (e-iPJr/4 _ eiPJr/4) = 2/0 sin pn 14, p = 1,2, ...
kpn kpn

Figure 3.17a shows a normalized plot of the excitation frequency spectrum.
Introducing r = T110 into Eq. (3.69), we obtain the frequency response magni-

tude for the first-order system at hand

1

[1 + (pwoT 110)2t/2
=

1

[1 + (pn 15)2t/2 '
p = 1,2,: .. (d)

so that
A IG I = 2/0 sinpn 14

P P kn p [1 + (pnI5)2t/2 '
•
p = 1,2, .... (e)

A normalized plot of the response frequency spectrum is shown in Fig. 3.17b.
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Figure 3.17 (a) Normalized frequency spectrum for the force of Fig. 3.16 (b) Normalized
response frequency spectrum for a damper-spring system subjected to the force of Fig. 3.16.
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(3.74)

3.5 RESPONSE TO ARBITRARY EXCITATIONS

It was demonstrated in Sec. 1.8 that the response of a linear time-invariant system to
arbitrary excitations can be expressed in the form of a convolution integral, or

x(t) = 11

J(r)g(t - r)dr = 11

J(t - r)g(r)dr

where J(t) is the excitation and get) is the impulse response. In this section, we wish
to expand on this subject in the context of firsf-order and second-order mechanical
systems.

From Sec. 3.1, the differential equation of motion of a first-order system sub-
.•. , _.' .. '" •.~ -, I

jected to an arbitrary excitation J(t) has the form

d(t) + kx(t) = J(t) (3.75)

But, in Sec. 1.7, we have shown that the impulse response is the inverse Laplace
transformation of the transfer function. Using Eq; (1.52), the transfer function for
our first-order system can be written as

,\ 1
G(s) ;,;

cs + k
1 1

cs + a '
a = kjc (3.76)

Essentially the same first-order system was discussed in Example 1.5, from which we
can write the impulse response

1
get) = -e-alu(t)

c
(3.77)

(3.78)

(3.79)

Hence, inserting Eq. (3.77) into Eq. (3.74), we obtain the response of the first-order
system in the form of the convolution integral

x(t) = t J(t - r)g(r)dr = ~ t f(t - r)e-aTu(r)dr10 c 10
= ~ t J(t - r)e-aTdr

c 10
where we ignored u( r) because it is equal to lover the interval of integration.

As an application, we propose to use Eq. (3.78) to derive the step response.
Letting the excitation be the unit step function, J (t) = u(t), the step response takes
the form III Ie-aT It 1d-(t) = - u(t--'r)e-aTdr = --- = -(l-e-at)u(t)

c 0 c -a 0 k

where we multiplied the result by u(t) to reflect the fact that the step response is zero .
for t < O. The response is plotted in Fig. 3.18. Note also that the ramp response was
derived in Example 1.5. However, because of a slight difference in the differential
equation, the ramp response obtained in Example 1.5 must be divided by c.

~------- ~~-- -~----"==---_._~---_._. ---.-- - -- ---



: ~(t), ~(n)

~------------------------
I0.8 I

- - - in continuous time
o 0 0 0 in discrete time by the convolution sum

Sec. 3.5

0.6

0.4 ~
i
I

0.2

o

Response to Arbitrary Excitations

0.5

50

1

100

1.5

150

2

200 n

127

Figure 3.18 Step response for a damper-spring system.

Also from Sec. 3.1, we obtain the differential equation of motion of a second-
order system in the form

mx(t) + cX(t) + kx(t) = J(t)

so that, using Eq. (1.58), we obtain the transfer function

(3.80)

(3.81)
111

G(s) = ---- = ------
ms2 + cs + k m S2 + 2;wns + w~

Assuming that the system is underdamped, ; < 1, and using the table of Laplace
transforms in Appendix A, we can write the impulse response as the inverse Laplace
transform of G (s) in the form

(3.82)

so that, inserting Eq. (3.82) into Eq. (3.74), we obtain the response of a damped
single-degree-of-freedom system to arbitrary excitations as the convolution integral

1 1/x(t) = -- J(t - T)e-{wnr sin WdT dT
mWd 0

(3.83)

In Sec. 1.3, we made the comment that the distinction between initial excita-
tions and external excitations is somewhat artificial, as some initial conditions are
generated by external excitations. It appears that the time has arrived to explain this
comment. Equation (3.8) represents the response of a first-order system to the initial
excitation Xo, and Eq. (3.77) represents the impulse response of the same system. Yet
the two responses are essentially the same, except for a multiplying factor. Hence,
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comparing Eqs. (3.8) and (3.77), we conclude that the effect ofthe unit impulse oCt)
acting on the first-order system described by Eq. (3.75) is to,produce the equivalent
initial displacement

1
x(O+) = -

c
(3.84)

Similarly, for Xo = 0, Eq. (3.26) represents the response of a second-order system to
the initial velocity Vo and Eq. (3.82) represents the impulse response of the same sys-
tem, and the two response differ only by a multiplying factor. Comparing Eqs. (3.26)
and (3.82), we reach the conclusion that the effect of the unit impulse 0 (t) acting on
the second-order system described by Eq. (3.80) is to generate the equivalent initial
velocity

1
v(O+) = -

m
(3.85)

Hence, some initial conditions are indeed generated by initial impulses.
In Sec. 1.9, we discussed a method for deriving the response of a system in

the state space. Whereas the approach is better suited for multi-input, multi-output
systems, we will nnd that the state-space formulation, which is based on first-order
equations, has some merit even for single-degree-of-freedom systems, such as that
described by Eq. (3.80). Before we cast Eq. (3.80) in state form, we rewrite it as

x(t) + 2~wnx(t) + w~x(t) = m-1 f(t) (3.86)

where Wn is the natural frequency and ~ is the viscous damping factor, defined by
Eqs. (3.12) and (3.23), respectively. Next, we define the two-dimensional state vector
as x(t) = [X1(t) xz(t)f, where X1(t) = x(t) and xz(t) = x(t). Then, adding the
identity Xl (t) = Xl (t), Eq. (3.86) can be rewritten according to Eq. (1.119) in the
state form

x(t) = Ax(t) + bf(t)

in which

(3.87)

(3.88a, b)

Then, from Eq. (1.121), the state response is given by

x(t) = '<I>(t)x(O) + it <I> (t - r) bf(r)dr. (3.89)

., where <I>(t) is the transition matrix, which can be obtained conveniently by means
of Eq. (1.114) as follows:

<I>(t) = £-1 (sf _ ,4)-1 = £-1 [ Sz -1 ]-1
Wn S + 2~Wn
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= _1_e-~(Unl [WdCOSWdt + ~wnsinwdt

Wd -w~ sin Wdt
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(3.90)

in which use has been made of the table of Laplace transform pairs in Appendix A.
Hence, inserting Eqs. (3.88b) and (3.90) into Eq. (3.89), we obtain the state response
in the general form

sin Wdt ]
x(O)

Wd cos Wdt - ~wn sin Wdt

(3.91)

Comparing Eqs. (3.83) and (3.91), we conclude that the response based on the tran-
sition matrix provides not only the displacement but also the velocity caused by
external forces, as well as the displacement and velocity due to the initial displace-
ment and velocity. The transition matrix, Eq. (3.90), will prove useful in our study
of the discrete-time response of damped single-degree-of-freedom systems.

Example 3.3

Derive the step response of the single-degree-of-freedom system given by Eq. (3.80) by
means of the convolution integral.

The general response of the a single-degree-of-freedom system to arbitrary exci-
tations has the form of the convolution integral given by Eq. (3.83). To obtain the step
response, we let

f (t - r) = u(t - r) (a)

inEq.(3.83),recognizethatu(t-r) = 1 forO < r < t and obtain, after some algebraic
operations,

(b)
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I~ Sec. 3.5, 'we discussed the probl~m 'of deriving the response of first-order and
second-order systems to arbitrary excitations by means of the convolution integral.
The response can be evaluated in closed form only when the excitations represent
relatively simple functions, or can be expressed as a superposition of simple func-
tions. In the-more general case, closed-form evahlation of the'convolution integral
is not pbssibi~, and the reSponse must be obtained numerblJly, most likely by means
of a digital computer. But time is a continuous independenfvadable, and digital
computers accept only digital information, which is discrete in time. This prob-
lem was'discussed in Sec. 1.10, where continuous"time systems are approximated by
discrete-time systems. This amounts to regarding the input asa sequence of num-
bers: representing th~ excitation at given sampling times, and generating the output
in the form of another sequence of numbers, representing the response at given dis-
crete times. The ullderstanding is that the sampling period, i.e:, the time interval
between two consectitive samplings, is sufficiently small that the error incurred be-
cause of the discretization-in-time process is insignificant. In this section, we apply
the developments of Sec. 1.10 to first-order and second-order systems.

There are two techniques for computing the response in discrete time (see
Sec. 1.10). 'The first uses a convolution sum and is suitable for single-input, single-
output systems. One disadvantage of the convolution sum is that it is not a recursive
process, so that the computation of the response at a given sampling time does not
use results from the preceding computation. Moreover, the number of terms in the
sum increases with each sampling. The second technique is based on the transition
matrix and has none of these disadvantages. Indeed, it is a recursive process, it is
suitable for multi-input, multi-output systems and the amount of computation is the
same fot each sampling ..

As in Sec. 1.1O~we denote the sampling times by'f} (j :;= 0, '1; 2, ... ) and let for
convenience the sampling times be equally spaced, t} = j T , where T is the sampling
period. Then, from Eq. (1.131), the discrete-time response sequence is given by the
tonvolution sum

nL j(j)g(n' - j),
}=o

where j (j) is the discrete-time excitation sequence and g(j) is the discrete-time
impulse response at t} = j T, and we note that T was omitted from the arguments
for brevity.

Next, we use Eq. (3.92) to obtain the discrete-time step response of the first-
order system considered in Sec. 3.5. The excitatio~ sequence for a unit step function
is simply -

x(n) n 1,2, ... (3.92)

j(j) = 1, j= 0,1,2 ... (3.93)

j = 0,1,2, .,.

Moreover, the discrete-time impulse response has the expression

T _ }aT
g(j) = -e ,

c
(3.94)
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where a = k Ie, in which k is the spring constant and c the coefficient of viscous
damping. It should be noted that the discrete-time impulse response can be obtained
by letting t = j T in the continuous-time impulse response and multiplying the result
by T. The multiplication by T can be explained by the difference in the definition of
the discrete-time and continuous-time unit impulse. Equation (3.94) can be proved
more formally by means of the scalar version of Eq. (1.140) (see Problem 3.30).
Introducing Eqs. (3.93) and (3.94) into Eq. (3.92), we obtain the discrete-time step
response sequence

T
~(O) = f(O)g(O)

c

~(2)

1

~(1) = L f(j)g(1 - j)
j=O

2L f(j)g(2 - j)
j=O

(3.95)

II T
~(n) L f(j)g(n - j) = - (1 + e-aT + ... + e-lIaT

)

j=O c

The response for c = 1 N . slm, a = 1 s-1 and T = 0.01 s is plotted in Fig. 3.18.
As can be concluded from Fig. 3.18, the discrete-time step response matches quite
well the continuous-time step response. Even better agreement can be obtained by
decreasing the sampling period T. It should be stressed that, although the response
sequence, Eqs. (3.95), has the appearance of a closed-form solution, the objective
of the discrete-time approach is to carry out numerical computations. To emphasize
this point, in Example 3.4 we process the response sequence entirely numerically.

Also from Sec. 1.10, the response of a damped single-degree-of -freedom system
can be obtained by means of the recursive process

x(k + 1) = <Px(k) + 'Yf(k), k = 0, 1, 2, ... (3.96)

where x(k) = [Xl (k) x2(k)f is the state vector, f(k) the excitation and

(3.97a, b)

are coefficient matrices, the first one being recognized as the discrete-time transition
matrix and the second as a vector, in which

(3.98a, b)

are the coefficient matrices in the continuous-time state equations. The use of the
recursive process, Eq. (3.96), is illustrated in Example 3.5, in which the same problem
as in Example 3.4 is solved.
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Example 3.4 , ,

Use the convolution sum to derive the response of a damped single-degree-of-freedom
system to the triangular pulse shown in Fig. 3.19. The system parameters are m = 1 kg,
S'=0.I,wn=2rads-1. '

i~' r

fo

o

f(t)

1 2

<;1

t(s)

Figure 3.19 Triangular pulse

We choose the sampling period T = 0.05 s, so that the excitation sequence has
the form

fen) = I0.05n/0, .

• [1 - 0.05 (n - 20)] /0,
0,

0<n:::::20

20<n:::::40

n > 40

(a)

Moreover, from Eq. (3.82), the discrete-time impulse response can be written in the
form (see Problem 3.31)

T
g(n) == __ e-n~wnT sinnwdT = 0.0251e-0.01nsinO.0995n, n = 0,1,2, ... (b)

mWd

Introducing Eqs. (a) and (b) into Eq. (3.92)' and using the numerical'values of the given
panimeters, we obtain the response sequence '.

x(O) =/(O)g(O) = 0
1

X(I)=L /(j)g(1 - j) = 0
j=O

• ,~. 2 ~,. ~

x(2) = L /(j)g(2 -,- j) = 0.05/0 x 0.0025 =:= 0.0001/0
)=0

3

x(3) = L /(j)g(3 - j) = 0.05/0 x 0.0049 + 0.1/0 x 0.0025 = 0.0005/0
j=O
. 4

x(4) .= L /(j)g(4 - j)
j=O .

=0.05/0 x 0.0093 + 0.1/0 x 0.0072 + 0.15/0 x 0.0049+ 0.2/0 x 0.0025

=0.0024/0

. \

=0.05/0 x 0.0072 + 0.1/0 x 0.0049 + 0.15/0 x 0.0025 = 0.0012/0
5

x(5) =L /(j)g(5 - j)
j=O

(c)
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6

x(6) =L /(j)g(6 - j)
j=O

133

=0.05/0 x 0.0114 + 0.1/0 x 0.0093 + 0.15/0 x 0.0072 + 0.20/0 x 0.0049

+ 0.25/0 x 0.0025 = 0.0042/0

It is clear that this is not a recursive process and that the number of operations increases
with each sampling. The discrete-time response is shown in Fig. 3.20, in which the
individual points are marked by white circles. The discrete-time response agrees quite
well with the continuous-time response given by the solid line in Fig. 3.20 (see Problem
3.21).

in continuous time
in discrete time by the convolution sum
in discrete time by the recursive process

03 rX52 . X%)

0.21
0.1 I
o 20

2

40
5 t( s)

100 n

Figure 3.20 Rcponse of a damped single-degree-of-freedom system

Example 3.5

Solve the problem of Example 3.4by means of the recursive process given by Eq. (3.96),
compare the results with those obtained in Example 3.4, as well as with the continuous-
time response, and draw conclusions.

Introducing the values of the system parameters used in Example 3.4 into Eqs.
(3.98), we obtain the coefficient matrices

A = [_~~ -2~wJ = [~4 -~.4l b = [~] (a)

so that, using Eqs. (3.97) with T = 0.05 s, the discrete-time coefficient matrices can be
shown to have the form

<1>= AT = [0.9950 0.0494]
e -0.1977 0.9753 '

A -1 (eAT _ I) b = [0.0012]
"I = 0.0494 (b)

Then. the recursive process can be written as

x(k + 1) = <1>x(k) + yI(k), k = 0, 1. 2 .... (e)
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, .

where x(O) = 0 and f(k) is the excitation sequence given by Eq. (a) of Example 3.4.
Hence, inserting Eq. (a) of Example 3.4 and Eqs.' (B) of this example into Eq. (c), we
obtain the response sequence

x(l) = <l>x(O)+ 'Yf(O) = 0 ;-.

. . x(2) = <l>x(l)+ 'Yf (1) = 0 + [~:~~~~] 0.05fa = [~:~~~~]fa
""x(3) ~ cpx(2)~+>yf(~)

=" [0.9950 0.0494] [0.0001] ii +[0.0012] O.lii ~ [0.0003] ii
. -'-0.1977 0.9753 0.0025 a 0.0494 a 0.0073 a

x(4) <l>x(3)+ 'Yf (3)

[
0.9950 0.0494] [0.0003] ii + [0.0012 J. 0.15ii = [0.0009] ii

-0.1977 0.9753 0.0073 a 0.0494 a ,0.0145 a

x(5) <l>x(4)+ 'Yf(4) ~

[
0.9950 0.0494] [0.0009] ii +'[0.0012] 0.2ii = [0.0018] ii
-0.1977 0.9753 0.0145 a 0.0494 a 0.0239 a

x(6) <l>x(5)+ 'Yf(5)

[ 0.9950 0.0494] [0.0018] ii + [0.0012] 0.25ii = [0.0933] ii
-0.1977 0.9753 0.0239 a 0.0494 a 0.0353 a

............................................. (d)

For comparison purposes, the discrete-time displacement, given by the top component
of the vectors x(n), is also shown in Fig. 3.20, in which the individual points are marked
by black circles. As can be concluded from Fig. 3.20, there is a difference between the
two responses resembling one caused by a phase shift, with the response obtained by the
convolution sum leading the response obtained by the discrete-time transition matrix.
The response by the discrete-time transition matrix is not as close to the continuous-time
response as the response by the convolution sum, which can be attributed to the error
involved in the approximation of the discrete-time excitation vector. Indeed, the effect
of the approximation is to shift the staircase representing the discrete-time pulse by the
amount T /2 relative to the continuous-time pulse, as well as relative to the sampled
pulse, which explains the phase shift mentioned above. Of course, this error tends to
decrease with a decrease in the sampling period.

3.7 SYNOPSIS

This chapter represents the beginning of our study of vibrations. It may appear as a
timid beginning, as the material is generally covered in a first course on vibrations,
but a good case can be made for the inclusion of the material in this chapter. Indeed,
first-order and second-order systems, particularly the latter, are fundamental to a
study of vibrations. The inclusion of this material is not only for completeness but
also for convenience, as during the course of our study we will refer to it repeatedly.
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There are many mechanical systems of practical interest whose behavior can be
simulated by single-degree-of-freedom models. Whereas input-output relations for
such systems were discussed in Chapter 1, in this chapter we examine these relations
in greater depth and for a larger variety of inputs. One important conclusion reached
is that the nature of the excitations dictates the manner in which the input-output
relations are described. In particular, for transient inputs, such as initial and arbitrary
excitations, time-domain descriptions of the response are indicated, and for steady-
state inputs, such as harmonic and periodic excitations, frequency-domain descrip-
tions are capable of yielding more useful information. Single-degree-of-freedom
systems are important for other reasons as well. Indeed, using a technique known as
modal analysis, it is shown in Chapters 4 and 7, that the equations of motion of linear,
time-invariant multi-degree-of-freedom discrete systems and distributed-parameter
systems, respectively, can be transformed into sets of independent second-order sys-
tems.

Finally, the subject of discrete-time systems, not ordinarily included in books
on vibrations, must be noted. In processing solutions on a digital computer, it is
necessary to list the excitation and response for discrete values of time. Discrete-time
systems is a generic term which merely refers to a formal framework for programming
solutions on a digital computer.

PROBLEMS

3.1 Obtain the response of the first-order system defined by Eq. (3.2) to the initial excitation
given by Eq. (3.3) by means of the classical approach, i.e., by assuming an exponential
solution, solving a characteristic equation for the exponent and making the solution
satisfy the initial condition.

3.2 Repeat Problem 3.1 for the harmonic oscillator defined by Eq. (3.11) and suhject to the
initial conditions (3.13).

3.3 Plot the response of a damped single-degree-of-freedom system to the initial conditions
Xo = 2 em, Vo = 4 em S-I. The system parameters are ~ = 0.2, Wn = 2.5 rad S-I.

3.4 Repeat Problem 3.3, hut with the viscous damping factor ~ = .)2.
3.5 Derive the response of a critically damped second-order system to the initial excitations

x(O) = Xo, x(O) = Vo, thus verifying Eq. (3.32).

3.6 Derive the response of a first-order system, Eq. (3.37), to the harmonic excitation
f(t) = Ak sin wt by assuming a solution in terms of trigonometric functions and draw
conclusions.

3.7 Derive the response of a second-order system, Eq. (3.44), to the harmonic excitation
f(t) = Ak ens wt by assuming a solution in terms of trigonometric functions and draw
conclusions.

3.8 The support of the mass-damper-springsystem shown in Fig. 3.21 undergoes the harmonic
motion y(t) = A sin (vt. Derive the system response and plot the magnitude and phase
angle versus w/wn diagrams for ~ = n, 0.1 and 2.

Noorian
Highlight
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k
2 r(t) = A sin wt

Figure 3.21 Single-degree-of"freedomsystemwith support undergoingharmonic
motion

3.9 A vehicle modeled as a:mass-damper-spring system is traveling on a wavy road at the
constant velocity v, as shown in Fig. 3.22. Derive the system response and plot the
magnitude and phase angle of the force transmitted to the vehicle versus wL Iv for
~= 0, 0.2 and 1.5.

z(t)1
m - v = constant

Figure 3.22 Vehicletravelingon a wavyroad

x

3.10· A rigid disk of mass M with a mass m attached at a distance e from the center of the disk
is mounted on a viscously damped, simply supported massless shaft of flexural rigidity
E I, as shown in Fig. 3.23. The shaft is whirling with the angular velocity w. Determine
the minimum viscous damping factor so that the peak bending displacement of the disk
center will not exceed 3M elm, where e is the eccentricity.

Figur~3.23 Whirlingelasticshaft with an eccentricmass

Noorian
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3.11 Derive the response of a first-order system to the periodic excitation shown in Fig. 3.24.
Plot the excitation and response frequency spectra.

J(t)

o 0.5T T

Figure 3.24 Periodic excitation

3.U Derive the response of a first-order system to the periodic excitation shown in Fig. 3.25.
Plot the excitation and response frequency spectra.

J(t)

o T
"4

T
2"

3T
4" T TI: :IT IT 2T 9I TI: 11T 3T I3T

424 424 4"

Figure 3.25 Periodic excitation

3.13 A harmonic oscillator is acted upon by the periodic force shown in Fig. 3.24. Derive the
system response and plot the excitation and response frequency spectra and explain the
response spectrum. Use Wo/Wn = 0.35.

3.14 Repeat Problem 3.13 for the periodic force shown in Fig. 3.25.

3.15 The damped single-degree-of-freedom system described by Eq. (3.44) is acted upon by
the periodic force shown in Fig. 3.26. Derive the system response and plot the excitation
and response frequency spectra and explain the response spectrum. Use the parameters
~ = 0.25, wo/wn = 0.30.

J(t)

Figure 3.26 Periodic force

3.16 Repeat Problem 3.13 for the periodic excitation force of Fig. 3.27.

Figure 3.27 Periodic forcc
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3.17 The support of the mass-damper-spring system shown in Fig. 3.21 undergoes the periodic
motion depicted in Fig. 3.28. Derive the response fops =·0.2 and wo/wn = 0.4 and
plot the excitation and response frequency spectra. Explain the response frequency
spectrum.

f(t)

fo

0
-fo T

4
3T
4

5T
4

7T
4

9T
4

, llT
4

•..13T
4

Figure 3.28 Periodic motion of support

3.18 Derive the ramp response 'of the first-order system given by Eq. (3.75). Plot the response
for a = 1S-1.

3.19 Derive the ramp response of the damped second-order system described by Eq. (3.44).
Then, verify that the ramp response is equal to the integral of the step response, Eq. (b)
of Example 3.3.

3.20 Use the convolution process of Fig. 1.12 to derive the response of the first-order system
described by Eq. (3.75) to the triangular pulse shown in Fig. 3.19. Plot the response for
a=ls-1 •

. f

3.21 Use the convolution process of Fig. 1.12 to derive the response of the system of Example
3.4 to the triangular pulse shown in Fig. 3.19. Plot the response over the time interval
0<t<3s.

3.22 Use the convolution process of Fig. 1.12 to derive the response ot'the damped second-
order system described by Eq. (3.44) to the rectangular pulse shown in Fig. 3.29. Plot
the response for m = 1 kg, s = 0.1, Wn = 4 rad S-1 and t1 = 2 s.

,,'

f(t)

fo

o

Figti're 3.29 Rectangular pulse
_ I

3.23 Repeat Problem 3.22 for the trapezoidal pulse shown in Fig. 3.30. Use t1
12 = 2 s. I' ~ '

1 sand
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f(t)

o

139

Figure 3.30 Trapezoidalpulse

3.24 Solve Problem 3.20 by the approach based on thc transition matrix. Plot the displacement
only.

3.25 Compute the state for the system of Problem 3.21 by the approach based on the transition
matrix. Plot the displacement only.

3.26 Compute the state for the system of Problem 3.23 by the approach based on the transition
matrix. Plot the displacement only.

3.27 Show that Problem 3.21 can be solved by regarding the response as a combination of
ramp responses.

3.28 Show that Problem 3.22 can be solved by regarding the response as a combination of
step responses.

3.29 Show that Problem 3.23 can be solved by regarding the response as a combination of
ramp and step responses.

3.30 Prove Eq. (3.94) by means of the scalar version of Eq. (1.140).
3.31 Use Eq. (1.140) to show that the discrete-time impulse response of a damped single-

degree-of-freedom system has the expression
Tg(n) = __ e-n~",,,T sinnwdT

mWd

3.32 Solve Problem 3.22 in discrete time using the convolution sum with T = 0.05 s.
3.33 Solve Problem 3.23 in discrete time using the convolution sum with T = 0.05 s.
3.34 Solve Problem 3.20 by the approach based on the discrete-time transition matrix. Use

T = 0.05 s and compare results with those obtained in Problem 3.20.
3.35 Solve the problem of Example 3.5 using T = 0.01 s and assess the improvement in the

computed response.
3.36 Solve Problem 3.22 by the approach based on the discrete-time transition matrix for

T = 0.05 sand T = 0.01 s. Plot the displacement versus time for the two cases, compare
results with the continuous-time solution and assess the accuracy of the discrete-time
solutions.

3.37 Repeat Problem 3.36 for the case solved in Problem 3.23.
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MULTI-DEGREE-OF-FREEDOM
SYSTEMS

. ,

Many vibrating systems can be represented by simple mathematical models, such as
single-degree-of-fre~dom systems. Although these are mere idealizations of more
complex physical systems, they are frequently capable of capturing the essential
dynamic characteristics of the system. Quite often, however, such idealizations are
not possible, and more refined mathematical models are advised. There are two types
of mathematical models in common use, discrete, or lumped models and distributed,
or continuous models. The choice of model depends on the nature of the system
parameters, namely, mass, damping and stiffness. The dynamic behavior of discrete
systems is described by a finite number of time-dependent variables. We recall from
Sec. 2.7 that the minimum number of variables required to describe the dynamic
behavior fully is referred to asthe number of degrees of freedom of the system. On
the other hand, the dynamic behavior of distributed systems is described by one or
several variables depending on both time and space. Distributed systems are said
to possess an infinite number of degrees of freedom. This chapter is concerned with
the vibration of discrete systems. Distributed systems are discussed later in this text.

As shown in Chapter 2, the equations of motion of multi- degree- of-freedom
systems can be derived conveniently by the Lagrangian approach. They consist of a

. set of simultaneous ordinary differential equations relating the system response to
the excitations. The problem of solving the equations of motion for the response is
of vital importance in vibrations ..The equations of motion are frequently linear, but
they can be nonlinear. Corresponding to given initial conditions, the solution of the
equations of motion can be envisioned geometrically as tracing a trajectory in the

140
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state space. General solutions for multi-degree-of-freedom nonlinear systems are
not possible. Under certain circumstances, however, the equations of motion admit
special solutions in the state space. These special solutions are characterized by con-
stant displacements and zero velocities, for which reason they are called equilibrium
points. In vibrations, there is considerable interest in motions in the small neigh-
borhood of equilibrium points. Such motions are governed by linearized equations
about a given equilibrium point. The equations can be expressed conveniently in
matrix form.

Linear conservative natural systems occupy a central position in vibrations.
Such systems are capable of so-called natural motions, in which all the system co-
ordinates execute harmonic oscillation at a given frequency and form a certain dis-
placement pattern, where the oscillation frequencies and displacement patterns are
called natural frequencies and natural modes, respectively. The natural frequencies
and modes represent an inherent characteristic of the system and can be obtained
by solving the so-called algebraic eigenvalue problem for the system, namely, a set of
homogeneous algebraic equations. The eigenvalue problem for conservative natural
systems can be defined in terms of a single real symmetric matrix. Its solution consists
of real eigenvalues, which are related to the natural frequencies, and real orthogonal
eigenvectors, which represent the natural modes. The orthogonality property is very
powerful, as it permits the transformation of a set of simultaneous ordinary differen-
tial equations of motion to a set of independent equations. Each of the independent
equations is of second order and resembles entirely the equation of motion of a
single-degree-of-freedom system, so that the equations can be solved by the meth-
ods of Chapter 3. This procedure for solving the differential equations of motion is
known as modal analysis. Another class of systems of interest in vibrations is that of
conservative gyroscopic systems. It is demonstrated that gyroscopic systems possess
many of the desirable properties of natural systems. Conservative systems represent
a mathematical idealization, and in reality all vibrating systems dissipate energy. This
idealization can be justified when the energy dissipation is sufficiently small that it
can be ignored. Systems with perceptible energy dissipation belong to the class of
nonconservative systems; the class includes systems with viscous damping forces and
circulatory forces. The eigenvalue problem for nonconservative systems is character-
ized by complex eigenvalues and complex biorthogonal eigenvectors. The equations
of motion for nonconservative systems can be solved by means of a method based on
the transition matrix, as discussed in Sec. 1.9, or by means of a modal analysis based
on the biorthogonality property. In many cases, particularly for systems subjected to
arbitrary external forces, the evaluation of the response can cause difficulties. In such
cases, it is advisable to determine the response on a digital computer. The formalism
for this approach is referred to as discrete-time systems, and it involves treating the
time as if it were a discrete variable. Finally, there is the question of nonlinear sys-
tems for which linearization under the small-motions assumption cannot be justified.
In such cases, one must be content with a numerical solution for the response. The
algorithms for numerical integration of nonlinear differential equations of motion
tend to be more involved than for linear ones, but the idea of treating the time as a
discrete variable remains the same. All the topics mentioned are discussed in this
chapter.
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In Sec. 2.7, we have indicated that the motion. of an n-degree-of-freedom system
is fully described by n generalized coordinates qk (t)(k = j 1,2, ... , n). Then, in
Sec. 2.11, we have demonstrated that the generalized coordinates satisfy the La-
grange's equations of motion ' ,

dd (aa~) - aaL = Qkne, k = 1,2, ... , n (4.1)
t qk qk ,

where qk are generalized velocities, L = T- V is the Lagrangian, in which T is
the kinetic energy and V is the potential energy, and ·Qkne are thenonconservative
generalized forces. "

From Sec. 2.12, we recall that in the case of a nonnatural system, the kinetic
energy can be written in the form

(4.2)

(4.3)

in which
1 n n

Tz = 2: L L mijqiqj
. i=l j=l

is quadratic iIi the generalized velocities, where mij = mji are symmetric coefficients
depending in general on the generalized coordinates, mij = mij (ql, qz, ... , qn),

n

Tl = LfjCjj
j=l

is linear in the generalized velocities, where j} are coefficients depending on the
generalized coordinates, j} = j}(ql, qz, ... , qn), and

To = TO(ql,qZ, ... ,qn) (4.5),
is a function of the generalized coordinates alone and contains no generalized ve-
locities. It should also be noted here that, although gyroscopic forces, such as those
arising from Tl, are most commonly associated with spinning bodies, they can also
arise in elastic pipes containing flowing liquid (Ref. 16).

The nonconservative generalized forces Qkne include a class offorces derivable
from a dissipation function. This is the class of viscous damping forces, which depend
on generalized velocities and can be expressed -inthe form

ray
Qkvisc = aqk' k = 1, 2, ... , n

.. (4.4)

(4.6)

where

(4.7)

isknown as Rayleigh's dissipation function, in which cij are damping coefficients; they
are symmetric, cij = Cji, and in general constant. Another class of nonconservative
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forces is that of circulatory forces (Refs. 1, 6 and 17), which arise in power-transmitting
components such as cranks, shafts, etc. Circulatory forces often occur in tandem with
viscous damping forces and can be expressed in the form

where

k = 1,2, ... ,n (4.8)

(4.9)

will be referred to as the circulatory function, in which the coefficients c;j are sym-
metric, c;j = C}i' and the coefficients hi} are skew symmetric, hi} = -h ji. Actually,
:J' can contain also terms in the generalized coordinates alone, but such terms do
not contribute to Qkcirc, so that they can be ignored. The two types of forces can be
treated together by introducing the modified Rayleigh's dissipation function

(4.10)

where

(4.11)

Then, excluding viscous damping forces and circulatory forces from Qknc, we can
rewrite Lagrange's equations as

k = 1,2, ... ,n (4.12)

where now Qk represent the nonconservative applied forces alone, and note that
we omitted "nc" from the subscript to simplify the notation. Similarly, Hamilton's
equations, Eqs. (2.149), can be rewritten as

k = 1,2, ... ,n

Pk

a:Jf
apk'

a:Jf a:J*-- - - + Qkaqk aqk . k = 1. 2 ..... n

(4.13a)

(4.13b)

For future reference, we wish to recast some of the results obtained in this
section in matrix form. We begin with Lagrange's equations, Eqs. (4.12), which can
be expressed symbolically as

d (aL) aL a:J*_
dt ail - aq + ail - Q (4.14)
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where q = [q1 q2 ... qnf is the generalized coordinate vector, q = [q1 q2 ... qnf
the generalized velocity vector and Q= [Q1 Q2 .... Qnf the generalized applied
force vector. Moreover,

(4.15)

represents a symbolic n-vector, and a similar statement can be made concerning
aLjaq and a1* jaq. Using Eq. (2.155) 'in conjunction with Eqs. (4.3) and (4.4), the
Lagrangian for a nomiatural system can be expressed as

(4.16)

where

(4.17a, b)

in which M [mi}] = MT is a symmetric n x n matrix of coefficients and

f = [f1 fz ... fnf is an n-vector"and U = V - To is the dynamic potential,
a function ofthe generalized coordinates alone according to Eq. (2.156). Similarly,
using Eq. (4.10), the modified Rayleigh's dissipation function can be written in the
matrix form

:f* = ':f.+ :f' (4.18)

where
q: 1.TC·= -q q

2
(4.19)

is the matrix form of Rayleigh's dissipation function, Eq.(4.7), in which C = [Ci}] =
CT is the symmetric n x n damping matrix, and

1. q:' . T C' .. T H= 2:q . q + q q (4.20)

is the matrix form of the circulatory function, in which C' = [c;j] = C'T is a

symmetric n x n equivalent damping matrix and H = [hi}] = - HT is the skew
symmetric n x n circulatory matrix. As pointed out earlier, in general :f' also
contains terms depending on q alone, but such terms are irrelevant and thus ignored.
From Eqs. (4.18) - (4.20), we conclude that

C* = c + C' (4.21)

which is the matrix counterpart ofEq. (4.11). Then, according to Eqs.{4.6) and (4.8),
we can write . , ,

a:f*
aq

a:f . a:J'
aq + aq = - (Qvisc + Qcirc) = C*q + Hq (4.22)
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l
I

Introducing Eq. (4.22) into Eq. (4.14), the matrix form of Lagrange's equations is
simply

d (aL) aL *.dt aq - aq = Q + Qvisc + Qcirc = Q - C q - Hq

It is not difficult to verify that Hamilton's equations have the matrix form

(4.23)

q

p

aJ{

ap
aJ{

- aq + Q + Qvisc + Qcirc

(4.24a)

aJ{ *.-- + Q - C q - Hq (4.24b)aq
where p = [PI P2 ... Pn f is the generalized momentum vector, and we note that q
in Eq. (4.24b) must be replaced by an expression in tcrms of q and p obtained from

p
aL
aq (4.25)

Example 4.1

The system shown in Fig. 4.1 consists of a mass m connected to a rigid ring through a
viscous damper and two nonlinear springs. The ring rotates with the angular velocity Q
relative to the inertial system X, Y, the damper has a coefficient of viscous damping c
and the nonlinear springs are characterized by the force-displacement relations

(a)

where x and yare displacements measured relative to the rotating reference system
x, y embedded in the ring and k(, ky, Ex and Ey are constants. Note that the minus sign
implies that the spring forces are opposed to the displacements. In addition, the. mass
m is subjected to external damping forces proportional to the absolute velocities X and
Y, where the proportionality constant is h. Derive the equations of motion by means
of Lagrange's equations, Eqs. (4.12).

From Fig. 4.1, the position vector of m is given by

r = xi + yj (b)

where i and j are unit vectors along the rotating body axes x and y, respectively.
Moreover, the angular velocity vector of the body axes has the form

w = Qk (c)

where k is a unit vector normal to i and j. Taking the time derivative of Eq. (b) and
recognizing that the unit vectors i and j rotate with the angular velocity w, we obtain
the absolute velocity vector

v = rrel + w x r =.ii + yj + Qkx(xi + yj)

=(.i - Qy)i + (v + Qx)j (d)
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· "

x

Figure 4.1 Mass connected to a rotating rigid ring through damper and springs

where rrel is the velocity of m relative to the rotating body axes. Hence, the kinetic
energy is simply

where

T 1 ('2' '2)2 = -m x + y ,
2

(f)

so that this is a nonnatural system. Inserting Eqs. (a) into Eq. (2.37) and choosing the
origin 0 as the reference position, we obtain the potential energy

Hence, using Eq. (2.155), the Lagrangian can be written in the form.

L = T - V = T2 + ~l - U = ~m (x2 + l) + mQ (xy - xy)
2

1 [( 2) 2 (' 2) 2 1 4 1 4]- - k - mQ x + k - mQ y + -k E X + -k E Y, 2 x Y 2xX 2YY
(h)
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so that the dynamic potential can be identified as

1 [( 2) 2 ( 2) 2 1 4 1 4]U = V - To = Z kx - mQ x + k), - mQ y + ZkxExX + ZkyEyy (i)

The Rayleigh dissipation function is due to the damper alone and has the simple form

1 .:r = -cx2

2

The external damping forces can be derived from the dissipation function

To express X and Y in terms of x, y, x and y, we refer to Fig. 4.1 and write

(j)

(k)

x = x cos Qt - y sin Qt,

so that, taking time derivatives, we have

y = x sin Qt + Y cos Qt (I)

X =xcosQt - .VsinQt - Q(xsinQt + ycosQt)

= (x - Qy) cos Qt - (y + Qx) sin Qt

Y =x sin Qt + Y cos Qt + Q (x cos Qt - y sin Qt)

= (x - Qy) sin Qr + tv + Qx) cos Qt

(m)

and we observe that X and Yare merely the projections of v on the inertial axes X and
Y, respectively. Inserting Eqs. (m) into Eq. (k), we obtain

Cn)

where we note that :r' is really a circulatory function, which explains the notation.
Finally, using Eq. (4.10), we obtain the modified Rayleigh's dissipation function

(0)

At this point, we are in the position of deriving the desired equations of motion.
Using q] = x and q2 = Y as generalized coordinates, Eqs. (4.12) become

(p)

Introducing Eqs. (h) and (0) into Eqs. (p) and rearranging, we obtain Lagrange's equa-
tions of motion

mx + (c + h)x - 2mQy + (kx - mQ2)x - hQy + kxExX3 = 0

my + 2mQx + hy + hQx + (kv - mQ2) y + kvEyi = 0
(q)
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At this point, it may prove of interest to rewrite some of the expressions just
derived in matrix notation. To this· end, we introduce the configuration vector q =
[x yf, so that Tz, the first of Eqs. (f), can be reduced to the form given by Eq. (4.17a),
where

(r)

is a constant diagonal matrix. Moreover, Tl as given by the second Eqs. (f) can be
written in the form of Eq. (4.17b), in which

where

f = Fq

F = [0 -mQ]
mQ 0

Then, using Eqs. (4.17b), (s) and (t), we can write

~ (aT1) _ aT1 = Gq
dt aq aq

(s)

(t)

(u)

in which G = F _ FT = [0 -2mQ]
2mQ 0 (v)

represents the gyroscopic matrix for the system at hand, and we note that gyroscopic
effects, also known as Corio lis effects, arise when the relative velocity vector has a
component normal to the angular velocity vector. We return to this subject in Sec. 4.4,
in which the gyroscopic matrix is defined in a more general way. Finally, comparing
Eqs. U) and (4.19), we conclude that the damping matrix has the form

and, comparing Eqs. (n) and (4.20), we obtain the equivalent damping matrix

C' = [~ ~]

as well as the circulatory matrix .

H = [0 -Qh]
Qh 0

(w)

(x)

(y)

4.2 GEOMETRIC REPRESENTATION OF MOTION. EQUILIBRIUM POINTS

Equations (4.12) represent a set of nonhomogeneous, generally nonlinear, ordinary
differential equations of second order. Closed-form solutions of such sets of non-
linear equations do not exist in general. 'However, under certain circumstances
Eqs. (4.12) admit special solutions. To discuss these special solutions, it is convenient
to consider a geometric interpretation of the motion. It should be stated from the
outset that a geometric description of the solution is essentially qualitative and its
main purpose is to gain physical insights into the nature of the motion. The descrip-
tion can be used for quantitative results for systems defined by a single second-order
differential equation only.

The solution of Eqs. (4.12) consists ofthe n generalized coordinates qk(t)(k =
1,2, ... , n) and can be represented geometrically by conceiving of an n-dimensional
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Euclidean space with axes qk (Fig. 4.2), where the space is known as the configuration
space. This is the same configuration space encountered in Sec. 2.10 in conjunction
with Hamilton's principle, except that here the configuration space is in terms of
generalized coordinates. Then, the solution of Eqs. (4.12) at any time t can be
represented in the configuration space by the n-dimensional configuration vector
q(t) = [ql (t) q2(t) ... qn(t)f. As time unfolds, the tip of the vector q(t) traces
a curve in the configuration space known as the dynamical path, and we note that
the time t does not appear explicitly in this representation but plays the role of a
parameter only.

-- Dynamical path

Figure 4.2 Dynamical paths in configuration space

The geometric representation in the configuration space has certain drawbacks.
The main drawback is that it does not define the state of the system uniquely. Indeed,
as shown in Fig. 4.2, two dynamical paths corresponding to different initial conditions
can intersect. For a given point in the configuration space the motion can start in
any direction with arbitrary initial velocity, so that the picture of the totality of paths
is one of confusion. To render the geometric representation unique, it is necessary
to provide additional information, which can be done by specifying the generalized
velocities qk(t). Then, regarding the generalized velocities as a set of auxiliary vari-
ables, the motion can be represented geometrically in a 2n-dimensional Euclidean
space defined by qk and qk and known as the state space (Fig. 4.3). Moreover, adjoin-
ing the identities qk == qk k = 1,2, ... , n) and transforming Lagrange's equations,
Eqs. (4.12), into a set of n first-order differential equations, we obtain a set of 2n
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" first-order equations known as state equations. A1ternatively,we can specify the gen-
eralized momenta Pk(t)' = [JL/aqk(t), where L is the Lagra~gian, and represent
the motion geometrically in a 2n-dimensional Euclidean space defined by qk and Pk
and known as the phase space. Note that the generalized momenta were introduced
as auxiliary variables in Sec. 2.12 in conjunction with Hamilton's equations. From a
dynamical point of view, there is no material difference between the state space and
phase space, as a point in either space defines the state of the system uniquely. In
this text, we work primarily with the state space ..

Figure 4.3 Trajectories in state space

The set of 2n variables qk and qk (k = 1, i', '",. ,n) defines the 2n-dimensional
, T' ' .vector x = [qT i{] ,called the state vector. The tip of the state vector traces a curve

in the state space known as a trajectory, which depicts geometrically the manner in
which the solution of the state equations corresponding to a given initial state evolves
with time. But, unlike dynamical paths in the configuration space, two trajectories in
the state space corresponding to different initial conditions never intersect in finite
time. In fact, as shown in Fig. 4.3, the motion of the dynamical system as represented
by trajectories resembles the motion of a fluid, with each streamline representing the
motion of the dynamical system corresponding to a.given set of initial conditions.
Hence, the geometric representation of the motion in the state space is unique, in
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the sense that through a given point in the state space passes a single trajectory. As
a matter of interest, it should be pointed out that the configuration space can be
regarded as the projection of the state space parallel to the qi axes, which implies
that a trajectory in the state space projects into a dynamical path in the configuration
space.

There are certain special solutions in the state space of particular interest in
vibrations. They represent constant solutions, x = Xo = constant, and are known
as equilibrium points, or singular points. All other points are said to be ordinary, or
regular. Trajectories never intersect at regular points, although they can intersect at
equilibrium points. However, this cannot happen in finite time (Ref. 9). Indeed, if at
all, equilibrium points are reached as t ~ ±oo. The fact that the state is constant
at an equilibrium point implies that q = qo = constant and q = qo = O. It further
implies that q = qo = 0, which explains why such points are called equilibrium
points. Because qo = 0, it follows that all equilibrium points lie in the configuration
space. In the special case in which qo is also zero, in which case the equilibrium
point lies at the origin of the state space, the equilibrium point is said to be trivial.
All other equilibrium points are nontrivial. In the case of second-order systems, the
state space reduces to the state plane. In this case it is possible to analyze the motion
quantitatively by plotting trajectories in the state plane corresponding to various
initial conditions. For systems of order larger than two it is no longer feasible to
plot trajectories, placing a quantitative analysis beyond reach. Note that constant
solutions carry the implication that there are no time-dependent generalized applied
forces at equilibrium points, Q(t) = 0, although there can be constant forces and
forces depending on the state.

The question remains as to how to determine the equilibrium points for a given
dynamical system. Clearly, they must represent constant solutions and they must
satisfy the homogeneous Lagrange's equations, Eq. (4.14) with Q = O. For a general
nonnatural system, the kinetic energy consists of three parts, T2, T] and To, as can
be seen from Eq. (4.2). It is clear that the term T2 does not contribute to constant
solutions, as the pertinent derivatives in Eq. (4.14) will always contain q and q,
which arc zero at an equilibrium point. Similarly, the term T] does not contribute
to a constant solution, because the derivatives indicated in Eq. (4.14) contain q. On
the other hand, the term To does contribute to a constant solution, as it depends on
generalized coordinates alone. The same can be said about the potential energy V.
The modified Rayleigh's dissipation function :r* is the sum of :r and :r', given by
Eqs. (4.19) and (4.20), respectively. Using a similar argument to that used above,
we conclude that :r does not affect the equilibrium positions. On the other hand,
:r' does contribute to constant solutions, because the coefficients h ij are generally
constant. Hence, from Eq. (4.14) we conclude that the constant vector qo must be a
solution of the algebraic vector equation

o (4.26)

where U = V - To is the dynamic potential, a function of the generalized coordinates
alone. Equation (4.26) represents the equilibrium equation. But, [):r' / aq is linear
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(4.27)

(4.28)

in the generalized coordinates. Hence, if the dynamic potential U is quadratic, then
au / aq is linear in the generalized coordinates. In this case, Eq. (4.26) represents a set
of linear algebraic equations, and there is only one equilibrium point. If the equations
are homogeneous, then the equilibrium is the trivial one and if the equations are
nonhomogeneous, the equilibrium is nontrivial. If U contains terms of degree higher
than two in the generalized coordinates, then there can be more than one equilibrium
point.

In the absence of circulatory forces, :r 0, the equilibrium equation, Eq.
(4.26), reduces to

aUI _ 0
aq q=qo - -

which implies that the dynamic potential has a stationary value at an equilibrium
point.

In the case of a natural system To = 0, so that Eq. (4.27) reduces to the familiar
equilibrium equation

aVj- -0
aq q=qo

which states that for a natural system the potential energy has a stationary value at an
equilibrium point.
Example 4.2

Derive the equilibrium equations for the system of Example 4.1 by means of Eq. (4.26)
and discuss the existence of equilibrium points. -

Equation (4.26) calls for the dynamic potential U and the circulatory function
:F'. Both functions are readily available from Example 4.1. Indeed, Eqs. (i) and (n) of
Example 4.1 have the respective form

and .

U v - To

1 [( 2) 2 ( 2) 2 1 4 1 , 4]- kx - mr2 x + ky - mr2 Y + -,kxExX + -kyEyY
2 22

(a)

(c)

(b)

= Xo, Y = Yo,

(d)

1:F' = '2h [(x _r2y)2 + (y + r2X)2]

so that, letting q] = x and q2 = Y and setting x = y = 0 and x
Eq. (4.26) yields the equilibrium equations

(kx - mr22) Xo + kxExx6 - hr2yo = 0

(ky - mr22) Yo + kyEyY6 + hr2xo = 0

In the absence of circulatory forces, h = 0, Eqs. (c) reduce to the two independent
equilibrium equations

xo(kx - mr22 + kxExX~) = 0

Yo(ky - mr22 + kyEyY~) = 0

From Eqs. (d), it is immediately obvious that the trivial solution Xo = Yo = 0 represents
an equilibrium point, and this equilibrium point exists regardless of the values of the
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system parameters. On the other hand, the existence of nontrivial equilibrium points
does depend on the values of the system parameters. Indeed, equating the expressions
inside parentheses in Eqs. (d) to zero, we can write

(e)

For nontrivial equilibrium points to exist, the system parameters must be such that Xo
and/or Yo are real. If both Xo and Yo are real, then there are nine equilibrium points,
induding the trivial one, as shown in Fig. 4.4a. This can happen in the four different
ways: (i) mQ2 > kx, Ex > 0 and mQ2 > kv, Ev = 0, (ii) mQ2 > kx, Ex > 0 and
mQ2 < ky, Ey < 0, (iii) mQ2 < kx, Ex < 0 and mQ2 > ky, Ey > 0 and (iv) mQ2 < kx,
Ex < 0 and mQ2 < k", Ey < O. The nine equilibrium points of Fig. 4.4a represent the
maximum number possible. Indeed, if the system parameters are such that Xo is real
and Yo is imaginary, or Xo is imaginary and Yo is real, there are only three equilibrium
points, as depicted in Fig. 4.4b, or Fig. 4.4c, respectively. Of course, when the parameters
are such that both Xo and Yo are imaginary, then the only equilibrium point is the trivial
one.

x

x

Y

(a)

x

x

x

Y

(b)

x

Y

(c)

x

Figure 4.4 Equilibrium points (a) Both Xo and Yo real (b) Xo real and Yo
imaginary (c) Xo imaginary and Yo real

Next, we consider the case in which h 'I O. To determine the equilibrium points,
we first solve the first of Eqs. (c) for Yo and write

Xo ( 2 2)Yo = hQ k, - mQ + kxExXo (f)

Then, inserting Eq. (f) into the second of Eqs. (c) and rearranging, we obtain an equation
for Xo alone, or

Xo {k"Ey (kxEx)3 xg + 3k"E y (kxEx)2 (kx - mQ2) xg

+ 3kyEykxEx (kx - mQ2)2 X6 + [kxEx (ky - mQ2) (hQ)2

+ kyEy (kx - mQ2f ]X5 + (kx - mQ2) (ky - mQ2) lhQ)2 + (hQ)4 } = 0

(g)
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4.3 S~ABILITY OF EQUILIBRIUM POINTS. THE LIAPUNOV DIRECT METHOD

(4.29)

. " It is clear from Eqs. (f) and (g) that, as in the case h = 0, the trivial solution Xo = Yo = 0
is an equilibrium point, independently of the system parameters. To examine the exis-
tence of nontrivial equilibrium points, we observe that the expression inside braces in
Eq. (g) represents an eighth-degree polynomial in Xo· For nontrivial equilibrium points

" to exist, it is necessary that the polynomial admit some real roots Xo· Then, inserting
these real values of Xo into Eq. (f), we obtain corresponding real values for Yo, thus
defining the equilibrium points. We note that, because the eighth-degree polynomial
contains even powers of Xo only, if Xo is a root, then -Xo is also a root, and the same can
be said about Yo, as can be concluded from Eq. (f). It can be verified that, including the
trivial one, the number of equilibrium points takes one of the values 1, 3, 9, 15, ... , 81,
depending on the system parameters. The nontrivial equilibrium points can be deter-

mined only numerically.
It is clear from Eqs. (c)that in the linear case, in which Ex = Ey = 0, the origin is

the only equilibrium point. This confirms the statement made earlier that linear systems
admit only one equilibrium point. In the case at hand, Eqs. (c) with Ex = Ey = 0 are
homogeneous, so that the equilibrium point is the trivial one.

A question of particular interest in vibrations is whether a slight perturbation of
a 'dynamical system from an equilibrium state will produce a motion remaining in
the neighborhood of the equilibrium point or a motion tending to leave that neigh-
borhood. This question arises mainly in the case of homogeneous systems, namely,
systems for which Q = 0 in Eq. (4.14), and can be rendered more precise by invoking
one of the Liapunov stability definitions. To this end, we consider the case in which a
given trajectory x(t) in the state space has the value x(to) = X8 at time to > 0, where
X8 lies inside the spherical region Ilx - xoll < 8, in which Ilvll = JvT v denotes the
Euclidean norm of the vector v, i.e., the magnitude of the vector. Then, the Liapunov

stability definitions can be stated as follows:

1. The equilibrium point Xo is stable in the sense of Liapunov if for any arbitrary
positive E and time to there exists a 8= 8 (E, to) > 0 such that if the inequality

is satisfied, then the inequality

IIx(t) - xoll < E, to <: t < 00 (4.30)

is implied. If 8 is independent of to, the stability is said to be uniform.
2. The equilibrium point Xo is asymptotically stable if it is Liapunov stable and in

addition
lim Ilx(t) - xoll = 0

t --+ 00

(4.31)

(4.32)

.3. The equilibrium point Xo is unstable if for any arbitrarily small 8 and any time

to such that

----- -~. ----.--
- - -- .-- -_._~ _.-- -- -

- - -~-- .- -----~.~~--------
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the motion at some finite time t1 satisfies

(4.33)

This is equivalent to the statement that a motion initiated inside the open sphere
of radius 8 and with the center at Xo reaches the boundary of the sphere of radius
E in finite time. The implication is that the trajectory reaches the boundary on
its way out of the spherical region IIx - Xo II < E.

The three possible cases are displayed in Fig. 4.5.

Figure 4.5 Stable, asymptotically stable and unstable trajectories in the state
space

A stability analysis based on the solution of the equations of motion is not al-
ways feasible, as such solutions are not generally available, particularly for nonlinear
systems. The Liapunov direct method, also known as the Liapunov second method.
represents an approach to the problem of stability of dynamical system not requiring
the solution of the differential equations of motion. The method consists of devising
for the dynamical system a suitable scalar testing function defined in the state space,
which can be used in conjunction with its total time derivative in an attempt to de-
termine the stability characteristics of equilibrium points. Such testing functions, if
they can be found, are referred to as Liapunov functions for the system. When a
Liapunov function can be devised for the system, stability conclusions can be reached
on the basis of the sign properties of the function and its total time derivative, where
the lattcr is evaluated along a trajectory of the system. 'The evaluation along a tra-
jectory does not imply that a solution of the differential equations must be produced
but only that the differential equations are used in calculating the time derivative
of the Liapunov function. The Liapunov direct method can be used for both linear
and nonlinear systems, and for problems from a variety of fields. There is no unique
Liapunov function for a given system, and there is a large degree of flexibility in the
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selection of a Liapunov function. In the problems of interest to our study, the choice
of a Liapunov function can often be made on a rational basis.

We consider a dynamical system described by a set of 2n state equations, i.e.,
2n first-order differential equations having the vector form

x = f(x) (4.34)

where x is the state vector and f is a continuous generally nonlinear vector function of
x in the spherical region DE : IIxll < E with the center at the origin of the state space
and of radius E, where E is a positive constant. It should be noted, in passing, that the
upper halfoff is the n-dimensional null vector. We assume that the origin of the state
space is an equilibrium point, so that f(O) = 0, and propose to investigate the stability
of a trajectory of Eq. (4.34) initiated in the region D8 : Ilx II < 8, where 8 < E. To
this end, we consider a real continuous scalar function \1(x) possessing continuous
first partial derivatives with respectto the state variables Xi (i = 1, 2, ... , 2n) in DE
and vanishing at the origin of the state space, \1(0) = O. For such a function, we
introduce the following sign definitions:

1. The function \1(x) is said to be positive (negative) definite in DE if \1(x) > 0
(< 0) for all x =1= O.

2. The function \1(x) is said to bepositive (negative) semidefinitein DE if \1(x) :::::0
(:s 0) and it can vanish also for some x =1= O.

3. The function \1(x) is said to be sign-variable if it can assume both positive and
negative values in DE regardless of how small E is.

Figures 4.6a,b and c provide a geometric interpretation for positive definite, positive
semidefinite and sign-variable functions, respectively. The figures resemble a bowl,
a cylinder and a saddle, respectively.

l1(x)

(a)

l1(x)

(b)

l1(x)

(c)
Figure 4.6 (a) Positive definite function (b) Positive semidefinite function
(c) Sign-variable function

A case of special in~erest is that in which \1has the quadraticform
2n 2n

\1 = LLbijxixj = xTBx
i=l j=l

(4.35)
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where B = [bi}] is a real symmetric matrix. In this case, the sign properties of
\I defined above carryover to the matrix B. Conversely, the sign properties of B
carryover to the function \I. In fact, it is often more convenient to ascertain the
sign properties of \I by means of the matrix B. Indeed, assuming that the linear
transformation

diagonalizes B, so that

where

x = Tz (4.36)

(4.37)

(4.38)

is a diagonal real matrix, the following statements are true: B is positive (negative)
definite if all the diagonal elements of D are positive (negative), B is positive (neg-
ative) semidefinite if the diagonal elements of D are nonnegative (nonpositive), i.e.,
some are positive (negative) and the remaining ones are zero, and B is sign-variable
if the diagonal elements of D are of both signs. Perhaps a more ready way of cheek-
ing whether B is positive definite or not is by means of Sylvester's criterion (Ref. 9),
which can be stated as follows: The necessary and sufficient conditions for the matrix
B to be positive definite is for all the principal minor determinants of B to be positive.
Mathematically, the conditions can be written in the form

det[brsl > 0, r,s = 1,2, ... ,k; k = 1,2, ... ,2n (4.39)

The total time derivative of \lwith respect to time evaluated along a trajectory
of the system is obtained by using Eq. (4.34) and writing

y = d\l = t a\l dx; = xTV\I = rTV\I (4.40)
dt ;=1 ax; dt

where V\I is the gradient of Ii.
There are several theorems due to Liapunov, as well as Chetayev and Krasov-

skii, concerned with stability, asymptotic stability and instability of equilibrium points
of systems of the type given by E.q. (4.34). The idea is that if a Liapunov function
\I can be found so that \I and \I satisfy the conditions prescribed by one of the
theorems, then stability, asymptotic stability or instability can be established. On
the other hand, the fact that a Liapunov function cannot be found simply means
that stability, asymptotic stability or instability cannot be demonstrated, and it does
not mean that none of the three motion characteristics exists. The most important
Liapunov stability theorems can be stated as follows:

Theorem 1. If there exists for syste',TI (4.34) a positive (negative) definite
function \I(x) whose total time derivative \I(x) is negative (positive) semidefinite
along every trajectory of (4.34), then the trivial solution is stable.

Theorem 2. If there exists for syst~m (4.34) a positive (negative) definite
function \I(x) whose total time derivative \lex) is negative (positive) definite along
every trajectory of (4.34), then the trivial solution is asymptotically stable.
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Theor~m 3. If there exists for system (4.34) a functioh 'V(x) whose !otal time
" derivative ''V(x) is positive (negative) definite along every trajectory of (4.34) and

the function itself can assume positive (negative) values for arbitrarily small values
of x, then the trivial solution is unstable. ",'

A geometric interpretation in the form of trajectories illustrating Liapunov's
stability theorems, Theorems 1 and 2, and Liapunov's instability theorem, Theorem
3, is provided in Figs. 4.7a and 4.7b, respectively. A more extensive discussion of the
Liapunov direct method,' including proofs of the theorems, can be found in Ref. 9.

Figure 4.7 (a) Geometric interpretation of Liapunov's Theorem 1 (stability) and Theorem
2 (asymptotic stability) (b) Geometric interpretation of Liapunov's Theorem 3 (instability)

". f .••. '1 ~". l, - '

Liapunov's theorems are unduly restrictive and some of the conditions can be
relaxed in a meaningful way. A generalization of Liapunov's i~stability theorem,
known as Chetayev's instability theorem, essentially states that 'V need not be posi-
tive (negative) in the 'entire neighborhood of the origin but only in the subdomain in
which 'V is positive (negative). A generalization of Liapun~}V'sasymptotic stability
theorem proposed1byBarbasin and Krasovskii states that 'V need be only negative

, (positive) semidefinite, provided it does not reduce to zero and stays zero for all
subsequent times for x =I- '0. A similar generalization due to Krasovskii exists for
Liapunov's instability theorem. - - ' - .. " "

At this point, we return to the dynamical system of Sec. 4.1. In Sec. 2.12, we
derived an expression for the time derivative ofthe Hamiltonian, Eq. (2.160), for the
case in which the Hamiltonian does not depend explicitly on time, and established

" the circumstances under which the Hamiltonian is conserved. Considering Eq. (4.23)
and lettingQ= 0, Eq. (2.160) can be rewritten in the matrix form

Asymptotically
stable

trajectory

,\

~.. '

Unstable
trajectory

", Y~C2>cl

Y=c1

(b)

;, r d:H .T [d (OL) oL)' . T ( *. ) . T ( * ),J1 = _ = q . _ .-. - - = q Q - C q - H q = -q C it + H q
• dt dt oq oq" . " . • (4.41)

_.-- -----~~ ..--- ------ _.~ ~ -------- - ~-- -- .-- .~-~ -- --- --- ..~ ..-.----- -~ ._----~ ..-
-r

I
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Moreover, we recall Eq. (2.157) stating that the Hamiltonian for a nonnatural
system has the expression

J{= T2+U (4.42)

and note that the various quantities entering into Eqs. (4.41) and (4.42) were defined
in Sec. 4.1. .

The fact that J{ and J{ contain functions with known characteristics suggests
the possibility that the Hamiltonian J{can serve as a Liapunov function. The function
T2 is positive definite on physical grounds, so that the nature of J{ depends on the
dynamic potential U. It is clear that if U is negative definite, negative semidefinite
or sign-varia~le, then J{ is sign-variable. If in the subdomain of DE in which J{
is negative J{ is also negative, then according to Chetayev's instability theorem
the equilibrium point is unstable. If U is non1.1egative, then J{is positive definite.
Because of the presence of circulatory forces, J{ can assume positive values. Hence,
according to Liapunov's instability theorem, the equilibrium point is unstable.

The situation is quite different in the absence of circulatory forces, C' = H = 0,
in which case Eq. (4.41) reduces to

J{. 'TC'= -q q (4.43)

In this case, sharper conclusions. can be drawn. Indeed, J{is non positive. Moreover,
we consider the case in which J{ does not reduce to zero and stays zero for x =F O.
This is the case of pervasive damping (Ref. 13), defined as the case in which the
damping matrix C couples all the equations of motion. Then, if U is nonnegative,
J{ is positive definite and according to the Barbasin and Krasovskii theorem, the
equilibrium point is asymptotically stable. On the other hand, if U is nonpositive,
so that J{ can take negative values, the equilibrium point is unstable, according to
Krasovskii's theorem.

Finally, we consider the case in which both the viscous damping and circulatory
forces are absent, C = C' = H = 0. In this case, Eq. (4.41) reduces to

(4.44 )

Then, if U is positive definite, J{ is positive definite and, according to Liapunov's
first theorem, the equilibrium point is stable. On the other hand, if U is nonpositive,
J{ is sign-variable and the equilibrium point is unstable, according to Krasovskii's
theorem. Note that in this case, Eq. (4.44) yields

J{ = constant (4.45)

Equation (4.45) represents a conservation principle stating that in the absence of
applied forces, viscous damping forces and circulatory forces the Hamiltonian is
conserved.

It should be pointed out that gyroscopic forces have no effect on the above
results.

In the case of natural systems, T2 = T, Tj = 0, the Hamiltonian reduces to the
total energy E, or

(4.46)
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It follows that all the above results remain valid, provided J{is replaced by E and
U by V. In particular, the conservation of the Hamiltonian principle defined by
Eq. (4.45) reduces to the conservation of energy principle

E = T + V = constant (4.47)

Hence, the conservation of the Hamiltonian can be regarded as a generalization to
nonnatural systems of the conservation of energy for natural systems. Note that the
two conservation principles, Eqs. (4.45) and (4.47), were encountered in Sec. 2.13.

The stability statement following Eq. (4.44) can be stated as the following the-
, orem: If the dynamic potential U has a minimum at an equilibrium point, then the
equilibrium point is stable. The theorem represents a generalization to nonnatural
systems of Lagrange's theorem for natural systems: If the potential energy V has a
minimum at an equilibrium point, then the equilibrium point is stable.

It was pointed out earlier that the Liapunov function is not necessarily unique
for a given system. In fact, it does not even need to have physical meaning, in contrast
to the present case.

Example 4.3

Consider the system of Examples 4.1 and 4.2, assume that the circulatory forces are
absent, h = 0, identify the equilibrium points and determine their stability by means of
the Liapunov direct method for the case in which m Q2 > kx, m Q2 > ky, Ex > 0 and
Ey > O.

From Eqs. (e) of Example 4.2, we conclude that for the given parameters, Xo and
Yo are real, so that the system admits the nine equilibrium points shown in Fig. 4.4a. We
denote the equilibrium points as follows:

E1 :Xo = 0, Yo = 0

E2 : Xo = 0, Yo = J(mQ2 - ky)/kyEy

E3 : Xo = 0, Yo = -J (mQ2 - ky)/ kyEy
. ,

E4 : Xo = J(mQ2 - kx)/ kxEx, Yo = 0

E5 :Xo = -J(mQ2 - kx)/kxEx, Yo = 0 (a)

E6 :Xo = J{mQ2 - kx)/kxEx, Yo= J(mQ2 - ky)/kyEy

E7 :'xo = J(mQ2 - kx)/kxEx, Yo = -J(mQ2 - ky)/kyEy

E8 :Xo = -J(mQ2 - kx)/kxEx, Yo = J{mQ2 - ky)/kyEy

E9 :Xo = -J(mQ2 - kx)/kxEx, ?,o = -J(mQ2 - ky)/kyEy

Although geometrically there are nine equilibrium points, the points can be divided into
groups with the same stability characteristics.
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Next, we wish to check the stability of the equilibrium points. To this end, we
consider the Hamiltonian J{ as a candidate for a Liapunov function. For the case at
hand, insertion of the first of Eqs. (f) and Eq. (i) of Example 4.1 into Eq. (4.42) yields

(b)

Moreover, introducing Eq. U) of Example 4.1 into Eq. (4.43) and recalling Eq. (4.19),
we obtain

J{ = -25 = -CX2 (c)

But, from the equations of motion, Eqs. (q) of Example 4.1 with h = 0, we conclude
that damping is pervasive, because the coupling is such that x cannot be zero without y
being also zero at the same time. Hencc, the stability depends on the sign properties of
J{ If J{is positive definite, then the equilibrium point is asymptotically stable. On the
other hand, if J{ can take negativc values in the neighborhood of the equilibrium point,
then the equilibrium point is unstable. Because j{ ::::0 and damping is pervasive, mere
stability is not possible.

Before we check the stability of the individual equilibrium points, wc shall find
it convenient to introduce a transformation of coordinates translating the origin of the
state space to an equilibrium point. This transformation has the simple form

x(t) = Xo + xIlt), y(t ) Yo + yIlt) (d)

so that the new state space is defined by XI, Yl, XI and .)11 and its origin is at Xo, Yo·
We can expand the Hamiltonian in the neighborhood of a given equilibrium point £i
by inserting Eqs. (d) into the Hamiltonian, Eq. (b), and using the values of Xo and Yo
corresponding to £i (i = 1,2, ... , 9). Any constant in J{ can be ignored as irrelevant.

In the case of the equilibrium point £1, Xo and Yo are zero and the Hamiltonian,
Eq. (b), reduces to

(e)

Because kx - mn2 < 0 and ky - mn2 < 0, J{ can take negative values in the
neighborhood of the origin, so that the equilibrium point £1 is unstable.



, .. For the equilibrium points E2 and -~3 ,Xo = 0 and Yo = ±J (m 0.2 - k
y
) / kyE y

and the Hamiltonian becomes' , ,i, •
, I '

n r 1 (.2 . 2) 1 [( 2) 2 1 4] 1 )2 2= '2m Xl + YI + '2 kx - mQ Xl + '2kxExXI + "4kyEy (2yo + YI YI

162
Multi-Degree-of-Freedom Systems Chap. 4

(f)

But, kx _ mQ2 < 0, from which we conclude that :J{ can take negative values in the
neig~borhood of E

2
and E3, so that E2 and E3 are unstable/ Using similar arguments,

it is easy to verify that E4 and E5 are also unstable.
For the equilibrium points E6, E7, E8 and E9, Xo = ±J (mQ2 - kx) / kxEx and

Yo = ±J (mQ2 - ky) / kyEy and the Hamiltonian takes the form

Clearly, the Hamiltonian is positive definite, so that the equilibrium points E6, E7, E8
and E9 are all asymptotically stable. '

• n r 1 (. 2 . 2) 1.[ ,2 2 " ( 2 2)= -m Xl + YI + - kxEx (2xo + Xl) Xl + kyEy 2yo + YI) YI
4 '4

(g)

(4.48)

4.4 LINEARIZATION ABOUT EQUILIBRIUM POINTS

As indicated in Sec. 4.2, general closed-form solutions of sets of nonlinear differential
equations do not exist. On the other hand, special solutions do exist in the form of
equilibrium points, defined as constant solutions in the state space, x = Xo· A prob-
lem of considerable interest is concerned with the motion in a small neighborhood
of equilibrium points, where the neighborhood is defined as

.. \Ix - xoll = [(x - xo)T (x - ~o)jl/2 < E

in which E is a small positive constant and I\x - XoII is the Euclidean norm of x - Xo·
Inequality (4.48) defines a 2n-dimensional spherical region in the state space with

the origin at x = Xoand of radius E.
The stipulation that the motions remain in the neighborhood I\x - Xo\I < E oho

is commonly known as the small motions assumption, and it carries the implication
that in that neighborhood the system behaves as if it wer~ linear. This implies further
that the behavior of the system in the neighborhood of x = Xois governed by a special
version of the equations of motion, obtained by expanding Eq. (4.14) about x = Xo
and retaining the linear terms in x - Xoalone. The resulting equations, known as the
linearized Lagrange's equations of motion, playa very important role in vibrations.

To derive the linearized equations, it is convenient to introduce the notation

x(t) = Xo + Xl(t)
(4.49)

where Xo is the equilibrium state vector and Xl(t) is a;vector of small perturbations
in the state variables from equilibrium. Before we proceed with the linearization
of the equations of motion, we recognize that retention of linear terms in Xl alone
in the equations of motion requires that terms higher than quadratic in Xl in T, V
and 1* be ignored. To this end, we will find it expedient to separate the state vector

--------- - --- ---------- -- ----- --------- -- ----
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x = [qT i{f" into the generalized displacement vector q and generalized velocity
vector q, so that Eq. (4.49) can be rewritten as

(4.50)

where qo is the constant equilibrium configuration vector and q} and q} are pertur-
bation vectors.

We propose to derive the linearized equations for a nonnatural system, so that
the kinetic energy is given by Eq. (4.2). From Eq. (4.3), the quadratic part in the
generalized velocities has the form

(4.51)

in which
M = [mij] = M (qo) = MT = constant (4.52)

is the symmetric mass matrix, or inertia matrix. The entries mlj (qo) mji (qo)
are known as the mass coefficients, or inertia coefficients. On the other hand, from
Eq. (4.4), the linear part in the generalized velocities can be expressed as

11

T} = L fAj = qTf ~ q;fo + q;fl
j=1

where fo is a constant vector and fl is given by

in which

is a constant matrix. Hence, inserting Eq. (4.54) into Eq. (4.53), we have

T "-' ·T. 'TFI = ql to + ql ql

(4.53)

(4.54)

(4.55)

(4.56)

Next, we wish to remove the higher-order terms in To, where To depends on general-
ized coordinates alone. However, the potential energy also depends on generalized
coordinates alone, so that it is more efficient to treat To and V together. To this end,
we recall Eq. (2.156) defining the dynamic potential U as V - To and expand the
following Taylor's series

(4.57)



K = [kij] = [ a.~u.] ,
aq, aq} q=qo

is the symmetric stiffness matrix. The entries kij, k"ilOwnas stiffness coefficients, can
be divided into two types, the first arising from the potential energy V and called
elastic stiffness coefficients and the second arising from the centrifugal term To in the
kinetic energy and referred to'as geometric stiffness coefficients. Finally, assuming
that the coefficients c7j and hij are constant and using 'Eqs. (4.50), the modified
Rayleigh's dissipation function, Eq. (4.10), can be rewritten in the form

• ~ y \
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(4.58)

where

(4.59)

c* = [c7j] = C*T = constant, H = [hij] = _HT = constant (4.60)

in which C* is the symmetric damping matrix and H is the skew symmetric circula-
tory matrix. The entries c7j and hij are called damping coefficients and circulatory
coefficients, respectively.

At this point, we have all the material required for the derivation of the equa-
tions of motion. In examining Eq. (4.14), however, we observe that the various
derivatives are with respect to q and eland all our expressions are in terms of ql and
ell. This presents no problem, as Eqs. (4.50) can be used to write

aL
ael

(4.61)

(4.62)

Hence, Eq. (4.14) can be replaced by

d (aL) aL a:r*
dt aell - aql + aell = Q

Inserting Eqs. (4.51), (4.56) and (4.57) into Eq. (4.16), we obtain the Lagrangian

1 .T· . T . T T au lITL = T2 + Tl - U = -ql Mql + ql fo + ql Fql - ql - - -ql Kql (4.63)
2 aq q=qo 2

where the constant term U (qo) was ignored as inconsequential. The first two terms
in Eq. (4.62) take the form

d (aL) ...- -. = Mql + Fql
dt aql

(4.64)
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aL T. aUI- = F ql - - - Kql
aql aq q=~

Moreover, using Eq. (4.59), the third term in Eq. (4.62) is

a:J* * .-.- = C ql + Hqo + Hql
oql

Hence, inserting Eqs. (4.64)-(4.66) into Eq. (4.62), we obtain

(4.65)

(4.66)

M·· F' FT' aUI K C*·ql + ql - ql + - + qj + ql + Hqo + Hql = Q (4.67)aq q=qo

Equation (4.67) contains terms of different orders of magnitude. Consistent
with a perturbation approach, we separate these terms into zero-order terms, denoted
by 0 (q?), and first -order terms, denoted by 0 (ql). The zero-order terms yield the
equilibrium equation

aUI-.- + H qo = 0oq q=qu
(4.68)

an algebraic equation generally nonlinear, and we note that Eq. (4.68) is equivalcnt
to Eq. (4.26) obtained earlier. On the other hand, the first-order terms yield the
linearized equations of motion

where

Mij + (C* + G) q + (K + H) q = Q (4.69)

(4.70)

is the skew symmetric gyroscopic matrix. Its entries, gij = Iij - fji, are known as
gyroscopic coefficients. Note that we dropped the subscript from q in Eq. (4.69) with
the understanding that the components of the vector represent displacements from
equilibrium.

In deriving the linearized Lagrange's equations, Eq. (4.69), it is not really nec-
essary to take derivatives. Indeed, the equations are fully defined by the coefficient
matrices M, C*, G, K and H and, of course, the virtual work 8 W = QT 8q per-
formed by the applied forces.

Under certain circumstances, the small-motions assumption is violated, so that
the linearized equations are not valid. This occurs, of course, when the equilibrium
point is unstable. It can also occur when the equilibrium point is stable but initial
excitations or external forces cause large displacements. In such cases, the response
can be obtained by integrating the nonlinear differential equations of motion nu-
merically. Numerical methods for determining the system response are discussed in
Sec. 4.12.
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Example 4.4
Linearize the equations of motion of the system of Examples 4.1 and 4.2 and cast the
equations in matrix form.

The nonlinear equations were derived in Example 4.1 in the form of Eqs. (q). To
linearize the equations, we consider thy coordinate transformation

X(t) = Xo + XI(t), yet) = Yo + YI (t) (a) '.

where Xo and Yo define the equilibrium positions, and hence they represent constants
satisfying Eqs. (c) of Example 4.2, and Xl (t) and YI (t) are small perturbations. Intro-
ducing Eqs. (a) from this example into Eqs. (q) of Example 4.1 and ignoring terms of
order higher than one in Xl and 'YI, we obtain the generallineariz~d equtions

mXI + (c + h) XI- 2mQYI + (kx - mQ2 + 3kxExX~) Xl - hQYI = 0

my I + 2mQxI + hY1 + hQXI + (ky -' mQ2 + 3kyEyY~) YI = 0

which are valid for all equilibrium points. The matrix form of Eqs. (b) is simply

where

is the mass matrix,

Mq + (C* + G)4 + (K + H)q = 0

(b)

(c)

(d)

(e)

..is the modified damping matrix, in the sense that it includes contributions from viscous
damping forces and circulatory forces,

G _ [0 -2mQ]
- 2mQ 0 1 '

is the gyroscopic matrix,

K = [kx - _mQ2o+ 3kxExx5 0 ]
ky - mQ2 + 3kyEyY5

is the stiffness matrix and

(f)

(g)

H (h)

(i)

is the circulatory matrix.
Itis clear from the above that the matrix equation, Eq. (c), has the same form for

all equilibrium points. As we conclude from Eqs.(d)-(h), the only difference lies in the
explicit form of the stiffness matrix, which is as follows:

E1 : Xo = Yo = 0

K == [kx )omQ
2 0 ], ky - m~2

K

Yo = ±)(mQ2 -'ky)/kyEy

[kx -omQ
2 2'(mQ~ ~ ~y)] , .

--------------- -- --
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(k)K=[2(mQ20-kx) a ]
k y - m Q2

£6, £7, £H, £9 : Xo = ±J(mQ2 - kx} /kxEx, Yo = ±J(mQ2 - ky) /kyEy

K=[2(mQ20-kx) 0] (I)
2(mQ2 - ky)

4.5 STABILITY OF LINEARIZED SYSTEMS

In Sec. 4.3, we introduced various stability definitions and presented a method for
testing system stability, namely, the Liapunov direct method. Although it is generally
referred to as a method, the Liapunov direct method represents a philosophy of
approach more than a method and its success depends on the ability to generate a
Liapunov function, which is by no means guaranteed. The Liapunov direct method
can be used both for linear and nonlinear systems.

For strictly linear systems, it is possible to test the system stability by solving the
associated algebraic eigenvalue problem and examining the eigenvalues, an approach
guaranteed to yield results. But, the algebraic eigenvalue problem is basically a
numerical problem, which can be carried out only for given values of the system
parameters. By contrast, the Liapunov direct method is a qualitative procedure
that, provided a Liapunov function can be found, is capable of yielding stability
criteria, as can be concluded from Example 4.3. Of course, we can always generate
stability criteria by solving the eigenvalue problem repeatedly for varying values of
the system parameters, but such an approach is likely to prove unwieldy. Fortunately,
the approach is not really necessary in vibrations, where for the most part the interest
lies in the system response and not in stability criteria. Still, the connection between
eigenvalues and stability represents an important subject, and we propose to pursue
it here.

The stability definitions presented in Sec. 4.3 carry the implication that the
externally applied forces are absent. Hence, letting Q = 0 in Eq. (4.69), we obtain
the homogeneous part of the linearized equation in the form

Mij + (C* + C) q + (K + H) q = 0 (4.71)

where we recognize that the vector q in Eq. (4.71) represents a vector of perturbations
from the equilibrium position qQ. To simplify the discussion, and without loss of
generality, we assume that the equilibrium position is trivial, qo = O. In view of this,
we define the perturbation state vector as

x(t) = [qT(t) qT(t)f

Then, adding the identity q = q, Eq. (4.71) can be cast in the state form

x(t) = Ax(t)

(4.72)

(4.73)
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where

(4.74)

is the coefficient matrix.
The nature of the motion in the neighborhood of the trivial equilibrium can be

ascertained by simply solving Eq. (4.73). Because the matrix A is constant, Eq. (4.73)
represents a homogeneous linear time-invariant system. Its solution has the expo-
nential form

(4.75)
, .

where Ais a constant scalar and x a constant vector. To determine Aand x, we insert
Eq. (4.75) into Eq. (4.73), divide through by eAt and obtain

Ax = AX (4.76)

Equation (4.76) represents the algebraic eigenvalue problem, a fundamental problem
in linear system theory in general and vibrations in particular. The algebraic eigen-
value problem can be stated as the problem of determining the values of the parame-
ter A, so that Eq. (4.76) has nontrivial solutions. Because the dimension of the eigen-
value problem is 2n, its solution consists of 2n pairs Aj and Xj, where Aj are known
as the eigenvalues of A and Xj as the eigenvectors belonging to Aj (j = 1, 2, ... , 2n).
Both Aj and Xj are in general complex quantities, although real eigenvalues and
eigenvectors are possible. The general solution of Eq. (4.73) canbe expressed as the
linear combination

2n

x(t) = L cjeAjtxj

j=l
(4.77)

where Cj are generally complex coefficients. They represent constants of inregration
depending on the initial condit~ons. We should note at this point that, because x(t)
is real, if cjeAjtxj is a complex solution, then cjeXjtxj must also be a solution, where
the overbar denotes a complex conjugate.

It is clear from Eq. (4.77) that the behavior of the system is governed by the
exponential terms, which in turn.implies the eigenvalues Aj. These eigenvalues can
be expressed in the general form

j = 1, 2, ... , 2n (4.78)

The real part aj of the eigenvalue determines the amplitude of the jth term in the
series in Eq. (4.77). Indeed, cjeajt plays the role of a time-varying amplitude. On
the other hand, the complex part [3j of the eigenvalue represents the frequency of
the jth term, as ei{3jt is a unit vector rotating in the complex plane with the angular
velocity [3j (see Sec. 1.5). Clearly, only the real part of the eigenvalues controls the
stability characteristics of the system.

If all the eigenvalues are complex with zero real part, aj = 0 (j = 1, 2, ... ,
2n), so that they are all pure imaginary complex conjugates, then the response neither

•
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reduces to zero nor increases without bounds as time unfolds. In this case, accord-
ing to the first stability definition, the equilibrium point is merely stable. If all the
eigenvalues possess negative real part, aj < 0 (j = 1, 2, ... , 2n), or if there are real
eigenvalues they are all negative, then the response approaches zero as t ---+ 00. In
this case, according to the second stability definition, the equilibrium point is asymp-
totically stable. Note that, if all the eigenvalues are complex, it is sufficient that a
single pair of complex conjugate eigenvalues possess zero real part, while the re-
maining eigenvalues have negative real part, for the equilibrium to be merely stable
instead of being asymptotically stable. Finally, if the real part of at least one pair
of complex conjugate eigenvalues is positive, or at least one eigenvalue is real and
positive, then the response approaches infinity as t ---+ 00. In this case, according to
the third stability definition, the equilibrium point is unstable. Of course, infinity is
only a mathematical concept and is to be interpreted to mean that the motions tend
to become very large. Clearly, in this case the small motions assumption is violated,
so that the linearized equations cease to be valid.

The above stability conclusions were reached on the basis of linearized equa-
tions of motion, so that the question arises to what extent the conclusions apply to the
original nonlinear system. Before answering this question, it helps if we introduce
two definitions. In particular, if the equilibrium point is either asymptotically stable
or unstable, the system is said to possess significant behavior. On the other hand, if
the equilibrium point is merely stable, the system exhibits critical behavior. Then, if
the linearized system displays significant behavior, the stability characteristics of the
nonlinear system are the same as those of the linearized system. On the other hand,
if the linearized system exhibits critical behavior, the stability conclusions cannot be
extended to the nonlinear system. In this case, the stability analysis must be based on
the full nonlinear equations.

Example 4.5

Consider the linearized system of Example 4.4, test the stability of the equilibrium points
by the Liapunov direct method and verify the stability conclusions reached in Example
4.3. Then, solve the algebraic eigenvalue problem for several combinations of the system
parameters chosen so as to demonstrate the connection between the eigenvalues and
the system stability.

A stability analysis by the Liapunov direct method for the linearized system fol-
lows the same pattern as for the nonlinear system. The only difference lies in the
Hamiltonian, with the Hamiltonian for the linearized system reducing to a quadratic
form, obtained by ignoring terms in XI and YI of degree three and higher in the Hamil-
tonian for the nonlinear system. Hence, from Eqs. (e)-(g) of Example 4.3, we can write
the Hamiltonian for each of the equilibrium points as follows:

E]: Xo = )'0 = 0

J-{ 1 ( .2 . 2) 1 ( 2) 2 1 ( 2) 2= 2m Xl + Y] + 2 kx - mQ Xl + 2 ky - mQ )']

E2,E3: Xo = 0, Yo = ±j(mQ2 - k\,) /kyEy

J-{ 1 (. 2 . 2) 1 ( 2) 2 (2 ) 2= 2m XI + Y1 + 2 kx - mQ XI + mQ - ky YI

(a)

(b)
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E4,E5:' Xo = ±J(mr22 - kx) /kxEx, Yo = 0
I I . I- ~ ~

.J{ =. ~m (xi ~ yn + (mr22 :...kx) xi + ~ (ky - mr22) yi '

E6,E7,E8,E9: Xo ~r±J(mr22 - kx)/kxEx,' Yo = ±J(mr22 - ky)/kyEy

J{ 1 (' 2 2) (' 2 ) 2 ("2 ) 2-:= 2m Xl + Yl +. mr2 -.kx Xl + mr2 - ky Yl

. Moreover, in all nine cases

(c)

(d)

(e)

From the linearized equations of motion, Eqs. (b) of Example 4.4, we conclude
that damping is pervasive, so that an equilibrium point is asymptotically stable if J{is
positive definite and unstable if J{ can take negative values in the neighborhood of the
equilibrium point. Mere stability is not possible. '

Recalling from Example 4.3 tha't the system parameters ar~ such that kx - m r22 <
o and ky - mr22 .< 0, we conclude from Eqs. (a)-(c) that J{ is sign-variable for
the equilibrium points El' E2, ... , E5, so that these equilibrium points are unstable.
On the other'hand,' from Eq. (d),' J{ is positive. definite for the equilibrium points
E6, E7, E8, E9,80 that these equilibrium points are asymptotically stable.

The stability conclusions reached here on the basis of the linearized system are
the same as those for the nonlinear system. This is to be expected, because asymptotic
stability and instability imply significant behavior.

The eigenvalue problem for the linearized system is defined by

(A - AI) x = 0

where x = [Xl Yl Xl Ylf is the state vector and

(f)

[

I ]
o I I

A = -------:------------
-M-lK I -M-l (C + G)

I

(g)

is the coefficient matrix, in which

M = [m 0]
Om' [ 0 -20nir2]

G = 2m r2 (h)

(I)

(j)

(i)

(k)

Moreover, the stiffness matrix depends on the equilibrium points, as follows:

K [
kx -omr22 0 ]El ky _ mr22

E2, E3 K [kx -omr22 ]
2 (mr22 - ky)

E4, E5 K [2 (mr22 - kx) 0 ]
o ky - mr22

[
2 (mr220- kx) 0 ]

E6, E7, E8, E9 : K = 2 (mr22 _ ky)

The eigenvalue problem has been solved for the parameters m = 1 kg, r2 = 2rad/s,
kx = ky' = 3 N/m, C = 0.2 N . s/m The eigenvalues corresponding to the nine

~_~_. ._ ~..__" ~_.n_~~ _. _
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equilibrium points are as follows:

E1: AI = 0.0077 + 0.2678i A3 = -0.1077 + 3.7309i

A2 = 0.0077 - 0.2678i A4 -0.1077 - 3.7309i

E2' E3: AI = 0.3298 A3 -0.0877 + 4.1358i

A2 -0.3544 A4 -0.0877 - 4.1358i
(m)

E4, E5: A) -0.3367 A3 -0.1051 + 4.1362i

A2 = 0.3470 A4 -0.1051 - 4.1362i

E6, E7, E8. E9: AI = -0.0092 + 0.4494i A3 -0.0908 + 4.4482i

A2 = -0.0092 - 0.4494i A4 -0.0908 - 4.4482i

An examination of the eigenvalues permits us to conclude that for the equilibrium
point E1 there is one pair of complex conjugate eigenvalues with positive real part and
for each of the equilibrium points E2' ... , E5 there is one real positive eigenvalue,
so that all these points are unstable. On the other hand, for the equilibrium points
E6, E7, E8 and E9• all four eigenvalues are complex with negative real part, so that
these points arc asymptotically stable.

We observe that the stability conclusions based on the eigenvalues are consistent
with the conclusions reached on the basis of the Liapunov direct method.

4.6 LINEAR CONSERVATIVE NATURAL SYSTEMS. THE SYMMETRIC
EIGENVALUE PROBLEM

As can be concluded from Sec. 4.3, conservative natural systems imply the absence of
gyroscopic, viscous damping, circulatory and externally impressed forces. In the case
of linear systems, this implies further that the gyroscopic matrix G, damping matrix
C* , circulatory matrix H and force vector Q are all zero. Under these circumstances,
Eq. (4.69) reduces to the linear conservative natural system

Mq(t) + Kq(t) = 0 (4.79)

q(t) = e·llu (4.80)

where M and K are real symmetric n x n mass and stiffness matrices, respectively.
Moreover, M is positive definite.

A very important case in the study of vibrations is that in which all the co-
ordinates, i.e., all the components qj(t) of q(t), execute the same motion in time
(i = 1, 2, ... , n). In this case, the system is said to execute synchronous motion. To
examine the possibility that such motions exist, we consider a solution of Eq. (4.79)
in the exponential form

where s is a constant scalar and u a constant n-vector. Introducing Eq. (4.80) into
Eq. (4.79) and dividing through by eSI

, we can write

Ku = AMu, A = _S2 (4.81)

Equation (4.81) represents a set of n simultaneous homogeneous algebraic equations
in the unknowns Uj (i = 1,2, ... , n), with A playing the role of a parameter. The
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problem of determining the values of the parameter A for which Eq. (4.81) admits
nontrivial solutions u is known as the algebraic eigenvalue problem, or simply the
eigenvalue problem. It is also known as the characteristic-value problem. We note
that Eq. (4.81) represents a special case of the more general eigenvalue problem
given by Eq. (4.76).

The eigenvalue problem, Eq. (4.81), is in terms of two real symmetric matrices.
This creates a slight inconvenience, as the eigenvalue problem and the properties of
its solution can be best discussed when the problem is defined by a single matrix alone,
such as the eigenvalue problem described by Eq. (4.76). Of course, multiplication
of Eq. (4.81) on the left by M-1 yields such an eigenvalue problem, but the matrix
M~l K is generally not symmetric, which tends to obscure the properties of the
solution. Because K and M are real and symmetric and, moreover, because M is
positive definite, the eigenvalue problem can be transformed into one in terms of
a single real symmetric matrix, a highly desirable class of problems. Indeed, from
linear algebra (Ref. 14), it can be shown that the matrix M can be decomposed into

(4.82)

where Q is a real nonsingular matrix. Inserting Eq. (4.82) into Eq. (4.81), we obtain

Ku = AQT Qu

Next, we introduce the notation

Qu = v

Equation (4.84) represents a linear transformation and the relation

Q-l
U = . v .

(4.83)

(4.84)

(4.85)

represents the inverse transformation, where Q-l is the inverse of the matrix Q.
The inverse is guaranteed to exist because Q is nonsingular. Introducing Eqs. (4.84)
and (4.85) into Eq. (4.83) and multiplying on the left by (QTfl, we obtain the
eigenvalue problem

Av = AV

where, considering the r;lation (QT)-l = (Q-l)T, we conclude that

(4.86)

(4.87)

is a real symme'tric matrix. An eigenvalue problem in terms of a single matrix, such
as that given by Eq. (4.86), is said to be in standard form. Note that Eq. (4.86) is still
a special case of Eq. (4.76), because here the matrix A is symmetric.

Next, we propose to discuss the nature of the eigenvalue problem in general
terms and examine the implications of its solution on the motion of the system. To
this end, we rewrite Eq. (4.86) in the form

(A - AI) v o (4.88)
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where I is the n x n identity matrix. It is well known from linear algebra that a set
of n linear homogeneous algebraic equations in n unknowns possesses a nontrivial
solution if and only if the determinant of the coefficients is zero, or

det(A - AI) = 0 (4.89)

Equation (4.89) is known as the characteristic equation and det (A - AI) represents
the characteristic determinant, a polynomial of degree n in A. The characteristic
equation possesses n solutions Ar (r = 1, 2, ... , n), which represent the roots of the
characteristic polynomial. The numbers A = Ar (r = 1, 2, ... , n) are known as
the eigenvalues of A. Hence, the eigenvalues Ar are the values of A that render the
matrix A - AI singular. To every eigenvalue Ar corresponds a vector Vr, where Vr

is referred to as the eigenvector belonging to Ar and can be obtained by solving the
matrix equation

r = 1,2, ... , n (4.90)

The eigenvectors Vr are unique, except for the magnitude. Indeed, because Eq. (4.90)
is homogeneous, if Vr is a solution, then CrVr is also a solution, where Cr is a constant
scalar. The implication is that only the direction of a given eigenvector is unique,
not its magnitude. The magnitude of the eigenvectors can be rendered unique by a
process known as normalization.

At this point, we wish to explore how the eigenvalues of a matrix change if a
given number J.l is subtracted from the main diagonal elements of the matrix. To
this end, we subtract J.lI from both sides of Eq. (4.86) and write

(A - J.lI)v = (A - J.l)v (4.91)

Equation (4.91) states that, if the matrix A has the eigenvalue A, then the matrix
A - J.lI has the eigenvalue A - J.l. Hence, subtraction of the constant J.l from the
main diagonal elements of A results in a shift in the eigenvalues of A by the same
constant J.l. This fact can be used to accelerate the convergence of certain iteration
processes for computing the eigenvalues of a matrix (Sec. 6.9). We observe that the
eigenvectors of A are not affected by the subtraction process.

Eigenvalues and eigenvectors associated with real symmetric matrices have
very important properties. To demonstrate these properties, we consider the eigen-
value, eigenvector pair Ar, Vr and assume .!.hat they are complex. Because A is real,
it follows that the complex conjugate pair Ar. vr must also constitute an eigenvalue,
eigenvector pair. The two pairs satisfy the equations

(4.92a)

(4.92b)

Next, we premultiply Eq. (4.92a) by v; and Eq. (4.92b) by v; ,subtract the transpose
of the second from the first, recall that AT = A and obtain

(4.93)



174 Multi-Degree-of-Freedom Systems Chap. 4

But, for any complex vector x = [Xl X2 .•• xnf,
n n

IIx112,= iT x '= LXiXi = E IXil2 > 0
i=l i=l

(4.94)

is defined as the square of the norm of x, which is a positive number and cannot be
zero by definition. It follows that

Ar - Ar = 0 (4.95)

which can be satisfied if and only if Ar is rea1.' This result can be stated in the form
of the theorem: The eigenvalues of a real symmetric matrix are real. As a corollary,
the eigenvectors of a real symmetric matrix are real. Indeed, because the eigenvalues
are real, complex numbers need never appear.

Now we consider two distinct eigenvalues, Ar and As, and the respective eigen-
vectors Vr and Vs. Clearly, they must satisfy the relations

(4.96a)

(4.96b)

Following the same pattern as that just'used, we premultiply Eq. (4.96a) by v; and
Eq. (4.96b) by v;, subtract the transpose of the second from the first, consider the
symmetry of A and write

(4.97)

Because the eigenvalues are distinct, Eq. (4.97) can be satisfied if and only if

(4.98a)

so that the eigenvectors Vr and Vs are orthogonal. This permits us to state the follow-
ing theorem: Two eigenvectors of a real symmetric matrix belonging to two distinct
eigenvalues are mutually orthogonal. Equation (4.98a) is not the only orthogonality
relation satisfied by'the system eigenvectors. Indeed, premultiplying Eq. (4.96a) by
v; and considering Eq. (4.98a), we conclude that .

v;AVr = 0, (4.98b)

Equation (4.98b) represents the accompanying theorem: Two eigenvectors belonging
. to two distinct eigenvalues of a real symmetric matrix A are orthogonal wit'; respect to
A. We note that, whereas Eq. (4.98a) represents mutual orthogonality, Eq. (4.98b)
represents orthogonality with respect to A, where A plays the role of a weighting
matrix.

The above proof of orthogonality was based on the assumption that the eigen-
values are distinct. The question arises as to what happens when there are repeated
eigenvalues, i.e., when two or more eigenvalues have the same value, and we note
that when an eigenvalue Ai is repeated mi times, where mi is an integer, Ai is said
to have multiplicity mi. The answer to the question lies in the following theorem
(Ref. 14): If an eigenvalue Ai of a real symmetric matrix A has multip!icity mi, then

L . . _
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A has exactly In; mutually orthogonal eigenvectors belonging to m;. These eigen-
vectors are not unique, as any linear combination of the eigenvectors belonging to a
repeated eigenvalue is also an eigenvector. Of course, the eigenvectors belonging to
the repeated eigenvalue are orthogonal to the remaining eigenvectors. Hence, all
the eigenvectors of a real symmetric matrix A are orthogonal regardless of whether
there are repeted eigenvalues or not.

As pointed out earlier, only the direction of a given eigenvector is unique, not
its magnitude. The magnitude can be rendered unique through a normalization pro-
cess, whereby the magnitude is assigned a certain value. The normalization process
itself is not unique and the assigned value is arbitrary. One of the most convenient
normalization schemes is that in which the magnitude is equal to one, in which case all
the eigenvectors become unit vectors. The normalization process can be expressed
in the form

r = 1,2, ... , n (4.99a, b)

Then. combining Eqs. (4.98a) and (4.99a), we can write

v.~v,. = 8,.s, r, s = 1,2, ... , n (4.100)

where 8,.s is the Kronecker delta. In this case, the eigenvectors are said to be or-
thonormal. Similarly, combining Eqs. (4.98b) and (4.99b), we obtain

r,s = 1,2, ... ,n (4.101)

Clearly, the normalization is a mere convenience, and is entirely devoid of any physical
content.

The preceding developments can be cast in matrix form. To this end, we intro-
duce the n x n matrices of eigenvalues and eigenvectors

A = diag[A,.], V = [VI V2 ... vn] (4.102a, b)

respectively. Then, the n solutions of the eigenvalue problem, Eq. (4.86), can be
written in the compact form

AV = VA

Similarly, Eq. (4.100) can be expressed as

VTV = I

(4.103)

(4.104)

Equation (4.104) states that the columns of V are mutually orthonormal, in which
case V is known as an orthonormal matrix. From Eq. (4.104), we conclude that

V-I = VT (4.105)

or the inverse of an orthonormal matrix is equal to its transpose. Multiplying Eq.
(4.1 05) on the left by V, we obtain

VVT = I (4.106)

which indicates that the rows of V are also mutually orthogonal. Finally, in view of
Eqs. (4.102), the matrix form of Eqs. (4.101) is

VT A V = A (4.107)



176 ,. Multi-Degree-of-Freedom Systems , Chap. 4

(4.108)

,The left side of ~q. (4.107) represents an orthogonal transformation, which is a spe-
cial case of the larger class of similarity transformations to be discussed later in this
chapter. Equation (4.107) states that a real symmetric matrix A is diagonizable by
means of an orthogonal transformation whereby the transformation matrix is the
orthonormal matrix V of the eigenvectors and the diagonal matrix A is the matrix
of the eigenvalues. This implies that the eigenvalues do not change in orthogonal
transformations, which further implies that the characteristic polynomial is invariant
in orthogonal transfor11]ations. This suggests the possibility of solving the eigen-
value problem for real symmetric matrices by means of orthogonal transformations.
Indeed, many computational algorithms are based on this idea.

A question of particular interest yet to be answered concerns the sign properties
of the eigenvalues of re;il symmetric matrices. To answer this question, we consider

the quadratic form

where A is an n x n real symmetric matrix and x a realn-vector M?reover, we
consider the linear transformation .

in which V is the n x n matrix of eigenvectors ()f A a~d y is a real n-vector. Inserting
Eq. (4.109) into Eq. (4.108) and recalling Eq. (4.107), we obtain

The extreme right expression in Eq. (4.110) represents thy canonical form of f, with
the coefficients of the canonical form being'equal tothe eigenvalues of A. Hence,
Eq. (4.110) relates directly the sign properties of the quadratic form f, and hence the
sign properties of the matrix A, to the sign properties of the eigenvalues Ai of A. In
'particular, the quadratic form f is positive (negative) for all real nontrivial vectors
y if and only if all the coefficients Ai are positive (negative). This permits us to state
the theorem: The real symmetric matrix A is positive (negative)definite ifall its eigen-
values Ai (i = 1,2, ... , n) are positive (negative) . Conversely, if the real symmetric
matrix A is positive (negative) definite, then all the eigenvalues Ai (i = 1,2, .. , ,n)
are real and positive (negative). Examining the canonical form of f, we conclude
that, if one or more of the eigenvalues is zero, then f can be zero for some nontrivial
vector y. This conclusion can be stated as the theorem: If the real symmetric matrix
A is positive (negative) semidefinite, then the eigenvalues Ai (i = 1,2, ... , n) are real

and nonnegative (nonpositive).
,The orthogonality of the system eigenvectors is of fundamental importance in

linear system theory in general and in vibrations in particular. Indeed, orthogonality
plays an indispensable role in the solution of the differential equations of motion
associated with the vibration of linear systems. To introduce the ideas, we recall
from Chapter 2 (Fig. 2.1) that the position vector of a mass particle can be expressed
in terms of rectangular in the form

x = Vy

n

f = xT Ax = yTvT. A Vy = yTAy = I>'il
i=l

r = xi + yj + zk

(4.109)

(4.110)

(4.111)
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where i, j and k are unit vectors along the orthogonal axes x, y and z, respectively.
Clearly, the unit vectors are orthonormal, as they satisfy the relations

i .i = 1, j . j

i .j = j . i = 0,

1, k . k = 1

i .k = k . i = 0, j·k=k·j=O
(4.112)

Then, using Eqs. (4.112), the rectangular components of r can be obtained by writing

x = i . r, y = j . r, z = k· r (4.113)

The idea can be generalized somewhat, and cast in a form more consistent with
our objectives, by using matrix notation. To this end, we introduce the standard unit
vectors

(4.114)

which can be regarded as the matrix counterpart of the unit vectors i, j, k. It is
evident that the standard unit vectors are orthonormal, as they satisfy

i, j = 1, 2, 3 (4.115)

Hence, any three-dimensional vector x can be expressed in terms of the standard
unit vectors as follows:

3

X = [Xl X2 x3f = Xlel + X2eZ + X3e3 = LXiei
i=1

(4.116)

The same idea can be further generalized by conceiving of an n-dimensional space
defined by the axes Xl, X2, ... , Xn with directions coinciding with the directions of the
n orthonormal standard unit vectors el, e2, ... , en, respectively. Then, the standard
unit vectors e] , e2 ... , en can be used as a basis for an n -dimensional vector space,
which implies that any n-vector x can be expressed in the form

n

X = [XI X2 ..• Xn f = XI el + xzez + ... + xnen = LXiei
i=1

(4.117)

Note that Xi (i = 1, 2, ... , n) are referred to as the coordinates of the vector x with
respect to the standard basis e], e2, ... , en·

At this point, we propose to argue the case for using the eigenvectors V], V2, ... ,

Vn, normalized according to Eqs. (4. 99a), as a basis for an n -dimensional vector space.
Indeed, the eigenvectors are mutually orthogonal, as they satisfy Eqs. (4.1 00), so that
any n -vector v can be expressed in terms of components along VI, V2, ... , Vn· This
implies that any arbitrary nonzero n -vector v can be written as the linear combination

n

V = CIVl + C2V2 + ... + CnVn = LCiVi = Vc
i=l

(4.118)

where V is the orthonormal matrix of eigenvectors of the real symmetric matrix
A and c = [cJ C2 ... cnf is the n-vector of coordinates of v with respect to the
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basis VI,V2,... , VI!' To obtain the vector c, we premultiply Eq. (4:118) by VT and
consider the orthonormality relations, Eq. (4.104), with the result,

c = VT
V (4.119)

Of course, the same operations could be carried out trivially with the 'standard basis,
or not so triyially with any oth~r basis for an n-dimens.ional vector space. Hence,
the question arises as to why should we choose to work with the basis VI, v2, ... , VI!'
The answer to this question becomes obvious when we consider that

I! I!' •

Av' = rI>iAvi =,I:>iAiVi = V Ac
i=1 i=1

(4.120)

where use has been made of Eq. (4.96a), so thatthe n -vector AVcan also be expressed
as a linear combination of the eigenvectors of A, except that every coordinate Ci is
multiplied by Ai. Then, premultiplying Eq. (4.120) by VT and considering once again
the orthonormality relation, Eq. (4.104), we can write

Ac = VT Av (4.121)

, '

Clearly, what is unique about the basis VI, V2,... , VI!is that no other basis can be
used to represent an arbitrary n-vector'v as well as the companion n-vector Av. We
refer to Eqs. (4.118)-(4.121) as the expansion theorem.

The above developments are valid for eigenvalue problems in terms of a single
real symmetric matrix, Eq. (4.86), so that the question arises as to how they relate to
eigenvalue problems in terms of two real symmetric matrices, such as that described
by Eq. (4.81). The answer is that the developments arepertinent provided that one of
the matrices ispositive definite, so that a ctecomposition of the type (4.82) is possible.
In'this case, the two f!igenvalue problems, Eqs. (4.81) and (4.86), yield the same
eigenvalues. On the other han,d, the eigenvector s are different. Still, they are
related, as the eigenvectors Ur and vr(r = 1,2, ... , n) can be obtained from one
another by means of the linear transformation and its inverse

Q-l
Ur =Vr, r = 1,2, ... , n (4.122a, b)

as can be concluded from Eqs. (4.84) and (4.85), respectively.
The eigenvectors Vi (i = 1,2, .. '. , n) of the real symmetric matrix A were

shown to be mutually orthogonal and orthogonal with respect to A, as indicated
by Eqs. (4.98a) and (4.98b), respectively. Moreover, the eigenvectors can be normal-
ized so as to render them orthonormal, with the orthonormality relations given by
Eqs. (4.100). We now wish to show that the orthogonality property extends to the
eigenvectorsui (i ::::::1,2, ... , n), albeit in a somewhat different form. To this end,
we introduce Eq. (4.121a) into Eqs. (4.100), recall Eq. (4.82) and write

v; Vr = u; QT QUr = u; MUr = ors, r, s :::;:1,2, ... , n (4.123)

so that the eigenvectors Ur (r = 1,2, ... , n) areorthogonal with respect to the mass
matrix M, rather than being mutually orthogonal as the eigenvectors Vr. We note that

, Eqs. (4.123) represent not only orthogonality relations but a normalization scheme
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as well. Similarly, inserting Eqs. (4.122a) into Eqs. (4.101) and considering Eg. (4.87),
we obtain

r, s = 1, 2, ... , n (4.124)

so that the eigenvectors Ur (r = 1, 2, ... , n) are orthogonal with respect to the stiffness
matrix K as well.

The original eigenvalue problem, Eq. (4.81), and Eqs. (4.123) and (4.124) can
be cast in matrix form. Indeed, introducing the matrix of eigenvectors

v = [Ul U2 ... un]

we conclude that the matrix counterpart of Eq. (4.81) is

KV = MVA

(4.125)

(4.126)

where A is the diagonal matrix of eigenvalues, Eq. (4.102a). Moreover, Eqs. (4.123)
can be written in the compact matrix form

VI'MV = I

and Eqs. (4.124) can be condensed into

VI' KV = A

(4.127)

(4.128)

The expansion theorem can also be formulated in terms of the eigenvectors
Ur (r = 1, 2, ... , n). Indeed, it is not difficult to verify that in this case the expansion
theorem has the form

where, using Eqs. (4.127) and (4.128),

c = VTMu

Ac = VI' Ku

Vc (4.129)

(4.130a)

(4.130b)

The expansion theorem, Eqs. (4.129) and (4.130), plays a pivotal role in the solution
of the equations of motion for linear systems (see Sec. 4.10).

At this point, we return to the question of existence of synchronous motions,
raised in the beginning of this section. It should be obvious by now that this question
is intimately related to the existence of solutions of the eigenvalue problem. Because
in general the eigenvalue problem in the case at hand admits n distinct solutions, we
conclude that the system can execute synchronous motions in n different ways. The
nature of these motions depends on the system eigenvalues. We established already
that the eigenvalues are real, so that the only remaining question is that of sign. The
mass matrix M is positive definite by definition, and has no effect on the sign of the
eigenvalues. Hence, the sign of the eigenvalues depends on the sign properties of the
st(ffness matrix K alone. In the following, we examine the various possibilities.

In the most frequently encountered case, the stiffness matrix K is positive def-
inite, in which case the system is positive definite and all the eigenvalues are positive,
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Aj > 0 (j = 1,2, ... , n). In view of the fact that all Aj (j= 1,2, ... , n) are
positive, it is convenient to introduce the notation

j = 1, 2, ... , n (4.131)

where Wj (j = 1,2, ... , n) are real numbers. Inserting Eqs. (4.131) into the second
of Eqs. (4.81), we conclude that to each eigenvalue Aj there corresponds the pair of
pure imaginary complex conjugate exponents

s·J ±._ = I Wj ,
s·J

] = 1,2, ... , n (4.132)

Introducing these exponents into Eq. (4.80), we conclude that Eq. (4.79) admits
synchronous solutions of the form

qj (t) = (ajeiwjt + aje-h.vjt) Uj = Aj cos (Wjt - <pj)Uj, j = 1,2, ... , n
(4.133)

where A j and <Pjare known as amplitude and phase angle, respectively, and we note
that the coefficient Z1j of e-iwjt was taken as the complex conjugate of aj, because
qj(t) must be real. Equations (4.133) indicate that a positive definite system admits
synchronous motions varying harmonically with time, where Wj (j = 1,2, ... , n)
are known as natural frequencies of vibration. Consistent with this, the eigenvectors
Uj (j ::;= 1,2, ... , n) are called natural modes. They are also referred to as modal
vectors. The synchronous solutions qj (t) represent natural motions, and they are an
inherent characteristic of the system. In general, the solution of Eq. (4.79) consists
of a linear combination of the natural motions, or

n n

q(t) = L qj (t) = L Aj cos (Wjt - <Pj)Uj
j=l j=l

(4.134)

in which A j and <Pjplay the role of constants of integration. Their value depends on
the initial conditions, i.e., initial displacements and velocities. Note that, by adjusting
the initial conditions, each of the natural motions can be excited independently of
the other, in which case the system will vibrate in the particular mode excited.

Equation (4.134) represents the homogeneous solution, i.e., the response of
. the system in the absence of impressed forces. For this reason, it is known as the
free response of the system. Because Eq. (4.134) is a combination of harmonic
terms, which oscillate between given limits, the response neither approaches zero
nor increases secularly ,with time. Hence, the free response of a positive definite
conservative system is stable.

I. When the stiffness matrix K is only positive semidefinite, the system is positive
semidefinite, and the eigenvalues are nonnegative, Aj ::: 0 (j = 1, 2, ... , n). This
implies that the system admits some zero eigenvalues, with the rest of the eigenvalues
being positive. Corresponding to a zero eigenvalue, say As = 0, we have the solution

(4.135)
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which is divergent, and hence unstable. Zero eigenvalues occur when the system is
unrestrained, in which case the associated eigenvectors can be identified as rigid-body
modes. They satisfy the relations

Kus = 0, s = 1, 2, ... , r (4.136)

where r is the number of rigid-body modes. The free response of the system in this
case is simply

q(t)
r nL (as + ths) Us + L Aj cos (wjf - ¢j) Uj

s=l j=r+1

(4.137)

In the case in which K is sign-variable, the system admits negative eigenvalue!}:
Corresponding to a negative eigenvalue, say Aj < 0, we obtain the exponents

(4.138)

Whereas the solution corresponding to Sj+1 = -JI=1jT decays exponentially
with time, the solution corresponding to 5j = JI=1jT diverges, so that the system is
unstable. Note that it is sufficient that a single eigenvalue be negative for the system
to be unstable. When K is negative definite or negative semidefinite, the eigenvalues
are negative or nonpositive, respectively, so that the system is unstable.

It should be pointed out that unstable solutions associated with negative eigen-
values are still consistent with conservative systems, except that at some point the
small motions assumption is violated and the system may no longer be linear.

Example 4.6

Derive the eigenvalue problem for the vibrating system of Fig. 4.8, reduce it to one in
terms of a single real symmetric matrix and verify the properties of the eigenvalues and
eigenvectors. The parameters are as follows: m! = 2m, m2 = 3m, m) = m, k! = 2k,
k2 = 3k, k) = 2k, k4 = k.

FiWJre4.8 Undamped threc-dcgree-of-freedom system

The eigenvalue problem, Eq. (4.81), is defined by the mass and stiffness matrices,
which can be obtained from the kinetic energy and potential energy, respectively. The
kinetic energy is simply

1 . T .-q (t)Mq(t)
2

(a)
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where q(t) = [ql (t) q2(t) q3(t)f is the configuration vector and

M = [~1~2'~.]= [2~3~' ~]'
o 0 m3 0 0 m, .

is the mass matrix. Moreover, the potential energy has the expression

1= _qT (t)K q(t)
2

(b)

(c)

in which

K = [ kl_~2 k
2

k2-;2 k3 -~3 ] - [-;~ -;~ -~k] (d)
o -k3 k3 + k4 - 0 -2k 3k

is' the stiffness matrix. Inserting Eqs. (b) and (d) into Eq. (4.81) and considering
Eq. (4.131), we can write the eigenvalue problem in the form

[
5 -3 0] [2 0 0]~3 5 -2 U = A 0 3 0 U,

o -2 3 0 0 1
A= mul

k
(e)

'. To reduce the eigenvalue problem (e) to one in terms of a single matrix, we must
use the linear transformation (4.84) with the matrix Q obtained from the decomposition
otM, Eq. (4.82). In the case at hand M is a diagonal matrix, so that Q simply reduces
to

[
../2 0 0]

Q = M1
/
2 = m1/2 0 .J3 0

001
(f)

(h)

Hence, following the established process, the eigenvalue problem in terms of a single
real symmetric matrix, Eq. (4.86), is defined by the matrix

A ~ M-'i'KM-'I' ~ ~ [lr l/~ ~] [-~ =~-n [lr l/~ n
k [5/2 -.J372 O. ]

= - -.J372 5/3 -2/.J3 (g)
m 0 -2/.J3 3

Moreover from Eq. (4.85) the eigenvectors of the two problems are related by

U = M-1/2y = m-1/2 [1/f- l/~ ~] y = m-1/2 [~~j~]
o 0 1 V3

The solution of the eigenvalue problem (4.86) with A given by Eq. (g) consists of
the eigenvalues

• A] = 0.4256, A2 = 2.7410, A3 = 4.0000 (i)
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and eigenvectors

[
0.4743]

VI = 0.8033 ,
0.3603 [

-0.7435 ]
V2 = 0.1463 ,

0.6525
[

0.4714 ]
V3 = -0.5774

0.6667
(j)

Clearly, the eigenvalues are real, hecause A is real and symmetric. Moreover, they are
positive, because A is positive definite. It is easy to verify that the eigenvectors satisfy
the orthogonality relations (4.98). In fact, they have been normalized so as to satisfy
the orthonormality relations (4.100)and (4.101).

The eigenvalues given by Eqs. (i) can be used to compute the natural frequencies

WI = 0.6524/'f rad/s, W2 = 1.6556/'f rad/s, W3 = 2.0000/'f rad/s (k)

Moreover, introducing Eqs. U) into Eq. (h), we obtain the modal vectors

[
0.3354] [ -0.5257] [ 0.3333]

U1 = m-I/2 0.4638 , U2 = m-1/2 0.0845, U3 = m-I
/
2 -0.3333

0.3603 0.6525 0.6667
(I)

It is not difficult to verify that the modal vectors satisfy the orthonormality relations,
Eqs. (4.123)and (4.124).

4.7 GYROSCOPIC CONSERVATIVE SYSTEMS

In Sec. 2.13, we have shown that, in the case of nonnatural systems, the Hamiltonian
is conserved if it does not depend explicitly on time and all the nonconservative forces
are zero. The nonconservative forces include the damping, circulatory and externally
applied forces, as demonstrated in Sec. 4.3. Gyroscopic forces, like viscous damping
forces and part of the circulatory forces, are proportional to the velocities, so that
it is tempting to conclude that they are nonconservative as well. But, as shown
in Sec. 4.3, gyroscopic forces do not prevent the conservation of the Hamiltonian,
so that they represent conservative forces. It should be pointed out here that the
gyroscopic forces are the ones responsible for a system being nonnatural. In this
section, we first verify the conservative nature of the gyroscopic forces and then
present a method taking advantage of this fact to simplify the eigenvalue problem
for gyroscopic conservative systems significantly.

Let us consider once again the system described by Eq. (4.69), assume that the
damping matrix C* , circulatory matrix H and force vector Q are all zero and obtain
the linear gyroscopic system

Mq(t) + Gq(t) + Kq(t) = 0 (4.139)

where M is the real symmetric positive definite mass matrix, G is the real skew
symmetric gyroscopic matrix and K is the real symmetric positive definite, or positive
semidefinite stiffness matrix, alln x n matrices. Because Eq. (4.139) represents a
linear homogeneous time-invariant system, it admits a solution of the exponential
form

q(t) = eST u (4.140)



where s is a'constant scalar and u is a constant vector, both in general complex.
Introducing Eq. (4.140) intoEq. (4.139) and following the usual steps, we obtain the

eigenvalue problem s2 Mu + sGu + Ku = 0 (4.141)

Then, if we premultiply Eq. (4.141) by \iT, where \i is the complex conjugate of u,

we can write •

are scalars. Equation (4.142)'represents a,quadratic equation i~ s having the roots

Sl . (g 1 J ), == l _,_ ± - g2 + 4mk
S2 2m 2m

The nature of the roots depends on k, and hence on K. We distinguish the following

cases:
i. If k > 0, so that K is positive definite, then

g2 + 4mk > 0

In this case the roots arepure imaginary, which implies pure oscillatory motion,

or stable motion.
ii. If k. ~ 0, and k = 0 for some u =1= 0, then K i~ positive semidefinite and at

least one root is zero, which implies divergent motion.
iii. If k < 0, so that K is negativ~ definite, there are two possibilities. Ifinequality

(4.145) still holds,. the motion represents pure oscillation, which is stable. Hence,
gyroscopic forces can stabilize an unstable conservative system. On the other

hand, if
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where
m = \iT Mu > 0,
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msZ + igs + ~= 0

ig = \iTGu,

g2 + 4mk < 0

Chap. 4

(4.142)

(4.143)

(4.144)

(4,145)

(4.146)

then at least one of the roots has positive real part, which implies unstable

motion.
In the case of structural vibration, the stiffness matrix is generally positive definite or
positive semidefinite, so that our interest lies in Cases i andii. Case ii tends to arise
when rigid-body motions are possible, in which case the associated eigenvectors
are in the nullspace of K, Ku = O. But, rigid-body motions can be removed by
constraining the system so as to undergo elastic motions alone. In view of this, we do
not lose generality if we confine ourselves to the case in which K is positive definite.

Under the assumption that both M and K are positive definite, which cor-
,responds to case i, all the eigenvalues are pure imagin~ry. Hence, if 'fie substitute
s = iw in Eq. (4.141), we obtain the eigenvalue problem

~()} Mu +iwGu + Ku = 0 (4.147)

. -where w:inustsatisfy-the_cha1".~!..e.!i~tis,~quation
det [_w2 M + twO +Kr~-' -'~.-~'~'---~(4A48)-- ~

,- .-
,
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But the determinant of a matrix is equal to the determinant of the transposed ma-
trix. Hence, recalling that M and K are symmetric and G is skew symmetric, the
characteristic equation can also be written in the form

(4.149)

from which we conclude that if iw is a root of the characteristic equation, then -iw is
also a root. It follows that the eigenvalues ofa gyroscopic conservative system occur in
pairs of pure imaginary complex conjugates, Sr = iwr, sr = -iwr (r = 1, 2, ... , n),
where Wr are recognized as the natural frequencies. As a corollary, it follows that
the eigenvectors belonging to the eigenvalues ±iwr are complex conjugates, although
they are not necessarily pure imaginary.

The eigenvalue problem given by Eq. (4.147) contains both wand w2 and
is complex, so that it does not permit a ready solution. The first difficulty can be
overcome by recasting the problem in state form, but the problem remains complex.
A method developed in Ref. 10 takes advantage of the fact that the eigenvalues are
pure imaginary to remove the second objection. To describe the method, we begin
by recasting the equations of motion, Eq. (4.139), in the state form

M*x(t) = -G*x(t) (4.150)
Twhere x(t) = [q T (t) qT (t)] is the 2n-dimensional state vector and

M* = [~ ~] = M*T, G* = [~ -GK] = _G*T (4.151a, b)

are 2n x 2n coefficient matrices, in which M* is real symmetric and positive definite
and G* is real and skew symmetric. In view of Eq. (4.140), and considering the fact
that the eigenvalues are pure imaginary, the solution of Eq. (4.150) has the form

(4.152)

where x is a constant 2n-vector. Introducing Eq. (4.152) into Eq. (4.150) and dividing
both sides by eiwt , we obtain the eigenvalue problem

iwM*x = -G*x (4.153)

Now the eigenvalue problem, albeit of order 2n, contains w to the first power only,
but the problem is still complex. To reduce the eigenvalue problem to real form, we
introduce x = y + iz into Eq. (4.153), equate both the real and imaginary part on
both sides of the resulting equation and write

wM*y = -G*z, wM*z = G*y (4.154a, b)

Solving Eq. (4.154b) for z and introducing into Eq. (4.154a), then solving Eq. (4.154a)
for y and introducing into Eq. (4.154b), we obtain

K*y = AM*y, K*z = AM*z, A = w2 (4.155)

where

K* (4.156)
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is a real symmetric positive definite matrix. Hence, we not only reduced the complex
eigenvalue' problem (4.153) to a real one, but to one in terms of two real symmetric
positive definite matrices'of the type given byEq. (4.81). It follows that we can use
the approach of Sec. 4.6 to reduce the eigenvalue problem (4.155) to standard form,
i.e., one in terms of a single real symmetric matrix.

" . Because both eigenvah!e.problems, Eqs. (4.81) and (4.155), belong to the same
class, their solutions share many of the cha~acteristics. Moreover, both,problems
can be solved by the same efficient computational algorithms for real symmetric
matrices. Still, some differences exist. In the first place, eigenvalue problem (4.155)
iS,of order 2n, whereas eigenvalue problem (4.81) is of order n only. Moreover, we
observe that the real part y and the imaginary part Z of x satisfy the same eigenvalue
problem. It follows that the eigenvalue problem given by Eqs. (4.155) is characterized
by the fact that every eigenvalue has multiplicity two, as to every eigenvalue Ar =w; belong two eigenvectors; Yr and Zr (r: = 1,2, ... , n). This fact presents no
problem as far as solving the eigenvalue problem is concerned. Indeed, because the
problem is positive definite, the eigenvectors Yr and Zr are independent and can be
rendered orthogonal. Of course, they are orthogonal to the remaining n - 1 pairs of
eigenvectors. The solution to the real eigenvalue problem, Eqs. (4.155), can be used
to construct the solution to the complex eigenvalue problem, Eq. (4.153). Indeed,
the complex eigensolutions can be written in the form

sr ._ = ±IWr,
Sr .

Xr ._ = Yr ± IZr,Xr
r = 1,2, ... ,n (4.157)

As in the case of natural systems, it is advantageous to cast the eigenvalue
problem, Eqs: (4.155), into a form defined by a single real symmetric matrix instead
of two. This presents no problem, as both M* and K* are real symmetric positive
definite matrices. Hence, by analogy with Eq. (4.82), we decompose the matrix M*
into

(4.158)

where Q* is a 2n x 2n nonsingular matrix. Then, using the linear transformation

Q*y = vy, Q*Z = Vz (4.159)

and recognizing that it is not really necessary to distinguish between vy and Vz, we
can reduce Eq. (4.155) to the standard form

Av = AV,

where v stands for both vy and Vz and

(4.160)

(4.161)

is a 2n x 2n real symmetric positive definite matrix. Clearly, the two eigenvalue prob-
lems, Eqs. (4.155) and (4.160), possess the same eigenvalues, so that every eigenvalue
of A, as given by Eq. (4.161), retains the multiplicity two. We express this multiplicity
in the form___.- .•... -". _

~ A2r-l = A2r, r = 1,2, ... ~ n--'''- - (4~162).
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Then, by analogy with Eqs. (4.159), we express the real and imaginary part of Xr as

Q*-IYr = V2r-l, r = 1, 2, ... , n (4.163)

where V2r-] and V2r are pairs of orthogonal eigenvectors belonging to A2,.-] =
A2r (r = 1,2, ... , n). Of course, the eigenvectors are orthogonal to the remain-
ing pairs of eigenvectors. The eigenvectors can be normalized so as to satisfy the
orthonormality relations

TV2,._] V2r = 0,
Tv2s V2r

r, S = 1, 2, ... , n (4.164)

At this point, we return to the free vibration problem, Eq. (4.139). As am-
ply demonstrated in this section, in the case of gyroscopic systems, we must work
with the state form, namely, Eq. (4.150). Equation (4.150) admits solutions in the
form of linear combinations of the eigensolutions. Because the solution must be
real, by analogy with natural systems, we express the free response of a gyroscopic
conservative system as the linear combination

n
x(t) =L (Crei(J)rlxr + c,.e-iwrIXr)

r=1

n

= LA,. [cos(Wrt - CPr)Yr - sin (wrt - CPr)zrJ
r=]

(4.165)

where the amplitudes Ar and phase angles CPr (r = 1, 2, ... , n) depend on the
initial condition x(O) = [qT (0) i{ (0) r. Clearly, Eq. (4.165) gives not only the
displacement vector q(t) but also the velocity vector q(t).

Example 4.7

The system of Example 4.5 represents a damped gyroscopic system. Let m = 1 kg,
Q = 2 radls, kx = 5 N/m, ky = 10 N/m, C = 0 and solve the eigenvalue problem
associated with A, Eq. (g) of Example 4.5, for the equilibirium point £1. Then, solve
the same problem by the approach presented in this section and compare the results.

Using the given parameter values and Eq. (i) of Example 4.5. the matrix A has

the form

[Jo

o
o
o

-6

I
o
o

-4

1
o
o

-2Q 2~ ]

(a)
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which has the eigenvalues

Al = iuYI = 0.5137i radjs,

Multi-Degree-of-Freedom Systems

A2 = Al = -iuYI = -0.5137i radjs

Chap. 4

(b)
A3 = iWz = 4.7682i radjs, A4 = I3 = -iW2 = -4.7682i radjs

where WI and W2 are natural frequencies, a~d the right and lef~eigenvectors (see Sec. 4.8)

VI = [-~:~~~~:].,
0.1541

[..~:~~~~i]
V3 = 0.6455i'

-0.7356

V2 =
[

0.8374]
0.3000i

-0.4302i
0.1541

[

0.1354]
-0.1543i
-0.6455i
-0.7356

(c)

and

[.-~:;~~;i]
WI 0.2967i'

0.1063

W3 =[ ~:Hii:],
-0.6574

[ ~:;~~;{]
W2 -0.2967i

0.1063

[
-0.8272i ]

W 4 = -::::::i
-0.6574

(d)

respectively. Note that the eigenvectors have been normalized so that wT Vi = 1 (i =
1,2,3,4).

Next, we insert the same parameter values into Eqs. (4.151a) and (4.156) and
obtain

M*=

and

(e)

o
m-1 (ky - mS12)2
2S1 (ky- mS12)

o

o
2S1 (ky - mS12)

kx + 3mS12

o

-2" (k,~- m"')l
ky + 3mS12 J

(f)

respectively. Inserting Eqs. (e) and (f) into Eqs. (4.155) and solving the eigenvalue
problem, we' obtain the repeated yigenvalues

• _'''C)..j-.''''''''. ',)_'I;~ ~-,-l·i~.•.V _.'.~_ \ .
2 .. 2"~'

Al = A2 = WI = 0.2639, A3 = A4 = w2 = 22.736··.,..... (g)
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yielding the natural frequencies

WI = 0.5137 radls, Wz = 4.7682 radls (h)

which coincide with those obtained solving the eigenvalue problem for A. Moreover,
the eigenvectors are

[-OrIO], Zj

0.9835

Y2 = [-Of35], Z2 = [-~:~~;;]

-0.1810 0

The eigenvectors have been normalized so that y;My, = z; Mz, = 1(r = 1,2).
Clearly, the eigenvalue problem in symmetric form, Eqs. (4.155), is considerably

easier to solve than the nonsymmetric eigenvalue problem, and the eigenvector struc-
ture is considerably simpler. In fact, we note from Eqs. (e) and (f) that the symmetric
eigenvalue problem of order 2n can be separated into two symmetric eigenvalue prob-
lems of order n.

[
-0.~063]
-0.8630

o
(i)

4.8 NON CONSERVATIVE SYSTEMS. THE NONSYMMETRIC EIGENVALUE
PROBLEM

As demonstrated in Sec. 4.3, viscous damping forces and circulatory forces render
a system nonconservative, in the sense that the Hamiltonian is not conserved. In
this case, the free response is no longer pure oscillatory, so that the desirable char-
acteristics of conservative systems no longer exist. It is possible to treat the case in
which only viscous damping forces are present separately from the case in which both
viscous damping and circulatory forces are present. In this text, we go directly to the
second case and will make the distinction between the two cases when appropriate.
Hence, we consider the general homogeneous linear system given by Eq. (4.71), or

Mq(t) + (C* + G) q(t) + (K + H) q(t) = 0 (4.166)

where the various matrices are as defined in Sec. 4.4.
To explore the system characteristics, it is necessary to cast Eq. (4.166) in state

form. To this end, we premultiply Eq. (4.166) by M-1
, adjoin the identity q{t) = q(t)

and rewrite the free vibration equations in the standard state form

x(t) = Ax(t)

where x(t) = [qT (t) qT (t) r is the 211-dimensional state vector and

[I] o I I
A = -------------:--------------

-M-1(K + H) I -M-1(C* + G)
I

(4.167)

(4.168)

is the 211 x 211 real nonsymmetric coefficient matrix, and we recall that we first
encountered Eqs. (4.167) and (4.168) in Sec. 4.5 in conjunction with system stability.
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In this section, we concentrate on the eigenvalue problem and the nature of its

solutions.
The solution of Eq. (4.167) has the exponential form

,.'1 " - ". ~ " ' .

x(t) = eAtx (4.169)

where A is a constant scalar and x a constant 2n-vector. Inserting Eq. (4.169) into
Eq. (4.167) 'and dividing through by eAt, we obtain the general algebraic eigenvalue

problem

Equation (4.170) admits solutions in the form of the eigenvalues Ai and corresponding
eigenvectors Xi (i = 1: 2, ... , 2n) . They satisfy the equations

.JThe question!arises naturally as to whether the eigenvectors are orthogonal
and whether an expansion theorem exists ..We confine ourselves to the case in which
all the eigenvalues of A are distinct, from which it follows that all the eigenvectors
are independent. Although independent eigenvectors cart be rendered orthogonal,
mutual orthogonality is not sufficient. Indeed, to serve as a basis for the problem
at hand, the eigenvectors must be not only mutually orthogonal but also orthogonal
with respect tothe matrix A. The eigenvectors Xi cannot be orthogonal with respect
to A, however, because A is not symmetric. But, whereas the eigenvectors are not
orthogonal in the ordinary sense, they are orthogonal in some fashion. Before we
explore the nature of the. orthogonality, we recall that det AT ='det A,so that

Ax =, AX

i = 1,2, ... ,2n

det (A -AI)T =: det(AT -:- AI) = det(A - AI) :

(4.170)

(4.171)

(4.172)

(4.173)

from which we conClude that' A and AT possess the same eigenvalues. Hence, we
can writethe'eigenvalue problem associated with AT in the form

, ,,' '

The eigenvalue"problem for AT, Eq. (4.173), is referred to as the adjoint eigenvalue
problem of the eigenvalue problem for A and it admits solutions in the form of
the eigenvalues Aj and the eigenvecto[s Yj, where Yj are called adjoint eigenvectors
,(j = 1,2, ... , 2n) of the eigenvectors Xi (i = 1,2, ... , 2n). ,They satisfy the

.equations , '
AT Yj = AjYj, j = 1,2, ... ,2n (4.174)

Equations (4.174) can be rewritten in the form" f,

yJA ~ AjyJ, j = 1,2, ... ,fn (4.175)

Because of their position to the left of the matrix A, the adjoint eigenvectors Yj are
known as left eigenvectors of A. Consistent with this, the eigenvectors Xj are called
right eigenvectors of A. !tis pyrhaps of interest to note that when A is a real symmetric
matrix, A = AT, the adjoiriteigenvectbrsYJc0incideY/ithAbe,eigepvec~orJ Xj (j =
1,2, ... , 2n), in'which case the eigenvalue problem is said to be self-adjoint .. ,,> .

.~_.. _-----~_._--_.~.~~-----
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As in the symmetric case, if a constant fJ., is subtracted from the main diagonal
elements of a nonsymmetric matrix A, then the eigenvalues of A are shifted by the
same constant fJ.,. Indeed, Eq. (4.91) is valid for arbitrary matrices A and is in no way
restricted to symmetric matrices.

Next, we multiply Eq. (4.171) on the left by yJ and Eq. (4.175) on the right by
Xi, subtract the second result from the first and obtain

(A; - Aj) yJ Xi = 0 (4.176)

But, according to our assumption, all eigenvalues are distinct, so that we must have

TYj X; = 0, Ai =/:: Aj, i, j = 1,2, .... , 2n (4.177)

Equations (4.177) state that the right eigenvectors and left eigenvectors of the real
nonsymmetric matrix A belonging to distinct eigenvalues are orthogonal. It must be
stressed here that the orthogonality embodied by Eqs. (4.177) is materialIy different
from the mutual orthogonality exhibited by the eigenvectors of a real symmetric
matrix. Indeed, the two sets of eigenvectors, the right eigenvectors X; and the left
eigenvectors Yj, are biorthogonaL. Next, we premultiply Eqs. (4.171) by yJ, consider
Eqs. (4.177) and obtain

yJAXi=O, Ai =/::Aji,j=1,2, ... ,2n (4.178)

so that the right and left eigenvectors are biorthogonal with respect to the matrix A
as weLL.The biorthogonality does not extend to eigenvectors belonginj. to the same
eigenvalue. These pairs of eigenvectors can be normalized by letting Yi Xi = 1 (i =
1, 2, ... , 2n), in which case the two sets of eigenvectors become biorthonormal.
They satisfy the biorthonormality relations

yJXi = Dij, i,j = 1,2, ... ,2n (4.179)

Moreover, premultiplying Eqs. (4.171) by yJ and considering Eqs. (4.179), we obtain

TYj AXi = A;D;j, i, j = 1,2, ... , 2n (4.180)

The biorthonormality property given by Eqs. (4.179) can be used to develop a
more general expansion theorem. Because Eqs. ( 4.179) involve both the right and
left eigenvectors, the new expansion theorem requires both sets of vectors. Moreover,
we have the choice of expanding any arbitrary vector v in a 2n-dimensional space in
terms of the right eigenvectors or in terms of the left eigenvectors. An expansion in
terms of the right eigenvectors has the form

2n

V = Laixi
i=1

(4.181)

Premultiplying both sides ofEq. (4.181) by yJ and yT A, in sequence, and considering
Eqs. (4.179) and (4.180), we obtain

T
Gi = Yi v, = 1,2, ... , 2n

TAiGi = Yi Av, i = 1,2, ... ,2n

(4.182a)

(4.182b)
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On the other hand, an expansion in terms of the left eigenvectors has the form

where

2n

, 'v = LbjYj
j=l

bj =xJv, j = 1,2, ... ,2n

Ajbj =xJAv, j ='1,2, .. '.,2n

(4.183)

(4.184a)

(4.184b)

Equations (4.181)-(4.184) represent a dual expansion theorem. It should be pointed
out that the 2n-dimensional space under consideration is in general complex. More-
over, because the dual expansion theorem involves both the right and the left eigen-
vectors, it is necessary to solve the eigenvalue problem twice, once for A and once
for AT.

The preceding developments can be expressed in a compact matrix form. To
this end, we introduce the matrix of eigenvalues

A = diag (Ai)

as well as the matrices of right and left eigenvectors

(4.185)

y = [Yl Y2 ... Y2n] (4.186a, b)

Then, the biorthonormality relations, Eqs. (4.179) and (4.180), can be written as

yT X = I,

Equation (4.187a) implies that

yT AX = A (4.187a, b)

yT = X-I (4.188)

so that, instead of solving the eigenvalue problem for AT, it is possible to obtain the
left eigenvectors by inverting the matrix of right eigenvectors. Inserting Eq. (4.188)
into Eq. (4.187b), we obtain

X-lAX = A (4.189)

Equation (4.189) represents a similarity transformation, and the matrices A and A
are said to be similar. Hence, assuming that all eigenvalues are distinct, the matrix
A can be diagonalized by means of a similarity transformation. This implies that the
eigenvalues do not change in similarity transformations, which further implies that
the characteristic polynomial is invariant in similarity transformations.

The expansion theorem can also be expressed in more compact form. Indeed,
introducing the vectors of coefficients a = [al a2 ... a2n]T and b = [bl b2 ... b2n]T ,
Eqs. (4.181) and (4.182) can be expressed as

v = Xa

a = yT v, Aa yTAv
(4.190a)

(4.190b, c)
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and Eqs. (4.183) and (4.184) as

v = Yb

b = XT v , 1\b = XT Av

(4.191a)

(4.191b,c)

At this time, we turn our attention to the solution of Eq. (4.167). This solution
consists of the response to the initial excitation x(O). Recalling Eq. (4.169) and rec-
ognizing that there are 2n ways in which the exponential form can satisfy Eq. (4.167),
we express the solution as the linear combination

2n

x(t) = L XieAit Qi

i=1

To determine the coefficients Qi, we let ( = 0 in Eq. (4.192) and write
2n

x(O) = L XiQi

i=1

(4.192)

(4.193)

Premultiplying both sides of Eq. (4.193) by yJ and considering the orthonormality
conditions, Eqs. (4.179), we obtain

TQi = Yi x(O), i = 1,2, ... , 2n (4.194)

so that, introducing Eqs. (4.194) into Eq. (4.192), the solution becomes
2/1

x(t) = L XieA,tyrx(O)
i=1

(4.195)

(4.198)

Equation (4.195) can be expressed in a more compact form. Indeed, recalling
Eqs. (4.185) and (4.186), the response of the system to initial excitations can be
rewritten in the form

x(t) = XeAryTx(O) (4.196)

where eAr can be computed by means of the series
(2 (3

eAt = 1+ (1\ + _1\2 + _1\3 + ... (4.197)
2! 3!

Convergence of the series is guaranteed, but the rate of convergence depends on
( max IAi I, in which max IAi I denotes the magnitude of the eigenvalue of A of largest
modulus.

Equation (4.196) requires the solution of the eigenvalue problems for A and
AT. It is possible, however, to determine the response without solving these eigen-
value problems. Indeed, as can be concluded from Eq. (1.109), the solution of
Eq. (4.167) is simply

where, from Eq. (1.108),

<P(t) = eAt
(2 (3

I + (A + _A2 + _A3 + ...
2! 3!

(4.199)
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is the transition matrix. Clearly, the two solutions, Eqs. (4.196) and (4.198), must
be equivalent. To show this, we premultiply Eqs. (4.187) by X and postmultiply by
X-I, consider Eq. (4.188) and obtain "

XyT = I, A = XAyT (4.200a, b)
...•..\ r ~ \ ... - I' ;" .~

. Then, inserting Eq. (4.200b).into Eq. (4.199) and using ECl:(4.200~), we ~ave
" t2 ... ,· t3., ..

eAt =XyT + tXAyT +. ~XAyT XAyT + ~XAyT XAyT XA
T + .. ,

'2!' . 3!

t2 t3
=XyT + tXAyT + _XA2yT + _XA3yT + ...

2! 3!

,~X (I + tA +J2
A2 + t

3
A3 + ...) yT =.' XeAtyT (4.201)

2! 3!
which verifies the equivalence' of the two solutions. It is obvious that the earlier
convergence statement applies to solution (4.198) as well.

It should be pointed out here that, although our interest was confined to state
equatio'ris of order 2n, the discussion ofEq. (4:167) and its soluti~n'is not restricted
in any way and is applicable not only to systems ofeve~ order but al~~ of odd order.

Example 4.8
.Solve the eigenvalue problem for the linearized system of Example 4.4 about the trivial
equilibrium, Eqs. (b) with Xo = Yo = 0, for the parameter values

m= 1 kg, Q = 2rad/s,

c = O.lN . s/m,

kx = 5N/m, ky = lON/m,

h = 0.2 N . s/m

d, Equation (c) of Example '4.4' represents the equations in matrix form. Using
Eqs. (d)-(h) of Example 4.4 in conjunction with the parameter values listed above, we
obtain the coefficient matrices '

M = [m 0] = [1 0]'o m 0 1 '
c* = [

c + h 0] = [0.3 0]o ' h ' 0 0.2

G = [0 -2mQ] = [0 -04]
2mQ 0 . 4

K _ [kx- mQ2 r 0 ] _ [1 0
6
]

- 0 ky - mQ2 -- 0

H _ [0 -hQ] ~ [0 -0.4]
- hQ 0 0.4 0

i,t,

(a)

. '

Hence, i'ns~rting Eqs. (a)'into Eq. (4.168), we can write the system matrix as
, , .. ' ..•.• J

A. ~ [::~:'(~-~-;;)-\-::-~='~C=-~-';)J
IJ ~.4 -~.3 ~ I,]L -0.4 -6 ~4 '-0.2"

(b)

--.----- .--- -- ----.-'
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The solution of the eigenvalue problem consists of the eigenvalues

195

-0.1128 + 0.5083i,

-0.1372 + 4.7653i,

)..2 = -0.1128 - 0.5083i

)..4 = -0.1372 - 4.7653i
(c)

[

-0.8326 + 0.0750~]
-0.0347 - 0.29461

0.1320 + 0.4147i
-0.1458 + 0.0509i

[

-0.1279 - 0.0442i]
-0.0524 + 0.1452i
-0.1933 + 0.6158i

0.6990 + 0.2297i

the right eigenvectors

[

-0.8326 - 0.0750i]
-0.0347 + 0.2946i

0.1320 - 0.4147i '
-0.145R - 0.0509i

[

-0.1279 + 0.0442i ]
_ -0.0524 - 0.1452i

x, - -0.1933 - 0.6158i '
0.6990 - 0.2297i

and the left eigenvectors

[

-0.5723 + 0.0983i ] [-0.5723 - 0.0983i]
-0.1248 - 1.25OJi -0.1248 + 1.2501i

YI 0.0280 + 0.2992i' Y2 0.0280 - 0.2992i
-0.1064 + 0.0070i -0.1064 - 0.0070i

[

-0.1315 + 0.OJ52i] [-0.1315 - 0.0152i]
-0.2000 + 0.8059i -0.2000 - 0.8059i

Y3 = -0.1946 + 0.5435i' Y4 = -0.1946 - 0.5435i
-0.6225 + 0.2135i -0.6225 - 0.2135i

where the eigenvectors have been normalized so that YTx; = 8ij (i, j = 1,2,3,4).

4.9 RESPONSE OF DISCRETE SYSTEMS TO HARMONIC EXCITATIONS

(d)

(e)

In Sec. 1.5, we considered the response of linear time-invariant systems to harmonic
excitations. We recall that the response to harmonic excitations represents a steady-
state response, which is to be treated separately from the response to transient excita-
tions, such as initial displacements and velocities. We found it convenient in Sec. 1.5
to express harmonic excitations in exponential form, and we propose to use the same
approach for the multi-degree-of-freedom systems considered in this section. Hence,
we rewrite Eq. (4.69) as

Mq(t) + (C* + C)q(t) + (K + H)q(t) = eiwtQo (4.202)

where w is the driving frequency and Qo is a constant vector. The various coefficient
matrices are as defined in Sec. 4.4.

By analogy with the approach of Sec. 1.5, we express the steady-state solution
of Eq. (4.202) in the exponential form

(4.203)

in which X(iw) is a vector of amplitudes depending on the excitation frequency w.
Introducing Eq. (4.203) into Eq. (4.202) and dividing through by eiw1

, we obtain

Z(iw)X(iw) = Q() (4.204)
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where

But, from matrix theory (Appendix B), the inverse ofthe matrix Z can be determined

~y means of the formula

.
Z(iw) = _w2M -t;- iw(C* -+- G) +'K + H

is known as the impedance matrix. The solution of Eq. (4.204) is simply

X(iw) = Z-l(iw)Qo

-1 . adj Z(iw)
Z (zw) = det Z(iw)

(4.205)

(4.206)

(4.207)

where

(b)

adj Z = [(_l)j+kdet Mjkf
, 1

is the adjugate matrix, in which (-l)j+kdet Mjk is the cofactor corresponding to the
entry Zj k of Z, where Mj k is the submatrix obtained by striking out the j th row and
kth column from Z. Inserting Eqs. (4.206) and (4.207) into Eq. (4.203), we obtain
the response of a discrete system to harmonic excitations in the form

iwt adj Z(iw)Qo
q(t) = e det Z(iw) (4.209)

As in Sec. 1.5, if the excitation is coswt Qo, the response is Re q(t), and if the
excitation is sinwt Qo, the response is Imq(t).

Because of difficulties in evaluating the inverse'of the impedance matrix, the
approach is suitable only for relativelylow~order systems. For higher-order systems,
it is more efficient to use modal analysis, as described in the next section.

Example4.9
Derive the response of the damped two-degree-of-freedom system shown in Fig. 4.9 to

harmonic excitations.

Figure 4.9 Damped two-degree-of-freedomsystem

In the absence of gyroscopic and circulatory forces, the matrix equation of motion,

Eq. (4.202), reduces to
Mq(t) + ClJ.(t) + K q(t) = eiwt Qo (a)

where the mass matrix M, damping matrix C and stiffness matrix K can be obtained
. from the kinetic energy, Rayleigh's dissipation function and potential ene~gy, respec-

tively. The kinetic energy is simply ..
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in which q(t) = [qt(t) q2(t)f is the two-dimensional configuration vector, Qo =
[Q01 Q02f is the force amplitude vector and

M = [mt 0] (c)o m2

is the diagonal mass matrix. The Rayleigh's dissipation function can be shown to have
the form

(d)

where
C = [Ct + C2 -C2 ] (e)

-C2 C2

is the damping matrix. Moreover, the potential energy has the expression

V = ~ {ktq;(t) + k2 [q2(t) - qtft)f} = ~qT(t)Kq(t) (f)
2 2

in which
(g)

is the stiffness matrix.
Equation (4.209) gives the system response in the form

iwr adj ZT (iw)Qo
q(t) = e det Z(iw)

where, using Eq. (4.205), the impedance matrix has the expression

Z(iw) = [ZIl (~w) Zd~W)] = _w2 M + iwC + K
ZdlW) Z22(IW)

Using Eqs. (c), (e) and (g), the entries of the impedance matrix are

Zll(iw) -w2mt + iW(Cl + C2) + k1 + k2

Zdiw) -iWC2 - k2

Z22(iW) -w2m2 + iWC2 + k2

The adjugate matrix is given by

adj Z(iw) = [Z22(iW) -ZdiW)]
-Zdiw) Zll(iw)

and the determinant has the expression

det Z(iw) = IZ(iw)/ = Zlt(iW)Z22(iW) - Z;2(iW)

Inserting Eqs. (k) and (I) into Eq. (h), we can writc thc response by components

Z22QOl - Z12 Q02 iWI
q, (t) 2 e

ZIl Z22 - Zt2

- Z12 QOI + ZIl Q02 iWI
q2 (t) = 2 e

Zll Z22 - Zt2

Of course, one must retain the real part or the imaginary part of qi (t) (i
depending on whether the excitation is cos wt Qo or sin wt Qo, respectively.

--

(h)

(i)

(j)

(k)

(I)

(m)

1,2),
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4.10 RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS TO
ARBITRARY EXCITATIONS

In Sec. 4.4, we derived the linearized equations of motion of multi-degree-of-freedom
systems in the neighborhood of equilibrium positions in the form of a set of simul-
taneous ordinary differential equations with constant coefficients, Eq. (4.69). As
shown in Chapter 1, the response of generic dynamical systems to arbitrary excita-
tions can be obtained by a method based on the transition matrix. This approach is
certainly applicable to the multi-degree-of-freedom systems discussed in this chap-
ter. Moreover, in both Chapter 1 and Chapter 3, we presented methods for deriving
the response of low-order systems to a variety of excitations, including arbitrary exci-
tations. A prima facie judgment is likely to lead to the conclusion that the techniques
for the response of first-order and second-order systems cannot help very much in the
case of multi-degree-of-freedom. This would be an incorrect conclusion, however,
because a linear t~ansformation using the modal matrix is capable of reducing a set
of simultaneous equations of motion to a set of independent equations, known as
modal equations, which can indeed be treated by the techniques of Chapters 1 and
3. The procedure for producing the response of multi-degree-of-freedom systems by
first solving the eigenvalue problem and then using the modal matrix to decouple the
system into modal equations is called modal analysis.1 The approach is extremely
efficient for undamped systems and systems with special types of damping. In the
case of general nonconservativesystems, the response can be obtained by means
of the approach based ,on the transition matrix (Sec. 1.9), or by means of a modal
analysis in terms of state modes. In discussing the free vibration problem earlier in
this chapter, we found it convenient to distinguish among various classes of systems.
We propose to follow a similar pattern here.

i. Undamped natural systems

We are concerned with the case in which the gyroscopic, viscous damping and circu-
latory forces are zero, in which case Eq. (4.69) reduces to

Mij(t) + Kq(t) = Q(t) (4.210)

where M and K are n x n real symmetric mass and stiffness matrices, respectively,
and q(t) and Q(t) are n-dimensional generalized displacement and force vectors,
respectively. The mass matrix is positive definite by definition, but the stiffness
matrix is assumed to be only positive semidefinite. The solution of Eq. (4.210) is
subject to the initial conditions

q(O) = qo, I it(O) = ito (4.211a, b)

Equation (4.210) represents a set of n simultaneous second-order ordinary
differential equations describing the motion of a natural system. A solution can
be produced by expressing the equations in state form, i.e, a set of 2n first-order
equations obtained by introducing the velocities as auxiliary variables and adding to

The term "modal analysis" is also being used to describe a procedure for identifying the dynamic
characteristics of a system experimentally.
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Eq. (4.210) the n identities q = q, as shown in Sec. 4.5. The state equations can be
solved by the method based on the transition matrix discussed in Sec. 1.9. However,
in the case of undamped natural systems there are more efficient methods of solu-
tion. Indeed, a linear transformation with the modal matrix as the transformation
matrix permits the reduction of Eq. (4.210) to a set of independent equations lending
themselves to ready solution. To this end, it is first necessary to solve the eigenvalue
problem defined by

Ku = AMu, A = ui (4.212)

As discussed in Sec. 4.6, the solution of Eg. (4.212) consists of n eigenvalues Ai =
wf, in which Wi are the natural frequencies, and n eigenvectors, or modal vectors
Ui (i = 1,2, ... , n). The eigenvectors are orthogonal and have been normalized
so as to satisfy the orthonormality relations given by Eqs. (4.123) and (4.124), or
Eqs. (4.127) and (4.128), where in the latter A is the diagonal matrix of eigenvalues
and U is the orthonormal matrix of eigenvectors.

In view of the expansion theorem, Eg. (4.129). the solution of Eq. (4.212) can
be expressed as the linear combination

II

q(t) = L 17i(t)Ui = Ull(t)
i=l

(4.213)

where ll(n = [171ft) 172(t) ... 1711(t)f is an n -vector of principal coordinates, natural
coordinates, or modal coordinates. Inserting Eq. (4.213) into Eq. (4.210), premulti-
plying the result by U T and considering the orthonormality conditions, Egs. (4.127)
and (4.128), we obtain

ll(n + All(t) = N(t)

in which
N(t) = UT Q(t)

is an n -vector of generalized forces, or modal forces with the components

(4.214)

(4.215)

i = 1,2, ... , n (4.216)

Equation (4.214) represents a set of 11 independent modal equations. Assuming that
the system possesses r zero eigenvalues, the modal equations can be written in the
scalar form

r;i(t) = Ni(t),

17i(t) + wf17i(t)

i = 1,2, ... ,r

i = r + 1, r + 2, ... , n

(4.217a)

(4.217b)

We recall from Sec. 4.6 that zero eigenvalues are associated with rigid-body modes.
Hence, Eqs. (4.217a) and (4.217b) represent the differential equations for the rigid-
body modes and elastic modes, respectively. Because 17i(t) represent coordinates
with respect to an orthonormal basis, 17i(t) are also known as normal coordinates.

Equations (4.217) constitute a set of independent second-order ordinary dif-
ferential equations of the type discussed in more general form in Chapter 3. Indeed,
in Sec. 3.1 we discussed the homogeneous solution of second-order systems, i.e., the
solution to initial excitations, and in Sees. 3.2, 3.4 and 3.5 we discussed the particular
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. solution. More specifically, we discussed the solution to harmonic, periodic and ar-
bitrary external forces. Of course, for linear time-invariant systems the'principle of
superposition applies, so that the total solution is the sum of the homogeneous and
particular solutions. This statement should really be limited to transient response
only. Indeed, we recall from Chapter 3 that the response to harmonic excitations or
periodic excitations is a steady-state response, and it is not meaningful to combine
a steady-state response with the response to initial conditions, which is a transient

response.
In this section, we concentrate on the response to transient excitations and

propose to derive the solution to Eqs. (4.217) subject to initial and external excitations
. simultaneously, which requires expressions for the initial modal displacements and
. velocities. To this end, we let t = 0 in Eq. (4.213), use Eq. (4.21la) and write

.' ~ c' ,

n

q(O) =\ qo = I:>7i(O)ui
i=l

(4.218)

Then, premultiplying both sides of Eq. (4.218) by uJ M and considering Eqs. (4.123),
we obtain the initial modal displacements

i = 1, 2, ... , n (4.219a)

Following the same pattern in conjunction with Eq. (4.21lb), it is easy to verify that
the initial modal velocities are given by .

- 1,2, ... ,n (4.219b)

, I

Then, using developments from Chapter 3, the complete solution of Eqs. (4.217) can
be shown to be

r/i(t) = 1t [1< Ni(a)da] dr + 1Ji(O) + t~i(O), i == 1,2, ... , r (4.220a)

1 t. ~i (0) .
1Ji(t) Wi Jo Ni (t - r)smwi':dr + 1Ji(O) COSWit + -;;;:-Smwit,

i ='r +- 1, r + 2, ... , n (4.220b)

The formal solution of Eq. (4.210) is obtained by inserting Eqs. (4.216), (4.219) and
(4.220) into Eq. (4.213), with the result

q(t) = t{t [ur r Q(a)dd] dr + ur M (qo + t<Io)} Ui
1==1 Jo. Jo ' .

~ [1 T 1t
." T+ ~ ~ui Q(t --' r)sinwirdr + U(MqOcoswit

i=r+1 WI • o· .

TM' 'Ju· qo .+ 1 sin wit ~i .
Wi ..

- _, . r .•-- ~ -~ "~,-- --- .-- --~ - -.-- ---~-

(4.221)
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The just described procedure for obtaining the response of multi-degree-of-freedom
natural conservative systems by reducing the equations of motion to a set of inde-
pendent equations for the modal coordinates is commonly known as the classical
modal analysis.

The classical modal analysis has the significant advantage that it only requires
the solution of a real symmetric eigenvalue problem, which is by far the most desirable
type. In fact, this feature is so attractive that the question arises whether the classical
modal analysis can be applied to systems other than natural conservative ones. The
answer is affirmative in the case of systems with proportional viscous damping and
a qualified yes in the case of systems with small viscous damping, or with structural
damping.

ii. Systems with proportional viscous damping

The equations of motion for a viscously damped system can be obtained from Eq.
(4.69) by ignoring the gyroscopic and circulatory forces. The result is

Mij(t) + Cq(t) + Kq(t) = Q(t) (4.222)

where C is the n x n real symmetric damping matrix. Introducing the linear trans-
formation given by Eq. (4.213) into Eq. (4.222), pre multiplying the result by VI' and
considering the orthonormality relations, Eqs. (4.127) and (4.128), we obtain

11(t) + C'-it(t) + All(t) = N(t)

where N(t) is given by Eq. (4.215) and

C' = V T CV

(4.223)

(4.224)

is a real symmetric matrix. In general, C' is not diagonal, in which case the classical
modal analysis is not able to reduce the equations of motion to an independent set.

In the special case in which the damping matrix is a linear combination of the
mass matrix and stiffness matrix of the form

C = aM + f3K

where a and f3 are real constant scalars, C' reduces to the diagonal matrix

C' = a I + f3 A

(4.225)

(4.226)

Viscous damping characterized by a matrix of the form given by Eq. (4.225) is known
as proportional damping. Clearly, the classical modal analysis is capable of decou-
pIing systems with proportional damping. To obtain the response, it is convenient to
introduce the notation

C' = diag (ai + f3iWf) = diag (2~iWi) (4.227)

so that Eq. (4.223) can be written in the form of the independent equations

ryi(t) + 2~iWiili(t) + wT17i(t) = Ni(t), i = 1,2, ... , n (4.228)

where Ni(t) are as given by Eq. (4.216). Note that Eqs. (4.228) imply that there are
no rigid-body modes. If rigid-body modes are present, then Eqs. (4.228) must be
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modified by analogy with Eqs. (4.217); Equations of the type (4.228) were studied
in Secs. 3.1 and 3.5 in conjunction with the response of single-degree-of-freedom
systems to arbitrary excitations. Hence, using the a'nalogy with Eqs ..(3.26) and (3.83),
the solution of Eqs. (4.228) is simply

1]i (t) =

1,2, ... , n

;';(0) .' ]+ --smwdit ,
Wdi

(4.229)
in which

Wdi = (1 - ~nl/2 Wi, i = 1,2, ... ,n (4.230)

is the frequency of damped oscillation in the i th mode. The modal initial conditions
are as given by Eqs. (4.219). The formal solution of Eq. (4.222) is obtained by
introducing Eqs. (4.229) into Eq. (4.213).

The assumption of proportional viscous damping is made quite frequently,
many times only implicitly.

There is another case in which the classical modal transformation decouples a
, viscously damped system. Indeed, it was shown in Ref. 3 that, if the matrices M-1 C

and M-1 K commute, then a linear transformation involving the modal matrix U
is once again capable of decoupling the equations of motion. This case is not very
common.

iii. Systems with small damping

We are concerned with the case in which damping is small, although not necessarily
of the proportional type. The implication is that the entries of the matrix C are one
order of magnitude smaller thanthe'entries of the matrices M and K. This permits
a perturbation solution of Eq. (4.222). A first-order perturbation solution has the
form

q(t) = qo(t) +ql (t) . (4.231)

where the subscripts 0 and 1 denote zero-order and first-order quantities, respec-
tively, with zero-order quantities being one order of magnitude larger than first-
order quantities. Inserting Eq. (4.231) into Eq. (4.222), regarding C as a first-order
quantity, separating terms of different order of magnitude and ignoring second-order
terms, we obtain the zero-order equation'

Mqo(t) + K qo(t) = Q(t)

and the first-order equation

Mql + K ql (t) = -Cqo(t)

(4.232)

(4.233)

Equations (4.232) and (4.233) can both be solved by the classical modal analysis
for undamped systems described earlier in this section. As with any perturbation
solution, Eq. (4.232) can be solved for qo(t) first, independently ofEq. (4.233). Then,
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inserting the zero-order solution qo(t) into Eq. (4.233), the first-order equation, with
-Cqo(t) playing the role of an excitation force, can be solved for the first-order
perturbation ql (t).

It should be mentioned here that it is common practice to treat systems with
small damping by assuming that the off-diagonal terms in C' are of second order in
magnitude, and hence sufficiently small to be ignored. The perturbation approach
defined by Eqs. (4.232) and (4.233) does not support such an assumption.

iv. Systems with structural damping

The concept of structural damping introduced in Sec. 3.3 for single-degree-of-free-
dom systems can be extended to multi-degree-of-freedom systems provided that all
the excitation forces are harmonic and of the same frequency. Under these circum-
stances, Eq. (4.222) takes the special form

Mq(t) + Cq(t) + Kq(t) = eiw1Qo (4.234)

where Qo is a constant n-vector. Consistent with Eq. (3.58) for single-degree-of-
freedom systems, we invoke the analogy between viscous damping, and structural
damping and introduce the hysteretic damping matrix (Ref. 8)

1
C =-a

JrW
(4.235)

in which a is an 11 x n symmetric matrix of coefficients. Inserting Eq. (4.235) into
Eq. (4.234), we obtain

1
Mq(t) + -aq(t) + Kq(t) = eiwlQo (4.236)

JrW

so that structurally damped multi-degree-of-freedom systems can be treated as if
they were viscously damped. It is customary to assume that the hysteretic damping
matrix is proportional to the stiffness matrix, or

a = JrY K (4.237)

where y is a structural damping factor, so that Eq. (4.236) can be rewritten as

Mq(t) + rK q(t) + K q(t) = eiw1Qo
W

Moreover, for harmonic oscillation,

q(t) = iwq(t)

so that Eq. (4.238) reduces to

Mq(t) + (1 + iy) Kq(t) = eiw1Qo

(4.238)

(4.239)

(4.240)

in which (1 + iy) K is a complex stiffness matrix.
Equation (4.240) is in a form that lends itself to a solution by the classical modal

analysis. Indeed, following the steps outlined earlier in this section, we obtain the
independent modal equations

ryr(t) + (1 + iy) W;TJr(t) = eiIV1 Nr, r = 1,2, ... , n (4.241)
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where r = 1,2, ... , n (4.242)

are amplitudes of the modal forces. The solution of Eq. (4.241) is simply

eiwtNr
T/r(t) = (1 +' ) 2 2" r = 1,2, ... , n

. l Y wr - W

from which we obtain the solution of Eq. (4.240) in the form

(4.243)

(4.244)

The extension of the concept of structural damping to multi-degree-of-freedom
systems hinges on the assumption that the analogy with viscous damping is as given
by Eqs. (4.235) and (4.237). This assumption has not received sufficient experimental
substantiation, so that the results presented here must be used judiciously.

v. Undamped gyroscopic systems

The equations of motion for undamped gyroscopic systems can be obtained from
Eq. (4.69) by excluding the viscous damping and circulatory forces, with the result

Mij(t) + Gq(t) + Kq(t) = Q(t) (4.245)

where Yr and Zr are the real and imaginary parts of the complex state eigenvector
X
r

(r = 1,2, ... , n). Of course, the complex conjugate xr is also an eigenvector, but

are 2n x 2n coefficient matrices, the first real symmetric and positive definite and
the second real and skew symmetric. The eigenvalue problem can be expressed in

the real form
(4.248a, b)

(4.247a, b)

r = 1,2, ... , n

G* = [~ -;J = -G*~

where G is the n x n skew symmetric gyroscopic matrix. It is easy to verify that in
this case the classical modal analysis fails to produce a meaningful solution, as the
matrix UT GU is an n x n null matrix, so that the corresponding modal equations
do not contain gyroscopic terms. This erroneous result is due to the fact that the
classical modal matrix U is real, and the eigenvectors associated with Eq. (4.245)
are complex. Moreover, as shown in Sec. 4.7, no solution to the eigenvalue problem
is possible in the configuration space, so that the problem' must be cast in the state

space.Following the approach of Sec. 4.7, Eq. (4.245) can be expressed in the state

form' M*x(t) = -G*x(t) + X(t) (4.246)

wherex(t) = [qT(t) qT(t)f isthe2n-dimensionalstatevector,X(t) = [OT QT(t)f
is the associated 2n-dimensional excitation vector and

._-~-- - ----- ~-~---- -----_.~ ~---
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this is inconsequential here because we work with real quantities alone. The solution
to the real eigenvalue problem, Eqs. (4.248), was discussed in Sec. 4.7.

The general solution of the Eq. (4.246) can be obtained by means of a modal
analysis for gyroscopic systems developed in Ref. 11, which is essentially the solution
presented here. To this end, we introduce the 2n x 2n real modal matrix

p = [YI ZI Y2 Z2 ... Yn zn] (4.249)

Then, using results from Sec. 4.7, it is easy to verify that the modal matrix satisfies
the orthonormality equations

pT M* p = I, pTG*P = A (4.250a, b)

in which
[ 0 -Ow, ]A = block - diag

Wr
(4.251)

Next, we consider the linear transformation
11

x(t) = L)~r(t)yr + 1]r(t)zr]
r=1

Pw(t) (4.252)

where
wet) = [~dtl1]I(t) ~2(t) 1]2(£) .. , ~Il(t) 17n(t)f (4.253)

is a 2n-vector of modal coordinates. Introducing Eq. (4.252) into Eq. (4.246) and
premultiplying both sides by pT, we obtain

in which

w(t) = -Aw(t) + Wet) (4.254)

(4.255)

where
TYr(t) = Yr X(t), (4.256)

Whereas the matrix A is not diagonal, the decoupling is just as effective, as A is
block-diagonal and every block is 2 x 2. Indeed, Eq. (4.254) represents a set of n
independent pairs of first-order equations, having the explicit form

~,(t) - Wr17r(t) = Yr(t), i7r(t) + wr~r(t) = Zr(t), r = 1, 2, ... , n

(4.257)

Clearly, each pair of equations can be solved for the conjugate modal coordinates
~r(t), 17r(t) independently of any other pair.

The solution of Eqs. (4.257) can be obtained conveniently by means of the- -
Laplace transformation. Letting ~,(s) = .£~r(t), 1]r(s) = L1]r(t), Yr(s) = LYr(t)
and Zr(s) = LZr(t) and transforming both sides of Eqs. (4.257), we obtain

- -
s~r(s) - ~r(O) - wr1],(s) = Yr(s),

s1]r(s) - 17r(O) + wr~r(s) = Zr(s),
r = 1,2, ... ,11 (4.258)
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where the initial modal coordinates ~r (0) and TJr(0) can be obtained from Eq. (4.252)
with t = 0 and the orthonormality relations, Eq. (4.250a), as follows:

, T * . T~r(O) = Yr M x(O), TJr(O) = Zr M*x(O) '. (4.259)

in which x(O) is the initial state vector. Equcitions (4.258) can be solved for the pair
fr (s), 1Jr(s) of transformed modal coordinates, with the result

~r(S) 2 1 2 [SYres) + wrZr(s) + S~r(O) + WrTJr(O)] ,
S + Wr

1Jr(S) = 2 1 2 [sZr(S) - wrYr(S) + STJr(O) - Wr~r(O)],
S + Wr

r = 1,2, ... ,n (4.260)
Using the convolution theorem (Appendix'A) and considering Eqs. (4.256) and
(4.259), we can write the solution of,Eqs. (4.260) in terms of convolution integrals in
the form

~r(t) =it [y;X(i)COSWr(t - i)'+ z;X(i)sinwr(t - i)]di

+ Y; M*x(O) cos wrt + z; M*x(O) sin wrt,,

TJr(t) =it [Z;X(i)COSWr(t - i) - y;X(i)sinwr(t - i)]di

+ z; M*x(O) cos wrt - y; M*x(O) sin wrt,
r = 1,2, ... ,n (4.261)

Finally, inserting Eqs. (4.261) into series (4.252), we obtain the complete response of
a conservative gyroscopic system in the form of the state vector

x(t) =~ {it [(YrY; + ZrZ;)X(i)COSWr(t - i)

+ (YrZ; - ZrY;) XCi) sinwr (t - i)] di

+ (Yr Y; + ZrZ;) M*x(O) cos wrt + (YrZ; - ZrY;) M*x(O) sin wrt }

(4.262)

Equation (4.262) represents the transient response, which implies that the force
vector Q(t), and hence X(t), is defined only for t. ::: 0 and is zero for t < O. In the
case of steady-state excitations, one can derive the response starting with Eqs. (4.257)
directly.

vi. General nonconservative systems

General nonconservative systems differ from conservative systems in two important
ways, namely, they cannot be described by a single real symmetric matrix, which
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implies that the eigensolutions are complex for the most part, and solutions of the
equations of motion require a state space description. Of course, there are special
cases of nonconservative systems that can be treated in the configuration space by
the classical modal analysis, but here the interest lies in systems that do not lend
themselves to such a treatment. There is a modal analysis designed especially for
arbitrary viscously damped systems (Refs. 8 and 12), but its advantages over other
methods for treating general nonconservative systems are questionable, as the eigen-
values still tend to be complex and solutions still require a state space formulation.
In view of this, we choose to discuss general nonconservative systems directly.

Equation (4.69) expresses the equations of motion for a general nonconserva-
tive system in the matrix notation

Mij(t) + (C* + G)q(t) + (K + H)q = Q (4.263)

in which the various coefficient matrices have been defined in Sec. 4.4. Adding the
identity q(r) = q(r), Eq. (4.263) can be cast in the state form

x(n = Ax(t) + BQ(t)

where xU) = [qT (t) qT (t) r is the 2n-dimensional state vector and

(4.264)

[I] 011
A = -------------:-------------- ,

_M-l (K + H) I _M-J (C* + G)
I

(4.265a,b)

(4.266)

are '211 Y '2n and '2n x 11 coefficient matrices, respectively, both real.
Equations of the type given by Eq. (4.264) were discussed in Chapter 1. Indeed,

from Sec. 1.9, we can write the solution of Eq. (4.264) directly in the form

xU) = ¢(t)x(Q) + it ¢(t - r)BQ(T)dr

in which ¢ (t - r) is the transition matrix, given by the infinite series

¢(t - r) ¢(t, r) = eA(t-r)

(t - r)2 ') (t - r)3
1+ (t - r)A + ---k + A3 + ...

2! 3!
(4.267)

The transition matrix was encountered several times before in this text. Clearly,
Eq. (4.266) contains both the homogeneous and particular solutions, and we recall
that we obtained the homogeneous solution in Sec. 4.8 in the form of Eq. (4.198).
The convergence of the series for the transition matrix is guaranteed, but the rate
of convergence depends on the eigenvalue of A of largest modulus and the time
interval t - r.

In a limited number of cases, evaluation of the response can be carried out
in closed form. This is often the case when the system is of low order and the
excitation forces are relatively simple. In particular, the order of the system must
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be sufficiently low that the transition matrix can be derived by means of the inverse
Laplace transform formula (see Sec. 1.9)

<P(t) = £.-1 (sI _ A)-1 (4.268)

which implies that the order must be sufficiently low so as to permit closed-form
inversion of the matrix s I - A. The fact that the transition matrix can be obtained
in closed form does not guarantee that the response can be obtained in closed form.
Indeed, in addition, the excitation forces must represent sufficiently simple functions
that the integral in Eq. (4.266) can be evaluated in closed form.

We/c6nclude from the above that in most cases evaluation of the response
by means of Eq. (4.266) must be carried out numerically, which implies repeated
computation of the transition matrix. For practical reasons, inclusion of an infinite
number of terms in the series is not possible, so that the transition matrix must be
approximated by truncating the series. An approximation including terms through
nth power in A only has the form

t2 t3 tn
<Pn = I + tA + _A2 + _A3 + ... + _An (4.269)

2! 3! n!

where we let T = 0 in Eq. (4.267) for simplicity. The computation of <Pn can be
carried out efficiently by rewriting Eq.(4.269) as

<Pn = I + tA (I + ~A (I + ~A (I + '" + n ~ 1A (I + ~A ) .. .) ) )

(4.270)

and using the recursive process

t
I +-A

n
t

I + -- kt/f1
n - 1

t
1/f3 = I + --A1/f2

n-2 (4.271)

<Pn = 1/fn = I + tA1/fn-1

The computation of <Pnby means ofEqs. (4.271) requires n-l matrixmuItiplications.
The transition matrix possesses the properties

<P(t, t) = I

<P(0,~) = <P(0,~)<P~2,~)

(4.272)

(4.273)

Moreover, letting t3 = t1 in Eq. (4.273) and considering Eq. (4.272), we conclude
that

(4.274)



Sec.4.10 Response of Multi-Degrce-of-Frcedom Systems to Arbitrary Excitations 209

Equation (4.273), referred to as the semigroup property, can be used to expedite the
convergence of the series (4.267) by dividing the interval t - r into k + 1 smaller
subintervals and writing

(4.275)

Now the computation of the transition matrix requires the continuous product of
k + 1 transition matrices, but the convergence of each of these transition matrices is
considerably faster than the convergence of the overall transition matrix.

The remarkable aspect of solution (4.266) is that it does not require the solution
of the eigenvalue problem for the coefficient matrix A. On the other hand, it does
require repeated evaluation of the transition matrix. Of course, if the solution of the
eigenvalue problem for A is available, then the derivation of the response by means
of a modal analysis for general dynamic systems is quite efficient.

We recall from Sec. 4.8 that the solution of the eigenvalue problem for an
arbitrary real matrix A consists of the eigenvalues Ai, right eigenvectors Xi and left
eigenvectors Yi (i = 1, 2, ... , 2n). The corresponding matrices are A, X and Y,
respectively. The two sets of eigenvectors are biorthogonal and can be normalized so
as to satisfy Eqs. (4.187). In view of the expansion theorem, Eqs. (4.190), we consider
a solution of Eq. (4.264) in the form

X(t) = X~(t) (4.276)

where~(t) = [{!it) {2(t) ... {zn(t)f isa2n-vectorofmodalcoordinates. Introduc-
ing Eq. (4.276) into Eq. (4.264), premuItiplying both sides of the resulting equation
by yT and considering the biorthonormality relations, Eqs. (4.187), we obtain

where
Z(t) = yT BQ(t)

(4.277)

(4.278)

is a modal force vector. Equation (4.277) represents a set of 2n independent equa-
tions of the form

i = 1. 2 ..... 2n (4.279)

Using results obtained in Sees. 1.4 and 1.8, the solution of Eqs. (4.279) can be shown
to be

{i(t) = eA,1{dO) + 11

eA,(I-r) Zi(r)dr.

where, premultiplying Eq. (4.276) by yj', letting t = 0 and using the orthonormality
relations, the initial modal coordinates are

i = 1. 2.... , 2n

i = 1,2 .... ,2n

(4.280)

(4.281)

The formal solution is obtained by inserting Eqs. (4.280) in conjunction with Eqs.
(4.281) into Eq. (4.276).
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At this point, it may prove of interest to show that the solution obtained by
means of modal analysis is equivalent to that obtained by the transition matrix. To
this end, we introduce Eq. (4.201) into Eq. (4.266), recall Eq. (4.267) and write

x(t) = XeAtyT x(O) + it XeA(t-T)yT BQ(r)dr (4.282)

Next, we pre multiply Eq. (4.282) by yT, use Eqs. (4.276) and (4.278), consider
Eq. (4.187a) and obtain

~(t) = eAt~(O) + t eA(t"-T)z(r)dr (4.283)Jo '
It is not difficult to see that Eq. (4.283) represents the matrix form of Eqs. (4.280).

Example 4.10

Derive the response of the three-degree·of-freedorri system of Example 4.6 to the exci-
tation

(a)

(b)

where Qo is a constant and u(t) is the unit step function.
Recognizing that the system has no rigid-body modes, the response can be ob-

tained from Eq. (4.221) in the form

3 u, it
q(t) = L:---':'uT Q(t - r)sinwirdr

i=l WI 0

where Q has the components giv~n by Eqs. (a). Moreover, from Example 4.6, the
natural frequencies are

WI = 0.6524j!;, rad/s, W2 = 1.6556j!;, rad/s, W3 = 2.0000j!;, rad/s (c)

and the orthonormal modal vectors are

[
0.3354] [ -0.5257]

Ul = m-l
/
2 '0.4638 , U2 = m-l/2 0.0845,

0.3603 0.6525
Equation (b) involves the integral

t u (t - r) sin wirdr = t sin wirdr =10 ' 10

[
0.3333 ]

U3 = m-l/2 -0.3333
. 0.6667

(d)

(e)

Hence, inserting Eqs. (a), (c), (d) and (e) into Eq. (b), we obtain the response

1 [ 0.3603 [0.3354] ( j!;, )q(t) = - --2 0.4638 1 - cosO.6524 -t
k 0.6524 0.3603 m

0.6525 [-0.5257] ( j!;, )+ --2 0.0845 1 - cos 1.6556 -t
1.6556 0.6525 , m

0.6667 [ 0.3333] ( j!;, ) I+--2 -0.3333 1 - coi>2.0000 -t
2.0000 0.6667 m
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(f)

1 1[0.2839] ( If) [-0.1251] ( If )- 0.3926 1 - cas 0.6524 - t + 0.0.201 1 - cos 1.6556 - t
k. 0.3050 m 0.1553 m

[
0.0556] ( If) I+ -0.0556 1 - cas 2.0000 -t
0.1111 m

We observe that the largest contribution to the response is from the first mode. with the
contribution from the higher modes diminishing as the mode number increases.

Example 4.11

Investigate the convergence characteristics of the transition matrix for the system of
Example 4.8.

From Eq. (4.201), the transition matrix can be expressed in the form of the infinite
matrix series

(a)

where A = diag ()Ool 1..2 1..3 1..4) is the diagonal matrix of the eigenvalues and X and
Yare the matrices of right and left eigenvectors. Because X and Yare constant, the
convergence rate of the transition matrix depends on the rate of convergence of eAt,

which in turn depends on the magnitude of the eigenvalue of largest modulus. In our
particular case, both 1..3 and 1..4 = I3 share this property. From Example 4.8, we can
express 1..3 in the form

-I -1m 1..3
tan ---

Re 1..3
(b)

where
(c)

is the magnitude. The phase angle is irrelevant. Because A is diagonal, the convergence
of <t> depends on the convergence of the infinite scalar series

II.. 13 II.. 1
4

+ 3 3 -13<P, + 4 3 -;4<P3t --e . t --e
3! 4!

eA,t =1 + t 11..
3

1e-i<P, + t21A312 e-12<P,
2!

+ t5 11..31
5

e-iS<P3 + ...
5!

=1 + 4.7673te-i<P, + 11.3635t2e-i2<P3

+ 20.5196t5e-i5</J3 + ... (d)

Clearly, the exponential terms have unit magnitude, so that they do not affect the con-
vergence rate. The question of convergence is intimately related to the question of
precision, as the number of terms required varies with the desired accuracy. For a given
precision, the rate of convergence depends on the value of 11..31, as well as on t. For a
10-4 precision, and for 11..31 = 4.7673 and t = 0.1 s, it is necessary to take terms through
the fifth power. On the other hand, for t = 0.5 s, terms through eleventh power are
required, and for t = 1 s terms through nineteenth power. Of course, as t increases,
computational savings may be achieved by using the semigroup property, as reflected
in Eq. (4.275).
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It should be pointed out that, although we based the analysis on the behavior of
eAt, it is common practice to compute the transition matrix by means of eAt, i.e., without
solving the eigenvalue problem for A first. Because in this case the eigenvalues are not
available, no rational estimate of the number of terms required for convergence of the
series for the transition matrix can be made.

4.11 DISCRETE-TIME SYSTEMS

In Sec. 4.10, we discussed the problem of deriving the response of multi-degree-of-
freedom systems to arbitrary excitations by means of modal analysis, whereby sets
of simultaneous ordinary differential equations of motion are reduced to low-order
independent equations lending themselves to relatively easy solution. This makes
modal analysis a very desirable method, particularly for conservative systems, which
are characterized by real eigensolutions and potent algorithms for computing them.
The situation is not nearly so good for non conservative systems, characterized by
complex eigensolutions and significantly less desirable computational algorithms.

In the case in which modal analysis is used to transform a set of simultaneous
equations of motion to a set of independent first-order or second-order equations,
the response can be obtained by the methods presented in Chapter 3. Of course, the
use of modal analysis is not an absolute necessity and a solution can be produced by
the method based on the transit~on matrix presented in Sec. 1.9, even for conservative
systems.

The solution based on the transition matrix has the appearance of a c1osed-
form solution, but must be evaluated numerically for the most part. The procedure
is computation ally intensive, as this involves repeated evaluation of the transition
matrix, which requires an increasing amount of effort as the time t increases. As
suggested in Example 4.11, some advantage: can accrue by dividing the time into
smaller increments and using Eq. (4.275). Perhaps a better approach, however, is
to discretize the system in time. From Sec. 4.10, the state equations for a general
dynamical system have the matrix form .

x(t) = Ax(t) + BQ(t)

where x(t) = [qT (t) q(t) r is the state vector and

[I] o I I
A = -------------:--------------,

-M-1(K + H) : -M-1(C* + G) .
B

(4.284)

[ -~- ]
M-1

(4.285a,b)

are coefficient matrices. From Sec. 1.10, the discrete-time equivalent of Eq. (4.284)
is given by the sequence

x(k + 1) = <l>x(k) + fQ(k), k = 0, 1,2, ... (4.286)

where

<I>
T2 T3

I + T A + _A2 + _A3 + ...
2! 3!

(4.287a)

'---------------- --------~----------------- ----- ------
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(
T T2 T3

)r = A-I (eAT - I) B = T I + -A + _A2 + _A3 + ... B (4.287b)
2! 3! 4

in which T is the sampling period. Moreover, <I>is recognized as the discrete-
time transition matrix. By taking T sufficiently small, the transition matrix can
be computed with a relatively small number of terms. In addition to T, the number
of terms depends on the magnitude of the eigenvalue of largest modulus, namely,
IAnl·
Example 4.12

Compute the discrete-time response sequence of the system of Example 4.8 to an initial
impulse applied in the x-direction. List results through x(4).

From Example 4.8, the system matrix is

[

0 0
o 0

A = -1 0.4
-0.4 -6

1 0]o 1
-0.3 4
-4 -0.2

(a)

Hence, if we use results from Example 4.8 to calculate the largest modulus 1.1..31 = 1.1..41 =
4.7673 and if we choose T = 0.05 s and an accuracy of 10-4, then the transition matrix
can be computed from Eq. (4.287a) with five terms, as follows:

T2 T3 T4

<J>= eAT ~ I + TA + _A2 + _A3 + _A4

2! 3! 4!

[

0.9987
-0.0049
-0.0512
-0.0148

and, from Eq. (4.287b), we obtain

-0.0055 0.0492 0.0049]
0.9927 -0.0049 0.0492
0.0101 0.9641 0.1961
0.2977 -0.1961 0.9627

(b)

Moreover, the discrete-time excitation sequence is

[

-0.0013 0.0001]
-0.0001 0.0012

0.0493 0.0050
-0.0050 0.0493

(c)

Q(O) = [~], Q(k) = 0, k = 1,2, ... (d)

Inserting Eqs. (b )-(d) into Eq. (4.286) and letting X(O)= 0, we obtain the discrete-time
response sequence

[

-0.0013 0.0001] [ -0.0013]
x(1) = <J>x(O)+ rQ(O) = -0.0001 0.0012 [ 1] = -0.0001

.. 0.0493 0.0050 0 0.0493
-0.0050 0.0493 -0.0050
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x(2) = <l>x(l)+ rQ(l)

[ 0.99~ -0.0055 0.0492
0~9] [-00013] [ 00012 ]

-0.0049 0.9927 -0.0049 0.0492 -0.0001 -0.0005

- -0.0512 0.0101 0.9641 0.1961 0.0493 0.0466

-0.0148 0.2977 -0.1961 0.9627 -0.0050 -0.0145

x(3) = <l>x(2)+ rQ(2)

[ 0.9987 -0.0055 0.0492 00049] [ 0.0012 ]
[0= ]-0.0049 0.9927 -0.0049 0.0492 -0.0005 -0.0014

= -0.0512 0.0101 0.9641 0.1961 0.0466 = . 0.0420

-0.0148 0.2977 -0.1961 0.9627 -0.0145 -0.0231

x(4) = <l>x(3)+ rQ(3)

[ 0.9987 -0.0055 0.0492 0~9] [ 0.0025 ] [ 0~4 ]-0.0049 0.9927 -0.0049 0.0492 -0.0014 -0.0025

- -0.0512 0.0101 0.9641 0.1961 0.0420 = 0.0359

-0.0148 0.2977 -0.1961 0.9627 -0.0231 -0.0304
(e)

4.12 NUMERICAL SOLUTION OF NONLINEAR INITIAL-VALUE PROBLEMS

The various algorithms for determining the system response discussed in Sees. 4.6-
4.11 were confined to linear systems and systems linearized about equilibrium posi-
tions. Linearization implies the assumption that the motions about equilibrium are
small. In certain cases, this assumption is not valid, so that the determination of the
response must be based on the original nonlinear differential equations. Except for
some special cases, nonlinear differential equations do not lend themselves to closed-
form solutions, so that one must be content with numerical solutions. As in Sec. 4.11,
numerical solutions can be carried out on digital computers in discrete time, but so-
lutions for nonlinear equations tend to be more involved than for linear equations.
In this section, we concentrate on numerical solutions by the Runge-Kutta methods.

In general, the equations of motion for vibrating mechanical systems represent
sets of second-order ordinary differential equations. However, numerical integra-
tion of differential equations is carried out most conveniently in terms of first-order
equations, which requires that the equations of motion be cast in state form. State
equations were introduced in Sec. 4.3 in the form of Eq. (4.34). In this section, we
enlarge the scope by considering vectors f depending explicitly not only on the state
vector x but also on the time t. This enables us to compute the response to initial
excitations and external forces simultaneously ..

For convenience, we begin our discussion by considering an initial-value prob-
lem described by the single first-order differential equation

x(t) = f(x(t), t) (4.288)

where f is a nonlinear function of x (t) and t. The solution x (t) is subject to the
initial condition x (0) = Xo. In attempting a solution of an initial-value problem, it is
of interest to know that a unique solution exists. Moreover, it is of interest to know
that small changes in the problem statement, as reflected in the function f(x(t), t)
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brings about small changes in the solution x(t). This places certain restrictions on
the function f. To discuss these restrictions, we consider a function f = f (x (t), t)
defined at every point of a region R of the plane (x, t). The function f is said to
satisfy a Lipschitz condition with respect to x in R if there exists a positive constant
L such that the inequality

(4.289)

is satisfied for every pair of points (XI, t) and (X2, t) in R. The constant L for which
the above inequality holds true is called a Lipschitz constant and the function f is said
to be a Lipschitz function, or Lipschitzian in R. It can be shown (Ref. 4) that f (x, t)
is a Lipschitz function if the region R is convex and the partial derivative of/ox
exists and is bounded in R. Note that a region is convex provided that whenever two
points belong to R, the entire straight line connecting the two points also belongs
to R. We consider regions R{O :::: t :::: tf, -00 < x < oo} of the plane (x, t),
which can be verified to be convex. According to a theorem demonstrated in Ref. 4,
the differential equation (4.288) has a unique solution if f is Lipschitzian in R. The
theorem asserts not only that a solution exists but that the solution is determined
uniquely by the initial condition x(O) = x(). In the following discussions, we will be
concerned only with Lipschitzian functions f. Note that analogous statements can
be made in the case in which Eq. (4.288) represents a vector equation rather than a
scalar equation (Ref. 4).

Numerical integration provides only an approximate solution whose accuracy
depends on the order of the approximation, among other things. We consider here
solutions by the Runge-Kutta methods, a family of algorithms characterized by dif-
ferent orders of approximation, where the order is related to the number of terms
in Taylor series expansions. Derivation of the high-order Runge-Kutta algorithms
is very tedious, and the details are not particularly useful. To develop a feel for the
approach, however, in this text we derive the second-order method and simply list
the equations for the higher-order algorithms in common use. To this end, we expand
the solution of Eq. (4.288) in the Taylor series

(4.290)

where T is a smalltime increment and the superscript (i) denotes the ith derivative
with respect to time (i = 1,2,3, ... ). For numerical purposes, we must limit the
number of terms in the series, which amounts to using a finite series to approximate
x (t + T). Assuming that the solution x (t) has N + 1 continuous derivatives, we can
rewrite Eq. (4.290) in terms of an Nth-degree Taylor polynomial about t as follows;

(4.291)

for some ~, t < ~ < t + T.

-------------------------------------"----_.~
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i == (2~... , N

Successive differentiation of x(t) with due consideration of Eq. (4.288) yields

X(l')(t) = di x (,t) = d
i
-
l

f(x(t.)., t.) = f(i.,..,l) (x(t), t),
dtl. i dti,-l (4.292)

Moreover, for our numerical algorithm, we are interested in the discrete-time version
of Eq. (4.291). To this end, we consider the discr,ete times t == tk, t + T = tH1 =
tk+ T (k = 0, 1,2, ... ), where T is known as the step size, and introduce the notation

x(t) = X(tk), x(t + T) = X(tH1), k = 0,1,2, ...

f(i)(x(t):t) ~'f(i)(x(tk)' tk), i = 0,1, ... , N - 1; k, = 0,-1,2, ...(4.293)

.Introducing Eqs. (4.292) and (4.293) into Eq. (4.291), we have
1 ".~-r' \ i, . ~

. '. ' . N T j, ... TN+1 ,
x(tHl) ~ X(tk) + f;j! f(J-l\~(tk)' tk) + .(N + 1)! f(N\X(~k), ~k) (4.294)

where tk < ~k < tHl·An approximation of the solution of Eq. (4.291) is obtained by ignoring the
remainder term in Eq. (4.294), i.e., the'term involving ~k'" Hence, denoting the
approximate' values of X(tk), X(tHl) and f(i)(X(tk), tk) bywk, Wk+1 and f2), re-
spectively, we can write the discrete-time version of the Nth-order Taylor series in

the form

(4.295)

, The method for computing the numerical solution of Eq. (4.288) by means of Eq.
(4.295) is called the Taylor method of order N. It forms the basis for the Runge- Kutta

methods.
The error in the approximation (4.295) is known as the local truncation error

and is defined by

... T? (1) TN (N-I)
WH1=Wk+Tfk+-!k +"'+-!k '2! N!

k = 0, 1, 2, ... ; Wo = Xo

N Tj TN+l
eHi = X(tH1) - X(tk) :.- L -.,f(j-1) (X(tk), tk) = I f(N\x(~k), ~k)

j=O J. (N + 1).
" (4.296)

It follows that the Taylor method of order N has the desirable feature that the local
truncation error is of order O(TN+1). The global truncation error is defined as

(4.297)

where M is the number of steps. In the case of the Taylor method of order N, the
global truncation error can be shown (Ref. 7) to be of order O(T

N
). Hence, by

making the order N sufficiently larg~, or the step size T for a givenN sufficiently
small, the global truncation error can be made as small as desired. Note that, in
addition to truncation errors, there may be roundoff errors.
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The lowest-order approximation is obtained by retaining terms in Eq. (4.295)
through the first order only and has the form

(4.298)

The method of computing the first -order approximation by means of Eq. (4.298) is
known as Euler's method. It represents linearization of the nonlinear differential
equation and tends to be very inaccurate, as the global truncation error is of the
same order as the step size T. For this reason, Euler's method is not recommended.

The Taylor methods have a serious drawback in that they require derivatives
of f (x, t). Indeed, quite often this makes the process very tedious, so that the
Taylor methods, as defined by Eq. (4.295), have limited appeal. The Runge-Kutta
methods, which are based on the Taylor methods, retain the desirable characteristic
of high-order truncation errors of the Taylor methods, but avoid the requirement for
derivatives of f. To illustrate the ideas, we consider the second-order Runge-Kutta
method, denoted by RK2. To this end, we write the second-order approximation in
the form

where C1 and C2 are constants and

(4.299)

g1 = Tf(x, t), (4.300)

(4.301 )

in which 0'1 and 0'2 are constants. But, from Eq. (4.294) with N = 2, the second-order
Taylor method is defined by

T2 df(x, t)
x(t + T) = x(t) + Tf(x, 1) + 2! dt

T2 (af(x,t) af(x,t))
= x(t) + Tf(x, t) + -2 -a-x-f(x, t) + -a-t-

Comparing Eq. (4.299), in conjunction with Eqs. (4.300), with Eq. (4.301), we con-
clude that if the constants C1, C2, 0'1 and 0'2 satisfy the relations

C1 + C2 = 1,
1

O'lc2 = -,
2

1
o'~c~ = -- - 2

(4.302)

then the RK2 method will have truncation errors of the same order of magnitude as
the second-order Taylor method.

We observe that Eqs. (4.302) represent three algebraic equations in four un-
knowns, so that they are underdetermined. This implies that one of the unknowns
can be chosen arbitrarily, which determines the three other unknowns uniquely. One
satisfactory choice, and one that gives Eq. (4.299) symmetric form, is C1 = 1/2, which
yields C1 = C2 = 1/2,0'1 = 0'2 = 1. In this case, the RK2 method can be written in
the form

T
Wk + - {f(Wk, td + J[Wk + Tf(wk, tk), tk + T]},

2
k = 0,1,2, ... ; Wo = Xo (4.303)
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(4.304)

This version of theRK2 method is known as Heun's method. Note that Ref. 2 refers
to another version of RK2 as Heun's method.

Another choice is Cj = 0, which yields Cz = 1, <Xl = <xz = 1/2. In this case,
the RK2 method has the form

k = 0, 1, 2, ... ; Wo = Xo

This version of the RK2 method is called the modified Euler method.
The most common Runge-Kutta method is of order four. It is denoted by RK4

and is defined by

where

(4.305)

k = 0,1,2, ... (4.306)

It has a local truncation error of order 0 (T5) and global truncation error of order
0(r4

). For the most part, this represents very good accuracy. The RK4 method is
also easy to implement, which explains why the method is used widely.

The question of the step size required to guarantee a given accuracy remains.
One way of addressing this questio~ is to solve the problem twice, once using the
step size T and the other using the step size T /2, and compare the results. If there is
no satisfactory agreement, the procedure must be repeated. This process is not very
efficient, as it requires a significant amount of computation.

The Runge-Kutta-Fehlberg method, denoted by RKF45, resolves the above
problem in an efficient manner. Indeed, the approach involves the determination of
an optimal step size for a given accuracy. The RKF45 method requires two different
approximations at each step. The first step is the RK4 approximation defined by

(4.307)

and the second is the RK5 approximation having the form

I

I~

(4.308)
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Tf(Wk,tk)

g2 = Tf (Wk + 19l' tk + :)

Tf (Wk + ~gl + ~g2' tk + 3T)
32 32 8

(
1,932 7,200 7.296 12T)

Tf Wk + 2,197g1 - 2, 19792 + 2, 19793, tk + 13

(
439 3,680 845 )

T f Wk + -gl - 8g2 + --g3 - --g4 tk + T
216 513 4,104'

(
8 3,544 1,859 11 T)

g6 = Tf Wk - 27g1 + 2g2 - 2, 565g3 + 4, 104g4 - 40gS,tk + 2'
(4.309)

The RKF45 method requires the evaluation of six functions, gl, g2, ... , g6, per step.
Note that, although g2 is not required explicitly to compute Wk+l and Wk+l, it is
required to compute g3, g4, gs and g6. By contrast, RK4 and RK5 require the
evaluation of four functions and six functions, respectively, for a total of ten.

The RKF45 method contains a so-called "error-control" procedure permitting
an optimal determination of the step size for a given accuracy. Denoting the specified
error-control tolerance by £ and the corresponding optimal step size by sT, the scalar
s can be determined by means of the formula (Ref. 7)

s = (4.310)

Formula (4.310) provides a conservative choice for s so as to avoid extensive com-
putations involved in the repetition of steps. Then, Wk+l is computed using the step
size sT instead of T. Moreover, the next step, consisting ofthe computation of Wk+l
and Wk+l with k advanced by 1, is carried out initially with the step size sT. Note
that, if Wk+1 and Wk+l agree to more significant digits than required, s can be larger
than 1, which implies an increase in the step size.

The Runge-Kutta methods are one-step methods, as information from step k
only is used to compute Wk+I' Such methods are said to be self-starting. The Runge-
Kutta methods have the advantages that they are easy to code and are numerically
stable for a large class of problems.

Because the information at previous points, namely, Wk-I, Wk-I, ... and fk-J,
fk-2, ... , is readily available and because the global truncation error tends to increase
with each step, the question arises whether accuracy can be improved by using this
information to compute Wk+l. Methods using information from more than one
previous point are referred to as multistep methods. A commonly used multistep
method is the fourth-order Adams-Bashforth-Moulton predictor-corrector method
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(Refs. 2, 5 and 7). It uses the Adams-Bashforth predictor defined by

T [ .Wk+1 = Wk + - 55f(Wk, tk) - 59f(Wk-l, tk~l)
24

+ 37 f(Wk-2, tk-2) - 9 f(Wk-3, tk-3)],

k = 3,4, ...

and the Adams-Moulton corrector given by

T [ .Wk+1 = Wk + - 9f(WHl, tHl) + 19f(Wk, tk)
24

- 5f(Wk-l, tk-l) + f(Wk-2, tk-2)],

k = 2,3, ...

(4.311)

(4.312)

Multistep methods are not self-starting. Hence, before the predictor-corrector
method can be applied, it is necessary to generate the starting values WI, W2 and
W3 for a given initial'value Wo == xo by a single-step method, such as the RK4
method. Then, the predictor is used to compute wiO

), an initial approximation to
W4, as follows:

(0) T ' , , ..
w

4
= W3 + 24 [55f(W3,t3) - 59f(W2, t2) + 37f(Wl, tl) - 9f(~0, 0)] (4.313)

The approximation is improved by using the corrector and writing

(1) To [ (0)" . ]w
4

= W3 + 24 9f(w4 ' t4) + 19f(w3, ~3) - 5f(u,;2, t2) + f(Wl, tl), (4.314)

The corrector can be used again in conjunction with wil) to obtain

(2) T [ (1) ]W
4

= W3+ 24 9f(w4 ' t4) + 19f(w3, t3) - 5f(W2, t2) + few], tl) (4.315)

The process can be continued until convergence to W4 is achieved. However, the
process converges to an approximation given by the corrector; rather than to the
solution W (t4)' In practice, it is more efficient to reduce the step size, if improved
accuracy is needed, and accept Wi1

)as the approximation to W (t4)' Then, the process
continues by using the predictor in conjunction with W4= wi

1
) to compute w~O) and

the corrector in conjunction with w~O) to compute w~l), where the latter is accepted
as the approximation to x(ts), etc. The local truncation error for both the predictor
and the corrector is of the order 0 (Ts).

Two other popular multistep methods are the Milne-Simpson method and the
Hamming method (Ref. 7).

Difficulties with numerical methods can be expected when the exact solution
of the differential equation contains terms of the exponential form eAt, where A is
a complex number with negative real part. Whereas this term tends to zero as t
increases, the approximation does not necessarily exhibit this characteristic. Such a
differential equation is said to be stiff and can arise in damped systems. Unless the

_. • • ~ ~ w __
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step size is sufficiently small, the results can be meaningless. Even when the step size
is reduced, the improvement tends to be temporary, and eventually truncation and
roundoff errors lead to instability. This tends to occur when the solution contains
a steady-state part, in addition to the transient part. For the steady-state part, a
larger step size should be used, but the transient part, which may have decayed
already, dictates a smaller step size. But, as indicated in Sec. 3.2, it is not advisable
to combine steady-state solutions with transient solutions.

In the vibration of single- and multi-degree-of-freedom systems, the interest
lies in sets of 2 and 2n first-order differential equations, respectively, rather than
in a single first-order equation. The generalization from a single equation to a set
of equations is relatively simple. Indeed, by analogy with Eq. (4.34), we extend
Eq. (4.288) to state form by writing

x(t) == f(x(t), t) (4.316)

where x(!) is the 2n-dimensional state vector and f is a 2n-dimensional nonlinear
vector function of x(t) and t. Then, by analogy with Eqs. (4.305) and (4.306), the
fourth-order Runge-Kutta method for state equations can be defined by

where

Tf(Wb tk),

Tf ( Wk + ~gJ' tk + ~),

n(Wk + ig2' tk + ~),

Tf(Wk + g3, tk + T),

k == 0, 1,2, ...

k == 0, 1,2, ...

(4.317)

(4.318)

are 2n-dimensional vectors. The fourth-order Runge-Kutta method requires four
evaluations of the vector f for each integration step, which implies a significant
amount of computations.

The Runge-Kutta-Fehlberg method (RKF45) and the Adams-Bashforth-Moul-
ton predictor-corrector method can be extended to state form in the same simple
manner.

The Runge-Kutta methods are quite accurate and easy to code. They are used
widely for numerical integration of nonlinear differential equations associated with
vibration problems. Predictor-corrector methods tend to be more accurate than
Runge-Kutta methods, but they are more difficult to code. Moreover, they must rely
on one-step methods, such as the Runge-Kutta methods, to generate the necessary
starting values.
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Example 4.13

The oscillation of a simple pendulum is described by the differential equation

. e + 4sin8 = 0

The pendulum is subject to the initial conditions

(a)

8(0) = 0, e(o) = 3 rad/s (b)

Compute the response by the fourth-order Runge-Kutta method using the step size
T = 0.01 s and plot e(t) versus t for 0 < t < 5 s.

Introducing the notation

e(t) = X2(t) (c)

Eq. (a) can be replaced by the state equations

(d)

Hence, with reference to Eq. (4.316), the state vector and the vector f have the form

x(t) = [X](t)]
X2 (t) , [

X2(t) ]f(x(t), t) = f(x(t)) = 4' ( )
- SIll Xl t (e)

so that f does not depend on t explicitly.
The computational algorithm is defined by Eqs. (4.317) and (4.318). From the

latter, the vectors g], g2, g3 and g4 have the explicit form

[
T(W2k + 0.5g12k) ]

-4T sin(wlk + 0.5g1lk) ,

[
Tf1(Wk + 0.5g2)] [ T(w2k + 0.5g22k) ]
Tfz(Wk + 0.5g2) - -4T sin(wlk +0.5g2lk) ,

g4 = [g4]k] _ [Tf](Wk +g3)] -'- [ T(W2k +g32k) ]
g42k - T fz(Wk + g3) - -4T sin(wlk + g31k) ,

k = 0,1,2, ... (f)
in which, from Eqs. (b) and (c), the initial state vector is given by

Wo = Xo = [XlO x20f = [0 2]T (g)

The plot e(t) versus t is shown in Fig. 4.10. Whereas the plot has the appearance of a
sine curve, the response is periodic, rather than harmonic as in the linear case. As the
initial velocity e(O) increases, the response differs more and more from a sine curve.
In fact, for e(O) > 4 rad/s, there are no equilibrium positions and the nature of the
motion changes from oscillation about the equilibrium position 8 = 0 to rotation with
variable angular velocity.
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Figure 4.10 Response of a simple pendulum undergoing nonlinear oscillation

4.13 SYNOPSIS

Multi-degree-of-freedom systems are described by sets of simultaneous ordinary
differential equations, derived conveniently by the methods of analytical dynamics
discussed in Chapter 2. A great deal of insight into the system behavior can be gained
from a geometric representation of the solution in the state space. Such a represen-
tation is essential to a good understanding of the concepts of equilibrium points and
small motions in the neighborhood of equilibrium points. A very important issue is
whether displacements from equilibrium are small or not, as this factor decides at
times whether a system can be treated as linear or nonlinear. This question is related
to system stability, as the motion of unstable systems increases without bounds, thus
becoming nonlinear. The converse is not true, however, as there are many stable
nonlinear systems, such as a simple pendulum undergoing large displacements (see
Example 4.13). In many cases, the issue of linearity versus nonlinearity can be settled
on the basis of physical grounds.

A very large number of vibrating systems falls in the class of linear time-
invariant systems, more commonly known as linear system.s with constant coefficients.
The most important and desirable characteristic of linear time-invariant systems is
that they are subject to the principle of superposition. For such systems, we can
avail ourselves to a wealth of solution techniques. Among these, modal analysis,
whereby a set of simultaneous ordinary differential equations of motion is trans-
formed into a set of independent equations, plays a central role in vibrations, as it
permits a relatively easy determination of the response. This implies the use of a
linear transformation involving the modal matrix, which can be obtained by solving
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the algebraic eigenvalue problem. Due to its pivotal role in vibrations, the following
two chapters are devoted to the algebraic eigenvalue problem, Chapter 5 to qual-

- ~'itative aspects and Chapter 6 to computational algorithms. For undamped natural
systems, the eigenvalue problem is symmetric and theeigensolutions are real, with
the modal matrix being orthogonal. The response of such systems is defined in the
configuration space, and the procedure for obtaining the response is referred to at
times as the classical modal analysis. Undamped gyroscopic systems share many of
the properties of undamped natural systems, except that the eigenvalue problem and
the response are defined in the state space, rather than in the configuration space.
Nonconservative systems, of which damped systems are a special case, differ from
conservative systems in that the eigenvalue problem is not symmetric and the eigen-
solutions are either complex, or real, or some complex and some real. The eigenvalue
problem is defined in the state space and is significantly more involved than in the
symmetric case. Moreover, the eigenvalue problem must be solved twice, once for
the system matrix and once for the transposed system matrix. The eigenvalues are the
same, but the two sets of eigenvectors are different; they possess the biorthogonality
property. A modal analysis can be formulated for the response of nonconservative
systems, but it is appreciably more complicated than for conservative systems. The
modal analysis is in the state space and must use both sets of eigenvectors. In view
of the fact that the modal analysis for nonconservative systems is quite laborious,
an approach avoiding the need for solving nonsymmetric eigenvalue problems has
certain appeal. Such an approach is based on the transition matrix, which requires
the evaluation of a matrix series in the system matrix. The approach based on the
transition matrix tends to be computationally intensive, which dictates the use of a
digital computer. This, in turn requires transformation of the equations of motion
from continuous time to discrete time, solution of the discretized-in-time problem on
a digital computer and transformation of the discrete-time solution back to continu-
ous time. More often than not, the last step is carried out automatically by plotting
the discrete-time solution sequence as a function of time; for fine resolution, such
plots tend to appear as continuous in time. The approach just described is referred to
as discrete-time systems, and provides the formalism for computer coding of vibration
problems. Finally, there is the problem of nonlinear equations of motion not lending
themselves to linearization. In such cases, it is necessary to evaluate the response
in discrete time through numerical integration. Widely used numerical integration
techniques are the Runge-Kutta methods, such as the Runge-Kutta-Fehlberg method,
and predictor-corrector methods, such as the Adams-Bashforth-Moulton method.

It should be pointed out that the techniques presented in this chapter apply not
only to lumped systems but also to distributed-parameter systems discretized in the
spatial variables. Indeed, except for certain cases, almost alUnvolving parameters
distributed uniformly, vibration problems for distributed systems do not admit exact
solutions, so thatthe interest lies in approximate solutions. In one form or other, such
approximate solutions require spatial discretization, as we shall see in Chapters 8 and
9. The equations of motion for the resulting discretized systems have the same form
as those for the lumped-parameter systems considered in this chapter and the next
two chapters. Hence, the techniques presented in this chapter apply equally well to
discrete models approximating distributed-parameter systems.

-~---_.- ------------ ----- .- ~ ~- -~ - -- --- --- ~-- -- - -- - -- ._-~ ~ -_.-
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PROBLEMS
4.1 Derive Lagrange's equations of motion for the system of Problem 2.2 under the assump-

tions that the displacements YI and Y2 are relatively large and that the string tension T
remains constant throughout the motion.

4.2 The system of Fig. 4.11 consists of a mass m suspended on a string fixed at both ends
and rotating at a constant angular velocity Q about a horizontal axis passing through the
two ends. For convenience, introduce a reference frame y, Z rotating with the eonstant
angular velocity Q with respect to the inertial axes X, Y, Z and express the displacement
of m in terms of components measured relative to y, z. Derive Lagrange's equations of
motion under the assumptions that the displacements y, z are relatively large and that
the string tension T is constant at all times. Ignore gravity.

z

l'igurc 4.11 Mass on a rotating string

4.3 The system shown in Fig. 4.12 is similar to that in Problem 4.2, except that there are two
masses ml and m2 suspended on the rotating string, instead of one. The displacement
components of m] and m2 relative to the rotating frame y, z are )'1, Z1 and Y2, Z2,

respectively. Derive Lagrange's equations of motion under the same assumptions as in
Problem 4.2. Ignore gravity.

z

Figure 4.12 Two masses on a rotating string

4.4 The system of Fig.4.13 consists of two rigid links of total mass mi and length Li (i = 1,2, )
hinged to a shaft rotating with the constant angular velocity Q about a vertical axis. The
links are hinged so as to permit motion of the links in the rotating vertical plane and their
angular displacements () and ¢ are restrained by torsional springs of stiffness k) and k2,

respectively. Derive Lagrange's equations of motion for arbitrarily large angles () and ¢.

. . .<l



226
Multi-Degree-of-Freedom Systems Chap. 4

z
x

Figure 4.13 Twolinkshinged to a rotating shaft

4.5 The system shown in Fig. 4.14 is similar to that in Problem 4.4, except that the second
link is hinged to the first so as to permit angular displacements ¢ in a plane normal to the
first link. Derive Lagrange's equations of motion for arbitrarily large angles e and ¢ .

/
z

. .

()

x

Figure 4.14 Twolinkshinged to a rotating shaft

4.6 A massless elastic beam with a rigid disk of mass M attached at midspan is rotating with
the constant angular velocity Q, as shown in Fig. 4.15. Let Y, Z be a set of inertial axes
and y, z a set of body axesrotating with the angular velocity Q with respect to Y, Z and
derive La'grange's equations of motion of M in terms of displacement components y and
z along the body axes. Assume that the beam has equivalent spring constants ky and
k

z
for bending in the yand·z directions, respectively, and that the system is subject to

internal damping forces proportional to Y and z, w?ere th~ constant of proportionality
is c, and ,external damping forces proportional to Y and Z, where the proportionality

constant is h ..

..---_._~.. ~-- - ---.---- .. --- .-- --
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Figure 4.15 Rotating elastic beam with a rigid disk

227

4.7 Determine the equilibrium points for the system of Prohlem 2.19 by means of the ap-
proach of Sec. 4.2. Note that T = T2 + To.

4.8 Derive the equilibrium equations for the system of Problem 4.] by means of the approach
of Sec. 4.2. Then, let the displacements Yl and Y2 be small and determine the equilibrium
position.

4.9 Determine the equilibrium positions for the system of Problem 4.2 by means of the
approach of Sec. 4.2.

4.10 Derive the equilibrium equations for the system of Problem 4.3 by means of the approach
of Sec. 4.2.

4.11 Derive the equilibrium equations for the system of Problem 4.4.

4.12 Derive the equilibrium equations for the system of Problem 4.5.
4.13 Test the stability of each of the equilibrium points for the system of Problem 4.7 by means

of the Liapunov direct method.

4.14 Test the stability of the equilibrium position of the system of Problem 4.8 by means of
the Liapunov direct method.

4.15 Assume that the angles defining the equilibrium equations in Prohlem 4.11 are small and
test the stability of the equilibrium position by means of the Liapunov direct method.

4.16 Assume that the angles defining the equilibrium equations in Problem 4.12 are small and
test the stability of the equilibrium position by. means of the Liapunov direct method.

4.17 Test the stability of the equilibrium position of the system of Problem 4.6 by means of
the Liapunov direct method.

4.18 Derive the linearized equation of motion of the system of Problem 4.7 about each of the
equilibrium points.

4.19 Derive the linearized equations of motion about the equilibrium position for the system
of Problem 4.15.

4.20 Derive the linearized equation of motion about the equilibrium position for the system
of Problem 4.16.

4.21 Derive the linearized equations of motion about the trivial equilibrium position for the
system of Problem 4.17.

4.22 Four discrete masses mi (i = 1,2,3,4) suspended on a string are vibrating in a vertical
plane, as shown in Fig. 4.16. Assume that the tension T in the string is constant and that
the displacements Yi (i = ],2,3,4), measured from the equilibrium position, are small,
derive the eigenvalue problem and set it in symmetric standard form.
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Figure 4.16 Four masseson a string in transverse vibration
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4.23 Derive the eigenvalue problem for the system of Fig. 4.17 and set it in symmetric standard
form.

Figure 4J7 Three massesin axialvibration

4.24 The system of Fig. 4.18 consists offour rigid disks of mass moments of inertia Ii (i =
1,2,3,4) mounted on two shafts in torsion. The first shaft consists of three segments of
torsional stiffnesses G Ji (i == 1, 2, 3), where G is the shear modulus and Ji are area polar
moments of inertia, and the second shaft consists of one segment of torsional stiffness
G J4. Disks 3 and 4 roll on each other without slip. Derive the eigenvalue problem and
set it in symmetric standard form . .,

14r-- L1 -j- L2 -1- L3 -1--
Figure 4.18 Four constrained disksin torsional vibration
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4.25 The n -story building depicted in Fig. 4.19 consists of rigid floors of mass m; each sup-
ported by massless columns of bending stiffness Eli, where E is the modulus of elasticity
and Ii are the area moments of inertia (i = 1, 2, ... , n). Use the concept of equivalent
springs for the columns, under the assumption that the right angles between floors and
columns remain so during motion, and derive the eigenvalue problem.

1
m

"

t - x"

H" f-- E I"

±
Im,,-l - X,,_I

t 1m2 I - x2

H2
___EI2

t Iml - xl

HI ___Ell

1-
Figure 4.19 An II-story building in horizontal vibration

4.26 Derive the linearized equations of motion for the system of Problem 4.9 about the trivial
equilibrium position and set up the eigenvalue problem in the most convenient standard
form.

4.27 Derive the linearized equations of motion for the system of Problem 4.] 0 about the trivial
equilibrium position and set up the eigenvalue problem in the most convenient standard
form.

4.28 Derive the eigenvalue problem for the system of Fig. 4.20 and set it in standard form.

~QI ~Q2 ~Q3
ql q2 q3

k 2k 2k

m m 2m

2c 2c c

Figure 4.20 Damped three-degrce-of-freedom system

4.29 Derive the eigenvalue problem for the system of Problem 4.6 and set it in standard form.
4.30 Determine the response of the system of Problem 4.24 to the torque M3 (t) = M3 sin (O[ ,

where M3 is a constant amplitude; the other two torques arc zero. Let L1 = L2 = L3 =
L4 = L, II = 12 = h = I, 14 = 2/, 11 = h = 14= 1, h = 21.

4.31 The n-story building of Problem 4.25 is subjected to the horizontal ground motion
U R (t) = A cos (O[ , where A is a constant amplitude having units of displacement. De-
termine the general response of the building.



230
Multi-Degree-of-Freedom Systems Chap. 4

4.32 Determine the response of the system of Fig. 4.1 and Example 4.7 to the forces Fx (t) =
Fx sin OJt,Fit) = Fy sin OJt applied to mass m.

4.33 Determine the response of the system of Fig. 4.20 to theforce Q2(t) =' Q2 cos(OJt -1/1),
the other two forces are zero. Let m = 1, c = 0.1, k = 1.

4.34 Consider the string of Problem 4.22, let the masses have the values ml = m, m2 = m3 =
2m, m4 = m and determine the response to

(a) the initial displacements q = [0.5 1 1 0.5]T
(b) theinitial velocities 40 = [1 1 - 1 - l]T

Discuss the mode participation in the response in each of the two cases.
4.35 Determinethe'response of the torsional system of Problem 4.30 to

(a) the initial displacements 60 = [0.5 0.8 1f
(b) the initial velocities 60 = [0 0 l]T

4.36 Determine the response of the system of Example 4.7 to
(a) the initial displacements qo = [1 O]T
(b) the initial velocities 40 = [1 1f

4.37 Determine the response of the system of Problem 4.33 to
(a) the initial displacements qo = [0.7 1 0.7]T
(b) the initial velocities 40 = [1 0 - 1f

Discuss the mode participation in the response in each of the two cases.
4.38 Determine the response ofthe system of Example 4.6 to the impulsive excitation Q(t) =

Q08(t)[0 1 ot
4.39 Determine the response of the system of Problem 4.34 to an external excitation in the

form of the pulse Q(t) = Qo(u(t) - u(t - T))[0.5 1 1 0.5f· Discuss the mode
participation in the response.

4.40 The system of Problem 4.35 is subjected to the excitation M(t) = M08(t)[0 0 1f·
Determine the response, compare the results with those obtained in Problem 4.35 and

draw conclusions.
4.41 Determine the response of the system of Problem 4.35 to the excitation M(t) = Mo(r(t)

_ r(t _ T))[O 0 1f, where r(t) denotes the unit ramp function (Sec. 1.7).
4.42 Derive the response of the system· of Example 4.7 to the impulsive excitation Q(t) =

Q
0
8(t)[1 1f. Compare the results with those obtained in Problem 4.36(b) and draw

conclusions.
4.43 Determine the response of the system of Problem 4.33 to the excitation Q(t) = Qo x

.' u(t)[O 1 O]T.
4.44 Derive the response of the system of Problem 4.6-to the impulsive excitation F(t) =

[Fx Fy]T = F
0
8(t)[1 O]T. The system parameters are M = 1, C = 0.1, h = 0.1,

n = 2, kx =.8 andky = 16.
4.45 Solve Problem 4.41 in discrete time.
4.46 Solve Problem 4.42 in discrete time.
4.47 Solve Problem 4.43 in discrete time.
4.48 Solve Problem 4.44 in discrete time.
4.49 Let Ll = L2 = L3 = L, ml = 2m,"m2,=m, TlmL="l and use'the fourth-order

Runge-Kutta method (RK4) to integrate numerically the equations of motion derived
in Problem 4.1 for the initial displacements Yl(O) = Y2(0) " = 0.2L. Work with the
nondimensional displacements YlILand Y21 L.

4.50 Let T ImL = 1, n = 1 and use the fourth-order Runge-Kutta method (RK4) to integrate
numerically the equations of motion derived in Problem 4.2 for the initial velocities
X(O) = 0.3L, y(O) = O. Work with the nondimensional displacements xl Land Y I L.

_.-. --~. -"--- -~ --~~,- ---- ..--- --- -~-- --~-- - ----_.- - .----



Chap. 4 Bibliography 23]

4.51 Solve Problem 4.49 by the Runge-Kutta-Fehlberg (RKF45) method.
4.52 Solve Problem 4.50 by the Runge-Kutta-Fehlberg (RKF45) method.
4.53 Solve Problem 4.49 by the Adams-Bashforth-Moulton predictor-corrector method
4.54 Solve Problem 4.50 by the Adams-Bashforth-Moulton predictor-corrector method.
4.55 The system of Problem 4.49 is acted upon by the forces FI (t) = F2(t) = F(#(t), where

Fa/ T = 0.25. The initial conditions are zero. Obtain the response by the fourth-order
Runge-Kutta method (RK4).

4.56 Solve Problem 4.55 by the Runge-Kutta-Fehlberg method (RKF45).
4.57 Solve Problem 4.55 by the Adams-Bashforth-Moulton predictor-corrector method.
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5

QUALITATIVE ASPECTS OF THE
ALGEBRAIC EIGENVALUE

PROBLEM

In Chapter 4, we established the fact that the algebraic eigenvalue problem plays a
crucial role in vibrations. Indeed, its solution contains a great deal of information
concerning the dynamic characteristics of the system and is instrumental in producing
the system response.

Conservative systems represent a very important class in vibrations. They are
characterized by a real symmetric eigenvalue problem, which is by far the most de-
sirable type. Indeed, the solution of the eigenvalue problem for real symmetric
matrices consists of real eigenvalues and real orthogonal eigenvectors, as demon-
strated in Sec. 4.6. These properties of the eigensolutions can be used to prove the
stationarity of Rayleigh's quotient, which provides a great deal of insight into the
qualitative behavior of the eigensolution. Moreover, it permits the development of
the maximin theorem, which in turn permits the development of the separation theo-
rem. Note that the separation theorem can be used to demonstrate the convergence
of discrete models approximating distributed ones. From a computational point of
view, algorithms for solving real symmetric eigenvalue problems are by far the most
stable and efficient.

This chapter is concerned with qualitative aspects of the algebraic eigenvalue
problem for both symmetric and nonsymmetric matrices, with the emphasis on the
symmetric case.

5.1 GEOMETRIC INTERPRETATION OF THE SYMMETRIC EIGENVALUE
PROBLEM
The eigenvalue problem for real symmetric matrices lends itself to a geometric in-
terpretation that is not only very interesting but also suggests a method of solution.

232



To present this interpretation, we recall the quadratic form given by Eq. (4.108) and
consider the equation

Sec. 5.1 Geometric Interpretation of the Symmetric Eigenvalue Problem

f = xT Ax = 1

233

(5.1)

where A is a real symmetric n x n matrix and x is a real nonzero n-vector. Equa-
tion (5.1) represents a surface in an n-dimensional Euclidean space. In the case in
which A is positive definite the surface represents an n-dimensional ellipsoid with
the center at the origin of the Euclidean space. Figure 5.1 depicts only a three-
dimensional ellipsoid, n = 3, but we will treat it as if it were n-dimensional.

Figure 5.1 lhree-dimensional ellipsoid

Next, we consider the gradient of f, namely, a vector V f normal to the surface
of the ellipsoid and located at a point on the ellipsoid defined by the tip of the vector
x. In an n-dimensional space, the gradient of f can be expressed symbolically in the
form of the n -vector

But, we recall from geometry that the principal axes of an ellipsoid are normal to
the surface of the ellipsoid. It follows that, if the vector x shown in Fig. 5.1 is to be
aligned with a principal axis, then it must coincide with V f, the difference between
the two being a constant of proportionality. Denoting the constant of proportionality
by 2A, we conclude that the condition for the vector x to be aligned with a principal
axis is

V f = [af ,af ... ~]T = af
ax] dX2 aXn ax

so that, inserting Eq. (5.1) into Eq. (5.2), we obtain simply

V f = 2Ax

Vf = 2h

(5.2)

(5.3)

(5.4)

_______________________ I!!!!!!!!~~~~~"'"=~!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!IIIIII'
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Comparing Eqs. (5.3) and (5.4), we conclude that the above condition can be written
in the form

Ax = AX (5.5)

which is recognized as the eigenvalue problem for the matrix A. Hence, the eigenvalue
problem for real symmetric positive definite matrices A can be interpreted geometri-
cally as the problem offinding the principal axes of the ellipsoid f = xT Ax = 1.

In view of the preceding discussion, we consider the problem of solving the
eigenvalue problem by finding the principal axes of an ellipsoid. We concentrate first
on the planar case, n = 2, in which case the ellipsoid described by Eq. (5.1) reduces
to an ellipse. Then, we recall from analytic geometry that the problem of determining
the principal axes of an ellipse can be solved by means of a coordinate transformation
representing a rotation of axes Xl, X2 through an angle e, as shown in Fig. 5.2. The
angle e is chosen such that the equation of the ellipse assumes the canonical form,
which amounts to annihilating the cross-product entry in the quadratic form resulting
from the transformation. From Fig. 5.2, the relation between axes Xl, x2 and Yl, Y2
is simply

Yl cos e - Y2 sin e
Yl sin e + Y2 cos e

which can be written in the matrix form

x = Ry

where x = [Xl x2f and y = [Yl Y2f are two-dimensional vectors and

(5.6)

(5.7)

- sin e ]
cose (5.8)

is a 2 x 2 transformation matrix, known as a rotation matrix. Using Eq. (5.7), the
transformation from the original quadratic form of the ellipse to the canonical form
can be written as

in which
D = RT AR

(5.9)

(5.10)

is a diagonal matrix. But, according to Eq. (4.110), if D is a diagonal matrix, then
it must by necessity be the matrix A of eigenvalues. Moreover, the rotation matrix
R must be the orthonormal matrix V of eigenvectors. Clearly, R is an orthonormal
matrix, as it satisfies

(5.11)

which is typical of all rotation matrices. Letting D = A and considering Eq. (5.8),
we can write Eq. (5.10) in the explicit form

o ] [COS e sin e ] [an al2 ] [COS e
A2 - - sin e cos e al2 a22 sin e

- sin e ]
cose (5.12)
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so that, equating corresponding entries on both sides, we obtain

A) a)) cos2 e + 2a)2 sin e cos e + a22 sin2 e
A2 = a)l sin2 e - 2a)2 sin e cos e + a22 cos2 e
o = - (a)) - a22) sin e cose + a)2 (cos2 e - sin2 e)

Equation (5.13c) can be rewritten as

tan 2e

(5.13a)

(5.13b)

(5.13c)

(5.14)

(5.15)

(5.16)

all - a22

which represents a formula for computing the angle e required for axes y) and Y2
to be principal axes. Then, inserting the angle e thus obtained into Eqs. (5.13a)
and (5.13b), we can compute the eigenvalues of the real symmetric positivc definite
matrix A. To complete the solution of the eigenvalue problem, we must produce the
eigenvectors. To this end, we introduce the same angle e into the columns of the
rotation matrix R, Eq. (5.8), and obtain the orthonormal eigenvectors

v) = [COS e ] V2 _ [- sin e ]
sine' - cose

Figure 5.2 Rotation to the principal axes of an ellipse

For n ~ 3, the transformation to canonical form cannot be carried out in a
single step but in a series of steps. Each of these steps involves a planar rotation
designed to annihilate an off-diagonal entry of A (and the symmetric counterpart).
Because the annihilated entry does not stay zero following the next transformation
step, the determination of the principal axes of the ellipsoid represents an iteration
process. The process is convergent. The Jacobi method for solving the eigenvalue
problem for real symmetric matrices is based on this idea, for which reason the Jacobi
method is referred to as diagonalization by successive rotations.

Now, let us premultiply Eq. (5.5) by xT, consider Eq. (5.1) and write the ellipsoid
equation in the form
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where IIxll is the Euclidean length of x. Equation (5.16) can be used to relate any
eigenvalue to the magnitude of the associated eigenvector. In this regard, it should be
pointed out that Eq. (5.16) precludes the normalization process given by Eqs. (4.100),
whereby the eigenvectors are rendered unit vectors. Letting A = Ai, X = Vi in
Eq. (5.16), we obtain

1
Ai = II Vi 112'

so that the Euclidean length of the eigenvector Vi is inversely proportional to the
square root of the associated eigenvalue Ai (Fig. 5.1). When two eigenvalues are
equal, the associated eigenvectors are equal in length. The two eigenvectors are
linearly indepe,ndent and can be rendered'orthogonal. The fact that the eigenvectors
are equal in length and orthogonal can be interpreted geometrically as the statement
that the surface represented by Eq. (5.1) is an ellipsoid of revolution. Hence, any
two orthogonal axes in the plane normal to the axis of revolution can be taken as
principal axes. ;.

Although we based the preceding discussion on the assumption that the matrix
A is positive definite, the assumption was used only to determine the shape of the
n-dimensional surface. In fact, the geometric interpretation can be extended to
the case in which A is only positive semidefinite. In this case, we conclude from
Eqs. (5.17) that the length of the eigenvector belonging to a zero eigenvalue is infinite,
so that the ellipsoid degenerates into an infinitely long cylinder with the infinite axis
corresponding to the zero eigenvalue.

== 1, 2, ... , n

Example 5.1

Solve the eigenvalue problem for the matrix

A = [ 2 -1]
-1 1

by finding the principal axes of the ellipse xT Ax = 1.
To obtain the angle e to the principal axes, we use Eg. (5.14) and write

(5.17)

(a)

tan 2e = 2( -1)
- -- = -2

2 - 1 (b)

It is convenient to restrict the magnitude of the angle so as to satisfy Ie I :S T( / 4, so that
Eq. (b) yields

e = -31.717475° (c)
Hence,

sin e = -0.525731, cas e = 0.850651 (d)

Inserting these values in Eqs. (5.13a) and (5.13b), we obtain the eigenvalues

AJ = all cOs2e + 2a12 sin ecos e + a22 sin2 e = 2.618034

A2 = all sin2 e - 2aJ2 sin e cas e + a22 cos2 e = 0.381966
(e)

= [cas e] = [ 0.850651 ]
vJ sine -0.525731'

Moreover, from Eqs. (5.15), the associated eigenvectors are

[
-sin e ] .

V2 = case = [
0:525731 ]
0.850651 (f)
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The eigenvalue problem corresponds to the vibration of a two-degree-of-freedom
system like the one shown in Fig. 4.9 with the parameters m 1 = m2 = 1, C] = C2 = °
and k] = k2 = 1. In view of this, we conclude on physical grounds that A2 and V2

actually correspond to the first mode and A] and Vl to the second. The explanation for
this is that the angle () specified by Eq. (b) is to one of the principal axes, not necessarily
to the axis corresponding to the lowest mode. Hence, relabeling the modes, we obtain
the matrices of eigenvalues and eigenvectors

A = [0.381966 ° ]° 2.618034'
v = [0.525731

0.850651
0.850651 ]

-0.525731
(g)

As we shall see in Sec. 6.4, it is typical of the Jacobi method that the modes do not
necessarily appear in ascending order in the computed matrices of eigenvalues and
eigenvectors, so that a rearrangement of these matrices may be required.

5.2 THE STATIONARITY OF RAYLEIGH'S QUOTIENT

In Sec. 4.6, we have shown that a real symmetric positive definite n x n matrix A pos-
sesses n real and positive eigenvalues Ar and n mutually orthogonal real eigenvectors
Vr (r = 1,2, ... ,n) satisfying the eigenvalue problem

In this section, and the several following ones, we examine some qualitative prop-
erties of the solutions to the eigenvalue problem. To this end, we arrange the
eigenvalues in ascending order of magnitude, so that they satisfy the inequalities
A1 S A2 S ... S An. Premultiplying both sides of Eqs. (5.18) by v;- and dividing by
v; vr, we conclude that every eigenvalue Ar can be expressed as the ratio

Tvr AVr
Ar = -1'--,

vr Vr

r = 1, 2, ... , n

r = 1, 2, ... , n

(5.18)

(5.19)

(5.20)

Equations (5.19) imply that, provided the eigenvector Vr belonging to Ar is known,
the eigenvalue Ar can be produced by simply computing the indicated ratio.

Next, we replace Ar and Vr in Eqs. (5.19) by A and v, respectively, and obtain

vI' Av
A (v) = R (v) = -T-V V

which is known as Rayleigh's quotient and is clearly a function of v. A question
of particular interest concerns the behavior of Rayleigh's quotient as v ranges over
the entire n-dimensional Euclidean space. To this end, we recall from Sec. 4.6 that,
according to the expansion theorem, Eqs. (4.118)-(4.121), any arbitrary n-vector v
can be expressed as a linear combination of the system eigenvectors V1, V2, ... , vn,

and we note that these are unit eigenvcctors satisfying the orthonormality relations
(4.100) and (4.101). Hence, inserting Eq. (4.118) into Eq. (5.20) and considering
Eqs. (4.104) and (4.107), which are the matrix counterpart of Eqs. (4.100) and (4.101),
we obtain

(5.21)

_________________________ ~!!'!!!!!!!~i!!!!!'!'~~~:!!!!!!!!IIII_!!!!!!!l"'lIl_.4
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As the arbitrary vector v wanders over the n-dimensional Euclidean space,
it will eventually enter a small neighborhood of a given eigenvector, say vr, as
shown in Fig. 5.3. But, as discussed in Sec. 4.6, the coefficients Ci (i = 1,2, ... , n)
in Eq. (4.118), as well as in Eq. (5.21), represent the coordinates of v with respect to
the basis, V1, V2, ... , Vn, i.e., the projections of the vector v onto the axes defined by
Vb V2, ... , V

n
. But, because v is inside a small neighborhood of Vr, it follows that

the magnitude of the coefficients must satisfy

lei!IZ1 = Ei,

where Ei are small numbers. Inserting Eqs. (5.23) into Eq. (5.21), using the binomial
approximation (1 + 8)-1 ~ 1 - 8, where 8 is a small quantity, and ignoring higher-

, order terms in Ef, we obtain

which is the same as saying that

i = 1,2, ... , n;

= 1,2, ... ,n;

=J r

i =J r

(5.22)

(5.23)

But, Eqs. (5.23) imply that v differs from Vr by a small quantity of first order in
Ei, v = V

r
+ 0 (E). On the other hand, Eq. (5.24) states that the corresponding

Rayleigh's quotient A differs from Ar by a small quantity of second order in Ei, A =
Ar + 0 (E2). This result can be stated in theform of the theorem: Rayleigh's quotient
corresponding to a real symmetric positive definite matrix has stationary values in
the neighborhood of the eigenvectors, where the stationary values are equal to the
associated eigenvalues. Although demonstrated and worded by Rayleigh differently,
this is the essence of Rayleigh's principle (Ref. 10, Sec. 88).

Assuming that A is proportional to ul, the special case in which r = 1 is by
far the most important one, not only because it corresponds to the lowest natural
frequency (J)1, which tends to be the most important one, but also because in this case
Rayleigh's quotient has a minimum. To show this, we let r = 1 in Eq. (5.24), so that

n

A= A1 + L (Ai - A1) Ef ::: A1
i=2

(5.25)

where we recognize that the series is always positive, because it represents a quadratic
form with positive coefficients. Inequality (5.25) states that Rayleigh's quotient is
never lower than the lowest eigenvalue A1· It is generally higher than A1, except
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when v is identically equal to vI, in which case Rayleigh's quotient has a minimum
value at v '= VI equal to AI, or

. vT Av
Al = mlO-7-·-v v (5.26)

and this is the only minimum value. Because this case is of such importance relative
to the other cases, the statement that Al is the minimum value of Rayleigh's quotient
is alone referred to as Rayleigh:\' principle (see, for example, Ref. 6, p. 31). This
version of Rayleigh's principle has significant implications in deriving approximate
solutions to the eigenvalue problem for distributed-parameter systems. Another
interpretation of inequality (5.25) is that Rayleigh's quotient provides an upper bound
for the lowest eigenvalue AI.

Following a similar argument, it is easy to verify that for r = n Eq. (5.24) yields

II-I

A = All - L (All - A;) E; .::: All
;=1

(5.27)

(5.28)

or, Rayleigh:5 quotient is never higher thall the highest eigenvalue All' It is generally
lower than All, except when v is identically equal to VII' in which case Rayleigh:5
quotient has a maximum value at v = Vn equal to An, or

vT Av
All = max-7-·-v v

Inequality (5.27) can also be interpreted as saying that Rayleigh's quotient provides
a lower bound for the highest eigenvalue All'

The behavior of Rayleigh's quotient can be interpreted geometrically in a man-
ner similar to that in Sec. 5.1. To this end, we recall that in the case in which A is a
real symmetric positive definite matrix the equation

(5.29)
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represents an n -dimensional ellipsoid with the length of the semiaxes equal to
IIviII= 1/ -../Ai, consistent with Eqs. (5.17), and raises the question as to how Rayleigh's
quotient changes as the tip of the vector v slides across the surface of the ellipsoid.
We recognize that not much happens at arbitrary points, so that we confine our dis-
cussions to motions of v in planes defined by pairs of eigenvectors. As it moves in
such a plane, v aligns itself eventually with an eigenvector. But, because eigenvectors
coincide with principal axes, they are normal to the surface of the ellipsoid, so that
the rate of change of IIvll, and hence the rate of change of A is zero at an eigenvec-
tor, which indicates that A has a stationary value at an eigenvector. To examine the
nature of the stationary value, and provide a clearer picture at the same time, it is
convenient to refer once again to a three-dimensional ellipsoid, such as that shown
in Fig. 5.4. With v temporarily at VI, a move toward V2, or toward V3, tends to pro-
duce a decrease in IIv II, and hence an increase in A, according to Eq. (5.29). This
indicates that A has a minimum at VI, so that in the neighborhood of Vj Rayleigh's
quotient resembles the bowl shown in Fig. 5.5a. Using the same argument, with v
at V2, a move toward VI tends to produce a decrease in A and a move toward V3

tends to produce an increase in A, which is equivalent to the statement that A has a
mere stationary value at V2. Hence, in the neighborhood of V2, Rayleigh's quotient
resembles the saddle shown in Fig. 5.5b. Finally, at v = V3, A decreases as v moves
toward VI or toward V2, which indicates that A has a maximum at V3. Consistent
with this, Rayleigh's quotient resembles an inverted bowl with the apex at the tip of
V3, as shown in Fig. 5.5c.

Figure 5.4 Three-dimensional ellipsoid with eigenvectors as semiaxes

The question arises as to how the preceding developments apply to our vibration
problems. To answer this question, we insert Eqs. (4.84) and (4.87) into Eq. (5.20),
consider Eq. (4.82) and obtain the Rayleigh's quotient in the form

I
I.~. _

(5.30)
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where u is a vector of actual displacement amplitudes, as opposed to v which is not,
K is the stiffness matrix and M is the mass matrix. It follows that all the properties
of Rayleigh's quotient demonstrated for the form (5.20) hold true when the quotient
is in the form (5.30). Although the form (5.20) is more useful in interpreting the
eigenvalue problem geometrically, the form (5.30) has its own advantages, the most
important one being that it returns us to the physical world. Indeed, because A is
proportional to ui, Eq. (5.30) permits us to conclude that the natural frequencies
can be increased by increasing the stiffness, or decreasing the mass, or both, and vice
versa.

Rayleigh's quotient provides an expedient way of estimating eigenvalues, and
in particular the lowest eigenvalue. The procedure amounts to guessing the shape
of a certain mode of vibration, inserting the guessed mode into Rayleigh's quotient,
Eq. (5.30), and computing an estimate of the corresponding eigenvalue. It should
be noted here that, because of the stationarity of Rayleigh's quotient, estimates
of eigenvalues tend to be one order of magnitude more accurate than the guessed
eigenvectors. The usefulness of the procedure is limited primarily to the lowest
eigenvalue, because the shape of the lowest mode is the easiest to guess. Indeed,
quite often a reasonably accurate guess consists of the static displacement vector of
the system subjected to forces proportional to the masses. No such guessing aids exist
for the higher modes. The fact that Rayleigh's quotient is able to provide reasonably
accurate estimates of the lowest natural frequency is very fortunate, because the
lowest natural frequency is more often than not the most important.

Rayleigh's quotient is a concept of towering importance to the eigenvalue prob-
lem associated with vibrating discrete systems. The usefulness of the concept is
pervasive, extending not only to analytical developments but also to computational
algorithms. Moreover, the concept is as vital to differential eigenvalue problems
associated with distributed-parameter systems, to be discussed in later chapters, as it
is to the algebraic eigenvalue problem discussed in this chapter.

Example 5.2

Verify that Rayleigh's quotient associated with the real symmetric positive definite ma-
trix

[ 2.5 -1 0]
A = -1 5 -1.414214° -1.414214 10

(a)

has a minimum at the lowest eigenvector and a stationary value at the second eigenvec-
tor. The matrices of eigenvalues and eigenvectors of A are

A = [2.l1f22

[

0.932674
V = 0.355049

0.063715

~ 1O.3~0678]

-0.359211 0.032965]
0.898027 -0.259786
0.254000 0.965103

(n)

To verify that Rayleigh's quotient has a minimum at VI, we consider the trial
vector v = [0.8968 0.4449 0.0891f, which corresponds roughly to VI + 0.1V2, and we
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note that v has not been normalized. Hence, the value of Rayleigh's quotient is

01.. =

= 2.1477

[
0.8968]T [2.5 0 0] [0.8968]
0.4449 -1 5 -1.414214 0.4449
0.0891 0 -1.414214 10 0.0891

[
0.8968] T [0.8968]
0.4449 0.4449
0.0891 0.0891

(c)

A - Al '" 2.1477 - 2.1153
lOl = -- = ------ = 0.0134

Al 0 2.1193
which is one order of magnitude smaller than the difference between v and VI. It can
be verified that, regardless of the choice of V, the value of A will always be larger than
AI' so that Rayleigh's quotient has a minimum at VI' .

To verify the stationarity of Rayleigh's quotient, we first consider the trial vector
V = [-0.2659 0.9335 0.2604V, which is roughly equal to V2+ 0.1VI. Hence, we write

[
-~:~~;;] T [=i ' 05 -1.4~4214] [-~:~~;;]

0.2604 0 0 -1.414214 10 0 0.2604

[
-0.2659] T [-0.2659]

0.9335 0.9335
. 0.2604 . 0.2604

so that the estimate is higher than Al ~ 2.1193. The error in the estimate is

1..=

= 4.9716

(d)

(e)

so that the estimate is lower than 1..2 = 5. The error is
A - 1..2 4.9716 - 5

lO2 = ~ = 5 = -0.0057 (f)

which is clearly one order of magnitude smaller than the difference between the trial
vector V and V2. Next, we consider the trial vector V = [-0.3559 0.8720 0.3505V,
which is roughly equal to V2 +0.1V3. Inserting this trial vector into Rayleigh's quotient,
we obtain

1..=

= 5.0528

=
[
-0.3559] T [2.5 0 0] [-0.3559]

0.8720 -1 5 -1.414214 0.8720
0.3505 0 -1.414214 10 0.3505

[
-0.3559] T [-0.3559]

0.8720 0.8720
0.3505 0.3505

(g)

L

so that this estimate is higher than 1..2' The corresponding error is

A - 1..2 5.0528 - 5
lO2 = -- = ---- = 0.0106 (h)

1..2 5
which is once again one order of magnitude smaller than the difference between V and
V2. Clearly, Rayleigh's quotient has a mere stationary value at V = V2, as the estimate
can be either larger or smaller than 1..2'
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At this point, we wish to provide a geometric interpretation of the results. The
trial vector v = VI + O.1v2 represents a vector with the tip lying on the curve marked
"Toward V2" in Fig. 5.5a. The value of A corresponding to this choice is larger than the
value Al at VI. It is obvious that any other choice would not change the general picture,
as the surface depicting A is a bowl with the lowest point at VI. On the other hand, the
surface depicting A in the neighborhood of V2 is a saddle, as shown in Fig. 5.5b. The
first choice of trial vector corresponds to a point on the curve marked "Toward Vj," for
which the surface dips below A2, and the second choice corresponds to a point on the
curve "Toward V3," for which the surface rises above A2 .

I '-l I
.--l

Toward
I Toward Toward

Toward VI v3 Toward : v2 VI v2v2 v3 I

(a) (b) (c)

Figure 5.5 (a) Minimum value of Rayleigh's quotient at lowest eigenvector (b) Stationary
value of Raylcigh\ quotient at intermediate eigenvector (e) Maximum value of Rayleigh's
quotient at highest eigenvector

5.3 MAXIMUM-MINIMUM CHARACTERIZATION OF THE EIGENVALUES

In Sec. 5.2, we have shown that Rayleigh's quotient associated with a real symmetric
positive definite matrix has a stationary value in the neighborhood of an eigenvector,
where the stationary value is equal to the associated eigenvalue. The lowest eigen-
value Al plays a special role for various reasons. First among these is the fact that
it corresponds to the lowest natural frequency WI, which is the most important one
in vibrations. Moreover, in the case of the lowest eigenvalue, the stationary value
is actually a minimum. Indeed, as shown in Sec. 5.2, the lowest eigenvalue A] of a
vibrating system is the minimum value Rayleigh's quotient A (v), Eq. (5.20), can take
as the arbitrary n-vector V ranges over the n-dimensional Euclidean space, or

v1Av
A1 = min A (v) = min -T- (5.31)v v

Another desirable feature of the lowest eigenvalue is that it is the easiest to estimate,
because it is much easier to generate a vector resembling the lowest eigenvector
than any other eigenvector. Finally, the fact that Rayleigh's quotient cannot fall
below Al makes it possible to improve the estimate by devising a sequence of vectors
v designed to minimize the value of Rayleigh's quotient, as such a minimization
process is certain to cause A (v) to approach A]. Clearly, this desirable feature is not
possessed by the intermediate eigenvalues, as the intermediate eigenvectors are only
saddle points.
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In view of the above, the question arises as to whether there are any circum-
stances under which statements similar to those made for Ai can be made for the
intermediate eigenvalues. In addressing this question, we concentrate first on A2· To
this end, we propose to modify the series expansion for v, Eq. (4.118), by omitting

the first eigenvector Vi, so that

v
nz= CiVi ••= Vc

i=2

(5.32)

This implies that the vector v is not entirely arbitrary but orthogonal to the first
eigenvector Vi. Indeed, premultiplying VI by vT where v is given by Eq. (4.118), and
recalling the orthonormality relations, Eqs. (4.100), we can write the orthogonality

condition as follows:

Equation (5.34) represents a constraint equation implying that the vector V can only
range over an (n _ i)-dimensional Euclidean space of constraint orthogonal to the
veCtor Vi. This concept can be best visualized geometrically by means of Fig. 5.6,
in which the space of constraint is simply the plane orthogonal to VI, i.e., the plane
defined by the eigenvectors V2 and V3' Returning to the n-dimensional case and
following the same approach as in Sec. 5.2, it is not difficult to show that

where this time the vector c has the form
c = [0 C2 C3 .. , cnf

T T T T [ ]T. T [ ]TV Vi = C V VI = c. VI V2 ... Vn VI = C 10 ... 0 = Ci = 0

(5.33)

(5.34)

n ,

A (v) = A2 + z= (Ai - A2)Ef ::: A2,
·i=3 '

(5.35)
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Figure 5.6, Arbitrary vector constrained to a plane orthogonal to Vl
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from which it follows that

. v1'Av
A2= mm -1'-,v v (5.36)

or Rayleigh's quotient has the minimum value of A2 for all trial vectors v orthogonal
to the first eigenvector VI, where the minimum is reached at v = V2. Hence, at
least in theory, it is possible to produce an estimate of A2 by guessing a vector v
approximating the eigenvector V2 within a small quantity of first order. Clearly, this
vector v must be rendered orthogonal to VI, which can be done by a process such as
the Gram-Schmidt orthogonalization process (see Appendix B).

The approach can be extended to higher eigenvalues by constraining the trial
vector v to be orthogonal to a suitable number of lower eigenvectors. For example,
Ar+1 can be characterized by requiring that v be from the (n - r)-dimensional
Euclidean space of constraint orthogonal to the first r eigenvectors, or

i = 1,2, ... ,r (5.37)

Causing a given eigenvalue, say Aj, to acquire the extremum characteristics of
Al by requiring that the trial vector v be from the space of constraint orthogonal to
the eigenvectors VI, V2, ... , Vj-i is not very practical, because these lower eigenvec-
tors are generally not available. Hence, the question arises naturally as to whether it
is possible to achieve the same objective without relying on the corresponding lower
eigenvectors. In the following, we do indeed develop such a method. However, the
usefulness of this development docs not lie so much in estimating eigenvalues as
in providing a rigorous analytical foundation to a characterization of the eigenval-
ues with significant implications in approximate solutions to differential eigenvalue
problems, as discussed later in this text.

We consider a given 11-vector wand constrain the trial vector v to be from the
(n - 1)-dimensional Euclidean space of constraint orthogonal to w, so that v is not
entirely arbitrary but must satisfy the constraint equation

(5.38)

Geometrically, Eq. (5.38) confines the vector v to an (n - 1)-dimensional ellipsoid
of constraint defined by the intersection of the n-dimensional ellipsoid associated
with the real symmetric positive definite matrix A and the (11 - 1)-dimensional
Euclidean space of constraint orthogonal to w. To clarify the idea, we refer to the
three-dimensional ellipsoid of Fig. 5.7, from which we conclude that the space of
constraint orthogonal to w is once again a plane, but this time the plane is a general
one, not necessarily containing two eigenvectors, or even one eigenvector. Hence, v
is confined to the ellipse resulting from the intersection of the ellipsoid and the plane
normal to w, as shown in Fig. 5.7.
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Figure 5.7 Arbitrary vector constrained to a space orthogonal to W

(5.39)

The n x n real symmetric positive definite matrix A has the eigenvalues AI,
A2, ... ,_An. We can envision an (n - 1) x (n - 1) real symmetric positive definite
matrix A corresponding to the (n - I)-dimensional ellipsoid of constraint resulting
froin imposing on v the constraint given by Eq. (5.38) and denote the eigenvalues
of Ii by iI, i2, ... , in-I. The question of interest here is how the eigenvalues iI,
i2, ... , in-1 of the constrained system relate to the eigenvalues AI, A2, ... , An of
the original unconstrained system. To' answer this question, we concentrate first on
Al and introduce the definition

_ vT Av
Al (w) = min -. -T-'

V V

where Al clearly depends on w. But, the longest principal axis of the (n - 1)-
dimensional ellipsoid of constraint associated with A is generally shorter than the
eigenvector VI belonging to AI, so that by analogy with Eq. (5.17) we conclude that
Al > AI. The only exception is when w coincides with one of the higher eigenvectors
Vr (r = 2,3, . ':'! n), in which ca~e w = VI is in the (n - I)-dimensional space of
constraint and Al = AI. Hence, Al satisfies the inequality

(5.40)

This is consistent with the fact that constraints tend to increase the system stiffness.
The question remains as to the highest value Al can reach: To answer this question,
we consider the trial vector

(5.41)

Clearly, this choice is possible, as the fact that v must be orthogonal to w only means
that Cl and C2 depend on one another. Next, we introduceEq. (5.41) into Rayleigh's
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quotient, invoke the orthonormality relations, Eqs. (4.1 00) and (4.101), and write

T
(CIVI + C2V2) A (CIVI + C2V2)

(Cl VI + C2V2l (c] VI + C2V2)

Cf AI + C~A2
~ ~

c) + c2

But Eq. (5.39) implies that

(5.42)

Al (w) < (5.43)

Hence, combining inequalities (5.40), (5.42) and (~.43), we conclude that

(5.44 )

or the first eigenvalue of a system with one constraint lies between the first and the
second eigenvalue of the original unconstrained system. This statement is known as
Rayleigh:~ theorem for systems with one constraint. It should be noted here that the
choice of V in the form given by Eq. (5.41) was motivated by our desire to define the
range of AI as sharply as possible. Indeed, any other choice of v would replace A2 in
the right inequality in (5.44) by a higher value.

Rayleigh's theorem for systems with one constraint can be given a geometric
interpretation by referring to the three-dimensional ellipsoid vI' A v = 1 shown in
Fig. 5.7. As can be concluded from Fig. 5.7, the space of constraint is an ellipse
resulting from the intersection of the plane normal to wand the ellipsoid. When w
coincides with V2, the ellipse has principal axes VI and V3. Because II VI II :::: IIv311, if
we recall that at any point on the ellipsoid A = l/llvlI, it follows that the minimum- -value A] can take on the ellipse defined by v] and V3 is AJ = AI. If w 1= V2, the
longest axis of the intersecting ellipse is shorter than IIvI II, so that AI :::: AI. When
w coincides with VI, the ellipse of constraint has principal axes V2 and V3. Hence,
following the same line of thought, we conclude that the minimum value 5:] can take
on the ellipse defined by V2 and V3 is AI = A2. If w 1= VI, the longest axis of the
intersecting ellipse normal to w is longer than V2, so that AI ::: A2. This completes
the geometric proof of inequalities (5.44), and hence of the theorem.

Inequality (5.44) characterizes A 1 in relation to A] and A2. The right side of the
inequality, however, can be regarded as characterizing A2. Indeed, using Eq. (5.39),
it can be reinterpreted as stating that

_ (VI' AV)A2 = max A] (w) = max Olin -1'- ,
w v V V

(5.45)

This new interpretation of Rayleigh's theorem for systems with one constraint can
be stated in the form of the theorem: 71te second eigenvalue A2 of a real symmetric
positive definite matrix A is the maximum value that call he given to Olin (vI' A v /vT v)
by the imposition of the single constraint vI' w = 0, where the maximum is with
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respect to wand the minimum is withxespect to all vectors v satisfying the imposed
constraint.

The preceding theorem can be extended to any number r of constraints, r <
n, thus providing a characterization of the eigenvalue Ar+1 of the real symmetric
positive definite matrix A that is independent of the eigenvectors V1, V2, ... , Vr of
A. To this end, we consider r independent n-vectors W1, W2, ... , Wr and introduce
the definition

i = 1,2, ... , r (5.46)

- .where Ar is a continuous function of W1, W2, ... , Wr• In the special case in which
the arbitrary constraint vectors Wi coincide with the eigenvectors Vi of A(i = 1,2,
... , r), we conclude from Eq. (5.37) that

i = 1,2, ... , r (5.47)

'Next, we assume that the constraint vectors W1, W2, ... , Wr are given. Then, follow-
ing the same pattern as that followed earlier for one constraint, we assume that the
trial vector v has the form

r+1

V = C1V1 + C2V2 + ... + Cr+1vr+1 = L CiVi
i=l

(5.48)

so that, comparing inequalities (5.49) and (5.50), we can write

so that, using the same argument as for one constraint, it can be shown that this choice
is consistent with our minimization problem,'Eq. (5.46). Hence, inserting Eq. (5.48)
into Rayleigh's quotient and considering the orthonormality relations, Eqs. (4.100)
and (4.101), we obtain .

C' ) C' ) r+1 ' C')
vT Av

L CiV; A ?= CjVj LcfAi {; cf Ar+1

A (v) =--=
1=1 J=l i=l < =Ar+1

vTv C' )C' ) r+1 r+1

L CiV; L CjVj Lcf Lcf
1=1 J=l i=l i=l

(5.49)

ButEq. (5.46) implies that

vT Av
vT WiAr (W1, W2,···, Wr) :S vTv

, = 0, i = 1,2, ... , r (5.50)

(5.51)

Inequality (5.51) can be interpreted as stating that

(5.52)

. ~-- ~~-- -. --- -- -----
____ ~n ,,~_._
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which, according to Eq. (5.47), occurs when Wi = Vi (i = 1,2, ... , r). Hence,
introducing Eq. (5.46) into Eq. (5.52), we conclude that

( vT AV)
A"+1 = max min -T- ,

w v V V
= 1,2, ... , r (5.53)

which can be stated as the theorem: The eigenvalue A,.+I of a real symmetric positive
definite matrix A is the maximum value that can he given to min (vT Av jvT v) by the
imposition of the r constraints vTWi = 0 (i = 1,2, ... ,r), where the maximum is
with respect to all sets containing WI , W2, .•. , w,. and the minimum is with respect to
all vectors v satisfying the imposed constraints. According to Courant and Hilbert
(Ref. 2), the maximum-minimum character of the eigenvalues was first mentioned
by Fischer (Ref. 3) in connection with quadratic forms with real coefficients. Weyl
(Ref. 13) and Courant (Ref. 1) applied the theorem to the theory of vibrations. The
theorem is known as the Courant-Fischer maximin theorem. In the case in which
the eigenvalues are arranged in descending order, A I :::A2 ::: ... ::: An, "max" and
"min" reverse order in Eq. (5.53), in which case the theorem is called the COllrant-
Fischer minimax theorem.

5.4 SEPARATION THEOREM FOR NATURAL SYSTEMS

The Courant-Fischer maximin theorem characterizes the eigenvalues of a real sym-
metric positive definite matrix subjected to given constraints. Although it can be used
to estimate higher eigenvalues, the maximin theorem is not really a computational
tool. Our interest in the theorem lies in the fact that it facilitates the development of a
theorem defining the manner in which the eigenvalues of the mathematical model of
a given system behave as the number of degrees of freedom of the model is increased
or decreased.

We consider an n-degree-of-freedom natural system whose eigenvalue prob-
lem is defined by the n x n real symmetric positive definite matrix A and confine
ourselves to the c'se in which a reduction in the number of degrees of freedom by
one is equivalent to removing one row and the corresponding column from A, thus
obtaining an (n - 1) x (n - 1) real symmetric positive definite matrix A'. It is
immaterial which row and column are removed, but for the sake of this discussion
we assume that they are the last row and column. Hence, the matrices A and A' are
such that

A (5.54)

where the removed entries are indicated by one row and one column of )( 's. Matri-
ces having the structure described by Eq. (5.54) are said to possess the embedding
property. We denote the eigenvalues of A by AI, A2 ... , An and the eigenvalues of
A' by A;, A~, ... , A~_l and pose the question as to how the two sets of eigenvalues
relate to one another. To answer this question, we consider an arbitrary n-vector

v = [VI V2 ... vnf and a reduced (n -1)-vector Vi = [VI V2 ... vn-If, obtained
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from v by removing the last component. Regarding the system associated with A'
as unconstrained, we cari use Rayleigh's principle, Eq. (5.26), and write

V'T A'v'
1 I •

1 = mm --T--
Vi Vi

(5.55)

,But, Rayleigh~s quotient for the system defined by A' is equal to Rayleigh's quotient
for the system defined by A, provided the trial vector v satisfies the equation

(5.56)

where en = [00 ... 0 If is the nth standard unit vector. Hence, we canwrite

(5.57)

(5.58)

,
Equation (5.56) can be regarded as a constraint equation imposed on the original
system de.fined by A, so that Eqs. (5.55) and (5.57) can be combined into

_ vT Av
A~ = Al (en) = min -T-'V V ,

Then, using Rayleigh's theorem for systems with one constraint, inequalities (5.44),
we conclude that

(5.59)

= 1,2, ... , r - 1; r < n

(5.60)
Moreover, we assume that, in addition to the constraints vT Wi = 0, the vector v is
subjected to the constraint vT en = 0 and define the eigenvalues of the system thus
constr"ained by

Next, we assume that the trial vector v is subjected to r -1 constraints defined
by vT Wi = 0 (i = 1,2, ... , r - 1; r < n), where Wi are linearly independent
n-vectors, and introduce the notation

_ vT Av
Ar-l (WI, W2, ... , Wr-l) = min -T-' vT

Wi = 0,
V V

5:.r-1 (WI, W2, ... , Wr-l)
. vT Avmm-

T
-, vTWiv V

0,

i = 1,2, ... , r - 1; r < n, (5.61)

Because in the latter case the system is subjected to one additional constraint than
in the former, we can write

r = 2, 3, ... , n - 1 (5.62)

At this point, we introduce the truncated (n -1) -dimensional constraint vectors w; =
[Wli W2i .. , wn-l.if, so that the constraints vT Wi = 0 (i = 1,2, ... , r - 1; r <
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n), vT en = °are equivalentto the constraints v'T w; = °(i = 1,2, ... , r-1; r < n).
Hence, the definition given by Eq. (5.61) is equivalent to the definition

'TA' ,
- I (' I ') • V V IT IAr_1 w1,w2,···,wr_1 = mlO IT I' V Wi = 0,V V

i = 1, 2, ... ,r - 1; r < n

from which it follows that

(5.63)

Ar-I, r = 2,3, ... ,11 - 1 (5.64)

so that inequalities (5.62) can be replaced by

But, considering Eq. (5.52), we can write

A,. = max Ar-l,

as well as

r = 2, 3, ... ,n - 1

r = 2, 3, ... ,n - 1

(5.65)

(5.66)

A~ = max 5:~_1 max Ar-I, r = 2, 3, ... ,n - 1 (5.67)

Moreover, inequalities (5.65) can be regarded as implying that

max 5:"-1 :::::max 5:~_1' r = 2, 3, ... ,n - 1 (5.68)

so that, considering Eqs. (5.66) and (5.67), we conclude that

r = 2, 3, ... ,n - 1 (5.69)

Inequalities (5.69) state that the addition of the constraint vTen = 0 tends to raise
the eigenvalues, a result that agrees with the intuition.

Inequalities (5.69) present a one-sided picture, however, as they only relate
A~ to Ar (r = 2,3, ... ,n - 1). To complete the picture, we must have a relation
between A; and Ar+l (r = 2, 3, ... ,n - 1). To this end, we combine Eqs. (5.61) and
(5.67) and write

(
vT AV)

A;. = max min -1-' - ,
w v V V

i = 1,2, ... , r - 1; r < n,

On the other hand, Eq. (5.53) states that

T
V en

0,

° (5.70)

0, i = 1,2, ... ,r; r < n (5.71)

We observe from Eqs. (5.70) and (5.71) that in both cases the system is subjected to
r constraints and that the first r - 1 of these constraints are the same. But, whereas
in Eq. (5.70) the rth constraint involves en, a given vector, in Eq. (5.71) it involves
Wr, an arbitrary vector that can be chosen so as to maximize Ar+ I. It follows that
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there are mal)S more choices in maximizing min (vT Av jvT v) in Eq. (5.71) than in
Eq. (5.70), from which we conclude that ' .

r = 2, 3, ... , n - 1 (5.72)

Hence, combining inequalities (5.59), (5.69) and (5.72), we obtain

(5.73)

We refer to inequalities (5.73) as the separation theorem, which can be stated as
follows: The eigen'values A~,A~, ... , A~_l of the (n - 1) x (n - 1) real symmetric
positive definite matrix A', obtained by striking out one row and the corresponding
column from the n x n real symmetric positive definite matrix A, separate the eigen-
values AI, .1..2, ... , An of A: The separation theorem is known under a variety of
names. Indeed, whereas Wilkinson (Ref. 14) refers to it as the separation theorem,
Golub and Van Loan (Ref. 5) call it the interlacing property and Strang (Ref. 12)
uses the term intertwining of eigenvalues. Using a slightly different interpretation
of the theorem, Franklin (Ref. 4) and Meirovitch (Ref. 7) refer to it as the inclusion
principle.

The separation theorem was proved for the first time by Rayleigh himself
(Ref. 10, Vol. 1, Sec. 92a) for the special case of a two-degree-of-freedom system.
The result was presented in Sec. 5.3 of this text as Rayleigh's theorem for systems
with one constraint in the form of inequalities (5.44). Ironically, Rayleigh carried out
his proof by an approach based on Lagrange's equations, without using Rayleigh's
quotient. Using an approach similar to Rayleigh's, Routh (Ref. 11, Sec. 78) proved
the theorem for an n-degree-of-freedom system.

The proof of the separation theorem, inequalities (5.73), was carried out for a
Rayleigh's quotient inJerms of a single real symmetric positive definite n x n matrix
A and the corresponding (n -1) x (n -1) matrix A', where the matrices possess the
embedding property given by Eq. (5.54). However, the separation theorem is equally
valid for a Rayleigh's quotient in terms of two real symmetric positive definite n x n
mass and stiffness matrices M and K, respectively, ~nd the associated (n -1) x (n -1)
matrices M' and K', provided M and M' on th~ one hand and K and K' on the
other hand possess the embedding property (Ref. 8). To show this, we consider the
eigenvalue problems

K'u = AIM'u, Ku = AMu (5.74a, b)

where the mass and stiffness matrices are related by

[M' m]
M = mT m ' [K' kk]K = kT (5.75a, b)

where m = [mnl mn2 ... mn,n-IV and k = [kn1 kn2 ... kn,n-IV are (n - 1)-
vectors and m = mnn and k = knit are scalars. Because M' is real symmetric and
positive definite, it has the Cholesky decomposition (see Sec. 6.2)

M' = L'L,T (5.76)
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where L' is a nonsingular lower triangular matrix. Then, using the linear transfor-
mation

L'TU=V, (5.77a, b)

Eq. (5.74a) can be reduced to the standard form

A'v = A'V

in which

(5.78)

(5.79)

is a real symmetric matrix of order n - 1. Using the same process, we can first carry
out the decomposition M = LL T and then reduce the eigenvalue problem (5.74b)
to the standard form

where

Av = AV (5.80)

(5.81)

is a real symmetric matrix of order 11. But, the matrix L can be expressed in the form

(5.82)

in which I is an (n - I)-vector and I is a scalar given by

(5.83a, b)

It is not difficult to show that

so that, inserting Eq. (5.84) into Eq. (5.81), we obtain (Ref. 8)

(5.84)

[
A'

A -
symm

(L')-I (k - (L')-I K'(L'T)-l)/ I ]

(IT (L')-l K'(L'T)-l) - 2kT (L'T)-11 + k)/ [2
(5.85)

from which we conclude that the matrices A' and A, Eqs. (5.79) and (5.81), pos-
sess the embedding property. It follows that the eigenvalues A;, A;, ... , A~_l and
At, A2, ... ' An of the eigenvalue problems (5.74a) and (5.74b), respectively, satisfy
the separation theorem, inequalities (5.73).

The separation theorem has significant implications in approximate solutions to
the eigenvalue problem for self-adjoint distributed-parameter systems. Indeed, the
convergence of the Rayleigh-Ritz method for producing such approximate solutions
can be demonstrated on the basis of the separation theorem. The Rayleigh-Ritz
method is discussed later in this text.
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Verify that the eigenvalues of the 3 x 3 matrix A of Example 5.2 and the eigenvalues
of the 2 x 2 matrix AI obtained by removing one row and the corresponding column
from the matrix A satisfy the separation theorem, and that this is true regardless of the
row and column removed.

From Example 5.2, the matrix A is

[

2.5
A = -1

o
and has the eigenvalues

A] = 2.119322,

-1
5-.;2

A2 = 5,

-~]10
(a)

(b)

. Removing the third row and column from A, we obtain

(c)

which has the eigenvalues

A; = 2.149219, A; = 5.350781 (d)

The two sets of eigenvalues given by Eqs. (b) and (d) clearly satisfy the separation
theorem, inequalities (5.73) with n = 3. If the second row and column are removed
from A, the matrix AI is the trivial one'

" (e)

with the obvious eigenvalues

A; = 2.5; 'A; = 10 (f)

The eigenvalues given by Eqs. (b) and (f) satisfy the separation theorem as well. Finally,
striking out the first row and column from A, we have

AI = [
5 -.;2]

-.;2 10 (g)

which has the eig~nvalues ,

A; = 4.627719, A; = 10.372281 (h)

Examining the two sets of eigenvalues, Eqs. (b) and (h), we conclude that once again
the separation ,theorem holds true. This verifies that the separation theorem is satisfied
independently of the row and column removed.

5.5 SEPARATION THEOREM FOR GYROSCOPIC SYSTEMS

The fact that the eigenvalue problem for gyroscopic systems can be reduced to the
standard form given by'Ego (4.160), in 'which the coefficient matrix A is real symmetric
and positive definite, permits a characterization of the eigenvalues siinilar to that for
natural systems. Indeed, it is shown in Ref. 9 that

A2r+l =A2r+2 = max (min vTTAV)." vT W2i-'1 = 0, vT W2i = 0, i = 1,2, 000' r
,w v V V

(5.86)
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where W2i -I and W2i (i = 1, 2, ... , r) are r independent pairs of mutually orthogo-
naI2n-vectors. Equation (5.86) represents a maximin theorem for gyroscopic systems
and ean be stated as follows: The pair of repeated eigenvalues A2,.+I, A2,.+2 = A2,.+1

of a gyroscopic system is the maximum value that can be given to min (vT A vIvT v) by
the imposition of the constraints vT W2i-1 = 0, VTW2i = ° (i = 1,2, ... , r), where
the maximum is with respect to all sets containing WI, W2, ... , W2,. and the minimum
is with respect to all vectors v satisfying the imposed constraints.

Next, we consider the case in which the number of degrees of freedom of the
gyroscopic system described by Eq. (4.139) is redueed from n to n - 1. Consistent
with this, the eigenvalue problem can be expressed as

where, by analogy with Eq. (5.54), A' is a 2 (n - 1) x 2 (n - 1) real symmetric
positive definite matrix obtained by striking out two rows and the corresponding two
columns from A, so that A and A' are related by

A'

A

A'v' = A/V'

x
x x x

x x x x

(5.87)

x
x
x

(5.88)x
x

x x

Moreover, Vi is a 2 (n - l)-vector related to the 2n-veetor v by
I rv = [VI V2 ... VII_I VII+I ... v211-d .

We assume that the eigenvalues of A are such that A] = A2 :::: A3 = A4 :::: ... ::::

A211-1 = A211 and those of A' satisfy A; = A; :::: A; = A~ :::: ... :::: A;II_3 = )';11-2.
Then, based on the maximin theorem for gyroscopic systems stated above, it is proved
in Ref. 9 that the two sets of eigenvalues are related by

A' <4 -
(5.89)

Inequalities (5.89) represent the separation theorem for gyroscopic systems and can
be stated as follows: The eigenvalues A;, A; = A;, A;, A~ = A;, ... ,A;II_3' A;II_2 =
A;II_3 of the 2 (n - 1) x 2 (n - I) real symmetric positive definite matrix A' defining
an (11 - 1)-degrl:'e-of-freedo1l1 model of 11 gymscopic system, obtained by striking
out the nth and 211th rows and coluillns from the 211 A 211 real symmetric matrix A
defining an l1-degree-of-freedom model of the same gyroscopic system, separate the
eigenvalues AI, A2 = A], A3, A4 = A3, ... , A211-] , A211= A211-1 of A.

As for natural systems, the separation theorem for gyroscopic systems not only
characterizes approximate eigenvalues of distributed-parameter systems computed
by means of the Rayleigh-Ritz method but can also be used to prove convergence of
these approximate eigenvalues to the actual ones. An illustration of the separation
theorem for gyroscopic systems is provided in Ref. 9.



256 Qualitative Aspects of the Algebraic Eigenvalue Problem Chap. 5

5.6 GERSCHGORIN'S THEOREMS

Under certain circumstances, Gerschgorin's theorems permit the estimation of the
location in the complex plane of the eigenvalues of an arbitrary square matrix A. In
the case of a real symmetric matrix A, the complex plane projects onto the real axis.

Let us consider an m x m matrix A, where m is odd or even, and:write the
eigenvalue problem in the index notation

m

L aijXj = J...Xi,
j=l

1,2, ... ,m (5.90)

Then, assuming that Xk is the component of the vector x with the largest modulus,
IXkl= max IXjl(J = 1,2, ... , m), we let i = k in Eqs. (5.90) and write

,.
m

(J... - akk) Xk = L akjXj
j=l
j#

But
m

< L lakjl . IXjl <
j=l
j#

so that, dividing through by IXk I, we obtain

m

IJ... - akkl :S L lakjl
j=l
j#

Next, we introduce the notation

m

Llakjl
j=l
ilk

and rewrite inequality (5.93) as

m

IXkl L lakjl
j=l
j#

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

First, we observe that IJ... - akk I represents the distance from the point akk in the
complex plane to the eigenvalue J..., so that inequality (5.95) can be interpreted geo-
metrically as defining a circular region with the center at akk and with the radius equal
to rk, as shown in Fig. 5.8. Then, recognizing that Eqs. (5.90) admits m solutions, we
let k = 1,2, ... , m and express inequality (5.95) in the form of the theorem: Every
eigenvalue of the matrix A lies in at least one of the circular disks with centers at akk
and radii rk. The theorem is known as Gerschgorin's first theorem and the disks are
sometimes referred to as Gerschgorin's disks.
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.'igure 5.8 Gerschgorin disk in A-plane

From Gerschgorin's first theorem, it is possible to conclude that a given eigen-
value can lie in more than one disk. A second theorem by Gerschgorin is concerned
with the djstribution of the eigenvalues among the disks. Gerschgorin's second theo-
rem is based on the theorem on continuity (Ref. 4), which states: The eigenvalues of
a matrix A are continuous functions of the elements of A. Any matrix A can always
be written as the sum of two matrices of the form

A=D+O (5.96)

where D = diag (akk) is the diagonal matrix obtained from A by omitting its off-
diagonal entries and 0 is the matrix of the off-diagonal entries of A. Consistent with
this, we can introduce the matrix

A (E) = D + EO (5.97)

where E is a parameter satisfying 0 ::: E ::: 1. For E = 0, we have A(O) = D =
diag (aii). and for E = 1. we have A (1) = A. The coefficients of the characteristic
polynomial of A (E) are polynomials in E and, by continuity, they are continuous
functions of E. In view of Gerschgorin's first theorem, we conclude that the eigen-
values of A (E) lie in the circular disks with centers at akk and with radii

m

Erk = I> lakjl·
j=l
j#

As E varies from 1 to 0, the m eigenvalues of A (E) move continuously from the
eigenvalues AI, A2, ... , Am of A (1) to all, a22, ... , amm, respectively.

Next, we consider the case in which e of the disks corresponding to A are
disjoint and the remaining m - e disks are connected. For the sake of this discussion,
and without loss of generality, we assume that the first e disks of A are disjoint. But,
because the e disks of A of radii rl, r2, ... , re are disjoint, it follows that the first e
disks of A (E) of radii Erl, Er2, ... , Ere are disjoint. Indeed, as E decreases from 1 to
0, the firste Gerschgorin's disks shrink to the points A = akk (k = 1, 2, ... , e). Jn the
process, the eigenvalues contained in these disks remain inside them. Assuming that
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the first £ eigenvalues of A are distinct, we conclude that each disjoint disk contains
exactly one eigenvalue. We then conclude that the remaining m - £ eigenvalues
must lie in the connected domain representing the union of the corresponding m - £
disks. These conclusions form the basis of Gerschgorin's second theorem: If £ of
the Gerschgorin's disks corresponding to the matrix A are disjoint and the remaining
m - £ disks form a connected domain, which is isolated from the first £ disks, then
there are exactly m - £ eigenvalues of A contained in the connected domain.

For Gerschgorin's theorem to be useful, the radii of the disks should be rela-
tively small. This, in turn, implies that the off-diagonal entries of A should be rela-
tively small. Unfortunately, this rules out the use of Gerschgorin's theorems for non-
conservative systems, in which case the matrix A has the form given by Eq. (4.168).
Clearly, this form does not lend itself to meaningful application of Gerschgorin's
theorems. Indeed, one half of the state equations represent mere kinematical iden-
tities, having no bearing on the eigenvalues, and the other half are not diagonally
dominant. The situation is considerably better in the case of conservative systems,
natural or nonnatural, as in this case the matrix A is real and symmetric, a form more
conducive to meaningful results. Indeed, owing to the fact that the eigenvalues of
a real symmetric matrix are real, the disks collapse into segments on the real axis
with centers at akk and oflength 2rk (k = 1, 2, ... , m). Note that Gerschgorin's first
theorem is used in Sec. 6.8 to locate approximately an eigenvalue in conjunction with
Givens' method for computing the eigenvalues of a symmetric tridiagonal matrix.

Example 5.4

Verify the applicability of Gerschgorin's theorems to the matrix A of Example 5.2.
From Example 5.2, the matrix A is

[2.5 -1 0]
A = -1 5 -../2

o -../2 10
(a)

Hence, because the matrix is real and symmetric, Gerschgorln's disks collapse into
segments on the real axis. Nevertheless, we will continue to refer to them as disks.

There are three Gerschgorin disks with the centers given by

au= 2.5, a22 = 5, (b)

and with the radii, defined by Eq. (5.94), or

r1 lad + la131 = I - 11 + 0 = 1

r2 = la2l1 + la23 I I - 11 + I - -hI = 1 + -h
r3 la31 I + la321 = 0 + I - -hI = -h

(c)

The collapsed disks, i.e., the segments, are shown on the A-axis in Fig. 5.9. The actual
eigenvalues

1..1 = 2.119322, 1..2 = 5, 1..3 = 10.380678 (d)

marked by' circles in Fig. 5.9,' clearly fall within these segments, thus verifying Ger-
schgorin's first theorem. Moreover, the first two disks intersect and there are two eigen-
values inside the connected domain, thus satisfying Gerschgorin's second theorem.
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fiigure 5.9 Gerschgorin disks collapsed into segments

5.7 PERTURBATION OF THE EIGENVALUE PROBLEM

A problem of great interest in vibrations, as well as in related areas such as controls,
is how the dynamic characteristics change as a result of changes in the system param-
eters. The parameter changes may be due to design modifications or to improved
knowledge of the system. Regardless of the reasons, the net effect is that the ma-
trix A is different from the original one. Then, the question arises as to how these
changes affect the eigenvalues and eigenvectors. The changes in the eigenvalues and
eigenvectors can always be determined by solving the eigenvalue problem associated
with the new matrix A. This may not be necessary when the new matrix A does not
differ very much from the original one. Indeed, based on the assumption that the
change in the matrix A represents a small quantity of first order, in this section we
develop a perturbation method permitting the computation of the changes in the
eigensolution in terms of the original eigensolution and the change in the matrix A.

We consider the case in which the original system is defined by the n x n real
arbitrary matrix Ao and denote by AO;, Xo; and Yo; (i = 1,2, .... 11) the associated
eigenvalues, right eigenvectors and left eigenvectors, respectively. They satisfy the
two eigenvalue problems

Aoxo;

y~Ao

AO;XOi,

T
Ao;Yoi'

1.2 ..... 11

1.2 .... ,11

(5.98a)

(5.98b)

We confine ourselves to the case in which all the eigenvalues are distinct. As shown
in Sec. 4.8, the right and left eigenvectors are biorthogonal and can be normalized
so as to satisfy

T T
YOjXO; oi}, YOjAoXO; = AOiO;j, i.j = 1.2 ..... 11 (5.99a,b)

where O;j is the Kronecker delta. Next, we define the new system by the n x 11 real
arbitrary matrix A and assume that the two matrices are related by

(5.100)

where A I is an n x n real arbitrary matrix. We consider the case in which A I is
"small" relative to Ao, in the sense that the entries of Al are small quantities of
first order compared to the entries of Ao. Consistent with this, we refer to Alas
a first-order perturbation matrix, to Ao as the unperturbed matrix and to A as the
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perturbed matrix. By analogy with Eqs. (5.98), the perturbed eigenvalue problems
have the form

AXi = AiXi,

y[ A = AiY[,

i = 1,2, ... , n

i = 1,2, .. ·.,n
(5.101a)

(5.101b)

where Ai, Xi and Yi (i = 1, 2, ... , n) are the perturbed eigenvalues, right eigenvec-
tors and left eigenvectors, respectively. We assume that the perturbed eigenvalues
are distinct and that the perturbed eigenvectors satisfy the biorthonormality relations

yJ Xi = oij, yJ AXi = AiOij, i, j = 1,2, ... , n (5.102a, b)

At this point, we consider a formal first-order perturbation solution ofthe eigen-
value problems (5.101), with A being given by Eq. (5.100), in the form

Ai = AOi + Ali, Xi = XOi + Xli, Yi = YOi + Yli,. i = 1,2, ... , n
(5.103a, b, c)

where Ali, Xli and YJi (i = 1,2, ... , n) are first-order perturbations in the eigen-
values, right eigenvectors and left eigenvectors, respectively. Inserting Eqs. (5.103)
into Eqs. (5.101), considering Eqs. (5.98) and ignoring second-order terms in the
perturbations, we obtain .

AOXJi + AIXOi = AOiXli + AJiXOi, 1,2, ... , n (5.104a)
'T T T \ T

YOiAI + YliAO = ~OiYli + II.liYOi' 1,2, ... , n ' (5.104b)

Hence, the problem has been reduced to the determination of the perturbations
AJi, Xli, Yli on the.assumption that Ao, AI, AOi, XOi and YOi are all known. Clearly,
the objective is to carry out this process without solving any new eigenvalue problems.
To this end, we concentrate first on Eq. (5.104a), recognize that the unperturbed right
eigenvectors XOi (i = 1,2, ... , n) can be used as a basis for an n-dimensional vector
space and expand the perturbations in the right eigenvectors as follows:

where Eik are small quantities of first order. But, considering Eqs. (5.99a) and
(5.102a) and ignoring second-order quantities, we obtain

y[Xi = (Y& + yD (XOi + Xli)

r..-T +T T= YOiXOi YOiXli + YliXOi

n

Xli = L EikXOb
k=J

i = 1,2, ... , n

1

(5.105)

(5.106)

which permits us to write
T

YOiXli = 0, i = 1,2, ... , n (5.107a, b)

Introducing Eq. (5.105) into Eq. (5.107a) and considering once again Eq. (5.99a), we
have

n

Y& L EikXOk
k=l

n

L EikY&XOk
k=l

n

L EikOik = Eii = 0
k~l

(5.108)
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II2: EikxOk,
k=1
k#1

- 1,2, ... ,n
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(5.109)

Inserting Eq. (5.109) into Eq. (5.104a) and using Eq. (5.98a), we obtain

II

Ao 2: EikXOk + A1XOi
k=l
k¥i

II II2: EikAOkXOk + A1XOi = AOi 2: EikXOk + AliXOi,
k=l k=l
k#i k#i

= 1,2, ... ,n (5.110)

Premultiplying Eq. (5.110) through by Y6j and considering Eqs. (5.99), we have

Letting i = j and using Eq. (5.108), we obtain the eigenvalue perturbations

(5.111)

i,k = 1,2, ... ,n; i =1= k

On the other hand, for i =1= j = k, we obtain

Y6kA1Xoi
Eik = ----,

AOi - AOk

= 1,2, ... , n (5.112)

(5.113)

The formal determination of the perturbations in the right eigenvectors is completed
by inserting Eq. (5.113) into Eq. (5.109).

Using the same pattern and working with Eq. (5.104b), we conclude that the
perturbations in the left eigenvectors have the form

where

II

Yli = 2: YikYOk,
k=1
kji

i = 1,2, ... , n

i,k = 1,2, ... ,n; i =1= k

(5.114)

(5.115)

Conservative systems play an important role in vibrations. Such systems can be
described by real symmetric matrices A. The implication is that, irrespective of how
the system parameters are altered, both the original matrix Ao and the perturbation
matrix A1 are real and symmetric. Of course, in this case the left eigenvectors, also
called the adjoint eigenvectors, coincide with the right eigenvectors and the system
is self-adjoint. Of course, the eigenvalues and eigenvectors are all real. Letting
Yo; = XOi in Eq. (5.112), we obtain the perturbations in the eigenvalues

i = 1,2, ... ,n (5.116)

---------======:;;;;;;;;;;::~~
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which are clearly real. Moreover, letting YOk = XOk, Eq. (5.113) yields the coefficients
of the series for the perturbations in the eigenvectors

X6kAIXOi
Eik= , i,k=1,2, ... ,n;i-:j:.k (5.117)10i - AOk

which are real as well, so that perturbations in the eigenvectors themselves are real,
as expected.

Higher-order perturbation solutions have the form

Ai = AOi + Ali + A2i, ••. , Xi = XOi + Xli + X2i, ••• , Yi = YOi + Yli + Y2i + ...
(5.118)

They can 1?eobtained byjntroducing Eqs. (5.118) in conjunction with Eq. (5.100)
into Eqs. (5.101), separate terms of different order of magnitude and ignore terms of
order higher than the desired one ..For example, for a second-order perturbation so-
lution, third-order terms are ignored. Then, the second-order perturbation solution
is obtained from the second-order equation in which the zero-order and first-order
terms are assumed to be known.

Example 5.5

Obtain a first-order perturbation eigensolutiori for the matrix

[
2.6 -1.1 0]

A == -01.1 5.2 -./2
-./2 10

(a)

based on the eigensolution of

[

2.5
Ao = -1

o
-1 0]

5 -./2
-./2 '10·

(b)

where the latter consists of the eigenvalues

AOJ = 2.119322,

and eigenvectors

A02 = 5, 10.380678 (c)

[

0.932674 ]
XOI = 0.355049 ,

0.063715
[

0.359211 ]
X02 = .-0.898027 ,

-0.254000
[

0.032965 ]
X03 = -0.259786

0.965103
(d)

We note that the eigenvectors have been normalized so as to satisfy X6jXOi = oij (i, j =
1,2,3).

In the first place, we observe that

[

0.1 -0.1 0]
Al = A - Ao = -00.1 0.2 0

o 0
(e)

which must be considered as "small" relative to Ao. Both matrices Ao and Aj are
symmetric so that the perturbations are based on Eqs. (5.116) and (5.117).
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The perturbations in the eigenvalues are obtained from Eqs. (5.116) in the form

[0.932674 r [ 0.1 -0.1 0] [0.932674]T = 0.355049 -0.1 -0.2 o 0.355049All = xOlA,xoI
0.063715 0 0 o 0.063715

= 0.045971

[ 0.359211 r [ 0.1 -0.1 0] [ 0.359211]
AI2 = X6zAIX02 = -0.898027 -0.1 0.2 o -0.898027

-0.254000 0 0 o -0.254000 ([)

= 0.238710

[ 0.032%5 r [ 0.1 -0.1 0] [ 0.032965 ]
AI3 = X63AIX03 = -0.259786 -0.1 0.2 o -0.259786

0.965103 0 0 o 0.965103

= 0.015319

The eigenvector perturbations are given by Eqs. (5.105) in conjunction with Eqs. (5.117).
Hence,

[
_~:~~~~~~] T [_~: ~ _~:~ ~] [~:~~~~~~]

-0.254000 0 0 0 0.063715= -----------------
2.119322 - 5

xI, A I XOI
ED = -E31 =

A01 - Am
T

[
0.032965] [ 0.1 -0.1 0] [0.932674]

-0.259786 -0.1 0.2 0 0.355049
0.965103 0 0 0 0.063715

2.119322 - 10.380678

X63AIX02
-E32 = ---

A02 - A03

[
0.032965] T [ 0.1 -0.1 0] [ 0.359211]

-0.259786 -0.1 0.2 0 -0.898027
0.965103 0 0 0 -0.254000

5 - 10.380678

Using Eqs. (5.105), we obtain

-0.014141

-0.000930

-0.01] 176

(g)

[
0.359211] [ 0.032965]

= -0.014141 -0.898027 - 0.000930 -0.259786
-0.254000 0.965103

[

-0.005110 ]
0.012941
0.002694

(h)

_____________________ ======--I!!!!!!IJ
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[
0.932674] [ /0.032965 ]

= 0.014141 0.355049' - 0':011176 -0.259786
0.063715 0.965103 [

0.012821]
0.007924

-0.009885
X13 = E'31X01 + E'32X02

[
0.932674] [ 0.359211] [0.004882]

= 0.000930 0.355049 + 0.011176 -0.898027 = -0.009706
0.063715 -0.254000 -0.002779

The first-approximation eigenvalues are given by Eq. (5.103a) in the form

Inserting Eqs. (c) and (f) into Eq. (i), we have

= 1,2,3 (i)

)"1 = 2.165293, .1.2 = 5.238710, .1.3 = 10.395997 (j)

The first-approximation eigenvecto~s are given by Eq. (5.103b) as follows:

Xi ;::; XO; + Xli, i = 1,2,3 (k)

Introducing Eqs. (d) and (h) in Eq. (k) and normalizing so as to satisfy xJ Xi = Oij (i, j =
1,2,3), we obtain '.

[
0.927470 ]

Xl = 0.367953 ,
0.066402 [

0.371971 ]
X2 = -0.889958 ,

.,....0.263842 [
0.037845 ]

X3 = -0.269475
0.962263

(1)

For comparison purposes, the exact solution of the eigenvalue problem for the
matrix A, i.e., obtained directly without any perturbation scheme, is

.1.1 = 2.164748,

[
0.927810 ]

Xl = 0.367120 ,
0.066263

.1.2 = 5.238546, .1.3 =
- [ 0.371103 ]

X2 = .-0.890158 ,
-0.264388

10.396796

[
0.038078]

X3 = -0.269893
. 0.962137

(m)

(n)

Comparing Eqs. U) and (m) on the one hand and Eqs. (1) and (n) on the other hand, we
conclude that the first-order perturbation solution produced reasonable results in this
particular case.

5.8 SYNOPSIS

Although the algebraic eigenvalue problem is basically a numerical problem associ-
ated with lumped systems, there are certain qualitative aspects that make the compu-
tational task easier and more purposeful; they can also shed a great deal of light on
the problem of approximating distributed-parameter systems by discrete ones. This
is particularly true for conservative vibrating systems, characterized by real symme-
tric eigenvalue problems. The concepts presented in this chapter not only enrich our
vibrations experience but also permit us to acquire a deeper understanding of the
subject.

The idea of linear transformations, and in particular orthogonal transforma-
. tions,is fundamental to the vibration of linear systems. Among orthogonal trans-
. formations, the coordinate transformation representing rotations has interesting im-
plications, in view of the fact that finding the principal axes of an n-dimensional
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ellipsoid is equivalent to solving the eigenvalue problem for an 11 x 11 positive def-
inite real symmetric matrix. This problem transcends the field of vibrations, as in
three dimensions the same problem arises in finding principal stresses in stress anal-
ysis and principal moments of inertia in rigid-body dynamics. Many computational
algorithms for solving the algebraic eigenvalue problem for real symmetric matrices
use orthogonal transformations. The Jacobi method, in particular, uses transforma-
tions representing rotations (Sec. 6.4). Another concept of fundamental importance
in vibrations is Rayleigh's quotient. The concept is important not only in the eigen-
value problem for conservative discrete systems but also in approximate techniques
for distributed-parameter systems. Rayleigh's quotient permits a qualitative study of
the eigensolution properties. For discrete systems, Rayleigh's quotient has a station-
ary value at an eigenvector, where the stationary value is the associated eigenvalue.
Of particular significance is the fact that the minimum value Rayleigh's quotient can
take is the lowest eigenvalue, which is sometimes referred to as Rayleigh's principle.
The same idea can be used to characterize the higher eigenvalues by the imposition
of constraints on the trial vectors. In particular, the separation theorem demon-
strates how the eigenvalues of an 11 x n matrix A relate to the eigenvalues of an
(11 - 1) x (n - 1) matrix A' obtained from A by removing one row and the associ-
ated column. The theorem can be used to demonstrate convergence of approximate
techniques for distributed systems, as shown in Chapter 8. Gerschgorin's theorems
can be used to locate eigenvalues approximately. The theorems are not restricted to
real symmetric matrices, but they are useful only for diagonally dominant matrices.
For practical purposes, this rules out their use for certain non symmetric matrices, as
discussed in Sec. 6.8. Finally, it is shown that, when the system parameters change
slightly, a perturbation technique can be used to compute the eigensolutions of the
new system by simply correcting the eigensolutions of the original system.

PROBLEMS

5.1 Draw the ellipse xT Ax = 1 corresponding to the matrix A of Example 5.1 and obtain
graphically the eigenvalues and eigenvectors. Explain the inconsistency between the
eigenvectors ohtained here and those given by Eqs. (f) of Example 5.1.

5.2 Use Rayleigh's quotient to estimate the lowest natural frequency for the system of Ex-
ample 4.6. Use as trial vector the vector of static displacements obtained by loading the
system with forces proportional to the masses.

5.3 The masses in the system of Problem 4.22 have the values m! = m, m2 = m3 =
2m, m4 = m. Use Rayleigh's quotient to estimate the two lowest natural frequencies.

5.4 The masses in the system of Problem 4.22 have the values m 1 = m2 = 2m, m3 = 1Il4=
m. Use Rayleigh's quotient to estimate the two lowest natural frequency.

5.5 TheparametersinthesystemofProblem4.24havethevaluesL1 = L2 = L3 = L4 = L,
11 = h = 13 = I, 14 = 2/, 11 = lz = 14 = 1, h = 21. Estimate the lowest natural
frequency by means of Rayleigh's quotient.

5.6 Verify that the eigenvalues of the 3 x 3 matrix A of Example 4.6 and the eigenvalues of
the 2 x 2 matrix A' obtained by removing one row and the associated column from A
satisfy the separation theorem, no matter which row and column are removed.
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5.7 Verify that the eigenvalues of the 3 x 3 matrix

A = [~i,-~-h]
" 0 --Ii 1

and the eigenvalues of the 2 x 2 matrix A' obtained by removing one row and the
associated' column from A satisfy the separation theorem, regardless of the row and
column removed.' ,

5.8 Verify that the eigenvalues of the 4 x 4 matrix A for the system of Problem 5.4 and the
eigenvalues of the 3;x 3 matrix A' obtained by removing one row and the associated
colurim from A satisfy the separation theorem, independently of the row and column
removed.

5.9 Show that the eigenvalues of the matrix

A = [-r =~-!]
•are consistent with both Gerschgorin's theorems.

5.10 Show that the eigenvalues of the matrix

. [3.8867 0.5672 0]
, A = 0.5672 0.7897 0.7481

. , 0 0.7481 2.4903··
are consistent with both Gerschgorin's theorems.

5.11 Use the approach of Sec. 5.7 to produce a first-order perturbation theory for the eigen-
'value problem

Ku = AMu
.'
where

K = Ko + K],

in which Ko, Mo, K and M are positive definite real symmetric matrices and Kl and
M1 are "small" relative to Ko and Mo, respectively.

5.12 Use the approach of Sec. 5.7 to produce a second~order perturbation theory for the
eigenvalue problem

Ax AX

where
A =' Ao + A]

in which Ao and A are real symmetric matrices and A] is "small" relative to Ao.
5.13 Use the developments of Problem 5.12 to compute a second-order perturbation solution

to the problem of Example 5.5. Compare results with those of Example 5.5 and draw
conclusions .. ,

5.14 A two-degree-of-freedom system is defined by the mass, damping and stiffness matrices

c = [ 0.2
-0.1

-0.1]
0.1 ' K = [ 5-4

Develop a procedure for solving the eigenvalue problem whereby the effect of damping
is treated as a perturbation on the undamped system;

~-------~_. -
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COMPUTATIONAL
TECHNIQUES FOR THE. ~"., ' '

ALGEBRAIC EIGENVALUE
PROBLEM'.

As amply demonstrated in Chapter 4, the algebraic eigenvalue problem plays a piv-
otal role in the study o,f vibrations of multi-degree-of-freedom systems, Indeed,
generally the equations for the small motions of vibrating multi-degree-of-freedom
systems consist of a set of.simultaneous ordinary differential equations. The solution
of these equations, linear as they are, causes great difficulties when the equations

,are in simultaneous form. These difficulties can be obviated by carrying out a lin-
ear trallsformation rendering the equations indepen,dent, where the transformation
matrix is the modal matrix, a .square matrix with its columns representing the vi-
bra!ion modes. Becau~e :mathematically the vibrati,~n modes represent the system
eigenvectors, it becomes necessary to solve the algebraic eigenvalue problem. Of
course, the reason the linear transformation using the modal matrix is capable of de-
coupling the simultaneous differential equations lies in the orthogonality property
of the eigenvectors, a remarkable property indeed,

The algebraic eigenvalue problem is essentially a numerical problem. The
rapid rise in the ability of digital computers to process numerical solutions for sys-
tems of large order ha:s stimulated an ever increasing interest in the development
of computational algorithms for the algebraic eigenvalue problem. In this chapter,
computational techniques most appropriate to the study of vibrations are presented.
The choice of algorithms is based on both pedagogical and computational efficiency
considerations.

Many computational algorithms for the algebraic eigenvalue problem call for
the solution of nonhomogeneous linear algebraic equations. This chapter begins
with avery efficient approach to this problem, namely, Gaussian elimination with
back-substitution. The standard algebraic eigenvalue problem is described by means
of a single matrix. Problems defined by a single real symmetric matrix, or problems

268
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that can be reduced to a single real symmetric matrix, have very desirable properties.
In particular, the eigenvalues are real and the eigenvectors are real and orthogonal.
In the vibration of conservative systems, the problem is generally defined in terms
of two real symmetric matrices, the mass matrix and the stiffness matrix. If one of
the matrices is positive definite, as the mass matrix is almost by definition, then the
problem can be reduced to one in terms of a single symmetric matrix by means of
the Cholesky decomposition.

In one form or another, virtually all algorithms for the algebraic eigenvalue
problem are iterative in nature. One of the oldest and best known algorithms is
matrix iteration by the power method. Although the method has many drawbacks,
its inclusion can be justified on the basis of academic considerations. The method
yields one eigensolution at a time and has some merits if the interest lies in only
a few dominant eigensolutions. A method lending itself to a nice geometric inter-
pretation is the Jacobi method. Indeed, for a single n x n real symmetric positive
definite matrix A, the method can be shown to be equivalent to finding the principal
axes of an n-dimensional ellipsoid. The method yields all the eigensolutions simul-
taneously. Many of the algorithms are efficient only if the matrix A is in tridiagonal
form, a form encountered only occasionally in vibrations. Hence, for the most part,
it is necessary to reduce a symmetric matrix to a symmetric tridiagonal one. To this
end, three algorithms are presented, Givens' method, Householder's method and
Lanczos' method. One of the most efficient methods for the computation of the
eigenvalues of symmetric tridiagonal matrices is due to Givens, and is based on the
separation principle discussed in Chapter 5. Another method is the OR algorithm,
which becomes competitive only when the matrix is tridiagonal and shifts are used.
Both the Givens method and the OR method yield eigenvalues alone. The eigenvec-
tors belonging to these eigenvalues can be computed efficiently by inverse iteration.
Other methods of interest are Rayleigh's quotient iteration, which targets individual
eigensolutions, and simultaneous iteration, which permits computation of a limited
number of dominant eigensolutions at the same time.

The eigenvalue problem for non symmetric matrices is considerably more in-
volved than for symmetric matrices, particularly if some of the eigenvalues are com-
plex. The simplest algorithm for such problems is matrix iteration by the power
method, a significantly different version from the one for symmetric matrices. A
much more powerful algorithm is the OR method, which yields eigenvalues alone.
Here too, efficiency considerations dictate that the nonsymmetric matrix be reduced
to a special form, in this case a Hessenberg form. Finally, the eigenvectors can be
obtained by means of inverse iteration modified so as to accommodate complex
conjugate eigenvectors.

6.1 SOLUTION OF LINEAR ALGEBRAIC EQUATIONS. GAUSSIAN ELIMINATION

In the process of solving algebraic eigenvalue problems, it becomes necessary at
times to solve sets of linear algebraic equations, a most fundamental problem in
linear algebra. The interest here lies in the case in which the number of equations is

__________________ -==========~I1!!!!!!!!!!!!.<il
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equal to the number of unknowns, so that we consider the system of equations

allXl + a12X2 + ... + alnXn = b1

a2lxl + a22X2 + ;.. + a2nXn = b2
(6.1)

Equations (6.1) can be written, in the compact matrix form

Ax = b (6.2)

where A = [aij] is the n x n coefficient matrix, x = [Xl X2 ... xnf the n-vector of
unknowns and b the n-vector of nonhomogeneous terms. To discuss the conditions
under which Eq. (6.2) possesses a unique solution, it is convenient to write the matrix
A in terms of its columns, as well as to introduce an augmented matrix Ab, as follows:

(6.3a, b)

Equation (6.3a) permits us to rewrite Eq. (6.2) in the form

(6.4)

which expresses the vector b as a linear combination of the column vectors a1 , a2, ... ,
an of A. But, the rank of a matrix can be defined as the number of linearly inde-
pendent columns of the matrix. Hence, Eq. (6.2) has a solution if (see Appendix
B)

rank A = rank Ab = n (6.5)

and the solution is unique. Equation (6.5) implies that A is nonsingular, which further
implies that det A i= O. Throughout this discussion, we assume that this is indeed
the case.

It is well known that an analytical solution of Eqs. (6.1), or Eq. (6.2), can be
obtained by Cramer's rule in the form of the ratio' of two determinants, or

det[ala2 ... aj-lbaj+l '" an]'
Xj = det A ' . j = 1,2, ... , n (6.6)

Yet, Cramer's rule is not the method of choice for solving linear algebraic equations,
particularly for n > 3. The reason can be traced to the fact that, in producing a nu-
merical solution of Eqs. (6.1), or Eq. (6.2), an analytical solution may not necessarily
be the most efficient computation ally, and at times it may not even be feasible. In this
regard, we define the most efficient computational algorithm as the one requiring
the smallest number of multiplications. Judging by this criterion, Cramer's rule is
a computational nightmare, as the eva1uation of determinants requires an excessive
number of multiplications. Indeed, the evaluation of an n x n determinant requires
n! multiplications, a number that increases very rapidly with n. As an example,
the evaluation of a relatively moderate 10 x 10 determinant requires the stunning
number of 3,628,800 multipiications. Clearly, Cramer's rule is not a computational
tool, and a reasonable alternative is imperative.
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The solution of Eq. (6.2) can be written in the simple form

(6.7)

where the inverse of A can be obtained by means of the formula (Appendix B)

in which

A-I = adj A
detA

(6.8)

(6.9)

is a square matrix known as the adjugate of A, where (-l)J +k det Mjk is the cofactor
corresponding to the entry Qjk of A and Mjk is the submatrix obtained from A by
striking out the jth row and kth column. But, once again we are facing the problem
of evaluating determinants, which seems to suggest the nonsensical idea that the
solution of linear algebraic equations represents a titanic task. Nothing could be
farther from the truth, however, as the above conclusion was based on Eq. (6.8) for
the inverse of a matrix. Indeed, a very efficient method for solving linear algebraic
equations, which is implicitly equivalent to Eq. (6.7), does exist and is known as
Gaussian elimination with back-substitution. Although the process of solving linear
algebraic equations by eliminating variables is well known, in this section we present
the Gaussian elimination in a matrix form suitable for computer programming. In
the process, we also develop an efficient method for carrying out matrix inversions.

The Gaussian elimination is basically a procedure for solving sets of linear alge-
braic equations through elementary operations. The net effect of these elementary
operations is to carry out a linear transformation on Eq. (6.2), which amounts to
premultiplying Eq. (6.2) by the n x n matrix P, so that

PAx = Pb (6.1 0)

The transformation matrix P is such that P A is an upper triangular matrix U. Hence,
introducing the notation

Eq. (6.10) can be rewritten as

PA = U, Pb = c (6.11a,b)

Ux = c (6.12)

The question remains as to how to generate the transformation matrix P re-
quired for the computation of U and c. The process involves 11 - 1 steps, where the
steps are perhaps best explained by beginning with the equations in index notation.
To this end, we introduce the notation

A = Ao, b (0) (613 b)

____________________ a_Il_+] •••••• !!!!!!!!!!!!~_._a, ...,,;;J
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and rewrite Eqs. (6.1) as follows:

(0) '(0) (0)
all Xl + a12 X2 + ... + a1n Xn

(0) ~ (0) .' .' (0)
a21 Xl + a22 X2+ ... + a2n Xn

(0)
= a1,n+1

(0)
= a2,n+1 (6.14)

•••• 0'. _0.•••• •••• .' •••••••••••••••••••••

(0) .. ' (0) I' (0) _ (0)
an1 Xl + an2 X2 + ... + ann Xn - an,n+1

The first step consists of subtract~ng ai~)/ai~) times the first of Eqs. (6.14) from the

ith equation (i = 2, 3, ... , n), p~ovided ai~) i= O. The result is

(0) (0) (0)
all Xl +a12 X2 + ... + a1n Xn

(1) (1)
a22 X2 + ... + a2h Xn

(0)
= a1,n+1

(1)
;::: a2,n+1

(6.15)
••••••••••••••••••••• 0" •••••••

(1), (1) _ (1)
an2X2 + ... + a~nXn - an,n+1

where the modified coefficients have the expressions

(1)
a··I}

(0) . i

(0) ail. (0)
= aij - (O)a1j,

all

i = 2,3, ... , n;.j = 2,3, .. ", n + 1 (6.16)

Next, we assume that a~;) i= 0 in Eqs. (6.15) and subtract ag) /a~~ 'times the
second equation from the t,th equation (i = 3,4, ... ,n) and obtain

. (0) .. (0) . (0) .' (0)
,a11x1 + a12 X2+a13 X3 + ... + a1n Xn

(1) (1) (1)
a22 X2+a23 X3 + ... + a2n Xn

(2) (2)
a33 X3 + ... + a3n XII

. (0)
= a1,n+1

(1)
= a2,n+1

(2)
= a3,n+l

(6.17)

where

(2)a..
I}

.............................
(2) (2) _ (2)

an3 X3 + .,. + annXn - an,n+l
.~' ;

"
~-"

3,4, ... ,n; j = 3,4, ... ,n + 1 (6.18)
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After n - 1 steps, the procedure yields

(0) (0) (0) (0) (0)
all Xl + al2 X2 + a13 X3+· .. + aln Xn = al.n+1

(1) (J) (1) (I)
a22 X2 + a23' X3+ ... + a2n Xn = a2.n+l

(2) (2) (2)
a33 X3+··· + ao,n Xn = ao"n+l (6.19)

(n-I)
ann Xn

(n-1)
an.n+l

Comparing Eqs. (6.12) and (6.19), we conclude that

[ ]
T [(0) (1) a(2) (n_1)]T

C = . CI C2 C3 ... Cn = al.n+l a2.n+l 3.n+l··· an,n+l

(6.20a)

(6.20b)

(n-I)
annooo

(0)
all

o
o

[

Ull U12 Un Uln]

.~..? .::: ::
o 0 0 Unn

u

"The preceding operations can be cast in matrix form. To this end, Eqs. (6.15)
can be rewritten as

(6.21)

where the coefficient matrix A I and the vector a~~l are obtained from Ao and a';~I'
respectively, by writing

(6.22a, b)

in which the transformation matrix PI has the form

(6.23)

where, according to Eqs. (6.16),

i = 2, 3, ... , n
(0)

ail
Pil = (0)'

all

In a similar fashion, the result of the second step is

(6.24)

(6.25)



[~ .. ~!.3.2..!..:..~]
o - Pn2 0 ... 1

in which, according to Eqs. (6.18), the entries Pi2 have the expressions
(1) :

ai2
Pi2 =.(1)'

a22

I The process continues in the same fashion and ends after n - 1 steps with the results

U = An-; ~ Pn-lAn-2 (6.29a)

274
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(6.26a, b)

(6.27)

(6.28)

. (n-l)
C = an+l

By induction, Eqs. (6.29) yield

(6.29b)

U = Pn-lAn-2 = Pn~lPn-2An-3 =.= ... = Pn-lPn-2··· PzPlA

P (n-2) P P (n-3) P P P Pc = n-lan+l = n-l n-2an+l = ... = . n-l n-2'" 2 Ib

(6.30a)

(6.30b)

in which we replaced Ao by A and a~~l by b, according to Eqs. (6.13). Then,
comparing Eqs. (6.11) and (6.30), we conclude that the transformation matrix has
the form of the continuous matrix product

(6.31)

which indicates that the transformation matrix P can be generated in n - 1 steps.
This is merely of academic interest, however, as P is never computed explicitly,
because U and c are determined by ~eans of Eqs. (6.22), (6.26) ... (6.29) and not
through Eqs. (6.1i).

With U and c obtained from Eqs. (6.29), Eq. (6.12) can be solved with ease by
back~substitution. Indeed, the bottom equation involves Xn alone, and can be solved
with the result I

Then, having Xn, the (n - 1)th equation can be solved to obtain

1
Xn-l = --- (Cn-l - Un-l,nXn)

Un-l,n-l

(6.32)

(6.33)

Next, upon substitution of Xn-l and Xn into the (n - 2)th equation, we are able to
solve f6fxn-2. The procedure continues by solving in sequence for Xn-3, ... , X2, Xl'
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'The question can be raised as to why not reduce the matrix A to diagonal
form, instead of upper triangular form, thus obviating the need for back-substitution.
Indeed, if we subtract ai~)lai~) times the second of Eqs. (6.19) from the first, we
obtain

(0)
all XI + (2) (2)al3 X3 + ... + aln Xn

(I) (I) (I)a22 X2 + a23 X3 + ... + a2n Xn

(2) (2)
a33 X3 + ... + a3n Xn

(2)
al.n+1

(I)
a2•n+1

(2)
a3,,,+1

(6.34)

(2) (2) _ (2)
an3 X3 + ... + a"" X" - O",n+1

so that now both the first and second column have one element alone. The proce-
dure continues in the same fashion, subtracting the equation with the entry to be
isolated both from the equations below it and the equations above it, ultimately
obtaining a diagonal matrix of coefficients. Such a variation on the Gaussian elimi-
nation does indeed exist, and is known as the Gauu-Jordan reduction. But, whereas
the Gauss-Jordan reduction is intuitively appealing, it is not as efficient as Gaus-
sian elimination. Indeed, the Gaussian elimination requires approximately n3/3 op-
erations and back-substitution about /12/2, as opposed to Gauss-Jordan reduction,
which requires approximately n3 12 operations, where operations are defined as mul-
tiplications or divisions. Hence, for large /1, Gaussian elimination is the method of
choice.

The fact that the matrix A is not singular guarantees that Eqs. (6.1) admit a
solution, but it does not guarantee that the computational process cannot break down.
To explain this statement, we recall that the rth step in the Gaussian elimination
involves division by the element a;~-I), where a;~-I) is known as the rth pivot. In
the process presented above, the pivots are taken in order down the main diagonal.
Clearly, the method breaks down when one of the pivots is zero. In fact, the pivot does
not have to be exactly zero for difficulties to arise. Indeed, if the pivot is a very small
number, large computational errors can occur. This should not be construed that the
equations do not have a solution; it merely implies that, to permit a continuation of
the process, it is necessary to interchange rows and/or columns. For example, if the
rth pivot is unduly small, then we can choose as the new rth pivot the element in the
rth column of largest magnitude, or

a(r-I) = max [a(r-I) I
rr sr' s = r, r + 1, ... , /1 (6.35)

which amounts to interchanging the rand s rows in the equations in which Xr is in line
for elimination below the main diagonal. This can be carried out by premultiplying

______ ~J
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the matrix Ar-l and the vector a~-01)by the permutation matrix

r s
1

1
0 1 r

Irs (6.36)
1 0 s

1

1
The process just described is known as partial pivoting. The search for a large pivot
need not be confined to the rth column and can be extended to all columns r ::: t <

. n, so that the new pivot is chosen according to

a(r-l) == max la(r--':l)I
rr sf' s, t = r, r + 1, ... , n (6.37)

This requires interchanging the rows rand s and the columns rand t, which can be
achieved by premuItiplication of the matrix Ar-l and vector a~-0I) by the permu-
tation matrix Irs and postmuItiplication of the matrix IrsAr-l by the permutation
matrix Irt. Note that an interchange of columns requires an interchange oLthe un-
knowns Xr and XI (see Example 6.2). The process in which both rows and columns
are interchanged is referred to as complete pivoting. The algorithm thus modified is
called Gaussian elimination with interchanges, or with pivoting for size. The modi-
fied algorithm does guarantee a solution, provided the set of equations is consistent,
which is implied by Eq. (6.5). Pivoting does complicate the solution process and de-
grades the performance of the algorithm, and should notbe used unless the solution
is in jeopardy. Unfortunately, such a judgment cannot be made a priori.

Equation (6.11a) can be given an interesting interpretation by expressing a
typical intermediate transformation matrix in the form

r = 1,2, ... , n -' 1 (6.38)

where er is the rth standard unit vector and
'T

Pr = [00,'" 0 Pr+1,~ Pr+2,r ... Pnr], r = 1, 2, ... , '! - 1.

Then, observing that e~Pr = 0, it is easy to verify that

(6.39)

P-l I + Tr = Prer ' r = 1,2, ... , n - 1 (6.40)

so that, using Eqs. (6.31) and (6.40) and recognizing that eTPi = 0, < J, we can
write

P-l p-lp-l p-l P'-1
:::::: 1 2 ... n-2 n-l
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n-I

=1 + LPre~ = L
r=1

277

(6.41)

where L is a unit lower triangular matrix, i.e., a lower triangular matrix with l's on
the main diagonal. Then, pre multiplying Eq. (6.11 a) by p-I = L, wc obtain

A = LV (6.42)

which states that Gaussian elimination is equivalent to factorization of the coefficient
matrix A into a product of a unit lower triangular matrix L and an upper triangular
matrix V.
Example 6.1

Solve the linear algebraic equations

4Xl + 2X2 - 2.4X3 = 1.6

2Xl + 1.05x2 + 0.2X3 = 5.8

Xl + 2X2 - 3.6x3 = -7.1

(a)

by Gaussian elimination with back-substitution.
We propose to solve Eqs. (a) using the matrix formulation. To this end, we use

the notation of Eqs. (6.13) and write

[
4 2 -2.4]

Au = 2 1.05 0.2,
1 2 -3.6

[ 1.6]
a~O) = 5.8.

-7.1
(b)

To determine the first transformation matrix, PI, we use Eqs. (6.24) with n = 3 and
write

a(O) 2
P2l = ~~)= 4 = 0.5,

all

(0)
°31

P31 = (0)
all

1
4

= 0.25 (c)

so that, using Eq. (6.23), the first transformation matrix is

[ 1 0 0]
PI = -0.5 1 0

-0.25 0 1

Inserting Eqs. (b) and (d) into Eqs. (6.22),we obtain

Al = PIAo = [-~.5 ~~] [~ ~.05 -~:~]
-0.25 0 1 1 2 -3.6 [

4 2
o 0.05
o 1.5

-2.4 ]
1.4

-3

(d)

(e)

and

[ ~.6]
-7.5

(f)

Next, we use Eqs. (6.28) with n = 3 and write

P32 =
1.5

0.05
= 30 (g)
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-2.4 ]
1.4

-3

so that, inserting Eq. (g) into Eq. (6.27),we obtain

[1' 0 0]
Pz = 0 1 0

o -30 1
Finally, using Eqs. (6.29) with n = 3, we have

[1 0 0] [4 2
U = Az = PZAI = 0 1 0 0 0.05

o -30 1 0 1.5
and

[
4 2

= 0 0.05
o 0

(h)

-2.4 ]
1.4 (i)

-45

(j)
[.~

1 01 00] [51.6] [ 1.6]c = a~Z) = Pza~l) = 5
-30 1 -7.5 -157.5

At this point, we are ready for the back-substitution. UsingEq. (6.32)with n = 3,
we can write

-157.5
-45

= 3.5 (k)

and from Eq. (6.33),we have

1
Xz = - (cz - UZ3X3)

Uzz

1
- (5 .~ 1.4 x 3.5) = 2
0.05 (1)

It is easy to verify that Xl can be obtained by writing

1 1
Xl = - (CI - U12XZ - U13X3) = - [1.6 - 2 x 2 - (-2.4) x 3.5] = 1.5 (m)

Un 4
which completes the solution.

Example 6.2

Solve Eqs. (a) of Example 6.1 by Gaussian elimination in two ways, with partial pivoting
ana with complete pivoting;

The first step remains as in Example 6.1. Hence, from Eqs. (e) and (f) of Example
6.1, we have

[
4 2 -2.4]

Al = 0 0.05 1.4,
o 1.5 -3 [ 1.6]a2) = 5

-7.5
(a)

The pivot ag) is small, so that we propose to interchange rows 2 and 3. To this end, we
use the permutation matrix .

(b)

(c)

(d)
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From here on, the procedure follows the same pattern as in Example 6.1. To determine
the second transformation matrix, P2, we use Eqs. (6.28) with n = 3 and write

*(1)a32
P32 = --;0)

a22

0.05
1.5

1
30

(e)

~ ~1]
-1/30

Hence, using Eqs. (6.29) with n = 3, we obtain

U = A2 = P2A~ = [~ ~ ~] [~ ~.5
o -1/30 1 0 0.05

so that, from Eq. (6.27), we have

P2 = [~

-2.4] [4 2 -2.4]
-3 = 0 1.5 -3

1.4 0 0 1.5

(f)

(g)

and

1
- [-7.5 - (-3) x 3.5] = 2
1.5

c = a~2) = P2a;(1) = [00] ~ ~] [-~:~]
-]/30 1 5

The back-substitution is also as in Example 6.1, namely,

C3 5.25
X3 = = 3.5

U33 1.5

1
X2 = - (C2 - U23X3) =

U22

[ 1.6]-75
5.25

(h)

(i)

I 1
XI = - (CI - UI2X2 - U13X3) = - [1.6 - 2 x 2 - (-2.4) x 3.5] = 1.5

Ull 4
The solution agrees with that obtained in Example 6.]. This is not surprising, as the pivot
was not sufficiently small to cause loss of accuracy and thus to warrant interchanges of
equations. Indeed, the partial pivoting carried out here was mainly to illustrate the
process.

Next, we observe from the matrix Al of Examplc 6.1 that the entry with the largest
magnitude in the 2 x 2 lower right corner submatrix is ag) = -3. Hence, we designate
this entry as the second pivot, which requires complete pivoting. Because this involves
an interchange of columns, we must redefine the vector of unknowns. To this end, we
recognize that 123lz3 = I, where I is the identity matrix, and consider

123AIlz3123x = A~y (j)

where this time

[
] a 0] [4 2o 0 1 0 0.05
o 1 0 0 1.5

[

4 -2.4 2 ]
o -3 1.5
o 1.4 0.05

(k)

In addition,

y (I)
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The vector a:(l) remains as that given by Eq. (d). Then, following the pattern established
earlier in this example, we write

*(1) 1.4
P32

a32 --
*(1) 3a22

so that
0[~ ~]P2 1

1.4/3

(m)

(n)

Moreover,

[~ 0 ~][~-2.4
2 ]V = A2 = P2A~ l' -3 1.5

1.4/3 1.4 0.05

= [~

-2.4
2 ]-3 1.5 (0)

0 0.75
and

[1
0

0] [ 1.6] [ 1.6](2) • *(1)
c = a4 = P2a4 = ~ 1 o -7.5 -7.5 (p)

~.4/3 1 5 1.5
Finally, the back-substitution yields the solution

C3 1.5
Y3 = X2 -=-·=2

U33 0.75
1

- (C2 - U23X2) =
U22

1
- (Cl - U12X3 - U13X2)
,Uu

1
Y2 = X3 =- (C2 - U23Y3)

Un
1

Yl = Xl =-- (Cl - U12Y2 - U13Y3)
Ull

1
-- (-7.5 - 1.5 x 2) = 3.5

3
(q)

1
=4 [1.6 - (-2.4) x 3.5 - 2 x 2] = 1.5

which agrees with the solutions obtained earlier without pivoting and with partial piv-
oting.

6.2 CHOLESKY DECOMPOSITION

As shown in Sec. 4.6, in attempting to reduce the eigenvalue problem for natural
conservative systems from one in terms of two real symmetric matrices, with one of
the two matrices being positive definite, to one in terms of a single real symmetric
matrix, it is necessary to decompose the positive definite matrix into the product
of a real nonsingular matrix and its transpose. Then, in Sec. 6.1, we demonstrated
that a real arbitrary matrix A can be decomposed by means of Gaussian elimination
into the product of a lower and an upper triangular matrix. In this section, we
present a technique more .efficient than Gaussian elimination, but one restricted to
real symmetric positive definite matrices. To this end, we rewrite Eq. (6.42) as

A = L'U' (6.43)
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where L' is a unit lower triangular matrix and V' an upper triangular matrix. In the
case in which A is symmetric, Eq. (6.43) can be rewritten in the form

A = L'DL'T (6.44)

in which D is a diagonal matrix. In general, the decomposition need not exist. When
A is real symmetric and positive definite, however, the decomposition is guaranteed
to exist and, in addition, the elements of D are all positive. In this case, letting

L'D1/2 = L (6.45)

in which DI/2 has the elements ,Jdj;, Eq. (6.44) reduces to

(6.46)

where L is a unique nOl1singular lower triangular matrix with positive diagonal ele-
ments. Equation (6.46) is known as the Cholesky decomposition, or Cholesky fac-
torization.

The computational algorithm for producing L from the real symmetric positive
definite matrix A using the Cholesky decomposition is extremely simple. Indeed, if
L is given explicitly by

[l:: .~:: .l~~..•.•.•..... ~... ]

Inl In2 In3 .,. Inn

then, by induction, the elements of L can be computed by means of the recursive
formulae

Iii

L

(

;-1 )1/2
a;; - LI;j

j=]

1 ( i-I )- a'k - "Ilk'I. I ~ Ij j ,
II j=]

= 1,2, ... , n

(6.47)

(6.48a)

i = 1,2, ... ,11; k = i + 1, i + 2, ... ,n (6.48b)

Equations (6.48a) and (6.48b) are to be used alternately. For example, the process
begins by using Eq. (6.48a) with i = 1 to compute Ill, Then, having 111, we go
to Eq. (6.48b) with i = 1 and k = 2,3, ... ,n to compute 121,/3], ... ,Inl. Next,
we return to Eq. (6.48a) with i = 2 to compute In and then to Eq. (6.48b) for
132,/42, ... ln2. The process is repeated in the same manner, and it terminates with
the use of Eq. (6.48a) with i = n to compute 11/1/'

As far as efficiency is concerned, the Cholesky decomposition requires 11
3
/6

multiplications, and we recall from Sec. 6.1 that Gaussian elimination requires about
113/3 multiplications. Hence, the Cholesky decomposition is about twice as efficient
as the Gaussian elimination. This is to be expected, as the Cholesky decomposition
takes full advantage of the symmetry of the matrix A.
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The Cholesky decomposition is ideal for reducing' an eigenvalue problem in
terms of two real symmetric matrices to one defined by a single real symmetric
matrix. Of course, this requires that one of the two matrices be positive definite, but
this presents no problem, as the mass matrix is in general positive definite. We recall
that in Sec. 4.6 we introduced a decomposition of the mass matrix M in the form of
Eq. (4.82). Clearly, the developments of Sec. 4.6 were carried out with the Cholesky
decomposition in mind, so that the matrix Q in Eqs. (4.82), (4.84), (4.85) and (4.87)
should be replaced by LT.

It should be reiterated that the Cholesky decomposition of a real symmetric
matrix is possible only if the matrix is positive definite. In vibrations, positive def-
initeness can often be ascertained on physical grounds, as in the case of the mass
matrix. In other cases, it can be ascertained by means of Sylvester's criterion, which
states that a real symmetric matrix is positive definite if and only if all its principal
minor determinants are positive (Ref. 10, p. 94). However, because the evaluation
of an n x n determinant requires n! multiplications, application of the criterion is
feasible only for matrices of relatively small order.

Example 6.3

Verify that the real symmetric matrix

[

6.25 3.25 2.875]
A = 3.25 15.7525 10.495

2.875 10.495 9.3325

is positive definite. Then, compute the matrix L for the Cholesky decomposition.
The principal minor determinants of A are

(a)

t,,) = all = 6.25

t,,2 = alla22 - ai2 = 6.25 x 15.7525 - 3.252 = 87.8906

t,,3 = all (a22a33 - a~3) - al2 (al2a33 - al3a23) + al3 (al2a23 - al3a22) (b)

= 6.25(15.7525 x 9.3325 - 10.4952
) - 3.25(3.25 x 9.3325 - 2.875 x 10.495)

+ 2.875(3.25 x 10.495 - 2.875 x 15.7525) = 197.7540

All principal minor determinants are positive, so that the matrix A is indeed positive
definite.

We begin the decomposition process by letting i = 1 in Eq. (6.48a) and writing

= 1.15

3.25
- = 1.3
2.5

2.875

2.5

III '= .JliU = .J6.25 = 2.5

Then, from Eq. (6.48b) with i = 1 and k = 2 and k = 3, we obtain

1
-al2 =
III

At this point, we return to Eq. (6.48a) with i = 2 and write

122 = Ja22 - I~) = J15.7525 - 1.32 == 3.75

(c)

(d)

(e)



so that, from Eg. (6.48b) with i = 2 and k = 3, we have

1 1
132 = - (a23 - 121131) = - (10.495 - 1.3 x 1.15) = 2.4 (f)

b 3.75

Finally, from Eq. (6.48a) with i = 3, we obtain

13) = J a33 - Ijl - Ij2 = )9.3325 - 1.152
- 2.42
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1.5
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(g)

Hence, the desired matrix is

[
2.5 0 0]

L = 1.3 3.75 0
1.15 2.4 1.5

6.3 THE POWER METHOD FOR SYMMETRIC EIGENVALUE PROBLEMS

(h)

As pointed out in Chapter 4, for n > 2, the solution of the algebraic eigenvalue prob-
lem is a numerical problem. There are many algorithms for solving the eigenvalue
problem and they all have one thing in common, they are all essentially iterative in
nature. To introduce the idea, we consider a given problem with the solution x. In
seeking a solution by an iterative method, we begin with a guess Xo and compute a
sequence of improved guesses Xl, X2, .... The iteration converges if, for every initial
guess Xo, the sequence Xl, X2, ... tends to the true solution X, although the true solu-
tion itself is never reached. The fact that a method is known to converge is reassuring,
but convergence alone is not enough. Indeed, one of the deciding factors in choosing
a given method is the rate of convergence. There are certain definitions character-
izing the rate of convergence. In linear convergence every step multiplies the error
by a fixed factor r < 1, and the number of accurate significant figures increases by
a constant amount at each iteration step. Quadratic convergence is characterized by
the fact that the error is squared at every step, going from 10-1 to 10-2 to 10-4

.•• ,

or the number of accurate significant figures doubles at each step. In cubic conver-
gence the error is cubed at every step, going from 10-1 to 10-3 to 10-9

... , or the
number of accurate significant figures triples at each step. Convergence is a much
more complex concept than the preceding definitions seem to imply, and on many
occasions it does not lend itself to easy analysis or classification. Moreover, even
when one of the definitions does apply, it may not necessarily apply over the entire
iteration process.

We begin our discussion of computational algorithms for the eigenvalue prob-
lem with the power method, perhaps the most widely known of the iteration pro-
cedures. The power method can be used both for symmetric and nonsymmetric
eigenvalue problems. Whereas the general ideas are the same in both cases, the
details differ. Hence, we discuss the two cases separately, the symmetric eigenvalue
problem in this section and the nonsymmetric one in Sec. 6.13.

We consider a real symmetric matrix A of order n and write the eigenvalue
problem in the standard form

_____________ AX.i.=_A.iX.i ' ••1 '1I!!!!2!!!!!,.!!!!!. !!!!!. , ••n~~,..--~~ •....(6111!!!!._49_) __ ~
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where the eigenvalues are ordered so that A] ::: A2 ::: ... ::: An, in which A]

is referred to as the dominant eigenvalue. We assume that the n eigenvectors
Xi (i = 1,2, ... ,n) are linearly independent and that they span an n-dimensional
vector space. Hence, by the expansion theorem (Sec. 4.6) any arbitrary vector Vo in
that space can be expressed as the linear combination

n

Vo = LCiXi
i=l

The power method iteration process is defined by

(6.50)

where

p 1,2, ... (6.51)

Vp = AVp_1 = A2vp_2 = ... = APvo (6.52)

so that the iteration process amounts to raising the matrix A to the indicated powers,
although AP is never computed explicitly. Inserting Eq. (6.50) into Eq. (6.51), using
Eq. (6.49) repeatedly and factoring out Ai, we obtain

vp = Af [e1X1 + tei G:r Xi] (653)

On the assumption that C1 =I- 0 and recalling that A1 is the largest eigenvalue, for
sufficiently large p, Eq. (6.53) can be written in the form

vp = Ai (C]X] + Ep) (6.54)

where Ep is a vector with small components. In fact, as p ----+ 00, the vector Ep
approaches the null vector asymptotically, so that

lim vp = Ai c]x] (6.55)
p-+oo

Hence;the iteration process converges to the eigenvector X] belonging to the domi-
nant eigenvalue A1' An additional pre multiplication by A yields

1· 1 p+]
1m Vp+1 = 11.1 C]X1

p-+oo " , .
(6.56)

(6.57)

and we note that convergence is characterized by the fact that two consecutive iter-
ates, vp and vpH, are proportional to each other, where the constant of proportion-
ality is A]. Indeed, Eqs. (6.55) and (6.56) can be used to write

1 I' Vp+1,j. 11.1= Im--
, p-+oo vp,}

where the subscript j indicates the j th component of the iterate. Hence, after
achieving convergence, the dominant eigenvalue can be obtained as the ratio of two
homolbgous (having the same relative position) components corresponding to two
consecutive iterates.

We observe from Eq. (6.54) that, as p increases, the components of the vector
vp·tend to become progressively large for A] > 1 and progressively small for A] < 1,
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which can be a problem. To obviate this problem, it is advisable in practice to modify
slightly the iteration process, Eq. (6.51), by scaling the iterates so as to moderate
the changes in magnitude, which implies normalization. To this end, we replace
Eq. (6.51) by the iteration process

where Cip is a normalization factor. If the iterates v; are normalized so as to render
the component of vp of largest magnitude equal to 1, then

1
Ci -

p - max Iv* I'
i pi

p = 1,2, ...

p = 1,2,. o'

(6.58a, b)

(6.59)

On the other hand, if the vectors v; are normalized so that the magnitude of vp is
equal to 1, then

In both cases, the convergence can be

Cip = l/lIv;lI,
where IIv; II is the Euclidean norm of v;.
expressed in the simple form

lim Cip
p-HXi

p = 1,2, ...

= AI

(6.60)

(6.61a)

and
lim vp = XI

p-+oo
(6.61b)

where the eigenvector Xl is normalized according to one of the two schemes just
described. In fact, when unit eigenvectors are required, as we shall see shortly, a
good strategy is to normalize according to Eq. (6.59) during the iteration process and
switch to Eq. (6.60) after convergence has been reached.

In the above process, we tacitly assumed that A2 #- AI· In the case in which the
dominant eigenvalue AI has multiplicity m, Eqo (6.53) must be replaced by

[
m n (A)P]

vp = Ai ?=CiXi + ,2:: Ci f Xi
1=1 l=m+1 1

(6.62)

and the iterates tend to some vector lying in the subspace spanned by Xl, X2, .. 0 , Xm·

The problem of determining the remaining m - 1 eigenvectors is discussed shortly.
The question can be raised as to whether the iteration process fails to converge

to the dominant eigenvalue, eigenvector pair AI, Xl if CI = 0 in Eqo (6.50), in which
case the eigenvector is not represented in Vo, and hence in the iterates. Whereas it
may be possible in theory to conjure up an example in which XI is absent from vo,
in carrying out the iteration process on a digital computer this possibility does not
exist, as digital computers do not perform arithmetical operations exactly. Indeed, a
number stored in a digital computer has only a given number of significant figures,
which tends to introduce rounding errors. As a result, the initial guess Vo and the
iterates vp are likely to acquire a component of Xl' This component, even if extremely
small in the beginning, tends to grow larger and larger progressively and finally assert
itself essentially as the only component in the iterate. This is a reassuring thought I

as far as convergence to the dominant eigensolution is concerned, but the thought

I

-------------~--~
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raises questions as to how to obtain the sub dominant eigensolutions. In fact, it is
not possible to converge to subdominant eigensolutions with the iteration process
specified by Eq. (6.51), so that the process must be modified.

We assume that the dominant eigensolution Al,X1 satisfying Eq. (6.49) has
been determined, and that the eigenvectors are to be normaliZed so as to satisfy the
orthonormality conditions

Then, we consider the matrix

i, j = 1,2, ... , n (6.63)

(6.64)

(6.64)

Multiplying Eq. (6.64) on the right by Xi and considering Eqs. (6.63), we obtain

ifi=I"
if i #- 1

Equation (6.64) permits us to conclude that the matrix A2 possesses the eigenvalues
0, A2, ... , An and the eigenvectors Xl, x2, ... ,Xn. Hence, using the initial vector in
the form given by Eq. (6.50) in conjunction with the matrix A2, we obtain the first
iterate

, -
n n

V1 = A2Va =L CiA2Xi = L CiAiXi
i=l i=2

which is entirely free of Xl- It follows that, if we use the iteration process
, l:

(6.65)

Vp = A2vp-1,

then the pth iterate has the form

p = 1,2, ... (6.66)

(6.67). [ n (A')P]vp = Af C2X2+ t;Ci A: Xi

, so that the iteration process involving A2 converges to A2, X2 in the same way as
the iteration process involving A converges to Al, Xl. The matrix A2 is known as
a deflated matrix. As in the case of the dominant pair A1, Xl, we actually use the
iteration process

p = 1,2, ... (6.68)

where, in view of the fact that the eigenvectors must be normalized so as to satisfy
Eqs. (6.63), the normalization factor ap is determined according to Eq. (6.60).

At this point, we return to the question of repeated eigenvalues. In the case
examined earlier.in which Al has multiplicity m, the iteration process involving the
deflated matrix A2, Eq. (6.66), remains the same, but the expression for the pth
iterate, Eq. (6.67), must be replaced by

(6.69)
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so that the process converges to A I, X2. Here, once again, we use the iteration process
given by Eqs. (6.68), instead of that given by Eqs. (6.66), so that X2 is automatically
orthonormal to XI.

Matrix deflation can be used to compute the remaining subdominant eigenso-
lutions. Indeed, it is easy to verify that the deflated matrix

k = 2, 3, ... , n (6.70)

has the eigenvalues 0,0, ... ,0, Ak, Ak+I' ... , An and the eigenvectors XI, X2, ... "

Xk-I, Xb, Xk+I, ... " Xn, respectively, so that the deflated matrix Ak can be used
to iterate to the eigensolution Ak, Xk. In the case in which Al has multiplicity m
and k < m, the eigenvalues are 0,0, ... ,0, AI, AI, ... , AI, Am+I"'" An and the
eigenvectors are XI, X2, ... , Xk-I, Xk, Xk+], ... , XIII' XIII+I,···, Xn, respectively. Of
course, this does not affect the algorithm itself, which remains the same, regardless
of eigenvalue multiplicity. It should be pointed out that no iteration is really re-
quired for k = 11, as n - 1 eigenvectors are sufficient to determine Xn by means of
Eqs. (6.63). lben, An can be computed using Eq. (6.49) with i = n. Still, whereas
this information has educational value, it is simpler to complete the solution with
k = 11. The procedure for determining the subdominant eigensolutions using ma-
trix deflation is due to Hotelling (Ref. 6). Various other deflation procedures arc
presented by Wilkinson (Ref. 13).

Next, we propose to make the connection between the developments of this
section for the eigenvalue problem in terms of a single real symmetric matrix and
the problem in terms of two real symmetric matrices of interest in vibrations. Using
Eqs. (4.81) and (4.131), the eigenvalue problem can be written in the form

Ku = u}Mu (6.71)

where K and M are the symmetric stiffness and mass matrices, respectively, u is a
vector of displacement amplitudes and (I) is the frequency of vibration. In reducing
the eigenvalue problem (6.71) to standard form, it is important to keep in mind that
the most accurate eigenvalue, eigenvector pair computed by means of the power
method is the dominant pair AI, XI. But, in vibrations, it is generally the lowest
natural frequency (1)1 holding the most interest. Hence, Eq. (6.71) must be reduced
to standard form in such a way that A is inversely proportional to (1)2. Another thing
to consider is that the symmetry of the coefficient matrix A is not really required for
the power method. Indeed, only the orthonormality of the eigenvectors is required,
and only for the computation of the subdominant eigensolutions. In view of this, we
premultiply both sides of Eq. (6.71) by K -I and rewrite the result in the form

Au = Au. A = 1/(1)2 (6.72)

in which
(6.73)

and it is clear that this reduction is possible only if K is nonsingular. Note that the
matrix given by Eq. (6.73) is commonly referred to as the dynamical matrix (Refs. 9
and 11).
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,The computation of the dominant mode follows the established procedure, with
the initial trial vector Vo in the form of the linear combination

n

Vo = LCiUi
i=]

i ,

(6.74)

where Ui (i = 1,2, ... , n) are the modal vectors. Then, assuming that the modal
vectors are to be normalized so as to satisfy the orthonormality relations

KUi = 0,

i, j = 1,2, ... , n

i = 1,2, ... r

(6.75)

(6.77)

These vectors can be identified as rigid-body modes and, because MiD i= 0, they are
characterized by zero frequencies

Wi = 0, i = 1, 2, ... ; r (6.78)

I

L

The eigenvalue problem can be modified in this case by eliminating the rigid-body
modes from the formulation, resulting in an eigenvalue problem defined by positive
definite, real symmetric mass and.stiffness matrices (Ref. 11).

The main advantage ofthe power method is simplicity. Two other advantages
are that the algorithm yields eigenvalues and eigenvectors simultaneously and that it
iterates to one eigensolution at a time, thus providing a partial solution if desired. A
fourth advantage is that the method is able to accommodate very large sparse matrices
A by storing only the nonzero elements, instead of the full array of n2 elements. This
advantage may not be as significant as ifmay seem, because it is the stiffness matrix
K that tends to be banded, and Eq. (6.73) calls for the flexibility matrix K-], which
tends to be fully populated. On the other side of the ledger, there is 'the question
of convergence. There are two factors affecting convergence. The first is the choice
of the initial vector Vo. If Vo is relatively close'to the first eigenvector X], then the
coefficient C] in Eq. (6.50) is much larger than the remaining coefficients, which tends
to reduce the number of iteration steps. This factor is not as significant as it would
seem. Indeed, far more important is the second factor, namely, the ratio Az/ A] , which
represents a characteristic of the system. Clearly, the smaller is the ratio, the faster
is the convergence. Convergence problems can be expected if A] is not strongly
dominant. In particular, if A2/A] is close to 1, then convergence will be painfully
slow. In this case, convergence can be accelerated through a shift in the eigenvalues,
which can be accomplished by replacing the matrix A in Eq. (6.58a) by A - pI
Now the process converges to A1 - J.L and X], and the rate of convergence depends
on the ratio (A2 - J.L) / (A] - J.L). Note that the value of J.L can be changed with each
iteration step. A judicious choice of J.L can accelerate convergence dramatically.
Some choices are discussed by Wilkinson (Ref. 13, p. 572), but not all choices are
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desirable, as they tend to complicate the iteration process and cause programming
difficulties. The procedure can be extended to the subdominant eigensolutions.

The power method has pedagogical value, but is not a serious contender as a
computational algorithm for solving the algebraic eigenvalue problem, except when
only a few dominant eigensolutions are required.

Example 6.4

Solve the eigenvalue problem for the system of Example 4.6 by the power method.
From Example 4.6, we obtain the mass and stiffness matrices

[2 ° 0]M=m030, ° 0 1
[ 5 -3 0]

K = k -3 5-2° -2 3
(a)

so that, using Eq. (6.73), the dynamical matrix can be verified to be

[

0.7857 0.9643 0.2143]
A = K-] M = 0.6429 1.6071 0.3571

0.4286 1.0714 0.5714

where the parameters m and k have been assigned to A, so that

A = k/mo}

(b)

(c)

(d)

We begin the iteration process with Vo = [1 11f. Introducing Vo into Eq. (6.58a)
and using Eqs. (6.58b) and (6.59), all with p = 1, we obtain

[
0.7857 0.9643 0.2143] [1] [1.9643] [0.7534]
0.6429 1.6071 0.3571 1 = 2.6071 = 2.6071 1.0000
0.4286 1.0714 0.5714 1 2.0714 0.7945

so that Ct'] = 2.6071 and VI = [0.75341.0000 0.7945(. Repeating the process with
p = 2, we write

[
0.7857 0.9643 0.2143] [0.7534] [0.7269]
0.6429 1.6071 0.3571 1.0000 = 2.3752 1.0000
0.4286 1.0714 0.5714 0.7945 0.7782

The seventh iteration yields

[
0.78570.96430.2143][0.7231] [0.7231]
0.6429 1.6071 0.3571 1.0000 = 2.3495 1.0000
0.4286 1.0714 0.5714 0.7769 0.7769

(e)

(f)

so that

Al = 2.3495, [
0.7231 ]

UI = 1.0000
0.7769

(g)

Using Eq. (c) and normalizing according to Eq. (6.75), we obtain the lowest natural
frequency and modal vector

WI = 0.6524ff, [
0.3354 ]

UI = m-]/2 0.4638
0.3603

(h)

____________________ =====!!!!!!!!!!!-!!!!!!!!!!!-!!'!!!!!!!!!!!iJ
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To compute the second eigenvalue and eigenvector, we use Eq. (6.76)with k = 2
and construct the first deflated matrix

A2 = A ~ A.I0IUiM

[
0.7857 0.9643 0.2143]. [0.3354]' [,0.3354]T [2
0.6429 1.6071 0.3571 - 2.3495 0.4638 0.4638 0
0.4286 1.0714 0.5714 ,0.3603 0.3603 0

[

0.2572 -0.1319 -0.0696]
, -0.0880 0.0911 -0.0354 ,
-0.1392 -0.1063 0.2664

Then, using as-a first trial vector Vo = [10'----' 1]T, we obtain

(i)

(k)

.,

[
0.2572 -0.1319 -0.0696] '[ 1] [0.3268] [ 0.8057]

-0.0880 0.0911 -0.0354' 0 = -0.0526 = 0.4056 -0.1297 (j)
-0.1392 -0.1063 0.2664 -1 -0.4056 -1.0000

so that 0(1 = 0.4056and'vl = [0.8057- 0.1297 - 1.0000]T. Repeating the process
with p = 2, we have

[
0.2572 '-0.1319 -0.0696][ 0.8057] [ 0.8057]

-0.0880 0.0911 -0.0354 -0.1297 = 0.3648 -0.1297
-0.1392 -0.1063 0.2644 -1.0000 -1.0000

. and we conclude that convergence has been achieved already, which can be attributed
to an extremely good guess for vo. Hence,

A.2 = 0.3648,
".[' 0.8057]

02 =;= , ,-0.1297
-1. 0000

(I)

Using Eq. (c) and normalizing according to Eq. (6.75),we obtain the second natural
frequency and modal vector

[
0.5258]

02 = m-1/2 -0.0845
-0.6525

(m)

The third and last eigenvector does not really require an iterative process, as 03

can be computed from the requirement that it be orthogonal with respect to M to 01

and 02· Nevertheless, it is simpler to continue with the iteration process. To this end,
we use Eq. (6.76)with k == 3 and compute the second deflated matrix

[

0.2572 -0.1319 -0.0696]
A3 = A2 -A.2020I M = -0.0880 0.0911 -0.0354

-0.1392 -0.1063 0.2664

[
0.5258] [ 0.5258] T [2

- 0.3648 -0.0845 -0.0845 ' 0
-0.6525 -0.6525 ' 0

[
0.0556 -0.0833 0.0556]

= -0.0556 0.0833 -0.0556
0.1111 ---,--0.16670.1111

(n)
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As a first trial vector, we use Va = [1 - 1 ]f and write

[
0.0556 -0.0833 0.0556] [ ]] [0.1944] [ 0.5000]

-0.0556 0.0833 -0.0556 -] = -0.1944 = 0.3888 -0.5000
0.1]] ] -0.1667 0.]] 11 ] 0.3888 1.0000

A second step yields

[
0.0556 -0.0833 0.0556] [ 0.5000] [ 0.5000]

-0.0556 0.0833 -0.0556 -0.5000 = 0.2500 -0.5000
0.1111 -0.1667 0.]]]] 1.0000 1.0000

(0)

(p)

so that

AJ = 0.2500, [
0.5000]

U3 = -0.5000
1.0000

(q)

W:; = 2.0000ff,
from which we obtain the third natural frequency and modal vector

[
0.3333]

UJ = m-1/2 -0.3333
0.6667

thus completing the solution.

6.4 THE JACOBI METHOD

(r)

In Sec. 5.1, we presented a geometric interpretation of the eigenvalue problem for
real symmetric positive definite n >< n matrices A whereby the solution of the eigen-
value problem was demonstrated to be equivalent to the problem of determining the
principal axes of an n-dimensional ellipsoid defined by the equation

Tf = x Ax = 1 (6.79)

where x is an n -dimensional vector.
In the two-dimensional case, the ellipsoid reduces to an ellipse and the problem

of determining its principal axes reduces to a coordinate transformation representing
a rotation of axes. Analytically, the process amounts to reducing the equation of the
ellipse to canonical form, which is equivalent to diagonalizing the matrix A, or

(6.80)

where R is the rotation matrix and D is the diagonal matrix. It is demonstrated
in Sec. 5.1 that D is simply the diagonal matrix A of eigenvalues and R is the or-
thonormal matrix V of eigenvectors. In this section, we extend these ideas to the
n-dimensional case.

In the two-dimensional case, the principal axes can be determined by means
of a single rotation. In the n-dimensional case, it is not possible to determine the
principal axes in a single step. Indeed, one planar rotation can be used to annihilate
the off-diagonal element of A in the plane of rotation and its symmetric counterpart.
But, a second rotation designed to annihilate another off-diagonal element and its
symmetric counterpart in a different plane will cause the just annihilated element
and its symmetric counterpart to acquire some nonzero value, albeit smaller than
the original one, i.e., smaller than the value before annihilation. It follows that the

__________________ I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!======!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!lli~
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diagonalization of Acannbt be carried out in a finite number of steps and can only be
performed iteratively, whereby each iteration represents one planar rotation. This is
the essence of the Jacobi method, for which reason the Jacobi method is referred to
as diagonalization by successive rotations. The method converges but in theory the
number of rotations is infinite, as in any iterative process. In practice, it is finite and
depends on the accuracy desired.

The iteration process is given by

k = 1,2, ... (6.81)

where A = Ao and Rk is the kth rotation matrix. Assuming that our objective is
to annihilate the off-diagonal elements p, q and q, p of the matrix Ak, by analogy
with Eq. (5.8), the matrix Rk is taken to represent a rotation in the p, q-plane and
has the form

1 0 .
o 1 .

p

o
o

q
o
o

... 0
o

o 0 ... cos ek

o 0 ... sin ek

- sin ek .... 0

... 0, .

p

q
(6.82)

o 0 ... o o ... 1

Denoting the i, j element of Ak by a?) and inserting Eq. (6.82) into Eq. (6.81), we] ..

can express the elements of Ak in terms of the elements of Ak-J and the rotation
angle ek as follows:

= a(k-J) cos2 ek + 2a(k-J) sin ek cos ek + a(k-J) sin2 ekpp pq qq

= a(k-J) sin2 ek - 2a(k-l) sin ek cos ek + a(k-J) cos2 ekpp pq qq

= a(k) = - (a(k-J) - a(k-J)) sinek COSek
qp pp qq

+ a(k-l) (cos2 e - sin2 e )pq k k

(k-J) (k-l) .
=aip COSek+aiq smek,

(k-l) . (k-l)
-aip sm ek + aiq .cos ek,

a(k)
pp

a(k)
qq

. a(k)
pq

(k)aip

(k)aiq

(k)
a··I]

(k)= api

(k)= aqi

(k-l)= aij , i,j i= p,q

i= p,q

i i= p, q

(6.83a)

(6.83b)

(6.83c)

(6.83d)

(6.83e)

(6.83f)

so that the only elements affected by the orthonormal transformation (6.80) are those
in row and column p and in row and column q. From Eq. (6.83), we conclude that,
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to render the element a~~ zero, the rotation angle (A must be chosen so as to satisfy

2 (k-I)apq
tan 2(A = (k-I) (k-I)

app - aqq

(6.84)

But, from Eqs. (6.83), we observe that only sin fA and cos ek are required explicitly,
and not ek. Introducing the notation

(k-I) bapq = k-I.

it is not difficult to verify that

1_ (a(k-I) - a(k-I)) = c2 pp qq k-I (6.85)

[
1 Ck-I ]COSek = _+_ 1/2

2 2 (b2 + c2 ) I /2
k-I k-I

bk-I

2 (bLI + CLlf/2
COSek

(6.86)

where cos ek is to be taken to be positive and sin ek takes the sign of tan 2ek. When
(k-I) (k-I) e b ± / . h· f (k-I) .app = aqq , we take k to e 7r 4, accordmg to t e sign 0 apq . Because m

general a~~+1) # 0, the process is iterative.
From Eqs. (6.81), we can write

T T TRk Ak-I Rk = Rk Rk_1 Ak-2Rk-1 Rk

RJ RLl'" RJ RrARIR2 ... Rk-IRk (6.87)

The process is convergent, in the sense that Ak tends to a diagonal matrix as k ~ 00.

By necessity, this diagonal matrix must be the matrix A of the eigenvalues, so that

lim Ak = A
k-HX:;

(6.88)

Moreover, comparing Eq. (6.87) to Eq. (4.107) and considering Eq. (6.88), we con-
clude that

lim RIR2 ... Rk-IRk = V
k->oo

(6.89)

where V is the matrix of the eigenvectors, and we observe that, because everyone
of the rotation matrices is orthonormal, the Jacobi method produces automatically
an orthonormal matrix of eigenvectors. It should be pointed out that the Jacobi
method yields a complete solution of the eigenvalue problem, in contrast to the
power method. which is capable of producing a partial solution, as well as a complete
solution.

Next, we wish to prove convergence of the Jacobi method. To this end, we first
express the matrix Ak as the sum

(6.90)
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whereDk is the matrix of the diagonal elements of Ak 'and Uk is the upper triangular
matrix of the off-diagonal elements of Ak. Then, we define the Euclidean norm of a
matrix A as (see Appendix B)

(

n n ) 1/2

IIAIIE = t;f;a~ (6.91)

In view of this definition, the Euclidean norm squared of Ak is simply

IIAkll~ = IIDkll~ + 2I1Ukll~. (6.92)
But, Eqs. (6.83a)-(6.83c) can be used to show that

(a~~)2 + (a~~)2 + 2 (a~~)2 = (a~~-I))2 + (a~~-I))2 + 2 (a~~-1))2 -(6.93)

Moreover, using Eqs. (6.83d) and (6.83e), we can write

(a~)r + (a~)r = (a~-I)r + (a~-l)r, i =I- p, q (6.94)

Hence, using Eqs. (6.93) and (6.94), as well as Eq. (6.83f), and considering the sym-
metry of Ak-l and Ak, we obtain

(6.95)

which indicates that the Euclidean norm of a real symmetric matrix is invariant under
an orthonormal. transformation. Next we write .

n 2

IIDkll~ = (a~~)2 + (a~~)2 + L (ai~))
i=l

i#p,q

(6.96)

so that, considering Eqs. (6.92), (6.93) and (6.96), as well as Eq. (6.83f), Eq. (6.95)
can be shown to yield

IIUkll~ - (a~~)2 = IlUk-ll1~ _ (a~~-1))2

But, ek is chosen so as to render a~~ zero, so that

IIUkll~ = IIUk-lll~ - (a~~-1))2
Finally, inserting Eqs. (6.92) and (6.98) into Eq. (6.95), we conclude that

IIDkll~ .= IIDk-lll~ + 2 (a~~-1))2

(6.97)

(6.98)

(6.99)

Equation (6.99) demonstrates that one iteration step causes the sum of the diagonal

elements squared of Ak to increase by the amount 2 (a~~-l))2 relative to the sum
of the diagonal elements squared of Ak-l' In view of Eqs. (6.92) and (6.95), we
further conclude that the increase in the sum of the diagonal elements squared is
at the expense of the sum of the off-diagonal elements squared. Pictorially, the
iteration process can be envisioned as a steady migration of numerical strength from
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the off-diagonal clements to the diagonal ones, until all off-diagonal elements lose
any significance and Ak becomes diagonal. This proves that the iteration process is
convergent; it leads in the limit to the solution of the eigenvalue problem according
to Eqs. (6.88) and (6.89).

From Eq. (6.99), we conclude that convergence can be accelerated by choosing
the element of Uk-l of largest modulus as the element a~~-I) to be annihilated. The
drawback of such a choice is that it makes it necessary to search through all the
elements of Uk-I, The simplest approach is to perform the rotations sequentially in
the planes O. 2). 0.3) .... O. n). (2.3). (2.4) ..... (2. n), ... and (n-l, n), where
the sequence of n (n - 1) /2 rotations is referred to as a sweep, and we note that
one complete sweep requires approximately 2n3 multiplications. This procedure is
known as the serial Jacobi'method. If the element a~~-I) is much smaller than the

general level of the clements of Uk-l, then the effort made in annihilating a~~-1)

is almost totally wasted. To render the annihilation of a~~-J) meaningful, we can
establish a threshold value for each sweep and omit any rotation involving an off-
diagonal element whose magnitude lies below the threshold value. The process is
terminated when n (n - 1) /2 consecutive rotations are omitted. This version of the
Jacobi method is known as the threshold serial Jacobi method.

The accuracy of the Jacobi method depends on how accurately sin ek and cos ek
are computed. If sin ek and cos ek are computed with reasonable accuracy, then no
significant growth of rounding error occurs. The accuracy of the eigenvectors depends
on the separation of the eigenvalues. One of the most significant features of the Jacobi
method is that, even if some eigenvalues are very close, the associated eigenvectors
are almost exactly orthonormal. Hence, if the interest lies not only in the eigenvalues
but also in the full set of orthonormal eigenvectors, then the Jacobi method may prove
more desirable than faster methods that do not produce eigenvectors, particularly
for diagonally dominant matrices A.

In vibrations, our interest lies in an eigenvalue problem in terms of the mass and
stiffness matrices, as given by Eq. (6.71), so that once again we wish to transform the
eigenvalue problem into one defined by a single matrix A. For the Jacobi method,
however, A must be real symmetric and positive definite. On the other hand, because
the iteration process converges to all eigenvalues and eigenvectors simultaneously,
it is no longer necessary to define the eigenvalues as inversely proportional to the
natural frequencies squared. To reduce the eigenvalue problem (6.71) to one in
terms of a single symmetric matrix, we first carry out the Cholesky decomposition
(Sec. 6.2)

(6.100)

where L is a nonsingular lower triangular matrix. Then, introducing the linear trans-
formation

so that

(6.101)

u (6.102)
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and premultiplying both sides ofEq. (6.71) by L -;1, we obtain the desired eigenvalue
problem in the form

where

Av = AV, (6.103)

(6.104)

The solution of the eigenvalue problein, Eq. (6.103); yields eigenvalues equal to
the natural frequenci~s ~quared, Ai = wt (i = 1,2, ... , n). On the other hand,
the eigenvectors must be inserted into Eq. (6.102) to produce the modal vectors,
Ui.= (L-l)T Vi (i =1,2, .... ,n) ...

The Jacobi method exhibits ultimate quadratic convergence (Ref. 5, p. 448;
Ref. 13; p. 270). ' .

Example 6.5

Solve the eigenvalue problem o~Example 6.4 by theseiial Jacobi method.
To reduce the eigenvalue problem of Example 6.4 to one in terms of a single

real symmetric matrix, we wish to carry out the Cholesky decomposition indicated by
Eq. (6.100). In the case at hand, the mass matrix is diagonal, so that

(a)

Hence, insertin,g Eq. (a) into Eq. (6.104) and using Eqs. (a) of Example 6.4, we obtain

A = M-1/2KM-1/2 = [1/f- 1/~ ~] [_; -; _~] [1/f-
o 0 1 0 -2 3 0

[

2.5000 -1.2247 0 ]
= -1.2247 1.6667 -1.1547

o -1.1547 3.0000

o O~]1/.j3
o

(b)

'where the parameter ratio klm was included in A.
We begin the iteration with a rotation in the (1, 2)-plane, p = 1, q = 2. Using

Eqs. (6.85) with k = 1, we have

so that, using Eqs. (6.86) with k = 1, we can write

(0)bo = a12 = -1.2247, 1 ( (0) (0»)
Co = 2." all - a22

1
- (2.5000 - 1.6667) = 0.4167
2

. (c)

[
1 Co ]1/2
2." + 2 (b6 + C6)1/2

[
0.5000 + 0._4_16_7__ ~] 1/2 = 0.8130

2 (1.22472 + 0.41672)1/2

bo -1.2247

2 (b6 + (6)]/2 cose1 2 (1.22472 + 0.41672)1/20.8130
= -0.5822

(d)



3771 0 0.6723] [0.7969 0 -0.6041]
o 0.7897 0.9388 0 J 0
5723 0.9388 3.0000 0.6041 0 0.7969

(h)

1ilated in the first rotation, is_no longer zero. For... f_ ....." .
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Finally, using Eq. (6.81)with k = 3, we obtain'

A3 = RJ A2R3

Chap. 6

which completes the first sweep.
The process continues with a new sweep beginning with a rotation in the (1,2)-

plane. Omitting the details, we list the final results

[

0.471£ 0.7436 0.4743]
V,,= -0.5774 -0.1464 0.8033

. 0.6667 -0.6525 0.3603

[ ~ 0.~530 0.9~56] [~:~~~~
o -0.9356 0.3530 0

[

3.8867 0.2002 -0.5307]
= 0.2002 2.7408 0

-0.5307 0 0.5392

A = diag (4.0006 2.7412 0.4256),

~:~~~; 0.7~81]' [~ 0.3~30 -0.~356]
0.7481 2.4903 0 0.9356 0.3530

(k)

(I)

and we note that we were close to the two highest eigenvalues after one sweep only. We
also note that the eigenvalues and eigenvectors are in descending order. Using the first
of Eqs. (I), we obtain the natural frequencies

u>1 = J A~k = J 0.4~6k = 0.6524/f

Wz = JA2k = J2.7412k = 1.6556 fI (m)
" m m V;

,.' +

W3 = /A~k =. J 4.0~00k = 2.0000/f

Moreover, considering Eq. (6.102)and rearranging the columns of V, the modal matrix
is

[
1/./2 0 0] [0.4743 0.7436

U = M-1/2V = m-1/2 ' ' O. 1/.J3 0 0.8033 -0.1464
o 0 1 0.3603 -0.6525

[

0.3354 0.5258 0.3333]
, = m-1/2 0.4638 -0.0845 -0.3333

0.3603 -0.6525 0.6667

0.4712]
-0.5774

0.6667

(n)

6.5 GIVENS' TRIDIAGONALIZATION METHOD

Some efficient computational algorithms for the solution of the symmetric eigen-
value problem require that the matrix A be tridiagonal. Other algorithms, although
capable of solving the eigenvalue problem for a fully populated real symmetric ma-
trix, are not competitive unless the matrix is tridiagonal. Some algorithms working
with tridiagonal matrices are so powerful that they remain competitive even when
the matrix A must be tridiagonalized first and the effort to tridiagonalize A is taken
into account.

As demonstrated in Sec. 6.4, the Jacobi method reduces a real symmetric matrix
A to diagonal form by means of a series of orthogonal transformations representing



planar rotations:'111e method is iterative in nature, which implies extensive compu-
tations. The Givens method uses the same concept of orthogonal transformations
representing rotations toward a more modest objective, namely, tridiagonalization
instead of diagonalization. In contrast with the Jacobi method, Givens' method is not
iterative and it involves (n -.1)(n - 2)/2 steps, a smaller number than the number
of steps in one sweep alone in the Jacobi method.

The Gi~ens' method borrows some of the features from the Jacobi method,
..• but the two methods differon two major respects, the scheduling of the element

annihilation and the computation of the rotation angles ek. Indeed, Eqs. (6.81 )-( 6.83)
remain the same for the Givens method. But, whereas in the Jacobi method one seeks
to annihilate a~~ and a~~' in the Givens method the objective is to annihilate the

element,s ai~) and a~~), i i= p, q. Hence, from Eq. (6.83e), we write

(k) (k) (k-1) . e (k-1) e -t.a = a, = -a Sill k + a, cos k = 0, i I p, q (6.105)
lq" "ql. , • lp , Iq, •• , .'

Equation (6.105) can be satisfied by taking simply

'(k-1) e • (k-1)
sin ek = gkaiq' cos k ,gkaip.'

Sec. 6.5 . _ Givens' Tridiagonalization Method
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(6.106)

where

gk = [(a~-l)r + (ai(~-l)rJ/2, k = 1,2, ... (6.107)

\

Contrasting Eqs. (6.106) and (6.107) with Eqs. (6.85) and (6.86), we conclude that
the computation of sin ek and cos ek is significantly simpler in the Givens method
than in the Jacobi method.

The tridiagonalization of A can be carried out in a series of steps designed to
annihilate all the clements in the upper (lower) ~riangular matrix excluding the main
diagonal and the upper (lower) subdiagonal. This implies that elements reduced
to zero in a previous step must remain .zero throughout, which is guaranteed if we

... (I) (2) (n-21 (11-1) (11) (211-5)
anOlhilate III sequence the elements a13 ' al4 ' ... , alII ' a24 ,a25 , ... , a211 '

((1I-1)(n-2)/2) h .. h ( 3) () (2) (3 )... , a
ll
_
2

.
11

,t ro,ugh rotatIOns III t e planes 2 .. 2,4 .... , . n, ,4,
(3.5), ... , (3,n), ... , (/1-1, /1), respectively. The process requires (/1-1)(/1 - 2) /2
rotations and results in the tridiagonal matrix

0'1 fh 0
fh 0'2. fh
o th '0'3

o 0
o ,.r 0o ' 0

k
(n -1)(n - 2)

2 (6.108)

o 0 0 ... all-I fillo 0 0 fill all

The Givens reduction to tridiagonal form requires approximately 1n3 multiplication,
and we recall from Sec. 6.4 that the Jacobi method requires 2n3 multiplications for
just one sweep. The figures are not really comparable, as the Jacobi method aims
at the diagonalization of a real symmetric matrix, whereas the Givens method aims
only at its tridiagonalization.
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. At this point, we wish to establish how the eigenvalue problems for A and T
relate to one another. To this end, we recall Eq. (6.79) and write the equation of the
ellipsoid in terms of the two matrices as follows: ..

But, the matrices A and T are related by the transformation

T = RT AR

where

(6.109)

(6.110)

k

R = RIR2 ... Rk = ·nRi,
i=l

k = (n - 1) (n - 2)/2 (6.111)

is an orthonormal matrix, in which Ri are individual rotation matrices. Because
Eq. (6.110) represents an orthonormal transformation, the matrices A and T possess
the same eigenvalues, so that the question is how the eigenvectors of A relate to the
eigenvectors of T. The two eigenvalue problems have the form

Ax = AX

and

Ty = AY

Inserting Eq. (6.110) into Eq. (6.113), we obtain

RT ARy = AY

(6.112)

(6.113)

(6.114)

Premultiplying both sides ofEq. (6.114) by R and recognizing that for an orthonormal
matrix RRT = [.,Eq. (6'.114) can be rewritten as

ARy = ARy (6.115)

so that, comparing Eqs. (6.112) and (6.115), we conclude that the eigenvectors of A
are related to the eigenvectors of T by the linear transformation

x = Ry (6.116)

It should be pointed out that, unlike in the Jacobi method, here R does not represent
a matrix of eigenvectors of A, because T is merely a tridiagonal matrix and not the
diagonal matrix of eigenvalues. Of course, the problem of solving Eq. (6.113) for
the eigenvalues and eigenvectors of T = Ak remains, but the tridiagonal form of Ak
opens new and attractive possibilities.

'Example 6.6

The eigenvalue problem for the torsional system shown in Fig, 6.1 can be written in the
form

l

Ax = A.X,
2 I L

A.=w-
GJ

(a)
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where x = r 1/11 1/12 1/13 1/14f is the vector of twist angles and

A (b)

is the coefficient matrix. Note that all parameters were grouped in A, in which I is the
mass moment of inertia of each disk, L is the distance between disks and GJ is the
torsional stiffness of the connecting shafts. Use Givens' method to tridiagonalize the
matrix A.

I- L --'-- L -I-- L -I-- L -l
Figure 6.1 Four-degree-of-freedomtorsional system

We begin with the annihilation of a~~).To this end, we use the rotation el in the
(2,3) plane. Hence, letting i = 1, P = 2, q = 3 in Eqs. (6.106) and (6.107), we can
write

(0) 1 1au
sinel = [ I/2 = (12 + 12)1/2 .j2 = 0.707]

(ain2
+ (a~n2

(0)

(c)
a12 ] 1

cosel = [ ]I~= (]2 + 12)1/2 .j2 = 0.7071

(a~~)r + (a~~)r

Then, inserting Eqs. (c) into Eqs. (6.8]) and (6.82) with k = ], we obtain

AI =Rf AoRI = Rf AR1

~ [: 0 0 0] [1 1 I n[~ 0 0

n0.7071 0.7071 o ] 2 2 0.7071 -0.7071
-0.7071 0.7071 o l' 2 3 0.7071 0.7071

0 0 0 ] 1 2 3 0 0

{ Ai
42 1.4142 0

35~55 ]4.5 0.5 (d)
0.5 0.5 0.7071

3.5355 0.7071 4

---------------_!!!!!!!!!!~~~--~~------,j
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Next, we use the rotation 82 in the plane (2,4) to annihilate ai~,so that i = 1, P = 2,
q = 4. From Eqs. (6.106) and (6.107) with k = 2, we have

sin 82 =

cos 82 =

(1)
1a14 = = 0.5774

[ T/2 (1.41422 + 12)1/2(ag)r + (ai~)r
a(l) Of (e)

1.414212 = 0.8165. 1/2
(1.41422 + 12)1/2[(ag)r +' (ai~)r]

Inserting Eqs. (e) into Eqs. (6.81) and (6.82) with k = 2, we obtain

A2 = RJ A1R2 •,

~ 0.5~74] '[,1.4;42
1 0 0 ~
o 0.8165 1 ,

o
0.5
0.5

0.7071
= [!

o
'0.8165

o
-0.5774

1.7321
7.6667
0.8165

'0.9428

o
0.8165

0.5,
0.2887

t

0.9~28]
0.2887
0.8333 '

1.4142
4.5
0.5 ,

3.5355

3.5~55 ]
0.7071

4

[~0

1 0 0
0.8165 0

o 1
0.5744 0

-0.~774 ]

0.8165

(f)

Finally, we use the rotation 83 in the plane (3,4) to annihilate a~~),so that i = 2, P = 3,
q = 4. To this end, we use Eqs. (6.106) ~nd (6.107) with k = 3 and write

(2) 9.• a24 I' , O. 428
sm 83 = ]/2 = - ]/2 = 0.7559[ (a~;)r + (a~~)r] , (0.81652 + 0.94282)

a~;) 0.8165
cos 83 = - ]/2 = \ ]/2 = 0.6547

[( (2))2 (2))2] (0.81652 + 0.94282)a23 + a24
.' .

so that, introducing Eqs. (g) into Eqs. (6.81) and (6.82), we obtain

T = A3 = RJ A2R3

[
0 1, 0

- :: 0.:547
o 0 -0.7559

o
0.8165

0.5
0.2887

o ] [1 1.7321o 1.7321 \ 7.6667
0.7559 0 0.8165
0.6547 0 0.9428

0.9~28]
0.2887
0.8333

[0
00

1

~ ~o 0.6547
o 0.7559

(g)

-Ot59 ]
0.6547
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= [1.7~21 ~:~~~~ 1.2~72· ~ ] (h)
o 1.2472 0.9762 0.1237
o 0 0;1237 0.3571

According to Eq. (6.116), the eigenvectors of A are related to the eigenvectors
of T by the overall rotation matrix R. Hence, usingEq. (6.111), we can write

R = R!RzR3
o .

0.7071
0.7071

o

o
0.5774
0.5774
0.5774

0 0] [10 0

-0~774 ]-0.7071 o 0 (f8165 0
0.7071 o 0 0 1

0 1 0 0.5774 0 0.8165

U
0 0 -oL]1 0
0 0.6547
0 0.7559 0.6547

0 0.~673]-0.7715 ' (i)
0.1543 -0.8018
0.6172 0.5345

6.6 HOUSEHOLDER'S TRIDlAGONALIZATION METHOD

Another tridiagonalization technique, due to Householder, is intimately related to
Givens' method. Householder's method also uses orthonormal transformations to
reduce a real symmetric matrix to tridiagonal form, but it does it more efficiently than
Givens' method. In contrast with Givens' method, in which two symmetric elements
are annihilated at a time, in Householder's method a whole row and column (the
symmetric counterpart of the row) are annihilated at a time, with the exception, of
course, of the tridiagonal elements in that row and column. Like in Givens' method,
subsequent transformations do not affect previously annihilated rows and columns,
so that the tridiagonalization process requires n - 2 transformations. But, in contrast
with Givens' method, the transformations do not represent rotations.

Householder's tridiagonalization algorithm is defined by the transformation

(6.117)

where
T TPk = I - 2VkVk ' vk Vk = 1 (6.118)

is a symmetric orthonormal matrix. Indeed, the symmetry of Pk can be verified with
ease and the orthonormality follows from

p[ Pk (I - 2VkV[) (I - 2VkVT) = I - 4VkVT + 4 (VkV[) (VkV[)

T (T) TI - 4VkVk + 4Vk vk Vk vk = I (6.119)

The matrix Pk defined by Eqs. (6.118) represents a linear transformation in the real
Euclidean space transforming one n-vector into another n-vector. The transforma-
tion can be interpreted geometrically as the extension to the n -dimensional case of

-



304 Computational Techniques for the Algebraic Eigenvalue ProbleII.1 Chap. 6

(6.120)

a reflection through a given plane. For this reason, the matrix is referred to as an
elementary reflector. However, Pk is better known as a Householder transformation.

The first transformation, defined by Eq. (6.117) with k = 1, must result in a
matrix with the first row and column equ~l to zero, except for the two tridiagonal
elements in the row and column. Hence, the matrixA1 must have the form
.• ' (1)' (1) •. 0 O'

all a12
(1) (1) (1)

a12 a22 a23

O (1) (1)
a23 a33

(1) (1) (1)o a2n a3n ... ann

Equations (6.118) and (6.120) imply that the matrix P1, and hence the vector V1,is
subject to the n - 1 constraints

(1) (1) (1)al3 = a14 = ... = a1n = 0, (6.121)

But, the fact that n - 1 constraints are imposed on the n components vl,j of the
vector V1implies that only one component is arbitrary. We designate this component
to be v1.1 and choose this value as zero, V1,1 = O. Hence, the first transformation
matrix has the form .

1 0 0: 0
0 1 2 2 -2V1,2VI,3 -'-2V1,2VI,n- V1•2

PI 0 -2VI,2Vl,3 1 - 2vi3 - 2V1,3 V1,n.

I......................... - ' .. "'"

(6.122)

o -'-:2VI,2VI,n --'2 V1,3V1,n

Next, we let k = 1 in Eq. (6.117).and write

A1 = PIAol\, Ao A (6.123)

where A =.Ao is a given matrix. Hence, the problem'reduces to determining the
components of the vector

(6.124)

(6.125a)

(6.125b)
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(6.126)hi ~ [t, (ai7')'f
~nd we note that the choice of sign in Eq. (6.125b) must be the same as in Eq. (6.125a).

In general, the vector Vk defining the transformation matrix Pk has the form

where

[0 0 ... 0 VU+I Vk,k+2 •.. vk,nf,

(
(k_l»)1/2

1 1 Qk,k+1
- =f--.j2 hk

k=1,2, ... ,n-2 (6.127)

(6.128a)

in which

j = k + 2, k + 3, ... , n (6. 128b)

[ ]

1/2
n (k-l) 2

hk = L (Qkj ) ,
=k+l \

k 1,2, ... ,n - 2 (6.129)

The Householder tridiagonalization'method requires ~n3 multiplications, so that the
method is twice as efficient as Givens' method. -

Completion of k = n - 2 transformations results in a tridiagonal matrix T = Ak
as given by Eq. (6.108). In fact, the matrix is essentially the s'ame as that obtained by
the Givens method, with the possible exception of inconsequential differences in the
sign of the subdiagonal elements. Of course, the eigenvalues of A are the same as
the eigenvalues of T, whereas the eigenveetors of A are related to the eigenvectors
of T by

x = Py

where
k

P = PI P2 ••• Pk = n Pi,
i=1

and note that A and T are related by

T = pT AP

k=n-2

(6.130)

(6.131)

(6.132)

in which, by virtue of the symmetry of the matrices Pi (i = 1,2, ... , k),

I

pT = Pk ... P2 PI = nPi,
i=k

k=n-2 (6.133)
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(a)

Example 6.7 ••

Carry out the tridiagonalization of the matrix A of Example 6.6 by means of House-
holder's method. Compare the r~sults with those obtained in Example 6.6 and draw
conclusions.

The tridiagonalization requires the transforIIlation matrices Pi, wh~ch involve
the vectors Vi (i == 1,2, ... , n - 2). Using Eq. (6.126) in conjunctiori with Eq. (b) of
Example 6.6, we' can write ;

h, ~ [t, (a~»)'r~,II' + l' + l' ~' J3 ,,; 1,7321

so that, from Eqs. (6.125),we obtain the nonzero components of VI

1 ( 1 ) 1/2
~ 1 + v'3 = 0.8881

I

V12 = ~ (1=t=ai~))1/2
, ~ hI

(0)_ a
13

1
v1,3 = =t=-- = ----~-- = 0.3251

2hl Vl,2 2 x 1.7321 x 0.8881

a(O) 1
V14 = =t=_1_4_ = ------- = 0.3251

, 2hl Vl,2 2 x 1.7321 x 0.8881

Hence,
VI = [0 0.8881 0.3251 0.3251f

(b)

(c)

Inserting Eq. (c) into Eg. (6.118)with k.= 1, we obtain

T [0 -0.5774 -0.5774 -0.~774]
Pl,,~ I - 2VIVI = : -0.:774 0.~887 -0.2113' (d)
. 0 -0.5774 -0.2113 0.7887

Then;introducing Eq. (b) of Example 6.6 and the above Eq.' (d) into Eq. (6.123), we
have .

[

1 -1.7321 0
A = PAP =-1.7321 7.6667 -0.5447

1 1 1 0 -0.5447 0.3780
o -1.1221 0.1667

Next, we let k = 2 in Eq. (6.129) and use Eq. (e) to write

-1.~221 ]
0.1667
0.9553

(e)

so that, using Eqs. (6.128)with k = 2 and Eqs. (e) and (f), we have

V23 = '_1_ (1 :f _a~_~))1/2 = _1_ (1 + _0._54_4_7)1/2 = 0.8476
, ~ h2 ~ 1.2472

(f)

(g)
1.1221

------- = 0.5307
2 x 1.2472 x 0.8476
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Hence, the vcctor v2has the form .• : 'J,'

, V2 = [0 0 0.8~76 0.5307f (h)
I ,•• l

Iiltroducing Eg. (h) into Eg. (6.118) with k = 2, we can write
"

P I 2.' 'T [0 1 ",,0. O"J (I')
2 = - V2V2 = : ~ -~.:~~7 -0.:~96 '

, i." ' O' 0 -0;~996 0.4367
so that, using Eg. (6.117)with k = 2, we obtain

[

: 1 " -'1".7321 0 ',', 0 ']
T = A = PAP = -1.7321, 7.6.667 1.2472 0 (j)

2 .' 2 1 2 0" 1.2472 0.9762 -0.1237
o 0 -0.1237 0.3571

•• ~. ! ,~

Morcover, using Eg. (6.131)with k = 2, we have

[

1 : 0 0 \ 0 J
P = P P = 0 -0.5774 0.7715 _0.2673 (k)

' .• 1 2 '0' -0.5774 -0.1543 -0.8018
. 0 -0.5774, -0.6172 0.5345

'•• Comparing the above' Eg. ur withEq. (h)' of Example 6.6, we conclude that
the tridiagonal matrix computed by means of Householdcr's method is esscntially thc
samc as that computed by means of Givens' method. The only differcnce is in the
sign of somc subdiagonal elcments, which does not affect the eigenvalues. In addition,
if we comparc the abovc Eq. (k) with Eg. (i) of Example 6.6, we conclude that the
Householder transformation matrix P is essentially the samc' as Givcns' rotation matrix
R, with the exception of somc signs. We should note, however, that thc sign differences
are consistent. This implies that, whereas there may be a diffcrence in the sign of various
components ofthc eigenvcctors of T, Eg. (j), thc eigenvcctors of A = PT P will be the
same as the eigcnvectors of A =' RTT R ','

6.7 LANCZOS' TRIDIAGONALIZATION METHOD' ",

The Lanczos method 'represents a direct method for the tridiagonalization of a sym-
metric matrix by means of an orthonormal transformation, whereby the tridiago-
nal form and the transformation matrix are obtained through a simple recursive
process. We recall that Givens' method and Householder's method also use or-
thonormal transformations, but in Givens' method they represent rotations and in
Householder's method they represent reflections. Although there seems to be gen-
eral agreement that Householder's method is the most effective tridiagonalization
procedure, a discussion of Lanczos' method is likely to prove rewarding.

Let us assume that the tridiagonal matrix T is related to the original real sym-
metric matrix A by

T = pI'AP (6.134)
I

where P = [PI P2 Pn] is an oithonormal transformation matrix, in which
Pi (j = 1,2, ... ,n) are unit vectors. Premultiplying both sides of Eq. (6.134) by P
and recognizing that P pI' = i for an orthonormal matrix, we obtain

AP = PT (6.135)
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Then, inserting Eq. (6.108) into Eq. (6.135), we can write

Apj = {3jPj-l + ajPj + {3j+1Pj+1, j = 1,2, ... , n; Po = 0, Pn+1 = 0 (6.136)

Premultiplying both sides of Eq. (6.136) by pJ and considering the orthonormality
of the vectors Pj, we obtain

Moreover, Eqs. (6.136) can be rewritten as

j 1,2, ... , n (6.137)

,
rj+1 = (A - ajI) Pj - {3jPj-l, . j = 1,2, ... , n -.: 1; Po = 0 (6.138)

in which we introduced the definitions

] = 2, 3, ... , n (6.139)

Equations (6.137)-(6.139) represent a set of recursive formulae that can be used to
determine the elements of T and the columns of P beginning with a given unit vector
Pl· For simplicity, the vector Pl' can be taken as the standard unit vector en.

Example 6.8

Tridiagonalize the matrix of Example 6.6 by means of the Lanczos method.
Beginning with Eq. (6.137) and using PI = e4 in conjunction with Eq. (b) of

Example 6:6, we have for j = 1

, [o],T [1 .1
TT , ° 1.2

al = PI ApI = e4 Ae4 = ° .1 2
1 . 1 2

Then, using Eq. (6.138) with j = l,we obtain

(a)

r,~ (A ~ ",/);, ~ [] ~~ -~ n m m·
•••··t 1;.1

so that, Eqs. (6;139) with} = 2 yield

• f3z = IIr211' = V12 + 22 + 32 = .Ji4

. 1 .[2]p, ~ r,jp, ~ ~. i
(b)

(c)

Next, we use Eq. (6.137) with j = 2 and writ~

a, = pfA~ ~ 1~ UrU~·~n m ~5 (d)
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(f)

Then, using Eq. (6.138)with j = 2, we obtain

r3 = (A - Q"21) P2 - .BzPI

__ 1 [-~ -; ; ;][;]_v'14[~] __ 1 [i] (e)
- vIt4 i ; -; -i ~ ~ - vIt4 -~

so that, from Eqs. (6.139)with j = 3, we can write

fh = IIr311 ~J12 + 12 + (_1)2 = J3/14
",14

p, ~ r,/p, ~ ~ [-i]
Now, we use Eq. (6.137)with j = 3 and write

" ~ plAp, ~ ~ [ -J [1 ~ !m~n~~ (gj

so that Eq. (6.138)with j = 3 can be used to obtain

r4 = (A - Q"31) P3 - fhPz

[

1/3 ··1 1
1 1 4/3 2

=.j3 1 2 7/3
123

Moreover, Eqs. (6.139)with j = 4 yield

f34 = IIr411 = 1 r;;J52 + (_4)2 + 12 = ~
42",3 ",126

p. ~r./p, ~ ;., [ -i]
Finally, using Eq. (6.137)with j = 4, we obtain

(i)

[ 5] [1 1 1T 1 -4 ,. 1 2 2
" ~ P. Ap, ~ 42 ~ T : ; ;

(j)

Using the above results, the tridiagonal matrix is

vIt4
5

~3/14
o

o
~3/14

2/3
1I .J126

1/~]
1/3
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[
3.7417 5 0.4629 0]

: :::::: 0.6:67 0.0:91
o 0 0.0891 0.3333

and the transformation matrix is

Chap. 6

(k)

0;5774
0.5774

-0.5774
o

[

0 ' 0.2673
o 0.5345

- 0 0.8018
1 0

[~ ~~~ ~~~
P4] = 0 3/04, -1/.,(3

1 0 0

0

0
.
7715

]-0.6172
0.1543

o

5/./42]-4/./42
1/./42

o

(1)

l

where the latter can be verified to be orthonormal.
In looking over Examples 6.6-6.8, the simplicity of Lanczos' method compared

to Givens' method and Householder's method is immediately apparent. Moreover,
whereas the tridiagonal matrix obtained by Lanczos' method differs to some extent

, from that obtained by Givens' method and Householder's method, the transformation
matrix is virtually the same. Indeed, the only differences are in the sign and in the
position of the elements within the individual columns of the transformation matrix.
The implication of the difference in the tridiagonal matrix T is that convergence to the
eigenvalues may be somewhat slower, depending on the algorithm used. On the other
hand, the differences in sign and position in the transformation matrix P are consistent
with the differences in sign and position in T in the sense that they are consistent with
the relation A = PT pT. This implies that, although the eigenvectors of T may differ
from one tridiagonalization method to another, the eigenvectors of A do not. Hence, all
differences are immaterial, as they do nqt affect the final outcoine, i.e., the eigenvalues
and eig~nvectors of A. '.

6.8 GIVENS' METHOD FOR THE EIGENVALUES OF TRIDIAGONAL MATRICES

Givens' method (Ref. 4) is one of the most effective techniques for computing the
eigenvalues of a real symmetric tridiagonal matrix. It is also one of the most versatile,

. as it permits the targeting of individual eigenvalues for computation, provided the
general location of a given eigenvalue is known. In this regard, we recall from
Sec. 5.6 that, according to Gerschgorin's first theorem, the eigenvalues lie inside
Gerschgorin's disks, i.e., certain circular regions in the complex A-plane. In the
case of real symmetric matrices, the Gerschgorin disks collapse into segments of the
real A-axis. The determination of the approximate location of the eigenvalues is
particularly effective when the matrix is diagonally dominant, which can be the case
following tridiagonalization of a real symmetric matrix.

As discussed in Sec. 4.6, the eigenvalues of a real symmetric matrix can be
obtained by finding the roots of the characteristic polynomial, which implies the
expansion of the associated characteristic determinant, an n x n determinant. But,
as demonstrated in Sec. 6.1, the taste for evaluating determinants disappears rapidly
as 11 increases. The beauty of Givens' method lies in the fact that itfinds the roots of
the characteristic polynomial without actually requiring the polynomial explicitly.
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The characteristic determinant associated with the tridiagonal matrix T given
" byEq; (6.108) has the form

o
o
o

o
o
o

................................................. ; . 'o 0 0 an-I - i.
o 0 . 0 f3n

det (T - AI) =

.
"

.. (6.140)
Denoting by Pi (A) the principal minor determinant of order iof the matrix T - AI,
it can be shown by induction that •.

PI (A) = <¥I - A

Pi (A) = '(<¥i - A) Pi-I (A) - f3r Pi-2 (A) ,. i = 2, 3, ... , n
(6.141)

in which Po (A) is taken to be equal to 1 identically. We propose to establish some
important properties of the polynomials Pi (A) (i = 1, 2, ... , n), without actually
having explicit expressions for the polynomials. Of course, p~(A) is th~ characteristic
polynomial and '

Pn (A) = 0 (6.142)

represents the characteristic equation. We observe from Eq. (6.140) that, if f3i is zero
for some value of i , then the characteristic polynomial reduces to the product of two
polynomials of correspondingly lower order and the roots of Pn (A) = 0 are simply
the roots of the two polynomials. Hence, without loss of generality, we can assume
that no f3i is equal to zero ..

Next, we consider the interval a < A < b on the real A-axis and denote it by
(a, b), where a and b are given numbers such that neither one of them is a root of
the polynomials defined by Eqs. (6.141). The first step in the Giv'ens method for the
computation of the eigenvalues of T is the determination of the number of roots
of the characteristic polynomial lying in the interval (a, b). As a preliminary to
the exposition of Givens' method, we must show that the sequence of polynomials
PI (A), P2 (A), ... , Pn'(A), associated with the principal minor determinants of
the matrix T - AI and defined by Eqs. (6.141), possesses the following properties:

i. Po (A) =I O.
ii. If Pi-I (/.l) = 0 for some A = /.l, then Pi (/.l) and Pi-2 (/.l) are nonzero and of

opposite signs.
" iii. As A passes through a zero of Pn (A). the quotient Pn (A) / Pn-I(A) changes

sign from positive to negative.
The first property is true because Po (A) == 1 by definition. To demonstrate the
second property, we let A = /.l in Eqs. (6.141), assume that Pi-l (/.l) = 0 and obtain

2 I

Pi (/.l) = -f3i Pi-2 (/.l) (6.143)

If we further assume that Pi (/.l) is equal to zero, then according to Eq. (6.143)
Pi -2 (/.l) must also be zero, so that three consecutive polynomials in the sequence
are zero. Under these circumstances, we conclude from Eqs. (6.141) with A = /.l
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~thatpi-3 (J.L) = Pi-4 (J.L) = ... =. Po (J.L) = 0, which contradicts the fact that
Po (J.L) == 1. Hence, if Pi-1 (J.L) = 0, then Pi (J.L) i= 0 and Pi-2 (J.L) i= 0, so that we
conclude immediately from Eq. (6.143) that Pi (J.L) and Pi-2 (J.L) must have opposite
signs.

To prove the third property, we call upon the separation theorem (Sec. 5.4).
First, we denote the roots of the characteristic polynomial Pn (A) by At. A2, ... , An
and assume that they are ordered so as to satisfy A1 < A2 < ... < An. More-
over, the polynomial Pn-1 (A) repres~nts the determinant of the matrix obtained by
striking out the last row and column from the matrix T - AI. Consistent with the
developments in Sec. 5.4, we denote the roots of Pn-1 (A) by A~, A~, ... , A~_l and
assume that they are ordered so that A~ < A~ < .. >< A~_l' Then, according to the
separation theorem, the two sets of eigenvalues satisfy the inequalities

Al < A~ < A2 < A~ < A3 < ... < An-l < A~_i < An (6.144)

Typical plots of Pn (A) and Pn-l (A) are shown in Fig. 6.2, in which vertical dashed
lines through AI, A~, A2, ... , An-I, A~_l' An separate regions in which the ratio
Pn (A) /Pn-;-l (A) possesses opposite signs. Note that, Qecause the matrix Tis positive
definite, Pn-l (0) > 0 and Pn (0) > O. It is clear from Fig. 6.2 that, as, A passes
through the roots AI, A2, ... , An, the sign of Pn (A) / Pn-l (A) changes from positive
to negative. It follows that the sequence of polynomials PI (A) , P2 (A) , ... , Pn (A)
possesses all three indicated properties. A sequence of polynomials possessing these
three properties is known as a Sturm sequence.

I Yn-l, ', ,
I ,
I 'I
I I I

<±>:e :<±>! e
I "
I "I 'I

Pn(A) i !!, "
Ani 'IAn-l, ,

! !

e <±>e<±> e Pn(A)
<±>e Signs of-(A)

Pn-1

Figure 6.2 Signs of the ratio Pn (A)/ Pn-l (A)

At this point, we are in the position to determine the number of eigenval-
ues lying in the interval a < A < b by simply invoking Sturm's theorem, which
reads as follows: If the polynomials Po (A) , PI (A) , ... , Pn (A) represent a Sturm
sequence on the interval (a, b) and if s (J.L) denotes the number of sign changes in
the consecutive sequence of numbers Po (J.L) , PI (J.L) , ... , Pn (J.L), then the number
of roots of the polynomial Pn (A) in the interval (a, b) is equal to s (b) - s (a). If
Pi (J.L) = 0 for some J.L, then the sign of Pi (J.L) is taken as the opposite of the sign
of Pi-l (J.L). It is clear from Eqs. (6.141) that this does not affect the number of sign
changes, as from Pi-1 (J.L) to Pi+! (J.L) there is only one sign change, independently
of the sign assigned to Pi (J.L). Sturm's theorem can be proved by induction. To this
end, we assume that the number of sign changes s (J.L) in the sequence of numbers
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Po (M) • PI (M) , .... Pn (M) is equal to the number of roots of Pn (A) correspond-
ing to A < M. As an example, we consider the sequence of seven polynomials
Po (A) , PI (A) , ... , P6 (A) depicted in Fig. 6.3. For the particular value of M shown,
there are three sign changes in the sequence of numbers Po (M) , PI (M) , .... Pn (M)
and there are exactly three roots, AI, A2 and A3, of the characteristic polynomial
P6 (A) for A < M. As M increases, the number S (M) remains the same until M
cross~s the root A4, at which point S (M) increases by one. This can be explained by
the fact that, according to the second property of the Sturm sequence, the number of
sign changes remains the same as M crosses a root of Pi-I (A) (i = 1.2 •...• n). At
the same time, according to the third property, there is one additional sign change as
M crosses a root of Pn (A). Hence, the number S (M) increases by one every time M
crosses a root of PIl(A), which proves Sturm's theorem.

It should be emphasized here that, the polynomials P2 (A) • P3 (A) , .... Pn (A)
are never available in explicit form, nor is their explicit form necessary. Indeed, to
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determine the integers s (a) and s (b), it is only necessary to compute the values
PI (a) , P2 (a) , ... , Pn (a) and PI (b) , P2 (b) , ... , Pn (b), which can be done re-
cursively by using Eqs. (6.141). As fat as the seleCtion of the interval (a, b) designed
to locate a given eigenvalue, Gerschgorin's first theorem can often provide some
reasonable guidance, as discussed in the beginning of this section. If s (b) #- s (a),
we know that there' is at least one root in the interval (a, b). Then, the search for the
desired eigenvalue can be narrowed by using the bisection method, which amounts
to computing s «a + b) /2) arid checking the numbers s «a + b) /2) - s (a) and
s (b) - s «a + b) /2). Then, if one of these two numbers is zero, the search is limited
to tl!e other interval, which is bisected again.

Convergence of Givens' method is linear, as the error is approximately halved
at each step (Ref. 5, p. 437). However, the method yields eigenvalues with small
relative error, regardless oftheir magnitude (Ref. 5, p. 439). Givens' method yields
only the eigenvalues of a real symmetric tridiagonal matrix. Having the eigenvalues,
the eigenvectors can be computed very efficiently by means of inverse iteration, as
discussed in Sec. 6.10.
Example 6.9

Compute the ·lowest ..eigenvalue of the matrix of Example 6.6 by means of Givens'
method based on Sturm's theorem.

Givens' method requires a tridiagonal matrix. From Example 6.6, the tridiagonal
matrix is

. T =[ ~~ ~~ %3 0] = [1.7~21 ~:~~~~ 1.2~72o fh a3 f34 0 1.2472 0.9762
o 0 f34 a4 0 0 0.1237

,so that, from Eqs. (6.141), we obtain the sequence of polynomials

PI ()..) = al - )..= 1·....:.·)..

P2 ()..) = (a2 - )..) PI ()..) - f3~P'? ()..) (7.6667. - )..)P'I ()..) - 1.73212

P3 ()..) (a3 - )..) P2 ()..) - f3~PI ()..) = (0.9762 - )..)P2 ()..) - 1.24722 PI ()..)

P4 ()..) = (a4 - )..) P3 ()..) - f3~P2 ()..) = (0.3571 - )..)P3 ()..) - 0.12372 P2 ()..)
. " (b)

Before we can apply Sturm's theorem, we must choose the interval (a, b)~ To this end,
we consider using Gerschgorin's first theorem. Unfortunately, the subdiagonal elements
f32 and f33 are too large for the theorem to yield useful results. Still, the element f34 is
sufficiently small to cause us to suspect that the lowest eigenvalue is not very far from
a4· Hence, from Sec. 5.6,we consider the possibility that the lowest eigenvalue lies in
the segment with the centera't a4 and having the length 2r = 2f34, so that thd end points
ofthe segment are a4 - f34 'and a4 + f34. Using'Eq. (a), the end points have the value
a4 - f34 = 0.2334 and 0.4808. It turns out that a s,harper estimate can be obtained using
the tridiagonal matrix computed by means of LanclOs' method. Indeed, using Eq. (k)
of Example 6.8, we can write a4 - f34 = 0.2442 and a4 + f34 = 6.4224. In consideration
of this, we begin the iteration process with a = 0.2 and b = 0.4. The computation
results are displayed in Table 6.1. Clearly, the choice a = 0.2, b = 0.4 was a good one,
as 0.2 and 0.4 bracket the lowest eigenvalue, as witnessed by the fact that s (0.2) = 0
and s (0.4) = 1. N?te that after the fifth iteration convergence is quite rapid, as can be

0.lt7]
0.3571

(a)
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concluded from the behavior of P4 ()..). Convergence is achieved when P4 ()..) reduces
to zero, which is close at hand, as the actual lowest eigenvalue is)..1 = 0.283119. Note
that at this point we are sufficiently close to convergence that it is more expedient to
abandon the iteration process and complete the computation of the eigenvalue through
interpolation. Indeed, a simple linear interpolation yields

P ()..(13»)
)..1 = )..(13) _ 4 ()..(13) _ )..(11»)

P4 ()..(l3»)_ P4 ()..(ll))

0.000010
= 0.283106 - -------- (0.283106 - 0.283204)

0.000010 - (-0.000070)

= 0.283106 + 0.000012 = 0.283118 (c)

where the superscript in parentheses indicates the iteration number.

TABLE 6.1
).. PI ()..) P2()..) P3()..) P4()..) s()..)

1 0.2 0.8 2.973333 1.063427 0.121600 0

2 0.4 0.6 1.360000 -0.149715 -0.027232 1

3 0.3 0.7 2.156667 0.369428 -0.011900 1

4 0.25 0.75 2.562500 0.694196 0.035156 0

5 0.275 0.725 2.358958 0.526301 0.007125 0

6 0.2875 0.7125 2.257656 0.446492 -0.003461 1

7 0.28125 0.71875 2.308268 0.486052 0.001557 0

8 0.284375 0.715625 2.282952 0.466186 -0.001020 1

9 0.282813 0.717187 2.295604 0.476095 0.000251 0

10 0.283594 0.7] 6406 2.289278 0.471136 -0.000388 ]

11 0.283204 0.7]6796 2.292437 0.473611 - 0.000070 1

12 0.283009 0.716991 2.294016 0.474849 0.000089 0

13 0.283106 0.7]6894 2.293230 0.474233 0.000010 0

6.9 THE QR METHOD FOR SYMMETRIC EIGENVALUE PROBLEMS

The QR method is an iteration technique for computing the eigenvalues of a general
matrix A by reducing the matrix to triangular form through orthonormal similarity
transformations. The algorithm was developed independently by Francis (Ref. 2)
and Kublanovskaya (Ref. 8). In this section, our interest lies in the eigenvalues of a
real symmetric matrix A, in which case the matrix is reduced to diagonal form.

The iteration process consists of the matrix decomposition

s = 1,2, ... ; AI = A (6.145)

---j
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where Qs is an orthonormal matrix and Rs is an upper triangular 1 matrix, followed
by the computation of the matrix product in reverse order, or

AsH == Rs Qs, s = 1,2, ... (6.146)

Multiplying Eq .. (6.145) by Q;, considering the factthat Qs is orthonormal and
introducing the result into Eq. (6.146), we obtain

AsH = Q;AsQs, s = 1,2, ... (6.147)

so that Eqs. (6.145) and (6.146) do indeed represent an orthonormal similarity trans-
formation. For fully populated matrices, although the method converges, conver-
gence can be very slow. However, if the matrix A is first reduced to tridiagonal
form, then convergence of the OR algorithm is much faster, but still not competitive.
Before the OR algorithm becomes truly effective, one additional refinement is nec-
essary, namely, the incorporation of eigenvalue shifts, referred to as shifts in origin.
The OR algorithm with shifts is defined by

and

s = 1,2, ...

s = 1,2, ...

(6.148)

(6.149)

(6.150)

• l

and note that in general the value of the shift /Ls varies from step to step. The question
remains as to the strategy to be employed for choosing the timing and value of the
shifts. In this regard, it should be mentioned that, although the iteration process
converges to all eigenvalues, convergence is not simultaneous but to one eigenvalue
at a time. Indeed, the bottom right corner element a~~ is the first to approach
an eigenvalue, namely, the lowest eigenvalue. Consistent with this, the strategy
recommended' by Wilkinson (Ref. 13, Sec. 8.24) consists of solving the eigenvalue
problem associated with the 2 x 2 lower right corner matrix

[
a~S21,n_l ~~S21,n]

(s) (s)
. an,n-l ann

and take /Ls as the eigenvalue of this matrix closest to a~~. The shift can be carried out
at every stage or it can be delayed until the shift gives some indication of convergence.
It is suggested in Ref. 13 that /Ls be accepted as a shift as soon as the criterion

1
I(/Lsi/Ls-l) - 11 < -

2
is satisfied. Convergence to the lowest eigenvalue is recognized by the fact that the
last row and column have been reduced to a single nonzer() element, the bottom
,right corner element, which is equal to AI. This amounts to an automatic deflation,
as the iteration process to the remaining n - 1 eigenvalues continues with only an
(n - 1) x (n - 1) matrix. Convergence to the eigenvalues A2, A3, ... , An takes place
at an accelerating rate as the element a~~approaches AI, because at the same time the

1 The symbol Rs derives from the term "right triangular" used by Francis.



I (s). (s) (s) k ··ft 'd d 1 1 1e ements an-1.n-1, ... , a22 ' all ma e slgm cant stn es towar /1.2,"" /l.n-l, /l.n,
respectively. This is reflected in the fact that the matrix As resembles more and more
a diagonal matrix. Convergence of a~s21,n_l to A2 follows soon after convergence
to Al has been achieved, at which time the last row and column of the deflated
(n - 1) x (n - 1) matrix consist of a single nonzero element, the bottom right corner
element, which is now equal to A2. Clearly, the iteration process to A3 continues with
a deflated (n - 2) x (n - 2) matrix. This establishes the pattern for iteration to the
remaining eigenvalues. The accelerating convergence rate is due to the progress
made by all the eigenvalues during the iteration process, as well as to the automatic
matrix deflation.

At this point, we turn our attention to the actual computational process. In
view of the fact that the iteration is carried out using a tridiagonal matrix, we rewrite
th~ algorithm in the form ' .

Ts=QsRs, s=1,2, ...

Sec. 6.9 The QR Method for Symmetric Eigenvalue Problems

s = 1,2, ...

317

(6.151a)

(6.151b)

The factorization indicated by Eq. (6.151a) amounts to determining the orthonor-
mal matrix Qs reducing T\ to upper triangular form the Rs. This matrix Qs can be
constructed in the form of a product of n - 1 rotation matrices or a product of n - 1
reflection matrices, such as in Givens' method and in Householder's method, respec-
tively. Because now we must annihilate a single element per column, Householder's
method loses the competitive edge, so that Givens' method is quite adequate. To
annihilate the lower subdiagonal elements of T" we carry out rotations in the planes
(I. 2). (2, 3) .... , (n - 1, n) using rotation matrices of the form

1 0
o 1

o 0
o 0 ...

k
o
o

k + 1
o
o

o
o

o
... 0

k
k + 1

where

o 0 .. , o o 1

k = 1,2, ... ,11-1 (6.152)

t (k-l)
k+1.k

[ , ']1/2'
(
t(k-l))· L + (t(k-l»)' L

k,k k+l,k

t (k-1)
k.k

1/2 '

[(t(k-1))2 + (t(k-J))2]
k,k k+1,k

k 1,2, ... , n - 1 (6.153)

--------------_!!!!!!!!!'!!!!!!!!!!!!!!'!!!!!..-...!!!!!!!!!'!!!!!"""""""'~----j
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in which ek is the rotation angle and tii~~~denotes the element in the k + 1 row
and k column of the matrix r}k-l), where the matrix T}k-,1) is obtained from the
tridiagonal matrix Ts through the recursive formula

Moreover, the matrix Qs, needed for the computation of Ts+1, can be written in the
form

Q eTe'T eT
s - 1 l' .. n-l" (6.155).

The process including shifts and the shifting strategy remain the same as that given
by Eqs. (6.148)-(6.150), except that As must be replaced by 'is.

The QR method with the shifting strategy described in this section exhibits
better than cubic convergence (Ref. 13, p. 562), which is quite remarkable.

Example 6.10

Compute the eigenvalues of the tridiagonal matrix of Example 6.6 by means of the QR
method. The tridiagonal matrix of Example 6.6, with six decimal places accuracy, is

[

1 1.732051 0 0]
T = 1.732051 7.666667 1.247219. 0

1 0 1.247219 0.976190 0.123718
o 0 0.123718 0.357143

T= (a)

The QR method calls for the reduction of the matrix T to an upper triangular
form th~ough premultiplication by an orthogonal matrix representing the product of
Givens rotations in the planes (1,2), (2,3) and (3,4), where the rotation matrices are
defined by Eqs. (6.152) and (6.153). Hence, letting k = 1 in Eqs. (6.153), in conjunction
with the notation T1 = T1(O) , we can write

1 = 0.5.J12 + 1.7320512

1.732051
= 0.866025.J12 + 1.7320512

t(O)
21

(tl(~»)2 + (ti~»)2

t(O)
11

(tl(~»)2 + (ti~»)2

so that, from Eq. (6.152), the first rotation matrix is

[

0.5 0.866025
8. = -0.866025 0.5

I 0 0
o 0

o 0]o 0
1 0
o 1

(b)

(c)

Inserting Eqs. (a) and (c) into Eqs. (6.154) with k = 1 and s = 1, we obtain

[

2.000000 7.505553 1.080123 0 ]
T

(1) _ Q T(O) _ 0 2.333333 0.623610 0
1 - '='( (- 0 1.247219 0.976190 0.123718

o 0 0.123718 0.357143

(d)
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Next, letting k = 2 in Eqs. (6.153) and using the indicated elements of T/1
), Eq. (d), we

have

t (I)
32

(tin 2 + (tj~)r
t(1)
22

(ti~)r + (tj~)r .
so· that the second rotation matrix has the form

" sinfh

cos e2 =

1.247219 .
= 0.471405

.J2.3333332 + 1.2472192

. 2.333333 = 0.881917
.J2.3333332 + 1.2472192

(e)

[

1 0
8 = 0 0.881917

2 0 -0.471405
·00

0.47~405 ~~]
0.881917

o

, ' , (f)

Introducing Eqs. (d) and (f) into Eq. (6.154) with k = 2 and s = 1, we compute

[

2.000000 7.505553 1.080123 0 ]
T(2) = 8 T(I) = 0 2.645751 1.010153 0.058321

1 ' 2 1 " 0' 0 0.566947 0.109109
o 0 0.123718 0.357143

(g)

Letting k = 3 in Eqs. (6.153) in conjunction with the indicated elements of T1(2), Eq. (g),
we can write

t (2)
43

(tj;J r + (t~;)r
t (2)
33

, , 2

(tj;) r + (t~n
so that the third rotation matrix is

0.123718
= 0.213201

.JO.5669472 + 0.1237182

0.566947
= 0.977008

.J0.5669472 + 0.1237182

(h)

[

1 0
. 0 1

83 = 0 0
.. 00

o
o

0.977008
-0.213201

0.21tOl] "
0.977008

(i)

Finally , pr~multiplying Eq. (g) by Eq. (i), we obtain

[

2.000000 7.505553

R
- T(3) _ e T(2) _ 0 2.645751

1 - 1 - '-'3 J - 0 0
o 0

1.080123
1.010153
0.580288

o
o ]0.058321

0.182743
0.325669

Moreover, using Eq. (6.155) in conjunction with Eqs. (c), (f) and (i), we compute

-0.763763
0.440959
0.471405

'0

0.398862 -0.087039]
-:-0.230283 0.050252

0.861640 -0.188025
0.213201 0.977008

(k)
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(1)

(n)

Then, introducing Eqs. U) and(k) into Eq. (6.151b) with s = 1,we have

. [7.500000 2.291288 0 0]
. 2.291288 1.642857 0.273551 0
Tz = Rl Ql= 0 0.273551 0.538961' 0.069433

. 0 0 0.069433 0.318182
At this point, before we begin the second iteration stage, we must decide whether

to shift or not. To this end, we solve the eigenvalue problem for the 2 x 2 matrix in the
lower right corner of Tl and.Tz. The eigenvalue closest to entry t44 is ILl = 0.333333 in
the case of Tl and ILz= 0.298161 in the case of Tz. Inserting these values into inequality
(6.150), we can write

..... 1I(ILzl ILl) - 11 = 1(0.298161/0.333333) - 11 = 0.105517 < 2 (m)

so that a shift is in order. Hence, the new iteration stage involves the QR decomposition
of the matrix

. [7.201839 2.291288 0 0]
T _ I = 2.291288 . , 1.344696 0.273551 0
z ILz 0 0.273551 0.240800 0.069433

o 0 0.069433 0.020021
Omitting the details, we list the resulting upper triangular matrix

[

7.557547 2.591130
R _ 0 0.647370

z - 0 0
o 0

and the orthogonal matrix

0.082935
0.338011
0.128474

o
0.0~9339 ]
0.063768

-0.017165

(0)

(p)
[

0.952934 -0.274782 0.107789 -0.069236]
Q = 0.303179 0.863677 -0.338796 0.217618

z 0 0.422555 0.762572 -0.489821
o 0 0.540441 0.841380

Hence, inserting Eqs. (0) and (p) into Eq. (6.149) with s = 2 and with A replaced by
T, we obtain .

[

8.285580 0.196269 0 0]
0.196269 1.000108 0.054287 .0 (q)

T3 = RzQz + ILzl 0 0.054287 0.430595 -0.009277
o 0 -0.009277 0.283719

Comparing the off-diagonal elements of T3 with those of Tz, we conclude that the
iteration converges rapidly.

The iteration steps are clear by now, so that we merely list the results of the next
iteration stage, as follows:

IL3 = 0.283136

[

8.290819

T4 = 0·01f07

0.017507
0.999833
0.010888

o

o
0.010888
0.426229

o 01J (r)

L

It is clear from T4 that convergence has been achieved, so that

Al = 0.283119 (s)
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which is essentially the same result as that obtained in Example 6.9. It is also clear that
significant progress has been made toward convergence to the remaining eigenvalues.

To iterate to the next eigenvalue, we use the deflated matrix consisting of the 3 x 3
upper left corner of T4. The results of the next iteration stage are

/.14 = 0.426022

[

8.290860 0.001277 0 ]
T.~= 0.001277 1.000000 0

o 0 0.426022
from which it is clear that

A.2 = 0.426022

(t)

(u)

The iteration to the next eigenvalue is to be carried out with the upper left corner 2 x 2
matrix. In view of the fact that the sale of f-diagonal term is quite small, we can dispense
with further computations and accept as the remaining two eigenvalues

6.10 INVERSE ITERATION

A.3 = 1.000000, A.4 = 8.290860 (v)

As shown in Sec. 6.3, the power method for solving the eigenvalue problem is defined
by the process

Vp = AVp_1, p = 1,2, ... (6.156)

which iterates to the largest eigenvalue and associated eigenvector first. On the other
hand, the process

A-1vp = Vp-1, p = 1,2, ... (6.157)

iterates to the smallest eigenvalue first. The process defined by Eg. (6.157) is some-
times referred to as inverse iteration. To avoid the need for inverting the matrix A,
we pre multiply both sides of Eg. (6.157) by A and obtain

p = 1,2, ... (6.158)
,

which implies that, given the vector vp-l, the iterate vp can be computed by solving
a set of n nonhomogeneous algebraic equations in n unknowns. In this regard, we
recall from Sec. 6.1 that Gaussian elimination with back-substitution is ideally suited
for this task.

The approach suggested by Eg. (6.158) is not very attractive, unless appropriate
modifications are made. One such modification is a shift in origin, so that the new
iteration process is now defined by

(A - )..l)vp = Vp-1, p = 1,2, ... (6.159)

where).. is a given scalar. But, from the expansion theorem (Sec. 4.6), we can express
the initial trial vector Vo as the linear combination

n

Vo = LC;X;
;=1

(6.160)

____________J
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(6.161)

, ,

, "

where Xi are mutually orthonormal eigenvectors satisfying Eqs.( 6.63). Inserting
Eq. (6.160) into Eq. (6.159), it is not difficult to verify that

, -1 n .• J ~ ,!l..•.

Ci

Vp = 8 (}"i_A)PXi

Next, we choose the shift A to be very close to the eigenvalue Ar. Then, Eq. (6.161)
can be rewritten in the form

, •. " n· (Ar - A)P
vp = CrXr + L..Ci . _ Xi (6.162)

i=l At A
ii'r

where the scaling factor (Ar -' A) - p has been ignored as inconsequential. Because
)..is very close to Ar, the summation terms decrease very fast as p increases. This is
true even wnen Vo is highly deficient in Xr . Hence, we can write

lim vp = crxr
p-HXJ

(6.163)

We refer to the iteration process given by Eq. (6.159) as inverse iteration. In contrast
to the ordinary power method, inverse iteration is capable of producing the eigen-
vectors in no particular order, and the speed of convergence does not depend on
the ratio between two eigenvalues but on how close the choice A is to Ar. Clearly,
inverse iteration is highly suitable for computing the eigenvectors corresponding to
known eigenvalues.

In using the iteration :ilgorithm described by Eq. (6.159), it is desirable to
keep the magnitude of the iterates from becoming too large. To this end, we must
normalize the newly computed iterate, which can be done by means of a scaling
factor, in a manner similar to that used in Sec. 6.3 for the power method. Hence, by
analogy ~ith Eqs. (6.58)"we r~write the iteration'pr'ocess, Eq. (6.159), in the form

(A - AI) v; = Vp.,-l' , . vp = apv;, p = 1,2, ... (6.164)

where ap is the scaling factor. If the it~rates are normalized so that the component
of vp largest in magnitude is equal to one, then ap is given by Eq. (6.59). On the
other hand, if the iterates are tohave unit magnitude, then ap is given by Eq. (6.60).

When A is a fully populated matrix, ~hecomputational effort can be excessive.
In view of this, it is advisable to use inverse iteration in conjunction with tridiagonal
matrices, in which case Eqs. (6.164) are replaced by

(T - AI) v; = Vp-l, vp= apv;, P = 1,2, ... (6.165)

Assuming that matrices T and A are related by

T = RT AR (6.166)
,

, where R is obtained by means of Givens' method (Sec. 6.5), Householder's method
(Sec. 6.6), or Lanczos' method (Sec. 6.7), and denoting the eigenvectors of T by Yi,
the eigenvectors of A can be recovered from the eigenvectors of T by writing

L

i = 1,2, ... , n (6.167)
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To solve the first of Eqs. (6.165),we recall from Sec. 6.1 that Gaussian elimina-
tion amounts to reducing the coefficient matrix to triangular form. Hence, following
the procedure described in Sec. 6.1, we rewrite the iteration process in the form

where
u = P (T - AI)

p = 1,2, ... (6.168)

(6.169)

(a)

is an upper triangular matrix and P is a transformation matrix obtained in n - 1
steps (see Sec. 6.1).

Finally, we wish to discuss some numerical aspects of the inverse iteration pro-
cess embodied in Eqs. (6.168). In the first place, we observe that the matrix T - AI
is nearly singular, because the value of A is chosen to be close to an eigenvalue. This
implies that one of the diagonal elements of U will be close to zero. This should not
be interpreted as an indication of impending significant numerical problems. As-
suming that the small number is in the bottom right corner, a simple scaling of the
vector Wp_1 can dispose of the problem. Indeed, this small number only affects the
magnitude of the eigenvector, which is inconsequential, as for an eigenvector only
the direction is unique and the magnitude is arbitrary. Note that this magnitude
is generally adjusted later, during the normalization process. It should be pointed
out that, if A is extremely close to an eigenvalue, it may be necessary to increase
the numerical accuracy of the triangularization. Convergence of inverse iteration is
extremely fast.

Example 6.11

Compute the eigenvector belonging to the eigenvalue AI = 0.283119 of the matrix
considered in Example 6.10 by means of inverse iteration.'

Using Eq. (a) .of Example 6.10 in conjunction with A = 0.283119, we can write

[

0.716881 1.732051 0 0]
T _ AI = 1.732051 7.383548 1.247219 0

o 1.247219 0.693071 0.123718
o 0 0.123718 0.074024

The first task to be carried out is the triangularization of the matrix T - AI. To this
end, we use the matrix formulation of the Gaussian eliinination described in Sec. 6.1
and construct the first transformation matrix

[
1 0 0

;]1.732051
~ [ -2.4~609J

0 0 ~]PI
1 0 1 0 (b)0.716881 , 0 0 1

0 0 1 0 0 0
0 0 0

Then, premultiplying Eq. (a) by Eq. (b), we obtain

[0. ?l6BS1 1.732051 0
o ]PI (T'- AI) _ 0 3.198753 1.247219 o . (c)- 0 1.247219 0.693071 0.123718

.. 0 0 0.123718 0.074024

-j
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The next transformation matrix is simply

Chap. 6

1.2!7219 ~ ~] [~
1 0 0

3.198753 0
o 0 1

o .
1

-0.389908
o

(d)

so that, premultiplying Eq. (c) by Eq. (d), we have

[

0.716881 . 1.7320.51
P P (T _ U) = 0 3.198753

2 1 0 0
o 0

The third and final transformation matrix is

o
1.247219
0.206743
0.123718

0.12~718]
0.074024

(e)

[10 0

:]o 1 . 0 u
0 0

nP3 = 0 0 1 1 0 (f)= o . 1
0.123718 0 -0.598414o 0
0.206743

so that the desired upper triangular matrix is

[

0.716881 1.732051 0
U = P P P (T _ 'U) = .0 3.198753 1.247219

3 2 1 • '0' 00.206743
000

and the overall transformation matrix is

0.1237-18]
-0.000011

(g)

[

1
-2.416093

P = P3 P2 PI = 0.942054
-0.563738

o
1

-0.389908
0.233326

~ ~1]
-0.598414

(h)

(i)

In view of the small value of U44, we begin the iteration process with

Wo = 10-5 [1 1 1 If

Inserting Eq. (i) into the first of Eqs. (6.168) and considering Eq. (g), we write

0.716881v; + l.732051v; = 10-5

3.198753v; + 1.247219v; = 10-5

0.206743v; + 0.123718v; = 10-5

-O.OOOOl1v; = 10-5

Using back-substitution, we obtain the solution of Eqs. (j), which can be displayed in
the vector form

v; = [v; v~ v; v; f = [0.512528 -0.2121370.544062 -0.909091]T (k)

Then, using the second of Eqs. (6.168) and factoring out al = -1.573094 x 105 so as
to keep the bottom element of the vector WI equal to 10-5, we have

WI = 10-5 [-0.325809 0.922038 - 0.705365 If (1)



Sec.6.11 Rayleigh's Quotient Iteration 325

so that we can replace Eqs. U) by·

O.716881v~ + 1.732051v; ~ -0.325809 X 10-5

" 3.198753v; + 1.247219v; 0.922038 x 10-5

0.206743v; -+:O.123718v; = -0.705365 x 10-5

-0.000011 v; = 10-5

which have the solution

(m)

v; = 10-5 [0.512447 - 0.212099 0.543979 - 0.909091f (n)

Using the second of Eqs. (6.168) and factoring out <X2 ~ -1.572990 X 105, we obtain

W2 = 10-5 [-0.325779 0.921950 - 0.705300 If (0)

One more back-substitution yields the same result, v.~= v;, so that we accept v~ as the
eigenvector of T belonging to A}= 0.283119, or

YI = v; = [0.512447 :..-0.212099 0.543979 - 0.909091f (p)

To produce the eigenvector of A, we recall Eq. (6.167), use the matrix R given
by Eq. (i) of Example 6.6 (with six decimal places accuracy) and write

o 0] [ 0.512447]-0.771517 0.267261 -0.212099
0.154303 -0.801784 0.543979
0.617213 0.534522 -0.909091

= [b. 0.57~350
o 0.577350
o 0.577350

= [-~:;~;~~]
0.690378

-0.272633

which, upon normalizing so that IIxIIi = 1, has the form

XI = [0.428537 - 0.656553 0.577333 - 0.227991(

(q)

(r)

and it should be noted that AI and XI really correspond to the fourth vibration mode.

6.11 RAYLEIGH'S QUOTIENT ITERATION

The inverse iteration algorithm discussed in Sec. 6.10 permits a very efficient compu-
tation of an eigenvector Xi corresponding to a given eigenvalue Ai (i = 1,2, ... , n).
There are occasions in which the eigenvalue Ai is not known, but a good approx-
imation of the eigenvector Xi is available. Under these circumstances, the inverse

. iteration can be modified so as to produce both the eigenvalue Ai and the eigenvector
Xi. The modification consists of inserting the initial estimate of Xi into Rayleigh's

. quotient to generate an even better estimate of Ai than the initial estimate of Xi. This
estimate of Ai and the initial estimate of Xi can be used in conjunction with inverse
iteration to compute an improved estimate of Xi. Then, the process is repeated as
many times as· necessary to achieve convergence' to Ai and Xi. This is the essence
of the Rayleigh:~ quotient iteration algorithm. The implication is that the algorithm

~I
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(a)

permits the computation of any eigenvalue, eigenvector pair, provided there exists a
good guess of the associated vector.

To describe Rayleigh's quotient iteration, we consider an initial vector v~
known to be closer to the eigenvector Xi than to any other eigenvector. Then, as-
suming that the initial vector has been normalized according to Vo = v~/ IIv~II, we
can begin the iteration process, which is defined by

f.Lp-l = V~_l AVp-l, P = 1,2, ... (6.170)
and

(A' - f.Lp-1I) v; = vp-l, vp = v;/lIvpll, P = 1,2, ... (6.171a, b)

and we note that the shift changes from iteration to iteration. Equation (6.171a)
is solved by Gaussian elimination with back-substitution. The process converges

,cubically in the neigh1;>orhoodof each eigenvector (Ref. 13, p. 636).
Example 6.12

Solve the eigenvalue problem of Example 6.4 by means of Rayleigh's quotient iteration.
Ignoring the parameters k and m and using the mass and stiffness matrices given

by Eqs. (a) of Example 6.4, we can write

[

2.5 -1.2247 0 ]
A = M-1

/
2KM-1/2 = -1.2247 1.6667 -1.1547

o -1.1547 3
and we note that the natural frequencies and modal vectors computed in Example 6.4
are related to the eigenvectors computed here by

[
0.7071 0 0]

Wi = ji:;, Ui = M-1
/
2

Xi = 0 0.5774 0 Xi,

o 0 1
i = 1,2,3 (b)

To begin the iteration process, we must choose an initial unit vector. To this end,
we recognize that the system of Example 6.4 is the same as that of Example 4.6, and it
represents the vibrating system of Fig. 4.8. The first eigenvector is characterized by no
sign changes. Hence, we choose as initial unit vector

1 T
va = .J3 [1 1 1] (c)

and note that va is a relatively crude guess. In fact, the only resemblance to the first
eigenvector is that it has no sign changes. Inserting Eqs. (a) and (c) into Eq. (6.170) with
P = 1 we obtain the first shift in the form

/La = V6 Ava == ~ [~] T [-1~2;47 - ~:~~:; -1.~547] '[ ~] = 0.8026 (d)
3 1 0 -1.1547 3 1

Then, introducing Eqs. (a), (c) and (d) into the Eq. (6.i71a) with p = 1, we can write

[
1.6974 -1.2247 0 ] 1 [1]

(A - /La/) v~ = -1.2247 0.8641 -1.1547 v~ = va = r;; 1 (e)
o -1.1547 2.1974 y 3 1

The solution ofEq. (e), obtained by Gaussian elimination with back-substitution, is

'--

V~ = [-1.1545 - 2.0716 - 0.8258f (f)
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Upon normalization according to Eq. (6.17]b), the first iterate is

VI = [0.4597 0.8249 0.3288f (g)

(h)

Next, we insert Eq. (g) into Eq. (6.] 70) with P = 2 and obtain the second shift

[
0.4597] T [2.5 -1.2247 0 ] [0.4597]

f.LI = vi A VI = 0.8249 -1.2247 1.6667 -1.1547 0.8249 = 0.4315
0.3288 0 -1.1547 3 0.3288

so that, following the established pattern, we can write

[

2.0685 -1.2247 0 ]
(A - f.LII)V; = -1.2247 1.2352 -1.1547 v; = VI

o -1.1547 2.5685

Solving Eq. (i) for vi and normalizing, we have

V2 = [0.4743 0.8032 0.3604f

Introducing Eg. (j) into Eq. (6.170) with P = 3, we obtain

f.L2 = vI AV2 = 0.4257

One more iteration corresponding to p = 3 yields

V3 = 10.4742 0.8033 0.3603f

[
0.4597 ]
0.8249
0.3288

(i)

(k)

(I)

Comparing Eqs. (j) and (I), we conclude that no additional iterations are necessary, so
that we accept Al = f.L2 and XI = V3 as the first eigenvalue and eigenvector of A.
Hence, using Eqs. (b), we can write

Next, we propose to compute the second eigenvalue and eigenvector. To this end,
we recognize that the second eigenvector is characterized by one sign change, so that
we choose as the initial unit vector for the second mode

] T
~ [-1 - 1 1]

WI = ;;:; = 0.6524, UI = M-I/2XI = [0.3353 0.4638 0.3603f

Vo =

(m)

(n)

Then, the first shift is
T

f.Lo = v[;Avo = ~ [=~] [-1~2;47 -~:~~~~ -1..(3;547] [=]i.] = 2.3422 (0)
3 1 0 -1.1547

Hence, the first iteration for the second mode is defined by

[

0.1578 -1.2247 0 ]
(A - f.Lol) v~ = -1.2247 -0.6755 -1.1547 v~ = Vo

o -1.1547 0.6578

Solving Eq. (p) and normalizing, we obtain

Vj = 1-0.5879 0.179] 0.7889f

1 [-1.]- -]

~ ]

(p)

(q)

This permits us to compute the second shift

f.LI = vi AVI 2.6926 (r)
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so that the next iteration is defined by

[

-0.1926 -1.2247 0 ]
(A - ILl/) v; = -1.2247 -1.0259 -1.1547 v; = VI

o -1.1547 0.3074

Upon solving Eq. (s) and"normalizing, we can write

V2 = [-0.7425 0.1405 0.6550f

The next two iteration stages yield

[
-0.5879 ]

= 0.1791
0.7889

(s)

(t)

and -

IL2 = 2.7413,

IL3 = 2.7410,

V3 = [-0.7448 0.1466 0.6510f

V4 = [-0.7436 0.1464 0.6525f

(u)

(v)

It is obvious that convergence has been reached, so that we accept as eigenvalue and
eigenvector )..2 = IL3, X2=: V4. Hence, inserting)..2 and X2into Eqs. (b), we obtain

~ = A = 1.6556, U2 = M-l/2X2 = [-0.5258 0.0845 0.6525f (w)

Comparing Eqs. (m) and (w) to Eqs. (h) and (m) of Example 6.4, respectively,
we conclude that the results are nearly identical. The only difference is in the top
component of Ul, which can be attributed to rounding errors. The computation of the
third natural frequency and eigenvector is left as an exercise to the reader.

6.12 SIMULTANEOUS ITERATION

Many problems in structural dynamics involve mathematical models of high order.
A complete solution of the eigenvalue problem for high-order systems is time-
consuming, and may not even be necessary. In the first place, higher modes are
characterized by high frequencies and can seldom be excited. Moreover, it is typical
of discrete models of distributed systems that the higher modes tend to be inaccurate.
In view of this, our interest is in a partial solution to the eigenvalue problem. This
brings immediately to mind the power method, which iterates to one mode at a time.
Simultaneous iteration, due to Jennings (Ref. 7) and Clint and Jennings (Ref. 1), can
be regarded as an extension of the power method whereby iteration is carried out to
a given number of modes simultaneously.

We are concerned with the eigenvalue problem

AXi = AiXi, Ai = l/wf, I = 1,2, ... , n (6.172)

where A is a real symmetric matrix. The mutually orthogonal eigenvectors are
assumed to be normalized so as to satisfy xJ Xi = oij. Simultaneous iteration is
defined by the relation

v; = A Vp-1, p = 1,2, ... (6.173)

where Vp-1 is an n x m matrix of mutually orthonormal vectors Vi related to the
matrix V;_l of independent vectors v7 by

p 1,2, ... (6.174)
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where Up-l is an m x m upper triangular matrix. Equation (6.174) expresses the
orthonormalization of m independent vectors. The orthonormalization can be car-
ried out by means of the Gram-Schmidt method (Appendix B) or through solving
an m x m eigenvalue problem, and we note that this must be done at every iteration
step. Of course, the purpose of the orthogonalization process is to prevent all the
vectors Vi from converging to X!, as they would in the absence of orthogonalization.
The iteration process defined by Eqs. (6.173) and (6.174) converges with the result

lim V = X(m)
p->x p ,

lim U = A(m)
p->oo p

(6.175a, b)

where x(m) = [Xl X2 ..• xm] is the matrix of the m lowest orthonormal eigenvectors
and A (m) = diag Pl.! A2 ... Am] is the diagonal matrix of the m lowest eigenvalues.

The preceding formulation can be modified to accommodate eigenvalue prob-
lems in terms of two real symmetric matrices of the type

Kx; = wfM;x;, l = 1, 2, ... , n (6.176)

In this case, the iteration process is defined by

KV; = MVp-l, P = 1,2, ... (6.177)

But, unlike Eq. (6.173), in which V; is obtained by simple matrix multiplication, the
solution of Eq. (6.177) for V; requires the solution of n nonhomogeneous algebraic
equations, which can be obtained by Gaussian elimination with back-substitution.
Note that, although the orthonormalization process can still be written in the form
(6.174), in this case the matrix Vp must be orthonormal with respect to M.

The Gram-Schmidt orthogonalization method often gives inaccurate results in
the sense that the vectors are not quite orthogonal. A method proposed by Clint
and Jennings (Ref. 1), whereby orthogonalization is achieved by solving an eigen-
value problem of reduced order, is quite efficient computationally. The iteration
process is based on the same Eq. (6.177). On the other hand, the Gram-Schmidt
orthonormalization given by Eq. (6.174) is replaced by one requiring the solution of
the eigenvalue problem

p=1,2, ... (6.178)

where

Kp = (V;)T KV;, p = 1,2, ... (6.179a, b)

are m x m real symmetric matrices. The solution of the eigenvalue problem (6.178)
consists of the matrix of eigenvectors Pp and the matrix of eigenvalues Ap, where
Pp is assumed to be normalized with respect to M p so that P: M p Pp = I. Then,
the next iteration step is carried out with the matrix

Vp = V; Pp, p = 1,2, ... (6.180)

which is orthonormal with respect to M. Indeed, using Eg. (6.179b), we can write

T T *7' * TPp MpPp = Pp (Vp) MVp Pp = Vp MVp = I (6.181)
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The iteration process converges, but now the convergence expressions are

lim V = X(m),
P-'>OO p

lim A = A (m)
P-'>OO p

(6.182)

This version of simultaneous iteration is sometimes referred to as subspace iteration.
It should be pointed out that, although we must solve an eigenvalue problem at

each iteration step, these eigenvalue problems are of significantly lower order than
the order of the eigenvalue problem for the original system, m « n. We should
also note that Mp and Kp tend to become diagonal as p increases, which tends to
expedite the solution of the associated eigenvalue problem.

Example 6.13

Use simultaneous iteration in conjunction with the Gram-Schmidt orthogonalization to
obtain the two lowest eigensolutions of the matrix

[1
1 1 ~]A 2 2

(a)= 2 3
2 3

As the initial trial matrix, we use

vo=~[i =i]211
1 1

Inserting Eqs. (a) and (1:» into Eq. (6.173)with P = 1, we obtain

V* = AV, = ~ [i ~~~].[i =i] = [3~5
1 0 2 1 2 3 3 1 1 4.5

123411 5

0~5]
1.5
2

(b)

(c)

Introducing the notation VI = [Vll vnJ, vt = [vrl vr2]' the Gram-Schmidt orthonor-
malization given by Eq. (6.174)with P = 1 can be expressed in the form

Ilvl1l1 = 1, IIvd = 1
(d)

u = [0.127515 -0.311101]
1 0 1.034198

where Ull, Ul2 and U22 are the elements of the upper triangular matrix VI'
Eqs. (d), we obtain

[

0.255031 -0.622200]
V = 0.446304 -0.571751

1 0.573819 0.151347'
0.637577 0.512895

Solving

(e)

Next, we introduce Eq. (a) and the first of Eqs. (e) into Eq. (6.173)with P = 2 and
obtain

[

1.912731 -0.529709]
V* = A V = 3.570431 -0.437218

2 1 4.781827 0.227024
5.419404 0.739919

(f)
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so that, following the Gram-Schmidt orthonormalization established in Eqs. Cd), we
have

[

0.230865 -0.606625 ]
V _ 0.430948 -0.574671

2 - 0.577162 0.05]955 .
0.654117 0.546865

U = [0.120699 -0.037139]
2 0 1.011]00 (g)

Repeating the procedure for p = 3,4,5 and 6, we obtain the results

[0.228337 -0.591880 ]
V3

0.428828 -0.574997 U3
[0.12g616 -0.004398 ] (h)

0.577340 0.019516 . ] .001850
0.656237 0.564515

[ 0.228051 -0.584031 ]

V4
0.428562 -0.575867 U4 = [ 0.12g615 -0.000537 ] (i)
0.577350 0.00769] , 1.000325
0.656502 0.572037

[0.228018 -0.580322 ]

Vs
0.428530 -0.576565 Us [ 0.12g615 -0.000063 ] U)= 0.577350 0.003115 ' 1.000053
0.656534 0.575]41

and

[0.228014 -0.578650 ]
v: = 0.428526 -0.576970 U _ [0.120615 -0.000007 ] (k)

6 0.577350 0.001284 ' 6 - 0 ] .000011
0.656538 0.576426

At this point, we observe that we are near convergence. In fact AI and VJ have already
converged, but A2 and V2 have not, although they are very close. Indeed, the two lowest
eigenvalues are Al = O.]206] 5 and A2 = 1.

Example 6.14

Solve the problem of Example 6.13 by means of subspace iteration.
The subspace iteration is defined by Eq. (6.177), or

KV; = MVp-J• P = ],2, ... (a)

where, for the system of Example 6.13,

[-~

-1 0

-r] [!
0 0

nK
2 -] M

] 0 (b)= = 0 1-] 2
0 -1 0 0

As in Example 6.13, we use the initial trial matrix

[1 -1]_ ~ 1 -1
Vo - 2 1 ]

1 ]

(c)
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Inserting Eqs. (b) and (c) into Eq. (a) and using Gaussian elimination with back-
substitution, we obtain

Y* _ [3~5 0~5]
I - 4.5 1.5

5 2

Then, using Eqs. (6.179)with p = 1, we compute

(d)

M = (y*)T MY* = [61.5 18.5]
I I I 18.5 6.5 (e)

Inserting Eqs. (e) into Eq. (6.178)with p = 1 and solving the 2 x 2 eigenvalue problem,
we obtain

[
0.120715 0 ]

Al = 0 1.044503'
p = [0.116049 -0.315557]
I 0.037835 1.033506 (f)

so that the next iteration stage begins with the matrix

[

0.232097 -0.631114]
V = Y*P = 0.425088 -0.587696

1 I I 0.578972 0.130252
0.655914 0.489226

(g)

Inserting Eq. (g) into Eq. (a) with p = 2 and using Gaussian elimination in
conjunction with back-substitution, we obtain

[

1.892071 -0.599332]
Y* = 3.552044 -0.567549

2 4.786930 0.051929
5.442843 0.541156

so that, using Eqs. (6.179)with p = 2, we have

K = (y*)T KY* = [8.290608 0.004655]
2 2 2 0.004655 0.983305

M = (y*)T MY* = [68.736187 0.044068]
2 2 2 0.044068 0.976857

(h)

(i)

Introducing Eqs. (i) into Eq. (6.178)with p = 2 and solving the eigenvalue problem,
we obtain

[
0.120615 0 ]

A2 = 0 1.006627'
p = [0.120617 -0.000660]

2 0.000092 1.011791 (j)

so that, using Eq. (6.180)with p = 2, we compute the 4 x 2 orthonormal matrix

[

0.228160 -0.607646]
V = Y*P = . 0.428383 -0.576585

2 2 2 0.577388 0.049384
0.656547 0.543946

(k)

Comparing Eqs. (f) and U) on the one hand and Eqs. (g) and (k) on the other, we observe
that the first mode has almost reached convergence.
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The third iteration stage begins by inserting Eq. (k) into Eq. (a) with p = 3 and
solving for v.; by Gaussian elimination and back-substitution. For brevity, we omit
details and list the numerical results for the third through the sixth iteration stages.

[ 022_ -0.592002 ]
A = [0.120615

1.00~075] , V3
0.428520 -0.575226 (I)

3 0 0.577350 0.019206
0.656540 0.564163

[ 0.228014 -0.584042 ]
A _ [0.120615

l.OO~185] , V4
0.428525 -0.575897 (m)

4 - 0 = 0.577350 0.007655
0.656539 0.571995

[ 0.228013 -0.580322 ]

As [0.12g615
1.00~X)33], Vs

0.428525 -0.576570 (n)= = 0.577350 0.003111
0.656539 0.575137

[ 0.228013 -0.578650 ]

11.6 = [0.12:15
1.00~006] ,

v. = 0.428525 -0.576971 (0)
6 0.577350 0.001283

0.656539 0.576426

Finally, we begin the seventh iteration stage with V6, use Eq. (a) with p = 7 and
compute

[

1.890427 -0.577912 ]
V* = 3.552841 -0.577174

7 4.786730 0.000535
5.443268 0.576961

so that, inserting Eq. (p) into Eqs. (6.179) with P = 7, we obtain

K - (V*)T K V* = [8.290859 0 ]
7 - 7 7 0 0.999998

M = (V*)T MV* = [68.738349 0 ]
7 7 7 0 0.999996

(p)

(q)

which indicates that convergence has been achieved. Indeed, solving the 2 x 2 eigenvalue
problem, Eq. (6.178) with P = 7, we have

A = [0.120615 0 ]
7 0 1.000001'

p = [0.120615 0 ]
7 0 1.000002

(r)

(s)

so that, using Eq. (6.180) with P = 7, we obtain the matrix of orthonormal eigenvectors

[

0.228013 -0.577913]
V - V* P = 0.428525 -0.577175

7 - 7 7 0.577350 0.000535
0.656539 0.576962

At this point, we regard 11.7 and V7 as the matrices of eigenvalues and eigenvectors,
respectively. It should he pointed out here that the actual eigenvalues are)..1 = 0.120615
and A2 = 1.

Contrasting the results obtained here with those obtained in Example 6.13, we
conclude that subspace iteration and simultaneous iteration have similar convergence
characteristics.
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6.13 THE POWER METHOD FOR NONSYMMETRIC EIGENVALUE PROBLEMS

. As shown in Sec. 4.8, the eigenvalue problem for nonconservative systems can be
written in the form

Ax = AX (6.183)

where A is a real non symmetric 2n x 2n matrix. The eigenvalue problem admits 2n
solutions in the form of the eigenvalue, eigenvector pairs Ar, Xr (r = 1, 2, ... , 2n),
in the sense that a given eigenvector Xr belongs to the eigenvalue Ar, and not to any
other eigenvalue. The eigenvector Xr is a 2n-dimensional state vector, which implies

that it has the form Xr = [q; Arq;f, where qr is an n-dimensional configuration
vector. In general, the eigenvalues and eigenvectors tend to be complex quantities,
although real eigenvalues and eigenvectors are possible. If an eigenvalue is complex
(real), then the eigenvector belonging to it is complex (r~l). Because A is real,
if Ar, Xr is an eigensolution, then the complex conjugates Ar, xr also constitute an
eigensolution. Also from Sec. 4.8, we recall that associated with the eigenvalue
problem (6.183) there is the adjoint eigenvalue problem

(6.184)

which admits eigensolutions As, Ys (s = 1, 2, ... , 2n), where Ys are referred to as
adjoint eigenvectors. Hence, whereas the eigenvalues of A and AT are the same, the
eigenvectors are different. If Eq. (6.184) is transposed, then the eigenvector, albeit
transposed, appears to the left of A, in contrast to Eq. (6.183) in which the eigenvector
appears to the right of A. Because of this juxtaposition of eigenvectors relative to
A, Xr are generally referred to as right eigenvectors and Ys as left eigenvectors. The
two sets of eigenvectors are biorthogonal and can be conveniently normalized so as
to satisfy the biorthonormality relations

r, s = 1,2, ... , 2n (6.185)

'------

Algorithms for the solution of the nonsymmetric eigenvalue problem do not
come close to possessing the desirable characteristics of algorithms for the symmetric
eigenvalue problem. In this section, we consider solving the nonsymmetric eigen-
value problem by matrix iteration using the power method. There are significant
differences between the case in which the eigensolutions are real and the case in
which they are complex. We consider first the case in which the eigensolutions are
real and assume that the eigenvalues are arranged in descending order of magnitude,
or IAII :::: IA21 :::: ... :::: IA2n I,where we note thatthe eigenvalues can be of both signs.
In this case, the iteration process for the dominant eigensolution AI, xi is exactly the
same as that for real symmetric matrices described in Sec. 6.3. Differences begin to
surface with the computation of the first subdominant eigensolution. Indeed, before

.A2 and X2 can be computed, it is necessary to compute Yl, because X2 is orthogonal
to Yl and not to Xl' To this end, we observe that the same iteration process using the
transposed matrix AT yields the dominant adjoint eigensolution AI, Yl. Then, nor-
malizing Xl and Yl so as to satisfy y[ Xl = 1 and using the analogy with the deflation
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process discussed in Sec. 6.3, we iterate to the first subdominant eigensolution 1..2, x2

by using the deflated matrix

(6.186a)

Similarly, the transposed matrix

(6.186b)

is used to iterate to 1..2, Y2. The iteration process can be generalized by using the
deflated matrix

k = 2, 3, ... ,2n (6.187a)

to iterate to the eigensolution Ak, Xk and the transposed matrix

k = 2, 3, ... , 2n (6.187b)

to iterate to Ak, Yk. It should be stressed here that, before constructing a new deflated
matrix, the right and left eigenvectors must be normalized so as to satisfy yLI Xk-I =
1.

When the eigensolutions are complex, matrix iteration by the power method for
nonsymmetric matrices A is appreciably more involved than when the eigensolutions
are real. Indeed, in iterating with complex vectors, one must bear in mind that
complex quantities are characterized not only by magnitude but also by phase angle.
Figure 6.4 shows the components of two successive iterated vectors, Ve and Ve+l, in the
complex plane. At first sight, there appears to be no relation between the two vectors.
This is true even when the two vectors represent the same eigenvector, which happens
at convergence. Indeed, because they are complex, for two vectors to represent the
same eigenvector, the magnitude ratios of homologous components must be the same
and the phase angle difference between any pair of components from one vector must
be the same as the phase angle difference between homologous components from
the other vector. The equivalence of two complex vectors, or lack of it, can be
verified by bringing homologous components of Ve and Ve+l, say v;,e and V;,e+l, into
coincidence through a rotation of one of the vectors. This difficulty in interpreting
complex iteration results makes convergence difficult to recognize. Some of these
difficulties can be mitigated by insisting that the iteration process be carried out with
real iterated vectors. Fortunately, this is possible because complex eigensolutions
for real matrices occur in pairs of complex conjugates. Even in working with real
iterated vectors, however, recognizing convergence is not as simple as in the case of
real eigensolutions.

Our next task is to derive a convergence criterion. To this end, we first assume
that the eigenvalue~ satisfy 11..11 = 11..21 = III I ::: 11..31 = 11..41 = II31 ::: ... :::
IA2n-11 = IA2n I = 11..211-11. Then, we express the dominant pair of complex conjugate
eigenvalues in the form

(6.188)
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Figure 6.4 Two successive iterated vectors in the complex plane

Chap. 6

where the magnitude IA11 is such that IA11 > IArl, r = 3,4, ... , 2n. But, according
to the expansion theorem of Sec. 4.8, Eq. (4.181), we can assume an initial trial vector

---------.- ..-----.---- .. -
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(6.190)

as a linear combination of the right eigenvectors of the form

2n

Vo = L CrXr = CIXI + C2X2 + ... + C2nX2n = C1Xl + C1Xl + ... + cnxn (6.189)
r=l

and we observe that Vo is a real vector, because every sum CrXr + crxr of complex
conjugates is a real vector. Then, following the analogy with the matrix iteration of
Sec. 6.3 and using Eqs. (6.188), the pth iterate can be written as

A ' p - ,p-
vp = Vp_1 = Cjll.! Xl + CIA! XI + Ep

= IAllP (CleiPelXl + Cle-ipeIXl) + Ep

As p --+ 00, Ep --+ 0, from which it follows that

(6.191)

Equation (6.191) demonstrates that the iteration process converges to the pair
of dominant complex conjugate eigensolutions, but it provides no clues as to when
convergence has been achieved and what the numerical value of the eigensolutions
is. To address these issues, we consider three consecutive iterates vp, V p+1 and vp+2,

use Eq. (6.190) and form the expression

+ Ep+2 + ~Ep+1 + TJEp

But, if Al and Al are roots of the quadratic equation

i.e., if they are such that

Al 1 i---
_ = --~ ± -J4TJ - ~2
Al 2 2

(6.192)

(6.193)

(6.194)

and if p is sufficiently large that Ep• Ep+! and Ep+2 are negligibly small, then
Eq. (6.192) reduces to

Vp+2 + ~Vp+l + TJvp = 0 (6.195)

Equation (6.195) states that at convergence three sllccessive iterates are linearly de-
pendent.

Next, we propose to develop a convergence criterion. To this end, we consider
three successive iterates Vr, Vf+l and Vf+2. Before reaching convergence a linear
combination of the type given by Eq. (6.195) is not zero, so that we define an error
vector in the form

(6.196)

--------~~=~--~
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Then, to minimize the error, we use the method of least squares and write

a (rI re)
a~e

a (rI re)
a fie

(6.197)

Equations (6.197) represent two homogeneous algebraic equations in the unknowns
~e and fie and have the solution

~e =

fie =

(vI+lve) (vI VH2) - (vI ve) (VI+lVH2)

(vI+lve+l) (vI ve) - (vI+l ve)2,

(vI Ve+l) (VI+lVH2) - (vI+IVe+l) (vI VH2)

(vI+lve+l) (vI ve) - (vI+lve)2

(6.198)

Equations (6.198) form the basis for the desired convergence criterion, which can
be stated as follows: The iteration process achieves convergence when three succes-
$ive iterates Ve, ve+l and VH2 are such that ~e and fie, as calculated by means of
Eqs. (6.198), reach constant values ~ and fl. Then, the dominant eigenvalues Al and
Al are calculated by inserting the constants ~ and fI thus obtained into Eq. (6.194).

The question remains as to how to determine the eigenvector Xl belonging to
Al. In view of the fact that eigenvectors can only be determined within a multiplying
constant, upon considering Eq. (6.191), we can write without loss of generality

(6.199)

Similarly, we can write

vp+l = Avp = A (Xl + Xl) = AIXI + AIXI = 2 (Re Al Re xl - 1m Al 1m xJJ
(6.200)

from which we conclude that

ImXl = Im\l (ReAl Rexl - ~VP+l) = - J4f1 1_ ~2 (~~vp+ vp+l)

. (6.201)
The process just described iterates to the two dominant complex conjugate

eigensolutions AI, xl and A2 = AI, x2 = xl. An entirely similar process involving
A T instead of A can be used to iterate to the dominant adjoint eigensolutions AI, Yl
and A2 = Al, Y2 = Yl' To compute subdominant eigensolutions by the power
method, it is necessary to use matrix deflation. Although in presenting the deflation
process earlier in this section"it was assumed that the eigensolutions are all real, the
same process is applicable to complex conjugate eigensolutions. The only difference
is that we must consider pairs of complex conjugates at a time, which enables us
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to construct real deflated matrices. Hence, using Eq. (6.187a), we can express the
deflated matrix for iteration to A3, X3 in the form of the real matrix

l' T T - - -1'
A3 = A - AIXIYI - A2X2Y2 = A - AIXIYI - AIXIYI (6.202)

Then, postmuItiplying Eq. (6.202) by Xi and considering Eqs. (6.185), We obtain
l' T

AXi - AIXIYI Xi - A2X2Y2 Xi

AiXi - AIXIOli - A2X202i = {
~iXi

ifi = 1, 2
if i i= 1, 2

(6.203)

It follows that A3 has the eigenvalues 0,0, A3, A4, ... ,A2n and the eigenvectors
Xl, X2, X3, X4, ..• , X2n' Hence, an iteration process using A3 in conjunction with
an initial vector Vo in the form of Eq. (6.189) iterates to A3, X3 in the same way the
process using A iterates to AJ, Xl. Of course, the next step is to use the transposed
deflated matrix

(6.204)

to iterate to A3, Y3.
The iteration process just described can be generalized by using the deflated

matrix

to iterate to A2k-l, X2k-1 and the transposed matrix
l' T l' T

A2k-1 = A2k-3 - A2k-3Y2k-3X2k_3 - A2k-2Y2k.-2X2k_2'

k = 2. 3 .... , n
(6.205a)

k = 2, 3 .... , n
(6.205b)

to iterate to A2k-l, Y2k-l, where Al = A.
In general, a real nonsymmetric matrix A can have both real and complex con-

jugate eigensolutions, and quite often it is not possible to know in advance whether
the dominant eigenvalue is of one type or the other. Hence, the question arises as to
the iteration process to be used, the one for real eigenvalues or the one for complex
conjugate eigenvalues. We address this problem by proposing a test based on the
assumption that the dominant eigenvalue is real. To this end, we write the iteration
process in the form

AVe-1 = Ve = A(e)Ve_J, e = 1,2, ...

and introduce the error vector

re = Ve - A (e)Ve_l, e = 1,2, ...

(6.206)

(6.207)

Then, using the method of least squares in a manner akin to the one used earlier in
this section, we can write

a (rJ re)
aA(e)

which yields
T

ve_Jve

IIve-1 11
2 '

e

0, e

1,2, ...

1,2, ... (6.208)

(6.209)
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The approach consists of using Eq. (6.206) to compute several successive estimates,
say A(I) , A (2) and A (3). If the sequence A (1) , A (2) , A (3) reveals a stable pattern, i.e., a
tendency to converge, then the dominant eigenvalue is real and the process converges
to AI. On the other hand, if the sequence exhibits an erratic pattern with no sign
of convergence, such as a change in sign with each iteration step, then the dominant
eigenvalue is likely to be complex. In this case, we switch from Eq. (6.209) to the
convergence criterion given by Eqs. (6.198). In this regard, it should be pointed out
that the computations involving Eqs. (6.206) and (6.209) were not all wasted, as the
same iterates VI, V2, ••• are used in Eqs. (6.198). Clearly, the same procedure must
be followed in iterating to each subsequent eigensolution.

The deflation process for nonsymmetric matrices is also due to Hotelling (Ref.
6). It has the advantage of simplicity, but has poor stability characteristics. Other
deflation methods, with better stability characteristics, are discussed by Wilkinson
(Ref. 13).

Example 6.15

Solve the eigenvalue problem for the damped two-degree-of-freedom syste!ll shown in
Fig. 6.5. Use the parameters ml = 1, m2 = 2, Cl = C2 = 0.2, k1 = 1 and k2 = 4.

o

Figure 6.5 Damped two-degree-of-freedomsystem

The kinetic energy, Rayleigh's dissipation function and potential energy for the
system are as follows:

v (a)

where q = [ql q2f is the configuration vector and

M = [m1 0] = [1 0]o m2 0 2

c = [Cl + C2
-C2

~C2] = [ 0.4 ~0.2]
C2 -0.2 0.2 (b)

K = [kl + k2 -k2] = [ 5 -4]
-k2 k2-4 4

are the mass, damping and stiffness matrix, respectively. Equations (b) permit us to
calculate the coefficient matrix '

1
o

-0.4
0.1

~.2]
~0.1

(c)
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Because the damping coefficients are relatively small, the eigensolutions are likely
to consist of two pairs of complex conjugates. Nevertheless, to illustrate the testing
procedure, we operate on the assumption that we do not know whether the dominant
eigensolution is real or complex and proceed with the test based on Eq. (6.209). To
this end, we choose the initial vector Vo= [1 1 1 If, use Eq. (6.206) with e = 1 and
obtain the first iterate

[

00
o 0

VI = Avo = -5 4
2 -2

1
o

-0.4
0.1

!.2] [~] = [-L]
-0.1 1 0

(d)

Then, using Eq. (6.209) with e = 1, we can write

Following the same pattern, we compute the second iterate

V2 = AVI = [-1.2 0 -0.52 ~o.12f

so tha t
vTv

)...(2) = _1_2 = -0.1674
IIvl1l2

(e)

(f)

(g)

In view of the fact that)...(I) and)",(2) are of opposite signs, we conclude that the dominant
eigensolution must be complex.

At this point, we turn our attention to the iteration process for complex eigen-
solutions based on Eqs. (6.198). However, before we can compute ~I and ryl, we must
have the third iterate V3, so that we write

TV3 = AV2 = [-0.52 -0.12 6.184 -2.44]

Hence, using Eqs. (6.198) with e = 1, we compute

(vI v]) (viv3) - (vivI) (vIv3)
~t = ---------- = 2.240665

(vI V2)(vi VI) - (vI VI)2

(vi V2)(vI V3) - (vI v2)(vi V3)
ryl = ----------- = 2.718437

(vI V2)(vi VI) - (VfVt)2

Next. we obtain the fourth iterate

V4=Av3=[6.184 -2.44 -0.8416 O.0624f

which permits us to compute

(h)

(i)

~2 =

ry2

(vI V2) (vI V4) - (vI V2) (vI V4)

(vI V3)(VIV2) - (vI V2)2

(vI V3)(vI V4) - (vI V3)(vI V4)

(vI V3)(vI V2) - (VfV2)2

= 0.424882

= 4.619323

(k)
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At this point the procedure is clear, so that we merely list the results leading to conver-
gence

Vs = [-0.8416 0.0624 -40:331 17.158f

V6 = [-40.331 17.158 24.021 -7.557 f

V7 = [24.021 -7.557 259.165 -111.819]T

Vs = [0.259165 -0.111189 -0.276365 0.100255 f x 103

V9 = [-0.276365 0.100255 -1.612504 0.704306f x 103 (1)

VlO = [-1.612504 0.704306 2.568705 -0.984920 f x 103

Vll = [2.568705 -0.984920 9.655277 -4.278257]T x 103

v12 = [9.655277 -4.278257 -21.500970 8.500605 f x 103

Vl3 = [-21.500970 8.500605 -55.088906 24.866912]T x 103

and

~3 = 0.564512,

~4 = 0.450787,

~s = 0.450232,

~6 = 0.445574,

~7 = 0.445399,

~s = 0.445216,

~9 = 0.445200,

~1O = 0.445193,

~ll = 0.445192,

Tl3 = 6.643729

Tl4 = 6.648980

TIs = 6.697480

Tl6 = 6.694921

Tl7 = 6.697054

TIs = 6.696866

Tl9 = 6.696963

TllO = 6.696953

TIll = 6.696957

(m)

Hence, convergence has been achieved after eleven iterations, so that we have

~ = ~ll = 0.445192, TI = TIll = 6.696957 (n)

In addition, the iterate at convergence and the one immediately following convergence
are

vp = Vll = [2.568705 -0.984920 9.655277 -4.278257]T x 103

VpH = V12 = [9.655277 -4.278257 -21.500970 8.500605 f x 103
(0)

(p)

Inserting Eqs. (n) into Eq. (6.194), we obtain the dominant pair of complex con-
jugate eigenvalues

)'1 1 i
_ = --~ ± -J4T1 - ~2 = -0.222596 ± 2.578257i
A.) 2 2

Moreover, introducing Eqs. (0) into Eqs. (6.199) and (6.201), we can write

1
Rex) = -vp = [1.284353 -0.492460 4.827639 -2.139129f x 103

2 .
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1m Xt J41'/ 1_ ~2 (~~Vp + VP+1) (q)

= [-1.983328 0.872197 3.752865 -1.463834 f x 103

Following the same procedure with A T as with A, we obtain the same values for
~ and 1'/ as the values given by Eqs. (n), as well as the iterates wp and wp+t· Hence,
the eigenvalues AI and II remain the same as those given by Eq. (p), as expected. On
the other hand, using the analogy with Eqs. (q) in conjunction with the iterates w p and
Wp+l, we compute Re YI and 1mYI. At this point, we are in a position to normalize the
right and left eigenvectors belonging to Al by writing Yi XI = 1, according to Eq. (6.185)
with r = s = 1. The normalized right and left eigenvectors and the complex conjugates
are

[

0.138171 =f 0.156517i]
XI -0.054440 ± 0.069777i
x - 0.372785 ± 0.391081i '

I -0.167784 =f 0.155893i
[

1.259528 ± 1.241648i ]
YI _ -1.074222 =f 1.053273i
Y - 0.526929 =f 0.435837i

1 -0.423504 ± 0.395909i

(r)

To compute the eigensolutions A3' X3, I3, X3, we must produce the deflated matrix
A3' Introducing Eqs. (c), (p) and (r) into Eq. (6.202), we obtain

A3 = A - AIXIyi - I1xIY; = A - 2 Re (AIXIYi)

[

0.020244 -0.01 0725 -0.087772 O.926615]
0.064174 -0.057336 0.463307 0.606787 (s)

- 2.292088 -2.204316 0.148014 -0.120941
-1.1 02962 0.639655 -0.060470 -0.025354

Using the same matrix iteration process with A3 as with A 1 we compute the subdominant
eigenvalues

= -0.027404 ± 0.545795i (t)
A3

and the normalized right and left eigenvectors

[

0.433803 =f 0.452506i ]
X3 _ 0.516529 =f 0.525161i
x - 0.235088 ± 0.249168i '

3 0.272475 ± 0.296311i
[

0.186794 ± 0.111816i]
0.339785 ± 0.366585i
0.275539 =f 0.274295i
0.655774 =f 0.636294i

(u)

6.14 REDUCTION OF NONSYMMETRIC MATRICES TO HESSENBERG FORM

As discussed in Sec. 6.8, Givens' method for the computation of the eigenvalues
of real symmetric matrices requires that the matrix be in tridiagonal form. Then,
in Sec. 6.9, we presented the QR method, designed for the same purpose. Con-
vergence of the QR method can be very slow, unless the matrix is in tridiagonal
form. However, in general matrices defining the eigenvalue problem for vibrating
conservative systems, albeit symmetric, tend to be fully populated. Hence, if the
interest lies in solving the eigenvalue problem by one of these two algorithms, it
is necessary to transform the original m~trix to tridiagonal form. But, because the
tridiagonal matrix must have the same eigeiwalues as the original matrix, the two
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matrices must be related by' a similarity transformation. In the case of symmetric
matrices, the transformation is actually orthogonal, i.e., a special case of the similar-
ity transformation. Three methods capable of transforming a real symmetric matrix
to tridiagonal form are Givens' method (Sec. 6.5), Householder's method (Sec. 6.6)
and Lanczos' method (Sec. 6.7), among others. Denoting the original matrix by A
and the tridiagonal matrix by T, the orthogonal transformation has the form

T = pT AP (6.210)

where the transformation matrix P is orthonormal, i.e., it satisfies pT P = I. In
Givens' method, P is obtained through a sequence of (n - 1)(n - 2)/2 rotations,
where n is the order of the matrix A, and in Householder's method through a series
of n - 2 reflectiol1s. In contrast, Lanczos' method is a direct method whereby the
matrix P is obtained by means of a recursive process.

In the case of a nonsymmetric matrix A, significant simplification of the eigen-
value problem accrues by reducing the matrix to Hessenberg form, denoted here by
H. There are two such forms, an upper Hessenberg and a lower Hessenberg form.
Of the two, the upper Hessenberg form is more commonly encountered, because
various algorithms for the computation of eigenvalues are based on such forms. The
upper Hessenberg matrix, defined by hi) = 0, i ~ j + 2, has the form

hll h12 h13 hl,~-l h1n
h21 h22 h23 h2,n-l h2n

H 0 h32 h33 h3,n-l h3n (6.211)...................................
0 0 0 hn-1,n-l hn-1,n
0 0 0 hn,n-l hnn

A real nonsymmetric matrix can be reduced to Hessenberg form by means of
either Givens' method or Householder's method. In this regard, a slight inconve-
nience arises, because Givens' method and Householder's method are commonly
formulated so as to reduce symmetric matrices to tridiagonal form through annihi-
lation of the upper off-diagonal elements. Of course, as a by-product due to sym-

. metry, the corresponding lower off-diagonal elements are also annihilated. In the
case of non symmetric matrices, Givens' algorithm and Householder's algorithm, as
presented in Sees. 6.5 and 6.6, respectively, result in lower Hessenberg matrices.
Modification of the algorithms to produce upper Hessenberg matrices is relatively
trivial and amounts to an interchange of the subscripts involved.

In this section, we consider a direct method for reducing a real nonsymmetric
matrix to upper Hessenberg form. The approach reminds of the Gaussian elimination
Jor the reduction of a general matrix to upper triangular form through elementary
operations presented in Sec. 6.1. Using the same idea, and recognizing that the cur-
rent objective is to solve an eigenvalue problem, instead of solving nonhomogeneous
algebraic equations, we propose to reduce the non symmetric n x n matrix A to an
upper Hessenberg form H by means of a transformation that preserves the eigen-
values. Hence, whereas in both cases use is made of elementary transformations,
our interest lies in a transformation to Hessenberg form by means of a similarity
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transformation. In view of this, we consider the transformation

P-1AP = H (6.212)

where P is a unit lower triangular matrix of the type encountered in Sec. 6.1. But,
because our objective is to produce only an upper Hessenberg matrix, instead of an
upper triangular matrix, the transformation matrix P has the form

1 0 0 0 0
0 1 0 0 0
0 P32 1 0 0

P 0 P42 P43 0 0 (6.213)
................................
0 PIl-1.2 PIl-I.3 0
0 PIl2 PIl3 PIl,Il-1 1

The problem consists of determining not only the matrix H but also the matrix p,
To solve this problem, we premultiply Eq. (6.212) by P and obtain

AP = PH (6.214)

which represents a set of n2 equations in n2 unknowns, (n2
- 3n + 2)/2 nonzero Pi)

and (n2 + 3n - 2)/2 nonzero hi}.
Because of the structure of P and H, we can determine the nonzero ele-

ments Pi} and hi} by equating every column of A P to the corresponding column
of PH. In particular, by equating the rth columns, we determine column r of
H (r = 1,2, ... , n) and column r + 1 of P (r = 1, 2, ... , n - 2). We note that it is
only necessary to determine n - 2 columns of P, because the first and last columns
are known. The solution can be carried out in a recursive manner, beginning by
equating the first column on both sides of Eq. (6.214), or

(6.215)

where e] = [1 0 0 ... of is recognized as the first standard unit vector and hI =
[hll h21 0 .. , of. Considering Eq. (6.213), Eq. (6.215) yields

hll = all,

which determines the first column of Hand

(6.216a)

ail
Pi2 = -h '

21
I = 3, 4, ... , n (6.216b)

which defines the second column of P. Note that, in choosing the first standard unit
vector el as the first column of P, we obtain the simplest solution. Indeed, we could
have used any other vector instead of el and still obtained a solution. Equating the
second column on 'both sides of Eq. (6.214), we have

(6.217)
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where P2 = [01 P32 P42 ... Pn2f, h2 = [h12 h22 h32 0 ... of. Following the same·
pattern, the first three rows of Eq. (6.217) determine the second column of H, or by
components

n i-I

hi2 = ai2 + L aikPk2 - L Pikhk2, i = 1,2,3 (6.218a)
k=3 k=2

and the remaining n - 3 rows can be used to determine the third column of P in the
form

Pi3 = f- (ai2 +t aikPk2) - Pi2h22, i = 4,5, ... , n (6.218b)
32 k=3

The procedure can be generalized by writing
n i-I

hir = air + L aikPkr - L Pikhkr,
k=r+1 k=2

r = 1, 2, ... , n - 1; i = 1, 2, ... , r + 1

i-I

hin = ain - L Pikhkn,
k=2

where it must be remembered that Pk1 = 0 (k = 2, 3, ... , n). The computations
alternate between Eqs. (6.219a) and (6.219b), until r = n - 1, at which point the
computations skip from Eq. (6.219a) to Eq. (6.219c). This can be explained by the
fact that the matrix P has only n - 2 unknown columns.

Equation (6.219b) contains a potential source of difficulties in that it requires
division by hrH,r. Indeed, if hrH,r is zero, the algorithm breaks down. Even when
hr+ 1,r is only very small, and not necessarily zero, numerical instability can occur. In
such cases, it becomes necessary to carry out suitable row and column interchanges,
which can be done by means of permutation matrices, Eq. (6.36). However, unlike
in Gaussian elimination, the transformation using the permutation matrix must be
a similarity transformation so as to preserve the eigenvalues. But, because the in-
verse of a permutation matrix is equal to the permutation matrix itself, the similarity
transformation implies premultiplication and postmultiplication by the same permu-
tation matrix, which amounts to an interchange of both rows and the corresponding
columns. As an example, if rows sand t are to be interchanged, so are columns
sand t. In the case in which the matrix A represents the coefficient matrix in the
state equations, such row and column interchanges are an absolute necessity. In fact,
entire blocks must be interchanged, leading to the matrix

Pi,r+1
1 (n r)

-h-- air + L aikPkr - L Pikhkr ,
r+1,r k=r+1 k=2

r = 1,2, ... , n - 2; r + 2, r + 3, ... , n

i = 1, 2, ... , n

(6.219a)

(6.219b)

(6.219c)

I] = [-M-1Co . I -Mo-IKJ (6.220)
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Example 6.16

Derive the upper Hessenberg matrix corresponding to the coefficient matrix of Example
6.15.

Inserting Eg. (c) of Example 6.15 into Eg. (6.220), we obtain the coefficient matrix

[
-0.4 0.2 -5 4]-M-1 K] = 0.1 -0.1 2-2

o 1 0 0 0
o 1 0 0

(a)

In deriving the upper Hessenberg matrix corresponding to A' by means of Egs. (6.219),
we will treat A' as if it were A, in the sense that we will ignore the prime.

Using Eg. (6.219a) with r = 1, we obtain

hll = all = -0.4,

Then, from Eq. (6.219b) with r = 1, we have

a31
P32 = - = 10,

h21

h2l = a2l = 0.1 (b)

(c)

Next, we let r = 2 in Egs. (6.2]9a) and (6.2]9b) and write

-49.8

] 9.9

and

1
P43 = -,- (a42 + (/43P32 + (/44P42 - P42h2Z) =

132

1
199

= -0.005025

(d)

(e)

respectively. At this point, the pattern changes somewhat. Indeed, Eg. (6.219a) with
r = 3 yields

4000
h" = a33 + a34P43 - h23P32 = - 199

999 = -5.020l0l
199

400
- = 2.010050
199

-20.100503

([)

Then, skipping to Eq. (6.219c), we obtain

4000

]992
-0.101008

(g)

20
199

= 0.100503
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Hence, using Eqs. (b), (d), (f) and (g), the desired upper Hessenberg matrix is

[

-0.4 -49.8 -5.020101 4]
H - 0.1 19.9 2.010050 -2

- 0 -199 -20.100503 20
o 0 -0.101008 0.100503

Moreover, using Eqs. (c) and (e), the transformation matrix is

Chap. 6

(h)

p - [~- 0
o
j ~.~]
o -0.005025 1

(i)

- 6.15 THE QR METHOD FOR NONSYMMETRIC EIGENVALUE PROBLEMS

As demonstrated in Sec. 6.8, Givens' method for the computation of the eigenvalues
of a real symmetric tridiagonal matrix is very efficient and easy to implement. Hence,
the question arises as to whether the method can be extended to nonsymmetric ma-
trices. Whereas general nonsymmetric matrices can be reduced to tridiagonal form,
the process is potentially unstable (Ref. 13, p. 404). However, there is a much more
serious obstacle preventing the extension of the method to non symmetric matrices.
Indeed, in the case of symmetric tridiagonal matrices T the polynomials Pi (A) cor-
responding to the principal minor determinants of the matrix T - AI form a Sturm
sequence. Givens' method is based on the Sturm sequence property, which in turn is
based on the separation theorem. The Sturm sequence property cannot be demon-
strated for nonsymmetric matrices, as the separation theorem holds only for real
symmetric matrices.

In contrast with Givens' method for the computation of eigenvalues, the QR
method does work for nonsymmetric matrices. In fact, the QR method is the most
effective algorithm for computing the eigenvalues of general matrices. Still, before
computational efficiencies can be realized, it is necessary to reduce the general matrix
to Hessenberg form and to carry out shifts in origin. When all the eigenvalues are
real, the QR method reduces the Hessenberg matrix to triangular form, with the
eigenvalues lying on the main diagonal. Our interest lies in real matrices, so that if
there are complex eigenvalues, then they occur in pairs of complex conjugates. In
this case, the matrix differs from a triangular matrix in that there is a 2 x 2 matrix
straddling the main diagonal for every pair of complex conjugate eigenvalues, where
the complex pair represents the eigenvalues of the 2 x 2 matrix.

For real eigenvalues, the QR algorithm for upper Hessenberg matrices is essen-
tially the same as for tridiagonal matrices. In fact, even when complex eigenvalues
occur, the algorithm is for the most part the same as that described in Sec. 6.9. Differ-
ences begin to arise when the eigenvalues of the 2 x 2 matrix in the lower right corner
turn complex. Indeed, the algorithm of Sec. 6.9 is based on the implicit assumption
that the shifts are real, and here we are faced with the problem of complex shifts, an
undesirable prospect. To avoid complex shifts, it is necessary to modify the algorithm
by considering two complete iteration steps at a time. To this end, we assume that,
upon completion of s iteration steps with real shifts, the 2 x 2 matrix in the lower
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right corner of As has the eigenvalues f..Lsand Tis' Then, using f..Lsas a first shift, we
can write the next iteration step in the form

As - f..LsI = QsRs, AS+1 = f..LsI + RsQs (6.221a, b)

where Qs is an orthogonal matrix, Qr Qs = I, and Rs is an upper triangular matrix.
Moreover, using Tis as a second shift, we can define the following iteration step as

AS+1 - TisI = Qs+1Rs+1, A.I+2 = TiJ + RS+1Qs+1 (6.222a, b)

We should note here that As, AS+1 and AS+2 are all Hessenberg matrices.
At this point, we begin to develop an algorithm obviating the problem of com-

plex shifts. To this end, we pre multiply Eq. (6.221a) by Q;, postmultiply the result
by Qs and write

T T TQs AsQs - f..LsQs Qs = Qs QsRsQs

so that, recalling that Q,; Qs = I and using Eq. (6.221b), we have

AS+1 = Q; As Qs

(6.223)

(6.224)

Next, we premultiply Eq. (6.222a) by Qs, postmultiply by Rs and use Eqs. (6.221a)
and (6.224) to obtain

QsAs+1Rs - Tis QsRs = QsQ; AsQsRs - Tis QsRs

= (As - Ti,J)(As - f..Lsl) QsQs+1Rs+1~·225)

Then, introducing the notation

RQs Qs+1 Q,

we can rewrite Eq. (6.225) in the form

R = QT (As - TiJ)(A,1 - f..L.Il)

(6.226a, b)

(6.227)

and we observe that R is an upper triangular matrix, Q is an orthogonal matrix and
(As - TiJ )(A.\ - f..Ls/) = (As - Re f..LJf + (1m f..Lsl)2 is a real matrix. Hence, the
algorithm, as described by Eq. (6.227), amounts to the upper triangularization of a
real matrix. The actual objective of the algorithm, however, is the matrix Q, and not
R, because it is Q that must be used to determine the matrix AS+2 required for the
next iteration step. Indeed, using Eq. (6.224) with s replaced by s + 1 in conjunction
with Eq. (6.226a), as well as Eq. (6.224) itself, we can write

T T T TAS+2 = QS+1 AS+1 QS+1 = QS+l Q,I As Qs QS+1 = Q As Q (6.228)

The computation of Q can be carried out by Givens' method. Ordinarily, the tri-
angularization of amatrix would require l1(n-1) /2 rotations 8k, (k = 1,2, ... n(n-
l)/2) in the planes (1.2). (1.3) ..... (I,n), (2,3), ... , (2,11), ... , (n-1,n),
so that

QT = 8n(II-1)/2 ... 82c;.)1 (6.229)

We observe, however, that the matrix (As - TiJ)(As - f..Lsl) represents the product
of a Hessenberg matrix and its complex conjugate and its elements corresponding to
the rows i = 4, 5, ... ,11and the columns j = 1,2, ... , i -3 are zero. It follows that

..~-~-~.-.- .~
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many of the rotation matrices are identity matrices. For example, e3, e4, ... , en,
corresponding to the planes (1,4), (1,5), ... , (1, n), are all identity matrices. In
fact, only (n - l)(n - 2)/2 rotations are necessary for the computation of QT.

The algorithm consists of performing two QR iteration steps at a time, yielding
upper Hessenberg matrices As+2, AsH, ... , as can be concluded from Eq. (6.228).
Convergence is achieved when the sequence of upper Hessenberg matrices leads to
an isolated, constant 2 x 2 matrix in the lower right corner, which implies that the
element (n - 1, n - 2) has been annihilated and the elements of the 2 x 2 matrix
no longer change. At this point, the pair of complex conjugate eigenvalues is equal
to the pair of complex conjugate shifts. Then, the last two rows and columns can be
deleted from the matrix and the process continued with an (n - 2) x (n - 2) deflated
matrix for the next eigenvalue or eigenvalue pair.

Example 6.17

Compute the eigenvalues of the Hessenberg matrix of Example 6.16 by means of the
QR method with shifts.

Adopting the notation of this section, the Hessenberg matrix of Example 6.16 is

[

-0.4 -49.8
A = A = 0.1 19.9

I 0 -199
'0 0

-5.020101
2.010050

-20.100503
-0.101008

4 ]-2
20

0.100503

(a)

We begin the process by computing the eigenvalues of the 2 x 2 matrix in the lower
right corner of AI. The eigenvalues are 0 and 20, with the eigenvalue closest to a44

being O. Hence, the first iteration stage is carried without a shift, so that the first stage
is given by

(b)

where QI is obtained by means of three successive Givens rotations in the planes (1,2),
(2,3) and (3,4). The process was demonstrated in Example 6.10, so that we dispense
with the intermediate steps and list the results of the decomposition of Al directly

[

0.970143
-0.242536

QI 0
o

[

-0.4~2311

RI = 0

o

-0.008803 -0.005858 0.242305 ]
-0.035212 -0.023433 0.969220

0.999341 -0.000877 0.036285
o 0.999708 0.024170

-53.139555 -5.357722 4.365641]
-199.131207 -20.113844 20.022034

o -0.101037 0.106361
o 0 -0.241093

(c)

(d)

Inserting Eqs. (c) and (d) into the second of Eqs. (b), we obtain

[

12.488235
Az = 48.2~6412

-3.479423
-13.088826 '
-0.100970

o

5.616691
24.700036

-0.106418
-0.241023

-51.692714 ]
-193.247856

-0.001095
-0.005827

(e)
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The eigenvalues of the 2 x 2 matrix in the lower right corner of A2 arc 0.108723and
-0.008132, and they are both real. The eigenvalue closest to the lower right corner
element is the negative one, so that we choose as our shift f.L2 = -0.001832. The results
of the next iteration stage are

and

[

-0.250494
Q2 - -0.968118- 0

o

[

-49.~86898

R2 -- 0
o

0.651485
-0.168567

0.739697
o

13.535232
-0.136502

o
o

0.669048 0.255332]
-0.173112 -0.066065
-0.628711 -0.239938

0.356552 -0.934276

-25.319500 200.035472]
-0.419696 -1.102569
-0.675983 -1.129950 .

o -0.433695

(f)

(g)

[

-0.615469 -53.510937 51.521792 -194.445077]
A _ R Q _ 0.132150 -0.295570 -0.105625 1.139822

3 - 2 2 - 0 -0.500023 0.013981 1.217879
o 0 -0.154635 0.397058

(i)

The eigenvalues of the 2 x 2 matrix in the lower right corner of A3 are 0.205520±
0.389409i,so that they are complex conjugates. '

Next, we begin with the algorithm using complex shifts described in this section.
Letting f.L3 = 0.205520+ 0.389409iand li3 = 0.205520- 0.389409i and using Eg. (i),
we form

[

-6.245835 44.983550 -16.447185
_ -0.174713 -6.615951 6.705533

(A3 - f.L3I) (A3 - f.L31) = -0.066078 0.346330 0.052815
o 0.077321 0

Then, using the QR decomposition defined by Eg. (6.227),we obtain

124.147732]
-26.177482
-0.569937

o
U)

and

[

0.999553 -0.028128
Q = 0.027960 0.999425

0.010575 0.016162
o -0.009822

0.008647 -0.005260]
0.008489 -0.017175

-0.839774 0.542592
-0.542800 -0.839804

(k)

[

-6.248627 44.782125 -16.251788 123.354294]
R = 0 -7.872595 7.165155 -29.663640

o 0 -0.129648 1.329901
o 0 0 -0.512653

(I)

and we note that R, although not needed for future computations, was listed for com-
pleteness. Inserting Egs. (i) and (k) into Eq. (6.228),we obtain

-50.711921
1.106605

-0.008234
o

61.768974
- 2.279971

1.145103
-0.611457

192.048645]
-6.427138

2.725010
-1.189155

(m)
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and we observe that convergence has begun in earnest, as the (3,2) element in As is two
orders of magnitude smaller than the (3,2) element in A3.

At this point, the procedure is clear, so that we merely list the results of the
iterations lending to convergence, as follows:

f.ls = '-0.022026 ± 0.551395
f.ls

[ -2.148580 -50.602406 -94.698131 178.043230 ]
A7

0.204670 1.703406 4.146521 -8.221022
0 -10.659614 x 10-8 -1.110470 2.796046
0 0 -0.526066 1.055644

f.l7
= -0.027413 ± 0.545795i

/i7

[-2.871503 -50.536982 -7.648625 201.362541 ]
A9

0.270420 2.426711 0.259732 -12.100907
0 -3.1 x 10-13 0.191138 3.214531
0 0 -0.107528 -0.245946

f.l9
-0.027404 ± 0.545795i

f.l9

[ -3.87494<5 -50.410919 -7.641901 201.080236 ]
All

0.396483 3.429754 0.412657 -16.125867
0 0 0.191138 3.214531
0 0 -0.107528 '-0.245946

f.lu
-0.027404 ± 0.545795i

/ill

(n)

(0)

(p)

(q)

[

-5.450540 -50.1,29583 -7.625002 2,00.468774]
A - 0.677820 5.005348 0.654432 -22.485010

13 - 0 0 0.191138 3.214531
o 0 -0.107528 -0.245946

At this point, the shifts and the lower right corner 2 x 2 matrix have reached constant
values, so that convergence to the first pair of complex conjugate eigenvalues has been
achieved. Of course, the eigenvalues are equal to the shifts, or

)'1

Al

We note that these are the same values as those obtaine..<:!in Example 6.15by the power
method, except that there they were labeled A3 and A3, because they represent the
subdominant pair.

In general, the iteration process continues with the (n - 2) x (n - 2) upper
left corner matrix obtained by deleting the last two rows and columns from Au. In
this particular case, the upper left corner matrix is 2 x 2, so that no further iterations

= -0.027404 ± 0.545795i (r)
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are needed. Hence, the eigenvalues of this 2 x 2 matrix are simply the other pair of
eigenvalues, or

A3

A3

which are precisely the values for the other pair of eigenvalues obtained in Example
6.15, where they were labeled Al and II.

= -0.222596 ± 2.578257i (s)

6.16 INVERSE ITERATION FOR COMPLEX EIGENSOLUTIONS

In Sec. 6.15, we have shown how to compute the eigenvalues of a real nonsymmetric
matrix A by the QR method, with special emphasis being placed on the case in which
some, or all the eigenvalues are complex. The problem of computing the eigenvectors
of A remains. As demonstrated in Sec. 6.10, inverse iteration is able to produce the
eigenvector Xr belonging to a known eigenvalue Ar with extreme efficiency. Indeed,
convergence to Xr is remarkably fast, quite often in two or three iteration steps.
But, the algorithm described in Sec. 6.10 is predicated upon the eigensolutions being
real, so that the question arises as to what happens when the eigensolutions are
complex. From our experience, iterations with complex quantities are to be avoided,
and inverse iteration is no exception. In this section, we develop an inverse iteration
algorithm capable of producing eigenvectors belonging to given complex eigenvalues
working with real quantities alone.

We consider a real nonsymmetric 2n x 2n matrix A and introduce the notation

A = a + if3, x = u + iv (6.230)

Inserting Eqs. (6.230) into ?q. (6.183), we can write

A (u + iv) = (a + i(3) (u + iv)

so that, separating the real and imaginary parts, we obtain

Au = au - f3v

A v = av + f3u

Equations (6.232) can be written in the compact form

Bw = 0

where w = ruT vTf is a real expanded 4n-vector and

(6.231)

(6.232)

(6.233)

B = [A - al
-f31

f31 ]
A - al

(6.234)

is a real expanded 4n x 4n coefficient matrix.
Equation (6.233) forms the basis for the inverse iteration algorithm for complex

eigenvalues using real quantities. By analogy with the ordinary inverse iteration
described in Sec. 6.10, we express the iteration process in the form

p = 1,2, ... (6.235a, b)
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where c(p) is a scaling factor. For convenience, we choose

p 1,2, ... (6.236)

in which max Iw?)* I denotes the component of w(p)* oflargest magnitude. The effect
I

of the adopted scaling is to render the component of w(p) of largest magnitude equal
to 1 or to -1, and is designed to prevent the iterates from becoming too large. In this
regard, it should be pointed out that the matrix B is close to being singular, so that
w(ph is likely to be several orders of magnitude !arger than w(p-]), which is also the
reason for the fast convergence. The process begins with an arbitrary initial choice
w(O) and solving Eq. (6.235a) for w(l)* by means of Gaussian elimination with back-
substitution. Then, w(l)* is normalized to w(l) according to Eqs. (6.235b) and (6.236)
and the process is repeated. If A is close to an eigenvalue, say A = Ar = ar + ifJr,
then

lim (u(p) + iY(p)) = Xrp --+ 00
(6.237)

where u(p) and y(p) are the upper half and lower half of the iterate w(p), respectively.
In practice, only a few iteration steps are necessary.

Equation (6.237) only indicates in a qualitative manner that the process con-
verges, but provides no clues as to when convergence occurs. Hence, we must de-
velop a quantitative convergence criterion. To this end, we recall from Sec. 6.13 that
two complex vectors represent the same eigenvector when the magnitude ratios of
homologous components of the two vectors are the same and the phase angle differ-
ence between any pair of components of one vector is the same as the phase angle
difference between homologous components of the other vector. To quantify this
statement, we introduce the notation

Ix](p) I /1fr](p)

IxJP) I /1frJP)
p 1,2, ... (6.238)

where Ix?)1 denotesthemagnitudeoftheithco~ponentofx(p) and / 1fr/p) denotes
the corresponqing phase angle (i = 1,2, ... , 2n). Then, the convergence criterion
can be stated in the form

constant,

1, 2, ... , 2n - 1 (6.239)
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The procedure described above yields the right eigenvector Xr belonging to the
known eigenvalue Ar. The same procedure, but with A replaced by AT, can be used
to obtain the left eigenvector Yr'

Example 6.18

Consider the damped two-degree-of-freedom system of Example 6.15, 11 = 2, and
compute the eigenvector XI belonging to the dominant eigenvalue AI by means of
inverse iteration.

From Example 6.15, the coefficient matrix is

[

00
A = 0 0-5 4

2 -2

1
o

-0.4
0.1

(a)

Also from Example 6.15, the dominant eigenvalue is

Al = Q"] + ifh = -0.222596 + 2.578257i (b)

B=

Hence. inserting Eqs. (a) and (b) into Eq. (6.234), we can write the expanded matrix

0.222596 0 0 2.578257 0 0 0
o 0.222596 0 1 0 2.578257 0 0

-5 4 -0.177404 0.2 0 0 2.578257 0
2 -2 0.1 0.122596 0 0 0 2.578257

-2.578257 0 0 0 0.222596 0 1 0
o -2.578257 0 0 0 0.222596 0 1
o 0 -2.578257 0 -5 4 -0.177404 0.2
o 0 0 -2.578257 2 -2 0.1 0.122596

(c)
We begin the iteration with the vector

w(O) = [1 1 1 1 1 1 1 1( (d)

(f)

tl 1/1:1) - 1/1(1) - 1/1(1) = 88.5416"- I 4

tl1/l~1) - 1/1(1) _ 1/1(1) = 265.0655° (g)- 2 4

tl1/ljl) - 1/1(1) - 1/1(1) = 183.47610

-:; 4

Introducing Eqs. (c) and (d) into Eq. (6.235a) with p = 1, using Gaussian elimination
with back-substitution and normalizing according to Eqs. (6.235b) and (6.236), we obtain
the normalized iterate
w(l) = [-0.230142 0.086898 -1 0.440708 0.407729 -0.178433 -0.6841240.263765]1

(e)
so that, using Eq. (6.238) with p = 1, the corresponding complex vector is

[

-0.230142 + 0.407729i] [0.468197 /119.4425°]
x(1) = 0.086898 - 0.178433i = 0.19.8468/295.96640

-1.000000 - 0.684124i 1.211621/214.3770°
0.440708 + 0.263765i 0.513606/ 30.9009°

which permits us to compute the magnitude ratios and phase angle differences

Ixn/lx~I)1 = 0.911588,

IX~l) I /Ixil) I = 0.386421,

Ixjl)I/lx~1)1= 2.359048.

-------~~~=~~j
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Following the same pattern, we obtain for p = 2

Chap. 6

[

-0.413050 - 0.291785i]
(2) = 0.182270 + 0.112843i =

x 0.844239 - 1.000000i
-0.331512 + 0.444819i

and

[

0,505716 / 215.2380° ]
0.214373 / 31.7616°

1.308717 /310.1724°

0.554765 / 126.6962°

(h)

Ix?)l/lx~2)1 = 0.911586, f~"I/1?) 1/J?) - 1/J~2)= 88.5418°

Ixf)l/lxf)1 = 0.386421, f:,1/J?) 1/Ji2) - 1/Jf) = 265.0654° (i)

Ixi2) II Ix~2)I = 2.359048, f:, 1/Ji2) = 1/Ji2) - 1/J~2)= 183.4762°

Comparing Eqs. (g) and (i), we conclude that convergence has been virtually achieved,
so that we accept Xl = X(2) as the eigenvector belonging to A.l'

6.17 SYNOPSIS

In this chapter, we presented a large variety of iterative algorithms for the real sym-
metric eigenvalue problem. The power method has the advantage of simplicity, but
convergence can be slow if the eigenvalues are not well spaced. It should be used only
when a small number of dominant eigensolutions are desired. The Jacobi method
has a certain air of elegance and is easy to understand. It is not particularly fast, how-
ever, and should be used only for moderate size problems. The two most attractive
algorithms require that the matrix be in tridiagonal form. As tridiagonalization pro-
cedures, we single out Givens' method, Householder's method and Lanczos' method.
The two algorithms for solving eigenvalue problems for matrices in symmetric tridi-
agonal form are Givens' method and the QR method, and both can produce only
eigenvalues. Givens' method is based on the separation theorem and has the ability
to target individual eigenvalues in a given range, but convergence is only linear. By
contrast, the QR method has better than cubic convergence. However, before this
remarkable convergence can be achieved, it is necessary to carry out shifts using the
proper strategy. As far as the computation of eigenvectors belonging to known eigen-
values is concerned, inverse iteration has no peers. Another method with superior
convergence characteristics is Rayleigh's quotient iteration. It also targets individual
eigensolutions. Before it can be used, however, one must have a good guess of the
eigenvector targeted, which for all practical purposes confines the usefulness of the
method to the lowest vibration mode. Finally, simultaneous iteration, which can be
regarded as an extension of the power method, iterates to several eigensolutions at
a time. For a well-populated real symmetric matrix A, the most indicated approach
to the full solution of the eigenvalue problem is to tridiagonalize A by means of
Householder's method, use the QR method with shifts to compute the eigenvalues
and inverse iteration to compute the eigenvectors.

In the case of nonsymmetric matrices, the choice of algorithms for solving
the eigenvalue problem is significantly more limited than is the case of symmetric
matrices. Here toci, the power method has the advantage of simplicity, but should
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be considered only if a small number of dominant eigensolutions is' required. The
method of choice is once again the QR method, provided the matrix A is first reduced
to Hessenberg form and the shifting strategy of Sec. 6.15, which obviates the problem
of working with complex numbers, is used. Then, the eigenvectors are to be obtained
by a version of inverse iteration capable of producing complex eigenvectors working
with real iterates.

PROBLEMS

6.1 Solve the set of algebraic equations

6x) + 5X2 - X3 + 3X4 = 2

-3xr + X2 + 3X3 - 2X4 -5.5

2x) - 2X2 + X3 - 6X4 = -7.5
4x) + X2 - 2X3 + 5X4 = 11.5

by Gaussian elimination with back-substitution.

6.2 Solve the set of algebraic equations

1.2x) + 4.7x2 + X3 - 6 X4

5.2xl + X2 - 3X3 + 2 X4

Xl - X2 + 4X3 - 2 X4

1.3x) + 2.2x2 - X3 - 5.5x4

by Gaussian elimination with back-substitution.

6.3 Solve Problem 6.1 by the Gauss-Jordan method.

6.4 Solve Problem 6.2 by the Gauss-Jordan method.

6.5 Verify that the real symmetric matrix

4.1

16.1

-10.35

3.625

A
[

1.~ -2.76
25.54

Symm

o
12.15
20.25

is positive definite. Then, carry out the Cholesky decomposition of A.
6.6 Verify that the real symmetric matrix

A
[

12.25 4.2. -7.525
23.53 4.752

Symm 35.1461

2.87 ]
-' 10.296
-14.252

23.5949

is positive definite. Then, carry out the Cholesky decomposition of A.

6.7 The mass and stiffness matrices of a three-degree-of-freedom system are

Compute the natural frequencies and modesof vibration by means of the power method.
Use the formulation given by Eqs. (6.72) and (6.73)

[4 0 0]
M=m020,

OD 1
[ 3 -1 0]

K = k . -1 2-1
o -1 1

I
I

I

I

J
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6.8 The mass and stiffness matrices of afour-degree-of-freedom system are

[

3 0 0 0]o 200 .
M=m 0010 '

000 1

. [ 4 -2 0 0]_ -2 3 -1 0
K - k 0 -1 2-1

o 0 -1 1

Compute the natural frequencies and modes of vibration by means of the power method.
Use the formulation given by Eqs. (6.72) and (6.73).

6.9 The mass and stiffness matrices of a four-degree-of-freedom system are

[

1 0 0 0]o 1 0 0
M=m 0020 '

o 0 0 3
[

3 -1 0 0]_ -1 2 -1 0
K - k 0 -1 3-2

o 0 -2 5

Compute the natural frequencies and modes of vibration by means of the power method.
Use the formulation given by Eqs. (6.72) and (6.73).

6.10 Solve Problem 6.7 by means of the threshold serial Jacobi method using a threshold value
of 10-6.

6.11 Solve Problem 6.8 by means of the threshold serial Jacobi method using a threshold value
of 10-6.

6.12 Solve Problem 6.9 by means of the threshold serial Jacobi method using a threshold value
of 10-6•

6.13 Use Givens' method to tridiagonalize the matrix A = M1/2 K-1 M1/2, where M and K
are as in Problem 6.8.

6.14 Use Givens' method to tridiagonalize the matrix A = M1/2 K-1 M1/2, where M and K
are as in Problem 6.9.

6.15 Tridiagonalize the matrix A of Problem 6.13 by means of Householder's method.
6.16 Tridiagonalize the matrix A of Problem 6.14by means of Householder's method.
6.17 Tridiagonalize the matrix A of Problem 6.13 by means of LanclOs' method.
6.18 Tridiagonalize the matrix A of Problem 6.14 by means of LanclOs' method.
6.19 Use Givens' method (Sec. 6.8) to compute the eigenvalues of the tridiagonal matrix

M-1/
2 K M-1/2, where M and K are as in Problem 6.7.

6.20 Solve Problem ,6.19with Mand K asin Problem 6.8.
6.21 Solve Problem 6.19 with M and K as in Problem 6.9.
6.22 Compute the eigenvalues of the tridiagonal matrix obtained in Problem 6.13 (or Problem

6.15) by means of Givens' method (Sec. 6.8). Compare resuhs with those obtained in
Problem 6.20 and draw conclusions.

6.23 Compute the eigenvalues of the tridiagonal matrix obtained in Problem 6.14 (or Problem
6.16) by means of Givens' method (Sec. 6.8). Compare results with those obtained in
Problem 6.9 and draw conclusions.

6.24 Solve Problem 6.19 by the QR method.
6.25 Solve Problem 6.20 by the. QR method.
6.26 Solve Problem 6.21 by the QR method.
6.27 Solve Problem 6.22 by the QR method.
6.28 Solve Problem 6.23 by the QR method.



Chap. 6

-~ ~._--~--..,.

Problems 359

\

6.29 Use inverse iteration to compute theeigenvectors belonging to the eig-envalues obtained
in Problem 6.24. Then, determine the actual modal vectors.

6.30 Use inverse iteration to compute the eigenvectors belonging to the eigenvalues obtained
in Problem 6.27. Then, determine the actual modal vectors.

6.31 Use inverse iteration to compute the eigenvectors belonging to the eigenvalues obtained
in Problem 6.28. Then, determine the actual modal vectors.

6.32 Compute the two lowest modes of vibration for the system of Problem 6.7 by means of
Rayleigh's quotient iteration.

6.33 Compute the two lowest modes of vibration for the system of Problem 6.8 by means of
Rayleigh's quotient iteration.

6.34 Compute the two lowest modes of vibration for the system of Problem 6.9 by means of
Rayleigh's quotient iteration.

6.35 Solve Problem 6.32 by means of simultaneous iteration.

6.36 Solve Problem 6.33 by means of simultaneous iteration.

6.37 Solve Problem 6.34 by means of simultaneous iteration.

6.38 Solve Problem 6.32 by means of subspace iteration.

6.39 Solve Problem 6.33 by means of subspace iteration.

6.40 Solve Problem 6.34 by means of subspace iteration.

6.41 A damped three-degree-of-freedom system is defined by the mass, damping and stiffness
matrices

[

0.4 -0.2 0]
C = -0.2 0.3 -0.1 ,

o -0.1 0.1

Solve the eigenvalue problem by the power method (Sec. 6.13).

6.42 A damped three-degree-of-freedom system is defined by the mass, damping and stiffness
matrices

[
0.4 -0.2 0]

C = -0.2 0.3 -0.1 ,
o -0.1 2.1

K

Solve the eigenvalue problem by the power method (Sec. 6.13).

6.43 Reduce the matrix A from Problem 6.41 to upper Hessenberg form.

6.44 Reduce the matrix A from Problem 6.42 to upper Hessenberg form.

6.45 Compute the eigenvalues of the upper Hessenberg matrix from Problem 6.43 by the QR
method.

6.46 Compute the eigenvalues of the upper Hessenberg matrix from Problem 6.44 by the QR
method.

6.47 Use inverse iteration (Sec. 6.16) to compute the right and left eigenvectors belonging to
the eigenvalues obtained in Problem 6.45. Work with the matrix A from Problem 6.4l.

6.48 Use inverse iteration (Sec. 6.16) to compute the right and left eigenvectors belonging-to
the eigenvalues obtained in Problem 6.46. Work with the matrix A from Problem 6.42.
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7

DISTRIBUTED-PARAMETER
SYSTEMS

Mathematical models of vibrating systems are commonly divided into two broad
classes, discrete, or lumped-parameter models, and continuous, or distributed-para-
meter models. In real life, systems can contain both lumped and distributed parame-
ters. Until now, our study has been confined to discrete systems. In this chapter, our
attention turns to systems with parameters distributed throughout the domain and
in some cases with lumped parameters at boundaries. The emphasis is on theoretical
developments and exact solutions. Because exact solutions are possible in only a
limited number of cases, quite often the interest lies in approximate solutions. Such
solutions are generally obtained through spatial discretization, which amounts to ap-
proximating distributed-parameter systems by discrete ones. Discretization methods
are presented in Chapters 8 and 9. In this regard, it should be pointed out that systems
containing both distributed parameters and lumped parameters dispersed through-
out the system can be treated by some of the techniques developed in Chapters 8
and 9. The theory presented in this chapter not only provides a great deal of insight
into the behavior of vibrating systems but the theory is essential to the approximate
techniques developed in Chapters 8 and 9.

Discrete systems consist of aggregates of discrete components, such as masses
and springs, with the masses assumed to be rigid and the springs assumed to be
flexible but massless. The masses and the spring stiffnesses represent the system
parameters, with the masses being concentrated at given points and connected by
the springs, which explains why the parameters are referred to as lumped. The spatial
position of each mass is identified by an index, and in general the number of masses
coincides with the number of degrees of freedom of the system. In contrast, at each
point of a continuous system there is both mass and stiffness, and these parameters are

361
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distributed over the entire system. The position of a point in a distributed-parameter
system is identified by one, two, or three spatial coordinates, with the set of interior
points defining a domain D and the set of points on the exterior of D defining the
boundary S. Because there is an infinity of points in D, a distributed system can be
regarded as having an infinite number of degrees of freedom.

As can be expected, the mathematical formalism for distributed systems dif-
fers significantly from the formalism for discrete systems. For n-degree-of-freedom
discrete systems, the motion is governed by n simultaneous ordinary differential
equations. To solve these equations, it is necessary to solve the associated algebraic
eigenvalue problem. The solution consists of n eigenvalues and eigenvectors, where
the eigenvectors possess the orthogonality property. The orthogonal eigenvectors
form a basis for an n-dimensional vector space, which can be used in conjunction
with an expansion theorem to decouple the equations of motion into n independent
second-order equations. The independent equations resemble the equation of mo-
tion for a single-degree-of-freedom system and can be solved with relative ease. In
contrast, the motion of distributed-parameter systems isgoverned by boundary-value
problems consisting of one, or several partial differential equations to be satisfied
over D and an appropriate number of boundary conditions to be satisfied at every
point of S. The solution of a boundary-value problem requires the solution of an
associated differential eigenvalue problem, where the latter solution consists of an
infinite set of eigenvalues and eigenfunctions. The eigenfunctions are orthogonal
and can be used as a basis for an infinite-dimensional function space in conjunction
with an expansion theorem to transform the boundary-value problem into an infinite
set of independent second-order ordinary differential equations resembling entirely
the independent equations for discrete systems, so that they can be solved with the
same ease. Hence, whereas the mathematical formalism and the methods of solution
for distributed systems are different from those for discrete systems, many concepts
are entirely analogous.

In this chapter, we begin with the derivation of boundary-value problems for a
variety of elastic members, such as strings in transverse vibration, rods in axial vibra-
tion, shafts in torsion and beams in bending. Subsequently, a generic boundary-value
problem consisting of a Lagrange partial differential equation and suitable boundary
conditions is derived. The free vibration problem leads naturally to the differential
eigenvalue problem, which can be cast conveniently in differential operator form.
Here, the concept of operator self-adjointness, which represents the counterpart of
matrix symmetry in discrete systems, proves quite powerful in generalizing the de-
velopments to a large class of systems, covering most systems of interest to our study.
In fact, the various elastic members mentioned in the beginning of this paragraph
represent mere special cases of this general theory. In extending our discussion to
two-dimensional systems, and in particular to membranes and plates, we encounter
new concepts such as the shape of the boundary and degeneracy. Subjects such as
the variational formulation and the integral formulation of the eigenvalue problem
have certain implications in approximate methods of solution. Other topics of inter-
est are distributed gyroscopic systems and distributed damped systems. The chapter
concludes with an extensive discussion of systems with nonhomogeneous boundary
conditions.
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7.1 THE BOUNDARY-VALUE PROBLEM FOR STRINGS, RODS AND SHAFTS

Our interest lies in the vibration of systems with distributed parameters. The motion
of such systems depends not only on time but also on the spatial position, which
is defined by one, two, or three coordinates. Consistent with this, the domain of
extension of the distributed-parameter system is one-, two-, or three-dimensional,
respectively. Distributed-parameter systems are governed by boundary-value prob-
lems, which consist of differential equations of motion to be satisfied over all interior
points of the domain and boundary conditions to be satisfied at points bounding
the domain. Because there are at least two independent variables, the equations
of motion are partial diffe~ential equations. Unlike discrete systems, for which the
equations of motion tend to have the same form, the boundary-value problem tends
to differ from one type of distributed system to another. Using operator notation, the
various boundary-value problems for large classes of systems can be reduced to the
same form, which enables us to draw general conclusions concerning all system,s in
a given class. In this section, we derive the boundary-value problem for a particular
distributed system, and later in this chapter we generalize the formulation to large
classes of systems.

We consider the string in transverse vibration shown in Fig. 7.1 a. This is a
one-dimensional distributed-parameter system with the domain of extension D :
o < x < L and the boundary S : x = 0, L, where x is the spatial variable and
L the length of the string. We denote the displacement in the transverse direction

r.-_x -I
L

(a)

.1

I(x, t)dx
,----"--) a'r( )t t T(x) + _x_ dx

aw(x,t) !J..... ~~ ax
~ ~ aw(x,t) a2w(x, t)

"'() --+---dx
x I I ax ax2

x x+dx

(b)

aw(x, t) I
ax x = L

~KW(L")

(c)

Figure 7.1 (a) String in transverse vibration (b) Free-hody diagram for a
differential element of string (c) Force diagram at x = L



of a typical point x of the string by the dependent variable w(x, t), the force per
unit length by f (x, t), the mass per unit length of string by p (x) and the tension
by T (x). The left end of the string is fixed and the right end is attached to a spring
of stiffness K. For simplicity, we assume that the displacement is measured from
the equilibrium position weq (x), in which case a pretension in the string balances
the force due to gravity. In all future discussions, we omit gravitational forces on
the basis of this assumption. We propose to derive the boundary-value problem in
two ways, first by means of Newton's second law and then by means of the extended
Hamilton's principle.

To derive the boundary-value problem by means of Newton's second law, we
refer to the free-body diagram of Fig. 7.1b and assume that the displacement w (x, t)
is sufficiently small that the sine and the tangent of the angle made by the string with
respect to the x-axis is approximately equal to the slope of the displacement curve.
Hence, summing up forces in the transverse direction, we obtain

[
aT(X)] [aw(x, t) a2w(x, t) d ] aw(x, t)

T(x) + ----a;-dx ax + ax2 x + f(x, t) dx - T(x) ax

a2w(x, t)
= p(x)dx at2 ' 0 < x < L (7.1)

which, upon ignoring second-order terms in dx and dividing through by dx, can be
reduced to

a [ aw(x, t)] a2w(x, t)
-ax T(x)-a-x- + f(x, t) = p(x) at2 '
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(7.2)

Because the string is fixed at x = 0, the displacement must satisfy

w(x, t) = 0, x=O (7.3a)
On the other hand, from Fig. 7.1c, we conclude that the transverse force balance at
the right end of the string requires that

aw(x, t)
T(x)--- + Kw(x, t) = 0, x = L (7.3b)ax

Equations (7.2) and (7.3) represent the boundary-value problem, in which Eq. (7.2) is
the partial differential equation of motion and Eqs. (7.3) are the boundary conditions.

Next, we wish to derive the boundary-value problem by means of the extended
Hamilton's principle, which can be expressed in the form

1t

2

(8T - 8V + 8Wnc) dt = 0,
t1

where

8w(x, t) = 0, (7.4)

(7.5)T(t) = ~ (L p(x) [_a_w-:-(x_,_t_)]2dx
2 10 at

is the kinetic energy. The potential energy arises from the restoring forces due to
the tension in the string and the elongation of the spring at x = L. To determine
the potential energy due to the tension in the string, we denote the length of the

I
L...--- _
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differential element dx in displaced position by ds. Then, the potential energy is
simply the sum of the work that must be performed by the tensile force to restore
the string to the original horizontal position and the potential energy due to the end
spring, or

lL 1
V(t) = T(x)(ds - dx) + -Ku/(L, t)

o 2
But, recognizing from Fig. 7.2 that ow/ox < < 1, we can write

(7.6)

[ ]

1/2 [ ] 1/2 [ ]ow 2 ow 2 1 ow 2

ds = (dx)2 + (-a~dX) = 1 + (-3";) dx ~ 1 + 2 (-a~) dx

(7.7)
where we retained two terms only in the binomial expansion. Hence, inserting
Eq. (7.7) into Eq. (7.6), we obtain the potential energy of the system

llL [OW(x. t)]2 1 ~V(t) = - T(x) --- dx + -Kw-(L, t)2 0 ox 2
(7.8)

Moreover, the virtual work due to the nonconservative distributed force is simply

lL
8Wnc(t) = f(x,t)8w(x,t)dx

o

~

~

dS aw
-dx

iJ ax,w

iJx I--- dx

Figure 7.2 Differential element of string in displaced position

From Eq. (7.5), the variation in the kinetic energy is

lL ow(x.t) [oW(x.t»]d8T(t) = P(x)---8 --- x
o at at

Similarly. from Eq. (7.8), the variaiion in the potential energy has the form

iL aw(x. t) [aw(x, t)]8V(t) = T(x) , 8 --- dx + Kw(L. t) 8w(L. t)
o ax ax

(7.9)

(7.10)

(7.11)

Equation (7.10) contains the variation in the velocity, and we must transform the
equation into one in terms of the virtual displacement. To this end, we assume that
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(7.12)

(7.13)

variations and differentiations with respect to time are interchangeable and carry
out the following integration by parts with respectto t:

1
12 1121L aw(x, t) [aw(x, t)]oT dt = p(x)---.:...o --- dx dt
II II 0 at at

lL [112 aw(x, t) aow(x, t) ]= p(x)-------dt dx
o II at at

lL [ aw(x t) 1

12 112
a
2
w(x t) ]= p(x) , ow(x, t) - p(x) 2' ow(x, t) dt dx

o at I} II at

11
21L a2w(x t)= - p(x) 2' ow(x,t)dxdt

II 0 at
in which we used the end conditions on time in Eq. (7.4). Similarly, we perform an
integration by parts with respect to x and rewrite Eq. (7.11) in the form

lL aw(x t) [aw(x t)]oV(t) = T(x) , 0 'dx + Kw(L, t) ow(L, t)
o ax ax

lL aw(x, t) aow(x, t)= T(x)-------dx + Kw(L, t)ow(L, t)
o ax ax

aw(x, t) I= T(x)---ow(x, t) L
ax 0

- (L _a [T(X) aw(x, t)] ow(x, t) dx + Kw(L, t) ow(L, t)10 ax ax

= _ (L _a [T(X)_a_w_(x_,_t_)]ow(x, t) dx10 ax ax

+ [T(X)_a_w_(x_,t_) + Kw(x, t)] ow(x, t)1
ax x=L

aw(x, t) I- T(x)---ow(x, t)
ax x=O

Hence, inserting Eqs. (7.9), (7.12) and (7.13) into Eq. (7.4), we obtain

112(_ (L {p(X)a2w(~,t) __ a [T(X)aw(x,t)] _ !(X,t)}oW(X,t)dX
I} 10 at ax ax

- [T(X)_a_w_(x_,_t) + Kw(x, t)] ow(x, t)1
ax x=L
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(7.14)+ T(X)oW(X,t)8W(X,t)1 )dt = °
ox x=o

But, the virtual displacements are arbitrary, and hence they can be assigned values
at will. We assume that either 8w or Tow/ox is zero at x = 0, that either 8w or
(Tow/ox) + Kw is zero at x = L and that 8w is completely arbitrary at every point
of the domain ° < x < L. Under these circumstances, we conclude that Eq. (7.14)
can be satisfied if and only if the displacement w (x, t) satisfies

o [OW(X,t)] . a2w(x,t)
- T(xl .. + J'(x. t) = pIx) 2'ox . ox .... at

and is such that
. ow(x, t) .

T(x) .. 8w(x, t) = °ax

[
aw(x, t) ]

T(x) ax + Kw(x, t) 8w(x, t) ::;:;:°

O<x<L

at x = °
at x = L

(7.15)

(7.16a)

(7.16b)

Conditions (7.16) can be satisfied in two ways each, where we note that the coefficient
of 8w(x. t) in both Eq. (7.16a) and Eq. (7.16b) represents the transverse component
of force. At x = ° the transverse component of force cannot be zero for all t, so
that 8w(x, t) Ix=o must be zero. Hence, Eq. (7.16a) is satisfied by

w(x, t) = 0, x = 0 (7.17a)

On the other hand, 8w(x, t) # 0 at x = L, so that 8w(x, t)IX=L is. arbitrary. It
follows that Eq. (7.16b) can be satisfied if and only if

ow(x,t)
T(x)--- + Kw(x, t) = 0, x = L (7.17b)aw

Equation (7.15) represents the partial differential equation and Eqs. (7.17) are the
boundary conditions. Equations (7.15) and (7.17) constitute the boundary-value
problem for the transverse vibration of the string shown in Fig. 7.1a, and they coincide
with Eqs. (7.2) and (7.3) derived earlier by Newton's second law, respectively.

At this point, we wish to examine the question of boundary conditions more
closely. Boundary condition (7.3a), or (7.17a), is geometric in nature and it indicates
that the solution w(x, t) of the differential equation, Eq. (7.2), or Eq. (7.15), must
be zero at x = 0. Boundary conditions resulting from pure geometric compatibility
are called geometric, essential, or imposed boundary conditions. On the other hand,
boundary condition (7.3b), or (7.17b), states that the vertical component of the ten-
sion in the string must balance the spring force at x = L. Boundary conditions
resulting from force balance are known as natural, dynamic, or additional boundary
conditions. It is the satisfaction of the boundary conditions that renders the solution
of the differential equation unique. It should ~e noted that geometric boundary
conditions tend to be simpler than natural ones.

Boundary-value problems are classified according to order, which is determined
by the order of the highest derivative with respect to the spatial coordinate in the
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differential equation of motion. The boundary-value problem defined by Eqs. (7.15)
and (7.17) is of order two, and it represents one of the simplest boundary-value
problems in vibrations. Because the order is two, there are two boundary conditions,
one at each end. In the case of the string of Fig. 7.la, one boundary condition is
geometric and the other is natural. In general, there are other possibilities. For
example, in the case of a string fixed at both ends, both boundary conditions are
geometric. In the case of a free end, the slope to the displacement curve must be
zero, provided the tension is not zero. Although this appears as a geometric boundary
condition, it is really a natural one, as the transverse component of force, which is
equal to T(x)aw(x, t)jax, must be zero.

Other elastic members, such as shafts in torsion and rods in axial vibration, are
also defined by boundary-value problems of order two. In fact, they are governed by
boundary-value problems mathematically equivalent to that for strings in transverse
vibration. The only difference lies in the nature of the displacement, excitation and
parameters. Indeed, the structure of the differential equation is exactly the same, but
the transverse displacement w(x, t) must be replaced by the angular displacement
e(x, t) in the case of a shaft and by the axial displacement u(x, t) in the case of a
rod, the transverse force density f(x, t) must be replaced by the distributed torque
m (x, t) and by the distributed axial force f (x, t), the tension T (x) must be replaced
by the torsional stiffness G J (x), in which G is the shear modulus and J (x) the polar
area moment of inertia, and by the axial stiffness E A (x), where E is the modulus
of elasticity and A(x) the cross-sectional area, and the mass density p(x) must be
replaced by the polar mass moment of inertia density I (x) and by the mass per unit
length m(x), respectively.

Before turning our attention to other types of systems, we should point out
that the reason for introducing second-order boundary-value problems via strings
in transverse vibration, instead of shafts in torsional vibration or rods in axial vibra-
tion, is simply that transverse displacements are easier to visualize than angular or
axial displacements. This point is made abundantly clear by the fact that angular dis-
placements and axial displacement are commonly plotted as if they were transverse
displacements, which at times can lead to confusion.

7.2 THE BOUNDARY-VALUE PROBLEM FOR BEAMS IN BENDING

An elastic member used most frequently in structures is the beam. Figure 7.3a
shows a beam in bending vibration under the distributed transverse force f (x, t).
In addition, we assume that the beam is subjected to the axial force P (x), as shown
in Fig. 7.3b. We propose to derive the boundary-value problem by means of the
extended Hamilton's principle, Eq. (7.4). To this end, we assume that the kinetic
energy is due entirely to translation. Hence, denoting the transverse displacement
by w(x, t), we can write the kinetic energy expression in the form

IlL [aw(x, t)]2T(t) = - m(x) dx
2 0 at . (7.18)
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f(X~t t t t t t t
t t t t t t t tt t m(x), E/(x)

~~j
(a)

ap
,~ p+ -dxax

. '~--i aw
p~ ---t ax dx

--j dx I--

(b)
Figure 7.3 (3) Beam in bending vibration (b) Axial forces acting on a beam
differential element

where m (x) is the mass per unit length of beam. The potential energy consists of two
parts, one due to bending and one due to the axial force, where the latter is entirely
analogous to the potential energy in a string, the integral in Eq. (7.8). The potential
energy of a beam in bending can be found in any textbook on mechanics of materials.
Moreover, using the analogy with the string, the combined potential energy can be
shown to have the form

V(tl = ~t IEJ(x>["2~~. tl r + P(x>["W~:' tl ]}x (719)

where E I (x) is the bending stiffness, or flexural rigidity, in which E is the Young's
modulus of elasticity and I (x) is the area moment of inertia about an axis normal to
the plane defined by x and w. It should be noted here that the contribution of the
gravitational forces to the potential energy can be ignored by measuring displace-
ments from the equilibrium position. Finally, the virtual work due to nonconservative
forces is simply

We carry out the operations involved in the extended Hamilton's principle,
Eq. (7.4), term by term. To this end, we assume that variations and differentiations
are interchangeable, use Eq. (7.18) and write the variation in the kinetic energy in
the form

[

12

8T dt =
II

8Wnc = lL
f(x,t)8w(x,t)dx

1L aw aw 1/. aw a
8T = m-8-dx = m--8w dx

o at at 0 at at
so that, integrating by parts, the first term in Eq. (7.4) yields

[121L aw a lL [12 aw am--8wdxdt = m--8wdtdx
II [) at at [) II at at

(7.20)

(7.21)

1L aw 1

12 1L [12 a
2
wm-8w dx - m --7 8w dt dx

o at 11 0 II ot-



1t
21L a2w- m--28wdxdt

t) 0 at
where we considered the fact that 8w = 0 at t = t1, i2. Moreover, we take the
variation in the potential energy, Eq. (7.19), integrate by parts and obtain
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(7.22)

(7.23)

lL ( a2w a2w aw aw)8V = EI-8- + P-8-- dx
o ax2 ax2 ax ax

lL ( a2w a2 aw a )= EI--8w + P--8w dx
o ax2 ax2 ax ax

a2w a IL a ( a2w) IL aw ILEI-2 -8w - - EI-2 8w + P-8waxax 0 ax ax 0 ax 0

+ [L [~(Ela2w) _ ~ (paw)] 8wdx10 ax2 ax2 ax ax
Finally, inserting Eqs. (7.20), (7.22) and (7.23) into Eq. (7.4) and grouping the terms
in appropriate fashion, we obtain

1t

2

{[ a (a2w) aw] IL a2w aw IL- -- EI-2 + P- 8w + EI-2 8-
t) ax ax ax 0 ax ax 0

- f] 8wdX} dt = 0

(7.24)

At this point, we invoke the arbitrariness of the virtual displacements in a judicious
manner. In particular, we assume that either 8w or its coefficient in the boundary
term is zero at x = 0 and x = L, that either 8(awjax) or its coefficient in the
boundary term is zero at x = 0 and x = L and that 8w is entirely arbitrary over the
domain 0 < x < L. It follows that Eq. (7.24) can be satisfied if and only if

m aa2t~+ aa:2(El~:~) - aax(p~:) - f = 0, 0 < x < L (7.25)

and, in addition, either

or

- and either

w = 0

at x = 0, L

at x = 0, L

at x = 0, L

(7.26a)

(7.26b)

(7.27a)

---,---~--_.---~ -~ - --.--------~-----~~~._--~~---
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aw
ax

Equation (7.25) represents the equation of motion, a fourth-order partial differential
equation to be satisfied at every point of the domain, and Eqs. (7.26) and (7.27)
represent boundary conditions. We note that two boundary conditions must be
satisfied at x = 0 and x = L, one from Eqs. (7.26) and one from Eqs. (7.27). The
choice as to which of the two equations must be satisfied depends on the nature of
the boundary. For example, we know that the displacement is zero at a pinned end,
but the slope of the displacement curve must be different from zero. Hence, at a
pinned end we must retain Eqs. (7.26b) and (7.27a) as the boundary conditions, or

a2w
M = EI- = 0ax2

=0

w = 0;

at x = 0, L (7 .27b)

(7.28)

(7.29)

where M is identified as the bending moment. At a free end, we know that the
displacement and slope must be different from zero, so that from Eqs. (7.26a) and
(7.27a) the boundary conditions are

a (a
2
w) awQ = -- EI- + P- = 0,

ax ax2 ax
where Q is recognized as a shearing force. Finally, at a clamped end the bending
moment and shearing force are not zero, so that from Eqs. (7.26b) and (7.27b) we
obtain the boundary conditions

w = 0, awj3x = 0 (7.30)

Other boundary conditions than those described by Eqs. (7.28)-(7.30) are pos-
sible, but they require modifications in the formulation. For example, if an end is
supported by a linear spring of stiffness K, then the term ~K w2 must be added to
the potential energy, and if an end is supported by a torsional spring of stiffness K T ,

the term ~KT(awjax)2 must be added. Clearly, the effect of such terms will be
reflected in the boundary conditions, as shown in the next section.

The model of a beam in bending vibration considered in this section is the
simplest possible and is known as an Euler-Bernoulli beam.

7.3 LAGRANGE'S EQUATION FOR DISTRIBUTED SYSTEMS.
THE BOUNDARY-VALUE PROBLEM

In deriving boundary-value problems by means of the extended Hamilton's principle
there are several steps that must be repeated time and again. In this regard, we
recall from Chapter 2 that a similar situation exists for discrete systems, in which , I
case it is possible to avoid the repetition by using the extended Hamilton's principle
to derive Lagrange's equations and then derive the equations of motion by means
of Lagrange's equations. Hence, it is only natural to seek a similar approach for
distributed systems. Of course, the situation is more complicated in the case of
distributed systems, because there are at least two independent variables instead of
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one. In view of this, the resulting formulation consists of a single Lagrange's equation,
a partial differential equation, and associated boundary conditions. This formulation
is quite general and covers a relatively large class of systems.

For convenience, we rewrite the extended Hamilton's principle, Eq. (7.4), as

(7.31)

(7.32)

where L = T - V is the Lagrangian. Moreover, we can simplify the notation by
denoting derivatives wi th respect to the spatial variable x by primes and derivatives
with respect to the time t by overdots whenever appropriate. This permits us to write
the kinetic energy in the general functional form

T = iL T(w) dx

in which the overcaret denotes a kinetic energy density. Similarly, the potential
energy is assumed to have the form

V = Vo[w(O, t), w'(O, t)] + VL [w(L, t), w'(L, t)] + iL V(w, Wi, w")dx

(7.33 )
where the subscripts 0 and L refer to potential energy due to springs at the ends
x = 0 and x = L, respectively, and the overcaret denotes a potential energy density.
Hence, the Lagrangian can be expressed as

L = Lo[w(O,t), w'(O,t)]+LL[W(L,t), w'(L,t)]+ iL L(w, Wi, w", w)dx

~ (7.34)
in which Lo and LL are boundary Lagrangians and L is a Lagrangian density. More-
over, the virtual work is simply

8W nc = iL f 8w dx (7.35)

where f = f (x, t) is the distributed force, and note that concentrated forces can be
expressed as distributed by means of spatial Dirac delta functions.

The extended Hamilton's principle, Eq. (7.31), calls for the variation in the
Lagrangian, which can be expressed in the form

where

8Lo aLo 8w(0 t) + _a_L_o_8w'(0 t)
-=-aw--:-(0-, t-:-) , aw'(O, t) ,

aLL . aLL
---8w(L t) + ---8w'(L t)
aw(L, t)·' aw'(L, t) ,

(7.36)

(7.37a)

(7.37b)
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at at, at " atot = -ow + -ow + -ow + -owow aw' ow" ow
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(7.37c)

From Sees. 7.1 and 7.2, we recall that, before we can invoke the arbitrariness of the
virtual displacements, it is necessary to carry out a number of integrations by parts
with respect to x and t. This can be conveniently done term by term. First, we carry
out integrations with respect to t, or

112_atowdt = _atowl12_112

.~ (_a~) owdt = _112

~ (_a~) owdt
II ow ow II II at aw II at aw

(7.38)
where we considered the fact that ow is zero at t ~ t1,t2. Next, we carry out
integrations with respect to x, which involve terms in L. First, we have

fL atow'dx = (, at ~owdx =
o ow' 10 ow' ax

Similarly,

at IL 11
' a (a t )-,ow - - -, owdxow 0 0 ax ow

(7.39a)

1L at--ow" dx
o aw"

_at ow'IL __ a (_at) owl!. + fL _0
2
2 (_at) owdx

ow" 0 ax aw" 0 10 ax aw"
(7.39b)

Introducing Egs. (7.35)-(7.37) into Eg. (7.31), considering Eqs. (7.38) and (7.39) and
collecting terms involving ow(x. t). ow(Q.fl. ow(L. t). ow'(O.t) and ow'(L, 1),
we obtain

1121 aLo aLo,---ow(O. t) + .. ow (0.1)
II aw(O,t) aw'(O,t)

aLL aLL+ ---ow(L.t) + ---ow'(L.t)aw(L, t) .. iJw'(L, t)

+f [-~:--:x (-:~-',) + -::' (-aa~_',,) - :, (-:~) + ~SWdX

[at a (at)] IL at ILI+ - - - --. ow + --dw' dtow' ax ow" 0 aw" 0

112((" [_at __ a (_at) + _a2 (_at) _ ~ (_at) + )owdx
II 10 aw ax aw' ax2 ow" at aw J

+ I-aw-a~_~_,)- [-:~, - -:x (-:~-',,) ] I,~oISw(O, I)
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(7.40)

+ { a;~~ t) + [::, - :x (:;,,) ] I'~L}ow(L, t)

+ [a:~;t) - :~,tJoW'(O,t)
+ [ aLL + ai I ] 8w'(L, t))dt = 0

aw'(L, t) awl! x=L

At this point, we invoke the arbitrariness of the virtual displacements. If we let
8w(0, t) = 8w(L, t) = 0 and 8w'(0, t) = 8w'(L, t) = 0, we conclude that
Eq. (7.40) can be satisfied for all values of 8w in the open domain 0 < x < L
if and only if the coefficient of 8w is zero, or

ai a (ai) a
2

(ai) a (ai)aw - ax aw' + ax2 awl! - ataw + f = 0, o < x < L (7.41)

Moreover, by writing

(7.42a)

(7.43b)

(7.43a)

(7.42b)

{ a;~: t) - [::, - :x (:;,,) ] I,~}ow(O,t) = 0

[a Lo ai I ] ,
aw'(o, t) - awl! x=O 8w (0, t) = 0

{a;~~t) + [::, - :x (:~,)] I,JoW(L,t1 = 0

[
aLL ai I ] ,
aw'(L, t) + awl! x=L 8w (L, t) = 0

we take into account that either 8w(0, t) or its coefficient is zero and either 8w'(0, t)
or its coefficient is zero, and similar statements can be made about conditions at
x =L.

Equation (7.41) represents the Lagrange differential equation of motion for the
fourth-order distributed-parameter system with the Lagrangian given by Eq. (7.34).
It is a partial differential equation to be satisfied at every point of the open domain
0< x < L. Moreover, from Eqs. (7.42), we conclude thatatx = o the displacement
must be such that either

aLo
aw(O, t)

(7.44a)

or
w(O, t) = 0 (7.44b)
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a Lo ai I
aw'(o t) - awl! = 0, ;c=o
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(7.45a)

or
w'(O, t) o (7.45b)

In addition, at x = L either

a:(~~t) + [::' - :x (:~,) ] I'~L= 0

or
w(L, t) = 0

(7.46a)

(7.46b)

and either

or

aLL ai I - 0
aw'(L, t) + awl! ;c=L -

w'(L, t) = 0

(7.47a)

(7.47b)

For a given system, the solution w(x, t) of the Lagrange equation, Eq. (7.41), must
satisfy one of each of Eqs. (7.44)-(7.47), for a total of two equations at each end.
The four equations represent the boundary conditions, and the choice of boundary
conditions at each end is dictated by the physics of the problem.

It should be pointed out here that, although the formulation is for fourth-order
systems, the formulation can be used also for second-order systems by simply deleting
terms that do not apply.

Example 7.1

Derive the Lagrange equation and boundary conditions for the string of Fig. 7.1 a.
This is only a second-order system, so that deleting from Eq. (7.41) terms involving

derivatives higher than two the Lagrange equation reduces to

ai a (ai) a (ai)aw - ax aw' - at aU} + f = 0, O<x<L (a)

Moreover, the physics of the problem dictates the boundary conditions

w(O, t) = 0

aLl. + ai I = 0
aw(L, t) aw' x=L

From Eqs. (7.5) and (7.8), we can write the Lagrangian density

- - - 1'2 1 /2L = T - V = -pw - -T(w)2 2
and the boundary Lagrangians

(b)

(c)

(d)

Lo = 0,
1 2-ZKW (L, t) (e)
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O<x<L

Inserting Eq. (d) into Eq. (a), we obtain the partial differential equation of motion

a (aw) a2w- T- - p- + f = 0,ax ax at2 (f)

where we recognized that p = p (x) does not depend on t. Moreover, introducing
Eq. (d) and the second of Eqs. (e) into Eq. (c), we obtain the boundary condition at
x=L

(g)awlKw(L,t) + T- = 0
ax x=L..

The boundary condition at x = 0 remains in the form of Eq. (b).
It is easy to verify that the boundary-value problem given by Eqs. (f), (b) and (g)

is identical to that obtained in Sec. 7.1

Example 7.2

Derive the Lagrange equation and boundary conditions for the rotating cantilever beam
shown in Fig. 7.4a.

cbn

t t t t t t t t t

-IL

ttttttt
P(x)

m(x), EI(x)
-- __~ I w(x, t)x

(a) (b)

Figure7.4 (a) Rotating cantileverbeam (b) Axial force due to centrifugaleffects

From Eqs. (7.18) and (7.19), the Lagrangian density hasthe expression

t = t - V = ~mw2 - ~EI (W")2 - ~P (wf
2 2 2

where, from Fig. 7.4b, the axial force has the form

. P(x) = lL
mQ2~d~

(a)

(b)

Note that in the case at hand Lo = LL = O.
The Lagrange differential equation for a fourth-order system is given in general

form by Eq. (7.41). To obtain its explicit expression, we write

at at ,at "at
- = 0 - = -pw - = -Elw = mw (c)aw 'aw' 'aw" 'aw

Inserting Eqs. (c) into Eq. (7.41), we obtain the Lagrange equation in the explicit form

a~ (p~~) - a~2 (EI~:~) ~ maa2t~+ f = 0, 0 < x < L (d)

where P is given by Eq. (b).

--- ------.-._------~-~~----~-------~-._----_. ~---- ~ -~--,-_. -
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To derive the boundary conditions, we observe that the displacement and rotation
are zero at a clamped end. Hence, on physical grounds, we choose Egs. (7.44b) and
(7.45b) as the boundary conditions, so that

On the other hand, the displacement and rotation at x = L are not zero, so that we must
choose Egs. (7.46a) and (7.47a) as the boundary conditions. Observing from Eg. (b)
that P(L) = 0, the boundary conditions at x = L are

a ( a2w)- EI- = 0ax ax2 '

w = 0, w' = 0, x = 0

x = L

(e)

([)

~ 7.4 FREE VIBRATION OF CONSERVATIVE SYSTEMS. THE DIFFERENTIAL
EIGENVALUE PROBLEM

In the absence of external forces, f (x, t) = 0, the boundary-value problem for the
vibrating string of Fig. 7.1a, Eqs. (7.2) and (7.3), reduces to the partial differential
equation of motion

w(x,t) =0, x=O

aw(x.t) ..
T(x) . + Kw{x) = 0,ax

Equations (7.48) and (7.49) describe the free vibration of conservative second-order
systems.

Our interest lies in the solution of Eqs. (7.48) and (7.49). In particular, we wish
to explore the existence of solutions whereby the system executes synchronous mo-
tions, defined as motions in which every point performs the same motion in time. The
physical implication is that synchronous motions are characterized by the fact that
the ratio of the displacements corresponding to two different points of the string is
constant. Mathematically, synchronous motions imply that the solution of Eqs. (7.48)
and (7.49) is separable in the spatial variable and time, and hence it has the form

a [ aw(x,t)]- T(x)---
ax ax

and the boundary conditions

O<x<L

x = L

(7.48)

(7.49a)

(7 .49b)

w(x. t) = W(x)F(t) (7.50)

(7.51 )

(7.52a, b)

where W (x) depends on the spatial position alone and F(t) depends on time alone.
Introducing Eq. (7.50) into Eqs. (7.48) and (7.49), we can write

d [ dW(X)] d
2

F(t)
dx T(x) dx' F(t) = p(x)W(x) dt2' 0 < x < L

W(O)F(t) 0, [nx/W(X) + K W(X)] I F(t) = 0
dx x=L



Next, we divide Eq. (7.51) by p W F and obtain

1 d [ dW(X)] 1 d2F(t)T(x) = - ,
p(x)W(x) dx dx F(t) dt2 .

Observing that the left side of Eq. (7.53) depends on x alone and the right side on
time alone and that F can be simply omitted from boundary conditions (7.52), we
conclude that the solution is indeed separable in x and t. But, because the left side
of Eq. (7.53) depends only on x and the right side only on t and, moreover, x and t
are independent variables, the two sides of the equation must be equal to a constant,
the same constant. In addition, the two sides are real, so that the constant must be
real. For reasons that will become obvious shortly, we denote the constant by -'A,
where 'A is a positive constant, so that the right side of Eq. (7.53) yields
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(7.53)

(7.54)

The solution of Eq. (7.54) has the exponential form

F(t) = Aest (7.55)

Introducing Eq. (7.55) into Eq. (7.54) and dividing through by Aest, we obtain the
characteristic equation

which has the roots
±.J=I = ±i./i = ±iw

(7.56)

(7.57)

o < x < L (7.60)

It follows that the solution of Eq. (7.54) has the harmonic form

F(t) = Ajeiwt + A2e-iwt = Ajeiwt + Aje-iwt = C cos (wt - 4» (7.58)

where we let A2 be equal to the complex conjugate Aj of Aj in recognition of the
fact that F(t) must be real, and we note that the constants Aj and Aj are related to
the amplitude C and phase angle 4> by

Aj + Aj == C cos 4>, i (Aj - Aj) = C sin 4> (7.59)

At this point our earlier choice of sign for the constant used in Eq. (7.53) is made
clear by the fact that F(t), as given by Eq. (7.58), represents harmonic oscillation,
which is typical of the response of stable conservative systems. The choice will be
justified mathematically in Sec. 7.5.

The question remains as to the displacement pattern, as well as to the frequency
of oscillation. To answer these questions, we set the left side of Eq. (7.53) equal to
-'A and obtain the differential equation

_ ~[T(X) dW(X)] ='Ap(x)W(x),
dx dx

Moreover, we eliminate F from Eqs. (7.52) and obtain the boundary conditions

dW(x)
W(O) = 0; T(x) dx + KW(x) = 0, x = L (7.61a, b)
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(7.62)

Equations (7.60) and (7.61) represent the differential eigenvalue problem for the
string shown in Fig. 7.1 a. It can be described in words as the problem of determining
the constant 'A so that the differential equation (7.60) admits nontrivial solutions sat-
isfying boundary conditions (7.61). Second-order problems of this type are known
as Sturm-Liouville problems.

Next, we wish to derive the differential eigenvalue problem for the beam in
bending discussed in Sec. 7.2. Letting .l(x, t) = 0 in Eq. (7.25), assuming that the
solution has the form given by Eq. (7.50) and following the approach used earlier in
this section, we conclude once again that F(t) is harmonic, as indicated by Eq. (7.58),
and W (x) satisfies the differential equation

d
2

2
[E/(X)d

2
W;X)] _ ~ [p(X)dW(X)] = 'Am(x)W(x), 'A

dx dx dx dx

O<x<L

at x = 0, L

Moreover, from Eqs. (7.26) and (7.27), W(x) must satisfy either

d [ d2W(X)] dW(x)
- dx E/(x) dx2 + p(x) dx = 0 (7.63a)

or

and either

or

W(x) = 0

d2W(x)
E/(x) 2 = 0

dx

at x

at x

0, L

0, L

(7 .63b)

(7.64a)

dW(x) = 0
dx

The differential eigenvalue problem consists of the differential equation, Eq. (7.62),
to be satisfied over the domain 0 < x < L and two boundary conditions, one from
Eqs. (7.63) and one from Eqs. (7.64), to be satisfied at x = 0 and x = L.

The differential eigenvalue problem is of vital importance in the vibration of
distributed-parameter systems. Indeed, as in the case of discrete systems, its solution
not only provides a great deal of information concerning the system characteristics
but also can be used to derive the system response.

at x = 0, L (7.64b)

7.5 THE DIFFERENTIAL EIGENVALUE PROBLEM FOR SELF-ADJOINT SYSTEMS

In Sees. 7.3 and 7.4, we derived the differential eigenvalue problem for second-
order and fourth-order systems. A cursory examination of the eigenvalue problem
formulations permits us to conclude that the form differs from system to system,
depending on the order of the system and the nature of the boundaries. In spite of
the difference in appearance, various systems have many things in common. Hence,
instead of discussing the individual systems separately, it is convenient to formulate
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the differential eigenvalue problem so as to apply to large classes of systems. This
formulation can be best achieved by resorting to operator notation.

Let W be a function of one or two independent spatial variables x or x and y,
so that in essence we confine ourselves to one- or two-dimensional problems, and
consider the homogeneous differential expression

ow oW 02W 02W
Lw = alW + a2- + a3- + a4-2 + a5-- + ... (7.65)

ox oy ox oxoy
where the coefficients aI, a2, ... are known functions of the spatial variables x and
y. We assume that Lw involves derivatives of w through order 2p, where p is an
integer, so that the differential expression is said to be of order 2p. We can then
define the homogeneous differential operator associated with Eq. (7.65) in the form

o 0 02 02
L = al + a2- + a3- + a4-2 + a5-- + ... (7.66)

ox oy ox oxoy
and refer to L as being of order 2p. If for the functions WI and W2 the relation

(7.67)
holds, where Cl and C2 are constants, then the homogeneous differential operator L
is said to be linear.

Next, we consider a generic eigenvalue problem and express the differential
equation in the operator form

Lw = Amw, x, y in D (7.68)
where L is a linear homogeneous differential operator of order 2p, A a parameter,
m the mass density and D the domain of definition of Eq. (7.68). The operator L,
referred to as stiffness operator, is of the type (7.66). Associated with the differential
equation (7.68) there are p boundary conditions to be satisfied by the solution w at
every point of the boundary S of the domain D. The boundary conditions are also
expressed in operator form, as follows:

x,yinS, i = 1, 2, ... , p (7.69)
where Bj are linear homogeneous differential operators of maximum order 2p - 1.
They are referred to as boundary operators. In the one-dimensional case, the domain
D is a segment of the real line and the boundary S consists of the two points bounding
D. In the two-dimensional case, the domain D is a plane and the boundary S
consists of one or more closed curves bounding D. The eigenvalue problem is defined
as the problem of determining the values of the parameter A for which there are
nontrivial functions w satisfying the differential equation (7.68) and the boundary
conditions (7.69). Such parameters are called eigenvalues and the corresponding
functions are called eigenfunctions. The eigenvalue problem defined by Eqs. (7.68)
and (7.69) admits a denumerably, or countably infinite set of eigenvalues AI, A2, ...
and associated eigenfunctions WI, W2, .... The implication is that the eigenfunction
wrbelongs to the eigenvalue Ar (r = 1,2, ... ).

Orie of the most important problems in the vibration of distributed-parameter
systems involves the expansion of the response in terms of known functions, and in
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particular the expansion in terms of the system eigenfunctions. This expansion is
based on some remarkable properties of the eigenfunctions. Before proceeding with
the investigation of these properties, it will prove useful to introduce certain pertinent
definitions concerning functions in general. In the first place, we assume that the
functions considered are real and piecewise smooth, i.e., that they are piecewise
continuous and possess piecewise continuous first derivatives in a given domain D.
Then, for two such functions 1and g, we define the inner product of the two functions
1 and g over the domain D as

(f, g) = l 1g d D (7.70)

If the inner product vanishes, then the two functions 1and g are said to be orthogonal
over D. The square root of the inner product of a function 1with itself is known as
the norm of 1, defined as

( )

1/2

11111 = (f, f)1/2 = l 12 dD (7.71)

Orthogonal functions with unit norm are said to be orthonormal. The existence of
the norm simply implies that 11111 < 00. A function whose norm exists is said to
be square summable in D, which implies that 12is integrable in the Lebesgue sense
(Ref. 1, p. 108). Functions 1 such that II1 II < 00 are said to have finite energy, and
the space of such functions is denoted by J(l, where the superscript indicates the
order of the derivative required for finite energy, in this case zero.

A property of functions intimately related to orthogonality is linear indepen-
dence. To define the concept, we consider a set of n functions <PI, <P2' ... ,<Pn 0 Then,
if a homogeneous linear relation with constant coefficients of the type

11

I>i<Pi = 0
i=1

(7.72)

exists without all the coefficients Ci(i = 1,2, ... , n) being identically zero, the set
of functions <PI, <P2, ... ,<Pn is said to be linearly dependent. If Eqo (7.72) is satis-
fied only when all the coefficients Ci (i = 1,2, ... ,n) are identically zero, then the
set of functions is said to be linearly independent. To explore the connection be-
tween orthogonality and linear independence, we assume that the set of functions
<PI, <P2, ... , <Pn is orthogonal, multiply Eq. (7.72) by <Pj, integrate over the domain
D and obtain

j = 1,2, ... , n (7.73)

Because the norms lI<Pj II cannot bc zero, it follows from Eq. (7.73) that all the coef-
ficients Cj (j = 1, 2, .. 0 , n) must bc zero. But, this is precisely the condition for the
functions <PI, <P2' ... , <Pn to be lincarly independcnt, which proves that orthogonal
functions are linearly independent. The converse is not true, as independent func-
tions are not necessarily orthogonal. This is a mattcr of semantics, however, because
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independent functions can be rendered orthogonal. The procedure for rendering in-
dependent functions orthogonal is known as the Gram-Schmidt orthogonalization
process (Ref. 1). It is common practice to normalize the functions during the process,
so that the result is a set of orthonormal functions.

Next, we consider the problem of expanding any given function 1 in terms
of known functions. To this end, we let CP1,CP2,... be an orthonormal system and
express 1 as the linear combination

where the coefficients

1 (7.74)

r = 1,2, ... (7.75)

are known as components of 1 with respect to the orthonormal system CP1,CP2,....
This expansion is not unlike the expansion of a periodic function in terms of a Fourier
series, and in fact it represents a generalization of the Fourier series expansion.

In vibrations there is considerable interest in approximating the given function
1 by means of finite series of the type

(7.76)

where CPrare orthonormal functions, dr are constant coefficients and n is fixed. The
objective is to produce the "best" approximation of I, in the sense that the mean
square error

(7.77)

is as small as possible. To this end, we expand the right side of Eg. (7.77), consider
Egs. (7.71) and (7.75), as well as the orthonormality of CPr(r = 1,2, ... , n), and
write

n n

11/112
- 2 .Ldrcr + .Ld;

r=l r=l

n n

11/112 + .L (dr - cr)2 - .LC;
r=1 r=l

(7.78)

It is clear from Eg. (7.78) that M takes the smallest value when dr
1,2, ... ,n). An approximation of the type

Cr (r =

n 1,2, ... (7.79)
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where CPt, CP2, ... are orthonormal functions, is known as a least squares approxima-
tion, or an approximation in the mean. If, by choosing n sufficiently large, the mean
square error satisfies the inequality

(7.80)

where E is any arbitrarily small positive number, the set of functions CPt, CP2, ... is
said to be complete. Moreover, if

lim \I f - fn \I = 0
n --> 00

(7.81)

then the sequence ft, h, ... con verges in the mean to f·
The completeness of a set of functions does not require that the functions be

orthonormal, so that a system of functions is complete if every piecewise continuous
function can be approximated in the mean to any desired degree of accuracy by
means of a linear combination of the functions of the system. It should be pointed
out that, whereas completeness is necessary for convergence, it gives no indication
concerning the rate of convergence. The rate of convergence is often as important
as convergence itself, as a given function can be approximated by more than one
complete set. Clearly, our interest lies in the set of functions capable of providing an
accurate approximation with a number 11 of terms as small as possible.

Conservative distributed structures represent a very large and important class
of systems, namely, the class of self-adjoint systems. The eigenvalues and eigen-
functions of all systems belonging to this class possess very interesting and useful
properties. To demonstrate these properties, we consider two 2p times differen-
tiable trial functions u and v satisfying all the boundary conditions of the problem,
Eq. (7.69), and introduce the inner product

(u, Lv) = l uLv dD (7.82)

Then, we say that the differential operator L is self-adjoint if

(u, Lv) = (v, Lu) (7.83)

Self-adjointness implies certain mathematical symmetry and can be ascertained
through integrations by parts with due consideration to the boundary conditions.
This mathematical symmetry can be used to simplify the test for self-adjointness,
Eq. (7.83). Indeed, if the left (right) side of Eq. (7.83) can be reduced to a symmetric
form in u and v and their derivatives through p integrations by parts, then the
operator L is self-adjoint, and the test can be regarded as successfully completed. If
the stiffness operator L is self-adjoint, then the system is said to be self-adjoint.

The concept of self-adjointness can perhaps be best explained by invoking the
analogy between distributed and discrete systems. Indeed, the stiffness operator L
being self-adjoint corresponds to the stiffness matrix K being symmetric. In the
particular case in which the eigenvalue problem is defined by Eqs. (7.68) and (7.69),
the mass operator In is a mere function, which is self-adjoint by definition. It corre-
sponds to the mass matrix M being symmetric. Hence, the system self-adjointness,

j
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(7.84)

(7.85)

(7.86)

which is implied by the self-adjointness of L, corresponds to the symmetry of the
stiffness matrix K and mass matrix M. Because the mass matrix is positive definite,
it further corresponds to the symmetry of the system matrix A. In this regard, we
recall that in Sec. 4.8 we referred to an algebraic eigenvalue problem as self-adjoint
if it is defined by a single real symmetric matrix A.

We denote the symmetric form in u and v resulting from integrations by parts
of (u, Lv) by [u, v] and refer to it as an energy inner product. For one-dimensional
domains, the energy inner product has the general expression

1L p dku dkv p-l deu dev IL
[u, v] = Lak-k-kdx + Lbe-e-e = [v,u]

o k=O dx dx e=o dx dx 0

where ak (k = 0,1, ... , p) and be (f = 0,1, ... , p - 1) are in general functions
of x. It is clear from Eq. (7.84) that the mathematical symmetry consists ofthe fact
that the functions u and v can trade positions without altering the result. Energy
inner products for two-dimensional domains are discussed later in this chapter. The
reason for the term "energy inner product" will become evident shortly.

If for any 2p times differentiable function usatisfying all the boundary condi-
tions of the problem, Eqs. (7.69), the inequality

LULU dD ~ 0

is true and the equality sign holds if and only if u == 0, then the operator L is said to
. be positive definite. If the expression can be zero without u being identically zero,
then the operator L is only positive semidefinite. If the operator L ispositive definite
(semidefinite), then the system is positive definite (semidefinite).

For v = u, Eq. (7.84) reduces to

1L P (dk)2 . p-l (de )21L
[u,u] = Lak ~ dX+Lbe ~

o k=O dx e=o dx 0

and we note that [u, u] is a measure of the potential energy. Indeed, if the system
executes harmonic motion with frequency w, then [u, u] is equal to twice the maxi-
mum potential energy, which explains why we referred earlier to [u, v] as an energy
inner product. Equation (7.86) can be used to define the energy norm

lIuliE = [u, u]1/2

Next, we introduce the sequence of approximations

(7.87)

n = 1,2, ... (7.88)

where <Pl, <P2, .•. are given functIons from an independent set. Then, if by choosing
n sufficiently large,

lIu - Un liE < E (7.89)
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in which E is an arbitrarily small positive number, the set of functions ¢J, ¢2, ... is
said to be complete in energy. Moreover, if

lim lIu - unllE = 0
n->OO

(7.90)

the sequence of approximations UJ, U2, ... is said to converge in energy to u.
In our study of vibrations, it is convenient to define two classes of functions.

One class consists of functions that are 2p times differentiahle and satisfy all the
houndary conditions of the problem. This class was introduced earlier in conjunc-
tion with the self-adjointness definition. We refer to it as the class of comparison
functions and denote it by .xz:. It should be noted that the eigenfunctions are by def-
inition comparison functions, but they represent only a very small subset of the class
of comparison functions, as the comparison functions need not satisfy the differential
equation. Examining Eq. (7.84), we conclude that the energy inner product is defined
for functions outside the space Xl. Indeed, Eq. (7.84) is defined for functions that
are only p times differentiable. Moreover, in integrating the left side of Eq. (7.83)
by parts to obtain the energy inner product, Eq. (7.84), due consideration was given
to the natural boundary conditions, in the sense that the higher-order derivatives in
the natural boundary conditions were eliminated in favor of lower-order derivatives,
such as those arising in geometric boundary conditions. As a result, the energy in-
ner product is defined for functions that are only p times differentiable and satisfy
only the geometric boundary conditions. We refer to p times differentiable functions
satisfying only the geometric boundary conditions of the problem as admissihle func-
tions, and we denote this class of functions by .x~.The comparison functions are
by definition admissible functions, and in fact they constitute a small subset of the
much larger class of admissible functions.

At this point, we turn our attention to the properties of the eigenvalues and
eigenfunctions. To this end, we assume that the problem is self-adjoint and consider
two distinct solutions AI', WI' and As, Ws of the eigenvalue problem, Eqs. (7.68) and
(7.69). Inserting these solutions into Eq. (7.68), we can write

LWr = ArlnWr, (7.91a, b)

Multiplying Eq. (7.91a) by Ws and Eq. (7.91 b) by WI', subtracting the second from
the first. integrating over domain D and considering Eqs. (7.82) and (7.83), we obtain

1 (W,Lwr - wrLws) dD = (AI' - As) 1InWrWs dD = 0
D D

(7.92)

But, by assumption, the eigenvalues AI' and As are distinct. Hence, Eq. (7.92) can be
satisfied if and only if

l mwrws dD = 0, AI' =I As, r, s = 1,2, ... (7.93)

Equation (7.93) represents the orthogonality relation for the eigenfunctions of dis-
tributed-parameter systems described by the eigenvalue problem given by Eqs. (7.68)



and (7.69). Multiplying Eg. (7.91b) by wr, integrating over D and using Eg. (7.93), it
is easy to see that the eigenfunctions satisfy a second orthogonality relation, namely,

L wrLws dD = 0,
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(7.94)

It should be stressed here that the orthogonality of the eigenfunctions is a direct
consequence of the system being self-adjoint.

In the case of repeated eigenvalues, there are as many eigenfunctions belong-
ing to the repeated eigenvalue as the multiplicity of the repeated eigenvalue, and
these eigenfunctions are generally not orthogonal to one another, although they are
independent and orthogonal to the remaining eigenfunctions of the system. But,
as pointed out earlier in this section, independent functions can be orthogonalized
by grouping them in proper linear combinations. Hence, all the eigenfunctions of
a self-adjoint system can be regarded as orthogonal, regardless of whether there are
repeated eigenvalues or not.

Because the eigenvalue problem, Egs. (7.68) and (7.69), is homogeneous, only
the shape of the eigenfunctions is unique, and the amplitude is arbitrary. This ar-
bitrariness can be removed through normalization. A mathematically convenient
normalization scheme is given by

Lmw;dD = 1, r 1,2, ... (7.95a)

r = 1,2, ...

which implies that

1wrLwr dD = Ar,

Then, Egs. (7.93)-(7.95) can be combined into the orthonormality relations

(7.95b)

r, s = 1,2, ...

(7.96a, b)
where Drs is the Kronecker delta.

In Sec. 7.4 and in this section, we assumed on physical grounds that the eigen-
values and eigenfunctions are real. We propose to prove here mathematically that
this is indeed so, provided the system is self-adjoint. To this end, we consider a com-
plex solution A, w of the eigenvalue problem, Egs. (7.68) and (7.69). Because the
eigenvalue problem is real, if the pair A, w is a complex solution, then the complex
conjugate pair A, w must also be a solution, so that Eg. (7.68) yields

Lw = Amw, L w = Amw (7.97a, b)

Multiplying Eg. (7;97a) by wand Eg. (7.97b) by w, subtracting the second from the
first, integrating over D and invoking the self-adjointness of L, we obtain

L (wLw - wLw) dD= (A - I) L mwwdD = 0 (7.98)
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Introducing the notation

A
A

a ± ifJ,
W

W
= Re W ± ilm W (7.99)

we conclude that the integral on the right side of Eq. (7.98) is real and positive, so
that the only alternative is

A - I = a + ifJ - (a - ifJ) = 2ifJ = 0 (7.100)

It follows that the eigenvalues of a self-adjoint system are real. As a corollary, the
eigenfunctions of a self-adjoint system are real. Moreover, contrasting Eq. (7.95b)
with inequality (7.85), we conclude that, if the operator L is positive definite, all
the eigenl'Glues are positive. On the other hand, if the operator L is only positive
semidefinite, all the eigenvalues are nonnegative, i.e., some are zero and the rest are
positive.

The eigenfunctions Wr (r = 1, 2, ... ) of a self-adjoint system constitute a
complete orthonormal set of infinite dimension (see, for example, Ref. 1). The impli-
cation is that the eigenfunctions can be used as a basis for aftmction space, sometimes
referred to as a Hilbert space. This fact can be stated formally as the following ex-
pansion theorem for self-adjoint systems: Every function W with continuolls L wand
satisfying the boundary conditions of the system can be expanded in an absolutely
and uniformly convergenr series in the eigenftmctiollS in the form

00

W = LCrWr
,.=1

where the coefficients Cr are such that

(7.101)

c,. = 1mwrwdD, ArC,. = 1w,.LwdD, r = 1,2, ... (7.102a, b)

The expansion theorem for self-adjoint distributed systems, Eqs. (7.101) and (7.102),
represents the counterpart of the expansion theorem for conservative discrete sys-
tems, Eqs. (4.129) and (4.130), defined by symmetric matrices. The expansion theo-
rem is made possible by the orthogonality of the eigenfunctions. Of course, there are
many infinite sets of orthogonal functions, such as trigonometric functions, Bessel
functions, etc., but none of these can be used as a basis for an expansion theorem for
self-adjoint distributed systems, unless they happen to represent the system eigen-
functions. What is so remarkable about the eigenfunctions is that they are orthogonal
not only with respect to the mass density m but also with respect to the stiffness op-
erator L, as indicated by Eqs. (7.93) and (7.94).

The expansion theorem plays a pivotal role in the vibration of self-adjoint
systems, as it permits the solution of the boundary-value problem by transforming it
into an infinite set of modal equations, which are second-order ordinary differential
equations for the time-dependent modal coordinates. The solution process is known
as modal analysis and is entirely analogous to the one for discrete systems. In fact,
the second-order differential equations look exactly like the modal equations for
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discrete systems, and can be solved by the techniques discussed in Chapter 3. The
only difference is that in distributed systems the set is infinite and in discrete systems
the set is finite.

The class of self-adjoint systems is extremely large and it includes essentially all
the vibrating conservative systems discussed in this text. If it can be demonstrated
that an individual system belongs to this class, then it can be assumed automatically
that the system possesses the remarkable properties of self-adjoint systems discussed
in this section. In effect, the various conservative systems considered in this text can
be regarded as special cases. It should be pointed out that, provided a system is self-
adjoint, the general properties hold, regardless of whether a closed-form solution to
the differential eigenvalue problem exists or not. This fact can be of great value in
developing approximate solutions.

Example 7.3

Consider the eigenvalue problem for the string in transverse vibration shown in Fig. 7.1a,
demonstrate that the problem fits one of the generic formulations of this section, check
whether the problem is self-adjoint and positive definite and draw conclusions.

From Sec. 7.4, Eqs. (7.60) and (7.61), the eigenvalue problem is given by the
differential equation

d [ dW(X)]- - T(x)-- = J..p(x)W(x),
dx dx

and the boundary conditions

W = 0, x = 0
dW(x)

T(x)----;;;- + KW(x) = 0,

O<x<L

x = L

(a)

(b)

(c)

The eigenvalue problem fits the generic formulation given by Eqs. (7.68) and (7.69), so
that, comparing Eq. (a) with Eq. (7.68), we conclude that

L = - ~ [T(X)~] , m = p (d)
dx dx

Because L is of order 2, p = 1. Moreover, comparing Eqs. (b) and (c) with Eqs. (7.69)
we can write

x = 0 (e)

dv IL lL
du dv= -uT-'- + -T-dx

dx 0 0 dx dx
(g)

Upon considering boundary conditions (b) and (c), Eq. (g) reduces to the energy inner
product

d
B1 = T (x) dx + K,

To check for self-adjointness, we write

lL lL d ( dV)(u, Lv) = uLvdx = - u- T- dx
o 0 dx dx

x = L (f)

lL du dv
[u, v] = Ku(L)v(L) + T--dx = [v, u]

o dx dx
(h)
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(i)

which is clearly symmetric, so that the operator L, and hence the system, is self-adjoint.
We conclude immediately that the eigenvalues are real and the eigenfunctions are or-
thogonal with re~pect to the mass density m and the stiffness operator L.

Finally, we let v = u in Eq. (h) and obtain the energy norm squared

(" (dU)2
[u, u] = lIull~ = Ku2(L) + io T dx dx> 0

which, in view of Eq. (7.8), is recognized as twice the maximum potential energy. Clearly,
the energy norm cannot be zero, except in the trivial case, so that the operator L, and
hence the system, is positive definite. It follows that all the eigenvalues are positive.

Example 7.4

Consider the rotating cantilever beam in bending vibration shown in Fig. 7.4a and
demonstrate that the eigenvalue problem fits one of the generic formulations of this
section. Then, check whether the system is self-adjoint and positive definite and draw
conclusions.

The boundary-value problem for a rotating cantilever beam was derived in Ex-
ample 7.2. Letting f = 0 and using the procedure presented in Sec. 7.4, Eqs. (d)-(f) of
Example 7.2 yield the eigenvalue problem defined by the differential equation

~ (Eld2W
) _ ~ (pdW) = AmW, 0 < x < L (a)

dx2 dx2 dx dx

and the boundary conditions

dW
W = 0, = 0,

dx
x = 0 (b)

E/2W
2 = 0, ~ (Eld2W

) = 0, x L
dx dx dx2

Comparing Eq. (a) with Eq. (7.68), we conclude that

L = ::2 (EI ::2) - :x (p :x)
Moreover, comparing Eqs. (b) and (c) with Eqs. (7.69), we can write

d
dx'

Next, we consider

x = 0

82 = ~ (E/~)
dx dx2'

x L

(c)

(d)

(e)

(u, Lv) = [oL uLvdx = [L u [L (Eld2V
) _ ~ (pdV)] dx

o dx2 dx2 dx dx

d ( d2V) II. du d2v IL if. d
2
u d

2
v== u- EI- - -EI- + -EI-dx

dx dx2 0 dx dx2 0 0 dx2 dx2

dv II. iL du dv- uP- + -P-dx
dx 0 0 dx dx

(f)
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(g)

and use boundary conditions (b) and (c) to obtain the symmetric energy inner product

lL( d2u d2v du dV)[u,V] = EI-2-2+P--
d

dx=[v,u]
o dx dx dx x

It follows that the operator L, and hence the system, is self-adjoint, so that the eigenvalues
are real and the eigenfunctions are orthogonal with respect to the mass density m and
the stiffness operator L. Then, letting v = u in Eq. (g), we obtain the energy norm
squar.ed

r [(d2U)2 (dU)2][u, u] = lIull~= io EI dx2 + P dx dx ~ 0 (h)

The norm reduces to zero for u = constant. In view of the first of boundary conditions
(b), however, this constant must be zero. Because u = constant ::j:. 0 is not a solution of
the eigenvalue problem, the energy norm is positive definite, so that the operator L, and
hence the system, is positive definite, which implies that all the eigenvalues are positive.

7.6 SOLUTION OF THE EIGENVALUE PROBLEM FOR STRINGS, RODS
AND SHAFTS

As indicated at the"end of Sec. 7.1, the behavior of strings in transverse vibration,
rods in axial vibration and shafts in torsional vibration is described by mathemati-
cally equivalent second-order boundary-value problems, the difference between the
various types lying in the nature of the parameters. This implies that the solution
obtained for one of the three types of systems applies equally well for the remaining
two. To emphasize this point, we shall solve the eigenvalue problem for all three
types interchangeably using the formulation derived in Sec. 7.4 for strings.

i. Strings in transverse vibration

A problem of considerable interest in vibrations is that of a string fixed at both
ends. From Sec. 7.4, the eigenvalue problem for a vibrating string is defined by the
differential equation

__ d [T(X)_d_W_(X_)] = A.p(x)W(x),
dx dx

o < x < L (7.103)

In the case at hand, the boundary conditions are

W(O) = 0, W(L) = 0 (7.104a, b)

Using the method of Sec. 7.S, it is not difficult to verify that the system is self-
adjoint and positive definite, so that the eigenvalues are real and positive and the
eigenfunctions are real and orthogonal. Although this is one of the simplest examples
of a distributed-parameter systems, no closed-form solution exists in the general case
in which the tension T (x) and the mass density p (x) are arbitrary functions of the
spatial position x. A closed-form solution does exist in the frequently encountered
case in which the tension is constant, T (x) = T = constant, and the mass density is
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uniform, p(x) = p = constant. In this case, the differential equation, Eq. (7.103),
can be rewritten as

d2W(x)--- + fJ2W(x) = 0,
dx2-

The boundary conditions, Eqs. (7.104), do not depend on the system parameters, so
that they remain the same. The solution of Eq. (7.105) is simply

O<x<L

W(x) = C1 sin fJx + C2 cos fJx

(7.105)

(7.106)

where C1 and C2 are constants. Solution (7.106) holds true for all strings with
constant tension and uniform mass distribution, and it reduces to the eigenfunctions
of a particular system only after the boundary conditions have been enforced.

Inserting solution (7.106) into boundary condition (7.104a), we obtain

W (0) = C2 = 0 (7.107)

Then, introducing solution (7.106) with C2 = 0 into boundary condition (7.104b),
we have

W(L) = C1 sinfJL = 0 (7.108)

Equation (7.108) can be satisfied in two ways. The first alternative is to set C1 = 0,
which corresponds to the trivial solution, so that it must be ruled out. Hence, we
must opt for the second alternative, namely,

sin fJ L = 0 (7.109)

Equation (7.109) is known as the characteristic equation, or frequency equation, and
has the denumerably infinite set of solutions

nr
fJr = -,

L
r = 1,2, ... (7.110)

which represent the system eigenvalues. It should be pointed out that the term
"eigenvalues" is used somewhat loosely here, as strictly speaking the eigenvalues of
the system are Ar, which are related to fJr by

Ar=fJ;T/p, r=1,2, ... (7.111)

Moreover, recalling that A = u/, Eqs. (7.110) and (7.111) can be combined to obtain
the natural frequencies

r = 1,2, ... (7.112)

The frequency Wl is called the fundamental frequency and the higher frequencies
are known as overtones. Overtones that are integer multiples of the fundamental
frequency are called higher harmonics, in which case the fundamental frequency
represents the fundamental harmonic. There are only a few vibrating systems with
harmonic overtones, and most of them are used in musical instrurpents because they
tend to produce pleasant sounds. In this regard, it should be mentioned that in a
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symphonic orchestra the group of instruments including the violin, viola, cello, etc.,
is commonly referred to as the "string section".

We conclude from the above that the two boundary conditions can be used to
determine one of the constants and to derive the characteristic equation. The second
constant of integration, C1 in the case at hand, cannot be determined uniquely, so
that the amplitude of the solution is arbitrary. This is consistent with the fact that the
eigenvalue problem, Eqs. (7.103) and (7.104), is a homogeneous problem. In view
of Eq. (7.110), the eigenfunction, or natural mode, belonging to f3r can be written in
the form

nrx
Wr(x) = Ar sin -, r = 1,2, ... (7.113)

L
It is easy to verify that the eigenfunctions are orthogonal both with respect to the
mass density p and with respect to the operator L, which in the case of constant
tension reduces to

d2

L = -T- (7.114)
dx2

The amplitudes Ar can be rendered unique through normalization. A convenient
normalization process is given by

lL

pW;(x)dx = 1, r = 1,2, ... (7.115)

which yields the orthonormal set of eigenfunctions, or normal modes

W,(x) = ;p~s;nr~x, r = 1,2, ... (7.116)

The first three modes and natural frequencies are displayed in Fig. 7.5. We observe
that there are points at which the displacement is zero. These points are referred
to as nodes and they form a certain pattern. Indeed, excluding the end points, the
mode Wr (x) has r - 1 equidistant nodes occuring at the points Xi = i L / r (i =
1,2, ... ,r -1).

The term "denumerably infinite set" introduced in Sec. 7.5 implies that the
eigenvalues Ar (r = 1,2, ... ) assume an infinite set of discrete values. Under these
circumstances, the string is said to possess a discrete frequency spectrum. Whereas the
shape of the modes is independent of the system parameters, the natural frequencies
are proportional to the square root of the tension T, inversely proportional to the
square root of the mass density p and inversely proportional to the length L, as can
be observed from Eq. (7.112). In many string instruments, such as the violin, there
are four strings, all differing in density. For all practical purposes, the density of
each of the strings can be regarded as constant. Hence, the frequency spectrum for
each string can be altered by changing the tension an d the length. The tension T is
generally held constant. In fact, the process of tuning a violin consists of adjusting
the tension so as to ensure a certain fundamental frequency. During performance,
the violinist alters the length of the string so as to produce the notes demanded by
the score. It should be pointed out that pleasing sounds are produced by enriching
the fundamental harmonic with certain higher harmonics.

,- -_.~-- "--_._, .. ~ - ----~'-----~ .._-~_.~-~-_ ..__ .- -- ~.
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Figure 7.5 First three modes of vibration of a uniform string fixed at both ends

As the length of a string increases, the natural frequencies draw closer and
closer together. In fact, as L approaches infinity, we obtain a continuous frequency
spectrum. At this point it is no longer meaningful to speak of natural frequencies
and natural modes, and a different point of view must be adopted. Indeed, for
infinitely long strings the motion can be regarded as consisting of traveling waves.
The wave description of motion applies also to strings of finite length, except that
in this case the waves arc reflected from the boundaries, and the combination of
incident and reflected waves gives rise to standing waves. It can be shown that the
natural modes description of vibration is mathematically equivalent to the standing
waves description (see Ref. 8, Sec. 8-2).

ii. Rods in axial vibration

Invoking the analogy discussed at the end of Sec. 7.1, the eigenvalue problem for a
rod in axial vibration can be described by the differential equation

_ ~ [EA(X/U(X)] = Am(x)U(x),
dx dx

where E A (x) is the axial stiffness, in which E is Young's modulus and A (x) is the
cross-sectional area, and m (x) is the mass density. The solution U (x) is subject to
given boundary conditions. We consider a rod fixed at x = 0 and free at x = L, as
shown in Fig. 7.6, so that the boundary conditions are

U(O) = 0,

A = ul,

EA(x) dU(x) I = 0
dx x=L

o < x < L (7.117)

(7.118a, b)
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Figure 7.6 Rod in axial vibration fixed at x = 0 and free at x = L, and the first
three modes of vibration

There is no difficulty in demonstrating that the problem is self-adjoint and positive
definite.

For a uniform rod, EA(x) = EA = constant, m(x) = m = constant, the
eigenvalue problem reduces to the differential equation

~U(x) ~m+ R
2
U(X) = 0, R2 0 < X < L (7.119)dx2 ~ ~ = EA'

and the boundary conditions

dU(x) I = 0
dx x=L

The differential equation is essentially the same as that for a uniform string, Eq.
(7.105), so that the solution is

U(x) = C1sinf3x + C2cosf3x (7.121)

U(O) = 0, (7.120a, b)

Using boundary condition (7.120a), we conclude that C2 = O. Moreover, use of
boundary condition (7.120b) yields the characteristic equation

cosf3L = 0 (7.122)
Its solutions consist of the eigenvalues

(2r - 1) JT
f3r = 2L r 1,2, ... (7.123)
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r = 1,2, ...

so that the natural frequencies are

w - J EA _ (2r - 1) 7r J EA
r - f3r m - 2 mV'

The eigenfunctions belonging to f3r are

. (2r - 1) 7r X
Ur(x) = Ar sm -----,

2L

r 1,2, ... (7.124)

(7.125)

and they are orthogonal. The coefficients Ar are arbitrary, and we propose to nor-
malize them so as to satisfy

lL
mU;(x)dx = 1, r = 1,2, ... (7.126)

so that the eigenfunctions reduce to the orthonormal set_g. (2r - 1) 7r X
U,(x) - -sm-----,

mL 2L
The first three modes are shown in Fig. 7.6. Note that, as customary, displacements
have been plotted vertically, when they are in fact in the axial direction. Excluding
the point x = 0, the r th mode, Ur(x), has nodes at the poillts Xi = 2i L / (2r -1) (i =
1,2, ... ,r-·1).

It will prove instructive to investigate a different case, namely, that in which
both ends of the rod are free (Fig. 7.7). Of course, the differential equation remains
the same, but the new boundary conditions are

EA(X)d~;X) = 0,

Once again it can be verified that the problem is self-adjoint. To check for posi-
tive definiteness, we carry out an integration by parts with due consideration to the
boundary conditions and obtain

r=1,2, ...

x = 0, L

(7.127)

(7.128)

(7.129)

11. lL d ( dUr)UrLUr dx = - ur- EA-.- dx
o 0 dx dx

-Ur (EA dUr) IL + [L dUr (EA dUr) dx
dx . 0 10 dx dx

[L EA (dUr)2 dx ::: 010 dx

The last integral in (7.129) is equal to zero if Ur is constant. However, unlike our
earlier experience in which end restraints required that the constant be zero, in the
case at hand a nonzero constant solution is possible. It follows that for a free-free
rod in axial vibration the operator L is only positive semidefinite, so that the system
is only positive semidefinite.
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Figure 7.7 Rod in axial vibration free at both ends, the rigid-body mode and the
first two elastic modes

In view of the fact that the system is positive semidefinite, zero eigenvalues, and
hence zero natural frequencies are possible. The eigenfunctions belonging to zero
eigenvalues represent rigid-body modes. To examine the question of rigid-body
modes in more detail, we let A = AO= 0, U = Uo in Eq. (7.117) and write

~ [EA(X)dUO(X)] = 0,
dx dx O<x<L (7.130)

Integrating with respect to x once and considering boundary conditions (7.128), we
have

O<x<L (7.131)

'Ignoring EA(x) and integrating once more, we obtain

1
Uo(x) = Ao = --

.vmL (7.132)

'----

which represents the rigid-body mode with the zero natural frequency, wo = 0, and
note that the mode has been normalized so that foL m UJdx = 1. Clearly, in the case
under consideration there is only one rigid-body mode. Physically, the rigid-body
mode represents displacement of the body as a whole, without elastic deformations.
Rigid-body modes are typical of unrestrained systems, for which there are no forces
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or moments exerted by the supports. In the case at hand, we are concerned with
forces in the longitudinal direction alone, and not with moments.

Next, we assume that the external excitations are zero and consider the vibra-
tion of the rod in the rth mode. Using Newton's second law, the equation of motion
in the axial direction is

F(t) = (L m(x) a2
ur(x, t) dx

10 dt2

- [lL
m(x)Ur(x) dX] crw; COS (wrt - <Pr) = 0,

r = 1,2, ... (7.133)

which can be interpreted as the orthogonality of the rigid-body mode to the elastic
modes and rewritten in the form

Recalling that the system is self-adjoint and normaliz.ing the elastic modes, we can
extend the orthonormality relations so as to include the rigid-body mode, or

Of.1 m(x)Ur(x)Us(X) dx = 8rs,

iL
Ur(x)LUs(x) dx = Ar 8rs,

r = 1,2, ...

r, S = 0, 1, 2, ...

r, S = 0, 1, 2, ...

(7.134)

(7.135a)

(7.135b)

At this point, we return to the solution of the eigenvalue problem, Eqs. (7.117)
and (7.128). For a uniform rod, the differential equation is given once again by
Eq. (7.119) and its solution by Eq. (7.121). Then, we conclude that, in contrast with
the fixed-free case, in the free-free case the first of boundary conditions (7.128) yields
C1 = 0, whereas the second gives the characteristic equation

sinf3L = °
which leads to the eigenvalues

(7.136)

nf
f3r = L' r = 0, 1, 2, ... (7.137)

and we note that f30 = ° is also an eigenvalue, corroborating our discussion of the
rigid-body mode. Upon normalization, the eigenfunctions of afree-free rod are

1
Uo(x) = Ao = c:T

mL

nfx
Ur(x) = Ar cos--

L ff nf x
- cos --
mL L'

r 1,2, ...

(7.138)
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The first three modes are plotted in Fig. 7.7. We observe that the modes have nodes
atthepointsxi'= (2i -1)Lj2r (i = 1,2, ... ,r).

iii. Shafts in torsional vibration

Using once again the analogy discussed at the end of Sec. 7.1, we express the eigen-
value problem for a shaft in torsional vibration by means of the differential equation

-~ [GJ(X) d8(X)] = AI(x)8(x),
dx dx

where G J (x) is the torsional stiffness, in which G is the shear modulus and J (x)
is the area polar moment of inertia, and I (x) is the mass polar moment of inertia
density. The solution 8 (x) must satisfy boundary conditions yet to be specified. We
consider a shaft clamped at x = 0 and supported by a torsional spring of stiffness
KT at x = L (Fig. 7.8). A system analogous in both the differential equation and
the boundary conditions was considered in Example 7.3 in the form of a string in
transverse vibration. Hence, using the analogy with the string of Example 7.3, the
boundary conditions are

A = ui, o < x < L (7.139)

d8(x)
8(0) = 0; GJ(x)-- + KT8(x) = 0,

dx x=L (7.140a, b)

The system was shown in Example 7.3 to be self-adjoint and positive definite, so that
the eigenvalues are real and positive and the eigenfunctions are real and orthogonal.

Under the assumption that the shaft is uniform, GJ(x) = GJ = constant,
l(x) = I = constant, the solution once again has the form given by Eq. (7.121),
except that 8(x) replaces U(x). Moreover, use of boundary condition (7.140a)
results once again in C2 = 0, so that

8(x) = C1 sin~x

On the other hand, boundary condition (7.140b) yields

GJ~Cl cos ~L + KTC1 sin ~L = 0

(7.141)

(7.142)

(7.143)

The solution C1 = 0 must be ruled out as representing the trivial solution. Hence,
dividing through by C1 and rearranging, we obtain the characteristic equation

GJ
tan~L= --.-~L

KTL
which is a transcendental equation in ~L; its solutions consist of a denumerably
infinite set of eigenvalues ~rL(r = 1,2, ... ). The natural frequencies are related to
the eigenvalues by . ,

r = 1,2, ...
(Gi

Wr = ~rLv W'
Belonging to the eigenvalues ~rL are the eigenfunctions

(7.144)

r = 1,2, ... (7.145)

"l-.. " ~"-~~~------- - _. ----.. ---------
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Figure 7.8 Shaft in torsional vibration clamped at x = 0 and supported by a
spring at x = ,".and the first three modes of vibration

where A,. are arbitrary amplitudes. The cigenfunctions are orthogonal and can be
normalized so as to satisfy J:" le~ dx = 1, in which case the coefficients A,. can be
shown to have the values

A,. = 2
{3,.

I (2{3,.L - sin 2{3,.L)·
r = 1.2 .... (7.146)

The first three eigenfunctions for a ratio G J / K T L = 1 arc plotted in Fig. 7.8.
The solution of the characteristic equation, Eq. (7.143) must be obtained nu-

merically for a given ratio G J / K T L of parameters. If the eigenvalues need not
be very accurate, a solution can also be obtained graphically, as shown in Fig. 7.9.
We observe from the figure that, as r ~ 00, the eigenvalues {3,.L approach odd
multiples of rr /2 and the amplitudes of the eigenfunctions approach .J2/ I L, both
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Figure 7.9 Graphical solution of the characteristic equation, Eq. (7.143).

eigenvalues and eigenfunctions being typical of a clamped-free system. Hence, the
effect of the end spring K T tends to diminish as the mode number increases ..

In the fixed-fixed string, fixed-free rod and free-free rod discussed earlier in
this section, the orthogonality of the modes was guaranteed by the system self-
adjointness, and the same can be said about the fixed-spring supported shaft at
hand. But, whereas in the first three cases orthogonality can be verified by inspec-
tion, this is not true in the present case. Verification of the orthogonality of the
eigenfunctions given by Eq. (7.145) can be carried out by showing that the integral
fOL sin fJrx sin fJsx dx is zero for r =I- s, which requires the use of the characteristic
equation, Eq. (7.143). Of course, the fact that the system is self-adjoint makes this
verification unnecessary.

7.7 SOLUTION OF THE EIGENVALUE PROBLEM FOR BEAMS IN BENDING

The differential eigenvalue problem for beams in bending was derived in Sec. 7.4. In
this section, we wish to solve the problem for a number of cases lending themselves
to closed-form solution.

We consider first the simplest case, namely, that of a uniform beam hinged
at both ends and with no axial force. Under these circumstances, the differential
equation, Eq. (7.62), can be rewritten in the form

d
4
W(x) _ R4W(X) = 0 R4 = u}m
dx4 ~ , ~ £1 '

and the boundary conditions, Eqs. (7.63b) and (7.64a), reduce to

W(O) = 0, W(L) = 0, d
2

W;x) I = 0, d
2
W;x) I = 0

dx x=O dx x=L

(7.148a-d)

O<x<L

The solution of Eq. (7.147) is

W(x}.= C1sin fJx + C2 cos fJx + C3 sinh fJx + C4 cosh fJx

(7.147)

(7.149)
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and we note that solution (7.149) is valid for all uniform beams. Differences in the
solution begin to appear only when the boundary conditions are enforced. Using
boundary conditions (7.148a) and (7.148c), we obtain

which yield

W (0) = C2 + C4 = 0

d
2
W(x) I 2- -2 - = -f3 (C2 - C4) = 0
dx x=o

(7.150a)

(7.150b)

(7.151)

On the other hand, using boundary conditions (7.148b) and (7.148d), we have

W(L) = Cl sin f3L + C3 sinh f3L = 0

d
2
W(x)I

--2 - = _f32 (Cl sin f3L - C3sinh f3L) = 0
dx x=L

Equations (7.152) have nontrivial solutions provided

C3 = 0

and
sin f3 L = 0

(7.152a)

(7.152b)

(7.153)

(7.154)

where the latter is recognized as the characteristic equation. Its solutions are the
eigenvalues

f3rL = nr, r = 1,2, ... (7.155)

r = 1,2, ...

Belonging to these eigenvalues are the eigenfunctions

f£ r:rrx
Wr(x) = -sin--,

mL L
(7.156)

which were normalized so as to satisfy JoL m W; dx = 1. We observe that the
eigenvalues and eigenfunctions are the same as for a uniform fixed-fixed string, so that
the first three modes have the same shape as in Fig. 7.5. However, from Eq. (7.147),
the natural frequencies are 2m!Wr = (r:rr) --4 '

mL
r = 1,2, ... (7.157)

which are different from the natural frequencies of the fixed-fixed string.
A somewhat more involved case is the uniform cantilever beam, namely, a beam

with one end clamped and the other end free, as shown in Fig. 7.10. In this case, the
boundary conditions are

W(O) = 0, dW(x) I = 0,
dx x=o

d
3
W(x) I = 0
dx3

x=L

(7.158a-d)
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Inserting solution (7.149) into boundary conditions (7.158a) and (7.158b), we obtain

W(O) = C2 + C4 =0,

so that the solution reduces to

d W (x) I---:- == f3 (C1 + C3) = 0
dx x=o

(7.159)

W(x) = C1 (sinf3x - sinhf3x) + C2 (cosf3x - coshf3x) (7.160)

Then, using boundary conditions (7.158c) and (7.158d), we arrive at the two simul-
taneous homogeneous equations

- f32 [C1 (sinf3L + sinhf3L) + C2 (cosf3L + coshf3L)] = 0 (7.161a)

- f33 [C1 (cosf3L + coshf3L) - C2 (sinf3L - sinhf3L)] = 0 (7.161b)

Equating the determinant of the coefficients to zero, we obtain the characteristic
equation

The solutions, obtained numerically, are f31L = 1.875, f32L = 4.694, f33L =
7.855, .... In addition, solving Eq. (7.161b) for C2 in terms of C1 and substitut-
ing into Eq. (7.160), we obtain the corresponding eigenfunctions

Wr(x) = Ar [(sinf3rt~- sinhf3rL) (sinf3rx - sinhf3rx)

+ (cosf3rL + coshf3rL) (cosf3rx - coshf3rx)],

. cos f3L cos hf3L = -1

r

(7.162)

1,2, ...

(7.163)

where we introduced the notation Ar = Cd (sin f3rL - sinh f3rL). The system can
be verified to be self-adjoint and positive definite, with the usual positivity of the
eigenvalues and orthogonality of the eigenfunctions. The normalization ordinarily
used in this text is not feasible. The first three natural modes and natural frequencies
are displayed in Fig. 7.10. The mode Wr(x) has r - 1 nodes (r = 1,2, ... , n), but
their location can no longer be expressed as a rational fraction of L.

Another case of interest is the free-free beam (Fig. 7.11). From Sec. 7.4, the
eigenvalue problem is defined by the differential equation

d
2

[ d
2
W(X)]-2 EI(x) 2 = Am(x)W(x),

dx dx

and the boundary conditions

A = v.i, O<x<L (7.164)

d
2
W(x) IEI(x) 2 = 0,
dx x=o

d
2
W(x) IEI(x) 2 = 0,
dx x=L

d [ d
2
W(X)] I- EI(x) 2 = 0

dx dx x=o

d[ d2
W(X)] I- EI(x) 2 = 0

dx dx x=L

(7.165a, b)

(7.165c, d)
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Figure 7.10 Cantilever beam and the first three modes of vibration

Using results obtained in Example 7.4, it is not difficult to show that the system is self-
adjoint, so that the eigenfunctions are real and orthogonal. Moreover, the energy
norm squared is given by

IIWII~ = {L EI (x) [d
2
W;X)]2 dx ?: 0

o dx .
(7.166)

and it is easy to see that the integral is equal to zero if W is either a constant or
a linear function of x. We observe that boundary conditions (7.165) permit such
solutions. Under these circumstances, the system is only positive semidefinite, so that
the system admits eigensolutions in the form of rigid-body modes with zero natural
frequencies. To examine the nature of the rigid-body modes, we let A = AO= 0 in
Eq. (7.164) and write

O<x<L

....•..•.. - ~,,,,,.~., ~

(7.167)
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Figure 7.11 Free-free beam, the two rigid-body modes and the first two elastic modes

Integrating Eq. (7.167) once and using boundary conditions (7.165b) and (7.165d),
we obtain

d [ d
2
W(X)]

dx E/(x) dx2 = 0, O<x<L (7.168)

One more integration in conjunction with boundary conditions (7.165a) and (7.165c)
yields

d2W(x)
E/(x) dx2 = 0,

Then, dividing by E / (x) and integrating twice, we can write
W(x) = DI + D2x

." ----- ---.-- ~- ---~.-

O<x<L (7.169)

(7.170)
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- ..,

Because W (x) contains two independent constants of integration, we con-
clude that there are two rigid-body modes. It is convenient to identify them as the
transverse translation of the mass center C and rotation about C. Upon the usual
normalization, the two rigid-body modes can be shown to have the form

Wo(x)
1

= Ao = --

10 m(x)Wr(x)W,(x)dx = Or", r = 0,1,2, ...

(7.171a)

(7.171b)1
WI (x) = AI (x - xc) = ~ (x - xc)

vIe

where Ie is the mass moment of inertia of the beam about C and xe is the distance
between the left end and the mass center C.

Following the pattern established in Sec. 7.6, for zero resultants of external
forces and moments about C, Newton's second law for the motion in the rth mode
can be written as

iL . a2w (x t)
F(t) = m(x) r 2' dx

o at
- [iL

m(x)Wr(X)dX] crw; cos (Wrt - ¢r) = 0,

r = 2,3, ... (7.l72a)

Mdt) iL a2w (x t)
= m(x) (x - xc) r ~' dx

o at~

= - [iL
m(x) (x - xc) Wr(X)dX] crw; cos (wrt - ¢r) = 0,

r = 2,3, ... (7.l72b)

In view of Egs. (7.171), Egs. (7.172) amount to the orthogonality of the rigid-body
modes to the elastic modes. Upon normalization, the orthonormality relations for
all modes are

r = 0,1,2, ...

(7.173a)

(7.173b)

Next, we wish to solve the eigenvalue problem for the elastic modes of the
uniform free-free beam. The solution is once again given by Eg. (7.149), whereas the
boundary conditions, Egs. (7.165), reduce to

x = O,L (7.174)
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Inserting Eq. (7.149) into Eqs. (7.174) and using the same pattern as earlier in this
section, we obtain the characteristic equation

cos f3L cosh f3L = 1 (7.175)

which has the roots f30L = f3lL = 0, f32L = 1.506n, f33L = 2.500n, ... , and
note that for large r the eigenvalues approach (2r - 1) n /2. The eigenfunctions
belonging to f3rL (r = 2, 3, ... ) are

Wr(x) = Ar [(cosf3rL - coshf3rL) (sinf3rx + sinhf3rx)

-(sinf3rL - sinhf3rL) (cosf3rx + coshf3rx)],

r = 2,3, ... (7.176)

The first four natural modes and natural frequencies are displayed in Fig. 7.11.

7.8 EXTENSIONS OF LAGRANGE'S EQUATION FOR DISTRIBUTED SYSTEMS

The Lagrange equation for distributed systems derived in Sec. 7.3 is somewhat lim-
ited, as it excludes certain effects that cannot always be ignored. The reason for
this is mostly pedagogical, as the inclusion of these effects tends to raise the level
of difficulty of the formulation. In this section, we propose to extend the Lagrange
equation so as to include these effects. In carrying out the extension we follow a
parallel path to the one of Sec. 7.3.

As in Sec. 7.3, we wish to derive the Lagrange equation by means of the ex-
tended Hamilton's principle, Eq. (7.31). The additional effects to be included here
can all be accounted for in the kinetic energy, so that we replace Eq. (7.32) by

and we note that the kinetic energy terms To and TL are designed to account for the
effect of lumped boundary masses in translation and rotation and the kinetic energy
density T includes the rotation of a differential element of mass, in addition to the
translation considered in Eq. (7.32). On the other hand, the potential energy remains
in the form given by Eq. (7.33). Combining Eqs. (7.33) and (7.177), the Lagrangian
can be expressed as

L = La [w(O, t), Wi (0, t), w(O, t), Wi (0, t)]

+ LL [w(L, t), Wi (L, t), w(L, t), Wi (L, t)]

iL
A /// •• /+ a L (w, w, w , w, w) dx

The virtual work remains as given by Eq. (7.35).

(7.178)
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The extended Hamilton's principle requires the variation in the Lagrangian,
which retains the form given by Eq. (7.36), except that the individual terms, Eqs.
(7.37), must be augmented as follows:

(7. 179b)

(7.179a)

8Lo =

8L

aLo' aLo
8w(0,t) + 8w'(0,t)

aw(O, t) aw'(O, t)

+ a:~~ t) 8uJ(0, t) + aw~~, t) 8w'(L, t)

aLL aLL,8w(L, t) + 8w (L, t)
aw(L, t) .. aw'(L, t)

aLl aLL+ - 8w(L, t) + 8w'(L t)
aw(L, t) . aw'(L, t) ,

ai ai, ai "ai ai,
-8w + -8w + -8w + -8w + -8w (7.179c)
ow ow' ow" ow ow'

and we note that each of Eqs. (7.179a) and (7.179b) have two extra terms compared
to Eqs. (7.37a) and (7.37b), and Eq. (7.179c) has one additional term. The next step
in the use of the extended Hamilton's principle is to carry out integrations by parts
with respect to x and t so as to produce variations in translational and rotational
displacements alone. Many of these steps are given by Eqs. (7.38) and (7.39), so that
it is necessary to carry out the integrations by parts only for the additional terms in
Eqs. (7.179). To this end, we integrate with respect to t, recall that the variations
vanish at t = t1, t2 and write

112 aL
_---=-0-8w(0, t) dt

I} aw(O, t)

aLo [12 112
a ( aLo )---8w(0, t) - - --- 8w(0, t) dt

aw(O, t) . I} I} at aw(O, t)

_112
~ (_a_L_o -) 8w(0, t) dt

II at aw(O, t)

112 aL
-~0=--8w'(0, t) dt

I} aw'(o, t)

-O-:-'~-OO-,t-/w'(O, t)[ - 112

:t (-d-:-'~-oo_,t-J 8w'(O, t) dt

= _112
~ (_a_L_o -) 8w' (0, t) dt

11 at ow'(o, t)

11
2
_
o_L-=L=--8W(L, t) dt

II dw(L, t)

(7.180a)

(7 .l80b)
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(7.180d)
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aLL 1

12 112 a ( aLL )= ---ow(L, t) - - . ow(L, t) dtaw(L, t) I) I) at aw(L, t)

112 a ( aLL) .= - - --- ow(L, t) dt
I) at aw(L, t)

112-:-:-a-:-:L-::-L----:-0W'(L, t) d t
I) aw'(L, t)

= -a-Wa_'~-LL-,t-)OW'(L,t)[- JI2 :t (-aw-.a_'~L-L-,t-JOW'(L,t)dt

=-112~( aLL )OW'(L,t)dt
I) at aw'(L, t)

, .

L--

The next term involves integrations both with respect to x and t, as well as changes
in the order of these integrations, as follows:

11

21L
ai 1L(112

ai )-. ,ow'dxdt = -. ,ow'd~ dx
I) 0 aw 0 I) aw

1L [ ai 1

12 112

a (a i ) ]= -. ,ow' - - -., ow'dt dx
o aw I) I) at aw

= _112

[ (L ~ (a~,)OW'dX] dt
I) 10 at aw

112[a (ai) IL 1L
a

2
(ai) ]= - - -., ow - -- --., owdx dt (7.181)

I) at aw 0 0 axat aw
Introducing Eqs. (7.35) and (7.36) into Eq. (7.31), considering Eqs. (7.38), (7.39),
(7.180) and (7.181) and collecting terms involving ow(x, t), ow(O, t), ow(L, t),

.ow'(O, t) and ow'(L, t), we obtain the replacement ofEq. (7.40) in the form

11

21 (L [ai a (ai) a
2

(ai)
I) 10 aw - ax aw' + ax2 aw"

_~ (_a~)+ _a_
2

(_a~) + f] owdxat aw axat aw'

+ [-aw_a_~-:t-) - :t (-aw-·a_~-:t-») ]OW(O, t)

+ [a:~~ t) - :t (a:~~ t))] OW'(O,t)
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+ [-aw_a(_~L_,t-) - :t (a~(~~ t)) ] 8w(L, t)

+ [aw~tt t) - :t (aw~~t tJ] 8w'(L, t)

+[_:~_A/_ -aax (-aa~_·,,) - :t(-:~-~')}{+ -:~-·,,8w'I:}dl

1/2( (L [aL a (aL) a2 (aL)
= 11 ill aw - ax aw' + ax2 aw"

409

a (aL) a
2

(aL) ]- at aw + axat aw' + f 8w

I aLo a ( aLo )
+ aw(O, t) - at aw(O, t)

_ [aL _ ~ ( aL ) _ ~ ( a~ )] I }8W(0, t)aw' ax aw" at aw' x=o

I aLL a ( aLL )
+ aw(L, t) - at aw(L, t)

[A (A ) (A )] }aL a aL a aL+ --- -- -- -. I 8w(L,t)aw' ax aw" at aw' x=L

[
aLo a ( aLo) aL I ] /+ i:lw'(O, t) - at .aw/(O, t). - aw" x=o 8w (0, t)

[
aLL a ( aLL )

+ aw'(L, t) - at Ow'(L, t)

+ aLl ]8W/(L,t»)dt=0aw" x=L
(7.182)

Then, invoking the arbitrariness of the virtual displacements in a manner similar to
that in Sec. 7.3, we conclude that Eq. (7.182) can be satisfied for all8w over the open
domain 0 < x < L if and only if

:~ - :x (:~,) + ::' (:~,) - :, (::) + a::, (::') + f ~ 0,

o < x < L (7.183)
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Moreover, by writing
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(7.184b)

(7.185b)

l-aw-a_~_~t-:-) - :t (-aw-·a_~_~t-)) - [_:~_AI - -aOx (-aa~_',,) - :t (-:~-~,)lJ~w(o,t)
= 0 (7.184a)

[a:~~ t) - :t c:~;tJ - -aa~_"I""J~w'(o,t) = 0

and

IO~(~:t) - :t (-aw-·a(_~_~-t)) + [_:~_AI - -0: (-aa~_',,) - :t (-:~-',)lJ~W(L, t)

= 0 (7.185a)

[aw~~:, t) - :t (aw~~:J+ -aa~_"I,"J~w'(L, t) ~ 0

we take into accountthat either ow(O, t) or its coefficient is zero and either OWl (0, t)
or its coefficient is zero, and similar statements can be made about conditions at the
end x = L.

Equation (7.183) represents Lagrange's differential equation of motion corre-
sponding to the extended Lagrangian given by Eq. (7.178). Moreover, Eqs. (7.184)
and (7.185) can be used to obtain a variety of possible boundary conditions. Indeed,
from Eqs. (7.184) we conclude that at x = 0 either

aLa
aw(O, t)

or

a ( aLa) [ at a (at) a (at)] I- at aw(O, t) - awl - ax aw" -,- at awl x=a = 0

(7.186a)

and either

or

w = 0

aLa a ( aLa) at I
aw/(O, t) - at aw/(O, t) - aw" x=a = 0

Wi = 0

(7.186b)

(7.187a)

(7.187b)

In addition, from Eqs. (7.185), at x = L either

[A (A ) (A )]aLL a aLL aL a aL a aL
,aw(L, t) - at (aW,(L, tJ + awl - ax aw" - at awl IX=L = 0

(7.188a)
or

w = 0 (7.188b)
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and either

or

aLL
aw'( L, t)

~ (_a_LL_) + _aL I = 0
at div'(L, t) awl/ x=L

Wi = 0

(7.189a)

(7.189b)

The Lagrange equation together with appropriate boundary conditions consti-
tute a boundary-value problem. The formulation consisting of Eqs. (7.183)-(7.189)
is suitable for fourth-order systems, but it can be used for second-order systems as
well by merely omitting terms and boundary conditions that do not apply. In the
case of a fourth-order system, the boundary-value problem consists of Lagrange's
equation, Eq. (7.183), and two boundary conditions at each end, namely, one from
each of Eqs. (7.186)-(7.189). On the other hand, the boundary-value problem for
second-order systems consists of the differential equation, Eq. (7.183), with the third
and fifth term removed and one boundary condition at each end, one from each
of Eqs. (7.186) and Eqs. (7.188), where the fourth and fifth term are deleted from
Eqs. (7.186a) and (7.188a).

Example 7.5

Derive the boundary-value problem for a shaft in torsional vibration with the left end
clamped and with the right end supporting a disk of mass moment of inertia ID, as
shown in Fig. 7.12.

I-

8(x, t)
(\ GJ, I

x -----1
L ~I

Figure 7.12 Shaft in torsional vibration clamped at x = 0 and with a disk at
x=L

The kinetic energy has the expression

IlL . [ae(x, 1)]2 1'0T(t) = - l(x) --- dx + -IDf:)- (L, t)
2 0 at 2

and the potential energy is simply

v(t) = ~ (L GJ(x) [ae(x, t)]2 dx
2 10 ax

so that the Lagrangian can be written in the form

L = Lf. + iL

L dx

(a)

(b)

(c)
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where the boundary Lagrangian is given by

1 .2
LL = 2IDe (L, t)

and the Lagrangian density by

A A AI. 2 1 [ ]2L = T - V = -I(x)e (x, t) - -GJ(X) e'(X, t)2 2

Chap. 7

(d)

(e)

This being a second-order system, Lagrange's equation, Eq. (7.183), reduces to

~; - aax (:;,) - :t (:;) + m = 0, 0 < x < L(f)

in which m = m(x, t) is a distributed torque. Inserting Eq. (e) into Eq. (f) and rec-
ognizing that I (x) does not depend on t, we obtain the partial differential equation of
motion

a ( ae ) a
2
e- GJ- - 1- + m = 0,

ax ax at2

In view of the fact that the left end is clamped, according to Eq. (7.186b), the boundary
condition at x = 0 is

e(o, t) = 0

O<x<L (g)

(h)

Moreover, the boundary condition at x = L is given by Eq. (7.188a) with appropriate
deletions, or

aLL a ( aLL) ai I
ae(L, t) - at ae(L, t) + ae' x=L = 0

Hence, inserting Eqs. (d) and (e) into Eq. (i), the boundary condition at x = Lis

IDe(L, t) + GJ(x)e'(x, t)tX=L = 0

(i)

We observe that, whereas there is nothing unusual about the differential equation,
Eq. (g), and the boundary condition at x = 0, Eq. (h), the boundary condition at x = L,
Eq. (j), depends on the acceleration eeL, t). As a result, the associated differential
eigenvalue problem does not fit the general mold defined by Eqs. (7.68) and (7.69), so
that a more general formulation is required to accommodate the system of Fig. 7.12.

Example 7.6

Derive the boundary-value problem for the beam in bending vibration considered in
Sec. 7.2 under the assumption that the kinetic energy of rotation is not negligible.

The various terms are the same as in Sec. 7.2, except that the kinetic energy,
Eq. (7.18), must be replaced by

T(t) ~ ~ r [m(x) [aw(x, t)]2 + J(x) [a
2
w(x, t)]2j dx (a)210 at atax

where J (x) is the mass moment of inertia per unit length of beam. Hence, combining
Eqs. (a) and (7.19), we can write the Lagrangian density

i = T - ~ = ~ [mw2 + J(W,)2 - EI(w'Y - p(w')2] (b)

and we note that there are no boundary Lagrangians.
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O<x<L

(c)
Moreover, introducing Eq. (b) into Eqs. (7.186)-(7.189), we conclude that at x = 0, L
either

Inserting Eq. (b) into Eq. (7.183), we obtain the explicit Lagrange equation

a (aw) a2
( a2w) a2w a ( a3w)- p- -- EI- -m-+- J-- +1-0ax ax ax2 ax2 at2 ax axat2 -,

(d)

must be satisfied or

and either

or

w = 0

w' = 0

(e)

(f)

(g)

for a total of two boundary conditions at each end.
From the differential equation, Eq. (c), we observe that there are two terms

involving accelerations, and one of them involves spatial derivatives. Hence the mass
density is no longer a simple function, but a differential expression. Moreover, from
Eq. (d), we conclude that, if this boundary condition applies, then it depends on the
angular acceleration. Note that the added terms involve J and are referred to as rotatory
inertia terms. The differential eigenvalue problem for a beam in bending with the
rotatory inertia included cannot be accommodated hy the formulation of Sec. 7.5, and
a generalization of the formulation is necessary.

7.9 GENERALIZATION OF THE DIFFERENTIAL EIGENVALUE PROBLEM
FOR SELF-ADJOINT SYSTEMS

From Sec. 7.8, we conclude that the eigenvalue problem given by Eqs. (7.68) and
(7.69) cannot accommodate a number of important problems. In view of this, we
consider a more general eigenvalue problem and express the differential equation
in the operator form

Lw = "AMw, x, y in D (7.190)

where Land M are linear homogeneous differential operators of order 2p and
2q, and are referred to as stiffness operator and mass operator, respectively, "A is
a parameter and D is the domain of definition of Eq. (7.190). The operators L
and M are of the type (7.66) and their order is such that p > q. Associated with
the differential equation (7.190) there are p boundary conditions to be satisfied by
the solution w at every point of the boundary 5 of the domain D. The boundary
conditions are of the type

B;w

B;w

0, x, y on 5,

"AC;w, x,)' on 5,

= 1,2, ... , k (7.191a)

i = k + 1, k + 2, ... , P (7.191b)

where Bi and C; are linear homogeneous differential boundary operators of maxi-
mum order 2p - 1 and 2q - 1, respectively.

__________________ !!'!""""'!"" •••• --_ ••••• __ --- .. _•••_"""""_-'-._- ..-J----- __..-tj



414 Distributed-Parameter Systems Chap. 7

N ext, we consider two comparison functions u and v and state that the stiffness
operator L is self-adjoint if

1uLv dD + t [uBiv dS = 1VL~ dD + t [VBiU dS (7.192a)
D i=k+1JS D i=k+1JS

Moreover, the mass operator M is self-adjoint if

1uMvdD + t [uCivdS = 1vMudD + t [vCudS (7.192b)
D i=k+1J s D i=k+) s

If Land M are self-adjoint, the system, or the eigenvalue problem, is said to be self-
adjoint. As demonstrated in Sec. 7.5, self-adjointness can be ascertained through
integration by parts with due consideration to the boundary conditions, and it im-
plies certain mathematical symmetry. In fact, the concept of self-adjointness of the
stiffness operator L and mass operator M in distributed systems is entirely analo-
gous to the concept of symmetry of the stiffness matrix K and mass matrix M in
discrete systems. This mathematical symmetry can be used to simplify the test for
self-adjointness, as shown in Sec. 7.5. Indeed, if the left side of Eq. (7.192a), or of
Eq. (7.192b), can be reduced to a symmetric form in u and v through integrations by
parts, then the operator L, or operator M, is self-adjoint, and it is not really necessary
to carry out the integrations on the right side of Eq. (7.192a), or Eq. (7.192b), as they
are guaranteed to yield the same symmetric forms. For one-dimensional self-adjoint
systems, we denote the symmetric result of the integrations by parts for the operator
L by

[u, v]p 1uLvdD + t 1uBivdS
D i=k+1 S

1L P dku dkv p-l deu dev IL
= "ak--dx + "be--

a t:o dxk dxk t:o dxe dxe 0

and for the operator M by

[u, v]K = [ uMvdD + t [uCivdS
JD i=k+1JS

(7.193a)

(7.193b)1L q dku dkv q-l deu dev IL
= "ek--dx + " Ie---

o t:o dxk dxu t:o dxe dxe
0

where [u, v]p and [u, v]K will be referred to as potential and kinetic energy inner
products, respectively, in which ak, be, ek and Ie are coefficients depending in general
onx.

If for any comparison function u we have the inequality

1uLudD + t [uBiudS:::: 0
D i=k+l Js

(7.194a)
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and the equality sign holds if and only if u == 0, then the operator L is said to be
positive definite. If the expression can be zero without u being identically zero, then
the operator L is only positive semidefinite. Similarly, if

L uMudD + i~l i uCiudS ::: ° (7.1 94b)

(7.195a)

(7.195b)

and the equality holds if and only if U == 0, the operator M is positive definite, and if
the expression is zero without u being identically zero, the operator M is only positive
sem idefin ite. If Land M are positive definite (semidefinite), then the system, or the
eigenvalue problem, is positive definite (semidefinite). Unless otherwise stated, we
will be concerned exclusively with systems for which M is positive definite. Hence,
the sign properties of the system are governed by the sign properties of the stiffness
operator L.

For v = u, Eqs. (7.193) reduce to

lL p (dkU)2 p-l (deU)2IL
[u, u]p = Lak -k dx + Lbe -e

o k~ b e~ b 0

[U,UIK = tt,e, (~::)'dx+~ft (~:~)T
and we note that [u, u] p and [u, u] K are measures of the potential and kinetic energy,
respectively, which explains the terms of potential and kinetic energy inner products
for [u, v]p and [u, V]K introduced earlier. Equations (7.195) can be used to define
the potential and kinetic energy norms

1/2lIulip = [u, u]p , 1/2lIullK = [u, u]K (7.196a, b)

respectively.
Next, we introduce the sequence of approximations

II

Un = L cr¢r,
r=l

12 = 1,2, ... (7.197)

where ¢l, ¢2, ... are given functions from an independent set. Then, if by choosing
n sufficiently large,

lIu - unllp < Ep, (7.198a, b)

where EP and EK are arbitrarily small positive numbers, the set of functions ¢1,

¢2, ... is said to be complete in energy. Moreover, if

lim lIu - unllp = 0,
n->oo

lim Ilu - ullilK = 0
n->oo

(7.199a, b)

the sequence of approximations Ul, U2, ... is said to converge in energy to u.
Next, we wish to examine the properties of the eigenvalues and eigenfunctions.

Assuming that the problem is self-adjoint and inserting two distinct solutions Ar, Wr

. ;j
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and As, Ws ofthe eigenvalue problem, Eqs. (7.190) and (7.191), into Eq. (7.190), we
can.write

(7.200a, b)

(7.203)

Multiplying Eq. (7.200a) by Ws and Eq. (7.200b) by Wr, subtracting the second from
the first and integrating over domain D, we obtain

l (wsLwr - wrLws) dD = l (ArwsMwr - AswrMws) dD (7.201)

But, because the operators Land M are self-adjoint, we can use Eqs. (7.192) and
(7.191b) to write

{D (wsLwr - wrLws') dD = t {(ivrBiWs - WsBiWr) dS
IT i=k+lls

p .

= L {(AswrCiws - ArWsCiWr) dS (7.202a)
i=k+11s

and

{ wsMwr dD = {wrMws dD + t {(wrCiws - WsCiWr) dS
lD lD i=k+lls

(7.202b)
so that, inserting Eqs. (7.202) into Eq. (7.201) and rearranging, we have

(Ar - As) ({ wrMws dD + t (wrCiWs dS) = 0
lD i=k+lls

But, by assumption, the eigenvalues Ar and As are distinct. Hence, Eq. (7.203) can
be satisfied if and only if

{ wrMws dD + t (wrCiws dS = 0,
lD i=k+lls

(7.204)
- Equation (7.204) represents the orthogonality relation for the eigenfunctions of

distributed-parameter systems described by the eigenvalue problem given by Eqs.
(7.190) and (7.191). Multiplying Eq. (7.200b) by Wr, integrating over D and using
Eqs. (7.191b) and (7.204), it can be shown that the eigenfunctions satisfy a second
orthogonality relation, namely,

r, s = 1, 2, ...

(7.205)
Clearly, the general orthogonality of the eigenfunctions solving the eigenvalue prob-
lem given by Eqs. (7.190) and (7.191) applies to self-adjoint systems alone. If an
eigenvalue has multiplicity m;then there are exactly m eigenfunctions belonging to
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the repeated eigenvalue, and these eigenfunctions are generally not orthogonal to
one another, although they are independent and orthogonal to the remaining eigen-
functions of the system. But, as pointed out in Sec. 7.5, independent functions can
be orthogonalized by grouping them in proper linear combinations. Hence, all the
eigenfunctions of a self-adjoint system can be regarded as orthogonal, regardless of
whether there are repeated eigenvalues or not.

The eigenvalue problem, Eqs. (7.190) and (7.191), is homogeneous, so that
only the shape of the eigenfunctions is unique, and the amplitude is arbitrary. This
arbitrariness can be removed through normalization. A mathematically convenient
normalization scheme is given by

which implies that

1, r 1,2, ... (7.206a)

r = 1,2, ... (7.206b)

(7.207a)

Then, Eqs. (7.204)-(7.206) can be combined into the orthonormality relations

[ wrMws dD + t [wrCws dS = 8rs, r, S = 1,2, ...
1D i=k+11s

[ wrLwsdD + t [WrBiWsdS = 'Ar8rs, r,s = 1,2, ...
D i=k+11s

(7.207b)

In Sec. 7.5, we demonstrated that the eigenvalues and eigenfunctions of a self-
adjoint system are real. We propose to prove here that the same is true for the more
general eigenvalue problem. To this end, we consider a complex solution 'A , w of the
eigenvalue problem, Eqs. (7.190) and (7.191). Because all the operators are real, if
'A, w arc a complex solution of the eigenvalue problem, then the complex conjugates
X, w must also be a solution, so that Eq. (7.190) yields

Lw = 'AMw, Lw = 'AMw (7.208a, b)

Multiplying Eq. (7.208a) by wand Eq. (7.208b) by w, subtracting the second from
the first and integrating over D, we obtain

[ (wLw - wLw) dD = 'A [ wMwdD - X [ wMwdD (7.209)
1D 1D 1D

Letting v = wand u = w in Eqs. (7.191b) and (7.192) and inserting the results into
Eq. (7.209), we obtain after some manipulations

('A - X) ([ wMwdD + t [WCiWdS) = 0
D i=k+11s

(7.210)
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" Recalling Eqs. (7.99) and considering Eq. (7.192b), we conclude that the term in the
second parentheses in Eq. (7.210) is real and positive, so that the only alternative is

A - ;: = a + if3 ,- (a - i(3) = 2if3 = 0 (7.211)

Hence, as in Sec. '7.5, we conclude that the eigenvalues of a self-adjoint system are
real. As a corollary, the eigenfunctions of a self-adjoint system are real. Moreover,
considering inequality (7.194a), we conclude from Eq. (7.206b) that, if the operator
L is positive definite (semidefinite), all the eigenvalues are positive (nonnegative).

Finally, we wish to extend the expansion theorem for self-adjoint systems of
Sec. 7.5 as follows: Every function W with continuous Lw and Mw and satisfying
the boundary conditions of the system can be expanded in an absolutely and uniformly

, convergent series in the eigenfunctions in the form

We should note here that Eqs. (7.213) are based on the more general orthonormality
relations, Eqs. (7.207). The expansion theorem just presented forms the basis for a
modal analysis for self-adjoint systems with stiffness and mass operators Land M,
respectively, and with boundary conditions depending on the eigenvalue A. Although
the expansion theorem, Eqs. (7.212) and (7.213), seems intimidating compared to the
expansion theorem of Sec. 7.5, the process of using modal analysis to derive the modal
equations remains essentially the same. Derivation of the system response by modal
analysis is discussed later in this chapter.

Example 7.7

Derive the eigenvalue problem for the shaft in torsional vibration of Example 7.5 and
show how it fits the formulation given by Eqs. (7.190) and (7.191).

From Example 7.5, the free vibration of the shaft, obtained by letting the dis-
tributed torque m be equal to zero, is described by the partial differential equation

~ [GJ(X)ae(x,t)] = I(x)a
2
e(x,t),

ax ax at2

00

w = LCrWr
r=l

where the coefficients Cr are such that

O<x<L

and the boundary conditions

(7.212)

(7.213a)

(7.213b)

(a)

a2e (x t) ae (x t)
e(o, t) ~ 0; ID at2' + GJ(x) ax' = 0, x = L (b)

L-.__~ .._... .~__~ _
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O<x<L

To derive the eigenvalue problem, we assume a solution in the form

e(x,t) = G(x)F(t)
I

Introducing Eq. (c) into Eq. (a) and separating variables, we can write

__ 1 d_ [Gl(X)_dG_~_(x_)]= _1__ d
2

_F_(_t).
l(x)G(x)dx dx F(t) dt2

(c)

(d)

Following the developments of Sec. 7.4, it can be shown that the function F(t) is har-
monic, and it satisfies

d2 F (t )-- = -)"F(t)
dt2 '

)..= (J} (e)

where w is the frequency of oscillation, so that the left side of Eq. (d) yields the differ-
enti'll equation

d [ dG(X)]-- Gl(x)--·_· = A1(x)8(x),
dx dx

O<x<L (f)

Moreover, inserting Eqs. (c) and (e) into Eqs. (b), we obtain the boundary conditions

dG(x)
G(O) = 0: Gl(x)--·_· = A1DG(x).

dx

Equations (f) and (g) constitute the desired differential eigenvalue problem.
Contrasting Eqs. (7.190) and (f) on the one hand and Eqs. (7.191) and (g) on the

other hand, we conclude that the eigenvalue problem does fit the mold. The various
operators can be identified as follows:

L = -~ [Gl(X)~J, p = 1; M
dx dx

BI 1, C1 = 0 at x = 0, k = 1

d
B) Gl(x)-, C) = ID at x = L,

dx
A solution of the eigenvalue problem given by Eqs. (f) and (g) for a uniform shaft

is presented in Sec. 7.10.

x = L

I(x), q = 0

k = 0

(g)

, (h)

(a)

Example 7.8

Derive the eigenvalue problem for the beam in bending of Example 7.6 and show the
relation with the formulation given by Eqs. (7.190) and (7.191). Assume that the beam
is clamped at x = 0 and free at x = L.

Letting f = 0, the free vibration problem can be obtained from Example 7.6 in
the form of the partial differential equation

a [ ow(x. tl] a2
[ a2w(x. n] a2w(x. t)

ax P(X)--a-x- - -ax-2 EI(x)--ax-2- - m(x)--at-2-

a [ a3w(x,0]_+ ax lex) axat2 - 0, 0 < x < L

<j
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aw(x, t)
= 0,ax

= 0, P(X) aW(X, t) _ ~ [EI(X) a
2
W(X, t)]

ax ax ax2

a3w(x, t)
+ lex) axat2 = 0,

w(x, t) = 0,

a2W(X, t)
EI(x) aX2

x = 0

x = L

(b)

To derive the eigenvalue problem, we assume that the solution is separable in x and t,
or

w{x, t) = W(x)F(t)

Inserting Eq. (c) into Eq. (a) and following the usual steps, we obtain

(c)

d
2

[ d
2
.W(X)] d [ dW(X)]- EI(x) , .. - - P(x)--

dx2 ax2 dx . dx

d [ dW(X)]m(x)W(x) - - l(x)--
dx dx

1 d2 F(t)
--- ---

F(t) dt2
(d)

Then, using the standard argument, we let both sides of Eq. (d) be equal to).. = (J},
so that F(t) is harmonic with the frequency w. Moreover, we obtain the differential
equation

d
2

[ d
2
W(X)] d·[. dW(X)]- - EI(x) - - P(x)--.-

dx2 dx2 dx dx

{ d [ dW(X)]}=).. m(x)W(x) - dx l(x)~ ' O<x<L (e)

Similarly, introducingEq. (c) into Eqs. (b), in conjunction with p(t) = -)"F(t), and
dividing through by F(t), we obtain the boundary conditions

W(x) = 0,
dW(x) = 0,

dx
x = 0

d2W(x)
EI(x) 2 = 0,

dx

d [ d2W(X)] dW(x)
- dx EI(x) dx2 + P(x)~ = AJ(x)W(x), x = L

(f)

Equations (e) and (f) represent the differential eigenvalue problem for the system at
hand.
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Comparing Eqs. (e) and (f) with Eqs. (7.190) and (7.191), respectively, we can
identify the various operators as follows:

L = :;2 [El(X):;2] - :x [P(X):x]. P = 2

M = m(x) - ~ [J(X)~]' q = 1
dx dx

d (g)
BI = 1, B2 = -, C1 = C2 = 0, k = 2, x = 0,

dx

BI d
2

d [ d
2

] d= El(x)dx2' B2=-dx El(x)dx2 +P(x)dx'

Cj = 0, C2 = J(x), k = 1, x = L

Clearly, the differential eigenvalue problem, Eqs. (e) and (f), does fit the general for-
mulation given by Eqs. (7.190) and (7.191).

Closed-form solutions to the eigenvalue problem given by Eqs. (e) and (f) do not
exist.

7.10 SYSTEMS WITH BOUNDARY CONDITIONS DEPENDING ON THE
EIGENVALUE

Let us return to the system shown in Fig. 7.12 and recall that the boundary-value
problem was derived in Example 7.5 and the eigenvalue problem in Example 7.7. In
this section, we consider the solution of the eigenvalue problem.

In the case in which the shaft is uniform, G J (x) = G J = constant, I (x) =
I = constant, the differential equation, Eq. (f) of Example 7.7, reduces to the
familiar form

d28(x)-- + rP8(x) = 0,
dx2

2 AI (J} I
f3 = GJ = GJ' o < x < L (7.214)

8(0) = O.

Moreover, the boundary conditions, Eqs. (g) of Example 7.7, become

d8(x) I . AID f32ID--'-' = -0)(L) = --C~(L)
dx x=L GJ I

0.215a, b)

so that boundary condition (7.215b) depends on the eigenvalue f3. As in Sec. 7.6,
the solution of Eq. (7.214) is

8(x) = C1 sin f3x + Cz cos f3x (7.216)

(7.217)

and boundary condition (7.215a) yields C2 = O. On the other hand, boundary
condition (7.2I5b) leads to the characteristic equation

IL 1
tanf3L = --

ID f3L

Ju-'
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which must be solved numerically for the eigenvalues f3rL (r = 1,2, ... ). If some
accuracy can be sacrificed, then the solution can be obtained graphically, as shown in
Fig. 7.13, in which the three lowest eigenvalues corresponding to I Lj ID = 1 were
obtained. The natural modes are given by

8r (x) = Ar sin f3rx, r = 1,2, ... (7.218)

and they are orthogonal. Using Eqs. (7.204) and (7.205) in conjunction with boundary
conditions (7.215), the orthogonality relations can be shown to be

lL
18r(x)8s(x) dx + ID8r(L)8s(L) = 0, r, S = 1,2, ... ; r =j:. S (7.219a)

lL
GJ8~(x)8~(x)dx = 0, r, S = 1,2, ... ; r =j:. S (7.219b)

The natural frequencies are related to the eigenvalues by

r = 1,2, ... (7.220)

The first three natural modes and natural frequencies are displayed in Fig. 7.14.

3

tan f3L,

lL 1--
2I D f3L

1

I
I
I
I
I
I
I
I
I
I f31L

f3L

7r 7r 37r 27r 57r
2 2 2

Figure 7.13 Graphical solution of the characteristic equation, Eq. (7.217)

From Eq. (7.217), as well as from Fig. 7.13, we observe that, as the eigenvalues
f3rL increase without bound, they tend to become integer multiples of n. Specifically,

lim f3rL = (r - l)n
r --+ 00

(7.221)

Inserting these values into Eq. (7.218), we conclude that the very high modes have
nodes at x = L, which implies that the end disk is at rest for these modes, so that
the end x = L acts as if it were clamped.
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r=2
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LID

x
r=3 ~~_ .... ,

I L
i

I

Figure 7.14 The first three modes of vibration of a shaft in torsion clamped at x = 0 and
with a disk at x = L

7.11 TIMOSHENKO BEAM

In Sec. 7.2, we derived the boundary-value problem for the simplest model of a
beam in bending vibration, namely, the Euler-Bernoulli model, which is based on
the elementary beam theory. Then, in Sec. 7.6 we refined the model by including the
rotatory inertia effects. The model of Sec. 7.6 can be further refined by considering
the shear deformation effects. The inclusion of the shear deformation presents us
with a problem not encountered before. Indeed, because in this case the slope of
the deflection curve is not equal to the rotation of the beam cross section, we are
faced with the problem of two dependent variables. The model of a beam including
both rotatory inertia and shear deformation effects is commonly referred to as a
Timoshenko beam.

Our objective is to derive the boundary-value problem for the nonuniform
beam in bending shown in Fig. 7.15a. To this end, we consider the differential element
of Fig. 7.15b and denote the mass per unit length at any point x by m (x), the cross-
sectional area by A (x) and the area and mass moments of inertia about an axis normal
to the plane of motion and passing through point C by I (x) and J (x), respectively,
where C represents the mass center of the differential element. From Fig. 7.15b, the
total deflection w (x, t) of the beam consists of two parts, one caused by bending and
one by shear, so that the slope of the deflection curve at point x can be written in
the form

aW(x,t)

ax 1/f(x,t) + j3(x,t) (7.222)



424 Distributed-Parameter Systems Chap. 7

I(x, t)

t t t t tit t t t t t t t t t t t
y

x ---j ~
L

(a)
·1

x

I(x, t)dtt t 8Q(x, t)t t t \Q(X, t) + -ax dx

f3(x, t)
M(x, t) 1/f(x, t)

T ( 'i\" ' .. 8M(x,t)
M(x, t) + -ax dx

y(x, t) \ 1/f(x, t)
Q(x, t)J__ ,,

(b)

Figure 7.15 (a) Timoshenko beam (b) Timoshenko beam differential element

where 1/f(x, t) is the angle·of rotation due to bending and fJ(x, t) is the angle of
distortion due to shear. As usual, the linear deflection and angular deflection are
assumed small.

The relation between the bending moment and the bending deformation is

M(x, t) = EI(x) a1/f~:, t) (7.223)

and the relation between the shearing force and shearing deformation is given by

Q(x, t) = k'GA(x)fJ(x, t) , (7.224)

in which G is the shear modulus and k' is a numerical fac~or depending on the shape
of the cross section. Because of shear alone, the element undergoes distortion but
no rotation.

To formulate the boundary-value problem, we make use of the extended Hamil-
ton's principle, Eq. (7.4), which requires the kinetic energy, potential energy and
virtual work. The kinetic energy is due to translation and rotation and has the form

L

T(t) = ~ (L m(x) .[_aw_(x_,t_)]2 dx + ~ (L lex) [_a1/f_(x_,_t)]2 dx
2 Jo at 2 Jo at (7.225)
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where the mass moment of inertia density J (x) is related to the area moment of
inertia I (x) by

J (x) = pI (x) = :~;~ I (x) = e(x)m(x) (7.226)

in which p is the mass density and k(x) is the radius of gyration about the neutral
axis. The variation of the kinetic energy can be readily written as

lL aw (aw) lL
a1/f (a1/f)8T = m-8 - dx + k2m-8 - dx

o. at at 0 at at

The potential energy has the expression

IlL a1/f(X,t) IlLv(t) = - M(x, t)---dx + - Q(x, t)f3(x, t)dx
2 0 . ax 2 0

1 lL
[a1/f(x t)]2 1 lL

= - £I(x) , dx +- k'GA(x)f32(X,t)dx
2 0 ax 2 0

so that the variation of the potentia! energy is simply

8V = [L £1 a1/f8 (a1/f) dx +lL
k'GAf38f3dx

o ax ax 0

lL a1/f (a1/f) lL, (aw ) (aw )= £/-8 - dx+ kGA --1/18 --1/f dx
o ax ax 0 ax ax

The virtual work due to nonconservative forces is given by

8Wllc(t) = lL
f(x,t)8w(x,t)dx

(7.227)

(7.228)

(7.229)

(7.230)

where f is the force density.
Introducing Egs. (7.227), (7.229) and (7.230) into the extended Hamilton's prin-

ciple, Eg. (7.4), we have

112(8T _ 8 V + 8 Will,) d t = 112
{ [L [m aw 8 ( a w) + em a 1/f 8 (a 1/f )

11 11 10 at at at at

- £/~~8(~~)- k'GA(~: -1/f )8(~: -1/f) + f8W]dX}dt = 0,
8w = 0, 81/f = 0, t = t1, t2 (7.231)

and we note that we have two dependent variables, wand 1/f. We carry out the
operations involved in Eg. (7.231) term by term. Recalling that the order of the
integrations with respect to x and t is interchangeable and that the variation and
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differentiation operators are commutative, we can perform the following integration
by parts with respect to time:

[
t2 aw a

=. m-. -8w dt
tl at at

= m aw 8wlt2 _. (2 ~ (m aw) 8wdt
at tl ltl at at

[
t2 a2w

= - m--8wdt~ at2 _

where we took into account that 8w vanishes at t = t1 and t = t2. In a similar
fashion, we obtain

[
t
2

aw (aw)m-8 - dt
t1 at at

- (2 k2m a1jf8 (a1jf) dt = _ (2 k2m a2;P 81jfdt
ltl at at ltl at2

On the other hand, integr~tions over the spatial variable yield

iL a1jf (a1jf) iL a1jf aE/-8 - dx = E/--81jf dx
o ax ax 0 ax ax

(7.232)

(7.233)

( a1jf) IL iL
a ( a1jf)E/- 81jf - - E/- 81jfdx

ax 0 0 ax ax

(7.234a)

[k'GA (~: - 1jf)] 8W/:

-iL

{a: [k'GA (~: - Vi )]8W + k'GA (~: -1jf )8Vi}dX

(7.234b)

Inserting Eqs. (7.232)-(7.234) into Eq. (7.231) and rearranging, we obtain

[

t2
(8T - 8V + 8Wnc) dt

t1
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{[
a( a1/l) , (aw )] 2 a

2
1/1} )+ _ EI- + k GA - - 1/1 - k m- 01/1 dx

ax ax ax at2

427

The virtual displacements 01/1 and ow are arbitrary and independent, so that
they can be taken equal to zero at x = 0 and x = L and arbitrary for 0 < x < L.
Hence, we must have

= 0, 0 < x < L (7.236b)

a [ (aw" )] a
2
w- k' G A - - 1/1 - m - + f = 0,ax - ax at2

a ( a1/l) , (aw ) 2 a
2
1/1- EI- + k GA - - 1/1 - k m-ax ax ax at2

In addition, if we write

O<x<L (7.236a)

(7.237a)

(7.237b)

we take into account the possibility that either EI (a1/l/ax) or 01/1on the one hand,
and either k'GA [caw/ax) -1/1] or ow on the other hand vanishes at the ends
x = 0 and x = L. Equations (7.236) are the differential equations of motion
and Eqs. (7.237) represent the boundary conditions. The boundary-value problem
consists of the differential equations, Eqs. (7.236) and two boundary conditions at
each end to be chosen from Eqs. (7.237).

For a beam clamped at both ends, the deflection and rotation are zero, or

w(O, t) = 0,

w(L, t) = 0,

1/1(0, t) = 0

1/I(L, t) = 0

(7.238a, b)

(7.238c, d)

and note that it is the rotation that is zero and not the slope. All boundary conditions
are geometric.

In the case of a simply-supported beam, i.e., a beam pinned at both ends, the
boundary conditions are

M(O,t) = El
a1/l\ = 0

ax x=o

M(L,t) = E101/l1 = 0
ax x=L

so that there is one geometric and one natural boundary condition at each end.

I"

w(O, t) = 0,

w(L, t) = 0,

(7.239a, b)

(7.239c, d)
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(7.240a, b)

At the free end neither the deflection nor the rotation is zero, so that we must have

. a1/f1M(L, t) = EI- = 0,
ax x=L Q(L, t) = [k'GA (~: - 1/f) l=L = °

(7.240c,d)

which reflects the fact that both the bending moment and the shearing force vanish at
a free end. Hence, at the clamped end we have two geometric boupdary conditions
and at the free end we have two natural boundary conditions.

Finally, in this case of a free-free beam, the boundary conditions are

M(O, t) = EI a1/f I = 0,
ax x=o

M(L, t)

Q(O, t) = [k'GA (~: - 1/f) 1=0 = °
(7.241a, b)

Q(L, t) = [k'GA (~: - 1/f) l=L = °
(7.241c, d)

and they are all natural.
The interesting part about the new formulation is that the mass density is no

longer an operator, as in Example 7.8, but a mere function. Moreover, boundary
conditions (7.240d), (7.241b) and (7.241d) do not depend on the acceleration, in
contrast with the case in which the shear deformation is absent, as can be concluded
from Eq. (d) of Example 7.6. Both differences are due to the fact that the rotation
is no longer equal to the spatial derivative of the displacement. The simplification
gained in the mass density expression and the boundary condition involving the
shearing force is balanced by the complication arising from the fact that now there
are two dependent variables.

Next, we wishto derive the eigenvalue problem. In view of our past experience,
we assume that f = ° and that the solution of the boundary-value problem is
separable in'x and t, or

w(x, t) = W(x)F(t),

where F(t) is harmonic and it satisfies

F(t) = -J...F(t) ,

1/f(x, t) = \II(x)F(t)

J...=ui

(7.242)

(7.243)

Introducing Eqs. (7.242) and (7.243) into Eqs. (7.236) with f = 0, we obtain the
ordinary differential equations

- ~ [k'GA (dW - \II)] = J...mW,
dx : dx O<x<L (7.244a)

iL- " .. _
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O<x<L

(7.244b)

The boundary conditions transform accordingly.
The eigenvalue problem is defined by two differential equations in terms of

two dependent variables, instead of one differential equation in one variable, so that
the traditional ways of checking for self-adjointness and positive definiteness do not
apply in the case of a Timoshenko beam. In the following, we define new criteria.
To this end, we introduce the displacement vector

-~ (k'GA.) ]dx

~ (EI~) - k'GA '
dx dx

where the dot indicates the implied position of \II, and write Eqs. (7.244) in the
operator matrix form

y(x) = [W(x) \II(x)(

as well as the stiffness and mass operator matrices

. [ d ( d )- k'GA-
L = _ dx . /x

k'GA-
dx

Ly = AMy

(7.245)

(7.246a,b)

(7.247)

(7.248a)

(7.248b)

-~ (k'GA.)· ]
dx

d d vdx- (EI-) - k'GA
dx dx

Then, by analogy with the scalar definitions, the problem is self-adjoint if for any two
vectors u and v of comparison functions

{L uT Lvdx = (L vT Ludx
~) ~

lL

uT Mvdx = lL

vT Mudx

Moreover, the problem is positive definite if

lL
uT Ludx ::::0, lL

uT Mudx ::::0 (7.249a, b)

and the equality sign holds true if and only if u == 0, and it is positive semidefinite
if the equality sign holds true for some u # O. Because the mass operator matrix
M is self-adjoint and positive definite by definition, the system self-adjointness and
positive definiteness depend on the stiffness operator L

To check for self-adjointness, we insert Eq. (7.246a) into the left side of Eq.
(7.248a), carry out suitable integrations by parts and obtain

[
d (' d)L L - k GA-

l T r d - -1 T dx dxu LV X - u d
o 0 k'GA-

. dx

_____________ I!!!!!!!!!!!!!!===:::!!!!!!!!!!!~=~--j
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[
..
k'GA~

= _UT dx

°
-k'~A] VJL
EI- 0

dx

+ {L (du
T

[k'GA 0] dv _ duT [0
o dx ° E I dx dx °

T [0 0] dv T [0
-u k'GA 0 dx + u 0

k'GAJo V

(7.250)

We observe that the integral on the right side of Eq. (7.250) is symmetric in u and v.
Hence, all systems for which the boundary term is zero are self-adjoint. This is cer-
tainly the case with the systems with the boundary conditions given by Eqs. (7.238)-
(7.241).

Before we proceed with the check for positive definiteness, we should state that
the concept applieS only to self-adjoint systems. Hence, assuming that the boundary
term is zero and letting v = u in Eq. (7.250), we have

1L T -lL
(du

T
[k'GA 0] du duT [0 k'GA]u Ludx - -- -- - -- u

o 0 dx 0 E I dx dx 0 0

T [0 0] du T [0 0]) f
-u k' GA 0 dx + u 0 k' G A u dx

(7.251)

where Ul and U2 are the components of u. It is easy to verify that the expression can
be zero for the nontrivial case Ul = constant, U2 = O. But, when one of the ends is
clamped or pinned, such as in the case of the systems with the boundary conditions
given by Eqs. (7.238)-(7.240), this constant must be zero. It follows that in the three
cases covered by boundary conditions (7.238)-(7.240), the operator L is positive def-
inite, so that the system is positive definite. On the other hand, for a free-free beam
with the boundary conditions given by Eqs. (7.241), Ul = constant, U2 = 0 is a
possible solution of the eigenvalue problem so that the operator L is only positive
semidefinite, from which it follows that the system is only positive semidefinite. Con-
sistent with this, the solution Ul = constant, U2 = 0 represents a rigid-body mode
belonging t9 a zero eigenvallfe.

7.12 VIBRATION OF MEMBRANES

All distributed systems considered until now were one-dimensional, which implies
that the description of their motion requires a single spatial variable. At this point, we
turn our attention to two-dimensional systems whose motion is described in terms
of two spatial coordinates. We confine ourselves to the case in which the domain
D is planar, with the motion being. measured normal to the nomimll plane, and

. the boundary S consists of one or two nonintersecting curves. Two-dimensional

L- ~~~ ~~~~_
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problems introduce a new element into the boundary-value problem, namely, the
shape of the boundary 5. In two-dimensional problems, there are several choices
of coordinates for describing the motion, such as rectangular, polar, elliptical, etc.
The choice is generally not arbitrary but dictated by the shape of the boundary,
because the boundary conditions for the most part involve derivatives along the
normal direction n or along the tangent s to the boundary (Fig. 7.16). Hence, it is
only natural to choose rectangular coordinates if the boundary 5 is a rectangle, polar
coordinates if 5 is a circle, elliptical coordinates if 5 is an ellipse, etc. The question
is not so clear when 5 has an irregular shape, in which case no closed-form solution
can be expected. In this case, the choice of coordinates depends on the method used
to produce an approximate solution.

D

(7.253)

(7.252)

n

Figure 7.16 Two-dimensional distributed system

The simplest two-dimensional problem in vibrations is that of a membrane.
Indeed, the membrane can be regarded as the two-dimensional counterpart of the
string. The boundary-value problem can be obtained conveniently by means of
the extended Hamilton's principle, Eq. (7.4). It is relatively easy to carry out the
derivation in terms of rectangular coordinates. However, we opt for an approach
valid for all types of coordinates. To this end, we consider a membrane fixed or free
over a portion 51 of the boundary 5 and supported by a distributed spring over the
remaining portion 52 and write the potential energy in the form

V = ~1TVw . VW d D + ~ [ kw2 d5
2 D 2J~

where w is the transverse displacement, V a vector operator signifying the gradient,
T the tension and k the distributed spring constant. For simplicity we assume that
the tension is constant. The kinetic energy has the expression11 .T = - pw2 dD

2 D
in which p is the mass density, and the virtual work of the non conservative forces is
simply

where f is the force density.

8Wnc = 1f 8wdD
D .

(7.254)
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Next, we consider the variation in the potential energy, Eq. (7.252), in the form

ov=1 TVw·oVwdD+ (kwowds=ITvw,vowdD+{ kwowdS
D l~ D l~

, (7.255)
But, from Ref. 8, we can write the relation

uV2v = uV . Vv = V . (uVv) -Vu . Vv (7.256)

where V2 = V· V is the Laplacian, which is equal to the divergence of the gradient.
Hence, letting u = ow, v = w, Eq. (7.255) becomes

OV = 1T [v . (owVw) - owV2w] dD + { kw ow dS (7.257)
D l~

At this point, we invoke the divergence theorem (Ref. 4)

Lv. AdD = l An dS (7.258)

in which An is the component of the vector A along the exterior normal to boundary
aw

S, so that, letting A = owVw, dAn = -ow, Eq. (7.257) can be rewritten asan
ov = -1 TV2wowdD + { Taw owdS + { kwowdS

D ls an lS2
-1 TV2wowdD + { Taw owdS + { (Taw + kW) owdS

D lSI an lS2 an
(7.259)

Moreover, by analogy with the one-dimensional case, Eq. (7.12),

lt

2

oT dt = -lt2

1 pw ow dDdt (7.260)
tl tl D

Inserting Eqs. (7.254), (7.259) and (7.260) into the extended Hamilton's principle,
Eq. (7.4), we obtain

it2 [L (TV2w - pw + f) owdD

~ { T aw ow dS + { (T aw + kW) ow dS] dt = 0 (7.261)l~ an l~ an
Finally, using the usual argument, we conclude that Eq. (7.261) can be satisfied for
arbitrary ow in D and on S if and only if w satisfies the partial differential equation

TV2w + f = pw in D (7.262)

and, in addition, either
aw

T- = OonS!an (7.263a)
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w = 0 on 51

aw
T- + kw = 00n52an
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(7.263b)

(7.264)

<l

The boundary-value problem consists of the partial differential equation (7.262) to
be satisfied over D and appropriate boundary conditions. For a membrane fixed
at every point of 51 and supported by a spring at every point of 52, the boundary
conditions consist of Eqs. (7.263b) and (7.264). On the other hand, if the membrane
is free at every point of 51, instead of being fixed, the boundary conditions consist
of Eqs. (7.263a) and (7.264).

To derive the differential eigenvalue problem, we follow the established pro-
cedure, i.e., we let f = 0, assume that w = W F, where \y. depends on the spatial
position alone and F c:Iependson time alone and satisfies F = -'AF, eliminate the
time dependence from the boundary-value problem, Eqs. (7.262)-(7.264), and obtain
the partial differential equation

'A = ui over D (7.265)

Moreover, for a membrane fixed at every point of 51 and spring-supported at every
point of 52,51 + 52 = 5, we obtain the boundary conditions

W = 0 on 51

aw
T - + k W = 0 on 52an

and if the membrane is free at every point of 51, the boundary conditions

aw
T- = 00n51an

aw
T - + k W = 0 on 52an

(7.266a)

(7.266b)

(7.267a)

(7.267b)

The just derived eigenvalue problem is of the special type given by Eqs. (7.68)
and (7.69) in which we identify the stiffness operator and the mass density

m = p in D (7.268a, b)

Moreover, for a membrane fixed at all points of 51 and spring-supported at all points
of 52, the boundary operators are

Ion 51
a

T - + k on 52an

(7.269a)

(7 .269b)

--~
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The system is self-adjoint and positive definite for both types of boundary con-
ditions. To verify self-adjointness, we consider two comparison functions u and v,
use Eqs. (7.256) and (7.258), where in the latter A = uVv, and write

L uLvdD = - L uTV2vdD = - L T[V· (uVv) - Vu· Vv] dD

1TVu· VvdD -1Tu
OV

d5
D . s~ .}n

ffL TVu . Vv dD + l2.k~:~5 (7.271)

which is symmetric in u and v. Hence, as anticipated, the operator L, and hence the
system, is self-adjoint. It follows that the eigenvalues are real and the eigenfunctions
are real and orthogonal. The eigenfunctions can be normalized so as to satisfy the
orthonormality relations

L pWrWsdD

L WrLWsdD

and if the membrane is free at all points of 51, they are

o
T - on 51on

o
T - + k on 52on

Drs, r,s = 1,2, ...

-L TWrV2WsdD

= j TVWr· VWsdD + [ kWrWsd5
D JS2

r, S = 1,2, ...

(7.270a)

(7.270b)

(7.272a)

(7.272b)

(7.273)

Moreover, to verify positive definiteness, we let v = u in Eq. (7.271) and obtain

[ULUdD=jTVU,VUdD+ [ku2d5JD D J~
= [TIIVuIl2 dD + [ ku2 d5 = IIull1 > 0JD JS2

where IIu II E is the energy norm. Clearly, the energy norm is positive for nontrivial
u, so that the operator L, and hence the system, is positive definite. It follows that
all the eigenvalues are positive, a fact already taken into account when the time
dependence was assumed to be harmonic.

In the above discussion, we carefully avoided reference to any particular set
of coordinates. The deflection w can be given in terms of rectangular coordinates
and time or curvilinear coordinates and time. Accordingly, the Laplacian V2 can be
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expressed in terms of rectangular or curvilinear coordinates. As pointed out earlier
in this section, the shape of the boundary dictates the choice of coordinates, because
the only way we can deal effectively with boundary conditions is by formulating the
problem in terms of coordinates capable of matching the shape of the boundary. In
fact, there are only a few boundary shapes permitting closed-form solutions. We
confine our discussion to rectangular and circular membranes.

i. Rectangular membranes

Under consideration is a rectangular membrane extending over a domain D defined
by 0 < x < a and 0 < y < b. The boundaries of the domain are the straight
lines x = 0, a. and y = 0, b. If we assume that the mass density is constant, then
Eq. (7.265) can be written in the form

x, y in D (7.274)

where the Laplacian in rectangular coordinates has the expression

32 32
V2 = _ + _

3x2 3y2

For a membrane fixed at all boundaries, the boundary conditions are

(7.275)

W(O, y) = 0,

W(x, 0) = 0,

W(a, y) = 0

W(x, b) = 0

(7.276a, b)

(7.276c, d)

and we note that they are all geometric boundary conditions. The differential equa-
tion, Eq. (7.274) together with the boundary conditions, Eqs. (7.276), constitute the
eigenvalue problem.

Equation (7.274) can be solved by the method of separation of variables. To
this end, we let the solution have the form

W(x, y) = X(x)Y(y)

Upon substitution in Eq. (7.274), we obtain

d2X(x) d2y(v).,
--2 -.y(v) + XIx) 2' + R-X(X)Y(v) = 0

dx' dy ~ .

which can be divided through by X (x) Y (y) to yield

1 d2 X(x) 1 d2y(v) .,-- . + - . + /3- = 0
X(x) dx2 Y(y) dy2

This leads to the equations'

(7.277)

(7.278)

(7.279)

(7.280a)

(7.280b)
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(7.281)

The solution of Eq. (7.280a) is

X(x) = C1 sin ax + C2 cosax

and the solution of Eq. (7.280b) is

Y(y) = C3 sin yy + C4 cos yy

so that, introducing Eqs. (7.282) into Eq. (7.277), we obtain

W(x, y) = Al sin ax sin yy + A2 sin ax cos yy

+ A3 cosax sin yy + A4 cosax cos yy

(7.282a)

(7.282b)

(7.283)

where A1, A2, A3 and A4, as well as a and y, must be determined by using the
boundary conditions.

Boundary condition (7.276a) gives

W(O,y) = A3 sin yy + A4cosyy = 0 (7.284)

which can hold true for all y, assuming that y =I=- 0, if ap.donly if A3 and A4 are zero.
Assuming that A3 and A4 are zero, boundary condition (7.276b) yields

W (a, y) = Al sinaa sin yy + A2 sinaa cos yy = 0 (7.285)

which can be satisfied if Al and A2 are zero. This would give the trivial solution
W (x, y) = 0, however, so that we must consider the other possibility, namely,

sinaa = 0 (7.286a)

Similarly, boundary condition (7.276c) leads us to the conclusion that A2 = A4 = 0,
whereas boundary condition (7.276d) gives

sin y b = 0 (7.286b)

Equations (7.286) play the role of characteristic, or frequency equations, because
together they define the eigenvalues of the system. Indeed, Eq. (7.286a) yields the
infinite set of discrete roots

m = 1,2, ... (7.287a)

and Eq. (7.286b) gives another infinite set of roots, or

Ynb = nrr, n = 1,2, ... (7.287b)

It follows from Eqs. (7.281) and (7.287) that the solution of the eigenvalue problem
consists of the eigenvalues

m,n 1,2, ... (7.288)
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and from Eq. (7.283) that the corresponding eigenfunctions are

. mrrx . nrry 2. mrrx . nrry
Wmn = Amnsm--sm-- = ---sm--sm--,

a b .J pab a b
m, n = 1,2, ...

(7.289)
where the eigenfunctions have been normalized so as to satisfy J; J; p W,~ndx dy =
l(m, n = 1,2, ... ). Moreover, from Eqs. (7.274) and (7.288), the natural frequencies
are

m,n=I,2, ... (7.290)

(7 .291a)

We have shown earlier that the problem is self-adjoint and positive definite. From
Eqs. (7.272), the orthonormality relations are

lQ lb

pWmn (x, y) Wrs (x. y) dx dy

(7.291b)

where Amn = w~n' The first four eigenfunctions are plotted in Fig. 7.17. The nodes
are straight lines; the number of nodal lines parallel to the x axis is n - 1 and the
number parallel to the y axis is m - 1.

We note that some but not all of the higher natural frequencies are integer
multiples of the fundamental frequency, Wl/lm = mWll. For example, W12 is not an
integer multiple of WII. Hence, the sounds produced by vibrating membranes are
not as pleasant as the sounds produced by strings or any other system with harmonic
overtones.

In the special case in which the ratio R = a/b is a rational number, we have
repeated natural frequencies WlIln = Wrs if

(7.292)

For a ratio R = 4/3, we note that W35 = WS4, WS3 = W46, etc. For a square
membrane, a = b, Eq. (7.292) reduces to

'1 '1 .., '1m~ + n- = r~ + s~ (7.293)

in which case we obtain repeated frequencies WIIlIl = WIlIll• Hence, two distinct
eigenfunctions WIl1I1 and WIlIll belong to the same eigenvalue, so that there are fewer
eigenvalues than eigenfunctions. Such a case is said to be degenerate. As in the case
of discrete systems, any linear combination of eigenfunctions belonging to repeated
eigenvalues is also an eigenfunction. They are characterized by a large variety of
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m = 1, n ,; 1

m = 1, n = 2
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Figure 7.17 The first four modes of vibration of a uniform rectangular membrane
fixed on all sides
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(7.295)

nodal patterns. For the square membrane, the nodal lines are no longer straight
lines except in special cases. The reader who wishes to pursue this subject further is
referred to the text by Courant and Hilbert (Ref. 1, p. 302).

ii. Circular membranes

We consider a uniform circular membrane extending over a domain D defined by
o < r < a. The boundary of the domain is the circle S given by the equation r = a.
Using the polar coordinates rand e, the differential equation is

2 puiv2w (r, e) + ,B2W (r, e) = 0, ,B = -, r, e in D (7.294)
T

where the Laplacian in polar coordinates is given by

cP 1 a 1 a2

V2 = _ + -- + --
or2 r ar r2 ae2

Assuming a solution of the form

W (r. e) R(r)e(e) (7.296)
..

Eq. (7.294) reduces to

(
d2R 1dR) R d2e-.-+-- e+--+,B2Re=0

dr2 r dr r2 de2

which can be separated into

d2e-- + m2e = 0
de2

d
2

RId R (2 m
2)

dr2 + ~dr + ,B - 7i R = 0

(7.297)

(7.298a)

(7 .298b)

where the constant m2 has been assumed to be positive so as to obtain a harmonic
solution for e. Furthermore, because the solution must be continuous, implying that
the solution at e = eo must be identical to the solution at e = eo+ j2n (j = 1,2, ... )
for any value eo, m must be an integer. Hence, the solution of Eq. (7.298a) is

em (e) = Clm sinme + C2m cosme, m = 0,1,2, ... (7.299)

Equation (7.298b), on the other hand, is a Bessel equation and its solution is

m = 0,1,2, ... (7.300)

(7.301)

where Jm (,Br) and Ym (,Br) are Bessel functions of order m and of the first and
second kind, respectively. The general solution can be written in the form

Wm(r, B) = AlmJm (,Br) sin me + A2mJm (,Br) cosme

+ A3mYm (,Br)sinme + A4mYm (,Br) cosme,

m = 0, 1, 2, ...
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o

o

x

x

Figure 7.18 The zeros of the Bessel functions Jo(x) and J1 (x)

Next, we consider a membrane fixed at the boundary r = a, so that the bound-
ary condition at r = a is

Wm(a,e) = 0, m = 0, 1, 2, ... (7.302)

At every interior point of the membrane the displacement must be finite. But Bessel
functions of the second kind tend to infinity as the argument approaches zero. It
follows that A3m = A4m = 0, so that Eq. (7.301) reduces to

Wm(r,e) = A1mJm({3r)sinme + A2mJm({3r)cosme, m = 0,1,2, ...
(7.303)

At r = a, however, we have

Wm (a, e) = A1mJm ({3a) sin me + A2mJm ({3a) cosme = 0,

regardless of the value of e. This can be satisfied only if

m = 0,1,2, ...
(7.304)

Jm ({3a) = 0, m = 0, 1, 2, ... (7.305)

Equations (7.305) represent an infinite set of characteristic equations, or frequency
equations, as for every m there is an infinite number of discrete solutions {3mncor-
responding to the zeros of the Bessel functions Jm. As an illustration, the Bessel
functions of zero and first order are plotted in Fig. 7.18. The intersections with
the x-axis provide the roots {3mna, from which we obtain the natural frequencies
UJmn = {3mn,JT / p. For each frequency UJmn there are two modes, except when
m = 0, for whic~ we obtain only one mode. It follows that for m =j:. 0 the natural
modes are degenerate. The modes can be written as

WOn(r,e) = AonJo({30nr), n = 1,2, ...

Wmnc(r,e) Amnc cosme,
Jm ({3mnr) m, n

Wmns (r, (3) = Amns sinmO,

(7.306a)

1,2, ... (7.306b)
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The problem is self-adjoint and positive definite, so that the natural modes are or-
thogonal. From Eqs. (7.272), we can write the orthonormality relations

L pWmn Wpq dD

L WmnLWpqdD

(7.307a)

(7.308)

where AlIln = W~1I1' To normalize the natural modes, we write (Ref. 7, p. 190)

LPW5ndD 12Jrl(/PA6,,15({3onr)rdrde = rrpa2A6nJ12 ({3ona) = 1

so that
(7.309)

Also

(7.310)

or

Similarly,

2

rrpa2 J~+1 ({3mna)
(7.311)

Wan (r, e)

2
A~lns = --2-2----

rrpa Jm+1 ({3mna)

The orthonormal modes take the form
1

FiT7i J ({3 ) Jo ({3onr) , n = 1,2, ...
yrrpa 1 ana

(7.312)

(7.313a)

WlIlnc (r, e)
Wmns (r, e)

0: e
J ( R ) cos m ,

------- III fJmnr . eNaJIIl+1({3mna) .. smm ,

m, n = 1,2, ... (7.313b)

They are plotted in Figs. 7.19 and 7.20. The nodal lines are circles r constant
and straight diametrical lines e = constant. For m = 0, there are no diametrical
nodes and there are n - 1 circular nodes. The first three modes Wan are plotted in
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m = 0, n = 1

m = 0, n = 2

m = 0, n = 3

W01 = 2.405 ~ T2
pa

W03 = 8.654 ~ T2pa

Figure 7.19 The three lowest symmetric modes of a uniform circular membrane
fixed at r = a

Fig. 7.19. For m = 1 there is just one diametrical node and n -1 circular nodes. The
first two modes, Wllc and W12c, are plotted in Fig. 7.20. In general, the mode Wmn
has m equally spaced diametrical nodes and n - 1 circular nodes (the boundary is
excluded) of radius ri = (f3mi/ f3mn) a (i = 1,2, ... , n -1).

Note that, for very large arguments, we have the relation

(7.314)
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m=l,n=l
(U

ll
= 3.832 j T2pa

Figure 7.20 The two lowest antisymmetric modes of a uniform circular membrane
fixed at r = a

so that the frequency equation, Eq. (7.305), leads us to the conclusion that, for very
large n, the natural frequencies can be approximated by

(7.315)

where both m and 11 are integers.

7.13 VIBRATION OF PLATES

In contrast to membranes, plates do have bending stiffness in a manner similar to
beams in bending. There is one difference between beams and plates in bending,
however. The beam is essentially a one-dimensional system. When a differential
beam element bends, a portion of the material undergoes tension and the remaining
portion undergoes compression, with the neutral axis acting as the dividing line
between the two regions. The part in tension tends to contract laterally and the
part in compression tends to expand. As long as the width of the beam is small,
this lateral contraction and expansion is free to take place, and there are no lateral
stresses. This is the essence of the ordinary beam theory. As the width of the beam
increases, this effect tends to bend the cross section, so that a curvature is produced
in the plane of the cross section, in addition to the curvature in the plane of bending.
Let us now consider a plate and imagine for the moment that the plate is made up of
individual parallel beams, obtained by dividing the plate by means of vertical planes,
and focus our attention on material elements belonging to two such adjacent beams.
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When undeformed, they share a lateral surface that is part of the dividing vertical
plane. If allowed to behave like beams in bending, when the plate begins to bend
these two adjacent beam elements would expand and contract laterally, so that in
expanding each element would cross the dividing surface and occupy space belonging
to the adjacent element, and in contracting each element would pull away from the
dividing surface, resulting in a void in the material. In reality, this situation is not
possible, so that internal lateral stresses must arise to prevent it from happening.
Furthermore, in the case of plates one can think of two planes of bending, producing
in general two distinct curvatures. In addition to bending, there is also twist present,
because an element of plate area can be regarded as belonging to two orthogonal
strips, so that bending of one strip can be looked upon as twisting of the orthogonal
strip.

The elementary theory of plates is based on the following assumptions:

1. Deflections are small when compared with the plate thickness.
2. The normal stresses in the direction transverse to the plate can be ignored.
3. There is no force resultant on the cross-sectional area of a plate element. The

middle plane of the plate does not undergo deformations during bending and
can be regarded as a neutral plane.

4. Any straight line normal to the middle plane before deformation remains a
straight line normal to the neutral plane during deformation.

These assumptions are reasonable for a relatively thin plate with no forces acting in
the middle plane.

The boundary-value problem for a plate in bending vibration can be obtained
by means of the extended Hamilton's principle, Eq. (7.4). To this end, we will find it
convenient to begin with a description of the motion in terms of rectangular coordi-
nates. The potential energy can be shown to have the expression (Ref. 15)

v = ~ r DE I(V2W)2 + 2 (1 _ v) [( cPW )2 _ a2~ a2~]] dD (7.316)
2 JD axay ax ay

where

(7.317)

(7.318)

is the plate flexural rigidity, in which E is Young's modulus, h the plate thickness
and v Poisson's ratio. The kinetic energy is simply

T=~lmu}dD2 D
and the virtual work of the non conservative forces is given by

8W = Lf8W dD

~--_._-----~._._._-- --------

(7.319)
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where f is the force density. Note that, for simplicity, we assumed that there are no
lumped masses and springs at the boundaries.

The variation in the potential energy has the form

1 { [o2W a2w o2w o2W
8V = DE V2w 8V2w + (1- v) --8-- + --8--

D oxoy oxoy oyox oyox

o2w o2w a2w o2W]}--8- - -8- dD (7.320)
ox2 ox2 oy2 ay2

To render 8V in a form involving variations in the displacement and the first partial
derivatives of the displacement with respect to x and y alone, we use the relation
(Ref. 8)

(7.321)

"

Then, assuming that the variation and differentiation processes are interchangeable,
letting u = 8w, v = wand using the divergence theorem, Eq. (7.258), it can be
shown that for uniform flexural rigidity Eq. (7.320) reduces to

8V = l D£V4w 8w dD

+ r DE {[~ (o2~ + v o2~) + (1 _ v) o32W] 8wdx1s oy oy ox ox oy

a2w a8w (a2w o2W) o8w
- (1 - v)----dx - - + v- -dx

oxoy ox oy2 ox2 oy .

[
~ (o2W + v o2W) + (1 _ v) o3w ] 8w dy
ox ox2 ay2 oxoy2

o2w o8w (o2W o2W) o8w }+ (1 - v)----dy + - + v- -dy (7.322)
oxoy oy ox2 oy2 dx

where V4 = V2V2 is known as the biharmonic operator. Equation (7.322) can be
expressed in terms of moments and forces by introducing the formulas (Ref. 13)

(7.323a)

(7.323b)

(7.323c)

_______________ !!!!!!!!'!""'~!!!!!!!!!!!!!!!!!!!!! """""!"!!!!!!!__ --~---,""", --..-"'~-,~_-.,-__-.. -•• - -.J
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aMx + aMxy (7.323d)
ax ay

-DE [~ (a
2
w + v a

2
w) + (1 _ v) a

2
w ]

ay ay2 ax2 ax2ay
aMy aMxy- + -- (7.323e)ay ax

where Mx and My are bending moments, Mxy is a twisting moment and Qx and Qy
are shearing forces. Inserting Eqs. (7.323) into Eq. (7.322), we obtain

8V = L DEV4w8wdD

1{[ (aMy aMxy) a8w a8W]+ - -- + -- 8w + Mx -- + M -- dxs ay ,ax y ax y ay

+ [(aMx + aMxy) 8w _ Mx a8w _ Mx a8W] dY}
ax ay y ay ax

f DEV4w8wdD+ f[(_Qy8W+Mxya8W + Mya8W)dX -iD is ax ay

+ ( Qx 8w - Mxy a:; - Mx a::) dY] (7.324)

At this point, we wish to express the boundary integral in terms of components
normal and tangent to the boundary, nand s, respectively. To this end, we refer to
Fig. 7.21 and write

dx
a

ax
a

ay

-ds sin</>, dy = ds cos</>
a an a as a a-- + -- = cos</>- - sin</>-an ax as ax an as
a an a as a a-- + -- = sin</>- + cos</>-an ay as ay an as

(7.325)

n

x

Figure 7.21 Tangential and normal directions at a plate boundary
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(7.326)

(7.327)

(7.328)

(7.329)

Moreover, the moments and forces transform as follows (Ref. 1~):

Mx cos2 ¢ + 2Mxy sin ¢ cos ¢ + My sin2 ¢ = Mil

(My - Mx)sin¢cos¢ + Mxy (CO~2¢ - sin2¢) Mils

Qxcos¢ + Qysin¢ = Qn

Introducing Eqs. (7.325) and (7.326) into Eq. (7.324), we have

OV = 1DEV4wowdD + {(-Mn aow - Mns aow + Qn ow) ds
D 1s an as

Equation (7.327) is still not in a form suitable for the derivation ofthe boundary-value
problem. Indeed, the boundary integral would lead to three boundary conditions to
be satisfied at every point of S, when in fact only two are called for. To resolve this
apparent paradox, we carry out the following integration by parts

1 aow I 1aMnsMns --ds = Mnsow - --owds
s as s s as

If S is a closed smooth curve, then Mnsowls = 0, and Eq. (7.328) reduces to

1 aow 1aMllsMilS--ds = - --ow ds
s as s as

Inserting (7.329) into Eq. (7.327), we obtain the variation in the potential energy in
the desired form

If S is not a smooth curve, as in the case in which the boundary is in the form of
a polygon, the term Mllsowis gives rise to a so-called corner condition (Ref. 13).
For a clamped corner, or a simply-supported corner, ow = 0 and for a free corner
MilS = O. With the proviso that the term Mllsowis is either zero or is handled
separately, we accept 0 V as given by Eq. (7.330).

Using Eq. (7.318) and recalling that ow vanishes at t = t], t2, we can carry out
an integration by parts with respect to t and write

[

12

oT dt =
11

[121 1 [12 aw amwowdD dt = m--.owdtdD
11 D D I, at at

1 [a w 1

12 [12 a ( a w) ]m-ow - - m-- owdt dD
D at II 11 at at

. 12

=. - { 1mwowdDdt
. 111 D

(7.331)
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Inserting Eqs. (7.319), (7.330) and (7.331) into the extended Hamilton's prin-
ciple, Eq. (7.4), we obtain

[t2

{- L (DEV4
W + mw - f) owdD

+ i [Mn 0 ~: ~ ( Qn + o~ns) ow] dS} dt = 0 (7.332)

Then, using the customary arguments concerning the arbitrariness of the virtual
displacements, we conclude that Eq. (7.332) is satisfied if and only if .

-DEV4
W + f = mfiJ in D (7.333)

and either
Mn = 0 on S

or ow = 0 on Son
and either oMns

Qeff = Qn + ----a;- = 0 on S

where Qeff denotes an "effective" shearing force, or

w = 0 on S

(7.334a)

(7.334b)

- . (7.335a)

(7.335b)

The boundary-value problem consists of the partial differential equation Eq. (7.333)
and two boundary conditions, one from Eqs. (7.334) and one from Eqs. (7.335).

The relations between the moments and shearing forces and deformations, in
terms of normal and tangential co0.rdinates (see Problem 7.43), are

Mn = -DEV2W + (1 - v) DE (~ ow + 02
W

) ...
- R on os21,~

Mns -(1 - v)De (:~;S- ~~:)
o 2

Qn = -DE-V won
where the Laplacian has the form

(7.336a)

(7.336b)

(7.336c)

02 1 0 02
V2 = - + -- + - (7.337)

on2 R on OS2

in which R is the radius of curvature of the boundary.
Boundary condition (7.335a) is associated with the name of Kirchhoff and is

of some historical interest. Poisson believed that Mn, Qn and Mns must be inde-
pendently zero at a free boundary, yielding a total of three boundary conditions,
one too many for a fourth-order differential equation. Later, however, Kirchhoff
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cleared up the problem by pointing out that Qn and Mns are related as indicated
by Eq. (7.335a). If variational principles are used to formulate the boundary-value
problem, the boundary conditions are obtained both in the right number and in the
correct form.

To derive the eigenvalue problem, we let f = 0 and assume a solution in the
form

w = WF (7.338)

where W depends on the spatial coordinates only and F is a time-dependent har-
monic function of frequency w. Then, following the usual steps involved in the
separation of variables, the differential equation, Eq. (7.333), reduces to

DEV4W = AmW, A = w2
, inD (7.339)

As mentioned earlier in this section, the boundary conditions to be satisfied at every
point of S must be chosen from Eqs. (7.334) and (7.335)"on the basis of physical
considerations. For example, at a clamped edge, the displacement and slope must be
zero. Hence, using Eq. (7.338) and dividing through by F, the boundary conditions
for a clamped edge are simply

aw =0an
Moreover, from Eqs. (7.335b) and (7.334a), with due consideration to Eq. (7.336a),
the boundary conditions for a simply supported edge become

2 (1 a W a2 W)v W - (1 - IJ) -- + - = 0
R an as2

and, because W does not vary along the edge, Eqs. (7.341) assume the simplified
form

W = 0,

W = 0, (7.340a, b)

(7.341a, b)

(7.343b)

(7.343a)

a2W IJ oW
W = 0, - + -- = 0 (7.342a,b)

an2 R an

Similarly using Eqs. (7.334a) and (7.335a), in conjunction with Eqs. (7.336), the
boundary conditions along a free edge are

2 ( 1 oW a
2

W )v W - (1 - IJ) R an + as2 = 0

a a (a
2
W laW)-v2w + (1 - IJ) - -- - -- = 0

an as an as R as

. Again, we must recognize that the eigenvalue problem for the transverse vibra-
tion of uniform plates fits the pattern of Sec. 7.5. In this case, the stiffness operator
and mass density are

M=m (7.344)

and it follows that the eigenvalue problem is of the special type, in the sense that M
is a mere function and the boundary conditions do not depend on A.
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Before proceeding to the solution of the eigenvalue problem for some cases of
interest, we propose to derive a criterion for the self-adjointness of L, and hence of
the system. To this end, we let u and v be two comparison functions, use Eq. (7.321),
consider the divergence theorem, Eq. (7.258), and write

L uLv dD = L DEu\74v dD

L DE [\7 . (u\7\72V) - \7 . (\72v\7u) + \72u\72V] dD

[ DE (u~\72V - \72v au) ds + [DE\72u\72VdD (7.345)Js an an JD
If the integral over the boundary S vanishes, the right side ofEq. (7.345) is symmetric
in u and v and the eigenvalue problem is self-adjoint. This is the case when the
boundary points are simply supported, clamped, or free. Note that when some or
all boundary points are supported by springs, the potential energy, Eq. (7.316), must
be modified so as to include a boundary term of the type ~ Is kw2 d S. In this case,
the integral over the boundary S in Eq. (7.345) does not vanish but is symmetric in
u and v, so that the eigenvalue problem is once again self-adjoint.

For self-adjoint systems the eigenvalues are real and the eigenfunctions are real
and orthogonal. We assume that the eigenfunctions have been normalized so as to
satisfy the orthonormality conditions

LmWrWsdD=8rs, r,s 1,2, ...

f DeWr\74WsdD = Ar8rs, r,s = 1,2, ...
D .

(7.346a)

(7.346b)

As in the case of vibration of thin membranes, the shape of the boundary
dictates the type of coordinates to be used. For plates, however, the satisfaction
of the boundary conditions turns out to be a much more formidable task than for
membranes. Only rectangular and circular plates will be discussed here.

The boundary-value problem defined by the differential equation (7.333) and
boundary conditions from Eqs. (7.334) and (7.335) and the eigenvalue problem de-
fined by the differential equation (7.339) and boundary conditions from Eqs. (7.340)-
(7.343) are for plates of constant flexural rigidity alone. If the flexural rigidity is not
constant, such as when the plate thickness varies, additional terms must be included
(Ref. 15). No closed-form solutions can be expected for variable-thickness plates.

The plate theory presented here ignores shear deformation and rotatory inertia
effects and is known as the classical plate theory. An extension of the theory so as
to include shear deformation in the static deflection of plates was carried out by
Reissner (Ref. 12) and to include both shear deformation and rotatory inertia in the
vibration of plates by Mindlin (Ref. 10). For a discussion of Mindlin's higher-order
plate theory, see the monograph by Leissa (Ref. 6).
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i. Rectangular plates

We consider a uniform rectangular plate extending over a domain D defined by° < x < a and ° < Y < b. The boundaries of the domain are the straight lines
x = 0, a and Y = 0, b. Equation (7.339), in rectangular coordinates, takes the form

o}m
f34 = --. x, V in DIh . (7.347)

where the biharmonic operator is given by

a4 a4 a4
V4 = V2V2 = - + 2--- + -ax4 ax2ay2 ay4

Equation (7.347) can be expressed in the operator form

(V4 _ f34) W(x, y) = (V2 + f32) (V2
- f32) W(x. y) = °

(7.348)

(7.349)

which permits us to write

(V2 - f32) W = WI, (7.350a. b)

(7.351)

Because f32 is constant, the solution of Eq. (7.350a), and hence the solution of
Eq. (7.347), is

where W2 is the solution of the homogeneous equation

(V2
- f32) W2 = [V2 + (if3)2J W2 = ° (7.352)

We note here that the proportionality factor -1/2f32 multiplying WI in Eq. (7.351)
was omitted as irrelevant, because WI is obtained by solving a homogeneous equa-
tion, Eq. (7.350b). Equation (7.350b) resembles the equation for the vibration of
a thin uniform membrane, whose general solution was obtained in Sec. 7.12 in the
form of Eq. (7.283). Moreover, Eq. (7.352) has the same form as Eq. (7.350b), ex-
cept that f3 is replaced by if3. Hence, the solution of Eq. (7.352) can be obtained
from Eq. (7.283) by replacing the trigonometric functions by hyperbolic functions.
It follows that the general solution of Eq. (7.347) is

W(x, y) = AI sin ax sin yy + A2 sin ax cos yy + A3cosax sin yy

+ A4cosaxcosyy + AssinhalxsinhYlY

+ A6sinh alx cosh Y1Y + A7cosh alx sinh YIY

+ A8·coshalxcoshYIY. a2 + y2 = a~ + Y? = f32 (7.353)

We consider a simply supported plate. Because for a straight boundary the
radius of curvature R is infinite the boundary conditions, Eqs. (7.342), reduce to

a2w
W = 0, = 0, x = 0, a (7.354a, b)ax2

a2w
W = 0, = 0, Y = 0, b (7.354c. d)

ay2

-----------~!!!!!!!!!!!!"'_---~'!'!"""""'----~-~~~--"""~
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Upon using boundary conditions (7.354), we conclude that all the coefficients Ai,
with the exception of Al, vanish and, in addition, we obtain the two characteristic
equations

Their solutions are

sinew = 0,

Ynb = nrr,

sin yb= 0

m = 1,2, ...

n = 1,2, ...

(7.355a, b)

(7.356a)

(7.356b)

so that the natural frequencies of the system become

m, n = 1,2, ... (7.357)

and the corresponding natural modes, normalized so that foGft m W;ndx dy = 1,
are

2 . mrrx . nrry
Wmn(x, y) ,= --- sm -- sm --,

..jmQb a b

which are identical to the modes of the clamped rectangular membrane. However,
the natural frequencies are different from those of the membrane.

It is easy to see that boundary conditions (7.354) render the boundary integral in
Eq. (7.345) zero, so that the eigenvalue problem is self-adjoint. It follows immediately
that the eigenfunctions are orthonormal, satisfying Eqs. (7.346).

A special class of eigenvalue problems for rectangular plates admitting closed-
form solution is characterized by the fact that two opposing sides are simply sup-
ported. The interesting part is that attempts to obtain closed-form solutions by
means of Eq. (7.353) do not bear fruit. An approach yielding results uses experience
gained from the simply supported plate to assume a solution separable in x and y in
which the part associated with the simply supported sides is given. To illustrate the
approach, we consider a plate simply supported at x = 0, a and clamped at y = 0, b.
Then, consistent with results obtained for the plate simply supported on all sides, we
assume a solution of the form (Ref. 14)

m, n = 1,2, '" (7.358)

(7.359)

o < y < b (7.360)

in which, according to Eq; (7.356a), am = mrrja (m = 1,2, ... ). Inserting Eq.
(7.359) into Eq. (7.347), recalling Eq. (7.348) and dividing through by sin amx, we
obtain

d
4

Ym (y) _ 2 2 d
2

Ym (y) + ( 4 _ (34) Y () 0
4 am 2 am m m Y = ,dy dy

where, in view of Eqs.(7.340), Ym must satisfy the boundary conditions

Ym = 0,
dYm
-=0dy , y = O,b (7.361a, b)

---------- ------~~------ --------- .. ---- ~._. -
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The solution of Eq. (7.360) has the exponential form

Ym(Y) = AesmY (7.362)

Inserting Eq. (7.362) into Eq. (7.360) and dividing through by eSmY, we obtain the
characteristic equation

(7.363)

which represents a quadratic equation in s;. The solutions of Eq. (7.363) can be
shown to be

so that solution (7.362) can be rewritten as

iJfJ~ - a~
(7.364)

Ym(Y) =' AleSlmY + A2eS2mY + A3eS3mY + A4eS4mY

= Cl cosh YlmY + C2 sinh YlmY + C3 COS Y2mY + C4 sin Y2mY

Introducing Eq. (7.365) into Eqs. (7.361), we obtain

(7.365)

Ym(O)

Y~ (0)

Ym(b)

Y~(b) =

Cl + C3 = 0

C2Ylm + C4Y2m = 0

Cl cosh Ylmb + C2 sinh Ylmb + C3 cos Y2mb + C4 sin Y2mb = 0

ClYlm sinh Ylmb + C2Ylm cosh Ylmb

- C3Y2m sin Y2mb + C4Y2m COS Y2mb = 0
(7.366)

where primes denote derivatives with respect to y. Equations (7.366) have a solution
provided the determinant of the coeficients is zero, or

1 0 1 0

0 Ylm 0 Y2m

cosh Ylmb sinh Ylmb cos Y2mb sin Y2mb

Ylm sinh Ylmb Ylm cosh Ylmh -Y2m sin Y2mb Y2m cos Y2mb

= 2YlmY2m(1- COShYlmhcosY2mb)

+ (Y?m - yim) sinh Ylmb sin Y2mb = 0, m = 1,2, ... (7.367)

Equations (7.367) with Ylm and Y2m given by Eqs. (7.364) represent an infinity of
characteristic equations, one for every m, and each equation has an infinity of roots
fJm. We identify these roots by n = 1, 2, ... and denote the double infinity of roots
by fJ;n (m, n = 1,2, ... ). Then, inserting these values into Eqs. (7.364), we obtain

Ylmn = J fJ~n + a~, m, n = 1, 2, ... (7.368)
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Moreover, solving Eqs. (7.366) for C2, C3 and C4 in terms of C1 and using Eqs. (7.368),
we can write

Ymn(Y) = Cmn [ cosh YimnY - COS Y2mnY

cosh Ylmn b - COS Y2mn b ( .
- .. smh Ylmn Y

smh Ylmnb - (Ylmn/Y2mn) sm Y2mnb

Ylmn . )]- -- sm Y2mn Y ,
Y2mn

m, n = 1,2, . : . (7.369)

Finally, inserting Eq. (7.369) into Eq. (7.359), we obtain the desired eigenfunctions
in the general form

m, n = 1,2, ... (7.370)

Moreover, from Eq. (7.347), we conclude that the natural frequencies are

m,n = 1,2, ... (7.371)

No confusion should arise from the fact that the symbolm denotes both the mass
density and the first subscript in the natural frequencies and modes. We observe
from Eq. (7.368) that the quantities Ylmn and Y2mn, defining the dependence of the
eigenfunctions on y, are functions of the quantities am, defining the dependence of
the eigenfunctions on x. By contrast, in the case of a plate simply supported on all
sides, am and Yn are independent of one another.

The eigenvalue problem has been solved numerically for a plate of sides ratio
a/b = 1.5. Table 7.1 shows normalized natural frequenices for m, n = 1,2,3.

TABLE 7.1 Normalized Natural Frequencies

wmn = wmnb2 ,jml DE

I~ 1 2 3

1 25.043584 65.007865 124.51603
2 35.103815 75.604983 135.61235
3 54.743071 94.585278 154.77570

ii. Circular plates

Now we consider a uniform circular plate extending over a domain D given by
o < r < a, where the boundary S of the domain is the circle r = a. Because the
boundary is circular, we use the polar coordinates rand e, so that the differential
equation is

0, r, e in D (7.372)
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(7.373)

where the biharmonic operator, in polar coordinates, has the form

(
a2 1 a 1 (2) ( a

2 1 a 1 (2)V4 = V2V2 = - + -- + -- - + -- + --
ar2 r ar r2 ae2 ar2 r ar r2 ae2

Following the same pattern as for rectangular plates, Eq. (7.372) can be written in
the operator form

(7.374a, b)

which must be satisfied over the domain D. Equation (7.374a) has precisely the
same form as the equation 'for the vibration of circular membranes, Eq. (7.294),
so that its solution is given by Eq. (7.301), although the definition of (3 is not the
same as for membranes. Moreover, the solution of Eq. (7.374b) is obtained from
Eq. (7.301) by replacing (3 by i(3. The Bessel functions of imaginary argument,
1m (ix) and Ym (ix), are called modified or hyperbolic Bessel functions and denoted
by 1m (x) and Km (x), respectively. The hyperbolic Bessel functions are not equal to
the ordinary Bessel functions of imaginary argument but are proportional to them
(Ref. 7, p. 113). It follows that the solution of Eq. (7.372), which is the sum of the
solutions of Eqs. (7.374), has the form

Wm(r,e) = [Alm1m«(3r) + A3mYm«(3r) + Blmlm«(3r) + B3mKm«(3r)]sinme

+ [A2m1m «(3r) + A4mYm «(3r) + B2mlm «(3r) + B4mKm «(3r)] cosme,

m = 0,1,2, ... (7.375)

where Wm(r, e) is subject to given boundary conditions.
As an example, we consider the case of a clamped plate, for which the boundary

conditions are

W (a, e) = 0, aW(r, e) I = °
ar r=ll

(7.376a, b)

m = 0,1,2, ... (7.377)

In addition, the solution must be finite at every interior point. This immediately
eliminates Bessel functions of the second kind, Ym and Km, which become infinite
at r = 0. Hence, solution (7.375) reduces to

Wm (r,e) = [A1m1m «(3r) + BIII,Im «(3r)Jsinme

+ [A2m1m (/3r) + B2mlm «(3r)Jcosme,

B2m =

Boundary condition (7.376a) yields

1m «(3a) A
Blm = - 1m «(3a) 1m,

so that

1m «(3a) A
1m «(3a) 2m,

m = 0, 1, 2, ...

(7.378)

Wm (r, e) [
. _1m (_(3a) ] .1m (/3r) - 1m «(3r) (A 1m SInme + A2m cos me) ,

1m «(3a)
m = 0,1,2, ... (7.379)
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On the other hand, .boundary condition (7.376b) leads to the set of characteristic
equations

[
d. Jm (f3a),d ]
dr Jm (f3r) - 1m (f3a) dr 1m (f3r) r=a = 0, . m = 0,1,2, ...

But

d ' . [ m]-Jm .. (f3r) = f3 Jm-1 (f3r) - -Jm (f3r)
dr . f3r .

.!!..-lm (f3r) = ~'[lm-l (f3r) - m'lm (f3r)]
dr f3r

so that the set of characteristic equations reduces to

(7.380)

(7.381a)

(7.381b)

1m (f3a) Jm-1 (f3a) -1m (f3a) Im-l (f3a) = 0, m = 0,1,2, ... (7.382)
.. ,;

For a given m, we must solve :Eq. (7.382) numerically for the eigenvalues f3mn. The
natural frequencies are related to the eigenvalues by

2 [Pl' EWmn = f3mn -
, m .

(7.383)

For each frequency Wmn there are two corresponding natural modes, except for
m = 0, for which there is just one mode. Hence, as for membranes, all modes for
which m =I=- 0 are degenerate. The natural modes can be written in the form

WOn (r, e) = Aon [/0 (f3ona) Jo (f3onr) - Jo (f3ona) 10 (f3onr)] ,

n = 1,2, ... (7.384a)

Wmnc (r, e) = Amnc cosme,
Vm (f3mna) Jm (f3mnr) - Jm (f3mna) 1m (f3mnr)] .

Wmns (r, e) = Amns smme,

m, n = 1,2, ... (7.384b)

For m = 0, there are no diametrical nodes and there are n - 1 circular nodes. The
modes WOl and W02 are plotted in Fig. 7.22. For m = 1, there is one diametrical
node and n - 1 circular nodes. The mode Wllc is plotted in Fig. 7.23. Note that the
overtones are not harmonic.

It is easy to see that boundary conditions (7.376) render the boundary integral
in Eq. (7.345) equal to zero, so thatthe problem is self-adjoint. Consequently, the
natural modes are orthogonal.

Defining the modified Bessel functions of the first kind by the relation 1m (x) =
i-m Jm fix) and using Eq. (7.314), it can be shown that, for large argument, the
solutions of the characteristic equation, Eq. (7.382), tend to

'---_._-------~-----_._-

af3mn = (~ + n) 7T (7.385)
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m = 0, II = 1

In = 0, II = 2

l'igure 7.22 The two lowest symmetric modes of a uniform circular plate clamped
at r = Q

and, consequently, for large n, the natural frequencies tend to

(
m )2 Ji2 [D;

Wmll = "2 + n a2 V P (7.386)

Because of the limitations of the elementary plate theory, however, this result is only
of academic value.

In view of the fact that for circular plates the boundary r = a is a closed
smooth curve, the boundary integral in Eq. (7.345) simply vanishes. It follows that
eigenvalue problems for circular plates are self-adjoint, so that the natural modes
are orthogonal. Related to this is the fact that the boundary conditions for circular
plates can be satisfied by working with the radial variable r alone, with the angle
() playing no role. This explains why eigenvalue problems for circular plates admit
many more closed-form solutions than for rectangular plates (Ref. 6).

m=1.I1=l

Figure 7.23 111elowest antisymmetric mode of a uniform circular plate clamped
at r = Q
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7.14 VARIATIONAL FORMULATION OF THE DIFFERENTIAL EIGENVALUE
PROBLEM

In Chapter 4, we demonstrated that the algebraic eigenvalue problem can be formu-
lated as a variational problem consisting of rendering Rayleigh's quotient station-
ary. The extension of the approach to distributed systems can be advantageous at
times, particularly when a closed-form solution to the differential eigenvalue problem
proves elusive, and one must be content with an approximate solution.

Under consideration is a self-adjoint eigenvalue problem defined by the differ-
ential equation

Lw(x, y) = Am(X, y)W(X, y), A = ul, x, y in D (7.387)

where L is a differential operator of order 2p, and the boundary conditions

Biw(x, y) = 0, i = 1,2, ... , p, x, y on S (7.388)

(7.389)

in which Bi are boundary differential operators of maximum order 2p - 1. Multi-
plication of Eq. (7.387) by wand integration over D yields

1wLwdD = A 1mw2dD

which can be rewritten as

1wLw dD

1mw2
dD

Equation (7.390) represents Rayleigh's quotient for a distributed system. Clearly, if
w is an eigenfunction, say wr, then Rayleigh's quotient is the associated eigenvalue
Ar. In general, w can be regarded as a trial function, and the question arises as to the
behavior of Rayleigh's quotient as w varies over the K~P space (Sec. 7.5). To answer
this question, we invoke the expansion theorem, Eq. (7.101), and write

R(w) = A = v} -

00

w = LCrWr
r=l

(7.390)

(7.391)

where Wr (r = 1,2, ... ) are orthonormal eigenfunctions satisfying Eqs. (7.96). In-
troducing Eq. (7.391) into Eq. (7.390) and using the orthonormality relations (7.96),
we obtain

--------------.--- - --~----- _.

00

LC;Ar
r=l

00

LC;
r=l

(7.392)
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and we note that Rayleigh's quotient is now a function of the coefficients C1 , C2, ....

Hence, the first variation in Rayleigh's quotient is simply
00 dR

8R = L -8c; (7.393)
;=1 dC;

If the first variation 8R vanishes, then Rayleigh's quotient has a stationary value.
Because the coefficients C; are all independent, the stationarity conditions are

dR
- =0,
dC;

Introducing Eq. (7.392) into Eqs. (7.394), we obtain

(
00 ~)oo (00 ~)ooo 2 U0 2
~2Cr~Ar ~Cr - ~2Cr~ ~CrAr

(~c~y
dR

dC;

i = 1,2, ... (7.394)

If W coincides with one of the eigenfunctions, say W = Wi, then Cr = Ci 8ir (r =
1,2, ... ), where 8;r is the Kronecker delta. It follows that every term in the series
at the numerator of (7.395) is zero, except for the term corresponding to r = i,
and this latter term vanishes because Ai - Ar = 0 for r = i. Hence, conditions
(7.394) are satisfied when the trial function coincides with an eigenfunction, so that
Rayleigh's quotient has stationary points at the system eigenftmctions. These are the
only stationary points of Rayleigh's quotient. Letting W = CjWj in Eq. (7.392), we
conclude that

x x

2CiA; Lc; - 2c; LC;Ar
r=l r=l

x
2Ci L (A; - Ar) c;
__ r_=_l = 0,

(~c~y
i = 1,2, ...

j=I,2, ...

(7.395)

(7.396)

so that the stationary values of Rayleigh's quotient are precisely the system eigenvalues.
These results are to be expected, as they constitute Rayleigh's principle for self-
adjoint distributed systems and they represent the counterpart of Rayleigh's principle
demonstrated in Sec. 5.2 for symmetric discrete systems.

The variational characterization of the eigenvalue problem just presented is
equivalent to a certain form of the differential eigenvalue problem, Eqs. (7.387) and
(7.388). To show this, we multiply Eq. (7.387) by an admissible function v, integrate
over the domain D and write

1vLw dD = A 1mvw dD (7.397)
D D
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Then, integrating the left side of Eq. (7.397) by parts with due consideration to the
boundary conditions, Eqs. (7.388), we can write the result in the form

[v, w] = A (.j/11v, .j/11w) (7.398)

where [v, w] is an energy inner product, Eq. (7.84), and (...;mv, ...;mw) is a weighted
inner product. Equation (7.398) represents the weak form of the eigenvalue problem
and can be stated as follows: Determine a scalar A and afunction w in the admissible
space K~ such that Eq. (7.398) is satisfied for all v in K~.

Next, we integrate the numerator of Rayleigh's quotient, Eq. (7.390), by parts
and rewrite the quotient as

R(w) = A= [w, w]
( ...;m w, ...;m w)

(7.399)

Then, we consider an admissible function in the neighborhood of wand write it in the
form w + E v, where v is a function from K~ and E is a small parameter. Replacing w
in Eq. (7.399) by the varied function w + EV and carrying out a binomial expansion
of the denominator, we can write

R(w + EV)

[w + EV, W + EV]

(...;m (w + EV), ...;m (w + EV»)

[w, w] + 2E [v, w] + E2 [v, v]
(...;mw, ...;mw) + 2E (...;mv, ...;mw) + E2 (...;mv, ...;mv)

[v, w] (...;m w, vmw) - [w, w] (...;m V, ...;m W ) ( 2)
R(w) + 2E 2 + 0 E( ...;m w, ...;m w)

_ [V, w] - A (...;m V, ...;m W ) ( 2)
- R(w) + 2E (...;m...;m) + 0 E . (7.400)mw, mw ..

For a given function v, R (w + Ev) depends only on E. If the linear term in E in
Eq. (7.400) is zero, i.e., if the first variation of R vanishes, then R has a stationary
value at w. For this to happen, the coefficient of E must be zero, which is the same as
satisfying Eq. (7.398). Hence, rendering Rayleigh's quotient stationary is equivalent
to solving the weak form of the eigenvalue problem.

In our discussions of the differential eigenvalue problem we assumed implic-
itly that the eigenvalues are ordered so as to satisfy Al :::: A2 :::: .... Then, from
Eq. (7.392), it is easy to see that Rayleigh's quotient is an upper bound for the lowest
eigenvalue, or

(7.401)

which also implies that the minimum value Rayleigh's quotient can take is AI, or

Al = min R(w) (7.402)
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Equation (7.402) is very important for two reasons. In the first place, because A is
proportional to (J}, it characterizes the lowest natural frequency WI, which is the
most important one. Then, the fact that AI is a minimum value, as opposed to a mere
stationary value, Eq. (7.402) forms the basis for certain methods for the computation
of approximate solutions to the differential eigenvalue problem. In view of this,
Eq. (7.402) alone is often referred to as Rayleigh's principle.

If the lower s eigenfunctions Wi are known, then the lower s + 1 eigenvalues
can be characterized by constraining the trial function W to be orthogonal to Wi (i =
1, 2, ... , s), in which case Rayleigh's quotient is an upper bound for A5+1, or

R(w) ::: A5+1' (w, w;) = 0, i = 1,2, ... ,s (7.403)

This characterization is primarily of academic interest, as the eigenfunctions Wi (i =
1, 2, ... , s) are not available.

By analogy with the approach used in Sec. 5.3, a characterization of A5+1 inde-
pendent of the eigenfunctions Wi (i = 1, 2, ... , s) can be obtained by constraining
the trial function w to be orthogonal to s independent, but otherwise arbitrary,
functions Vi (i = 1,2, ... ,s) and writing

A5+1 = max min R(w),
Vi W

(w, Vi) = 0, i = 1, 2, ... , s (7.404)

The maximum-minimum characterization of the eigenvalues, Eq. (7.404), represents
the Courant and Fischer maximin theorem for distributed system~ and can be stated
as follows: The eigenvalue A5+1 of the system described by Eqs. (7.387) and (7.388)
is the maximum value that can be given to min R(w) by the imposition of the s
constraints (w, Vi) = 0 (i = 1, 2, ... , s), where the maximum is with respect to all
sets containing VI, V2, ..• , V5 and the minimum is with respect to all functions in K~

satisfying the imposed constraints.
The geometric interpretation of the stationarity of Rayleigh's quotient and of

the Courant and Fischer maximin theorem for distributed systems is similar to that
for discrete systems given in Secs. 5.2 and 5.3, respectively.

The variational approach presented in this section forms the basis for the classi-
cal Rayleigh-Ritz method and the finite element method for generating approximate
solutions to the differential eigenvalue problem.

7.15 INTEGRAL FORMULATION OF THE EIGENVALUE PROBLEM

Up to this point, we have formulated the eigenvalue problem for distributed systems
as a differential problem, consisting of one (or two) differential equation(s) and an
appropriate number of boundary conditions. The differential formulation emerges
naturally from the boundary-value problem, which is how the motion of distributed
systems is described almost exclusively. The eigenvalue problem for distributed
systems, however, can also be described in integral form. Whereas the differential
form remains the preferred choice, a discussion of the integral form should prove
rewarding.
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f(~, t)d~
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Figure 7.24 Cantilever beam in bending
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The integral form of the eigenvalue problem is based on the concept offlexibility
influence function. To introduce the concept, we consider a self-adjoint system,
such as the cantilever beam of Fig. 7.24, and define the flexibility influence function
a (x, ~) as the displacement at point x due to a unit force at point ~. Then, the total
displacement at point x due to the entire distributed force is simply

w(x, t) = 1L

a(x, ~)f(~, t) d~ (7.405)

But, because displacements of elastic members increase linearly with forces, the
system potential energy can be written as

IlL IlL lLVet) = - w(x, t)f(x, t) dx = - a(x, nf(~, t)f(x, t) dx d~
.2020 0

(7.406)
The potential energy expression can also be derived beginning with the displace-
ment w(~, t) instead of w(x, t). Because the potential energy must be the same,
irrespective of how it is derived, we conclude that the flexibility influence function is
symmetric in x and ~, or

a(x,~) = a(~, x) (7.407)

Equation (7.407) represents Maxwell's reciprocity theorem and it states: The dis-
placement atpoint x due to a unit force atpoint ~ is equal to the displacement at point
~ due to a unit force at point x. The symmetry of the flexibility influence function
is consistent with the mathematical symmetry implied by the self-adjointness of the
stiffness operator L. The flexibility influence function a(x,~) is commonly known
as a Green's function. Its expression differs from one elastic member to another,
which is consistent with the fact that the expression for the differential operator L
does. However, it should be observed that; whereas the self-adjointness of L depends
not only on the expression for L but also on expressions for the boundary condi-
tions, the boundary conditions are already built into the influence function a(x, ~).
Moreover, whereas L is defined for positive definite as well as positive semidefinite
systems, a(x,~) is defined for positive definite systems alone.
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In free vibration there are no external forces, so that the force density f (~,t)
in Eq. (7.405) is due entirely to inertial forces. Hence, denoting the mass density by
m(~), we have

(7.408 )

But, as established in Sec. 7.4, free vibration of conservative systems is harmonic, so
that

w(~. t) = w(~) cos(wt - 4» (7.409 )

where w(~) is the vibration amplitude, w the vibration frequency and 4> an incon-
sequential phase angle. Hence, inserting Eqs. (7.408) and (7.409) into Eq. (7.405)
and dividing through by cos(wt - 4», we obtain the desired integral form of the
eigenvalue problem

1L
w(x) = A a(x. ~)m(~)w(~)d~.

o
(7.410)

which represents a homogeneous linear integral equation, often referred to as a
Fredholm homogeneous linear integral equation of the second kind (Ref. 16). It also
represents a linear transformation in which the product a(x, ~)m(~) plays the role
of the kernel of the transformation.

Equation (7.410) ean be generalized by writing

w(P) = A 1G(P. Q)m(Q)w(Q)dD(Q). (7.411)

where the position P is defined by one or two spatial coordinates, according to
the nature of the problem. The function G(P, Q) is a more general type of influ-
ence function, or Green's function. Fora self-adjoint system, Green's function is
symmetric in P and Q, G (p, Q) = G ( Q. P). The kernel G ( P, Q)m ( Q) of the
integral transformation (7.411) is not symmetric, unless m(Q) is constant. It can be
symmetrized, however, by introducing the function

v ( P) = m 1/2 ( P) w ( P )

and multiplying both sides of (7.411) by mJ/
2(p) to obtain

v(P) = A [ K(P. Q)v(Q)dD(Q), 10
where the kernel K (P, Q) is symmetric,

K(P. Q) = G(P, Q)mJ/
2(P)mJ

/
2(Q) = K(Q, P)

(7.412)

(7.413)

(7.414)

For certain values Ai, Eq. (7.413) has nontrivial solutions Vi(P), which are
related to the solutions Wi(P) of Eq. (7.411) by Eq. (7.412). The values Ai are the
eigenvalues of the system and Wi (P) are the associated eigenfunctions. Whereas
the functions Vi (P) are orthogonal in an ordinary sense, the functions Wi (P) are
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(7.415a)

(7.415b)

orthogonal with respect to the function m (P). To show this, we consider two distinct
solutions of Eq. (7.413),'or

Vi(P) =Ai L K(P, Q)vi(Q)dD(Q)

Vj(P) = Aj L K(P, Q)Vj(Q) dD(Q)

MultiplyingEq. (7.415a) by Vj (P), integrating over domain D and usingEq. (7.415b),
we obtain

(7.416)

from which we obtain'

(Ai - Aj) L 'Vi(P)Vj(;) dD(P) = 0 (7.417)

(7.418)

For two distinct eigenvalues, we obtain the orthogonality relation

L Vi(P)Vj(P) dD(P) = 0:' Ai # Aj

Introducing Eq.(7.412) in Eq. (7.418) and normalizing the eigenfunctions, we can
write the orthonormality relations

i,j = 1,2, ... (7.419)

where'oij is the Kronecker delta.
As for the differential eigenvalue problem, there is an expansion theorem con-

cerning the eigenfunctions Wi (P) according to which we represent a function satis-
fying the boundary conditions and possessing a continuous Lw by the infinite series

where the coefficients Ci ar.e given by

Ci = 1m(P)w(P)wJP) dD(P),
. D

There are several methods for solving Eq. (7.411). The description of these
methods is beyond the scope of this text. We discuss here the iteration method,

00

w(P) = LCiWi(P)
i=l

i =.1,2, ...

(7.420)

(7.421)
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which is similar in principle to the matrix iteration method using the power method.
The iteration process for the first eigenfunction is defined by

k = 1. 2 .... (7.422)

To demonstrate convergence of the algorithm, we choose an initial trial function
w?)(P), which can be assumed to have the form of the series given by Eq. (7.420),
insert it into Eq. (7.422) with k = 1, carry out the integration and write

W~2)(p) = 1G(P. Q)m(Q)wil)(Q)dD(Q)

= fCi 1G(P, Q)m(Q)wi(Q)dD(Q)
i=1 D

Using w~2\p) as an improved trial function, we obtain

In general, we have

(p)(P) _ ~ . Wi(P)
WI - ~Cl p_1

;=1 Ai

fCi Wi(P)
;=1 Ai

(7.423)

(7.424)

(7.425)

If the eigenvalues are such that Al < 1...2 < 1...3 < ... , the first term in the series in
Eq. (7.425) becomes increasingly large in comparison with the remaining ones and,
as p --+ 00, wiP) (P) becomes proportional to the first eigenfunction, or

lim wiP)(p) = Wl(P)
P--HX)

(7.426)

(7.427)

where the proportionality constant has been ignored as immaterial. After conver-
gence has been reached, AI is obtained as the ratio of two subsequent trial functions,

w(p)(P)
Al = lim __ 1 _

p-->oo w;p+1)(P)

In practice, if the iterated functions are normalized by prescribing the value of the
function at a given point, and this value is kept the same, then the normalization
constant approaches A] as p increases.

To obtain the second mode, we must insist that the trial function wi]) (P) used
for iteration to the second mode be entirely free of the first mode. To this end, we
use the iteration process

k = 1,2, ... (7.428)
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and begin the iteration with the first trial function in the form

w;l)(P) = c(2)(p) - alwl(P) (7.429)

where cp;l)(P) is an arbitrarily chosen function andal is a coefficient determined
from the orthogonality requirement by writing

L m(P)w;l)(P)WI(P) dD(P)

= L m(P)cp2l(p)WI(P) dD(P) - al L m(P) [wI(p)f dD(P) = 0 (7.430)

which yields

L m(P)cp;l) (P)WI (P) dD(P)

L m(P)wi(p)dD(P)

and if WI (P) is normalized so that JD m wi d D = 1, then

(7.431)

al = L m(P)cp;l)(P)wI(P)dD(P) (7.432)

Introducing w;l) (P) in Eq. (7.428) with k = 1 and performing the integration, we
have

cp;2)(p) = LG(p, Q)m(Q)w;l)(Q)dD(Q)

For the next iteration step, we use

W;2)(p) = cp;2)(p) - a2wI(P)

where, for normalized WI(P), we have

a2 = L m(P)cp;2) (P)WI (P) dD(P)

In general, for the pth iteration step, we use

w;p)(P) = cp;p)(P) - apwI(P)

Convergence is achieved when, as p --+ 00, ap --+ 0 and

!im w;p)(P) = W2(P)
p--+ 00

w(p)(P)
A2 = !im ---,-2::...,--;-,--_

p--+oow;P+1) (P)

Similarly, for the third mode, we use the trial function

wjl)(p) = cpjl)(p) - aIwI(P) - bIW2(P)

(7.433)

(7.434)

(7.435)

(7.436)

(7.437)

(7.438)

(7.439)
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Figure 7.25 Displacement of a uniform string fixed at both ends due to a unit
force
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(7.440)

where cpj1) (P) is an arbitrary function and a] and h] are obtained by insisting that
w~l) (P) be orthogonal to both w] (P) and W2 (P). The same procedure is used to
iterate to the third mode and, subsequently, to higher modes. In practice, a finite
number p of iterations is needed for each mode.

As an illustration, we consider the free vibration of a string of uniformly dis-
tributed mass p, clamped at both ends and subjected to a constant tension T. The
flexibility influence function a(x,~) is obtained by applying a unit force at point ~
and calculating the deflection at point x (Fig. 7.25). For small angles 0:] and 0:2, the
equilibrium condition at the point of application of the load is

8 8
T-+T--=

~ L - ~

from which we obtain the influence function
x

a(x,~) = 8-
o ~

and it can be readily shown that

x(L - ~)
TL

~ > x (7.441a)

~ (L - x)
a (x, 0 = T L ~ < x (7.441b)

As expected. Green's function G (x. ~) = a (x. ~) is symmetric in x and ~, hecause
the system is self-adjoint.

We use the iteration method to solve the eigenvalue problem. To this end, we
assume

and obtain in sequence

x
L

(7.442)

(7.443a)
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W?\x) iL
G(x, ~)p(~)wi2)(~)d~

pL
2
7pL

2
(~_ 10x3 ~X5)

6T 60T L 7 V + 7 L5

wi4) (x) iL
G(x, ~)p(~)Wi3) (~)d~

= pL27pL231pL2 (~_ 49x3 21x5 _ ~ X7
)

6T 60T 294T L 31 V + 31 L5 31 U

w?)(x) iL
G(x, ~)p(~)Wi4)(~)d~

pL2 7pL2 31pL2 2667pL2 (x 4340 x3 2058 x5

= 6T 60T 294T 26040T L - 2667 L3 + 2667 V

420 x7 35 X9
)

- 2667 L7 + 2667 L9
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(7.443b)

(7.443c)

(7.443d)

At this point we pause to check convergence. It can be easily verified that w?) (x), as
given by Eq. (7.443d), is almost proportional to sin Jrxl L, which is the first natural
mode. Moreover, letting p = 4 in Eq. (7.427) (and ignoring the limit), we have

wi4) (L 12)
= wi5

) (LI2)

26040T

2667pU
(7.444)

so that

"'[1WI = 3.12 --2
pL

(7.445)

I
L-

The approximation is quite good, because the exact value of the first natural fre-
quency is WI = JrJT 1pL2. Hence, Eqs. (7.443d) and (7.445) can be accepted as
representing the first natural mode and the first natural frequency, respectively. An
interesting aspect of this iteration process is that, although w?) violates the boundary
condition at x = L, all iterates do satisfy both boundary conditions. It follows that
multiplication by Green's function, in conjunction with integration over the domain,
imposes the system boundary conditions on the iterates.

To obtain the second mode, we must use a trial function orthogonal to WI (x).
This is left as an exercise to the reader.

It should be pointed out that Green's functions can be determined only for
simple systems. Hence, the approach based on Green's functions has limited appeal
for distributed-parameter systems. However, the approach proves useful in Sec. 8.1,
where we use it for an approximate technique.
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7.16 RESPONSE OF UNDAMPED DISTRIBUTED SYSTEMS

Using developments from Sees.7.1,7.2 and 7.5, we can write a typical boundary-value
problem describing the behavior of vibrating undamped systems in the operator form

Lw(P,1) + m( P)ij.J( p, t) = f(P, t), Pin D (7.446)

(7.447)

where w(P, t) is the displacement of a point P in the domain D, L a linear ho-
mogeneous self-adjoint stiffness differential operator of order 2p, m(P) the mass
density and f(P, t) the force density, and we note that any concentrated forces act-
ing at P = Pj can be treated as distributed by means of spatial Dirac delta functions
defined by .

o (p - Pj) = 0, P =I Pj

L 0 (p - Pj) dD(P) = 1

The solution w(P, t) of Eq. (7.446) must satisfy the boundary conditions

i = 1. 2, ... , p, P on S (7.448)

where Bi are linear homogeneous boundary differential operators ranging in order
from zero to 2p - 1 and S is the boundary of D. In addition, the solution is subject
to the initial conditions

w(P,O) = wo(P), w(P,O) = Vn(P) (7.449a, b)

In a manner analogous to that for discrete systems, the solution to the combined
boundary-value problem and initial-value problem can be obtained conveniently by
modal analysis. To this end, we must first solve the eigenvalue problem defined by
the differential equation

Lw(Pl = Am(Plw(Pl,

and the boundary conditions

PinD (7.450a)

i = 1,2, ... , p, P on S (7.450b)

The solution of Eqs. (7.450) consists of a denumerably infinite set of eigenvalues Ar =
w;, where Wr are the natural frequencies, and associated eigenfunctions wr(P) (r =
1,2, ... ). Because L is self-adjoint, the eigenvalues are real and the eigenfunctions
are real and orthogonal. On the assumption that L is positive definite and that the
eigenfunctions have been normalized, the orthonormality relations are

Lm(Plwr(Plws(PldD(Pl = ors,

L wr(PlLws(PldD(P) = w;Ors,

where On is the Kronecker delta.

r, S = 1. 2, ...

r, S = 1,2, ...

(7.45Ia)

(7.451b)
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Using the expansion theorem~ Eqs.(7.101) and (7.102), we can express the
solution of Eq. (7.446) as a linear combination of the system eigenfunctions of the
form

00

w(P, t) = LWs(P)l1s(t)
s=l '

(7.452)

where l1s(t) are time-dependent generalized coordinates, referred to as normal co-
ordinates, or modal coordinates, and playing the role of the expansion coefficients
Cr. Strictly speaking, the expansion theorem is in terms of constant coefficients. To
resolve this issue, we can conceive of expansion (7.452) being applied at the discrete
times t1, t2, ... , resulting in constant coefficients l1s (t1), l1s (t2), .... Then, ifthe times
t1, t2, ... are brought closer and closer together, the coefficients l1s(t1), l1s(t2), ...
change in a continuous manner with time, thus justifying Eq. (7.452). Inserting
Eq. (7.452) into Eq. (7.446), mtlltiplying through by Wr (P), integrating over the do-
main D and using the orthonormality relations, Eqs. (7.451), we obtain the infinite
set of independent equations

;

i1r(t) + W;l1r(t) = Nr(t), r = 1,2, ... (7.453)

Nr(t) = LWr(P)f(P, t) dD(P),

are generalized forces, referred to as modal forces. Equations (7.453) are subject
to the initial generalized displacements and velocities, or initial modal displacements
and velocities l1r(0) and r,r(0), respectively. They can be obtained by letting t = 0 in
Eq. (7.452) multiplying through by m(P)wr(P), integrating over D and considering
Eqs. (7.449a) and (7.451a). The result is

l1r(O) = Lm(P)wr(P)wo(P) dD(P), r 1,2, ... (7.455a)

In a similar fashion, we obtain

, r,r(O) = L m(P)wr(P)vo(P) dD(P),

Equations (7.453) are identical in form to the modal equations for discrete
systems, Eqs. (4.220), so that the solution is simply .

known as normal equations, or modal equations, in which

r = 1,2,: ..

r = 1,2, ...

(7.454)

(7.455b)

(7.456a)l1r(t) = it [I'Nr(a)da ] dr: + l1r(O) + r,r(O)t

for rigid-body mo<;lesand

1 it . r,r(O) .
l1r(t) = - Nr(r:)smwr(t-r:)dr:+l1r(O)COswrt+- -smwrt (7.456b)

~ 0 ~
for elastic modes. The formal solution is completed by inserting Eqs. (7.456) into
Eq. (7.452).
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The boundary-value problem described by Eqs. (7.446) and (7.448) can be
generalized so as to accommodate systems of the type discussed in Sees. 7.8 and
7.9. In particular, the differential equation can be generalized to

Lw(P, t) + Mw(P, t) = f(P, t), PinD (7.457)

where the various quantities are as defined earlier in this section. The one exception
is M, which in the case at hand is a linear homogenous self-adjoint mass differential
operator of order 2q, q < p, as opposed to a merefunction in Eq. (7.446). Moreover,
the boundary conditions are

Biw(P, t) = 0, P on S,

Biw(P, t) + CiW(P, t) = 0,

= 1, 2, ... , k

PonS, i = k+l,k+2, ... ,p

(7.458a)

(7.458b)

The differential eigenvalue problem corresponding to Eqs. (7.457) and (7.458)
is given by the differential equation

Lw(P) = 'AMw(P),

and the boundary conditions

'A = u/, PinD (7.459)

BiW(P) = 0, P on S,

BiW(P) = u/CiW(P),

i = 1,2, ... ,k

P on S, i = k + 1, k + 2, ... , p

(7.460a)

(7.460b)

Moreover, we recall from Sec. 7.9 that the orthonormality relations for the system
eigenfunctions are given by

r,s = 1,2, ...

r, S = 1,2, ...

(7.461a)

(7.461b)

Introducing solution (7.452) in Eq. (7.457), multiplying through by wr(P),
integrating over D and using the orthonormality relations, we obtain

f (8rs - t (wrCiw.\. dS) 1is(t)
5=1 i=k+1 is

+ t, (w; 0", - }~.1!'w,Hiw, dS) ~(t) = in w,j dD,

r = 1,2, ... (7.462)

j
~'-'.••...•.
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But, in view ofEq. (7.454) and boundary conditions (7.458b), Eqs. (7.462) reduce to
the set of independent modal equations

ryr(t) + W;TJr(t) = Nr(t), r = 1,2, ... (7.463)

Equations (7.463) are the same as Eqs. (7.453), so that the solution is once again given
by Eqs. (7.456). The conclusion is that, in spite of the intimidating appearance of the
orthonormality relations, Eqs. (7.461), modal analysis for the solution of the general
boundary-value problem, Eqs. (7.457) and (7.458), retains the same simpliCity as for
the common one, Eqs. (7.446) and (7.448) ..
Example 7.9

A uniform beam of mass density m, bending stiffness E I and length L is simply sup-
ported at both ends. Derive the response to the initial displacement

w(x,O) = wo(x) = A(i- -2~:+ ~:) (a)

and note that wo(x) is symmetric with respect to x = L/2. The initial velocity is
zero and there are no external forces. The normal modes and natural frequencies of a
uniform simply supported beam are

wr(x) = J 2 sin nrx, Wr = (nr)2 J EI4, r = 1,2, ... (b)
mL L mL

The response to the initial displacement, Eq. (a), is given by
00

w(x, t) = L wr(x)7)r(t)
r=l

(c)

where, in the absence of initial velocities and external forces, the modal coordinates
7)r(t) are obtained from Eqs. (7.456) in the form

7)r(t) = .7)r(O)coswrt, r = 1,2, ... (d)

in which, using Eqs. (a) and (b), we have

7)r(O)= (L m(x)wr(x)wo(x) dx = A rz;;; {L sin nrx (.:: _ 2 x
3 + X4

) dx10 V L 10 L L V L4
~ 24 r

= AV2mLr5n5 [1- (-1)], r = 1,2, ... (e)

When r is even,

and when r is odd,
48A

7)r(O)= -ss.j2mL
r n

Combining the above results, the response to the initial displacement, Eq. (a), is

96A ~ 1 . (2r - l)n x
w(x,t) = -5 L ( )5Slll----::---COswrt

n r=l 2r - 1 L

(f)

(g)

(h)

where

2/!£IWn = [(2r - 1) n] -4'
mL

r = 1,2, ... (i)
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Examining Eq. (h), we note that the terms in the series are symmetric with respect to the
middle of the beam. This should come as no surprise. because the initial displacement.
Eg. (a), is symmetric. In fact, it represents the static deflection caused by a uniformly
distributed load. We must also note that the amplitude of the second harmonic is only
0.41 % of the amplitude of the first harmonic. so that motion resembles the first mode
very closely. This is to be expected. because the initial displacement resembles the first
mode.

Example 7.10

An unrestrained uniform rod lies at rest on a smooth horizontal surface (Fig. 7.26).
Derive the response to an axial force in the form of a step function of magnitude Fo
applied at x = O.

[(x. r) == foo(x)u(r) 1m. EA

--1•.... ' --'

L ~I
Figure 7.26 Unrestrained uniform rod in axial motion due to a force at x = 0

The longitudinal displacement of the rod can be written in the form

x

u(x. t) = L U,(X)I7r (t)
,~o

(a)

where. from Egs. (7.119). (7.137) and (7.138). the normal modes and natural frequencies
are

1

J EA
2
•(£ nrx

U,(x) = - cos --.
mL L

Uo(x) Wo = 0

r = 1,2 •...

(b)

and we note the presence of one rigid-body mode.
The applied force can be written in the form of a distributed force as follows:

.r(x. t) = Fn8(x)u(t) (c)

where 8 (x) is a spatial Dirac delta function applied at x = 0 and u(t) is a unit step
function applied at t = O. The modal coordinates can be obtained from Eqs. (7.456) in
the form

TJo(t) [ [if No(a)da] dT

1 itTJ,(t) = - N,(T)sinw,(t - T)dT.
W, 0

where from Eqs. (7.454), the modal forces are given by

N,(t) = (L U,(x)f(x. t)dx = U, (0) Fou(t).Jo

r 1.2, ....

r = 0, 1.2 ....

(d)

(e)
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Hence, using Eqs. (a), (b), (d) and (e), we obtain

u(x, t) = Ua(x) Ua(O) Fa11[l'U«(J)d(J] dr

00 Ur(X)Ur(O) 11

+ L ----Fa u(r) sinwr(t - r)dr
r=l Wr a

Fa 2 ~ Ur(X)Ur(O)
--t + Fa L.., 2 (1 - cos wrt)
2mL r=l wr

Fa 2 2FaL ~ 1 nr x
-. -t + -- L.., - cos -- (1 - coswrt)
2mL ]f2EA r=l r2 L

Furthermore, 1

~ ~ cos rn:x = ~ [(L - X)2 _ ~L2]
r2 L 2L2 2 6r=l

so that the general response is

Chap. 7

(f)

(g)

1 Fa 2 Fa [(L - x)2 1 2] 2FaL ~ 1 nrx
u(x,t) = -2-m-Lt + -E-A-L --2-- - -L - --L..,-cos--coswrt

6 ]f2EA r=l r2 L
(h)

The first term in Eq. (h) represents the rigid-body motion, and it is the only one
to survive if the stiffness becomes infinitely large. The second term in Eq. (h) can be
looked upon as the static deformation and the third term represents vibration. The first
two terms can be interpreted as an average position about which the vibration takes
place.

The same system can be looked upon as force-free with a nonhomogeneous
boundary condition at the end x = O. This approach is discussed in Sec. 7.19.

Example 7.11

Determine the response of a circular membrane of uniform thickness clamped at r = a
and subjected to the distributed force

fer, e, t) = {6:(t), O:Sr:Sb
b<r:Sa

as shown in Fig. 7.27. The membrane is at rest initially.
The response of the membrane can be written in the form of the series

(a)

00 00

w(r, e, t) = L L Wmn(r, e)1)mn(t)
m=an=l

00 00 00

L Wan(r)1)an (t) + L L Wmnc(r, e)1)mnc(t)
n=l m=ln=l

00 00

+ L L Wmns(r, e)1)mns(t) (b)
m=ln=l

1 See Peirce, B. O. and Foster, R. M. A Short Table of Integrals, 4th ed., Ginn, Boston, 1957,
Formulas889 and 891.
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Figure 7.27 Uniform circular membrane fixed at r = a with force distributed
over the region 0 ::::r ::::b < a

475

where WOn. Wnnc and Wmns are the normal modes of a uniform membrane clamped at
r = a. Eqs. (7.306). Moreover. the modal coordinates are given by

1 11

T}On(t) = - NOn(r)sinwon(t - r)dr
WOn 0

T}mnc(t) 1 11

-- Nmnc(r) sin wlIln(t - r)dr
Wmn 0

(c)

1 11

T}II/n.<(t) = -- Nmns(r)sinwlI/n(t - r)dr
(1)11111 0

in which NOn. NlIlnc and NlIln., are the modal forces. Inserting Eg. (a) into Eqs. (7.454)
and considering Eqs. (7.306), the modal forces take the form

NII/n.,·(t)

12rr1Q 2rrf(t) b
Non(t) = WOn (r)f(r. e. t)r dr de = ------ Jt (!3onb)

o 0 ftPaJt(!3ona) !3on

trr r
NII/n,·(t) = Jo Jo WII/nc(r. e)f(r. e. t)r dr de = ()

12
rr1Q WII/ns(r. e)f(r. e. t)r dr de = 0

o 0

Hence.

2ftbJ1 (!3Onb) 11
...jf f(r)smwon(t - r)dr

T a!35n J1 (!3Ona) 0

17mnc(t) = T}mn.,(t) = 0

(d)

(e)

(g)

where WOn = !3on.JT / p. Introducing Eqs. (7.306) and (e) in the series (b), we obtain
the transverse displaeement of the membrane in the form

2b M~J1 (!30nb) JO(!3on r) 11
..w(r.e.t) = 2" -~ 22 .f(r)smwon(t-r)dr

a Tp n=1 fio,,}t ({3ona) 0

It appears that only Bessel functions of zero order, m = O. participate in the
motion. This is to be expected, owing to the nature of the load. The load is distributed
uniformly over 0 .:::r .:::b, so that there cannot be any trigonometric functions present,
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as modes with diametrical nodes cannot take part in the motion. Furthermore, the
Bessel functions of order higher than zero have a zero at r = 0, so that, for continuity,
they must be antisymmetric with respect to the vertical through r = 0, and hence ruled
out.

Example7.12

. Obtain the response of a uniform rectangular plate extending over the domain 0 < x <
a, 0 < y < b and simply supported along the boundaries x = 0, a and y = 0, b to a
concentrated force at the point x = 3j4a, y = 1j2b, as shown in Fig. 7.28. The plate
is at rest initially.

la
4

a

1 F(t)

./
I

Figure 7.28 Uniform rectangular plate simplysupported on all sides and
subjected to a concentrated force

The force can be described mathematically as a distributed force given by

f(x, y, t) = F(t) I) (x - ~a, y - ~b)4 2
where F(t) is the time-dependent amplitude of the force and I)(x .,--3aj4, y - bj2) is
a two-dimensional spatial Dirac delta function defined by

I) (x - ~a, y - ~b) = 0, x i- ~aandjOry i- ~b
la lb

I) (x - ~a, y - ~b) dx dy = 1

The normal modes of the simply supported uniform plate are

2 . mrrx . nrry
Wmn(x, y) = r:;;;r: sm -- sm --,

y pab a b

and the corresponding natural frequencies are

m,n 1,2, ...

(a)

(b)

(c)

m, n = 1,2, ...

~._~-

Wmn = rr2~ [(~r+ GfJ,
where DE is the plate flexural rigidity and p is the mass per unit area of plate.

(d)
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Using the expansion theorem, the transverse displacement of the plate is
00 00

w(x, y, t) = L L Wmn (x, y) 17mn(t)
m=1 n=1

477

(e)

where 17mn(t) are the modal coordinates having the expressions

1 it1]mn(t) = -- Nmn(r)sinwmll (t - r)dr
Wmn 0

in which Nmn(t) are the modal forces given by

Nmn(t) = 1°lb

Wmn(x,y)f(x,y,t)dxdy

2F(t) 1°lb
mrrx nrry (3 1 )= -- sin -- sin --8 x - -a, y - -b dxdy

,.Jpab 0 0 a b 4 2

2F(t) . 3mrr . nrr
= --sm--sm-,.Jpab 4 2

Introducing Eq. (g) into Eq. (f), we obtain

2 3mrr nrr it
1]mn(t) = r::-:;r:.sin--sin- F(r)sinwm,,(t - r)dr

wmnvpab 4 2 0

so that, using Eq. (e), the response can be written in the form

4 ~ ~sin(3mrrj4) sin(nrrj2) . mrrx . nrryw(x,y,t) = __ ~~ sm __ sm __ x
pab m=1 n=1 Wmn a b

(f)

(g)

(h)

(i)t F(r)sinwmn(t - r)drJo .
where the frequencies Wmn are given by Eq. (d).

It can be easily verified that, if m is an integer multiple of 4, the corresponding
term in the series in Eq. (i) vanishes. This is consistent with the fact that a concentrated
force applied at x = 3aj4 cannot excite the modes sin4rrxja, sin8rrxja, etc., which
have nodes at that point. The same argument explains why all the terms for which n is
an even number vanish.

7.17 DISTRIBUTED GYROSCOPIC SYSTEMS

In many cases of interest, the vibrating structure rotates about a given axis. If the
structure has velocity components normal to the axis of rotation, then gyroscopic
effects arise. We encountered gyroscopic effects for the first time in connection with
discrete systems in Sec. 2.12 and then in Sec. 4.1. In this section, we consider such
effects in connection with distributed systems.

We begin the study of distributed gyroscopic systems with the derivation of the
boundary-value problem for a rotating elastic shaft simply supported at both ends, as
shown in Fig. 7.29. The shaft rotates about axis X with the constant angular velocity
Q relative to the inertial axes X Y Z. For convenience, we use a set of body axes xyz,
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with X coinciding with the rotation axis X, and playing the role of the spatial variable,
and with axes y and z rotating together with the body with the same angular velocity
Q about axis X = x. Moreover, we let i, j and k be unit vectors along the rotating
axes x, y and z, respectively. The shaft undergoes the bending displacements wy
and Wz in the y and z directions, respectively, so that the angular velocity vector and
displacement vector can be written in the vector form

w = Qi (7.464a)

w(x, t) = wy(x, t)j + wz(x, t)k (7.464b)

Then, using the analogy with Eq. (d) of Example 4.1, the velocity vector of a typical
point on the shaft can be shown to be

v(x, t) = (wy - Qwz)j + (wz + Qwy) k (7.465)

Figure 7.29 Rotating elastic shaft in bending simply supported at both ends

We propose to derive the boundary-value problem by means of Lagrange's
equations for distributed systems. This requires an extension of the approach of
Sec. 7.3 from systems defined by a single dependent variable to systems defined by
two. To this end, we rewrite the extended Hamilton's principle, Eq. (7.31), in the
form

(2 (8L + 8Wnc) dt = 0, 8wy = 8wz = 0, t = t1, t2 (7.466)lt1

where L = T - V is the Lagrangian, in which T is the kinetic energy and V the
potential energy, and 8W nc is the virtual work performed by the nonconservative
forces. Letting m = m(x) be the mass density and using Eq. (7.465), the kinetic
energy has the expression

T = ~lL

mvT vdx = ~lL

m [(wy - QWz)2 + (wz + QWy)2] dx

= lL

T (wy, wz, wy, wz) dx (7.467)
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in which T is the kinetic energy density. The potential energy is due to bending alone
and has the form

(7.468)

(7.469)

where V is the potential energy density, in which £ Iy and £ Iz are bending stiff-
nesses. Finally, the virtual work performed by the nonconservative distributed forces
is simply

oWnc = iL

(JyOWy + fzowz) dx

The boundary-value problem can be derived by inserting Eqs. (7.467)-(7.469)
into Eq. (7.466) and carrying out the customary integrations by parts. AIl these
operations have been performed in Sec. 7.3, however, and need not be repeated.
Hence, using the analogy with Eq. (7.41), it is not difficult to show that Lagrange's
differential equations of motion are

at a2 (at) a (at)
-':1 - + ~ ~ - -a ~ + fy = 0,wy ux uWy t uWy

at a2 (ai) a (at)
uWy

O<x<L

O<x<L

(7.470a)

(7.470b)

where t = T - V is the Lagrangian density. Moreover, one boundary condition
for wyand one for Wz must be selected at each end from

a (a t ) II.- -- ow - 0ax aw~ y 0. - ,

and one from
at IL--!l8w~. = 0,awy . 0

a (at) II.- -- ow - 0ax aw; z 0 -

at .IL--ow~ = 0aw; 0

(7.471a, b)

(7.471c, d)

In view of Eqs. (7.467) and (7.468), the partial differential equations of motion have
the explicit form

2 ( 2) ... . 2 a a wy
mWr - 2mQwz - mQ wy + -2 £/1'--2 = fy, 0 < x < L (7.472a). ax . ax
mUl- + 2mQwy - mQ2w_ + a

2

2
(£/7 rPw2z) = f-, 0 < x < L (7.472b)~ .. ax - ax -

and, because the shaft is simply supported at both ends, the boundary conditions are

a2wr£/y--
2
' = 0,. axWy = 0, x = O,L (7.473a, b)
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(7.475b)

as well as the boundary conditions

d2w
wy = 0, EIy-

2
Y = 0, X = 0, L (7.476a, b)
dx

d2wz
Wz = 0, EIz dx2 = 0, X = 0, L (7.476c, d)

Closed-form solutions of the eigenvalue problem are not possible in general.
Next, we assume that the shaft is uniform, m(x) = m = constant, EIy(x) =

EIy = constant and EIz(x) = EIz = constant. Moreover, for simplicity, we
assume that I y = Iz = I. Then, dividing through by m, the differential equations
can be rewritten as

2 EI d4wy 2
A W 2AQw + Q W - 0 0 -< x < L (7.477a)y - z --;:;:dx4 - y-,

2 EI d4wz .. 2
A Wz + 2AQwy + --;:;:dx4 - Q Wz = 0, 0 < x < L (7.477b)

and the boundary conditions reduce to

d2wy
wy = 0, = 0, x = 0, L (7.478a, b)

dx2

d2wz
Wz = 0, dx2 = 0, X = 0, L (7.478c, d)

It is easy to verify that the eigenfunctions of the system are
. jrrx

Wyj= aj sm --,
L

Jrrx
WZ)' = b· sin--) L' J = 1,2, .. .- (7.479)
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Introducing the solutions

00 .

" . )lfX
Wy = L..- OJ Sill --,

j=1 L

00 .

" . Jrrx
Wz = L..- bj Sill --

j=1 L
(7.480)

in Eqs. (7.477), multiplying the resulting equations by sin krr x / L, integrating over
the domain 0 < x < L and considering the orthogonality of the eigenfunctions, we
obtain the infinite set of pairs of homogeneous algebraic equations

where

J 1, 2, ... (7.481)

j = 1, 2, ... (7.482 )

are recognized as the natural frequencies of the nonrotating shaft. The solution of
Eqs. (7.481) can be verified to be

W2j-l = n + wj, W2j = n - wj,
h2j-1 = i02j-l, b2j-1 = -ia2j-l,

/...2j lW2j, /...2j -IW2j,

J .:= 1,2, ... (7.483a)

J 1,2, ... (7 .483b)

boo = lQ2j. boo -lQ2j,-J -J
J = 1,2, ... (7 .483c )

where overbars denote complex conjugates.
The free vibration solution can be obtained by inserting Eqs. (7.480) and (7.483)

into Eqs. (7.474), with the result

w)'(x, t) = f (Q2j_IeA2J-1I + a2j_Ii-2J-II + Q2jeA2)I + a2ji-2JI) sin j~X
j=1

(7.484a)

(7 .484b)

Then, using Eqs. (7.483) and introducing the notation

1 .A..-
Qo '_1 = -Ao ·_Ie-I'PL)-l.-J 2 ~J .. 1. 2 .... (7.485)
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wy(x, t)

where A2j-1 and A2j are real amplitudes and ¢2j-l and ¢2j are corresponding
phase angles, quantities depending on the initial conditions, the response becomes

00 jrrxL [A2j-1 cos (W2j-lt - ¢2j-l) + A2j cos (W2jt - ¢2j)] sin-. L
J=l .

wz(x, t)

(7.486a)

00 jrrx-L [A2j-1 sin (W2j-lt - ¢2j-l) + A2j sin (W2jt - ¢2j)] sin-
. I. LJ=

(7.486b)

Note that the results obtained here are consistent with those for discrete gyroscopic
systems obtained in Sec. 4.7.

7.18 DISTRIBUTED DAMPED SYSTEMS

The systems considered in this chapter until now share one characteristic, namely,
in the absence of external forces they are conservative. This implies that, if they
are excited initially and then allowed to vibrate freely, the vibration will continue
ad infinitum. But, conservative systems represent mathematical idealizations, and in
practice all systems possess some degree of damping, so that free vibration dies out
eventually. Nevertheless, the idealization is useful when damping is very small and
the interest lies in time intervals too short for damping effects to become measurable.
At this point, however, we consider the case in which damping is not negligible.

As established for discrete systems, and implied above, damping forces are
nonconservative. Perhaps the simplest way to account for viscous damping forces
is to treat them as a special type of non conservative forces in the boundary-value
problem for undamped systems of Sec. 7.16, Eqs. (7.457) and (7.458). We assume
that the damping force at any point P is proportional to the velocity and opposite in
direction to the velocity, or

fd(P, t) = -Cw(P, t) (7.487)

where C is a linear homogeneous differential operator of order 2p. In fact, C is
an operator similar to the operator L defined in Sec. 7.5. Inserting Eq. (7.487) into
Eq. (7.457) and assuming that the force density f(P, t) includes all non conservative
forces other than damping forces of the type defined by Eq. (7.487), we define the
boundary-value problem for viscously damped systems as consisting of the differen-
tial equation

Lw(P, t) + cw(p, t) + Mw(P, t) = f(P, t),

and the boundary conditions

Pin D (7.488)

BiW(P, t) = 0, P on S,

Bi.w(P,t) + CiW(P,t) = 0,

i = 1, 2, ... , k

P on S,i = k + 1, k + 2, ... , p

(7.489a)

(7.489b)
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Closed-form solutions of the boundary-value problem for damped systems,
Eqs. (7.488) and (7.489), are not possible in general due to difficulties in solving the
eigenvalue problem. Under certain circumstances, however, the eigenfunctions of
the undamped system can be used to decouple the modal equations, in a manner
similar to that for discrete systems. To this end, we assume a solution of Eq. (7.488)
in the form

00

w(P. t) = L Ws(P)TJs(t)
.1'=1

(7.490)

where Ws (P) are the eigenfunctions of the undamped system, obtained by letting
C = 0 in Eq. (7.488). The corresponding eigenvalue problem is given by Eqs. (7.459)
and (7.460). Following the approach of Sec. 7.16, we introduce Eq. (7.490) in
Eq. (7.488), multiply through by wr(P), consider the orthonormality relations, Eqs.
(7.461), and obtain the modal equations

where

00

'ir(t) + L crs1]s(t) + W;TJr(t)
.1'=1

Nr (t), r 1. 2 .... (7.491)

Crs = [ wr(P)Cws(P)dD(P).
if)

are damping coefficients and N,.(t) are modal forces having the form given by
Eqs. (7.454).

Equations (7.491) represent an infinite set of coupled ordinary differential
equations, so that in general damping produces coupling of the modal equations.
In the special case in which the damping operator C can be expressed as a linear
combination of the stiffness operator L and mass operator M of the form

C = aL + f3M

r. s = 1, 2, ... (7.492)

(7.493)

where a and f3 are constant scalars, the damping coefficients, Eqs. (7.492), can be
rewritten as

Crs = Cr 8rs = 2l;rwr 8rs, r, s = 1, 2, ... (7.494)

in which case Eqs. (7.491) reduce to the independent set

'ir(t) + 2l;rwr1],.(t) + W;TJr(t) = Nr(t), r = 1. 2 .... (7.495)

and we note that the notation in Eq. (7.494) was chosen so as to render Eqs. (7.495)
similar in structure to the modal equations of viscously damped systems. The solution
of Eqs. (7.495) was obtained in Sec. 4.10 in the form of Eqs. (4.229). Damping of the
type represented by Eq. (7.493) is known as proportional damping.

Several damping models in common use are merely special cases of propor-
tional damping. We distinguish between external and internal damping. External
damping generally carries the implication that the mass operator is a mere function,
M = m, where m is the mass density. In this case, a = 0 and the damping operator
is assumed to be proportional to the mass density, C = f3m = c, where C represents
a viscous damping density function. This is the case of distributed viscous damping, a

--------------------~
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concept that raises as many questions as it answers. Internal damping is based on the
assumption that the material behaves viscoelastically. A commonly used viscoelastic
model is the Kelvin- Voigt model, whereby the normal stress is related to the strain
and strain rate by

(
au a2u )

(J = E (E + d) = E - + c--
ax atax

(7.496)

(7.497)

(7.498)

where E is Young's modulus and c is a given constant. It is easy to verify that the
Kelvin-Voigt model represents the distributed counterpart of the spring and dashpot
in parallel model used repeatedly in Chapter 3.

In the case of a thin rod in axial vibration, the normal stresses are assumed
to be distributed uniformly over the cross-sectional area, so that the axial force is
related to the axial displacement by

F(x, t) = EA(x) [au(x, t) + c a
2
u(x, t)]

ax atax

It is not difficult to show that in this case

C = cL = -c~ (EA~)
ax ax

Comparing Eqs. (7.493) and (7.498), we conclude that the Kelvin-Voigt viscoelastic
model is indeed a special case of proportional damping, in which ex = c, fJ = O.
Note that, in view of Eq. (7.497), any existing natural boundary conditions must be
modified to include the contribution of viscosity to the force.

In the case of an Euler-Bernoulli beam in bending vibration, the assumption
that cross-sectional areas remain planar during deformations, when used in conjunc-
tion with the Kelvin-Voigt model, implies that the bending moment is related to the
bending displacement by ..

M(x, t) = El(x) [a
2
w(x, t) + c a

3
w(x, t)]

ax2 atax2 (7.499)

so that once again we encounter a special case of proportional damping. This time

a
2

( a
2

)C = cL = c-2 EI-2ax ax
(7.500)

so that ex = c, fJ = O. Here too, we must recognize that any existing natural
boundary conditions must be modified to include the viscosity effect. In this regard,
we should recognize that the shearing force Q is also involved, as it is equal to
-aM/ax.

Finally, we consider structural damping. As indicated in Sec. 4.10, structural
damping can be treated as viscous damping, provided the excitation is harmonic. To
emphasize this point, we rewrite Eq. (7.488) in the form

~-

Lw(P, t) + Cw(P, t) + Mw(P, t) = f(P)ei0.( (7.501)
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where f(P) is a force density amplitude, generally a complex quantity, and Q is the
driving frequency. But, steady-state response is harmonic, so that

w(P, t) = iQw(P, t)

Inserting Eq. (7.502) into Eq·. (7.501), we have

Lw(P, t) + iQCw(P. 1) + M(P)w(P. t)

(7.502)

(7.503)

By analogy with the assumption made in Sec. 4.10 in connection with discrete systems,
according to which the structural damping matrix is proportional to the stiffness
matrix, it is customary to assurne that the damping operator C is proportional to the
stiffness operator L, or

C = Y-L
Q

(7.504)

where Y is a structural damping factor. Introducing Eq. (7.504) in Eq. (7.503), we
obtain .'

(1 + iy) Lw(P, t) + Mw(P, t) = f(P)eiQ( (7.505)

Then, using Eq. (7.490) and following the same procedure as earlier in this section,
we obtain the infinite set of decoupled modal equations

r=1,2, ... (7.506)

where wr(r = 1,2, ... ) are the natural frequencies of undamped oscillation and

Nr = L wr(P)f(P)dD(P), r = 1,2, ... (7.507)

are constant modal force amplitudes. The solution of Eqs. (7.506) is simply

r 1. 2, ... (7.508)

so that, inserting Eqs. (7.508) into Eq. (7.490), we obtain the response

00 NreiQ(
w(P, t) = L . 2 2 wr(P)

r=l (1 + IY)Wr - Q
(7.509)

As in the case of discrete systems, the concept of structural damping should be used
judiciously.
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(7.513)

7.19 SYSTEMS WITH NONHOMOGENEOUS BOUNDARY CONDITIONS

In Sec. 7.16, we used modal analysis to obtain the response of boundary-value prob-
lems consisting of a nonhomogeneous differential equation of motion and homoge-
neous boundary conditions. According to this method, we first obtain the solution
of the homogeneous boundary-value problem, which is done by separating the time
and spatial dependence of the solution. This leads to an eigenvalue problem yield-
ing the natural modes and the associated natural frequencies. Then, the solution of
the nonhomogeneous differential equation is obtained by means of the expansion
theorem in the form of a linear combination of normal modes.

In many cases, the boundary conditions are nonhomogeneous. In general,
in these cases the approach of Sec. 7.16 will not work, and a different approach
must be adopted. In this section, we modify the approach of Sec. 7.16 so as to
enable us to use modal analysis. This modified approach is based on the fact that
a boundary-value problem consisting of a homogeneous differential equation with
nonhomogeneous boundary conditions can be transformed into a problem consisting
of a nonhomogeneous differential equation with homogeneous boundary conditions
(Ref. 8, p. 277). The latter problem can be solved by modal analysis, Actually,
the approach can be used also when the differential equation is nonhomogeneous, in
which case the nonhomogeneity of the differential equation becomes more involved.

We consider a one-dimensional system described by the differential equation
of motion

. a2w (x, t)
Lw (x, t) + m (x) . 2 = F(x, t), 0 < x < L (7.510)ot

where L is a linear homogeneous differential operator of order 2p, and by the
nonhomogeneous boundary conditions

Biw(x,t)lx=o = ei(t), i = 1,2, ,p (7.511a)

Bjw (x, t) IX=L = fJ(t), j = 1,2, , P (7.511b)

where Bi and Bj are linear homogeneous differential operators of order 2p - 1 or
lower. For simplicity, we assume that the initial conditions are zero, or

ow(x, t)1 -_ 0 .w(x,O) = 0, --- (7.512)at 1=0

It is not difficult to see that the differential equation of motion and the boundary
conditions are nonhomogeneous. We attempt a solution of the problem by trans-
forming it into a problem consisting of a nonhomogeneous differential equation
with homogeneous boundary conditions. To this end, we assume a solution of the
boundary-value problem described by Eqs. (7.510) and (7.511) in the form

p p

w(x, t) = vex, t) + L gi (x)ei (t) + L hj (x)fJ (t)
i=l j=l

where the functions gi (x) and hj (x) are chosen to render the boundary conditions for
the variable vex, t) homogeneous. In this manner, we transform the boundary-value
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problem for the variable w(x, t) into a boundary-value problem for the variable
vex, t). The functions gi(X) and hj(x) are not unique and several choices may be
acceptable. The corresponding results should be equivalent, however.

Introducing Eq. (7.513) in Eqs. (7.511), we obtain the boundary conditions

p p

Brw(x,t)lx=o = Brv(x,t>lx=o + Lei(t)Brgi(x)lx=o + L.!j(t)Brhj(x)lx=o
i=1 j=1

r = 1,2, ... , P (7.514a)
p p

Bsv(x, t)lx=L + L ei(t)Bsgi(x)lx=L + L f;(t)Bshj(x)lx=L
i=1 j=1

The functions gi (x) and hj (x) must be chosen so that the boundary conditions for
vex, t) be homogeneous. Examination of Eqs. (7.514) reveals that, to satisfy these
conditions, we must have

Brgi(X)lx=o = Oir,
Brhj(x)lx=o = 0,

= j,(t), s = 1, 2, ... , p

i, j, r 1, 2, ... , P

(7.514b)

(7.515a)

as well as

B,gi(X)lx=L = 0,
Bshj(x)lx=L = Ojs,

I, J, S = 1,2, ... , p (7.515b)

Biv(x, t)lx=o = 0,

Bj v(x, t) IX=I. = 0,

i = 1, 2, , p

j = 1, 2, , p

(7.516a)

(7.516b)

Introducing Eq. (7.513) in Eq. (7.510), we obtain the nonhomogeneous differential
equation

a2v(x.t)
Lv(x, t) + m(x) 2at

p

= F(x. t) - L [ei (t) Lgi (x) + ei (t) m (x) gi (x)]
i=l

p

- L[f; (t)Lhj (x) + .~(t)m(x)hj(x)]
j=1

(7.517)

where vex, t) is subject to homogeneous boundary conditions, Eqs. (7.516).
Using modal analysis, we first solve the eigenvalue problem consisting of the

differential equation

Lv(x) = w2m(x)v(x), O<x<L (7.518)
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Biv(x)lx=o = 0, i = 1,2, P

Bjv(x)lx=L = 0, . j = 1,2, ,p

(7.519a)

(7.519b)

The solution of the eigenvalue problem, Eqs. (7.518) and (7.519), yields an infinite
set of natural modes Vr (x) and associated natural frequencies Wr. The modes are
orthogonal and, in addition, we normalize them so as to satisfy the orthonormality
relations

lL
m(x)vr(x)vs(x) dx = ors,

lL
vr(x)Lvs(x) dx = w; ors,

r, S = 1,2, ...

r, S = 1, 2, ...

(7.520a)

(7.520b)

Using the expansion theorem, we assume a solution of Eq. (7.517) in the form

00

vex, t) = L Vs(X)lJs(t)
s=l

Introducing Eq. (7.521) in Eq. (7.517), we obtain

00

LlJs(t)Lvs(x) + lis(t)m(x)vs(x)
s=l

p

= F(x, t) - L [ei (t) Lgi (x) + ei (t) m (x) gi (x)]
i=l

p

- L [.1} (t) Lhj (x) + }j (t) m (x) hj (x) ]
j=l

and, because Vs (x) and Ws satisfy Eq. (7.518), Eq. (7.522) reduces to

00

L [lis(t) + W;lJs(t)] m(x)vs(x)
s=l

p

= F(x, t) - L rei (t) Lgi (x) + ei (t) m (x) gi (x)]
i=l
p

- L [.1} (t) Lhj (x) + }j (t) m (x) hj (x) ]
j=l

(7.521)

(7.522)

(7.523)



Next, we multiply Eq. (7.523) through by vr(x), integrate with.respect to x over the
domain, introduce the notation

Gri lL
m(x)v,(Xlgi(X) dx,

G;i = lL

v,(x)Lg;(x) dx,

H,j (L m(x)vr(x)hj(x)dx,J) j

H,} lL
v,(x)Lhj(x)dx,

F,(t) = lL

v,(x)F(x, t) dx,
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- 1,2, ... ,p; r

],2, ... , p; r

r = 1,2, ...

1,2, ...

],2, ...
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(7.524a)

(7.524b)

(7.524c)

(7.525)
and obtain the infinite set of independent modal equations

ij,(t) + w~TI(t) = N,(t), r = 1,2, ...

where the modal forces have the form
p p

N,(t) = F,(t) - L [G;;e; (t) + G,;e;(t) ] - L [H,}/; (t) + H,Jij (t) ],
;=1 ;=1

r=1,2,oo. (7.526)

The solution of Eqs. (7.525), for zero initial conditions, is given in the form of the
convolution integral

1 11

TI,(t) = - N,(r) sin w,(t - r)dr,
w, 0

Equations (7.527), when introduced in Eq. (7.52]), yield the solution v(x, 1) of the
transformed problem and, subsequently, using Eq. (7.513), the solution w(x, 1) of
the original problem.

r=1,2,oo. (7.527)

Example 7.13
Obtain the solution of the axial vibration problem of a uniform rod clamped at x = 0
and with a time-dependent tensile force P(t) at x = L.

The differential equation of motion is

a2w(x,t)
EA 2ax

and the boundary conditions are

a2w(x,t)
= m---at2 (a)

w(O,1) =0,
ow(x, t) IEA-- = P(t)

ax x=L
(b)

so that we have a homogeneous differential equation with one homogeneous and one
nonhomogeneous boundary condition. We assume a solution of Eq. (a) in the form

w(x, t) = vex. t) + h(x)PU) (c)
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so that the boundary conditions for v (x, t) are

av(x,t)1 .v(O, t) = -h(O)P(t), EA-- =
ax x=L

pet) - P(t)EA dh(x) I
dx x=L

(d)

To render boundary co~ditions (d) homogeneous, we must have

dh(x) Ih(O)= 0, EA-- = 1
dx x=L

The second of boundary conditions (e) can be written as

dh(x) 1-- = -u[x - (L - E)]
dx EA

(e)

(f)

(h)

ov(x, t) IEA--- = 0ax x=L

The corresponding eigenvalue problem consists of the differential equation

d2v(x)
-EA-- = u}mv(x),

dx2

and the boundary conditions

v(O, t) = 0,

O<x<L

(i)

G)

v(O) = 0,

vr(x) = J 2 sin(2r _ 1) nx,
mL 2L

and the corresponding natural frequencies are

Wr = (2r - 1) ~J::2' r = 1,2, ... (m)

Using Eqs. (7.524b) and dropping the second subscript, we write

Hr = lL

m(x)vr(x)h(x)dx = m lL

vr(x)h(x) dx

~J 2 (L sin(2r - 1) nx [x - (L - E)]U[X - (L - E)]dx = 0,
EA mL 10 2L·

r = 1,2, ... (n)

L _

EAdv(x)I = 0
dx x=L

Its solution was obtained in Sec. 7.6. The eigenfunctions are

r = 1,2, ...

(k)

(1)
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H
• lL 11. d2h(x)
, = v,(x)Lh(x) dx = -EA v,(X)--2-dxo 0 dx

_j 2 (L sin(2r _ 1) 7rX .8fx _ (L - E)]dx
mL io 2L

r j2 7rE
(-1) ';-;;;T.cos(2r -1)2L' r = 1,2•...

491

(0)

where 8[x - (L - E)] is a spatial Dirac delta function. Because Eq. (a) is homogeneous
and so is the first of boundary conditions (b). F, (t) = 0 and elf) = 0, so that Eqs. (7.526)
yield the modal forces

[£
7rE

N,(t) = -H,'P(t) = (_1)'-1 -P(t)cos(2r -1)-.
mL 2L

r = 1.2.... (p)

which, when introduced in Eqs. (7.527). give the modal coordinates

(-ly-Icos(2r -lH7rE/2L)[£l'T/,(t) = . - P(r)sinw,(t-r)dr.
w, mL 0

Finally, using Eq. (7.513), we obtain the desired solution

x
w(x. t) = L v,(x)T/,(t) + h(x)P(t)

,=1

r = 1,2 ....

(q)

2 ~ (_1)'-1 cos(2r - 1)(7rE/2L) 7r x 11

- L -----------sin(2r - 1)-- P(r)sinw,(t - r)dr
m L ,=1 w, 2 L ()

P(t)+ - [x - (L - E)]U[X - (L - E)]
EA

(r)

Although the last term in Eq. (r) is zero for 0 ~ x ~ L-E and small for L-E ~ x ~ L.
it must he retained. because its derivatives are neither zero nor small for L - E < X < L;
its presence ensures the satisfaction of the boundary condition at x = L.

7.20 SYNOPSIS

Mathematical models are not unique, and the same system can be modeled in dif-
ferent ways. In fact, modeling is more of an art than an exact science. In the first six
chapters, we have been concerned with discrete, or lumped-parameter systems and
in this chapter with distributed parameter systems. This division is very significant, as
the mathematical techniques for the two types of systems differ drastically. Indeed,
discrete systems possess a finite number of degrees of freedom and are governed by
ordinary differential equations of motion, whereas distributed systems possess an in-
finite number of degrees of freedom and are described by boundary-values problems,
consisting of partial differential equations and boundary conditions. Of course, the
methods for solving ordinary differential equations are appreciably different from
the methods for solving partial differential equations. Still, the difference between
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the two classes of models is more of form than substance. Indeed, we recall that
discrete and distributed models share many of the same characteristics, so that in
fact they exhibit similar behavior. This fact is helpful when distributed systems de-
scribed by boundary-value problems do not admit closed-form solutions, which are
more the rule rather than the exception, and the interest lies in approximating them
by discrete systems.

In this chapter, the power of analytical mechanics, and in particular the power
of the extended Hamilton's principle in deriving boundary-value problems for dis-
tributed-parameter systems, is amply demonstrated. The principle can be used to
derive the boundary-value problem for a generic system in the form of a partial La-
grange's differential equation of motion and appropriate boundary conditions. As
for discrete systems, the free vibration of conservative distributed systems leads to
an eigenvalue problem, this time a differential eigenvalue problem, as opposed to an
algebraic one. Conservative distributed systems represent a very large and important
class of systems referred to as self-adjoint. The discrete counterpart of self-adjoint
systems are systems described by real symmetric matrices. Self-adjoint systems pos-
sess real eigenvalues and real and orthogonal eigenfunctions, in the same way real
symmetric matrices possess real eigenvalues and real and orthogonal eigenvectors.
Not surprisingly, systems described by real symmetric matrices are also referred to at
times as self-adjoint. Also by analogy with discrete systems, an expansion theorem
exists for distributed systems as well. Undamped strings, rods, shafts and beams are
all demonstrated to fall in the class of self-adjoint systems. The inclusion in the case
of beam vibration of lumped masses at the boundary and rotatory inertia throughout
complicates Lagrange's equation and the boundary conditions, as well as the eigen-
value problem, by causing some boundary conditions to depend on the eigenvalue.
If shear deformation effects are also included, then a more accurate beam model,
known as a Timoshenko beam, is obtained. Two-dimensional systems introduce the
shape of the boundary as a factor affecting greatly the nature of the problem. If
the shape of the boundary is relatively simple, such as rectangular or circular, then
this factor controls the choice of coordinates used to describe the problem. Closed-
form solutions are scarce for two-dimensional problems, even when the shape of
the boundary is simple. If the shape is irregular, then closed-form solutions do not
exist, and approximate solutions are the only viable alternative. In this chapter, we
consider rectangular and circular membranes and plates and present some of the few
closed-form solutions possible. Approximate solutions are considered in Chapters 8
and 9.

In the case of self-adjoint systems, the differential eigenvalue problem can
also be formulated in a weak form by a variational approach, which amounts to
rendering Rayleigh's quotient stationary. This approach provides the foundation
for some important approximate techniques whereby distributed-parameter systems
are discretized (in the spatial variables) by assuming a solution in the form of a
series of admissible functions. Reference is made here to the Rayleigh-Ritz method
discussed in Chapter 8, and in its premier form, the finite element method, presented
in Chapter 9. The net result is to reduce differential eigenvalue problems to algebraic
ones. The integral formulation of the eigenvalue problem also provides the basis for
some approximate techniques, but on a much more modest scale.
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Distributed-parameter system response follows the same pattern as for discrete
systems, namely, solve the differential eigenvalue problem, assume the solution of the
boundary-value problem in the form of an infinite series of eigenfunctions multiplied
by time-dependent modal coordinates and use the orthogonality of the eigenfunc-
tions to obtain an infinite set of independent ordinary differential equations, known
as modal equations. The latter can be solved as usual.

From the above, we conclude that, whereas distributed systems differ from
discrete systems in form, the basic ideas remain the same.

PROBLEMS

7.1 The n-degree-of-freedom system of Fig. 7.30 consists of n beads of mass mj suspended
on a string and subjected to the forces Fi (i = 1,2, ... , n). The left end of the string is
fixed and the right end is supported by a spring of stiffness k. The tension in the portion
of the string of length LlXi bet ween the masses m i and m i+ 1 is T;. Derive the differential
equations of motion for the transverse vibration of the system. Then, devise a limiting
process by letting LlXi approach zero so as to transform the equations of motion into the
boundary-value problem derived in Sec. 7.1.

h

t

_------- Xj

----------- L

-I
-I

Figure 7.30 String with 11 masses in transverse vibration

7.2 A nonuniform rod in axial vibration has mass per unit length m (x) and axial stiffness
E A (x), in which E is the modulus of elasticity and A (x) the cross-sectional area. The
left end is connected to a spring of stiffness k and the right end is free, as shown in
Fig. 7.31. The rod is subjected to the force density I(x, t). Derive the boundary-value
problem in two ways, first by Newton's second law and then by the extended Hamilton's
principle.

I_ x--+- u(x,t)

~A~A~_' ~()rYHY L ~ - - ~_x
m(x), EA(x)

1-- -- L ·1
Figure 7,31
x=L

Rod in axial vibration connected to a spring at x = 0 and free at
\

-I
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7.3 A nonuniform shaft in torsional vibration has polar mass moment of inertia per unit
length I (x) and torsional stiffness G J (x), in which G is the shear modulus and J (x)
is the area polar moment of inertia. The left end is supported by a torsional spring of
stiffness k1 and the right end by a torsional spring of stiffness k2, as shown in Fig. 7.32.
The shaft is subjected to the moment per unit length m(x, t). Derive the boundary-value
problem in two ways, first by Newton's second law and then by the extended Hamilton's
principle.

£I(x, t)

L

m(x, t)

.1
Figure 7.32 Shaft in torsional vibration supported by springs at both ends

7.4 A string of mass per unit length p(x) hangs freely from a ceiling, as shown in Fig. 7.33.
Derive the boundary-value problem for the transverse vibration of the string by the
extended Hamilton's principle. Discuss the boundary condition at the lower end.

L
p(x)

I"-------- --

Figure 7.33 String in transverse vibration hanging freely from a ceiling

7.5 A beam of mass per unit length m (x) and bending stiffness E I (x), supported by springs
of stiffness k1 and k2 at the two ends, is subjected to a distributed force f (x, t), as shown
in Fig. 7.34. Derive the boundary-value problemfor the bending vibration of the beam
in two ways, first by Newton's second law and then by the extended Hamilton's principle.
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7.6

Figure 7.34 Beam in bending vibration supported by springs at both ends

A beam of mass per unit length m (x) and bending stiffness E 1 (x). free at both ends,
lies on an elastic foundation of distributed stiffness k(x), as shown in Fig. 7.35. Derive
the boundary-value problem for the bending vibration of the beam.

)'VI ~ t'li. of ~-c h',~Jc?

k(x)

Figure 7.35 Beam in bending free at both ends lying on an elastic foundation

7.7 A beam of mass per unit length m (x) and bending stiffness E I (x), fixed at x = 0 and
hinged at x = L in a way that the bending slope is restrained by a spring of stiffness k
(Fig. 7.36), is acted upon by the distributed force f(x, t). Derive the boundary-value t _.
problem for the bending vibration of the beam .. \ . ",~'1"-' ""j - -t>-z... l c-_l ~,,1)

"-==)\'- ~I

r- x -, !. f(x, t) kT1+ t t t t\ t t t t t t t t t t t t~

I m{x), El(x) I
• L •

l'igure 7.36 Beam in bending free at x = 0 and with a slope-restraining spring at
x=L

7.8 A beam of circular cross section, capable of bending vibration about two orthogonal axes,
rotates about the x -axis with the constant angular velocity Q. The beam has mass per
unit length III (x). a disk of mass M at midspan and bending stiffness E 1(x). and is hinged
at both ends. as shown in Fig. 7.37. Derive the boundary-value problem for the bending
vibrations u" and Uz of the beam about the rotating body axes y and z, respectively.
Hint: Note that the lumped mass M of the disk can be treated as a distributed mass
having the value M 8(x - LI2), where 8(x - L12) is a spatial Dirac delta function.



496 Distributed-Parameter Systems' Chap. 7

Figure 7.37 Rotating beam in bending hinged at both ends and with a disk at
midspan

7.9 Derive the boundary-value problem for the rod of Problem 7.2 by the generic Lagrange
equation of Sec. 7.3.

7.10 Derive the boundary-value problem for the shaft of Problem 7.3 by the generic Lagrange
equation of Sec. 7.3.

7.11 Derive the boundary-value problem for the beam of Problem 7.5 by the generic Lagrange
equation of Sec. 7.3.

7.12 Derive the boundary-value problem for the beam of Problem 7.7 by the generic Lagrange
equation of Sec. 7.3.

7.13 Extend the generic formulation of Sec. 7.3 to the case of bending of a beam about two
orthogonal axes. Then, use the formulation to derive the boundary-value problem for
the rotating beam of Problem 7.8.

7.14 Derive the eigenvalue problem for the rod of Problem 7.2.
7.15 Derive the eigenvalue problem for the shaft of Problem 7.3.
7.16 Derive the eigenvalue problem for the string of Problem 7.4.
7.17 Derive the eigenvalue problem for the beam of Problem 7.5.
7.18 Derive the eigenvalue problem for the beam of Problem 7.6.
7.19 Derive the eigenvalue problem for the beam of Problem 7.7.
7.20 Cast the eigenvalue problem for the beam of Problem 7.14 in the generic form given by

Eqs. (7.68) and (7.69), and then check whether the system is self-adjoint and positive
definite.

7.21 Solve Problem 7.20 for the shaft of Problem 7.15.
7.22 Solve Probl_em7.20 for the string of Problem 7.16.
7.23 Solve Problem 7.20 for the beam of Problem 7.17.
7.24 Solve Problem 7.20 for the beam of Problem 7.18.
7.25 Solve Problem 7.20 for the beam of Problem 7.19.
7.26 Assume that the rod of Problem 7.2 is uniform and solve the eigenvalue problem for the

parameter ratio EA/ Lk = 1. Plot the three lowest modes.
7.27 Assume that the shaft of Problem 7.3 is uniform and solve the eigenvalue problem for

the parameters k1 = k2 = k, GJ = 2kL.
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7.28 Solve the eigenvalue problem for a rod in axial vibration clamped at x = 0 and free at
x = L and with the following mass density and axial stiffness:

m(x) = 2m(1 - i), EA(x) = 2EA (1 - i)
Plot the three lowest modes. Hints: (1) A suitable transformation reduces the differential
equation to a Bessel equation and (2) the boundary condition at x = L is the unorthodox
one that the displacement must be finite.

7.29 Assume that the mass density of the string of Problem 7.4 is constant and solve the
eigenvalue problem. Plot the three lowest modes. Hints: (1) a suitable transformation
reduces the differential equation to a Bessel equation and (2) the boundary condition at
the lower end is that the displacement must be finite.

7.30 Assume that the beam of Problem 7.5 is uniform and solve the eigenvalue problem for
the parameters k1 = k, k2 = 2k, E I = 10k L 3. Plot the three lowest modes.

7.31 Assume that the beam and the elastic foundation of Problem 7.6 are uniform and so1ve
the eigenvalue problem. Plot the three lowest modes. Draw conclusions as to the effect
of the elastic foundation on the eigensolutions.

7.32 Assume that the beam of Problem 7.7 is uniform and solve the eigenvalue problem for
El = 5kL. Plot the three lowest modes.

7.33 Derive the boundary-value problem for the shaft of Example 7.5 by Newton's second
law.

7.34 Derive the boundary-value problem for the rotating beam of Example 7.2 by Newton's
second law.

7.35 The beam shown in Fig. 7.38 has mass per unit length m (x) and bending stiffness E I (x).
The left end is clamped and there is a lumped mass M with mass moment of inertia 1M
at the right end. Derive the boundary-value problem by the approach of Sec. 7.4 on the
assumption that the rotatory inertia of the beam is negligibly small.

a -it-t1m

,

a>---------<-m-(-X-),-E-/(-X-) ------<U
1-- --L---I

Figure 7.38 Beam in bending clamped at x = 0 and with a mass at x = L

7.36 Derive the eigenvalue problem for the system of Problem 7.35, verify that it fits the
formulation of Sec. 7.9 by identifying the differential operators, and check the system
self-adjointness and positive definiteness.

7.37 Assume that the mass and stiffness of the beam in the system of Problem 7.36 are dis-
tributed uniformly, solve the eigenvalue problem for the parameters ratios M / m L =
2 X 10-1 and IM/mL3 = 5 x 10-2 and plot the three lowest modes.

7.38 A uniform square membrane has repeated natural frequencies WillI! = Wnlll• Any linear
combination of the modes Wllln and Wnm is also a mode. Plot the nodal lines for the
mode

W(x. y. c) = WI3(X. y) + CW31(X, y)

for the values c = 0, !,1.

'-.:
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7.39 Solve the eigenvalue problem for a uniform rectangular membrane fixed at x = 0, a and
free at y = 0, b. Assume that there are smooth vertical guides. at y = 0, b ensuring that
the membrane tension is the same at every point and in every direction.

7.40 Solve the eigenvalue problem for a uniform rectangular membrane supported by a dis-
tributed spring of constant stiffness k at the boundaries x = 0, a and fixed at the bound-
aries y = 0, b for the parameters b = 2a, T == 5ak. The tension can be assumed to be
constant at every point and in every direction, as in Problem 7.39.

7.41 Solve the eigenvalue problem for a uniform circular membrane supported at the bound-
ary r = a by a uniformly distributed spring of stiffness k for the case in which T = 5ak.

7.42 Solve the eigenvalue problem for a uniform annular membrane defined over the domain
b < r < a and fixed at the boundaries r = band r = a.

7.43 Use Eqs. (7.326) in conjunction with the relations

a a a
- = cos¢- + sin¢-,an ax ay
to derive Eqs. (7.336).

7.44 Modify the derivation of the generic boundary-value problem for plate vibration of
Sec. 7.13 so as to accommodate the case in which the displacement w at every point of
the boundary is restrained by a distributed spring of stiffness k.

7.45 Repeat Problem 7.44 for the case in which the slope aw Ian at every point ofthe boundary
is restrained by a distributed spring of stiffness k.

7.46 Check the self-adjointness and positive definiteness of a rectangular plate with the fol-
lowing boundaries:

1. simply supported on all sides
ii. clamped on all sides
iii. free on all sides
iv. all sides supported as in Problem 7.44
v. all sides supported as in Problem 7.45

VI. any combination of sides as in cases i through v

7.47 A uniform rectangular plate is simply supported at the boundaries y = 0, b and free at
the boundaries x = 0, a. Solve the eigenvalue problem and plot the four lowest modes
for the sides ratio alb = 1.5.
Solve the eigenvalue problem for a uniform circular plate simply supported all around.
Calculate the value of Rayleigh's quotient for a uniform string fixed at both ends using

the trial function w = f - (f) 3
and draw conclusions.

7.50 Calculate the value of Rayleigh's quotient for the string of Problem 7.22 using the trial
function w = cos n x 12L and draw conclusions.

7.51 The natural frequencies and modes of vibration of a uniform string fixed at both ends
are Wr = rn JT IpU and Wr(x) = ,,/21 pL sin rnxl L (r = 1,2, ... ). Construct two
trial functions so as to demonstrate that Rayleigh's quotient has a mere stationary value
at the second mode ..

7.52 Use Rayleigh's quotient to estimate the lowest natural frequency of the beam of Problem
7.37.

7.48

X 7.49

a a a- = -sin¢- + cos¢-,as . ax ay
8¢ = 0,an

1
R

7.53 Use Rayleigh's quotient to estimate the lowest natural frequency of the membrane of
Problem 7.41.
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7.54 Use Rayleigh's quotient to estimate the lowest natural frequency of a uniform rectangular
plate clamped on all sides.

7.55 Formulate the eigenvalue problem for a uniform rod in axial vibration fixed at x = 0 and
free at x = L in integral form. Then, use the iteration method of Sec. 7.15 to calculate
the low.est eigenvalue.

7.56 Use modal analysis to derive the response of a uniform string fixed at both ends to the
initial displacement shown in Fig. 7.39. Discuss the mode participation in the response.

Wo______________________________t _

I-
Figure 7.39 Initial displacement of a uniform string fixed at both ends

7.57 Derive the response of a uniform beam clamped at both ends to the initial velocity

and discuss the mode participation.
7.58 A force F(t) traveling on a bridge in the positive x direction at the constant velocity v

can be treated as distributed by writing

f( ) - {F(t) 8(x - vt), 0 ::: vt ::: L
. x. t - 0 • vt > L

where L is the length of the bridge. Derive the response to the traveling force if the
bridge has the form of a uniform simply supported beam.

7.59 A concentrated moment of unit magnitude applied in the clockwise sense at x = a can
be represented by two unit impulses acting in opposite directions, as shown in Fig. 7.40.
ll1is generalized function, denoted by 8' (x - a), is called a spatial unit doublet and has
units length -2. Hence, a concentrated moment M (t) acting in the counterclockwise
sense at x = (/can be represented as the distributed force fIx. tl = -M(t) 8'(x - a).
Use the unit doublet concept to determine the response of a uniform simply supported
beam to a counterclockwise moment applied at the right end.

,,'(x - a)

1
E

1
E

o a-E.J

Figure 7.40 Spatial unit douhlet at x = a
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8

APPROXIMATE METHODS FOR
DISTRIBUTED-PARAMETER

SYSTEMS

Chapter 7 contains a wealth of information concerning the vibration of distributed-
parameter systems, including a variety of formulations for boundary-value and dif-
ferential eigenvalue problems, an all-encompassing discussion of the important class
of self-adjoint systems and of the properties of the corresponding eigensolutions, so-
lutions to some differential eigenvalue problems and system response. An overview
of Chapter 7 leads to the unmistakable conclusion that it contains a preponderance
of problem formulations and discussions of the general properties of the solutions,
but only a small number of actual solutions to complex problems. The reason for
this paucity of solutions lies in the fact that very few differential eigenvalue prob-
lems admit closed-form solutions. Indeed, closed-form solutions are possible only in
relatively few cases, almost invariably (but not exclusively) involving uniformly dis-
tributed parameters and simple boundary conditions. The satisfaction of boundary
conditions can be particularly difficult for two-dimensional problems. In many cases,
even though closed-form solutions may be possible, the effort in obtaining them may
be so great as to discourage all but the most tenacious investigators. Hence, quite
often one must be content with an approximate solution.

The difficulty inherent in the solution of boundary-value problems lies in the
dependence on spatial variables. Hence, it should come as no surprise that all ap-
proximate methods for distributed-parameter problems have one thing in common,
namely, the elimination of the spatial dependence. This amounts to reducing a dis-
tributed system to a discrete one through spatial discretization. The spatial dis-
cretization methods can be divided into two broad classes, lumping procedures and
series discretization methods. Lumping methods are physically motivated, intuitive
in character. They all amount to lumping the distributed mass at given points of the
domain of the system. On the other hand, the stiffness can be treated as distributed

501
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or it can be lumped also. Series discretization methods tend to be more abstract.
In such methods, approximate solutions are assumed in the form of series of known
space-dependent trial functions multiplied by undetermined coefficients. Certain
integrations eliminate the spatial variables and reduce the problem to one of deter-
mining these coefficients. In all methods, the net result is to transform differential
eigenvalue problems into algebraic ones.

In this chapter, we begin with the lumped-parameter method using flexibility
influence coefficients whereby, as the name implies, the mass is lumped at discrete
points; the stiffness is not lumped but described by means of influence coefficients.
The method is applicable to one-dimensional and two-dimensional problems, al-
though it may not be feasible to derive flexibility influence coefficients for the latter.
Two other lumped-parameter methods considered are Holzer's method for torsional
vibration and Myklestad's method for bending vibration, and we note that Holzer's
method can be adapted to accommodate strings in transverse vibration and rods in

. axial vibration. These are chain, or step-by-step methods whereby both the mass
and the stiffness are lumped and the description of the variables proceeds from one
end of the elastic member to the other. The remaining methods in this chapter are
all series discretization methods. They can be divided into two classes. The first class
is based on variational principles and it amounts to minimization of Rayleigh's quo-
tient. It is identified with the Rayleigh-Ritz method and is applicable to self-adjoint
systems alone. The second is based on the idea of reducing the error caused by an
approximate solution and is known as the weighted residuals method. It is in fact not
one but a family of methods, the most important one being Galerkin's method. The
weighted residuals methods are applicable to both self-adjoint and non-self-adjoint
systems. Two other methods, component-mode synthesis and substructure synthesis,
represent extensions of the Rayleigh-Ritz method to flexible multibody systems.

Conspicuous by its absence from this chapter is the finite element method, a
method that rightfully belongs here. Indeed, as the other methods in this chapter, the
finite element method seeks approximate solutions to differential eigenvalue prob-
lems (and other kinds of problems) not admitting closed-form solutions. Moreover,
although the finite element method was believed in the beginning to be entirely new,
it was demonstrated later to be another version of the Rayleigh-Ritz method. Still,
the procedural details are sufficiently different and the body of literature on the sub-
ject has grown to such an extent that presentation of the finite element method in a
separate chapter, namely Chapter 9, can be justified.

8.1 LUMPED-PARAMETER METHOD USING FLEXIBILITY INFLUENCE
COEFFICIENTS

The lumped-parameter method is arguably the simplest method for the approximate
solution of the eigenvalue problem for distributed systems. The approach is based on
the integral formulation of the eigenvalue problem, Eq. (7.410). For convenience, we
confine ourselves to one-dimensional domains, in which case the eigenvalue problem

~---~--------------------_.- .~-----
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Figure 8.1 Mass lumping in a cantilever beam
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(8.1 )

has the integral form

W(x) = uilL a(x, ~)m(~)w(~) d~

where a(x,~) is the flexibility influence function (See 7.15). Next, we consider
the system of Fig. 8.1, divide the domain 0 < x < L into n small increments of
length I::1Xjand denote the center of these increments by ~ = Xj (j = 1, 2, ... , n).
Moreover, we let x = Xi, as well as

W(X;) = Wi,

and approximate Eq. (8.1) by

(8.2)

n

Wi = ui LaijmjWj,
j=l·

i = 1,2, ... ,n (8.3)

Equation (8.3) is the discretized version of Eq. (8.1) and represents an algebraic
eigenvalue problem, in which aij (i, j = 1,2, ... , n) are known as flexibility influ-
ence coefficients and denote the displacement at Xi due to a unit force at Xj. They
are simply the discrete counterpart of the flexibility influence function a(x,~) in-
troduced in Sec. 7.15. Hence, by analogy, Maxwell's reciprocity theorem for lumped
systems is

i,j = 1,2, ... ,n (8.4)

indicating that the flexibility influence coefficients are symmetric in i and j.
Equations (8.3) can be cast in matrix form. To this end, we introduce the

displacement vector w = [W1 W2 ... Wn ( , the flexibility matrix -A = [aij] and the
mass matrix M = diag (m j), so that Eqs. (8.3) can be rewritten as

w = uiAMw (8.5)

where we note that AM represents a special case of the dynamical matrix first en-
countered in Sec. 6.3, in the sense that here M is diagonal. We also note that the
flexibility matrix A is the reciprocal of the stiffness matrix K, A = K -1. This is of
mere academic interest, however, because computation of stiffness coefficients for
distributed-parameter systems is not feasible.
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(8.7)

The matrix AM is in general not symmetric, and the most efficient computa-
tional algorithms are for real symmetric matrices. In this particular case, the problem
can be symmetrized with ease by introducing the vector

u = M1/2w (8.6)

where M1
/
2 = diag (.Jmj). Introducing Eq. (8.6) into Eq. (8.5) and pre multiplying

by M1/2 / ui,we obtain an eigenvalue problem in the standard form

A'u = A.U, A. = 1/ul
where

(8.8)

is a real symmetric matrix. The eigenvalue problem given by Eq. (8.7) can be solved
by any of the algorithms presented in Chapter 6.

The accuracy of the results depends on the number and length of the increments
!1Xj. Conceivably, the length of each individual increment can be varied to reflect the
parameter nonuniformity, but in general the increments are taken equal in length, so
that the question reduces to the number of increments. Unfortunately, there are no
guidelines permitting a rational choice. Hence, whereas we can conclude on physical
grounds that the approximations converge to the actual eigensolutions as n --+ 00,

no quantitative convergence statement can be made.
The main appeal of the method is simplicity of the concepts. In fact, Eqs. (8.3)

could have been obtained in a more direct manner by regarding the system as lumped
from the beginning. But, whereas the concepts are simple, the implementation is
not. The reason can be traced to the fact that, except for some simple cases, the
evaluation of the influence coefficients aij can be quite difficult. This is often the
case when the boundary conditions are complicated or when the problem is two-
dimensional. Methods for obtaining influence coefficients are covered adequately in
many textbooks on mechanics of materials.

Flexibility influence coefficients can be defined only when the potential energy
is a positive definite function. Hence, the method just described is so restricted. How-
ever, the lumped-parameter method using influence coefficients can be extended to
positive semidefinite systems. This amounts to eliminating the rigid-body motions
from the formulation. To this end, we introduce a reference frame attached to the
body in undeflected configuration and measure elastic displacements relative to the
reference frame. The translation and rotation of the reference frame play the role
of rigid-body modes, so that the elastic displacements are measured relative to the
rigid-body modes. For convenience, we place the origin of the reference frame at the
mass center C of the system. As an example, we consider the free vibration of the
unrestrained beam in bending shown in Fig. 8.2 and denote the rigid-body transla-
tion of the origin C of the reference frame x, y by We, the rigid-body rotation of the
reference frame by o/e, the elastic displacements of mi relative to x, y by Wi and
the total displacement of mi relative to the inertial frame X, Y by Wi. We assume
that the rotation o/e is relatively small, so that axes x, yare nearly parallel to axes
X, Y. Under these circumstances, the absolute displacement of mi has the form

Wi = We + xio/e + Wi, i = 1,2, ... , n (8.9)
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Figure 8.2 Lumped model of an unrestrained beam in bending
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where Xi is the nominal position of mi relative to C. To eliminate the rigid-body
motions, we recognize that in free vibration the linear and angular momenta must
vanish, or

II

Lmi (wc + Xi-v,C + Wi)
i=1

o (8.10a)

II

"mx W·L...., I I I

i=1

II

Lmixi (wc + Xi-v,C + Wi) = lc·-v,c + xTMw = 0 (8. lOb)
i=1

where m = L:7=1 mi is the total mass of the beam, Ic = L:7=1 mix; the moment
of inertia of the beam about C, 1 = [11 ... If, x = [XI X2 ... xllf, w the
elastic velocity vector and M the diagonal mass matrix. Moreover, L:7=1 miXi = 0
by virtue of the fact that C is the mass center of the beam. Equations (8.10) yield
simply

Wc
1 T= --1 Mw,
m

1 T .--x Mw
Ic

(8.11)

Next, we use Newton's second law, recognize that in free vibration all forces
are internal and write the equation of motion for each of the lumped masses in the
form

-J;
n

- "kw'IJ J'
j=1

1,2, ... , n

(8.12)
where kij are the stiffness coefficients. Writing Eqs. (8.12) in matrix form and using
Eqs. (8.11), we obtain the equations for the elastic motions alone

in which

.-

M'

M'w + Kw = 0

M - ~MllTM - .!..-Mxx™
m Ic

(8.13)

(8.14)
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is a modified mass matrix. Because free vibration is harmonic, w = -w2w, Eq. (8.13)
in conjunction with the usual operations yields the eigenvalue problem for the elastic
modes

AM'w = AW, (8.15)

where A = K-I is the flexibility matrix, and we ~ote that the stiffness coefficients
are not really required. We also note that the flexibility matrix is block-diagonal, as
it consists of two independent submatrices on the main diagonal, one for a cantilever
beam extending to the right of C and one for a cantilever beam extending to the left
of C.

Although the eigenvalue problem (8.15) is of order n, there are only n - 2
valid solutions. The reason lies in the fact that the modified matrix M' is singular.
Indeed, it is not difficult to verify that the rigid-body translation modal vector 1 and
the rigid-body rotation modal vector x are in the nullspace (Appendix B) of M',
and hence they satisfy M'l = 0 and M'x = O. Of course, the system has a full
complement of n eigenvectors, as the two missing eigenvectors are simply the two
rigid-body modal vectors 1 and x.

. Equation (8.15) yields only the elastic part of the eigenvectors: To recover the
contribution of the rigid-body modes to the elastic modes, we consider Eqs. (8.9),
(8.11) and (8.14) and write in matrix form

W = 1we + xo/e + w = (I - ~l1T M - ~xxT M) w = M-IM'w (8.16)
m Ie

Finally, there is the question of lack of symmetry of the matrix AM'. Because
M' is singular, the symmetrization process resulting in Eq. (8.8) is not possible.
Fortunately, however, the flexibility matrix is positive definite. Hence, using the
Cholesky decomposition, we can write .'

Introducing Eq. (8.17) into Eq. (8.15), using the linear transformation

(8.17)

w = Lu, (8.18a, b)

and premultiplying the result by L, we can reduce the eigenvalue problem to the
standard form

where

M*u = AU

M* = LTM'L = M*T.

(8.19)

(8.20)

is a symmetric matrix. Because M* is related to M' by an orthogonal transformation,
the eigenvalue problem (8.19) retains the characteristics of the eigenvalue problem
(8.15), i.e., it possesses only n - 2 valid solutions. In this regard, we recognize that the
nullspace of M* consists of the two vectors L -11 and L -Ix. Upon solving eigenvalue
problem (8.19), we must use Eq. (8.18a) in conjunction with the eigenvectors Ur to
.comput~ the 'elastic eigenvectors Wr for the original problem, Eq. (8.15).
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Example 8.1

Obtain the natural frequencies and natural modes of vibration associated with the free-
free beam shown in Fig. 8.3. The mass and stiffness distributions are

4M( ~)m(~) = -- 1 + -
5 L 2L'

El(~) = ~El (1 + -.L)
5 2L

(a)

where ~ is the distance from the left end. M the total mass and L the length of the
beam.

The center of mass of the system is located at a distance "f from the left end given
by

- 1 lL
8~ = - ~m(~)d~ = -L

M [) 15
(b)

Next, we assume that the mass of the beam is lumped into n discrete masses such that
the mass m, (i = 1.2, ... , n) is equal to the mass in the segment (i - 1)(L/n) ::: ~ :::
i (L/ n) and is located at the corresponding center of mass. Hence. the masses mi have
the values

liLl1! M
mi = m(~) d~ = -2 (4n + 2i - 1).

(i -I)LII! 5n

and are located at distances ~i from the left end given by

1.2, ... n (c)

1 liLl
1! 2L

~i = - ~m(~) d~ = . [3n(2i -1) +3i(i - 1) + 1].
m, (i-I)/./I! 3n(4n + 21 - 1)

i = 1.2, ...• 11 (d)

When measured from the center of mass C of the beam, instead of the left end. these
locations are

Xi = ~i - "f. i = 1,2•... , n (e)

Similarly, in terms of the distance X from C, the stiffness has the form

2 El -
El(x) = --(2L + ~ - x)

5 L

I

- ~

. ~--t- x / m(~), EI(~)

-I-------+c--~---t_
I- L -I

Figure 8.3 Nonuniform free-free beam in bending

(f)

'}o
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• • • • •
~I·a···· ·

(a)

, ~x~[t1s:x.-xx. J
J

(b)

•

(g)

Figure8.4 (a) Lumped-parameter model of a beam cantilevered on both sides
(b) Bendingmoment diagram due to a unit force (c) Bending moment diagram
dividedby the bending stiffness

The influence coefficients aij can be determined by the moment-area method.
To this end, we regard the beam as fixed at the mass center and cantilevered on each
side, as shown in Fig. 8Aa. Figure 8Ab shows the bending moment diagram due to a
unit load applied at x = Xj, and Fig. 8Ac shows the bending moment divided by the
stiffness E I (x). The slope of the deflection curve is zero at the fixed end, x = 0, so the
moment-area method gives the deflection at the point Xi due to a unit load at Xj in the
form of the moment with respect to point Xi of the area of the bending moment divided
by EI(x). Hence,for-;ti:> Xj > O,weobtain

lX
j

(Xj - X)(Xi - x)dx
aij = ---''-------

o E I (x)

5L - - X· + 2L + ~
= -{ [(Xi + Xj + 2L +~) (2L +~) + XiXj] 1n-::.J

- __
2E I 2L + ~

- (Xi + Xj + 2L + ~)Xj - ~xJ}, < j

and a similar expression can be written for the case in which Xi < 0 and Xj < O.
Furthermore, the influence coefficients are symmetric, aij = aji. For Xi > 0 and
Xj < 0, or for Xi < 0 and Xj > 0, we have

aij = 0 (h)

The coefficients aij can be arranged in the form of the symmetric flexibility matrix
A. The diagonal mass matrix M is obtained from Eq. (c) and the vector x, as well as the
mass moment of inertia Ie, from Eqs. (b), (d) and (e). This, in turn, allows us to evaluate
the modified mass matrix M' according to Eq. (8.14). The natural frequencies and
natural modes are obtained by solving the eigenvalue problem, Eq. (8.15). The solution
consists of 18 eigenvalues w; and purely elastic eigenvectors Wr (r = 3,4, ... ,20),
i.e., excluding the contribution from the rigid-body modes. The eigenvectors can be
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inserted into Eq. (8.16) to obtain the absolute natural modes Wr (r = 3,4, ... ,20),
in the sense that they are measured relative to the inertial space. It should be recalled
that the remaining two modes are the rigid-body modes Wj = 1 and W2 = x with
corresponding natural frequencies equal to zero. The elastic modes W3, W4 and Ws
are displayed in Fig. 8.5.

I: ~i :~x,-l~
ml m2 m20
• • • • • • • • • • • • • • •• • •
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, fK
~5 = 122.1793 ~ M L 3

x

I<'igure8.5 Lumped-parameter model of a free-free beam in bending and the
three lowest elastic modes

It should be noted that the natural frequencies and natural modes are reasonably
close to the ones of a uniform free-free beam of total mass M and stiffness E I, as can
be expected. We must also note that smaller displacements occur at the heavier, stiffer
end of the beam, which agrees with the expectation.

8.2 HOLZER'S METHOD FOR TORSIONAL VIBRATION

In the lumped-parameter method using flexibility influence coefficients, the mass
properties are approximated by lumping the distributed mass at individual discrete
points. If the flexibility coefficients are evaluated by regarding the stiffness as dis-
tributed, as was done in Example 8.1, then the stiffness properties are accounted
for exactly. This is the strength of the method, but also its main drawback, as the
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evaluation of flexibility coefficients for systems with distributed stiffness tends to
be difficult. Even if the stiffness between any two adjacent lumps is assumed to
be uniform, the situation is not significantly better, except for some simple systems,
such as strings, rods and shafts characterized by second-order differential eigenvalue
problems (Sec. 7.6).

Another lumped-parameter approach consists of lumping the mass at discrete
points and regarding the portion between the lumped masses as being massless and
of uniform stiffness, as suggested in the preceding paragraph, and does not rely
on influence coefficients to characterize the stiffness properties. According to this
approach, the eigenvalue problem is derived in a step-by-step process, advancing
from one end of the member to the other. Clearly, this is a chain method, suitable
for structures described by only one spatial variable. In this section, we apply the
approach to a nonuniform shaft in torsional vibration, and in the next section we
extend it to nonuniform beams in bending.

From mechanics of materials, the relation between the angle of twist e(x, t)
and the twisting moment M (x, t) for a shaft in torsion is

ae(x, t)

ax
M(x, t)

=
GJ(x)

(8.21)

(8.22)

where G J (x) is the torsional stiffness, in which G is the shear modulus and J (x) is
the area polar moment of inertia of the cross section. Using the right-hand rule, M
is positive if the vector indicating the sense of the moment is in the same direction
as the normal to the cross section. For free vibration, the equation of motion is

aM(x, t) a2e(x, t)
ax = I(x) at2

where I (x) is the mass n'1oment of inertia density.

)
GJi

I~ -I
x·I

Figure 8.6 Lumped-parameter model of a shaft in torsion

Next, we consider a nonuniform shaft modeled as a lumped system consisting
of a number of rigid disks connected by massless circular shafts of uniform stiffness,
as shown in Fig. 8.6. Consistent with this, we approximate the differential expres-
sions (8.21) and (8.22) by some recursive relations, which can be done through an
incremental procedure combined with a good dose of ingenuity. It turns out that it
is simpler to derive the recursive relations from the lumped model directly. To this
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end, we denote the angular displacement and torque on the left side of disk i by eF
and M/-, respectively, and the same quantities on the right side of disk i by et and
Mt. Moreover, in keeping with the tradition, we refer to. disk i as station i and to
the segment between station i and station i + 1 as field i. To derive the desired
relations, we consider two free-body diagrams, one for station i and the other for
field i; they are displayed in Figs. 8.7a and 8.7b, respectively. Because the disks are
rigid, the rotations on both sides of disk i must be the same, or

(8.23)

Then, referring to Fig. 8.7a, the moment equation of motion is

(8.24)

Moreover, considering the shaft segment in Fig. 8.7b, we can interpret

(8.25)

as a torsional flexibility coefficient representing the angular displacement at the right
end of the shaft due to a unit torque at the same end, where Ji is the polar area
moment of inertia of the cross section. Hence, the relation between the rotations at
the two ends of field i is

(8.26)

FinalIy, considering the fact that the shaft segment has no inertia, we have

ML,-t-
I,

(a)

I·
(b)

·1

(8.27)

Figure 8.7 (3) Station i for a shaft in torsion (b) Field i for a shaft in torsion
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At this point, we recall that free vibration is harmonic, so that ei (t) =
-U}ei cos (wt - 4», where ei is a constant amplitude, w the frequency of oscillation
and 4> an inconsequential phase angle. Introducing this expression into Eqs. (8.23)
and (8.24), dividing through by cos (wt - 4» and rearranging, we obtain relations in
terms of amplitudes alone in the form

e.R = eL MR = _w2 Il·e~ + M~ (8.28a, b)
l l ' III

and we observe that Eqs. (8.28) carry us across station i, i.e., they provide us with et
and Mi

R in terms of el and MiL. Similarly, Eqs. (8.26) and (8.27) can be rewritten as

(8.29a, b)

which carry us across the field i.
Equations (8.28) and (8.29) can be used recursively to relate the angle and

torque at the left end to the angle and torque at the right end. The method of Holzer
(Ref. 16) consists of using these recursive relations to solve the eigenvalue problem.
The method represents a trial and error procedure, assuming values for e~ and M~
consistent with the boundary condition at the left end and then assigning values for
w2 repeatedly until the boundary condition at the right end is satisfied.

Instead of using Eqs. (8.28) and (8.29) on a recursive basis in conjunction with
a trial and error procedure, it is possible to derive a characteristic equation in w2 and
solve the equation by a root-finding algorithm. This approach is better explained by
means of matrix notation. To this end, we express Eqs. (8.28) in the compact form

(8.30)

(8.31)

where vf = [ei
R MiRf and vf = [el MF f are referred to as station vectors1 for

the right side and left side of station i and

TSi = [_~2h ~]

is a station transfer matrix relating angular displacements and torques on both sides
of station i . Similarly, Eqs. (8.29) can be expressed as

(8.32)

(8.33)

where vf+1 = [e/t-1 M/+1] is a station vector for the left side of station i + 1 and

TFi = [~ i]
is afield transfer matrix relating the angular displacement and torque on the left end
of field i (right side of station i) to the angular displacement and torque on the right
end offield i (left side of station i +1). It should be stressed here that the superscripts

1 In various discussions of the subject, the vectors vf and vf are referred to as "state vectors".
In view of the fact that state vectors generally refer to vectors consisting of displacements and
velocities, the term "station vectors" for vf and vf seems more appropriate.
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Rand L refer to the right side and left side of a station, not a field. Equations (8.30)
and (8.32) can be combined into

where
T T. T . _ [1 - (l}aJi
Ii = FI 51 - -uili

(8.34)

(8.35)

is a transfer matrix relating the station vector on the left side of station i + 1 to the
station vector on the left side of station i.

Equations (8.30), (8.32) and (8.34) can be used to derive an overall transfer
matrix relating the station vector at the left boundary to the station vector at the right
boundary. Embedded in this matrix is the characteristic polynomial. To illustrate
the procedure, we consider the following cases:

1. Clamped-free shaft. In this case, we have n fields i = 0, 1, ... , n - 1 and n
stations, i = 1, 2, ... n, so that the recursive relations are

vf TFOVo

v} T1 vf = T1 hovo

(8.36)

where

T = TSn ( rl 1i) Tn)
1=/1-1

Tvo

(8.37)

is the overall transfer matrix for the case at hand. But, at the clamped end, we have
the boundary condition

and at the right end the boundary condition is

M,~ = 0

Hence, the last of Eqs. (8.36), in conjunction with Eqs. (8.38), yields

[eo,~] = [Tll T12] [ 0 ]
T21 T22 Mo

(8.38a)

(8.38b)

(8.39)

which requires that
(8.40)

Equation (8.40) represents the frequency equation, in which Tn is a polynomial of
degree n in u}. It has n roots, wi ' w~, ... , w~' which can be found by a root -finding
technique, such as the secant method, the Newton-Raphson method, or GraefJe's root
squaring method (Ref. 38).
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The question remains as to how to determine the eigenvectors Or belonging to
the eigenvalue w~ (r = 1, 2, ... , n). To this end, we return to the recursive relations,
Eqs. (8.36), and write

r = 1,2, ... , n (8.41)

where we let for simplicity Mo = 1, so that Vo = [0 If. The eigenvector Or has
as its components the top component of vf (i = 1,2, ... , n) in the mode r. Note
that the bottom component can be used to compute the vector Mf ' which represents
the torque vector on the left side of every disk in the mode r. Also note that, by
taking Mo = 1 arbitrarily, the eigenvector Or has been normalized in a certain sense.
As soon as Or is computed, it can be normalized according to any other scheme, if
desired.

2. Free-free shaft. In this case the shaft is only positive semidefinite. Hence, to
approximate the shaft by an n-degree-of-freedom system, we model the system by
n + 1 stations i = 0; 1, ... nand n in-between fields i = 0, 1, ... , n - 1. Then, the
relation between the station vectors to the left of station 0 and to the right of station
n is simply

v~ = Tv~

where in this case the overall transfer matrix is
o

T = TSn n ~
i=n-l

Because now the boundary conditions are

M~ = 0,

the frequency equation is

o

(8.42)

(8.43)

(8.44a, b)

(8.45)

where T21 is a polynomial of degree n + 1 in w2. However, w2 can be factored out,
so that T2l is the product of w2 and a polynomial of degree n in w2. Hence, there is
one natural frequency equal to zero. This is consistent with the fact that the system is
only positive semidefinite, so that there is one rigid-body mode with zero frequency
and n elastic modes.

As the number of degrees of freedom of the system increases, tbe task of de-
riving the characteristic polynomial and finding its roots becomes more and more
tedious. This task can be avoided altogether by returning to the idea of Holzer's
method. For example, in the case of the clamped-free shaft, we begin with the ar-
bitrary station vector Vo = [0 If,choose some value for w2 and compute M: by
means of the recursive relations

~vf, == 1,2, ... , n - 1 (8.46)

v~ TSnv~
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which are clearly based on Eqs. (R.36). If we begin with a very low value for w2, then
the first value for which the bottom component of v~ becomes zero is the lowest
eigenvalue wf. 'The procedure can be rendered more systematic by plotting the
curve M nR(w2) versus w2. Then, the eigenvalues wf, w~, ... ,w~ are the points at
which M,~(w2

) intersects the ~xis w2
.

Although the method was developed in connection with the torsional vibration
of shafts, the approach can be clearly applied to the axial vibration of rods and the
transverse vibration of strings.

8.3 MYKLESTAD'S METHOD FOR BENDING VIBRATION

Myklestad's method (Ref. 36) for the bending vibration of beams represents an exten-
sion of the ideas introduced in Sec. 8.2 for the torsional vibration of shafts. Although
the extension appears natural, it is not trivial, as witnessed by the fact that it took
over 20 years to complete. The presentation in this section parallels closely the one
in Sec. 8.2. Here, however, ~e begin directly with the lumped-parameter system,
instead of beginning with a distributed-parameter system and using an incremental
procedure to derive a lumped-parameter model.

The differential eigenvalue problem for shafts in torsion is of degree two. Con-
sistent with this, the station vectors are two-dimensional, with the components being
the angular displacement and torsional moment. In contrast, the differential eigen-
value problem for beams in bending is of degree four, so· that the station vectors
must be of order four. Extrapolating from second-order problems, it is possible to
conclude that the components of the station vectors must be the displacement, slope,
bending moment and shearing force.

(a) (b)
Figure 8.8 (a) Station i for a he am in bending (b) Field i for a beam in
hending

By analogy with Sec. 8.2, we assume that a nonuniform Euler-Bernoulli beam
is modeled as a set of lumped masses connected by massless uniform beams of length
/::ixi. Free-body diagrams for a typical station i and field i are depicted in Figs. 8.8a
and 8.8b, respectively. From Fig. 8.8a, due to continuity, we must have

R L
Wi (tl = Wi (t) = Wi(t), (8.47a, b)



516 Approximate Methods for Distributed-Parameter Systems Chap. 8

where o/i is the slope, i.e., the tangent to the deflection curve. Two other relations
consist of the two equations of motion, one force and one moment equation. But,
an Euler-Bernoulli beam implies that the rotatory inertia is negligibly small, so that
the moment equation yields simply

On the other hand, the force equation is

QF(t) - Qt(t) = miwi(t)

(8.48)

(8.49)

Because beam segments possess flexibility, we can refer to Fig. 8.8b to obtain relations
between translational and rotational displacements on the one hand and forces and
moments on the other. To this end, it is convenient to regard station i as clamped
and introduce several definitions of flexibility influence coefficients, as follows:

a~Q is the translation at i + 1 due to a unit force at i + 1, QtH = 1
afM is the translation at i + 1 due to a unit moment at i + 1, M/+l 1

aiQ is the rotation at i + 1 due to a unit force at i + 1, QtH = 1

aiM is the rotation at i + 1 due to a unit moment at i + 1, M/+l 1.

Then, from Fig. 8.8b, we can write

wtH (t)

0/[+1 (t)

wF (t) + b.x(lhR (t) + afM M/+l (t) + a~Q Qt+l (t) (8.50a)

o/iR(t) + aiM M/"H(t) + aiQQtH(t) (8.50b)

Moreover, because beam segments are massless, we can write from Fig. 8.8b

M/:t1(t)

Qt+l (t)

MiR(t) - b.xi QF(t)

QF(t)

(8.51a)

(8.51b)

But, the right side of Eqs. (8.50) contains terms corresponding to both ends of the
field. It is convenient, however, that all the terms on the right side of Eqs. (8.50)
correspond to the right side only, so that we introduce Eqs. (8.51) into Eqs. (8.50)
and obtain

wtH(t) = wf(t) + b.Xio/t(t) + afMMiR(t) + (a~Q - b.xiafM) QF(t)

(8.52a)

(8.52b)

At this point, following the pattern established in Sec. 8.2, we invoke the fact
that free vibration is harmonic, eliminate the time dependence and express the equa-
tions in matrix form. In view of the fact that elimination of the time dependence is
quite obvious, we proceed directly to the matrix formulation. To this end, we define
the station vectors at i as vR = [w!? ,/,R MR Q!?]T and vL = [wL ,/,L ML QL]T

I I '+' I I I I I 0/ I I I '
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where the various components represent constant amplitudes, so that the time-
independent version of Eqs. (8.47)-(8.49) can be written as

(8.53)

where TSi is a station transfer matrix carrying us from the left side to the right side
of station i and having the form

TSi = [ ~
-wmi

o 0 0]100
010
o 0 1

(8.54)

In a similar fashion, Eqs. (8.51) and (8.52) can be used to write a matrix expression
carrying us from the left end to the right end of field i. Before writing this expression,
however, we recall from mechanics of materials that the various flexibility coefficients
defined earlier have the values

wQ (~Xi)3 ai(~xi)2
awM (~Xi )2 ai~Xi

a· --- ---
I 3Eli 3 I 2Eli 2

(~xif
(8.55)

a1/1Q ai~xi 1/1M ~Xi
= --- a = -- = aiI 2Eli 2 I Eli

where Ii is the area moment of inertia of the beam for field i. Then, inserting
Eqs. (8.55) into Eqs. (8.51) and (8.52), we can write the expression relating the station
vector at the left end of field i to the one at the right end in the compact matrix form

L T Rvi+1 = FiVi (8.56)

where

Tn = [~

~Xi

1
o
o

ai tUi /2 -ai (~Xi)2 /6]
ai -ai ~Xi /2
1 -~Xi

o 1

(8.57)

is the associated field transfer matrix.
Following the process established in Sec. 8.2, it is possible to derive an overall

transfer matrix relating the station vector v: on the right of the beam to the station
vector vk on the left. Before the overall transfer matrix can be derived, we must
specify the boundary conditions. Because the process is the same as in Sec. 8.2, except
that here the matrix T is 4 x 4, the reader is referred to Sec. 8.2 for details.

As an illustration, we consider a cantilever beam in bending, in which case the
relation between the station vectors Vo and v~ is given by the last of Eqs. (8.36), with
the overall matrix T being given by Eq. (8.37). To derive the frequency equation,
we must invoke the boundary conditions. The beam is clamped at the left end, so
that the boundary conditions there are

Wo = 0, 1/10 = 0 (8.58a)
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On the other hand, the beam is free at the right end, so that the boundary conditions
there are M: = 0, Q~ = 0

Hence, the last of Eqs. (8.36) for the case at hand has the form

[~~]- [~~:.~~~ ~~:~~:][ ~ ]o - T31 T32 T33 T34 Mo
o T41 T42 T43 T44 Qo

The satisfaction of the two bottom equations requires that

det[ T33(W~) T34(W~)] = 0
T43(W) T44(W)

(8.58b)

(8.59)

(8.60)

""-----

which is recognized as the frequency equation, an equation of degree n in w2. Its
solutions are the eigenvalues wi, w~, ... , w~, which can be obtained by one of the
methods mentioned in Sec. 8.2. Then, the eigenvectors Wr can be obtained by assum-
ing arbitrarily that Vo= [00 Mo Qof = [00 11f, using Eqs. (8.41) and retaining
the top component Wi of the vectors vf (i = 1,2, ... , n); these values of Wi rep-
resent the n components of the eigenvector Wr. It should be pointed out that the
second component l/Ji of the vector vf represents the slope at station i. Although
it may seem that a plot of the eigenvector Wr using both displacements and slopes
is likely to be more accurate, for sufficiently large n, displacements alone should
suffice.

Myklestad (Ref. 36) suggested a solution of the problem in tabular form, based
on some scalar recursive formulas. Thomson (Ref. 45) was the first to set up the
problem in matrix form using transfer matrices, without introducing the concept
of station and field transfer matrices. The formulation presented here is closer to
the treatment of Pestel and Leckie (Ref. 37), who applied the concept of transfer
matrices to a large number of problems, including branched torsional systems and
framed structures.

8.4 RAYLEIGH'S ENERGY METHOD

The lumped-parameter methods for approximating distributed systems presented in
Secs. 8.1-8.3 are all characterized by the fact that the distributed mass is concentrated
at given points. On the other hand, the methods differ in the treatment of the stiffness.
Indeed, in the lumped-parameter method using influence coefficients the stiffness
involves no approximation. In this regard, it should be noted that the use of flexibility
influence coefficients instead of the flexibility influence function does not mean that
the stiffness has been lumped. It simply means that the flexibility coefficients are
merely obtained by evaluating the flexibility influence function at points coinciding
with the nominal position of the lumped masses. By contrast, in Holzer's method and
in Myklestad's method the stiffness is approximated by regarding it as uniform over
the field between any two lumped masses. Satisfaction of the boundary conditions is
not a major concern in lumped-parameter methods, as they are taken into account
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in the lumping process. Although convergence of the approximate eigenvalues to
the actual ones can be assumed, no mathematical proof exists. Perhaps even more
disquieting is that there are no clues as to the nature of convergence.

Beginning in this section, we turn our attention to an entirely different, and
considerably more satisfying approach to the spatial discretization' of distributed-
parameter systems than the lumped-parameter approach. Indeed, this new approach
addresses virtually all the concerns expressed in the preceding paragraph. The ap-
proach has a solid mathematical foundation permitting a clear statement concerning
the nature of convergence, as well as the formulation of stability criteria. Moreover,
the parameter discretization process is consistent, in the sense that the mass and
stiffness distributions are treated in the same manner. The approach is based on
Rayleigh's principle (Secs. 5.2 and 7.14).

To introduce the ideas, we consider first the free vibration of a conservative
discrete system and write the kinetic energy and potential energy in the matrix form

1
T(t) = -i{ (t)Mq(t),

2
Vet) = ~qT(t)Kq(t)

2
(8.61a, b)

where q(t) = [ql (t) q2(t) ... qn (t)f is the displacement vector, M the mass matrix
and K the stiffness matrix. Both M and K are real symmetric and positive definite.
As shown in Sec. 4.6, the free vibration of positive definite conservative systems is
harmonic, so that the vector q(t) can be expressed as

q(t) = ucos(wt - ¢) (8.62)

where u is a constant vector, w the frequency of oscillation and ¢ a phase angle. It
follows that Eqs. (8.61) can be rewritten as

Vet) = ~uT Ku cos2(wt - ¢) (8.63a, b)
2

When sin(wt -¢) = ±1, cos(wt -¢) = 0, the kinetic energy reaches the maximum
value

1 2 T
Tmax = -w u Mu

2
(8.64a)

(8.64b)

and the potential energy is zero. On the other hand, when cos(wt - ¢) = ±1,
sin(wt - ¢) = 0, the potential energy reaches the maximum value

1 T
Vmax = -u Ku

2
and the kinetic energy is zero. But, according to the conservation of energy principle
(Sec. 2.5), we can write

E = T + V = Tmax + 0 = 0 + Vmax (8.65)

where E is the total energy. Hence, inserting Eqs. (8.64) into Eq. (8.65) and intro-
ducing the reference kinetic energy

I

,/
/

---------{
Tref

1 7'
-u Mu
2

(8.66) I

I

,



which.is recognized as Rayleigh's quotient for discrete systems, first encountered in
Sec. 5.2. In this regard, it should be noted that Rayleigh's quotient is expressed here
for the first time as the ratio of one term proportional to the potential energy and
another term proportional to the kinetic energy.

As demonstrated in Sec. 5.2, Rayleigh's quotient possesses the stationarity
property, which can be stated in physical terms as follows: The frequency of vibration
of a conservative system oscillating about an equilibrium position has a stationary
value in the neighborhood of a natural mode (Ref. 39). This statement is known as
Rayleigh's principle. As a special case, but by far the most important one, it can be
stated:. The frequency of vibration of a conservative system has a minimum value in
the neighborhood of the fundamental mode, or

uTKuwi= minR(u) = min-T--
uMu

520

we obtain
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uTKu
u} = R(u) = -T--

u Mu

. Vrnax= mIn--
Tref

Chap. 8

(8.67)

(8.68)

where WI is the lowest natural frequency. This statement alone is at times referred
to as Rayleigh's principle (Ref. 13).

In many cases of practical interest, it is necessary to estimate the lowest natural
frequency of a structure. In view of the stationarity property, Rayleigh's principle,
Eq. (8.68), is ideally suited for the task. Indeed, if a trial vector u differing from the
fundamental mode Ul by a small quantity of order E. can be found, then Eq. (8.68)
can be used to produce an estimate w2 differing from wi by a small quantity of order
E

2
. In this regard, it should be noted that if w2 = (1 + E2)wi, then w ~ (1 + E2/2)Wl,

where the binomial approximation (1 +E2)1/2 ~ 1+E2 /2 has been used. This proce-
dure for estimating the fundamental frequency is known as Rayleigh:S energy method.
Clearly, Rayleigh's energy method is applicable to discrete models of distributed-
parameter systems, such as models derived by the lumped-parameter method using
flexibility influence coefficients. We should note, however, that Rayleigh's quotient,
as given by Eq. (8.68), involves the stiffness matrix, and it was pointed out in Sec. 8.1
that the evaluation of stiffness coefficients for distributed systems is not practical.
This slight inconvenience can be overcome by recognizing that the force vector f is
related to the displacement vector u by

f = Ku, (8.69a, b)

(8.70)

where A is the flexibility matrix. Inserting Eqs. (8.69) into Eq. (8.68), we can rewrite
Rayleigh's principle in the form

. fT Af
w2 = mm--

1 uT Mu
The question remains as to how to obtain a vector u resembling the fundamental
mode Ul, as well as the associated force vector f. Quite often a good choice for u is
the static displacement vector due to loads proportional to the'system lumped masses,
which implies that the force vector f is proportional to the vector [ml m2 ... mnV.

"'(

\
~
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Then, the static displacement vector u can be obtained by simply inserting f into
Eq. (8.69b).

As indicated in the beginning of this section, our objective is to develop a
method for the spatial discretization of distributed-parameter systems not involving
parameter lumping. In this regard, it must be pointed out that, although we demon-
strated Rayleigh's energy method on the basis of a discrete system, the method is
equally applicable to distributed-parameter systems. By analogy with Eq. (8.68),
Rayleigh's principle for distributed-parameter systems, Eq. (7.389), can be written
in the form

2 . Vmax
WI = min R(w) = mm--

Tref

. [w, w]=mm------
(y'nlW, y'nlw)

(8.71 )

where [w, w] is an energy inner product (Sec. 7.5) and (y'nl w, y'nlw) is a weighted
inner product (Sec. 7.14). Here, however, the question of choosing a trial function
w is more involved than in the discrete case. Of course, a function w resembling
closely the lowest mode of vibration WI is always a good choice. Quite often, the
static deflection curve due to a distributed load proportional to the mass density
is likely to yield excellent estimates of WI. Unfortunately, for complex mass and
stiffness distributions the task of obtaining the static deflection curve is not trivial.
Perhaps a good approach is to use as a trial function the first eigenfunction of a
related but simpler system, such as one with uniform mass and stiffness distributions.

Example 8.2

Use Rayleigh's energy method to estimate the fundamental frequency of the tapered
clamped-free rod in axial vibration shown in Fig. 8.9. The mass per unit length is given
by x

m(x) = 2m(1 - -)
L

and the stiffness distribution is

EA(x) = 2EA (1 - z)
(a)

(b)

~ ~ EA(x), m(x) x

Figure 8.9 Tapered clamped-free rod in axial vibration

Using the analogy with the string in transverse vibration of Example 7.3, Ray-
leigh's quotient, Eq. (7.399), has the explicit expression

(J}=RW)=. [U,U]. (..;mU, ..;mU)
JoL EA(x) [dU(x)/dxf dx

JoLm(x)U2(x) dx
(c)
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As a trial function, we use the fundamental mode of a clamped-free uniform rod in axial
vibration, which can be shown to be

, rrx
U(x) = sin - (d)

2L
It is clear that this trial function represents an admissible function for the problem at
hand. Inserting Eq. (d) into the numerator and denominator of Rayleigh's quotient, we
obtain

and

{L [dU(X)]2 rr 2 (L
o EA(x) ~ dx = 2EA (2L) 10 (1-

= (1 + rr
2
) EA

4 2L

X) 2 rrx- cos -dx
L 2L

(e)

(L m(x)U2(x) dx = 2m {L (1 _ ~) sin2 rrx dx = (1 _ -;) mL10 10 L, 2L rr 2
respectively. Hence, introducing Eqs. (e) and (f) in Eq. (c), we have

2 (1+rr2/4) EA EA
W = --:----'---,- = 5.8304--(1 - 4/rr2) mV mV

from which we obtain the estimated fundamental frequency

(EA
W = 2.4146y;;V

(f)

(g)

(h)

(i)

As it turns out, the eigenvalue problem for the system under consideration can
be solved in closed form (see Problem 7.28). The actual fundamental frequency has the
value

{gA
WI = 2.4048 --2

mL
from which we conclude that Rayleigh's energy method yields an estimate about 0.4%
higher than the actual fundamental frequency. This is a remarkable result, which can
be attributed to the fact that the chosen trial function resembles the actual fundamental
mode very closely.

8.5 THE RAYLEIGH-RITZ METHOD

According to Rayleigh's principle (Sec. 7.14), for a self-adjoint distributed-parameter
system Rayleigh's quotient R (w) has stationary values at the system eigenfunctions.
Most importantly, the stationary value at the lowest eigenfunction W1 is a minimum
equal to the lowest eigenvalue A1 , or

A1 = min R(w)
w (8.72)

where w is a trial function from the space X;{ of comparison functions or from the
space X~ of admissible functions (Sec. 7.5), depending on the particular form of
Rayleigh's quotient. This extremal property is very useful in estimating the lowest
eigenvalue in cases in which no closed-form solution of the differential eigenvalue
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problem is possible. Indeed, Rayleigh's energy method (Sec. 8.4) consists of using
Rayleigh's quotient in the form R(w) = Vrnax/ Tref in conjunction with an admissible
function w differing from WI by a smaIl quantity of order E to obtain an estimate A
differing from Al by a small quantity of order E

2
.

The extremal characterization can be extended to higher eigenvalues by re-
stricting w to the space orthogonal to the lowest s eigenfunctions Wi (i = 1,2, ... , s)
and writing (Sec. 7.14)

A.\+1 = min R(w),
1J}

(w, Wi) = 0, i = 1, 2, ... , s (8.73)

Of course, if the objective is to obtain estimates of the eigenvalues A2, A3, ... , As+l,
then this characterization has no practical value, as the eigenfunctions WI, W2•... ,
Ws are generally not available.

A characterization independent of the lower eigenfunctions is provided by the
Courant and Fischer maximin theorem (Sec. 7.14) in the form

AS+l = max min R(w),
Vi W

(w, Vi) = 0, i = 1, 2, ... , s (8.74)

(8.75)

where Vi (i = 1,2, ... , s) are s independent, but otherwise arbitrary functions.
Whereas the maximin theorem by itself does not represent a computational tool,
it has significant implications in numerical solutions of the eigenvalue problem for
distributed systems.

The Rayleigh-Ritz method is a technique for the computation of approximate
solutions of the eigenvalue problem for self-adjoint distributed-parameter systems.
It consists of replacing the eigenvalue problem for distributed systems by a sequence
of algebraic eigenvalue problems. To introduce the ideas, it is convenient to specify
the form of Rayleigh's quotient. Hence, from Eq. (7.390), we write

Iv wLw dD
A = R(w) = -=----

Ivmw2dD

where L is a self-adjoint differential operator of order 2p, so that the trial function w
must be from the space x7:. Next, we select a set of comparison functions ¢t (P).
¢2 (P), ...• ¢Il (P) •... satisfying the two conditions: (i) any n members ¢1, ¢2, ... ,
¢n are linearly independent and (ii) the set of functions ¢1. ¢2, ...• ¢n, ... is com-
plete (Sec. 7.5), where P denotes a nominal point in the domain D. Then, we
determine min R(w) not from the entire space X~} but for functions of the form

n

W(I1)(P) = Ql¢1 (P) + 02¢2(P) + ... + oll¢n(P) = LQi¢i(P)
i=1

(8.76)

The functions ¢i (P) are refered to as coordinate functions and they span a function
space R.,l, referred to as a Ritz !>pace. In fact, there is a sequence of Ritz spaces,
R

1
, R

2
, ••• , 'Rn, each being a subspace of the next and with R.,l being a subspace of

Xl. Forfunctions w(ll) in R.,l, the coefficients Qi (i = 1, 2, ... , n) are constants yet
to be determined. This amounts to approximating the variational problem for R(w)
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(8.77)

by a sequence of variational problems for R(w(n)) corresponding to n = 1,2, ... ,
or

, (w(n) Lw(n))
)..(n) = R(w(n)) = ...,...-::=----,-,.'--:=---:-C7"(-Jm w(n), -Jm w(n))

Of course, the case n = 1 merely represents Rayleigh's energy method, so that the
variational approach applies to the cases in which n ::::2. But, because the functions
¢l, ¢z, ... , ¢n are known, after carrying out the indicated integrations, Rayleigh's
quotient reduces to a function of the undetermined coefficients, or

n n

L L kijaiaj
i=l j=l
n n

""" """ m· ·a·a·I] I ]

i=l j=l

(8.78)

(8.80)

where, because L is self-adjoint,

kij = kji = (¢i, L<jJj) = 1¢iL¢j dD, i, j = 1,2, ... , n (8.79a)
. D,

mij = mji = (.ji1i¢i, .ji1i¢j) = Lm¢i¢j dD, 1, ] 1,2, ... , n (8.79b)

are symmetric stiffness and mass coefficients, respectively.
The condition for the stationarity of Rayleigh's quotient is simply

n oR
8)"(n) = 8R = L -8ar = 0

r=l oar

Observing that the coefficients aI, az, ... , an are independent, we conclude that
Eq. (8.80) is satisfied if and only if the following conditions are satisfied:

oR
- =0
,oar '

r = 1,2, ... , n (8.81)

Equations (8.81) involve the term

n n

L L kij (8iraj + ai8jr)
i=l j=l

n n n

Lkrjaj + Lkirai = 2Lkrjaj,
j=l i=l j=l

r 1,2, ... , n

(8.82a)
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where we considered the symmetry of the stiffness coefficients, as well as the fact
that i and j are dummy indices. In the same fashion, we obtain

r = 1, 2, ... , n (8.82b)

Hence, conditions (8.81) in conjunction with Eqs. (8.78) and (8.82) reduce to

(
an n )( n n ) (n n )( ann )
ao L L kijo;oj L L mijo;oj - L L kijo;oj aa L L m;jo;oj

r 1=1 J=1 1=1 J=1 1=1 J=1 r 1=1 J=1

(

n n )28~mijo;Oj

which can be satisfied provided

= 0, r 1,2, ... , n

(8.83)

n

L krjoj
j=1

For n = 1, we obtain

r 1,2, ... , n (8.84)

(8.85)

(8.86)

directly. On the other hand, letting n = 2, 3, ... , we obtain a sequence of algebraic
eigenvalue problems of order n.

Before we proceed with a discussion of the eigenvalue problem, Eqs. (8.84), it
will prove convenient to reformulate the problem in matrix form. To this end, we
rewrite Eq. (8.76) as

where <I> = [<PI <P2 ... <Pnf is an n -vector with components depending on the spatial
position P and a = [al 02 ... onf is a constant n-vector. Then, the sequence of
algebraic eigenvalue problems, Eqs. (8.84), takes the form

(8.87)

in which

K(n) = K(n)T = L <l>L<I>TdD,

are n x n symmetric stiffness and mass matrices. Each eigenvalue problem in the I

sequence represented by Eq. (8.87) is entirely analogous to that of a conservative I

n-degree-of-freedom discrete system, Eq. (4.81). Hence, the Rayleigh-Ritz method

I

_______ ~_I!!!!!!!!!!!!!!~~!!!!!!!!!!!!!!!~~-"""""j
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(8.89)

is a discretization technique replacing.a differential eigenvalue problem by a sequence
of algebraic eigenvalue problems of increasing order.

At this point, we consider Eq. (7.399) and write the second form of Rayleigh's
quotient as

A = R(w) = [w, w]
(.jiiiw, .jiiiw)

where [w, w] is an energy inner product (Sec. 7.5) and (.jiiiw, .jiiiw) is a weighted
inner product (Sec. 7.14), and we note that this form of Rayleigh's quotient was
used in Eq. (8.71) in conjunction with Rayleigh's energy method. Then, following
the established pattern, we obtain the same eigenvalue problem as that given by
Eq. (8.87), except that the stiffness matrix is given by

(8.90)

The mass matrix remains in the form of Eq. (8.88b). There is another difference,
however. As discussed in Sec. 7.5, the formulation of the eigenvalue problem based
on Eq. (8.89) requires that the trial functions CPl, (1)2, ... , CPnbe only from the spacex~of admissible functions.

The solution of the algebraic eigenvalue problem, Eq. (8.87) consists of n eigen-
values A~n) and eigenvectors ar (r = 1, 2, ... , n). The eigenvalues A~n) provide
approximations to the actual eigenvalues Ar (r = 1,2, . :. , n). On the other hand,
the eigenvectors ar can be inserted into Eq. (8.86) to obtain the estimates

r = 1, 2, ... , n (8.91)

of the eigenfunctions wr. We refer to A~n) as Ritz eigenvalues and to w~n) as Ritz
eigenfunctions.

A question of particular interest is how the Ritz eigenvalues and eigenfunctions
relate to the actual eigenvalues and eigenfunctions. In earlier discussions, it was
implied that the Ritz eigenvalues are ordered so as to satisfy Ain) ::::Ain) ::::... ::::A~n),
while the actual eigenvalues satisfy Al :::: A2 :::: .... Because the coordinate functions
CPl, CP2, ... , CPnare from a complete set, it can be assumed that the solution to the
differential eigenvalue problem can be obtained by letting n -+ 00. For finite n,
the approximate solution wen) lies in the Ritz space 'R,l, which can be interpreted as
stating that the solution is subject to the constraints

an+l = an+2 = ... = 0 (8.92)

(8.93)

But, according to Rayleigh's principle (Sec. 7.14), the lowest eigenvalue Al is the
minimum value Rayleigh's quotient can take as w varies over the space Xl. On

the other hand, Ain) is the minimum value Rayleigh's quotient can take for functions
confined to the Ritz space 'Rn. It follows that

A < A (n)
1 - 1

To examine how the higher Ritz eigenvalues relate to the actual eigenvalues, we
invoke the maximin theorem (Sec. 7.14). If we impose on the solution w of the
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actual system the requirement that it be orthogonal to the function VI, then from
Eq. (7.404) with s = 1 we can write

}..2 '= maxmin R(w),
VI W

(w, vd = 0 (8.94)

On the other hand, by imposing the same constraint on the Ritz system, we have

}..~n) = max min R(w), (w, VI) = o. (w, <Pj) = 0, j = n + 1, n + 2, .,.
- VI 1J)

(8.95)
Because the space of constraint 'Rn-I for calculating }..~l)is only a small subspace of
the still infinite-dimensional space of constraint for calculating }..2, we can write

}.. <}.. (II) (8.96)2 - 2

Inequality (8.96) can be generalized by writing

r = 1,2, ... , n (8.97)

(8.99)

Hence, the Ritz eigenvalues represent upper bounds for the actual eigenvalues.
Next, we address the question as to how the Ritz eigenvalues behave as the

order n of the discrete model increases. To answer this question, we add one more
term to series (8.76), so that Eq. (8.86) must be replaced by

w(Il+I)(P) = <l>T (P)a (8.98)

where now <I> and a are (n + 1)-vectors. Consistent with this, Eq. (8.87) must be
replaced by

and we observe that K(n+l) and M(n+l) are obtained through the addition of one
row and one column to K(n) and M(n) without disturbing the elements of the latter
two matrices. Hence, K(n) and K<n+ll on the one hand and M(n) and M(n+1) on the
other hand possess the embedding property, or

K(n+l) = [~_(~__!__ ~], M(Il+l) = [~(:)--!--~] (8.100)
kT I k mT I m

I I

in which k = [kn+1.l kn+l,2 ... kll+],nf and m = [mn+l,! mll+I,2 mll+I,lIf

are n-vectors and k = kn+],n+l and m = mll+l,n+] are scalars. It follows from
Sec. 5.4 that the two sets of eigenvalues corresponding to the two eigenvalue prob-
lems, Eqs. (8.87) and (8.99), satisfy the separation theorem, Eq. (5.73), which in the
case at hand can be expressed as

}..In+J) < }..Inl < }..In+]) < }..III) < }..(Il+]) < ... < }..(II+]) < }..11l)< }..(n+l) (8.101)
1 - 1 - 2 - 2 - 3 - - II - II - 11+]

We observe that, by increasing the order of the eigenvalue problem from n to n + 1,
the n lowest newly computed eigenvalues decrease relative to the corrcsponding n
previously computed eigenvalues, or at least they do not increase. At the same time,
one more approximate eigenvalue at the higher end of the spectrum is obtained. But,
inequalities (8.97) state that the approximate eigenvalues are higher than (or equal
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to) the corresponding actual eigenvalues. In view of the fact that the admissible
functions (/J1, ¢2, ... , ¢n, ~.. are from a complete set, iffollows from the preceding
statements that, as n ~ 00, the Ritz eigenvalues converge to the actual eigenvalues
monotonically from above. Hence, we can write

lim A~n) = Ar, r = 1,2, ".. , n (8.102)
n-HXl

The coIivergence process can be illustrated by means of the triangular array
A (1) > A (2) > A (3) > > A (n) > A (n+!) > ~ A1

1 - 1 1 1 1
A (2) > A (3) > > A (n) > A (n+!) >_~ A2

2 - 2 2· 2

A~3) > > A~n) > A~n+1) ~ ~ A3

(8.103)

00

or more pictorially by the diagram of Fig. 8.10. Because each step of the process
brings about a reduction in the computed eigenvalues, or at least not an increase, the
sequence of approximate solutions w(l), W(2), . " " , Wen) is referred to as a minimizing
sequence.

A (3)
3

G•••• "A (4)
•••• 0.3•••• A (5) A (6)

-'. ~- - - -" _-03

A3 -------------------------------------------

(4)
A2 A(5) (6)- • 0; • _• _. 2 A

2"-&-"""'0
A2 -------------------------------------------

A (1)

G~. A (2) (3)
·····-13.1 ••• A1 A (4) A (5) (6)····e··-·· e! 1 A1

A] ----------------------------------~::~::~~-

o 1 2 3 4 5 6
n

Figure 8.10 The three lowest computed eigenvalues versus the number of terms
in the approximating series

The fact that the approximate eigenvalues computed by the Rayleigh-Ritz
method converge to the actual eigenvalues as n ~ 00, provided the coordinate
functions ¢1, ¢2, . " ., ¢n, ... are from a complete set, is very reassuring and from a
mathematical point of view perhaps sufficient. From a computational point of view,
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however, n cannot approach infinity. In fact, in computations the objective is to
achieve convergence with as few terms as possible, so that the question of conver-
gence rate is important. Before addressing this question, it is appropriate to mention
a paradox characterizing not only the Rayleigh-Ritz method but all methods approx-
imating distributed-parameter systems by discrete ones. It is no coincidence that we
choose to discuss the paradox here, because the Rayleigh-Ritz method has the best
convergence characteristics of all spatial discretization techniques. The paradox is
that no discrete model of a distribwed system is able to yield a full se~of accurate
approximate eigenvalues. As a rule of thumb, the lower computed eigenvalues tend
to be more accurate than the higher eigenvalues and reach convergence first, as can
be verified by means of Fig. 8.10. Increasing the order of the model will not change
the state of affairs, because as the order is increased more eigenvalues are added,
and these higher eigenvalues can have significant error, as shown in Fig. 8.10. In fact,
at times the error in the higher computed eigenvalues can be so large as to render
them meaningless. The situation is not as critical as it may appear, however, because
in most practical cases the interest lies only in a given number of lower eigenvalues,
as higher modes are difficult to excite and tend not to participate in the motion.
To ensure that the lower eigenvalues of interest are accurate, the order of the dis-
crete model must be at times more than twice as large as the number of these lower
eigenvalues.

The rate of convergence of the Rayleigh-Ritz process depends on the quality
of the trial functions ¢I. ¢2.... , ¢n, and in particular how well linear combinations
of these functions can approximate the actual eigenfunctions. Of course, the actual
eigenfunctions are not known a priori, so that an assessment of the choice of trial
functions can be made only after an examination of the numerical results. Still, some
guidelines for the selection of the trial functions can be formulated.

The issue of selecting the trial functions ¢l, ¢2, ...• ¢n is broadly connected
with the particular form of Rayleigh's quotient used. As indicated earlier in this sec-
tion, in using Rayleigh :,'quotient in the form given by Eq. (8.75), the trial functions
must be comparison functions, i.e., they must be from the space X~). By definition,
comparison functions must be 2p-times differentiable and satisfy all the boundary
conditions of the problem. In problems involving natural boundary conditions, which
tend to be more complicated than geometric boundary conditions (Sec. 7.1), com-
parison functions may not be readily available. In some cases, they can be generated
by solving a related but simpler eigenvalue problem. As an example, we consider a
nonuniform string in transverse vibration with one end fixed and with the other end
attached to a spring, as shown in Fig. 7.1 a, so that one boundary condition is geomet-
ric and the other is natural. A suitable set of comparison functions for this system
consists of the eigenfunctions of a uniform string with the same boundary conditions.
Another e~ample is the rotating cantilever beam of Fig. 7.4a. The beam has two
geometric boundary conditions at x = 0 and two;natural boundary conditions at
x = L. Even when the bending stiffness and the mass are distributed uniformly, the
differential equation of motion contains terms depending on the spatial position, and
no closed-form solution is possible. In this case, the eigenfunctions of a uniform non-
rotating cantilever beam represent a suitable set of comparison functions. Clearly,
eigenfunctions are independent and form a complete set by definition, albeit for a

J
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somewhat different system. In the first example it is relatively easy to generate a set
of comparison functions and in the second example they are readily available; this is
not the case in general. Indeed, there are many cases in which the natural boundary
conditions cannot be satisfied exactly, particularly for two-dimensional systems. For
this reason, it is more common to base the Rayleigh-Ritz discretization process on the
energy form of Rayleigh's quotient given by Eq. (8.89), in which case, the trial func-
tions <PI, <P2, ... , <Pn need be only from the space of admissible functions, i.e., from
the space X~. We recall that functions from this space must be only p-times dif-
ferentiable and satisfy only the geometric boundary conditions, a significantly larger
space than the space of comparison functions. Independence and completeness are
required of all sets of coordinate functions, so that they are assumed throughout.
Differentiability is seldom a problem, so that admissible functions are only required
to satisfy the geometric boundary conditions, which for the most part are very easy to
satisfy. This opens the choice to a large number of sets of functions known to be inde-
pendent, such as power series, trigonometric functions, Bessel functions, Legendre
polynomials, Tchebycheff polynomials, etc. In fact, most of these sets are orthogonal
in some sense, but this only guarantees independence, as they are not likely to be
orthogonal with respect to the mass density of the particular system under consid-
eration. Of course, independent functions can always be rendered orthogonal with
respect to any mass distribution by the Gram-Schmidt orthogonalization process,
which is akin to the process for discrete systems discussed in Appendix B, but the
benefits of working with a diagonal mass matrix may pale compared with the effort
required by the orthogonalization process. This is particularly true when the interest
lies in shifting routine work from the analyst to the computer. Completeness in en-
ergy of a given set of functions is in general more difficult to ascertain, but it can be
assumed for the most part. Of course, it is always possible to use comparison func-
tions, as they are admissible by definition. In this case, the two forms of Rayleigh's
quotient, Eqs. (8.75) and (8.89), yield exactly the same results, because the two forms
can be derived from one another with due consideration to all boundary conditions.
Even if comparison functions are used, Eq. (8.89) is still to be preferred, as it involves
lower-order derivatives.

From the above discussion, it appears that using the eigenfunctions of a related
but simpler system as admissible functions remains an attractive alternative, particu-
larly in view of the fact that natural boundary conditions can be ignored. Care must
be exercised in violating natural boundary conditions, however, as certain violations
can slow down convergence significantly. We examine some of the implications of
violating natural boundary conditions in Sec. 8.6.

The Rayleigh- Ritz theory is perhaps the best exponent of a variational approach
used to approximate distributed-parameter systems by discrete ones. Indeed, the es-
timation of the Ritz eigenvalues is so satisfying mathematically that the associated
theory has few equals. Unfortunately, the estimation of the Ritz eigenfunctions is
a different matter. Although it may be reasonable to expect that the minimizing
sequences representing the Ritz eigenfunctions w~n) converge to the actualeigen-
functions Wr, proof of convergence is not simple (Ref. 5). Moreover, because of the
stationarity of Rayleigh's quotient, it can be stated that in general the Ritz eigen-
values approximate the actual eigenvalues one order of magnitude better than the

,
u •• ~, __ ._. .~_.' h __ ~_~"- _
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Ritz eigenfunctions approximate the actual eigenfunctions. In spite of that, it is com-
mon practice to assume that the eigenfunctions converge when the corresponding
eigenvalues do. I

In the case of two-dimensional problems, factors frustrating closed-form so-
lutions are likely to frustrate approximate solutions by the Rayleigh-Ritz method
as well. Indeed, if approximate solutions are at all possible, then they tend to be
confined to systems with regular boundary shape, such as rectangular or circular.
There is a significant difference in complexity between membranes and plates, mak-
ing approximate solutions much more difficult for plates than for membranes. In
the case of rectangular plates, approximate solutions can often be obtained in the
form of products of beam eigenfunctions. A variety of such solutions can be found
in Ref. 23. For two-dimensional systems with nonuniform mass and stiffness distri-
butions, as for one-dimensional systems, the eigenfunctions of systems with the same
boundary conditions but with uniform parameter distributions can serve as suitable
admissible functions, even when these eigenfunctions are only approximations to the
actual ones.

Before we conclude this section, perhaps a poignant historical note is in order.
The approach was first used by Rayleigh on various occasions beginning in 1870
(Ref. 13) in connection with the vibration of air in organ pipes closed at one end
and open at the other, but the approach did not receive much attention. The method
became widely known as the Ritz method following publication of two papers by Ritz
(Refs. 40 and 41). The wide attention received by these two papers can be attributed
to two reasons, the "masterly" exposition of the theory by Ritz and the tragic circum-
stances under which Ritz wrote the papers (he was dying of consumption). In view of
the fact that Ritz's work was independent of Rayleigh's, referring to the approach as
the Rayleigh-Ritz method is quite appropriate. It is perhaps interesting to note that
in Ref. 41 Ritz himself used products of beam eigenfunctions to solve the eigenvalue
problem for a rectangular plate free on all sides.

Example 8.3

Derive and solve the appropriate algebraic eigenvalue problems for the tapered bar
of Example 8.2 by means of the Rayleigh-Ritz method using Rayleigh's quotient in the
form of Eq. (8.89). Use a minimizing sequence through 11 = 3 in terms of the admissible
functions

¢i(X)
(2i - 1);r x

= sin ----
2L

1,2, ... , 11 (a)

[V, V]
(~V, ~V)

Then, verify the separation theorem.
Rayleigh's quotient for the problem at hand has the form

lL

EA(x) [dV(x)/dxf dx

rio m(x)V2(x) dx

(b)

where, from Example 8.2.

EA(x) = 2EA (1 - zJ. m(x) = 2m (1 - zJ (c)
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(e)

(d)

Note that, whereas the boundary condition at x = 0 is geometric, w(O) = 0, the
boundary condition at x = L would be natural. However, because the axial stiffness
reduces to zero there, the boundary condition at x = L is somewhat unorthodox and it
amounts to the displacement being finite.

Using Eqs. (a)-(c), the stiffness coefficients for i = j are

kii = 1L
EA(x)(IjJYdx

EA(2i - 1)2n21L ( . X) 2 (2i - l)nx----,---- 1 - - cos ----dx
2£1 0 L 2L

EA [1 (2i - 1)2n2]
2L + 4

and for i =1= j they are

kij = 1L
EA(x)IjJ;ljJj dx

EA(2i - 1)(2j - 1)n21L ( X) (2i - l)nx (2j - l)nx
= 2 1 - - cos ----cos ---'----dx

2L 0 L 2L 2L

EA(2i -1)(2j -1) [1 + (-l)i+j 1 - (-1)i-j]
4£1 (i + j - 1)2 + (i - j)2

Moreover, the mass coefficients fOLi = j are

m·· = 1
L

m(x)IjJ;(x)dx = 2m 1
L (1 _ ~) sin2 (2i - l)nx dx

II a 0 L 2L

= m2L [1 - (2i _ 41)2n2 ] (f)

and for i =1= j they are

mij = 1L
m(x)ljJi (x)ljJj (x) dx

1

L ( X). (2i - l)nx . (2j - l)nx
= 2m 1 - - Slll---- slll---'----dx

o L 2L 2L

= mL [1 - (_l)i-j _ 1+ (-l)i+j]
n2 (i - j)2 (i + j - 1)2 (g)

For n = 1, we insert Eqs. (d) and (f) with i = 1 into Eq. (8.85) and obtain the
estimate of the lowest eigenvalue

~(1+~) EA

(

= 5.8304 m£1

)::2
2 n2

from which we obtain the approximation to the lowest natural frequency

w?) =2.4146)::2

).,(1)
1

kll
(h)

(i)



Sec. 8.5 The Rayleigh-Ritz Method 533

This is the result obtained in Example 8.2 by means of Rayleigh's energy method.
For n = 2, we use Eqs. (d)-(g) with i, j = 1, 2 to derive the 2 x 2 stiffness and

mass matrices

K(2) = EA [4 + rr
2

12] M(2) = mL [rr2
- 4 2 4 ] (j)

8L 12 4 + 9rr2 ' 2rr2 4 rr - 4/9

Inserting Eqs. U) into Eq. (8.87) with n = 2, we obtain a 2 x 2 eigenvalue problem,
which has the eigenvalues and eigenvectors

(2) EA
AI = 5.7897--2,

mL

[
1.0000 ]

al = -0.0369 '

EA
A(2) = 30.5717--

22 mL

[
1.0000 ]

a2 = -1.5651

(k)

and we note that the eigenvectors have been normalized so that the top component
is unity. The eigenvalues can be used to compute an improved approximation to the
lowest natural frequency and an estimate of the second natural frequency in the form

(2) {gAWI = 2.4062 --2'
mL

(2) (gAW2 = 5.5292 --2
mL

(I)

respectively. Moreover, inserting the eigenvectors into Eqs. (8.91), we obtain the ap-
proximate eigenfunctions

(2) rrx 3rrx
WI = Sin 2L - 0.0369 sin 2L '

(2) . rrx
w2 = Sln-

2L
3rrx

1.5651 sin --
2L

(m)

Following the same pattern for n = 3, we obtain the stiffness and mass matrices

E A [4 + H' 12 . 20/9 ]
K(3) = - l? 4 + 9rr2 60

8L 20/9 60 4 + 25rr2

mL[H'-' 4 -4/9 ]
(n)

M(3) '= - 4 rr2 - 4/9
rr2-\/252rr2 -4/9 4

The corresponding eigenvalue problem has the solutions

EAA(3) = 5.7837--
2
,

I mL

al = [-~:~~~~],
-0.0072

EA
A(3) = 30.4878--

2
,

2 mL

a2 = [-~:~~~],
0.0666

EA
75.0751--

2mL

[
1.0000 ]

-1.2110
2.0270

(0)

and we note that A~3) and Ai3) represent improved approximations to the actual eigen-
values AI and A2 and Aj3) is a first estimate of the third actual eigenvalue A3' From
Eqs. (0), we obtain the approximate natural frequencies

(3) (gA
WI = 2.4049 --2'

mL
wj3) = 8.6646/ EA

2
(p)

mL
and approximate eigenfunctions

W(3) = 0.9759 (Sin rrx _ 0.0319sin 3rrx _ 0.0072 sin 5rrx)
I 2L 2L 2L
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(
nx 3nx 5nX)= 0.3816 sin - - 1.5540 sin - + 0.0666 sin -
2L 2L 2L

(
nx 3nx 5nX)= 0.2360 sin - - 1.2110 sin - + 2.0270 sin -
2L 2L 2L

Chap. 8

(q)

The approximate eigenfunctions,normalized so that w?)(L)
displayed in Fig. 8.11.

1(r 1,2,3), are

1

o

(3)wz

L
x

x

x

Figure 8.11 The three lowest approximate eigenfunctionsfor a tapered rod in
axialvibration fixedat x = 0 and free at x = L

Omitting the parameter ratio E A / m L 2, the computed eigenvalues can be verified
to satisfy the separation theorem as follows:

).,(2) = 5.7897 < ).,(1) = 5.8304 < ).,(2) = 30.57171 1 2

).,(3) ~ 5.7837 < ).,(2) = 5.7897 < ).,(3) = 30.4878 (r)1 1 2

).,(2) (3)
< 2 = 30.5717 <).,3 = 75.0751

Moreover, they form a triangular array as given by Eq. (8.103). To this end, we note
that the differential eigenvalue problem admits a closed-form solution, which permits

L . _
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us to write

5.7897 > A(3) =
1 5.7837 > ~ Al = 5.7831

A~2) = 30.5717 > A~3) = 30.4878 > ~ A2 = 30.4715

A (3) = 75.0751 > ~ A3 = 74.88653
(s)

From the above array, we conclude that the computed eigenvalues are remarkably
accurate. Indeed, plots of the computed eigenvalues versus the number of admissible
functions in the series for the approximate solution are relatively flat and close to the
horizontal lines representing the asymptotes. The reason for this is that the admissible
functions are in fact comparison functions and capable of approximating the actual
eigenfunctions quite accurately, at least the first three. In general, such good accuracy
with so few terms should not be expected.

8.6 THE CLASS OF QUASI-COMPARISON FUNCTIONS: AN ENHANCED
RAYLEIGH-RITZ METHOD

As pointed out in Sec. 8.5, the Rayleigh-Ritz method is a technique for approximating
a finite number of eigensolutions for a distributed-parameter system whereby the
solution of a differential eigenvalue problem is replaced by a variational problem
consisting of the minimization of Rayleigh's quotient. To this end, the solution is
assumed to have the form of a minimizing sequence, with each term in the sequence
consisting of a linear combination of trial functions, thus leading to a sequence of
algebraic eigenvalue problems of increasing order. If the numerator of Rayleigh's
quotient has the form of an inner product involving the stiffness operator L, then the
trial functions must be from the space Xl of comparison functions. A more common
and more desirable version of Rayleigh's quotient is that in which the numerator
represents a measure of the potential energy, in which case the trial functions need
be from the space X~ of admissible functions alone.

The energy version of Rayleigh's quotient, Eq. (8.89), is equivalent to the ver-
sion involving the stiffness operator, Eq. (8.75), only when the trial function 11) is from
the space of comparison functions. Clearly, in using the energy version of Rayleigh's
quotient in conjunction with admissible functions, the natural boundary conditions
are violated, so that the question arises as to whether something that should not be
sacrificed is in fact sacrificed. The answer depends on the character of the natural
boundary conditions and what is potentially sacrificed is the speed of convergence.

The question of convergence speed is related to the completeness of the set of
admissible functions. The concept of completeness is more qualitative than quan-
titative in nature (see Sec. 7.5). Whereas many will agree that E = 10-6 is a smaIl
number, there is far less agreement as to what constitutes a sufficiently large number
n of terms in the linear combination. It is precisely this number that defines the
speed of convergence. A set of admissible functions can be complete in energy and
stiIl exhibit poor convergence characteristics. This can happen when eigenfunctions
of a related simpler .system are used as admissible functions for a system with natural
boundary conditions more complicated than the free boundary of Example 8.5.
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To investigate the convergence question raised above, we consider a nonuni-
form rod in axial vibration fixed at x = 0 and restrained by a spring at x = L, as
shown in Fig. 8.12. Rayleigh's quotient for the problem at hand is

[V, V] lL

EA(x) [dV(x)/dxf dx + kV2(L)
R(V) ---- ----------- (8.104)[y'mV, y'mV] (L10 m(x)U~(x) dx

where the parameters are as follows:

EA
k=-

L
(8.105)

in which E A (x) isthe axial stiffness, m (x) the mass density and k the spring constant.
For future reference, the boundary conditions are as follows:

. dU(x)" , .
EA(x)-- + kV(x) = 0 atx = L.

dx
and we note that Eq. (8.106a) represents a geometric boundary condition and Eq.
(8.106b) a natural one.

6EA [ 1 (X)2]EA(x) = -5- 1- 2 L '

V(O) = 0,

6m [ 1 (X)2]m(x) = 5 1 - 2 L '

(8.106a, b)

x~ u(x, t)

L

m(x), EA(x)

k

·1
Figure 8.12 Nonuniform rod in axial vibration fixed at x = 0 and restrained by a
spring at x = L

In accordance with the Rayleigh-Ritz method, we consider an approximate
solution in the form

V(n) (x) = <l>T(x)a (8.107)

where <I> = [¢1 ¢2 ... ¢nf is an n-vector of trial functions and a = [01 02 ... onf
an n-vector of undetermined coefficients. Inserting Eq. (8.107) into Eq. (8.104), we
obtain the discretized Rayleigh quotient

(8.108)

in which

K(n) ~ [<I>, <l>T] = (L EA(x) d<l>(x) d<l>T(x) dx + k<l>(L)<I>T(L) (8.109a)
10 dx dx

L .

M(n) = (Jm<l>, Jm<l>T) = 1m(x)<I>(x)<I>T(x)dx (8.109b)
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are the stiffness matrix and mass matrix, respectively. Following the approach of
Sec. 8.5, minimization of Rayleigh's quotient leads to the sequence of eigenvalue
problems given by Eq. (8.87), which can be solved for the approximate eigenvalues
A~/) and eigenvectors a, (r = 1,2, ... , n). The approximate eigenfunctions U,(Il)

are obtained by inserting the eigenvectors into Eq. (8.107).
In view of the Rayleigh-Ritz theory, in using Rayleigh's quotient in the form

of Eq. (8.104), the trial functions need be only admissible functions. We use as
admissible functions the eigenfunctions of a uniform fixed-free rod, or

(2i - l)Jrx
<Pi(x) = sin 2L ' i = 1, 2, ... , n (8.110)

Following introduction of Eq. (8.110) into Eqs. (8.1 09) and evaluation of the matrices
K(Il) and M(Il), the eigenvalue problem (8.87) has been solved for n = 1,2, ... , 30
(see Ref. 30). The resulting approximate natural frequencies w~/) , related to the

eigenvalues by W}") = .jA~/) E AI mL2, are displayed in Table 8.1. It is clear from
Table 8.1 that convergence is painfully slow, as convergence to six significant digits
accuracy has not been reached with n = 30 in the approximate solution, Eq. (8.107).
The culprit can be easily identified as the inability to satisfy the natural boundary
condition, Eq. (8.1 06b). Indeed, all admissible functions have zero derivative at
x = L and, according to Eq. (8.1 06b), the derivative at x = L must be different
from zero. In theory, for the derivative of a linear combination of n terms with zero
derivative at x = L to be different from zero there, the number n must approach
infinity. This is unacceptable for an approximate solution, for which the number n
must be not only finite but also as small as possible.

TABLE 8.1 The Three Lowest Approximate Natural Frequen-
cies Using Admissible Functions

n w;")JmU/EA wi"lJmU/EA w~"lJmU / E A
] 2.32965 - -

2 2.2729] 5.13905 -

3 2.25352 5.12823 8.13148

4 2.24369 5.12158 8.13028

5 2.23781 5.11727 8.12835

28 2.21920 5.10253 8.11855

29 2.21907 5.10242 8.11847
,. 30 2.21895 5.10232 8.11840 i

Next, we wish to examine convergence with a solution in terms of comparison
functions. To this end, we replace the admissible functions of Eq. (8.110) by the
comparison functions

<Pi(X) = sinf3ix, i = 1,2, ... , n (8.111)
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where, according to Eq. (8.106b), f3; must satisfy the transcendental equation

i = 1,2, ... n (8.112)

The approximate natural frequencies w~n) using comparison functions have been
computed in Ref. 30 following the established pattern and the results are exhib-
ited in Table 8:2. Clearly, the approximate natural frequencies computed by means
of comparison functions have superior convergence characteristics compared with
those computed by means of admissible functions. Indeed, win) reaches convergence
with n = 11 and win) with n = 18. Whereas w~n) has not reached convergence yet
with n = 30, convergence is not far away.

TABLE 8.2 The Three Lowest Approximate Natural Frequen-
cies Using Comparison Functions

n win))mV/EA w~n))mV/EA w~n))mV/EA
1 2.22297 - -

2 2.21647 5.10630 -

3 2.21573 5.10070 8.12426

4 2.21559 5.09984 8.11790

5 2.21555 5.09964 8.11680

10 2.21553 5.09953 8.11633

11 2.21552 5.09953 8.11633

17 5.09953 8.11632

18 5.09952 8.11632

30 8.11632

From the preceding results, it is tempting to conclude that, when the system
involves natural boundary conditions at boundaries that are not free, the argument
has been settled in favor of using comparison functions. There is one problem with
this conclusion, however. Whereas in the case at hand it was easy to generate com-
parison functions, this is not the case in general. In fact, in many cases it may not
even be possible to generate comparison functions. Hence, the question is whether
a way out of this seeming impasse exists. The answer is affirmative, but this requires
breaking away from some of the thinking conditioned by the Rayleigh-Ritz method.

Before addressing the aspects of the Rayleigh-Ritz method in need of rethink-
ing, it would help reviewing the points on which there is no dispute. There is general
agreement that, when the differential equation cannot be satisfied exactly, approx-
imate solutions are to be optimized by a variational process involving Rayleigh's
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quotient. Moreover, there is no question that the geometric boundary conditions
must be satisfied. This leaves satisfaction of the natural boundary conditions as the
only issue to be settled. The Rayleigh-Ritz method offers two choices, satisfy the
natural boundary conditions exactly through the use of comparison functions, or
abandon any attempt to satisfy them and use admissible functions. The first choice
may not be an option and the second choice can lead to very poor convergence, as
amply demonstrated here. But, the number of points inside the domain D of the sys-
tem is infinitely larger than the number of points on the boundary S. If the boundary
includes points at which the geometric integrity must be preserved, then the solution
must reflect this requirement. On the other hand, if the boundary includes points
involving force and moment balance, then there is no reason to insist that force and
moment balance be satisfied at such boundary points while the differential equa-
tion is violated in the interior of the domain. It follows that the points inside D
and the points on S involving natural boundary conditions should be afforded equal
status. 'This implies that the same degree of approximation of the solution should
extend to all points of the system, with the exception of boundary points involving
the system geometry, which must be respected. This further. implies that the degree
of completeness required of the admissible functions should cover all the points in
D and all the points on S in question. To this end, a new class of functions has
been conceived in Ref. 30, namely, the class of quasi-comparison functions, defined
as linear combinations of admissible functions capable of approximating the differ-
ential equation and the natural boundary conditions to any degree of accuracy by
merely increasing the number II of terms ill the approximating solution. In practice,
the linear combinations must be capable of satisfying the natural boundary comJi-
tions by simply adjusting the coefficients ai (i = 1, 2, ... , n). This is not to say that
the coefficients should be adjusted so as to satisfy the natural boundary conditions.
On the contrary, the adjustment of the coefficients should be left to the variational
process. The quasi-comparison functions can also be defined as linear combinations
of admissible functions acting like comparison functions. It should be pointed out
that there is a minimum number of admissible functions required before the linear
combination becomes capable of satisfying all the boundary conditions of the system,
including the natural boundary conditions. In another break with the Rayleigh-Ritz
tradition, the approximating solution wen) must be constructed using members from
different families of admissible functions, each family having different dynamic char-
acteristics. It is this variety of admissible functions that enhances the minimization
process, thus permitting accurate approximations to the differential equation and
the natural boundary conditions with only a relatively small number of terms. Such
a feat cannot be duplicated with admissible functions from a single family, as in the
ordinary Rayleigh-Ritz practice.

To illustrate this point, we return to the rod in axial vibration investigated
earlier in this section and consider a set of quasi-comparison functions in the form

i:rrx
<Pi(X) = sin-,

2L
i = 1, 2, ... , n (8.113)

and we note that individually none of these admissible functions satisfies the natural
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boundary condition at x = L. However, as an example, the linear combination
() TrX TrX

W 2 = sin - + csin - (8.114)
2L L

can be made to satisfy the natural boundary condition, Eq. (8.106b), by merely
adjusting the coefficient c. Following the same pattern as with the other two classes of
functions, Eqs. (8.110) and (8.111), the three lowest approximate natural,frequencies
were computed in Ref. 30 using the quasi-cmpparison functions given by Eq. (8.113).
They are given in Table 8.3. As can be concluded from Table 8.3, convergence is
extremely rapid.

TABLE 8.3 The Three Lowest Approximate Natural Frequen-
cies Using Quasi-Comparison Functions

n win) JmU / EA win) JmU / EA wjn) JmU / EA
1 2.32965 - -

2 2.22359 5.98485 -

3 2.21615 5.10007 11.09264
4 2.21557 5.09957 8.15365
5 2.21555 5.09953 8.11632
6 2.21552 5.09952 8.11632
7 8.11632
8 8.11632
9 8.11632

10 8.11632
11 8.11632
12 8.11632
13 8.11631

Contrasting the results in Tables 8.2 and 8.3, we conclude that the solution in
terms of quasi-comparison functions converges faster than even the solution in terms
of comparison functions, except for small n. Although this may come as a surprise
to some, the explanation lies in the fact that quasi-comparison functions are capable
of approximating the actual solution throughout the domain 0 < x < L somewhat
better than comparison functions, because a larger variety of functions permits a
better minimization. As far as the poor results for small n are concerned, it should
be recalled that there is a minimum number of admissible functions required before
the linear combination becomes a quasi-comparison function. Consistent with the
faster convergence of the eigenvalues, Ref. 30 gives a plot of the logarithm of the
mean-square error of the first approximate eigenfunction showing that the error for
the solution in terms of quasi-comparison functions drops faster with n than the
corresponding error for comparison functions.

Finally, we should explain the statement that there is larger variety in the quasi-
comparison functions than in comparison functions. We observe that the set of



Sec. 8.6 The Class of Quasi-Comparison Functions: An Enhanced Rayleigh-Ritz Method 541

functions in Eq. (8.113) consists of two families. ·The functions corresponding to
i = 1,3, ... arc really the admissible functions given by Eq. (8.110). They rep-
resent the eigenfunctions of a uniform fixed-free rod and guarantee that the dis-
placement is different from zero at x = L, although the slope there is zero. On
the other hand, the functions corresponding to i = 2,4, ... represent the eigen-
functions of a uniform fixed-fixed rod and guarantee that the slope is different from
zero at x = L, although the displacement there is zero. When the functions from
the two families are combined to form an approximate solution, then the solution
is such that both the displacement and force, where the latter is proportional to
the slope, arc different from zero at x = L. Hence, a linear combination of ad-
missible functions from two families with different dynamic characteristics is able
to satisfy the natural boundary condition at x = L and can provide a better ap-
proximation throughout the domain 0 < x < L than admissible functions from
a single family, or even than comparison functions. It should be pointed out that,
although the two families represent eigenfunctions, they do not represent vibration
modes in a physical sense, as a system cannot be fixed-free and fixed-fixed at the
same time. In this regard, it should be stressed that the admissible functions used
to generate quasi-comparison functions can be any functions with the proper char-
acteristics, and need not be eigenfunctions of a related system at all (Ref. 30). In
this particular example, the admissible functions must be such that at x = 0 any
linear combination of these functions is zero and its derivative with respect to x is
different from zero, thus guaranteeing that the displacement is zero and the force
is not zero at x = O. On the other hand, at x = L both the linear combination
and its derivative must be different from zero, thus ensuring that neither the dis-
placement nor the force is zero at x = L. In the case of a fourth-order problem,
such as a beam in bending, the required characteristics are more involved. This ex-
plains why, to secure the characteristics required to qualify as quasi-comparison
functions. the linear combination of admissible functions must include members
from two or more distinct families and must contain a minimum number of func-
tions.

Care must be exercised in choosing the various families of admissible func-
tions to ensure linear independence. Indeed, if each family forms a complete set,
then a member from one family can be approximated by a sufficiently lar'ge linear
combination of members from another family, which implies that, as the number of
terms increases, the independence tends to be lost. This is actually the case with
the families of fixed-free and fixed-fixed functions combining into the set given by
Eq. (8.113). Because convergence was achieved with a relatively small number of
terms, this dependence did not have an opportunity to materialize. The loss of inde-
pendence can become a problem when computing higher eigenvalues, which require
a larger number of terms in the linear combination. Related to this is the fact that the
eigenfunctions of a uniform rod fixed at x = 0 and with a spring attached at x = L
tend to coincide with the eigenfunctions of a uniform fixed-free rod as the eigenfunc-
tion number increases. As this happens, the contribution of the eigenfunctions of
the fixed-fixed rod to the accuracy of the approximate solution tends to wane, and in
fact it can cause the mass matrix to become singular. If linear combinations from two
families of admissible functions experience difficulties in yielding a desired number
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of accurate eigenvalues, then the possibility of using linear combinations from three
or more families should be considered.

In the case of two-dimensional systems, the generation of quasi-comparison
functions can encounter serious difficulties, and quite often may not even be pos-
sible. Still, the idea of approximating the solution to the differential eigenvalue
problem by means of linear combinations from several families of admissible func-
tions remains valid, even when they do not constitute quasi-comparison functions,
and such linear combinations are likely to yield more accurate eigensolutions than
linear combinations from a single family.

8.7 THE ASSUMED-MODES METHOD

The assumed-modes method is a procedure for the discretization of distributed sys-
tems closely related to the Rayleigh-Ritz method. In fact, at times it is referred to
as such (Ref. 3). Although the motivation and details are different, the results are
the same as those obtained by the Rayleigh-Ritz method using the energy form of
Rayleigh's quotient. The main advantage of the assumed-modes method is that it
is perhaps easier to grasp. Of course, the method is quite heuristic, so that if the
interest lies in the finer points of analysis, such as convergence, then it is necessary
to refer to the Rayleigh-Ritz theory.

In contrast with the Rayleigh-Ritz method, in the assumed-modes method we
begin with the free vibration of distributed systems prior to the elimination of the time
variable. First, by analogy with the Rayleigh-Ritz method, the system is discretized
in space by means of a series of space-dependent trial functions multiplied by time-
dependent generalized coordinates. Then, the equations of motion for the discretized
system are derived by means of Lagrange's equations. The associated eigenvalue
problem is precisely the same as that obtained by the Rayleigh-Ritz method.

To illustrate the approach, we assume an approximate solution in the form

n

w(P, t) .~ wCnl(P, t) = L ¢i(P)qi(t) = <f>T(P)q(t)
i=l

(8.115)

where <f> = [¢1 ¢2 ... ¢nf is an n-vector of trial functions depending on the spatial
position P and q = [ql q2 ... qnf is an n-vector of time-dependent generalized

. coordinates. Using Eq. (8.115), we discretize the kinetic energy as follows:

11 11/T(t) = - m(P)ui(p, t) dD(P) ~ - ~(P) [wCnl(P, t)]2 dD(P)2 D 2 D11 1- . m(P)i{ (t)<f>(p)<f>T(P)q(t) dD(P) = _qT (t)MCnlq(t) (8.116)
2 D .. 2·

in which l m(P)<f>(P)<f>T (P) dD(P) (8.117)
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is recognized as the mass matrix obtained by the Rayleigh-Ritz method, Eq. (8.88b).
Moreover, by analogy with Eq. (7.86), the discretized potential energy has the generic
form

(8.118)

where

(8.119)

is the same stiffness matrix as that obtained by the Rayleigh-Ritz method, Eq. (8.90).
Lagrange's equations of motion for conservative discrete systems can be written

in the symbolic form

!!..- (aT) _ aT + av = 0
dt aq aq aq (8.120)

Hence, inserting Eqs. (8.116) and (8.118) into Eq. (8.120), we obtain the equations
of motion

Th I· hi· b h . h ( ) eiw(n)/a, ,.,(n) -_ ..j1(n),en, ettmg t e so utlOn e armomc, so t at q t \.U "-

Eq. (8.121) yields the algebraic eigenvalue problem

which is identical to that obtained by the Rayleigh-Ritz method, Eq. (8.87).
Although it may not be immediately obvious, the eigenvalue problem derived

by the assumed-modes method, Eq. (8.122), can also be regarded as being based
on a variational approach. In this regard, we observe that the generic Lagrange's
equations themselves were derived by means of a variational approach, namely,
Hamilton's principle.

Finally, there remains the· question of the trial functions selection. The term
"assumed modes" connotes certain eigenfunctions. But, the assumed-modes method
is equivalent to the Rayleigh-Ritz method with Rayleigh's quotient in energy form,
Eq. (8.89). Hence, the Rayleigh-Ritz theory applies equally well here, so that the
same guidelines for the selection of the trial functions can be used for the assumed-
modes method as for the Rayleigh-Ritz method. It follows from Sec. 8.5 that the trial
functions need be admissible functions only, and need not be modes at all. In fact,
in accordance to the enhanced Rayleigh-Ritz method of Sec. 8.6, improved accuracy
can be realized by assuming solutions in the form of quasi-comparison functions.
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8.8 THE METHOD OF WEIGHTED RESIDUALS
~ '. "

The Rayleigh-Ritz method is a technique for deriving approximate so11.it10nsto dif-
ferential eigenvalue problems not permitting closed-form solutions. It is a variational
approach based on the stationarity of Rayleigh's quotient, which restricts its us'e to
self-adjoint systems. Whereas the class of self-adjoint systems is very large indeed,
and it includes most systems of interest, there are many important systems not falling
in this class. In view of this, a broader approach, applicable to both self-adjoint
and non-self-adjoint systems is highly desirable. Such an approach is the method
of weighted residuals, which is not just one method but an umbrella for a number
of seemingly disparate approximate techniques. In contrast with the Rayleigh-Ritz
method, the weighted residuals method works directly with the differential equation.

We are interested in eigenvalue problems of the type

Lw(x) = A.m(x)w(x) (8.123)

where L is a generally non-self-adjoint differential operator of order 2p .and m is
the mass density. The solution w(x) is subject to given boundary conditions. The
assumption is that the problem does not admit a closed-form solution, so that we
consider an approximate solution in the form

n

w(x) ;:: i.v(n)(x) = LGj<Pj(x)
j=1

(8.124)

in which <PI, <P2,... , <Pnare n independent comparison functions from a complete set.
Hence, we confine our approximate solution wen) (x) to the n-dimensional subspace
Sn of X;:, where Sn is referred to as the trial space. Because wen) does not satisfy
Eq. (8.123) exactly, there is an error at every point x. We refer to the error as a
residual and denote it by

(8.125)

At the same time, we choose n independent functions 0/1 (x), 0/2(X), ... , o/n (x) from
a different complete set and regard them as a basis for an n-dimensional subspace
~ of :J<!l, referred to as the test space, and define the weighted residual as

i = 1,2, ... , n (8.126)

Clearly, our objective is to reduce the error to the largest extent possible. To this
end, we insist that the coefficients Gj in Eq. (8.124) (j = 1,2, ... ,n) be such that
the integral of the weighted residual be zero for every i, or

i = 1,2, ... , n (8)27)

This is equivalent to requiring that the residual be orthogonal to every weighting
function o/i (i = 1,2, ... , n). Inserting Eq. (8.124) into Eq. (8.127), we obtain the
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algebraic eigenvalue problem

nL (kij - A (n1m,)) Q} = 0,
j=1

where

i = 1,2, ... , n (8.128)

kij (1/1i,Vl>j) = lL

1/1iL</>jdx, 1.J 1.2, n (8.129a)

mij = (1/1i,m</>j) = lL
1/1im</>jdx, 1.J 1.2,. n (8.129b)

are constant coefficients, generally nonsymmetric ...
It remains to show that the solution of Eqs. (8.127) converges to the solution

of the differential eigenvalue problem, Eq. (8.123). To this end, we recall that the
weighting functions 1/1i (i = 1, 2, ... , n) are from a complete set, and Eqs. (8.127)
state that the residual R is orthogonal to everyone of these functions. As the number
n of comparison functions </>jand weighting functions 1/1i is allowed to approach
infinity, the only way the residual function R can be orthogonal to a complete set of
functions 1/1i is for R its~lf to approach zero, or

lim R = lim (Lw(nl - A(n1mw(n1) = Lw - Amw = 0 (8.130)
n--+x Il---i>X

Convergence arising from the vanishing of inner products, such as Eqs. (8.127), rep-
resents weak convergence.

It should be mentioned at this point that the weighting functions 1/1i (i =
1,2, ... , n) can actually be from the class X-I. It should also be mentioned that
under certain circumstances the requirement that </>j(j = 1,2, ... , n) be from the
class of comparison functions can be relaxed. Indeed, integrating Eq. (8.129a) by
parts and considering the boundary conditions, we conclude that </>jcan be from the
class X~ of admissible functions. Then, as a result of the integrations by parts, the
weighting functions 1/1i must also be from X~. Here too, the convergence can be
vastly improved through the use of quasi-comparison functions (Refs. 14 and 32),
instead of ordinary admissible functions.

The eigenvalue problem can be cast in matrix form. To this end, we introduce
T T Tthe n-vectors <I> = [</>I </>2 ... </>n] , '" = [1/11 1/12 ... 1/1n] and a = [al a2 ... an] ,

so that Eqs. (8.128) can be rewritten in the compact form

(8.131)

in which
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are nonsymmetric n x n matrices. It can be safely assumed that the matrix M(n) is
nonsingular, so that Eq. (8.131) can be cast in the standard, single matrix form

A (n)a = A (n)a (8.133)

where
(8.134)

is a nonsymmetric n x n matrix.
Because the coefficient matrix A (n) is nonsymmetric, the eigensolutions can be

complex, although real solutions are possible, depending on the nature of the system.
Methods for computing the eigensolutions of nonsymmetric matrices are presented
in Sees. 6.13-6.16..

As indicated in the beginning of this section, the method of weighted residuals
'. is a generic name for a family of methods based on the theory just presented. The

various methods differ from one another in the nature of the test functions Vri. In
the sequel, we discuss two methods of particular interest in vibrations.

i. Galerkin's method

Galerkin's method is the most widely used of the weighted residual methods. In fact,
the method is better known under its own name than as a weighted residual method.
In Galerkin's method, the weighting functions coincide with the trial functions. In
vector form, we have

(8.135)

so that the coefficient matrices, Eqs. (8.132), become

K(n) = (<1>, L<1>T) = lL
<1>L<1>Tdx, M(n) = (<1>, m<1>T) = lL

m<1><1>Tdx

. (8.136a, b)
and we observe that, whereas M(n) is symmetric, K(n) is in general not symmetric,
because L is non-self-adjoint.

The operator L in Eq. (8.136a) is of order 2p and, consistent with this, the trial
functions <P1,<P2, ... , <Pnare from the space X~ of comparison functions. As indi-
cated earlier, the requirements on the trial functions can be lowered by integrating
Eq. (8.136a) by parts p times with due consideration to the boundary conditions.
Then, the trial functions need be from the space X~ of admissible functions alone.
Even if these integrations are carried out, the matrix K(n) remains nonsymmetric
because the operator L is non-self-adjoint. As an example, we consider the non-self-
adjoint eigenvalue problem defined by the differential equation

_~ (s dW)
dx dx

and the boundary conditions

dw+ r-. = Amw,
dx

O<x<L (8.137)

w(O) = 0, dwl- -0
dx x=L

(8.138)
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(8.139)

so that the order of the operator L is 2p = 2. Hence, carrying out one integration
by parts and considering the boundary conditions. Egs. (8.138), a typical ele!llent of
the matrix K(n) can be reduced as follows:

(, [ d ( d¢) d¢.]
kij = (¢i, L¢j) = 10 ¢i - dx 05 d; + r d; dx

-¢is d¢j II. + (" (05 d¢i d¢j + r¢i d¢j) dx
dx 0 10 dx dx dx

(" (05 d¢i d¢j + r¢i d¢j) dx10 dx dx dx

which is clearly not symmetric in ¢i and ¢j and their first derivative. We observe that
the symmetry, and hence the self-adjointness, is destroyed by the term r¢id¢j/dx.

In the special case in which the operator L is self-adjoint, p integrations by
parts of Eq. (8.136a) with due consideration to the boundary conditions yield

(8.140)

which is identical to Eq. (8.90) obtained by the Rayleigh-Ritz method. Clearly, now
the trial functions ¢1, ¢2, ... , ¢n need be from the energy space X~ only, i.e .. they
need be admissible functions. Although the Galerkin method is based on a different
idea than the Rayleigh-Ritz method, because it yields the same matrices K (n) and
M(n) as the Rayleigh-Ritz method, in the case of self-adjoint systems, the Galerkin
and the Rayleigh-Ritz methods are equivalent.

ii. The collocation method

The collocation method is another widely used weighted residuals method, although
it is not commonly recognized as such. In this case, the weighting functions are spatial
Dirac delta functions located at various preselected points Xi of the system, or

l/fi(X) = 8(x - Xi). i = 1, 2, ... , n (8.141)

and we note that the Dirac delta functions are from the class X-I. This is permissible,
because the functions o/i not only are not differentiated, but they are part of an
integrand. Indeed, inserting Eqs. (8.141) into Eqs. (8.127), we obtain

11,

1/ti R dx =
o

if. 8(x - xi)(Lw(n) - )...(n)mw(n»)dx

LW(n\Xi) - )...(n)1Il(Xi)W(n)(Xi) = O. i = 1. 2 .... , n (8.142)

Introducing Eg. (8.124) into Eqs. (8.142), we obtain the algebraic eigenvalue problem
given by Eq. (8.131), in which the matrices K(n) and M(n) have the elements

kij = (I. 8(x _ xi)L¢jdx = L¢j(xj),10 i,j = 1,2, ...• n (8.143a)
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[L ,
mij = 10 8(x - xi)mcpjdx = m(Xi)cpj(Xi), i, j = 1,2, ... , n (8.143b)

respectively. It is obvious that the advantage of the collocation method over any
other method is its simplicity, as manifested by the fact that the evaluation of the
coefficients kij and mij does not involve integrations. The evaluation of kij requires
differentiations and substitutions and the evaluation of mij involves mere substitu-
tions, both relatively simple operations.

Equations (8.142) indicate that the .differential equation is satisfied at the n
preselected locations x = Xi (i = 1,2, ... , n) throughout the domain 0 < x < L,
which explains the name of the method. Convergence can be argued in a heuristic
fashion. To this end, we reinterpret the process defined by Eqs. (8.142) as driving
the error to zero at the·points x = Xi (i = 1,2, ... ,n). Convergence is achieved as
n -+ 00, when the number of points at which the error has been annihilated becomes
infinitely large, thus covering the entire domain 0 < x < L.

One drawback of the collocation method is that it requires the solution of a
nonsymmetric eigenvalue problem. Indeed, matrices K(n) and M(n) are nonsym-
metric, and remain so even when the operator L is self-adjoint. This disadvantage
is mitigated somewhat in the case of self-adjoint systems, in that the approximate
eigenvalues A~n) (r = 1,2, ... ,n) retain the self-adjointness characteristic of being
real. The self-adjointness characteristics do not extend to the eigenvectors, which are
not mutually orthogonal, albeit they are real. In this regard, we recall from Sec. 4.8
that in the case of nonsymmetric eigenvalue problems there are two sets of eigenvec-
tors, right and left eigenvectors, and one set is orthogonal to the other set, i.e., they
are biorthogonal. Another disadvantage of the collocation method is that it requires
the use of comparison functions. It should be noted that, unlike Galerkin's method,
carrying out p integrations by parts to obviate the use of comparison functions is not
an option here, as Dirac delta functions cannot be differentiated as required.

Other weighted residual methods include the method of least squares, the
method of subdomains and the method of moments. In the method of least squares,
the objective is to minimize the norm of the residual squared. It has a serious draw-
back in that the resulting algebraic eigenvalue problem is of order 2n, i.e., twice the
order in the Galerkin method or the collocation method. The method of subdomains
is somewhat similar to the collocation method, except that the weighting functions
are defined over subdomains Di of D rather than at points. The method has the
same disadvantages as the collocation method without the advantage of simplicity,
as the evaluation of the coefficients kij and mij requires integrations. In the method
of moments, the weighting functions represent powers of x. The method is more
suitable for boundary-layer problems, and there seem to be no applications from the
area of vibrations. Details of these methods can be found in Ref. 28.

8.9 FLUTTER OF CANTILEVER WINGS

A classical example of non-self-adjoint problems consists of the combined bending
and torsional vibration of a cantilever aircraft wing in steady air flow (Fig. 8.13).
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-.

Before we begin describing the problem, we should define the two axes shown in
Fig. 8.13a, the inertia axis and the elastic axis. The inertia axis is defined as the locus
of the mass centers of the cross sections and the elastic axis as the locus of the shear
centers, where a shear center is a point such that a shearing force passing through
it produces pure bending and a moment about it produces pure torsion. We denote
the bending deflection of the clastic axis by w(x, t) and the torsional rotation about
the elastic axis by e(x, t), where w is positive if it acts downward and e is positive
if the leading edge is up (Fig. 8.13b). The angle e is referred to as the local angle of
attack. We take the x -axis to coincide with the elastic axis, which is assumed to be
straight, and denote the distance between the leading edge and the elastic axis at any
point x by yo(x), the distance between t~e elastic axis and the inertia axis by YIl(X)
and the chord length by c(x). The bending deflection of the elastic axis is shown in
Fig. 8.13c. The speed of the air flow relative to the wing, denoted by U, is assumed
to be constant.

y

(a)

B~ff'Oc_z. -\) \.
,W yo~

y

(b)

L

l
I·

~_x

·1
(c)

Figure 8.13 (a) Elastic axis and inertia axis for a cantilever aircraft wing in steady
air flow (b) Wing cross section (c) Bending deflection of the elastic axis

From Ref. 10, the boundary-value problem for the free vibration of the wing in
the presence of aerodynamic forces is described by the differential equations

+-"- (} _ IQ) iili] = 0
U 4 c at ' O<x<L (8.144a)

a (ae) a2w a2e pU2
2 {C1r ae- GJ- + myg- + 10- + --c --ax ax at2 at2 2 8U at



550 Approximate Methods for Distributed-Parameter Systems Chap. 8

+(~ _ YO).dCL [e + ~ aw + ~ (~_ Yo) ae]} = 0,
4 C de u at U 4 c at

0'< x < L (8.144b)

and the boundary conditions

w = 0,
aw = 0, e = 0ax at x = 0

ae
GJ- = 0ax

(8.145)

at x = L

where E I is the bending stiffness, G J the torsional stiffness, m the mass per unit
length, Ie the mass moment of inertia per unit length, p the air density and CL the
local lift coefficient. The aerodynamic forces and moments were derived by means
of the so-called quasi-steady "strip theory" whereby the local lift coefficient CL is
proportional to the instantaneous angle of attack e. The derivative dCL/de is as-
sumed to be constant, with a theoretical value of 2:rrfor incompressible flow and an
experimental value of somewhat less than 2:rr. The quasi-steady assumption implies
that the aerodynamic forces and moments depend only on the instantaneous defor-
mations and prior history of the motion can be ignored (Ref. 10), which simplifies the
equations of motion greatly. Indeed, the resulting equations of motion and boundary
conditions are linear and homogeneous. Still, the system is non-self-adjoint.

The boundary-value problem admits a solution in the exponential form

w(x, t) = W(x)eAt, e(x, t) = 8(x)eAt (8.146)

where W(x), 8(x) and A are in general complex. Inserting Eqs. (8.146) into Eqs.
(8.144) and (8.145) and dividing through by eAt, we obtain the differential eigenvalue
problem consisting of the differential equations

d
2

( d
2
W) pU

2
dCL pU dCL [ (3 yo)]- EI-- + --c--8 + A-C-- W+ C - - - 8

dx2 dx2 2 de 2 de 4 C

O<x<L (8.147a)

O<x<L (8.147b)
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and the boundary conditions

W = 0,
dW
dx

= 0, at x = 0
(8.148)

d2W
EI--

2
= 0,

dx
d ( d

2
W )- EI- = 0,

dx dx2

de
GJ- = 0

dx
at x = L

The differential eigenvalue problem, Eqs. (8.147) and (8.148), has no cIosed-
form solution, so that we consider an approximate solution by means of Galerkin's
method. To this end, we assume a solution in the form

e(x) = 4>I (x)a2 (8.149)

in which 4>1and 4>2are vectors of comparison functions and al and a2 are vectors
of undetermined coefficients, where 4>1and al are of dimension nl and 4>2and a2
of dimension n2, n 1 + /12 = n. The vector 4>1satisfies the boundary conditions

4>1(0) = 0, EI4>;'1 = 0,
x=L

(EI4>{)'!x=L = 0

(8.150a)
and the vector 4>2satisfies the boundary conditions

4>2(0) = 0, (8.150b)

(8.151)

in which primes denote the customary derivatives with respect to x. Inserting
Eqs. (8.149) into Eqs. (8.147), premultiplying Eq. (8.147a) by 4>1and Eq. (8.147b) by
4>2and integrating over the length of the beam, we obtain the algebraic eigenvalue
problem

where a = [ar aIr and the various matrices have the submatrices

KIl

K21 = 0,

HIl = 0,

LlI

K12 = 0
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The eigenvalue problem (8.151) can be expressed in the standard form

Ax =AX

[I] o I I
A = ----------------:---------

-M-1 (K + U2H) :' -M-1VL

(8.152)

(8.153)

(8.154)

The eigenvalue A is a continuous function of the air speed V. When V = 0,
the system is conservative and A is pure imaginary. For V =1= 0, A is in general
complex, A = a + iw. It can be shown (Ref. 10) that for sufficiently small V
and for dCL/de < 2rr the wing is losing energy to the surrounding air, so that
the motion represents damped oscill~tion. This implies asymptotic stability, so that
a < O. At some point, as V increases, a turns from negative to positive, as shown
in Fig. 8.14, so that the motion turns from asymptotically stable to unstable. At the
point a = 0, at which the motion is merely stable and ready to become unstable,
the air speed reaches the critical value Vcr. There can be more than one critical
point but the lowest one is the most important, because in actual flight U increases
from an initial zero value. There are two types of critical values, depending on the
imaginary part w. When a = 0 and w = 0, so that A = 0, the wing is said to be in
critical divergent condition. When a = 0 and w =1= 0 the wing is said to be in critical
flutter condition. To compute Vcr, it is necessary to solve the eigenvalue problem
repeatedly for increasing values of V, beginning with a small value. In the beginning
all the eigenvalues will have negative real part. The first value of V for which the
real part of one of the eigenvalues becomes zero is Vcr.

u

Figure 8.14 Eigenvalue real part versus the air speed

'--I..._--------~---------------------------"---- _
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(8.157)

A first estimate of Vcr can be obtained by approximating Wand e by means
of a single term each, 111 = 112 = 1. Then, letting .Ie= iw in Eq. (8.153) and pre-
multiplying by block-diag [I M], we can obtain Vcr from the determinantal equation

-IW 0 1 ()

0 -IW 0 1
det

-kll -V;rh12 -(iwm11 + Vcrl11) -(iwm12 + Vcrl12)

0 -(k22 + V:rh22) -(iwm12 + Vcr121) -(iwm22 + Vcrl-n)

= w4 (mllm22 - mi2) - iw3Vcr [m1l/22 + m22/11 - m12(l12 + l21)]

- w2"[V:r (111/22 - 112/21 - h12ml2 + h22mll) + k22mll + kllmn]

- iwVcr [V:r (h12l21 + h22/11) + k22/11 - k1l/22] + kll (V:rh22 + kn)

= 0 (8.155)

Equation (8.155) is complex, so that its satisfaction requires that both the real and
imaginary part be zero, which permits a solution for both wand Vcr. Indeed, equating
the imaginary part to zero, we obtain

2 V:r (h12/21 + h22/11) + k22/11 - klll22
W = ~~..::....::..=----==-.:..:.:...-~:.::.....::..=----=~ (8.156)

ml2(112 + 121) - (mlllz2 + m22/1l)

Then, inserting Eq. (8.156) into the real part of Eq. (8.155), we obtain the quadratic
equation in V;r

where

a (h12121 + h22/11) {(hI2/21 + h22/J1) - (mllm22 - mi2)- ([l1/n - 112/21

- hl211l12 + h22mll) [mI2(l12 + 121) - (m1l122 + m2211l)]}

.. 2
b = 2(hd21 + h22/J1)(k2z/11 - klll22)(11111m22 - ml2)

- [(hI2/21 + h22/11)(k22mll + kllm22)

+ (k22/11 - kJlI22)(l1l/22 - 112/21 - hl2m12 + h22mll)] [m12(l12 + fzI)

(11111/22 + 11122/11)] + kllk22 [md/12 + 121) - (m11/22 + m22111 )]2

c = (k22/11 - kIl122)2(mllm22 - mi2)

- (k22/11 - kJll22)(k22mll + kJlm22) [md/12 + l21)

(11111/22 + 11I22/Jl)] + kllk22 [md/12 + 121) - (m11122 + m22lll)f

(8.158)

'The solution of Eq. (8.157) is simply

2 b 1 JV = - - ± - b2 - 4ac
cr 2a 2a

'.

(8.159)
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so that there are four values for Vcr. For flutter to occur, at least one of these values
must be real and positive. Then, an approximation for the critical air speed Vcr is
given by the smallest real positive value ..

Additional insights into the problem of dynamic aeroelastic instability of can-
tilever aircraft wings can be gained from Ref. 8.

8.10 SYSTEM RESPONSE BY APPROXIMATE METHODS

In deriving the system response, we must distinguish between conservative and non-
conservative systems. Indeed, the process is quite different in the two cases, as for
conservative systems the response can be obtained in the configuration space and
for general nonconservative systems it is necessary to cast the problem in the state
space. In this section, we discuss both cases, as follows:

i. Conservative systems

We are concerned with the solution of a boundary-value problem consisting of the
differential equation

Lw(P, t) + m(P)w(P, t) = f(P, t),

and the boundary conditions

Pin D (8.160)

i = 1,2, ... , p, P on S (8.161)

The various terms are as defined in Sec. 7.16. The solution of Eqs. (8.160) and (8.161)
is subject to i~itial conditions in the form of the initial displacement w(P, 0) =
wo(P) and the initial velocity W(P, 0) = vo(P).

We consider the case in which the boundary-value problem, Eqs. (8.160) and
(8.161), does not admit a closed-form solution, so that the interest lies in an approx-
imate one. Assuming that the operator L is self-adjoint, we propose to derive an
approximate solution in conjunction with the Rayleigh-Ritz method.

To this end, we assume an approximate solution of Eq. (8.160) in the form

w(P, t) ~ w(n)(p, t) = <l>T(P)q(t) (8.162)

in which <I> = [<PI <P2 ... <PnY is an n-vector of comparison functions and q =
[ql q2 ... qnY is an n-vector of generalized coordinates. Note that such a solution
satisfies the boundary conditions (8.161) automatically. Inserting Eq. (8.162) into
Eq. (8.160), premultiplying by <I> and integrating over the domain D, we obtain the
spatially discretized system

(8.163)

where

(8.164a, b)
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are symmetric 11 x n mass and stiffness matrices and

, Q(t) = 1~f dD (8.165)

is an n -dimensional generalized force vector.
To obtain the solution of Eq. (8.163), we first solve the eigenvalue problem

(8.166)

by one of the approaches discussed in Chapter 6. The solution consists of the eigen-
values A~n) = (w~n))2, where W~") are the approximate natural frequencies, and the
eigenvectors u~n) (r = 1,2, ... ,n). The eigenvectors are orthogonal with respect
to M(Il) and K(n) and are assumed to be normalized so as to satisfy

(8.167a, b)
At this point, we pause to consider questions of accuracy. We recall from Sec. 8.5

that not all eigensolutions A~"), u~/1)(r = 1, 2, ... , 11) are accurate. In particular,
the lower eigensolutions tend to be more accurate than the higher ones. In view of
this, we assume that n is sufficiently large that the lowest m eigensolutions can be
regardcd as accurate. Moreover, we assume that m is sufficiently large that no mode
higher than m is excitcd. Of course, this assumption must be verified by checking the
extent of participation of the mode m +1. Then, we consider a solution of Eq. (8.163)
in the truncated form

q(t) = Vtrll(t)

r, S = 1, 2, ... , n

(8.168)

in which Vtr = [uJ U2 ... ulIl] is an n x m truncated modal matrix and 1l is a
truncated m-vector of modal coordinates. Introducing Eq. (8.168) into Eq. (8.163),
premultiplying by Vt~'and using the orthonormality relations, Eqs. (8.167), we obtain
the modal equation

(8.169)

(n) . (Il) (n) (n)) . [ (/1) . .,. (1l))2 «/1))2] .where AIr = dlag(AJ A2 ... Am . = dJag (WI )- (W2 Will IS a
truncated diagonal matrix of approximate natural frequencies squared and

(8.170)

is the truncated m-vector of modal forces. Equation (8.169) represents a set of
independent equations of the type examined in Sec. 4.10. Hence, from Sec. 4.10, we
write the response

) 1 11
N )' (/1) d ( ) (n) iJr(O). (/1)17r(t = W r(t - r smwr r r + 17r 0 cosWr t + -WsmWr t,

Wr 0 Wr

r = 1, 2, ... , m (8.171)

in which 17r (0) and YJr (0) are initial modal displacement and velocity depending on
the actual initial displacement wo(P) and initial velocity v()(P), respectively. To
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obtain the relation between the two types of quantities, we insert Eq. (8.168) into
Eq. (8.162) and write the system response in the form

w(P, t) ~ wCn)(P, t) :;:::<1>T(P)q(t) :;:::<1>T(P)UtrTJ(t)

are the approximate modes of the distributed system. Using Eqs. (8.164a) and
(8.167a), these modes can be shown to satisfy the orthonormality relations

L m(P)w~n)(p)w}n)(p) dD(P) :;:::ors,

Hence, multiplying Eq. (8.175) by m (p)w}n) (P), integrating over the domain D and
considering Eq. (8.174), we obtain

17r(O) :;:::L m(P)w}n)(p)wo(P) dD(P),

m m" , :;:::L<1>T(P)Ur17r(t) :;:::Lw}n)(P)17r(t)
r=l r=l

where, by analogy with Eq. (8.91),

w}n)(p) :;:::<1>T(P)ur :;:::u;<1>(P)

r, S :;::: 1,2, ... , n

But, letting t :;:::0 in Eq. (8.172), we can write

m

w(P,O) :;:::wo(P) ~ Lw}n) (P)17r(O)
r=l

r :;:::1, 2, ... m

(8.172)

(8.173)

(8.174)

(8.175)

(8.176a)

Similarly,

7]r(O) :;:::L'm(p)w}n)(p)Vo(P) dD(P), r :;:::1,2, ... , m (8.176b)

The formal approximate response of the system is obtained by inserting Eq.
(8.171) in conjunction with Eqs. (8.176), as well as Eqs. (8.165) and (8.170), into
Eq. (8.172).

ii. Nonconservative systems

In the general case of damping, the boundary-value problem can be described by the
differential equation (Sec. 7.18)

Lw(P, t) + cw(p, t) + mw(P, t)= f(P, t),

and the boundary conditions

Pin D (8.177)

~---- .-.-

Biw(P, t) :;:::0, P on S,

Biw(P, t) + Cw(P, t) :;:::0,

i :;:::1,2, ... , k (8.178a)

P on S, :;:::k + 1, k + 2, ... , P

(8.178b)
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where the various terms are as defined in Sec. 7.18. Alternatively, boundary condi-
tions (8.178b) can take the form

Biw(P, t) + Cw(P, t) = 0, PonS, i = k+1,k+2, ... ,p (8.178c)

and note that Eq. (8.178b) implies the presence of a lumped mass at Sand Eq. (8.178c)
the presence of a damper.

In Sec. 7.18, we discussed various cases of damping in which the classical modal
analysis permitted a closed-form solution of Eqs. (8.177) and (8.178), where "classi-
cal" is in the sense that the eigenfunctions corresponding to the self-adjoint system,
i.e., the undamped system, are capable of diagonalizing the damped system. The
most important of these is the case of proportional damping. In this section, we con-
sider the general case in which the classical modal analysis is not able to diagonalize
the system, so that no closed-form solution is possible.

Even when the operator L is self-adjoint, general damping renders the sys-
tem non-self-adjoint, which implies complex eigensolutions. As demonstrated in
Refs. 14 and 32, approximate solutions of differential eigenvalue problems for non-
self-adjoint systems in terms of quasi-comparison functions exhibit superior conver-
gence characteristics. In view of this, we consider a solution of Eq. (8.177) by the
Galerkin method in the form of the linear combination

(8.179)

where <f>(P) is an l1-vector of quasi-comparison functions and q(t) an l1-vector of
generalized coordinates. Inserting Eq. (8.179) into Eq. (8.177), premuItiplying by
<f>(P) and integrating over D, we obtain a set of discretized equations having the
form

Mij(t) + Cq(t) + Kq(t) = Q(t)

in which

M = L m<f><f>T dD,

are a mass matrix, damping matrix and stiffness matrix, respectively, and

Q(t) = L <f>! dD

(8.180)

(8.182)

is a generalized force vector. No confusion should arise from the fact that we used
the same notation for the damping matrix and the damping operator.

To obtain a solution of Eq. (8.180), we use the approach of Sec. 4.10 and cast
the equation in the state form

x(t) = Ax(t) + BQ(t)

where x = [qT qTf is the state vector and

(8.183)

B (8.184)
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(8.185)

are coefficient matrices. As shown in Sec. 4.10, the solution of Eq. (8.183) is

x(t) = <p(t)x(O) + 1t
<p(t - r)BQ(r) dr

where x(O) = [qT (0) i{ (O)f is the initial state vector and <p(t - r) = exp A(t - r)
is the transition matrix. Note that the initial generalized displacement and velocity
vectors can be obtained from the actual initial displacement w(P, 0) and velocity
w(P,O) by writing

q(O) = M-1 Lm<f»w(P,O) dD, q(O) =.M-c-l Lm<f»w(P,O) dD

(8.186a, b)
The solution of Eq. (8.183) can also be obtained by means of a state version of

the modal analysis (Sec. 4.10). A modal solution of Eq. (8.183) has the advantage of
permitting truncation of inaccurate higher modes, provided there is some assurance
that they are not excited.

8.11 COMPONENT-MODE SYNTHESIS

In the 1950s, it became apparent that the techniques for analyzing complex struc-
tures were woefully inadequate. This led to the independent development of two
techniques, the finite element method and component-mode synthesis. The first to
emerge was the finite element method (Ref. 46), initially conceived as a static analy-
sis according to which the structure is divided into small subdomains, referred to as
finite elements, and the deformation over each element is described in terms of inter-
polation functions. Since its early beginnings, the finite element method has grown
significantly in scope, finding application in a large variety of engineering areas, as
well as in applied mathematics. The entire Chapter 9 is devoted to the finite element
method ..

Following by a few years, Hurty (Refs. 18-20) developed the component-mode
synthesis as a technique for the dynamic analysis of structures consisting of assem-
blages of substructures. The component-mode synthesis adopts a different point of
view from the finite element method, as the modeling is carried out on a much larger
scale. Indeed, the general idea is to describe the motion separately over each of the
substructures, referred to as components, and then constrain the components to work
together as a single structure. In fact, component-mode synthesis can be regarded as
an extension of the assumed-modes method to flexible multibody systems. Indeed,
as in the assumed-modes method, the motion of each component is described by a
linear combination of modes multiplied by time-dependent generalized coordinates.
Hurty divides the component modes into three types, rigid-body modes, constraint
modes and normal modes. But, because each component is modeled separately,
there are redundant coordinates, as points shared by two components undergo the
same motions. The removal of redundant coordinates is carried out during an as-
sembling process in which the constituent components are constrained to act as a
whole structure.
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Figure 8.15 (a) .Undisplaced, undeformed component (b) Component
after it has undergone rigid-body displacement ~c) Displacements relative to
fixed-constraint motions

We consider a structure consisting of N components, concentrate on a typical
component c (c = 1,2, ... , N) and express the total displacement vector of an
arbitrary point P (x, y, z) in the form .

Ue (P. t) = u~ (P. t) + u~ ( P. t) + u~ ( P, t) (8.187)

where u~ is a rigid-body displacement vector, uf a "constraint displacement" vector
and u~ a displacement vector relative to the fixed constraints, as shown in Fig. 8.15.
Figure 8.15a displays the undisplaced, undeformed component, with a set of con-
straints indicated by arrows. The constraints labeled 1-6 are regarded as statically
determinate and the constraints i, j and kare considered as redundant. All the
constraints are movable and the result of component c being attached to adjacent
components that are themselves in motion. The points shared with a given adjacent
component represent the interface with the component in question. Figure 8.15b
shows the component after it has undergone six arbitrary rigid-body displacements,
defined uniquely by the displacements of the six statically determinate constrain·ts.
These displacements are represented by the rigid-body displacement vector u~. The
constraint displacement vector u: results from the motion of the redundant coor-
dinates relative to the rigid-body motions and it represents a linear combination of
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(8.188)

displacements obtained by letting each of the redundant constraints undergo an arbi-
trary displacement, as shown in Fig. 8.15b. In addition to these displacements, there
is the displacement u~ of point P relative to the constraint motions, as depicted in
Fig.8.15c .. '

At this point, we begin the discretization process. To this end, we represent the
three types of displacements as linear combinations of space-dependent functions
multiplied by time-dependent generalized coordinates in the form

u:(P, t) = <I>:(P)~:(t),

u~(P,t) <I>~(P)~~(t),

u~ (P, t) <I>~ (P)~~ (t)

where <1>: is in general a 3 x 6 matrix of rigid-body modes, <1>; is a matrix of constraint
modes with three rows and as many columns as the number of redundant constraints,
a finite number, <I>~ is a matrix of "fixed-constraint" normal modes with three rows
and a given finite number of columns and ~~, ~; and ~~ are associated generalized
displacement vectors. Equations (8.187) and (8.188) can be combined into the single
expression

ue(P, t) = <l>e(P)~e(t) (8.189)

in which <l>e = [<I>~ <I>~ <I>~] and ~e = [(~~)T (~;)T (~~)rf, and we observe that
the net effect of Eq. (8.189) is to represent the motion of the distributed component
by a finite number of degrees of freedom.

:rbe next step is to derive the equations of motion for the discretized component.
Using the analogy with the assumed-modes method (Sec.,8.7), we carry out this task
by means of Lagrange's equations. To this end, we use Eq. (8.189) and write the
component kinetic energy in the discretized form

11 .r).Te(t) = - me(P)ue (P, t ue(P, t) dDe
2 Dc

where Dc is the'domain of component c and

(8.190)

Me = j me(P)<I>~ (P)<I>e(P) dDe
Dc

(8.191)

is the corresponding component mass matrix. Assuming that the component is sub-
jected to distributed viscous damping and denoting by Ce (P) the distributed damping
coefficient, we obtain the discretized Rayleigh's dissipation function (Sec. 4.1) for the
component

. in which

1 { .T ."liD ce(P)ue (P, t)ue(P, t) dDe
r: \

(8.192)

--------------~~~ .._, .~-

(8.193)
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is the associated component viscous damping matrix. Moreover, using the notation
of Sec. 8.7, the component potential energy takes the discretized form

1 T 1
Ve(t) = 2:[ue, ue] = 2:{[ (t)KekU) (8.194)

where
(8.195)

is the corresponding component stiffness matrix. Finally, assuming that the compo-
nent is acted upon by the distributed force fe (P, t), the discretized virtual work for
the component can be written as

in which

(8.196)

(8.197)

(8.] 98)

is the associated generalized force vector for the component, and we note that Ze
excludes viscous damping forces.

By analogy with Eq. (4.14), Lagrange's equations of motion for the discretized
component have the symboli~ form

d (aLe) aLe aJe
dt ate - a~e + ate. = Zc

where Lc = Tc - Vc is the component Lagrangian. Hence, using Eqs. (8.190), (8.192)
and (8.194), we obtain the component equations of motion

...
Mc~c(t) + Cctc(t) + Kctc(t) = Zc(t). c = 1, 2, .... N (8.199)

Next, we turn our attention to the assembling process. To this end, we first
collect all component equations into the "disjoint" set of equations

MlJl~(t) + Cldlt(t) + KlJ)~(t) = Z(t) (8.200)

where ~ = [~r ~r...~~f, Z = [Zr Zf ... Z~ f are disjoint displacement and
force vectors and

M(d) = block-diag[Mc], C(d) = block-diag[Cc]. K(d) = block-diag[Kc]

(8.20] )

are disjoint coefficient matrices. Of course, according to Eq. (8.200), the components
still act independently of one another, as the vector ~ contains all the redundant co-
ordinates. TIle assembling process is designed to cause the disjoint set of components
to act as a single structure, which implies elimination of the redundant coordinates.
If we assume that two adjacent components rand s are joined together so that there
are no relative translations and rotations between the components at the interface,
then we have

U,. = Us, 6,. = 6.,. (8.202)
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where 9 represents a rotation vector, which implies that the rotations are small.
But, the translational and rotational displacements at the interfaces are related to
the generalized displacement vector t by means of equations of the type (8.189),
in which P represents the position of the interface points. In view of this, we can
combine Eqs. (8.202) corresponding to all interfaces into a single constraint equation
having the general form .

At = 0 (8.203)

in which A is a c x m matrix, where c is the number of constraint equations. Then,
dividing the vector t into an n-vector q of independent variables and a vector d of
dependent variables and partitioning the matrix A as follows:

where Al is a c x n matrix and A2 is a c x c nonsingular matrix, we can rewrite
Eq. (8.203) as

(8.205)

which yields
d = _A;-l Alq (8.206)

Equation (8.206) permits us to write a relation between the n-vector q(t) of inde-
pendent generalized coordinates for the full structure and the n-i-vector t(t), which
includes redundant coordinates, in the form

in which

t(t) = Bq(t) (8.207)

(8.208)

is an m x n matrix, where n = m-c is the number of degrees of freedom of the model
of the full structure. Introducing Eq. (8.207) into Eq. (8.200) and premultiplying by
BT, we obtain the coupled equations of motion of the full structure

Mij(t) + Cq(t) + Kq(t) = Q(t)

where

(8.209)

K (8.210)

are n x n coefficient matrices and

Q(t) = BTZ(t) (8.211)

'--- --. - ..-- .. - - -

is an n -dimensional generalized force vector.
There are two main questions still to be addressed, namely, the choice of

constraint modes and normal modes and the nature of the approximation. Hurty
(Ref. 19) answers the first question, but does not address the second. In particular,
the constraint modes are defined clearly in Ref. 19 as" ... displacements produced by
giving each redundant constraint in turn an arbitrary displacement while keeping all
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other constraints fixed." As far as the normal modes are concerned, they are defined
in Ref. 19 somewhat more ambiguously by stating that" ... it is convenient, although
not necessary, to think of these as the 'fixed-constraint' natural modes of vibration
of the structure." In practice, they have been widely interpreted as fixed-fixed com-
ponent modes. The nature of the approximation is significantly more involved in
the component-mode synthesis than in the assumed-modes method. The question
is essentially how well a combination of the constraint modes and component nor-
mal modes can approximate the behavior of the component in the context of a full
structure. The question of inaccuracies introduced by the use of constraint modes
arises only in problems in which the interface is a line, such as when the compo-
nents are two-dimensional, rather than a point, such as when the components are
one-dimensional. Clearly, if the interface is a line, then there is an infinite number
of interface points, and not a finite number. As a result, the boundary conditions
internal to the structurc at the interface cannot be satisfied exactly. To explain this
point, it is convenient to conceive of a structure with the interface consisting of a
finite number of points, where the points coincide with the location of the redundant
constraints. We refer to this fictitious structure as an intermediate structure (Ref. 27),
because the model lies somewhere between the disjoint structure and the fully cou-
pled structure, where in the latter the full infinity of interface points is considered. It
is obvious that the results of the component-modes synthesis are valid for the interme-
diate structure, and not necessarily for the actual structure. The component normal
modes do not require elaboration, as fixed-fixed modes are generally well defined
and the nature of the approximation is the same as in the Rayleigh-Ritz method
applied to a single elastic member.

Since publication of Hurty's component-mode synthesis, there have been many
attempts to enhance its accuracy. The issues of component modeling and of the man-
ner in which the various components are made to work together as a whole structure
have received a great deal of attention. Hurty's method makes a sharp distinction
between determinate and indeterminate constraints. In reality, no such distinction
exists, and all interface constraints should really receive equal treatment. This is
the essence of an idea advanced by Craig and Bampton (Ref. 6), who suggested a
simplification in the treatment of the component rigid-body modes by eliminating
the separation of the boundary constraints into determinate and indeterminate ones.
All constraint modes are defined as the mode shapes due to successive unit displace-
ments at each of the interface points, with all other interface points being fixed. Craig
and Bampton envision an entirely discretized structure, with the constraint modes
being generated by matrix operations on a computer. The normal modes and the
elimination of redundant coordinates remain essentially the same as envisioned by
Hurty.

The method described above is generally referred to as a "fixed constraint
mode" method, because the modes used to describe the motion correspond to fixed
constraints. To account for motions caused by loads at unconstrained points, in de-
veloping a computer program for the method, Bamford (Ref. 1) introduced another
class of displacement modes, referred to as "attachment modes" and defined as the
static deflection of the component resulting from a unit force applied at one bound-
ary coordinate while the remaining coordinates are force free. The possibility of
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using unconstrained modes has been suggested by Goldman (Ref. 12) and by Hou
(Ref. 17). Some ill-conditioning problems have been experienced in using uncon-
strained modes. The use of unconstrained modes has also been proposed by Dowell
(Refs. 7 and 21), who used Lagrange's multipliers to enforce continuity at interfaces.
A somewhat different type of mode selection is advocated by MacNeal (Ref. 24) and
Rubin (Ref. 42). Indeed, they use a low-frequency subset of the free· free component
modes together with "residual modes," some shape functions designed to capture the
contribution from the truncated normal modes. Truncation problems have been dis-
cussed by Kuhar and Stahle (Ref. 22), who present a condensation scheme similar
to dynamic condensation (Ref. 28), and by Hintz (Ref. 15), who identified Hurty's
elimination of redundant coordinates as a static condensation (Ref. 28).

A method developed by Benfield and Hruda (Ref. 2), and known as component-
mode substitution, resembles both Hurty's component-mode synthesis and Glad-
well's branch-mode analysis (Ref. 11). The interest in component-mode substitution
lies in its connection with component-mode synthesis. The method differs from
component-mode synthesis in that the component modes need not be constrained
and can be free-free. More importantly, however, the component-mode substitution
does not require that the generalized coordinates of the static constraint modes ap-
pear in the final formulation, thus reducing the number of degrees of freedom of the
over all model. The efficiency of the method can be improved by applying stiffness
and inertial loadings to the free interface coordinates of the component under con-
sideration to account for the effect of the remaining components. It is this aspect of
the m~thod that is of interest here, as this procedure gives rise to so-called "loaded
interface modes."

A comparison of the various choices of modes for Hurty's component-mode
synthesis, focusing on the mode sets advocated by Craig-Bampton, MacNeal and
Rubin and Benfield-Hruda is presented by Spanos and Tsuha (Ref. 43). In addition,
they discuss the effect of controls on the reduction of the component order.

Finally, there is the question of the manner in which the redundant coordinates
at interfaces are handled. In Hurty's component-mode synthesis, the redundant co-
ordinates are eliminated by means of the linear transformation given by Eq. (8.207).
On the other hand, Dowell (Ref. 7) and Klein and Dowell (Ref. 21) use Lagrange's
multipliers for the same purpose.

The component-mode synthesis represents a sound heuristic, physically mo-
tivated approach to the dynamics of complex structures. With a proper choice of
modes, the method should be capable of yielding reasonable results with a relatively
small number of degrees of freedom. However, unlike the assumed-modes method,
which could invoke the Rayleigh-Ritz theory to claim convergence, the component-
mode synthesis cannot make such claims. Indeed, it can be argued at best that the
eigenvalues of the model converge to the eigenvalues of the intermediate structure.
The degree to which the intermediate structure approximates the actual structure is
still an open question, and the answer depends on the extent to which the linear com-
bination of constraint modes and normal modes is capable of satisfying the internal
boundary conditions at the interfaces. This question is addressed in Sec. 8.12.

Because the finite element method and component-mode synthesis were devel-
oped with the same objective in mind, namely, to analyze complex structures, there
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, is the perception that the two methods compete with one another. In this regard,
it should be pointed out that, whereas the finite element method is capable of pro-
ducing an accurate mathematical model of a complex structure, without many of the
problems associated with the selection of suitable sets of modes, the model is likely
to be of extremely large order. On the other hand, a model produced by component-
mode synthesis is likely to be of significantly smaller order. In view of this, under
certain circumstances the two methods can be regarded as complementing one an-
other. Indeed, it is possible to produce the component normal modes by means of
the finite element method and then use them in conjunction with the component-
mode synthesis to reduce the number of degrees of freedom of the model. In fact,
such an approach would be consistent with the process of replacing interface lines by
interface points, as discussed above. A word of caution is in order, however, as the
number of interface points in a finite element model tends to be much larger than
the number of interface points in a component-mode synthesis, so that the concept
of an intermediate structure still applies.

8.12 SUBSTRUCTURE SYNTHESIS

Many structures, such as fixed-wing aircraft, helicopters, flexible spacecraft, flexible
robots, a variety of civil structures, etc., can be modeled as assemblages of interacting
flexible bodies. Hurty's component-mode synthesis discussed in Sec. 8.10 consists of
representing the motion of each of the constituent substructures by means of linear
combinations of rigid-body modes, constraint modes and normal modes. Various
other investigators use different sets of modes in an attempt to improve the conver-
gence of the component-mode synthesis. Note that, to generate component modes,
it is generally assumed that one must solve a component eigenvalue problem (see,
for example, Ref. 43).

The component-mode synthesis is basically an extension of the assumed-modes
method to flexible muItibodies. In essence, the various approaches discussed in
Sec. 8.10, whereby different sets of component modes are used, represent special
cases of the Raylcigh~Ritz method (Refs. 26 and 27). Clearly, a proper choice of
component modes can produce very good results. However, in the spirit of the
Rayleigh-Ritz theory, approximate solutions can be constructed from the space of
admissible functions, i.e., the functions need not be modes at all. In this regard, it
should be mentioned that the practice of using component modes has practical impli-
cations when the various substructures are manufactured by different companies and
the structural characteristics are provided in the form of component modes. In such
cases, the component-mode synthesis can be used to generate a structural model for
the fully assembled structure. Still, however defined, component modes represent
mere subspaces of the much larger space of admissible functions, and component-
mode synthesis is part of a larger picture.

In this section, we discuss a method for the modeling of flexible multibody
systems developed in Ref. 31 for systems of the type shown in Fig. 8.16. The method
represents an extension of the theory developed in Sec. 8.6 for single elastic members
to flexible multi body systems. Because the theory is based on expansions of the
solution over the individual substructures in terms of special classes of admissible
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functions, rather than modes, and the mathematical formulation of the equations of
motion is entirely different from that in component-mode synthesis, the method is
referred to as substructure synthesis.

Figure 8.16 Flexible multibody system

In the Rayleigh-Ritz method, a minimizing sequence is constructed from the
space of admissible functions or comparison functions, depending on the form of
Rayleigh's quotient. If Rayleigh's quotient is in the form of Eq. (8.89), then admissi-
ble functions suffice. In the case of flexible multibody systems, boundary conditions
cannot be defined independently of the motions of the adjacent substructures, so that
comparison functions cannot be generated: Hence, the only alternative is the use
of admissible functions, which include the various "substructure modes" as special
cases. This, however, raises serious questions concerning the speed of convergence,
as demonstrated in Sec. 8.6 for a single elastic member. This suggests the construc-
tion of an approximate solution over each of the flexible substructures from the space
of quasi-comparison functions. Moreover, the geometric compatibility at interface
points is ensured automatically by a kinematical procedure describing the motion of
each point of the structure in a consistent manner, which obviates the question of
constraints.

We propose to derive first the free-vibration equations of motion for flexible
multibody systems of the type shown in Fig. 8.16. Then, the eigenvalue problem fol-
lows immediately from the free-vibration equations. Because the eigenvalue prob-
lem rep~esents. a linear problem, the interest lies in linear equations of motion, which
implies that all displacements must be small, including the rotations. We derive the
equations of motion by means of Lagrange's equations, which in the case of free
vibration of undamped systems amounts to deriving the kinetic energy and potential



Sec. 8.12 Substructure Synthesis 567

energy. The latter two are fully defined by the mass matrix and stiffness matrix,
respectively.

The task of deriving the equations of motion can be simplified appreciably by
adopting a consistent kinematical procedure for describing the motion. To this end,
we introduce an inertial set of axes X/ y/ Z / with the origin at I, a set of body axes
XoYoZo with the origin at 0 and attached to substructure 0 in the undeformed state,
a set of body axes XaYaZa with the origin at A and attached to substructure a in the
undeformed state, etc. The various axes are shown in Fig. 8.16. For simplicity, we limit
the formulation to substructures of the type 0 and a. Extension of the formulation to
substructures of the type b, c, etc., is obvious, but tends to be exceedingly laborious.
To carry out the extension, we observe that the motion of b relates to the motion of
a in the same manner as the motion of a relates to the motion of o. The position
vector of typical points in 0 and a can be written as

and

(8.212a)

a = 1, 2, ... , N (8.212b)

respectively, where Ro is the radius vector from I to 0, ro the radius vector from
o to a typical point in 0, Wo the elastic displacement vector of the typical point in
o measured relative to axes xoYozo, roa the radius vector from 0 to A, Woa the
vector Wo evaluated at A, ra the radius vector from A to a typical point in a and Wa

the elastic displacement of the typical point in a measured relative to axes Xa YaZa·

Note that all vectors are in terms of components along local axes.
The Lagrangian formulation requires the kinetic energy, which in turn requires

the velocity of typical points in the various substructures. To derive expressions
for these velocities, we assume that axes xoYozo rotate with the angular velocity"
~elative to the inertial space and that axes Xa YaZa rotate with the angular velocity
lJa relative to axes XoYoZo, due to the elastic motion at A. Recalling that we are
interested in linearized equations of motion, the velocity vector for a typical point in
substructure 0 and substructure a can be written as follows:

. a = 1, 2, ... , N (8.213b)

where Ko is the velocity vector of 0 and Ca is a matrix of direction cosines between
XaYaZa and XoYoZo. Moreover, lJa = V XWoa, and we note that, in writing the angular
displacements due to elastic deformations in vector form, we take into account that
these deformations are small. We also note that a tilde over a symbol denotes a skew
symmetric matrix formed from the corresponding vector (Sec. 2.6).

The degrees of freedom of the system are associated with the rigid-body motions
of the frame XoYoZo and the elastic motions of the substructures. We assume that
the clastic displacements can be expressed in the form

S = 0, a; a = 1,2, ... , N (8.214)
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(8.215)

where <Ps are matrices of trial functions and qs are vectors of generalized displace-
ments. Using Eqs. (8.213) in conjunction with Eqs. (8.214), the kinetic energy can be
reduced to the form

T == ~ 1PoR~Ro dDo + ~t1PaR~Ra dD~
Do a=1 Do

1 T T - T - . T ~ T-· l' T
= 2'mtV 0 Vo - V oStoo + V o<Ptqo + V 0 ~ Ca <Paqo + 2'00 Itoo

, a=1

Tel>' T~H' i.TM· 'T~J' l~'TM'+ 00 tqo + 00 ~ aqa + 2'qo tqo + qo ~ aqa + 2' ~ qa aqa
a=1 a=l a=l

1.TM·-x x
2

where x = [R~ aT q,; qi qr ... q~ ] T is the configuration vector, in which we note
that Ro = Vo and'" = 00, and

, -T
mtI St
St It

-T -T
<Pt <Pt

-T TM = <P1 C1 H1
-T
<P2 C2 Hi

(8.216)

-T T T
<PNCN HN IN 00 Mn

is the mass matrix. The various quantities entering into Eq. (8.216) are as follows:
N N

mt = mo + Lma, St = So + L(maroa + C~SaCa)
a=1 a=1
N

<Pt = <Po+ L (ma<Poa - C~ SaCa Toa)
a=l
N

It 10 + L ( C~IaCa - mar;a - roaC~ SaCa - C~SaCaroa)
a=1 .

N .

<Pt el>o+ L [(maroa + C~ SaCa) <Poa+ (C~ IaCa - roaC~ SaCa) Toa]
a=l .

L--... _ ~----------_.~-
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n ,

is

S = 0, a; a = 1,2, ... , N (8.217)

in which

IPs dDs,
D,

[ Ps<Ps dDs,
Ds

Ss = [ P.lrs dD.1,

Ds

(8.218)

The potential energy is assumed to be due entirely to the elastic deformations and
can be written as

1 T
-x Kx
2

(8.219)

where

<P.,] , S = o,a (8.220)

arc substructure stiffness matrices, Kb are boundary stiffness matrices due to the
action of the springs at the boundary points B, and K is the overall stiffness matrix
for the whole structurc. Moreover,

'" (-T CT-TC) ,.y... CT,.y...Ub = Ro + roo + 0 rab a 9 + 'Voaqo + a'Vohqa (8.221)

represents thc displacement vector of point B, in which <Pab = <Pa(rab). Thc other
quantities on the right side of Eq. (8.221) were defined earlier. The overall stiffness
matrix can be written in the form

Kaa K12 KlJ
1 2 N

K14 K14 K]4

(K12) T K22 K23
1 2 N

K24 K24 K24

(K13)T (K1 )T Ko + K33
] 2 N

23 K34 K34 K34

K (K14)T (Ki4)T (K1 )T K] + K
1 0 0

34 44

(K2 ) T (Ki4) T (Kj4)T 0 K2 + K1 0
- 14

.............................................................
(KN)T (K£;;) T (KN)T 0 0 KN + KI;;

14· 34

(8.222)

--
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N

Lka,
a=1

N

- Lka (roa + C;rabCa),
a=1

N

K13 = L ka<poa
a=1

N

K22 - L (roa + c;rabCa).ka (roa + C;rabCa),
a=1

N

K23 = L (roa + C;rabCa) ka<poa
a=1

(8.223)

N

K33 = L <P~aka<poa' Kf4 = kaC; <Pab, K~4
a=1

As pointed out earlier in this section, Lagrange's equations for free vibrations are
fully defined by the coefficient matrices in the kinetic energy and potential energy.
Indeed, the equations of motion can be written simply as

Mx(t) + Kx(t) = O· (8.224)

where M and K are given by Eqs. (8.216) and (8.222), respectively. Then, because
free vibration of conservative systems is harmonic, x(t) = eiwtx, Eq. (8.224) yields
the eigenvalue problem

. Kx = AMx, (8.225)

From Fig. 8.16, we observe that in the case of flexible multibody systems there
are no geometric boundary conditions, except when a substructure is supported ex-
ternally, so that, for the most part, the only boundary conditions characterizing a
substructure are natural. It follows that, according to the Rayleigh-Ritz theory, the
admissible functions need satisfy nothing. To be sure, they must be p times differ-
entiable, but this requirement is satisfied routinely by virtually all choices. Hence, in
theory, admissible functions corresponding to the modes of free-free substructures
should be a suitable choice. However, this turns out not to be the case in general.

In the case of substructures in the form of beams in bending, there are four quan-
tities entering into the boundary conditions, namely, displacement, slope, bending
moment and shearing force, where the latter two involve second and third deriva-
tives with respect to the spatial variable, respectively. In component-mode synthesis,
geometric compatibility is enforced by means of constraint equations. The kine-
matical procedure used here ensures geometric compatibility at boundary points
automatically, which is accomplished by defining the various sets of body axes so
as to guarantee displacement and slope compatibility at boundary points common
to any two substructures. This obviates the need for constraint equations enforcing
such geometric compatibility. In addition, rigid-body motions are included in the
displacement vector of the central substructure o. But, this substructure synthesis
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goes beyond ensuring geometric compatibility. Indeed, through the use ·of quasi-
comparison functions, provisions are also made for balancing to a large degree the
bending moment and shearing force at boundary points between any two substruc-
tures, thus satisfying the natural boundary conditions approximately at these points.
In this regard, a distinction must be made between substructure 0 and substructures
a(a = 1,2, ... , N). Indeed, for substructure 0, it is necessary to make provisions
for nonzero displacement, slope, bending moment and shearing force at the bound-
ary points A. On the other hand, because displacement and slope compatibility are
guaranteed automatically by the kinematical procedure, for substructures of type a it
is only necessary to make provisions for nonzero bending moment and shearing force
at points A. All this is done through a judicious choice of admissible functions. For
example, linear combinations of free-free functions alone do not qualify as quasi-
comparison functions for substructure 0, because they are characterized by zero
bending moment and shearing force at boundary points. However, a set including
free-free functions and clamped-clamped functions can qualify as quasi-comparison
functions if the set provides for nonzero displacement, slope, bending moment and
shearing force of arbitrary magnitude at all boundary points. lbis implies that there
must be a minimum number of functions in the set. As an example, we consider
substructure 0 as a typical beam in bending and confine ourselves to transverse dis-
placements only, so that there are four arbitrary quantities at each end, for a total
of eight. Hence, in addition to one rigid-body translation and one rigid-body rota-
tion, it is necessary to include six shape functions in the set, perhaps three free-free
functions and three clamped-clamped functions. This choice of shape functions is
far from being unique. Another choice that can prove quite suitable, and one likely
to cause initial skepticism, is a set of clamped-free and free-clamped functions. It
should be reiterated that the preceding functions are not modcs at all, as there is no
conceivable substructure that can be free-free and clamped-clamped, or clamped-
free and free-clamped at the same time. Going one step further, in the numerical
example to follow, we demonstrate that sine and cosine functions can constitute a
suitable set from which to construct quasi-comparison functions.

The fact that a given choice of quasi-comparison functions for the substructures
is capable of providing both for the satisfaction of geometric compatibility and for
the matching of bending moment and shearing force at boundary points does not
mean that the natural boundary conditions will actually be satisfied exactly. Indeed,
in rendering the Rayleigh quotient in terms of the energy inner product stationary,
the natural boundary conditions will be satisfied only approximately, and so will the
differential equations. The'substructure synthesis process tends to reduce the error
at all points of the structure, regardless of whether they are boundary points or points
in the interior of the substructures. In using quasi-comparison functions, instead of
mere admissible functions, the process is given the chance to reduce errors at all
points of the structure, resulting in superior convergence characteristics.

As mentioned on several occasions, the substructure synthesis is in fact a
Rayleigh-Ritz method. The main difference between the substructure synthesis
presented here and the classical Rayleigh-Ritz method is that here the admissible
functions are local in the sense that they are defined over the domain of a given sub-
structure, whereas in the classical Rayleigh-Ritz method they are global, in the sense
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that they are defined over the entire structure. Of course, the fact that this substruc-
ture synthesis is a Rayleigh-Ritz method has many implications. The most important
of these is that most of the theory developed in conjunction with the Rayleigh-Ritz
method is valid for the present substructure synthesis as well. Having the backing of
the Rayleigh-Ritz theory permits us to draw some immediate conclusions concerning
the convergence of substructure synthesis. To this end, we assume that the number of
degrees of freedom of the system is n. Then, as the number of admissible functions
entering into the comparison functions increases, we can state that

lim A~ = Ar
n---+oo

(8.226)

or the computed eigenvalues converge to the actual eigenvalues. Moreover, they
approach the actual eigenvalues from above. Although the Rayleigh-Ritz method
does not permit a similar statement concerning the computed eigenvectors, and hence
concerning the approximate eigenfunctions, it is safe to say that, as the number
of admissible functions entering into the quasi-comparison functions increases, the
error in satisfying the differential equation and the boundary conditions tends to
decrease. The rate of convergence depends largely on the choice of quasi-comparison
functions, and tends to be faster for eigenvalues than for eigenvectors. This can
be attributed to the stationarity of Rayleigh's quotient, which implies that, if an
approximate eigenvector differs from the corresponding actual eigenvector by a small
quantity of first order, the approximate eigenvalue differs from the corresponding
actual eigenvalue by a small quantity of second order.

From the preceding discussion, we conclude that the substructure synthesis
presented here is different philosophically from the component-mode synthesis. In
fact, it is closer in nature to the hierarchical finite element method (Ref. 29). Indeed,
both 'this substructure synthesis and the hierarchical finite element method describe
the motion in terms of local admissible functions. In the first, the local functions are
admissible functions capable of yielding quasi-comparison functions defined over
entire substructures, and in the second, the local functions are polynomials defined
over finite elements. Moreover, in substructure synthesis convergence is achieved
by increasing the number of admissible functions entering into the quasi-comparison
function for a given substructure, and in the hierarchical finite element method con-
vergence is achieved by increasing the number and degree of polynomials for a given
finite element. The latter is in contrast with the ordinary finite element method, in
which convergence is achieved by keeping the number of polynomials constant and
refining the finite element mesh.

The substructure synthesis method described in this section is suitable for struc-
tures for which the substructures represent one-dimensional elastic members.

Example 8.4

The theory just developed is applied to the structure shown in Fig. 8.17 (Ref. 31). The
structure consists of three substructures, the central substructure 0 and two substruc-
tures of type a, with the supports being mounted on springs. The central substructure
is a uniform beam, and the other two substructures are tapered beams, as shown in
Fig. 8.17.
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111" = ] 0 kg/m

EI" = 2 x 106N/m2

L" = 10 m
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1112 = 5(1 - x/l0) kg/riJ.-
EI2 = (1 - x2/1O)106N/m2
L2 = 7 m

In] = 5(1 - x]/lO) kg/m
EIJ = (1 - x/10)106N/m2

LJ =7m

-
Figure 8.17 Structure consisting of thrce substructures

We propose to describe the motion of the substructures in five different ways. In
case 1, we represent the motion of all three substructures by means of mere admissi-
ble functions. To this end, we use free-free functions for the central substructure and
clamped-free functions for the remaining two substructures, all functions correspond-
ing to modes for the associated uniform beams. As pointed out earlier, the boundary
conditions for the central substructure cannot be satisfied with a finite number of free-
free functions. Similarly, the boundary conditions at points 81 and 82 in the case of
substructures of type a cannot be satisfied with a finite number of clamped-free func-
tions. Note that the geometric boundary conditions at points AI and A2 are satisfied
automatically by the kinematical procedure implied by Eqs. (8.212)-(8.214). In case 2,
the motion of the central substructure is represented by means of an improved set of
admissible functions and the motion of the remaining two substructures is represented
by means of quasi-comparison functions. In particular, for the central substructure,
we use a combination of free-free and pinned-pinned functions. Although this com-
bination of functions represents an improvement over case 1, it still falls in the class
of mere admissible functions, as the bending moment at the boundaries remains zero
with a finite number of terms. For the other two substructures, we use combinations
of clamped-free and clamped-pinned functions, so that these combinations of functions
qualify as quasi-comparison functions. In cases 3-5. the motion of all three substruc-
tures is represented by quasi-comparison functions. In case 3, we use combinations
of free-free and clamped-clamped functions for the central substructure, so that both
boundary conditions at each end can be satisfied with a finite number of functions; the
quasi-comparison functions for the other two substructures remain as in case 2. Cases
4 and 5 differ from case 3 in that in case 4 the motion of the central substructure is rep-
resented by clamped-free and free-clamped functions, and in case 5 by pinned-pinned
and cosine shape functions. The motion of the other two substructures is represented
in cases 3, 4 and 5 as in case 2. Figures 8.18a-e show the .various functions for cases 1-5.

The various types of functions used have closed-form expressions. The free-free
functions have the expression

<Pi(x) = cosh ,BiX + cos ,BiX - ai (sinh ,BiX + sin ,B;x) (a)
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Figure 8.18 (a) Admissiblefunctionsfor all three substructures (b) Improved
admissiblefunctions for beam and quasi-comparisonfunctions for columns
(c) Quasi-comparisonfunctionsfor all three substructures
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The clamped-free, clamped-clamped and clamped-pinned functions are given by

¢i = cosh{l,x - COSf3iX - O"i(sinh{lix - sinhf3ix) (h)

where the constants f3i and 0", vary from case to case; their numerical values are given
by Blevins.2 On the other hand, the pinned-pinned functions have the form

. in x
Sin --

L

Figure 8.18 (Continued) (d) Quasi-comparison functions for all three
substructures (e) Quasi-comparison functions for all three substructures

¢i (x) =

and the cosine functions are

(c)

¢i(X)
in x

cos --
L

(d)

2 Blevins. R.D., Formulas fur Natural Frequency and Mvde Shape, Van Nostrand Reinhold, New
York,1979.
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Finally, the stiffness matrices for beams in bending have the entries

Chap. 8

~. (~
koij = 1Elo(x)(P;'(x)¢j'(x)dx, kaij =. io Ela(x)¢;'(x)¢j'(x)dx,

, a = 1,2 (e)
where primes denote differentiations with respect to x. The numerical values for the
various parameters are shown in Fig. 8.17.

The eigenvalue problem for the system shown in Fig. 8.17 was solved for the five
cases just described and the three lowest natural frequencies are listed in Tables 8.4-
8.6. The results are in agreement with the expectations. In case 1, in which the motion
is expressed in terms of one type of admissible functions only for each substructure,
the convergence is unsatisfactory. Using a 27-degree-of-freedom model, the computed
natural frequencies are relatively far from the actual ones, and improvement with the
addition of degrees of freedom is very slow. At this point, there is no indication how
many degrees of freedom will be necessary for convergence. In case 2, in which the IUo-
tion of substructure 0 is described by means of more suitable admissible functions than
in case 1 and the motion of substructures a is represented by means of quasi-comparison
functions, the results are significantly better than in case 1, although convergence is still
elusive. In cases 3-5, in which the motion of all substructures is represented by means
of quasi-comparison functions, convergence is relatively rapid, with the results of case
4 being better than those of cases 3 and 5. Clearly, the results are far superior to those
obtained in the first two cases. As p9inted out earlier, there is a minimum number of
terms necessary before the linear combinations of admissible functions become quasi-
comparison functions. Hence, in cases 3-5, the results for small numbers of degrees of
freedom are not meaningful.

TABLE 8.4 First Natural Frequency

DoF Case 1, Case 2 Case 3 Case 4 Case 5
6 1.75746 1.75746 1.75746 1.69875 1.75745
9 1.57714 1.65474 1.65474 1.47335 1.47530

12 1.56932 1.56538 1.56538 1.47102 1.47084
15 1.53536 1.49632 1.47391 1.47073 1.47077
18 1.53462 1.49632 1.47391 1.47073 1.47077
21 1.52395 1.49632 1.47391 1.47073 1.47073
24 1.52339 1.48726 1.47157 1.47073 1.47073
27 1.51702 1.48138 1.47073 1.47073 1.47073

To verify how well the natural boundary condition at points A is satisfied, we
define the error in the bending moment as

E'J..-t = M(A-) - M(A+) (f)

where M (A -) denotes the bending moment at point A2 computed from the solution for
substructure 0 and M(A+) is the same quantity corresponding to substructure a = 2.
Figure 8.19 shows plots of E'J..-t versus n for all five cases just discussed. It is clear that
the solutions in terms of quasi-comparison functions are far superior to those in terms
of mere admissible functions.
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TABLE 8.5 Second Natural Frequency
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\
1

DaF Case 1 Case 2 Case 3 Case 4 Case 5
6 8.59485 8.59485 8.59485 11.62478 8.71827

9 8.29244 8.25873 8.23772 9.76602 8.33865
12 8.26215 8.24909 8.22873 8.22884 8.32848
15 8.25375 8.24867 8.22834 8.21273 8.21143

18 8.24792 8.23106 8.20832 8.21197 8.20475
21 8.24659 8.22109 8.20449 8.20455 8.20475

24 8.24418 8.22108 8.20447 8.20443 8.20475

27 8.24369 8.22107 8.20446 8.20443 8.20444

TABLE 8.6 Third Natural Frequency

DaF Case 1 Case 2 Case 3 Case 4 Case 5

6 26.86095 26.86095 26.86095 28.98808 26.92279

9 21.78531 21.91468 21.35960 20.37671 20.24966

12 21.30582 21.11908 20.98775 20.18728 19.93381

15 20.66517 20.11777 20.03998 19.94335 19.93298

18 20.61882 20.11582 20.03894 19.93163 19.93137

21 20.46641 20.11493 20.03876 19.93120 19.93120

24 20.45673 20.05149 19.95669 19.93111 19.93111

27 20.37866 20.00927 19.93139 19.93102 19.93102
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Figure 8.19 Bending moment error at point A2 versus the number of degrees of
freedom of the model
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The spatial discretization methods can be divided broadly int? lumping procedures
and series discretization methods. Lumping techniques appeal to physical intuition
and tend to be easy to understand. Indeed, the system parameters, i.e., the mass
distribution, or the stiffness distribution, or both, are lumped at given points of the
system. For the most part this is a heuristic process, with no analytical guidelines to
call upon. The best known methods are the lumped-parameter method using influ-
ence coefficients, Holzer's method for torsional vibration of shafts (and hence for the
transverse vibration of strings and axial vibration of rods) and Myklestad's method
for bending vibration of beams. In the first, the mass is lumped at discrete points,
thus yielding a diagonal mass matrix. On the other hand, the stiffness properties are
accounted for in an "exact" manner through flexibility influence coefficients. This
being a discretized version of the integral form of the eigenvalue problem, superior
results can be expected for a sufficiently large number of discrete points. More-
over, at least in theory, the method is applicable to all types of vibrating systems. In
practice, the determination of the influence coefficients can cause serious difficul-
ties, particularly for systems with nonuniform stiffness distribution and/or complex
boundary conditions, or for two-dimensional problems. In Holzer's method, both
the mass and stiffness are lumped. The mass is lumped into rigid disks at discrete
points and the shaft segments between these points are assumed to be massless and
to have uniform torsional stiffness. The computation of the natural frequencies and
modes of vibration can be carried out in a systematic manner by means of transfer
matrices. Myklestad's method extends the ideas to the bending vibration of beams.

Lumped-parameter methods lack mathematical rigor and their convergence
is not easy to judge. By contrast, series discretization methods do not suffer from
these drawbacks. They tend to be more abstract, however. In the case of conser-
vative systems, the discretization process is embedded into a variational approach
with its origin in Rayleigh's principle, which states that the frequency of vibration
has a minimum in the neighborhood of the fundamental mode. The fundamen-
tal mode is actually not known, and any guess for the fundamental mode yields a
frequency of vibration larger than the lowest natural frequency. It is therefore nat-
ural to attempt to improve the guess of the fundamental mode, thus lowering the
estimate of the lowest natural frequency. This improved guess is in the form of a
series of admissible functions with undetermined coefficients and the coefficients
are determined so as to render Rayleigh's quotient stationary. The procedure is
commonly known as the Rayleigh-Ritz method. The main drawback of the method
lies in the difficulty of coming up with suitable admissible functions, making the ap-
proach more of an art than a method. The weighted residuals method is really a
family of series discretization procedures based on the idea of reducing the approx-
imation error. It. is not a variational approach, so that it is applicable to both self-
adjoint and non-self-adjoint systems. By far the best known of the weighted residuals
methods is Galerkin's method, which is equivalent to the Rayleigh-Ritz method for
self-adjoint systems. The convergence of approximations for both self-adjoint and
non-self-adjoirit systems can be improved through the use of quasi-comparison func-
tions.
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As originally envisioned by Hurty, the component-mode synthesis is an exten-
sion of the Rayleigh-Ritz method to complex structures with identifiable substruc-
tures, referred to as "components." The term "mode" can be traced to the wide
assumption that the admissible functions used to represent the motion of the indi-
vidual components must be some loosely defined modes of vibration. Substructure
synthesis represents an extension of the enhanced Rayleigh-Ritz method of Sec. 8.6 to
structures consisting of chains of substructures. A consistent kinematical procedure
obviates the problem of using constraints to force substructures to work together as
a single structure. The method is able to accommodate substructures rotating rela-
tive to one another. Here too, the use of quasi-comparison functions can improve
convergence.

Whereas the Rayleigh-Ritz and the Galerkin methods have many advantages
over other approximate techniques, they also have serious shortcomings. In partic-
ular, the applicability of the methods is confined to relatively simple systems, such
as one-dimensional ones and two-dimensional ones with rectangular and circular
boundaries, although the formulation can be modified so as to accommodate sys-
tems with trapezoidal boundaries. The component-mode synthesis and substructure
synthesis can extend the usefulness of the series discretization approach, but the
above limitations still apply to the individual substructures. Moreover, the question
of generating suitable admissible functions is not entirely settled. In addition, the
computation of the mass and stiffness matrices generally requires extensive numer-
ical integrations. Many of these shortcomings can be attributed to the fact that the
admissible functions are global functions, in the sense that they extend over the entire
domain of the elastic member, or of the substructure. Another series discretization
method, the finite element method, does not have these drawbacks by virtue of the
fact that it uses local admissible functions, defined over small subdomains of the
structure. Because these subdomains are small, the local admissible functions can be
chosen in the form of low-degree polynomials, and the finite element mesh can be
constructed so as to accommodate boundaries with very complex geometry. Finally,
the process of computing the mass and stiffness matrices can be automated, relieving
the analyst from many computer coding chores. All these attributes make the finite
element method a very versatile one.

It should be pointed out here that the Rayleigh-Ritz theory does not actually
require that the admissible functions be global, although this has generally been the
practice, and local functions are indeed admissible, provided they satisfy the dif-
ferentiability requirements. Hence, although not conceived originally as such, the
finite element method does represent another version of the Rayleigh-Ritz method
differing from the classical one presented in this chapter in the nature of the admis-
sible functions. The identification of the finite element method as a Rayleigh-Ritz
method was very fortunate indeed, as the mathematical foundation of the Rayleigh-
Ritz method could be extended instantly to the finite element method, a foundation
lacking originally in the heuristically developed finite element method. Due to its
extreme versatility, the finite clement method has become the method of choice in
many areas of engineering analysis, reaching far beyond the original structural ap-
plications. In recognition of its dominant role in vibrations, the entire Chapter 9 is
devoted to the finite element method.
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PROBLEMS

Chap. 8

8.1 Formulate the eigenvalue problem for a uniform string fixed at both ends by means of the
lumped-parameter method using flexibility influence coefficients. Solve the eigenvalue
problem for n= 20, compare the results with the exact solution obtained in Sec. 7.6 and
draw conclusions concerning the accuracy of the approximate solution.

8.2 A shaft in torsional vibration fixed at both ends has the mass polar moment of inertia
and torsional stiffness distributions

lex) = I [~ + ~ - (~r], GJ(x) = GJ [~ + .~- (~r]
Formulate and solve the eigenvalue problem by means of the lumped-parameter method
using flexibility influence coefficien~s for the case in which n = 20.

8.3 A shaft in torsional vibration fixed at x = 0 and with a torsional spring of stiffness
k = G J / L at x = L has the mass polar moment of inertia and torsional stiffness
distributions

Formulate and solve the eigenvalue problem by means of the lumped-parameter method
using flexibility influence coefficients for the case in which n = 20.

8.4 A cantilever beam clamped at x = 0 has rectangular cross section of unit width and height
varying according to h(x) = h(l- 2x /3L). Formulate and solve the eigenvalue problem
for the bending vibration of the beam by means of the lumped-parameter method using
flexibility influence coefficients for the case in which n = 20.

8.5 A simply supported beam has the mass and stiffness distributions

EI(x) = ElI1 + 12~ - 12(~r]
Formulate and solve the eigenvalue problem by means of the lumped-parameter method
using flexibility influence coefficients for the case in which n = 20.

8.6 Solve Problem 8.2 by means of Holzer's method, compare results and draw conclusions
concerning the relative accuracy; provide arguments in support of your conclusions.

8.7 Solve Problem 8.3 by means of Holzer's method, compare results, and draw conclusions
concerning the relative accuracy; provide arguments in support of your conclusions.

8.8 Solve Problem 8.4 by means of Myklestad's method, compare results and draw conclu-
sions concerning the relative accuracy; provide arguments in support of your conclusions.

8.9 Solve Problem 8.5 by means of Myklestad's method, compare results and draw conclu-
sions concerning the relative accuracy; provide arguments in support of your conclusions.

8.10 Estimate the lowest natural frequency of the string of Problem 8.1by means of Rayleigh's
energy method using the static displacement curve as a trial function. Compare the
estimate with the exact solution obtained in Sec. 7.6 and draw conclusions as to the
accuracy of the estimate.

8.11 Estimate the lowest natural frequency of the shaft of Problem 8.2 by means of Rayleigh's
energy method using as a trial function the static displacement curve due to a distributed
torque proportional to the mass polar moment of inertia. Compare the estimate with
results obtained in Problems 8.2 and 8.6 and draw conclusions concerning the relative
accuracy of the estimate.
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8.12 Solve Problem 8.11 with Problems 8.3 and 8.7 replacing Problems 8.2 and 8.6, respectively.

8.13 Solve Problem 8.11 with Problems 8.4 and 8.8 replacing Problems 8.2 and 8.6, respectively.

8.14 Solve Problem 8.11 with Problems 8.5 and 8.9 replacing Problems 8.2 and 8.6, respectively.

8.15 Estimate the lowest natural frequency of the beam of Problem 7.32 by means of Ray-
leigh's energy method using the static displacement curve as a trial function. Compare
the estimate with the exact solution obtained in Problem 7.32 and draw conclusions
concerning the accuracy of the estimate.

8.16 Solve Problem 8.2 by the Rayleigh-Ritz method using the eigenfunctions of a uniform
shaft fixed at both ends as comparison functions for II ;, 1,2, ... , 6. Construct an array
as in Eq. (8.103) and draw conclusions.

8.17 Solve Problem 8.3 by the Rayleigh-Ritz method using the eigenfunctions of a uniform
fixed-free shaft as admissible functions for II = 1,2, ... ,6. Construct an array as in
Eq. (8.103) and draw conclusions.

8.18 Solve Problem 8.5 by the Rayleigh-Ritz method using the eigenfunctions of a uniform
simply supported beam as admissible 'functions for II = 1,2, ... , 6. Construct an array
as in Eq. (8.103) and draw conclusions.

8.19 Solve Problem 7.32 by the Rayleigh-Ritz method using the eigenfunctions of a c1amped-
pinned beam (without the spring) as admissible functions for II = 1,2, ... , 6. Construct
an array as in Eq. (8.103) and draw conclusions.

8.20 Solve Problem 7.40 by the Rayleigh-Ritz method using the eigenfunctions of a uniform
membrane free at x = 0, a and fixed at y = 0, b as admissible functions for m =
1,2; II = 1,2,3. Compare the results with those obtained in Problem 7.40 and draw
conclusions.

8.21 Solve Problem 7.41 by means of the Rayleigh-Ritz method using admissible functions in
the form of the products Ii (r )gj (I) ). where i; (r) = (r / a)i and gj (e) are trigonometric
functions, for i = 0, 1, ... 8; j = 0, 1,2,3. Compare the natural frequencies with those
obtained in Problem 7.41 and draw conclusions.

8.22 Solve Problem 7.47 by the Rayleigh-Ritz method using products of beam eigenfunctions
as admissible functions.

8.23 A rectangular plate simply supported at the boundaries x = 0, a and y = 0, b has the
mass density and flexural rigidity

m(x,y) = m[l +0.25~(1 - ~)~(1-~)]
D dx, y) = DE [1 + 0.75~ (I - ~) ~ (1 - ~)] .

Solve the eigenvalue problem by the Rayleigh-Ritz method and give the values of the
four lowes.t natural frequencies and the expressions of the four associated natural modes.

8.24 Solve Problem 8.17 by the enhanced Rayleigh- Ritz method using quasi-comparison func-
tions of your own choice. Compare convergence of the three lowest natural frequencies
obtained here with the convergence of the three lowest natural frequencies obtained in
Problem 8.17 and draw conclusions.
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8.25 Solve Problem 8.19 by the enhanced Rayleigh-Ritz method using quasi-comparison func-
tions from two families, clamped-pinned and clamped-clamped functions. Compare con-
vergence of the three lowest natural frequencies obtained:here' with the convergence of
the three lowest natural frequencies obtained in Problem 8.19 and draw conclusions.

8.26 Solve Problem 8.25 by the enhanced Rayleigh-Ritz method using quasi-comparison func-
tions from two families, clamped-pinned functions and a second family of functions of
your own choice.

8.27 Solve Problem 7.40 by the enhanced Rayleigh-Ritz method using quasi-comparison func-
tions of your own choice. Compare the results with the results obtained in Problem 8.20
and draw conclusions.

8.28 The boundary-value problem for a given distributed-parameter system is defined by the
differential equation

Lw + cw + mw = 0

and suitable boundary conditions, where L is a stiffness operator and C a damping oper-
ator. Use Galerkin's method to derive an algebraic eigenvalue problem approximating
the associated differential eigenvalue problem.

8.29 Assume that the system of Problem 8.3 is subjected to damping of the Kelvin-Voigt
type with c = 0.1 (Sec. 7.18). Then, use the formulation of Problem 8.28, let the
system parameters be uniformly distributed, solve the algebraic eigenvalue problem
for n = 3,4,5,6 and <;liscussthe behavior ofthe eigenvalues.

8.30 Solve Problem 8.29 with Problem 7.32 replacing Problem 8.3.
8.31 Solve Problem 8.16 by the collocation method. Determine the required number n of

terms in the approximation to match the accuracy of the lowest eigenvalue obtained in
Problem 8.16 for n = 6.

8.32 Solve Problem 8.31 with Problem 8.17 replacing Problem 8.16.

8.33 Solve Problem 8.31 with Problem 8.19 replacing Problem 8.16.

8.34 Derive the response of the system of Problem 8.16 with n = 6 to the concentrated
torque Mou(t) applied at x = L12, where u(t) is the unit step function. Discuss the
mode participation in the response.

8.35 Derive the response of the system of Problem 8.19 with n = 6 to the distributed force
f(x, t) = fo(l - xl L)8(t), where 8(t) is the unit impulse.

8.36 Derive the response of the system of Problem 8.29 with n = 6 to the distributed torque
m(x, t) = mor(t), where r(t) is the unit ramp function (Sec. 1.7).

8.37 Derive the response of the system of Problem 8.30 with n = 6 to the concentrated force
Fo[u(t)- u(t - T)] applied at x = L12, where u(t) is the unit step function.

8.38 Derive the response of the system of Problem 8.31 with n = 6 to the distributed torque
m(x, t) = mo[r(t) - r(t - T)], where r(t) is the unit ramp function (Sec. 1.7). Discuss
the mode participation in the response.

8.39 Derive the response of the system of Problem 8.33 with n = 6 to the distributed torque
m(x, t) = mo(l- xI2L)[r(t) - r(t - T) - Tu(t - 2T)], where r(t) is the unit ramp
fl!ncti,on (Sec. 1.7) and u(t) the unit step function.

8.40, Derive the response of the plate of Problem 8.23 to the force f (x, y, t) = fa [r (t) - r (t -
T)] distributed uniformly over the rectangular area defined by a 12 < x < 3a 14, b 14 <
Y < 3b14, where r(t) is the unit rampfunction(Sec.1.7).
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I.

9

THE FINITE ELEMENT
METHOD

\,

The finite element method must be regarded as the most successful technique of
structural analysis. OriginaIly conceived by Turner, Clough, Martin and Topp in the
mid 1950s (Ref. 26) as a procedure for static stress analysis of complex structures, the
method has been expanding rapidly into many engineering areas. The phenomenal
success of the finite element method can be attributed to a large extent to timing, as .
at the same time the finite element method was being developed so were increasingly
powerful digital computers. In fact, in many ways the computer has helped greatly
with the development of the method.

Although developed independently of the Rayleigh-Ritz method, the finite el-
ement method was demonstrated later to be a Rayleigh-Ritz method. To distinguish
between the two, we refer to the original one as the classical Rayleigh-Ritz method.
We recaIl from Sec. 8.5 that the classical Rayleigh-Ritz method represents a vari-
ational approach whereby a distributed system is approximated by a discrete one
by assuming a solution of the differential eigenvalue problem as a finite series of
admissible functions. The wide use of the classical Rayleigh-Ritz method has been
limited by the inability to generate suitable admissible functions for a large number
of problems. This inability can be attributed to the traditional manner in which the
method has been applied rather than to inherent flaws in the method itself. Indeed,
a major source of difficulties is due to the insistence on using global admissible func-
tions, and there is nothing in the theory requiring that the functions be global. In
this regard, it should be noted that systems with complex boundary conditions, or
complex geometry, cannot be accommodated easily by global admissible functions.
Such cases are quite common in two- and three-dimensional structures. Moreover,

~85
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global admissible functions tend to have complicated expressions, difficult to handle
on a routine basis. The basic difference between the classical Rayleigh-Ritz method
and the finite element method lies in the fact that in the latter an approximate solu-
tion is constructed using local admissible functions defined over small subdomains
of the structure. In this regard it should perhaps be mentioned that, in a paper gen-
erally regarded as the forerunner of the finite element method, Courant (Ref. 8)
used a variational approach in conjunction with linear admissible functions defined
over small triangular subdomains to produce an approximate solution to St. Venant's
torsion problem, thus preceding~ the development of the finite element method by
over a decade. The reason why Courant's work did not attract more attention can be

- -attributed to poor timing. Indeed, in the early 1940s, computers capable of solving
, large sets of equations of equilibrium, or equations of motion, did not exist, so that
the method was not practical then.

The concept of local functions defined over small subdomains carries enormous
implications, and is the key to the success of the finite element method. In the first
place, because the subdomains are small, good approximations can be realized with
local admissible functions in the form of low-degree polynomials. These low-degree
polynomials, often referred to as interpolation functions, not only make the compu-
tation of the stiffness and mass matrices appreciably easier, but also eliminate the
troublesome task of choosing suitable admissible functions, as given classes of prob-
lems call for certain choices of polynomials. Perhaps more important is the fact that
the computations lend themselves to automation. Indeed, the computer is not only
able to solve the discretized equations of equilibrium, or equations of motion, but
also to carry out such diverse tasks as the formulation of the equations by making de-
cisions concerning the finite element mesh and the assembly of the stiffness and mass
matrices. Finally, the finite element method has no equal in its ability to accommo-
date systems with complicated geometries and parameter distributions. Of course,
the geometry can be a serious concern in two- and three-dimensional problems. To
match a given irregular-boundary, or to accommodate parameter,nonuniformities,

.. not only the size of the finite elements can be changed but also their shape. This ex-
treme versatility, coupled with the fact that many powerful computer codes based on
the method have become available, has made the finite element method the method
of choice for static and dynamic analysis of structures.

In this chapter, we begin with the presentation of the finite element method
as a Rayleigh-Ritz method. Then, the procedure for determining element stiffness
and mass matrices and for assembling them into global stiffness and mass matrices is
demonstrated by means of second-order systems, such as strings in transverse vibra-
tion, first using linear and then higher-degree interpolation functions. The approach
is subsequently extended to fourth-order systems, such as beams in bending. The
real power of the finite element method becomes evident in two-dimensional sys-
tems; such as membranes and plates. Here we encounter finite elements of various
shapes, such as triangular, rectangular and quadrilateral elements, as well as elements
with curved boundaries. Another version of the method, known as the hierarchical
finite element method, combines some of the. best features of the finite element and
classical Rayleigh-Ritz methods. The chapter concludes with a discussion of the
system response.
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1

9.1 THE FINITE ELEMENT METHOD ASA RAnEIGH-RlTZ METHOD
I

The finite element method is a technique for the spatial discretization of distributed-
parameter systems. It consists of dividing the domain D of the system into a set of
subdomains and describing the motion over each of these subdomains by means of a
linear combination of trial functions. The subdomains are called finite elements, the
set of finite elements is known as the mesh and the trial functions are referred to as
interpolation functions. To introduce the ideas, we consider first a one-dimensional
domain, such as that shown in Fig. 9.1, and denote the number of elements by nand
the length of the elements by h, so that nh = L, where L is the length of the domain.
For the sake of this discussion, we assumed that the elements are equal in length, al-
though in general their length can vary, depending on the nature of the problem. The
boundary points between two elements are known as nodes and their displacements
as nodal displacements. 1 .For example, node j lies between the elements j - 1 and
j at a distance j h from the left end and has the displacement Qj. Figure 9.1 shows a
displacement profile W(II)(X) approximating the actual displacement curve w(x), in
which the displacement W(II) (x) at any point x between two typical nodes (j - l)h
and jh varies linearly from aj-l at (j - 1)h to aj at jh. But, observing that the
displacement profile can be generated by a superposition of triangles of width 2h
and height Qj, except for the last triangle which is of width h, we can express W(II) (x)
as the linear combination

11

W(II)(X) = LQj4>j(x)
j=l

(9.1)

where 4>j(x) are the roof functions. shown in Fig. 9.2. All roof functions have unit
amplitude and exten~ over two elements, (j - l)h .::::x .::::(j + l)h, with the
exception of the function 4>11 (x), which extends over the single element (n - l)h .::::
x .::::nh = L. We note with interest that the roof functions are nearly orthogonal,
as 4>jis orthogonal to all other functions, except 4>j-l and 4>j+l, which are the only
two functions overlapping 4>j. The near orthogonality has important computational
implications.

o h 2h (j-l)h jh (j+l)h

I
I

I
I

I
I

I
I

. (n-l)h nh=L
x

Figure 9.1 Displacement profile approximated by the finite element method

This is an unfortunate term, in view of the fact that in vibrations nodes are defined as points of
zero displacement. Nevertheless, the term is entrenched in finite element literature, so that we
adopt it.
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Comparing Eq. (9.1) with Eq. (8.76), we conclude that the finite element ap-
proximation has the same form as the Rayleigh-Ritz approximation. In fact, for
second-order systems, such as strings, rods and shafts, not only that the finite element
solution has the same form, but it is a Rayleigh- Ritz solution, provided the eigenvalue
problem is formulated in variational form, as root functions are admissible for such
systems. Moreover, observing that wen) (x) is zero and'd wen) (x) / dx is differentfrom
zero at x == 0 and both w(n)(x) and dw(n) (x)/dx are different from zero at x = L,
we conclude that w(n)(x) represents not a mere linear combination of admissible
functions but a quasi-comparison function for second-order systems fixed at x = 0
and supported by a spring at x = L. Hence, Eq. (9.1) represents a solution for the
enhanced version of the Rayleigh-Ritz method presented in Sec. 8.6. It follows that
the finite element method can be based on the same mathematical foundation as
the Rayleigh-Ritz method, although significant procedural differences remain. In
fact, the enormous success of the finite element method can be attributed to these
procedural differences. In recognition of the fact that the finite element method is
a Rayleigh-Ritz method, we refer to the approach presented in Secs. 8.5 and 8.6 as
the classical Rayleigh-Ritz method. Before we proceed with the details of the finite
element method, a comparison with the classical Rayleigh-Ritz method should prove
quite rewarding.

For second-order systems, the variational approach requires that the trial func-
tions (PJ (x) be from the energy space X~, i.e., they must be mere admissible func-
tions. In the case at hand, the functions ¢j must be merely continuous. This rules out
piecewise constant functions, but piecewise linear functions are admissible, provided
they contain no discontinuities. Moreover, these piecewise linear functions need not
be defined over the entire domain D : 0 ::::x ::::L, but only over certain subdomains
Dj : (j - l)h ::::x ::::jh, and can be identically zero everywhere else. We refer
to such a basis as a local basis, in contrast with the classical Rayleigh-Ritz method,
which uses global bases. Clearly, the roof functions of Fig. 9.2 represent a local ba-
sis from the energy space X~. In fact, they represent the simplest set of admissible
functions. Hence; the appeal of the finiteelement method can be attributed to the fact
that the admissible functions constitute a local basis of the simplest form permitted by
the Rayleigh-Ritz theory.

1

o h 2h (j-l)h jh (j+l)h

~"/,
, I
, I

, I
, I

/ I

(n-l)h nh=L
x

Figure 9.2 Roof functions as admissible functions

, .
It was mentioned earlier that the roof functions are nearly orthogonal. To

this should be added that the near orthogonality holds regardless of any weighting
functions, as orthogonality is simply the result of absence of overlap between any two
roof functions. The fact that all roof functions have unit amplitude has significant
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physical implications. Indeed, this gives the .coefficients Qj in series (9.1) a great
deal of physical significance, as it renders Qj equal to the approximate displacement
w(n)(jh) of the node x = Xj = jh. By contrast, in the classical Rayleigh-Ritz
method, the coefficients Qj represent abstract quantities, not unlike the coefficients
in a Fourier series expansion. Another difference between the finite element method
and the classical Rayleigh-Ritz method lies in the nature of the convergence. In the
classical Rayleigh-Ritz method, the addition of another admissible function 4>n+1to
series (9.1) enlarges the Ritz space from 'R" to 'R,,+I without affecting 'R", where
'R" is a subspace ,of 'R,,+1. The implication is .that the mass matrices 'M(n) and
M(n+l) on the one hand and the stiffness matrices K(Il) and K(n+1) on the other
hand possess the'embedding property, Eqs. (8.100). As a result, the two sets of
eigenvalues computed by means of the classical Rayleigh-Ritz method satisfy the
separation theorem; inequalities (8.101), which guarantees monotonic convergence
from above. By contrast, in the finite element method, the addition of another
function 4>n+1can be done only by refining the mesh, which amounts to dividing the
domain into n + 1 elements. As a result, the entire set of n admissible functions 4>j
(j = 1,2, ... , n) changes, in the sense that the roof functions are now defined over
smaller subdomains, even though the amplitudes remain unity. In view of this, the
matrices M(n), M(n+J), K(n) and K(n+J) do'not possess the embedding property,
and there is no mathematical proof that the separation theorem holds (Ref. 14).
This does not mean that it does not hold, or that the finite element method does not
converge. Indeed, the method does converge (Ref. 22), provided the elements satisfy
certain conditions, but proof of convergence is not an easy matter; particularly for
two-dimensional domains, where mesh refinement presents many options.

The above considerations may seem trivial when we consider the real reasons
why the finite element method has gained such universal acceptance. Among these
reasons we cite the virtually routine choice of admissible functions, the minimal effort
in producing the mass and stiffness matrices and versatility. Although the classical
Rayleigh-Ritz method has many attributes from a mathematical point of view, the
method has weaknesses from a practical point of view. In particular, the selection
of admissible functions is a constant source of consternation, although the develop-
ment of the class of quasi-comparison functions can at times mitigate the situation.
Still, the selection must be regarded as an art rather than a well-established process.
By contrast, in the finite element method the selection process is relatively routine,
as there is by now an established inventory of interpolation functions ready to be
used for most systems of interest. The finite element method has also a clear edge
in the computat.ion of the mass and stiffness matrices. In the classical Rayleigh-Ritz
method, the computation involves integrations of relatively complicated functions
over the entire domain. By contrast, the generation of the mass and stiffness matrices
is relatively routine in the finite element method, as it consists of assembling prede-
termined element matrices. To put it in simple terms, the comparison is between a
custom-made process requiring a great deal of experience and physical insight and an
automated, mass-production process, whereby full advantage is taken of the power
of the digital computer. In fact, the wide acceptance of the finite clement method
can be attributed in large part to the development of increasingly powerful comput-
ers permitting numerical solutions to very complex problems. Finally, whereas the
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classical Rayleigh- Ritz method is essentially a structural method capable of treating
linear systems with relatively uncomplicated geometry and parameter distributions,
the finite elementmethod, developed originally as a method for analyzing stresses
in complicated aircraft structures, has evolved into a technique of great versatility,
as it can be applied to a large variety of linear and nonlinear engineering problems.

The comparison is not as one-sided as it may seem, however .. In the first place,
the finite element method has a large drawback in that it requires a significantly larger
number of degrees of freedom than the classicaL Rayleigh-Ritz method to achieve
comparable accuracy (see, for example, Ref. 15). Moreover, the development of
the component~mode synthesis (Sec. 8.11) and substructure synthesis (Sec. 8.12)
has extended the usefulness of the concepts underlying the classical Rayleigh-Ritz
method. Perhaps the single most important argument.for an in-depth study of the
classical Rayleigh-Ritz method is that so much of its mathematical theory extends to
the finite element method .. '

9.2 SECOND-ORDER PROBLEMS. LINEAR INTERPOLATION FUNCTIONS,

In Sec. 9.1, we introduced the general ideas behind the finite 'element method as
applied to eigenvalue problems without entering into 'any procedural details. In
particular, a question of interest is how to generate the mass and stiffness matrices for

, a given set oftrial functions .. Of course, in the Rayleigh-Ritz method, the mass matrix
involves the evaluation of weighted inner products, Eq. (8.88b), and the stiffness
matrix ,requires energy inner products, Eq. (8.90). In the classical Rayleigh-Ritz
method, the process is carried out in one step. By contrast, in the finite element
method, the process is carried out in two steps, namely, the evaluatio~ of element
matrices and the assembly ofthesematrices to obtain global matrices. In this section,
we demonstrate the process for the second-order system shown in Fig. 9.L

From Eq. (8.89), Rayleigh's quotient can be written.the form' "
~' "!

F [w, w] N LJ=l NjR - - (9.2)(-fiii w, -fiii w ) D LJ=l Vj

where N ana D simply denote the numerator and denominator, respectively, and
Nj and Dj represent the contributions'from element j. We assume that the system
of Fig. 9.1 represents a string in transverse vibration, so that, using the analogy with
Eq. (8.104) for a rod in axial vibratiot;l, the element'numerator a~d deno.minator can
be written as . "',

l .;'~ ._~!t

(. ~~
Nj = .[w, wlJ

'h 2Ii [dW(X)] " ,
, T(x) -- dx + onjkw2(L),

(j-l)h dx
j 1,2, ... , n

(9.3a)

] 1,2, ... , n (9 .3b)
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"

(a)

T:
1 :
1.:

. (b)

(9.4)

Figure 9.3 (a) String displacement over element j showing local coordinate
(b) Linear interpolation functions

in which T(x) is the tension in the string, k the end spring and p(x) the mass density.
At this point, we propose to simplify the evaluation of Nj and Dj greatly. To this
end, we refer to Fig. 9.3a and introduce the,local nondimensional coordinate2

jh - x x
~= h =j-h

Then, we express the displacement w inside element j in terms of the nodal coordi-
nates aj-l and aj in the form

(9.5)

where ¢l and ¢2are trial functions, also known as shape functions, or interpolation
functions, elements, and <f> = [¢l ¢2f is an associated vector, Moreover, aj =
[aj-l ajf is known as a nodal vector. In the case at hand, the elements are linear
and can be expressed as

i = 1,2 (9.6)

in which Cil and Ci2 are constants yet to be determined. They can be determined by
considering the fact that the displacement w(~) at a given node must be equal to the
corresponding nodal displacement. To this end, we use Eq. (9.5) and write

w(1)

w(O)

¢l (l)aj-l + <P2(1)aj

¢l (O)aj-l + ¢2(0)aj
(9.7)

from which we conclude that <PI and ¢2 must satisfy the end conditions

and
<P2(1) = 0,

¢l (0) = 0

¢2(0) = 1

(9.8a)

(9.8b)

2 Referred to in finite element terminology as a natural, or normal coordinate, another unfortunate
term in view of the fact that in vibrations the term is used for decoupled modal coordinates.
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respectively. Inserting Eqs. (9.8a) and (9.8b) into Eqs. (9.6),in sequence, we obtain
two pairs of algebraic equations having the solution

Cll = 0, C12 = 1

1, -'-1
.

C2l - C22 -
(9.9a)

(9.9b)

so that the interpolation functions have the form

(9.10)

The interpolation functions <PI and <P2 are displayed in Fig. 9.3b. Note that, although
we could have written the expressions for <PI and <P2 directly from Fig. 9.3a, we
chose to go through the process defined by Eqs. (9.6)-(9.10) in order to introduce
the general procedure for generating interpolation functions.

The preceding derivation of the interpolation functions can be cast in matrix
form. This may seem as a frivolous exercise, and for the simple task of generating
two linear interpolation functions it is. However, the same procedure can be used
for significantly more involved cases, and this simple example permits us to illustrate
the ideas in an effective manner. Inserting Eqs. (9.8) into Eqs. (9.6), we obtain two
nonhomogeneous algebraic equations for the constants Cn and Ci2, which can be
written in the matrix form

= 1,2 (9.11)

where

A = [1 ~l ] = [1 1 ] '.
1~2 10 (9.12)

in which ~l and ~2 are the values of ~ at the first and second node, respectively, i.e.,
~ = ~l = 1 and ~ = ~2 = O. Moreover, Ci = [cn ci2f are two-dimensional vectors
of constants and ei are the two-dimensional standard unit vectors, el = [1 of and
e2 = [0 If. The solution of Eq. (9.11) is simply

l = 1,2 (9.13)

from which we conclude that Cl and C2 are the first and second column of A-I,
respectively. Hence, we can write

(9.14)

L

which agrees with Eqs. (9.9).
At this point, we are ready to evaluate Nj and Dj. In the process, we derive

the stiffness and mass matrices defining the eigenvalue problem. To this end, we
must perform the integrations indicated in Eqs. (9.3). But, in view of the fact that
the displacement w, Eq. (9.5), is in terms of the local coordinate ~, we must first
carry out the transformation from x to ~. Hence, from Eq. (9.4), we transform the
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differential element, the derivative with respect to x and the limits of integration, as
follows:

x = jh -+ ~ = 0

x = (j - l)h -+ ~ = 1

Introducing Eqs. (9.5) and (9.15) into Eqs. (9.3), we obtain

o '1'
N· = -~ 1T(e)a1' d4>(~) d4> (~) a· de + 0 kaT.t.(O).t.T(O)a·

J h 1 J ':i J d~ d~ J ':i In J 'I' 'I' J

DJ

dx = -hd~,
d d d~

=
dx d~ dx

1 d

hd~

j == 1,2,oo.,n

(9.15a, b)

(9.15c)

(9.15d)

(9.16a)

(9.16b)

1 t .
Kj = h Jo 1j(~)4>I(~)4>'T (~) d~ + Ojnk4>(O)4>T (0),

j = 1, 2, ... , n (9.17a)
are element stiffness matrices, in which 1j (~) is the tension over element j and primes
denote derivatives with respect to ~ , and

1 •

Mj = h 1Pj(~)~(~)4>1' (~) d~,

where

j = 1, 2, ... , n (9.17b)

are element mass matrices, in which Pj (~) is the mass density over element j. Hence,
inserting Eqs. (9.10) into Eqs. (9.17), the element stiffness and mass matrices become

111 [1Kj = -h 1j(~)-1
o

and

-1 J [0 OJ .1 d~ + Ojnk ° 1 ' } = 1,2, ... , n (9.18a)

} 1,2, ... , n (9.18b)

respectively. It should be pointed out that, due to the fact that ao = 0, we must
remove the first row and column from matrices K) and MI. For computer program-
ming purposes, it is perhaps simpler if the first row and column arc removed after
the assembly process.

The assembly process consists of inserting Eqs. (9.16) into Eq. (9.2) and writing
the Rayleigh quotient in the discrete form

(9.19)
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where a = [a1 a2 ... anJ: is the nodal vector, from which the component ao = 0 was
excluded, and K and M are the global stiffness and mass matrices, from which the first
row and column were deleted. In carrying out the assembly of the element matrices,
we observe that the nodal displacement aj appears as the bottom component in aj
and as the top component in aj+1. Consistent with this, there are two element matrix
entries corresponding to aj, the entry (2,2) of Kj and Mj and the entry (1, 1) of Kj+1
and Mj+1' The assembly consists of elimination of the duplication of aj from the
nodal vector a and adding correspondingly the (2,2) entries in Kj and Mj to the
(1,1) entries in Kif-land Mj+1 (j = 1,2, ... , n - 1). The resulting global matrices
K and Mare reafsymmetric and positive definite; they are displayed schematically
in the form

"

• 1

"

K= ~

~.K2
•. K3

18 ,,,,,

"~' , K

n

.. _ 1

, K
II .n

II

M=

,,,,,

"~' ... M
n

._

1, M
. III n

•
(9.20)

where we note that the shaded areas denote entries representing the sum of (1, 1)
and (2, 2) entries as described above. We note that the near orthogonality of the
roof functions is responsible for the banded nature of the stiffness and mass matrices,
where the half-bandwidth is equal to one. A matrix is said to have half-bandwidth t
if the entries, (r, s) are zero for all rand s satisfying the inequality s > r. + t.

By analogy with the' classical Rayleigh-Ritz method (Sec. 8.5), the requirement
that Rayleigh's quotient, Eq. (9.19), be stationary yields the algebraic eigenvalue
problem I

K a = AM a (9.21)

Moreover, because both K and M are real symmetric positive definite matrices, the
eigenvalue problem can be reduced to one in terms of a single real symmetric positive
definite matrix A (Sec. 4.6), which can be solved with ease by any of the methods
discussed in Chapter 6.

For sufficiently small h, the parameters Tj(~) and Pj(~) can be regarded as
being constant over the width of the element, although they can still vary from ele-
ment to element, so that Tj (~) ~ Tj = constant, Pj (~) ~ Pj = constant (j =

, 1,2, ... , n). Under these circumstances, following the integrations indicated in
Eqs. (9.18), the global stiffness and mass matrices, Eqs. (9.20), can be shown to
have the form

1
K = -x

h

'--- ~.~u _ ~ __
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1

Tl + T2· - h
T2 + T.,

o
o
.0
o

o
o
0,
o

o
o
o
o

and

, ~.

symm

'.
Tn-2 + Tn-l o

-Tn
Tn + kh

(9.22a)

h
M = -x

6 , '
2(Pl + P2) P2 ' 0 0

2(P2 + P3) P3 0 "
2(P3 + P4) P4

2(P4 + PS)

o
,0

o
o

o
o
o
o

o
o
o
o

symm

f,

2(Pn-2 + Pn-l) Pn-l 0
2(Pn-l + Pn) Pn

2Pn
(9 .22b)

respectively. Of course, for a uniform string under constant tension, the stiffness and
mass matrices assume the familiar form

2 -1 0 0 0
2 -1 0 0

• 2 0 0T
K=-

h
symm 2 -1

1 + kh/T

ph
M=-

6

410
4 1

4

symm

o 0o 0o 0

4 1
2

(9.23a,b)
..

The formulation presented in this section applies to all second-order systems,
including not only strings in transverse vibration but also rods in axial vibration
and shafts in torsional vibration .. The formulation is in terms of linear elements,
which are the simplest elements satisfying the differentiability conditions required
of admissible functions for second-order systems. Indeed, the displacement profile
consists of a concatenation of linear segments and the transverse force profile is
sectionally constant. This implies that the transverse force density, which is equal to
a (T aw / ax) / ax, is a collection of spatial Dirac delta functions. Clearly, this may be
mathematically acceptable, but is hard to reconcile with the physics of the problem,
which dictates that the transverse force density be continuous throughout the domain.
Of course, the problem disappears as n ~ 00. Not surprisingly, convergence of a
solution in terms of linear elements is relatively slow, as shown in Example 9.1.
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Still, such solutions are almost universally used. Convergence can be expedited by
means of higher-order interpolation functions, as shown in Sec. 9.3. Thequestion of
convergence of the finite element method is examined later in this chapter.

Example 9.1

Solve the eigenvalue problem for the rod in axial vibration discussed in Sec. 8.6 by means
of the finite element method in terms of linear interpolation functions. Compare the
results ~ith those obtained in Sec. 8.6 by means of the classical Rayleigh-Ritz method
using mere admissible functions and the enhanced classical Rayleigh-Ritz method using
quasi-comparison functions and draw conclusions.

The rod in axial vibration of Sec. 8.6 is entirely analogous to the string in trans-
verse vibration discussed in this section. Hence, the element stiffness and mass matrices
remain as given by Eqs. (9.18),except that we must replace the tension by the axial stiff-
ness and change the notation for the mass density. Inserting Eq. (9.4) into Eqs. (8.105),
the system parameters transform into,

0' 6EA[ 1(h)2. 2]'EA(~) = -5- 1- 2: L (j -~) ,

6m[ 1(h)2. 2]m(~) ="5 1 - 2: L (J -~) ,
EA

k =
L

(a)

so that, introducing Eqs. (a), into Eqs. (9.18)and carrying out the indicated integrations,
we obtain the element stiffness matrices

6E A [1 2 ] [ 1 -1 ] E A [0 0 ]Kj = 5i: n - 6n (1 -;-3) + 3}) -1 1 + DjnT 0 1 '

} == 1;2, ... , n (b)

and the element mass matrices
I

M. = mL [2 1] _ mL [2(6 - lS} + 10}2) 3 - 1O}+ 10}2 ]
J Sn 1 2 lOOn 3 - 10} + 1O}2 2(1 - S}'+ 1O}2) ,

} = 1,2, ... , n (c)

in which we set L / h = n. It should be pointed out here that the element stiffness and
mass matrices, Eqs; (b) and (c), are "exact," in the sense that their entries were computed
using the actual expressions for the system parameters, Eqs. (a). This was done because
this example involves'such small numbers n of elements that the assumption of constant
parameter values over the elements would cause gross errors. In ordinary finite element
practice, the parameters are taken as constant' over the elements as a rule, because the
number n of elements tends to be large and the width of the elements tends to be small.

Recalling that the first row and column of Kj and Mj must be omitted and using
the scheme (9.20),we obtain the global stiffness matrix

K
6EAn [2

SL . ,2m- ~ ~ ~ ]
2 -1 .

1 + 1/6n

-~---~ - ..---~~---
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1

I

[

8 .-7
.. 26

EA
5Ln symm

o
-19

56

and the global mass matrix

(e)

The eigenvalue problem associated with the matrices K and M has been solved
in Ref. 15 for n = 1,2, ... , 30, and the first three approximate natural frequencies are
listed in Table 9.1. Contrasting the results of Table 9.1 with the results of Table 8.1, we
arrive to mixed conclusions. Indeed, the finite element method using linear elements
shows faster convergence to WI and slower convergence to U>2 and W3 than the classical
Rayleigh-Ritz method using mere admissible functions. On the other hand, from Tables
8.3 and 9.1, we conclude that convergence of the finite element method using linear

TABLE 9.1 First, Second, and Third Natural Frequencies,
Computed by the Finite Element Method Us-
ing Linear Elements

n w~")JmU/EA wi")JmU/EA w~")JmU/EA

1 2.67261 - -

2 2.32551 6.27163 -

3 2.26469 5.68345 9.88405

4 2.24326 5.43128 9.41491
-

5 2.23330 5.31181 8.98398 .
28 2.21609 5.10625 8.14407

29 2.21605 5.10580 8.14218

30 2.21602 5.10539, 8.14049
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elements is very slow compared to'the enhanced Rayleigh-Ritz method using quasi-
comparison functions. Indeed, in die enhanced Rayleigh-Ritz method using quasi-
comparison functions win) and win) reach convergence to Wl and Wz, respectively, with
n = 6 and w~n) achieves convergence to W3 with n = 13. By contrast, the finite element
method is still not close to convergence with n = 30.

9.3 HIGHER-DEGREE INTERPOLATION FUNCTIONS

As pointed out on several occasions, one of the reasons for the wide appeal of the
finite element method is the simplicity of the admissible functions. Indeed, as a
rule, they are low-degree polynomials. For second-order systems, the lowest degree
admissible is the first, i.e., the interpolation functions are linear. But, as discovered
in Example 9.1, there is a price to be paid for this simplicity in that convergence tends
to be slow. Hence, the question arises as to whether convergence can be accelerated
by using higher-degree polynomials. In this section, we address the question by
considering quadratic and cubic interpolation functions. Higher-degree polynomials
can be generated by means of Lagrange's interpolation formula (Ref. 11). Quadratic
and cubic polynomials can be generated just as easily by means of the approach of
Sec. 9.2.

Quadratic interpolation functions, or quadratic elements, can be generated by
means of the quadratic polynomials

i = 1, 2, 3 (9.24)

but we run immediately into a problem.when we try to determine the coefficients
Cil, Ci2 and Ci3 (i = 1, 2, 3). Indeed, there are three coefficients to be determined
for every element and only two nodes available for producing the three necessary
conditions. It follows that another node must be created. For simplicity, we choose
the location of the third node at ~ = 1/2 and denote the corresponding nodal
displacement by aj-l/2' Clearly, the point ~ = 1/2 represents an internal node,
which makes the points ~ = 0 and ~ = 1 external nodes. Following the pattern
established in Sec. 9.2, we express the approximate displacement in the form

(9.25)

where the vector 4> = [(P1 <P2 <P3f of interpolation functions and the nodal vector
3j = [aj-laj-l/2 ajf are now three-dimensional.

The determination of the coefficients Cil, Ci2, Ci3 (i = 1,2,3) to be used in
Eqs. (9.24) follows the pattern established in Sec. 9.2, Eqs. (9.11)-(9.14). To this end,
we observe that the values of ~ at the nodes, taken in sequence, are ~l = 1, ~2 = 1/2
and ~3 = 0 and write

A
1

1/2
o

(9.26)
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Inserting the values of the constants Cil, Ci2and Cn (i = 1, 2, 3) from Eq. (9.27) into
Eqs. (9.24), we obtain the quadratic interpolation functions, or quadratic elements

<1>1 = ~(2~ - 1), <1>2 = 4~(1 - ~), <1>3 = (1 - ~)(1 - 2~) (9.28)

The functions <l>i (i = 1,2,3) are displayed in Fig. 9.4.

Figure 9.4 Quadratic interpolation functions

The stiffness and mass matrices remain in the general form of Eqs. (9.17a) and
(9.17b), respectively. Inserting Eqs. (9.28) into Eqs. (9.17), we obtain the element
stiffness and mass matrices in the more explicit form

....
1 1 [(4~ - 1)2 4(4~ - 1)(1 - 2~) (4~ - 1)(4~ - 3) ]

Kj h1~(~) 16(1 - 2~)2 4(1 - 2~)(4~ - 3) d~

symm (4~ - 3)2

+·OJ.k [g g ~l) 1,2.... , n (9.290)

and

4~2(2~ - 1)(1 - ~). -~(1 - ~Hl - 2~)2]
16~2(1 - ~)2 4~(1 - ~)2(1 - 20 d~,

• '. (1 - ~)2(1 - 2~)2

j = 1,2, ... ,n (9.29b)

respectively. Using the assembly process described in Sec. 9.2 and recalling once
again that ao = 0, the global stiffness and mass matrices can be displayed in the



600

schematic form

K= M=

,. The Finite Element Method

Mn

II

Chap. 9

(9.30)

The shaded matrix elements correspond to the external nodes and the elements
in-between correspond to internal nodes. Both matrices,are banded, with a half-
bandwidth equal to two.' ,

For uniform tension, the element stiffness matrices reduce to

'T [ 7. -8 1] [0 0 0]Kj =:= - -8 16 -8 + Djnk 0 0 0 ,
3h 1 -8 7' 0 0, 1

j = 1,2, ... , n (9.31a)

which are all the same except Kn, and for uniform mass density the element mass
matrices become

. ,. hp [ 4 2 -1]Mj = - 2 16 2,
30 -1 2 4'

,j

j = 1,2, ... , n (9.31b)

and these are all the same. Using the scheme given by Eqs. (9.30), the global stiffness
matrix and global mass matrix can be shown to have the form

16 -8 0 0 0 0
14 '-8 0 0 0

T 16 0 0 0
K - .........................

3h symm. 14 -8 1
16 -8

7 + 3khjT

and
16 2 0 0 0 0

8 2 0 0 0
hp 16 0 0 0

M= - ...............
30 symm 8 2 -1

16 2
4

(9.32a)

(9.32b)

I
L

respectively.
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The same procedure can be· used to derive the cubic interpolation functions.
To this end, we begin with the polynomials

<Pi = cil + Ci2~ + Ci3~2 + Ci4~3, i = 1,2,3,4 (9.33)

and observe that now we must have four nodes, two external and two internal nodes.
Then, assuming that the approximate displacement has the expression

w(~) = <Pl(~)a}-l + <P2(~)aj.-2/3 + <P3(~)a}-1/3 + <P4(~)a} = <t»T3} (9.34)

where the four-dimensional vectors <t» and 3} are obvious, and following the estab-
lished pattern, we obtain the cubic elements (Problem 9.7)

9 2
<P2 = -2~(1 - 4~ + 3~ )

11 2 9 3
<P4 = 1 - 2~+ 9~ - 2~

(9.35)

They are shown in Fig. 9.5. The calculation of the 4 x 4 element'stiffness and mass
matrices for cubic elements and given system parameters can be carried out by insert-
ing Eqs. (9.35) into Eqs. (9.17) and performing the indicated integrations (Problem
9.8) ..

;~. )T
j-t j-\+ 11

)-1 )

Li~
Figure 9.5 Cubic interpolation functions

In general, approximate eigenvalues computed on the basis of quadratic in-
terpolation functions tend to be more accurate than those computed using linear
interpolation functions, and the same can be said for approximate eigenvalues based
on cubic elements compared to those based on quadratic elements.

Example 9.2

Solve,the eigenvalue problem for the rod in axial vibration of Example 9.1 by means
of the finite clement method in two ways, first using quadratic interpolation functions
and then using cubic interpolation functions. Compare the results with those obtained
in Sec. 8.6 by the classical Rayleigh-Ritz method in conjunction with quasi-comparison
functions and in Example 9.1 by the finite element method using linear interpolation
functions and draw conclusions.

The 3 x 3 element stiffness and mass matrices for quadratic elements are obtained
by inserting the system parameters given by Eqs. (a) of Example 9.1 into Eqs. (9.29)
with T; (0 and Pj ($) replaced by E Aj ($) and mj (~ ). respectively, and carrying out the
indicated integrations. Then, the global stiffness and mass matrices are assembled by
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L

TABLE 9:2 First Three Natural Frequencies Computed by the Finite Element
Method Using Quadratic (FEMQ) and Cubic (FEMC) Interpolation
Functions

n win)JmU/EA w~n)JmU / EA w~n)JmU / EA
FEMQ FEMC FEMQ FEMC FEMQ FEMC

1 - - - - - -

2 2.23433 - 6.27984 - ," - -

3 - 2.1558 - , 5.25278 - 10.76486
4 2.21705 - 5:18817 - 9.13233 -

5 - - - - - -

6 2.21584 2.21553 ..5.12170 5.10352 8.30344 8.21161
7 - - - - .- -

> ,
8 2.21563 - 5.10695 - 8.18985 -

9 - 2.21553 - 5.09988 - 8.12705
10 2.21557 - 5.10265 - 8.14851 -

11- - - - - - -

12 2.21555 2.21552 5.10105 5.09959 8.13242 8.11835
13 - - - - -

14 2.21554 5.10036 - 8.12520 -,
15 - - 5.09954 - 8.11688
16 2.21553 5.10002 - 8.12160 -

17
I
- - - - -

18 2.21553 5.09983 5.09953 8.11965 8.11651
19 - - - - -

20 2.21553 5.09973 - 8.11852 -

21 - - . 5.09953 - 8.11640
22 2.21553 5.09966 - 8.11783 -

,
23 - - - --
24 2.21553 5.09962 5.09953 8.11739 8.11635
25 - - - - -

26 2.21553 5.09960 - 8.11710 -,
27 - - 5.09953 - 8.11634
28 2.21553 5.09958 - 8.11690 -

29
.

- - - - -

·30 2.21552 5.09956 5.09953 8.11676 18.11633

using the pattern exhibited in Eqs. (9.30). We note that, as the number of finite elements
increases by one the dimension of the global matrices increases by two.

In a similar fashion, the 4 x 4 element stiffness and mass matrices for cubic
elements are computed by introducing the same system parameters and Eq. (9.35) into
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Eqs. (9.17) and performing the prescribed integrations. Then, the global stiffness and
mass matrices are assembled in the customary way. But, because in the case of cubic
clements there are two internal nodes for every external node, the global matrices are
characterized by two nonshaded entries on the main diagonal separating any pair of
shaded entries. Consistent with this, as the ~umber of finite elements increases by one,
the dimension of the global matrices increases by three. The derivation of the global
matrices follows the established pattern and is the subject of Problem 9.8.

The eigenvalue problems corresponding to quadratic and cubic elements have
been solved in Ref. 15, and the results are displayed in Table 9.2. In the first place, we
note that, in using quadratic elements, the number of degrees of freedom increases by
two at a time, and so does the number of computed natural frequencies. In the case
of cubic elements, the number of computed natural frequencies increases by three at
a time. This explains the empty spaces in Table 9.2. A comparison of Tables 9.1 and
9.2 confirms the expectation that the finite element model based on quadratic elements
has better convergence characteristics than the model based on linear elements, and the
model using cubic elements converges faster than the model using quadratic clements.
This statement must be tempered by the realization that the relatively good results
obtained by the finite element method in conjunction with cubic interpolation functions
fall far short of the results obtained by the enhanced Rayleigh-Ritz method using quasi-
comparison functions. Indeed, a comparison of Tables 8.3 and 9.2 reveals convergence
of the first three natural frequencies computed by the enhanced Rayleigh-Ritz method
with six-, six- and thirteen-degree-of-freedom models. By contrast, the first natural
frequency computed by the finite element method using cubic elements converges with
a twelve-degree-of-freedom model, whereas the second and third natural frequencies
have not achieved convergence with a thirty-degree-of-freedom model.

9.4 BEAMS IN BENDING VIBRATION

According to the Rayleigh-Ritz theory, the lowest degree polynomials admissible
for beams in bending are quadratic, so that we consider them as possible candidates
for interpolation functions. To this end, we recognize that in bending both the dis-
placement and the slope must be continous at nodal points. Because there are two
nodes, it follows that every interpolation function must satisfy four end conditions.
But, as shown in Sec. 9.3, quadratic interpolation functions are defined by only three
constants, from which it follows that second-degree polynomials cannot be used as
interpolation functions. Hence, the lowest-degree polynomials admissible' are cubic,
which are defined by four constants.

The derivation of the interpolation functions for beams in bending can bc car-
ried out by considering the typical finite element shown in Fig. 9.6, in which Wj_l,

ej -I and Wj, ej denote the translation and rotation of the beam at the nodal points
j -1 and j, respectively. Using the same approach as in Sees. 9.2 and 9.3, we express
the displacement at point ~ in the form

(9.36)

T Twhere $ = [cPl cP2 cP3 cP4] and 3j = [Wj_1 hej_1 Wj hej] . Note that we multi-
plied the rotations ej-J and ej by h so as to ensure that theinterpolation functions
cP" cP2, cP3 and cP4 are all dimensionless .

.----
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Figure 9.6 Beam displacement over element j

As in Sec. 9.3, cubic elements have the form

Chap. 9

i = 1,2,3,4 (9.37)

(9.38)

(9.39)

in which Ci1, Ci2, Ci3and Ci4 (i = 1,2,3,4) are coefficients to be determined. To
this end, we replace the rotations ej -1 and ej by the slopes of the displacement curve
at the nodes j - 1 a.nd j, respectively, recall Eq. (9.15b) and write

e = dw = dw d~ = _~dw == -~w'
dx d~ dx h d~ h

Then, following the pattern of Sees. 9.2 and 9.3 and considering Eq. (9.38), we can
write

_ [~ ~11 -~~1 _~f~f]_ [~ _~ _~ _~]
A- 2 3 -

1 ~2 ~2 ~2 1 0 0 0
o -1 - 2~2 - 3~i 0 -1 0 0

in which we substituted ~1 = 1 and ~2 = O. Moreover, we observe that the second
row of A is the negative of the derivative of the first row with respect to ~1 and
an analogous statement can be made about the fourth and third rows. Hence, the
desired coefficients are obtained as the elements of the columns of A -1, or

. [0 0 1 0]-1 0 0 0-1
[C1C2C3C4] = A . = 3 1 _ 3. 2

. -2 ~1 2-1

(9.40)

Inserting the elements of the columns of A -1 into Eqs. (9.37), we obtain the inter-
polation functions

<1>1 = 3~2 - 2~3, <1>2 = ~2 - ~3, <1>3 = 1 - 3~2 + 2~3, <1>4 = _~+ 2~2 _ ~3
(9.41)

The interpolation functions given by Eqs. (9.41) are known as Hermite cubics. They
are displayed in Fig. 9.7.

------
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Figure 9.7 Hermite cubics

Slope =-1

1-4
L::j

The derivation of the global stiffness and mass matrices follows a pattern similar
to that established in Sec. 9.2. To demonstrate the process, we consider a beam in
bending subjected to an axial force and recall the definition of Rayleigh's quotient

R= [w,w]
(.jmw, .jmw) =

r.J= 1 Nj

r.J=l Dj
(9.42)

(9.43b)

first encountered in Sec. 9.2, where, from Sees. 7.2 and 7.5,

Ij
h I .[d

2
W(x)]2 [dW(X)]2)Nj = [w, W]j = (j-1)h E/(x) dx2' . + P(x) ~ dx,

j = 1,2, ... ,n (9.43a)
jh

Dj = (-Jfflw.-JfflW)j = 1 1Il(x)w
2

(x)dx. ) = 1.2 ..... 1l
(j-1)h

Then, changing variables from x to the local coordinate ~ according to Eqs. (9.15)
and using Eq. (9.36), we have

N·J

in which

D·J ) 1.2, .... n (9.44a, b)

Kj = :311[E/j(~)<t»I<t»"T +h2pj(~)<t»I<t»'T]d~,

Mj = h 11

mj(~)<t»<t»T d~. j = 1. 2 ..... 11

} 1.2 ....• n (9.45a)

(9.45b)

are the element stiffness matrix and element mass 'matrix, respectively.
Finally, there is the assembly process, which requires the system boundary

conditions. As an illustration, we consider a beam clamped at x = 0 and free at
x = L. In this case, the assembly process yields global stiffness and mass matrices
of the form depicted in Eqs. (9.20), except that now matrices K1 and M1 are 2 x 2
and matrices Kj and Mj are 4 x 4 (j = 2,3, ... , n).
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Example 9.3 'r

Use the finite element method to derive the global stiffness and mass matrices for a
uniform helicopter blade rotating with the constant angular velocity n.

From Example 7.4, the energy inner product has the expression
'. -

(L I [d2W(X)]2 , [dW(X)]2j
[w,w] = 10 £1 ~ + P(x) ~ dx (a)

and

j = 1,2, ... , n (e)

respectively, where, from Eqs. (9.41), the vector of interpolation functions is

q, = [3~2 _ 2~3 ~2 _ ~3 1 _ 3~2 + 2~3 - ~ + 2~2 - ~3r (f)

Inserting Eqs. (f) into Eqs. (d) and (e) and carrying out the appropriate integra-
tions, we obtain the explicit element stiffness matrices

Kj ~; [J,:J ~~g-n
+ ~mQ'Ln (:0 [1- GY] [:ym:~-~~-i]

-36 6]o -1
36 -6

2
[

36 0
j 6

30n symm
1 [72 ~~ -7~ -~;])

+ 210n2 symm 72 1~ '

j = 1,2, ... , n (g)

and element mass matrices

[

156 22
mL '4

Mj =
420n symm

54
13

156

-13].-3
-22 '

4

j = 1,2, ... , n (h)
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1

Then, recalling that we must delete the first two rows and columns from K 1 and Ml'
the global stiffness matrix has the form

24 0 -12 6 0 0 0 0 0 0
8 -6 2 0 0 0 0 0 0

I"', 24 0 -12 6 0 0 0 0
8 -6 2 0 0 0 0, EI, K= .............................

h3
24 o . -12 6

symm 8 -6 2
) 12 -6

4
72 -6 -36 3 0 0 0 0 0 0

/ 8 -3 1 0 0 0 0 0 0
72 -6 -36 3 0 0 0 0

mQ2Ln 8 -3 1 0 0 0 0
+ 60

...............................
72 -6 -36 3

symm 8 -3 1
36 -3

4

I

I

I

~

180 -15 -144 12 0 0
20 -12 4 O. 0

468 -39 -324 27
mQ2L 52 -27 9

--- ..............
n

symm

o
o
o
o

o
o
o
o

o 0
o 0
o 0
o 0

1
30n

... - .............................................
36(2n2 - 2n + 1) -3(2n2 - 2n + 1) -36 3

4(2n2 - 2n + 1) -3 1
36 -3

4

108 -6 -72 12 0 0 0 0 0 0
14 0 -2 0 0 0 0 0 0

180 -]2 -108 18 0 0 0 0
22 0 -3 0 0 0 0

36(2n - 1) -6(n - 1) -36n 6n
symm 2(4n - 1) O-n

36n -6n
2n



mL
M=

420n

and the global mass matrix is

312 0 54
8 13

312

" 608

1
+ 210n2

..144 .9 ,-72
22 _ 6

144

-15
--'-3

9
22

The Finite Element Method Chap. 9

0 0 0 0 0 0
-.,j ~

0 0 o. 0 0 0
-72 -15 0 0 0 0

6 -3 0 0 0 0
................. '.................. (i)

144 9 -72 -15
22 6 :-3

72 15
4

-13 0 0 0 0 0 0 ~
-3 0 0 0 0 0 0,

0 54 -13 0 0 0 0
8 13 -3 0 0 0 0

(j) \................................
312 0 54 -13

symm 8 13 -3
156 -22

4

9.5 VIBRATION OF MEMBRANES. TRIANGULAR ELEMENTS

The transverse vibration of membranes is described by two-dimensional boundary-
value problems, which are materially more complex than one-dimensional ones.
Indeed, as eXplained in Sec. 7.12, an important consideration in two-dimensional
problems is the shape of the boundary. In the relatively few cases in which closed-
form solutions are possible, the boundary shape dictates the choice of coordinates.
More often than not, however, the shape of the boundary places closed-form so-
lutions beyond reach, making approximate solutions a virtual necessity. It is here
that the versatility ofthe finite element method becomes evident, as it permits so-
lutions where other methods fail. In using the finite element method, the choice of
coordinates tends to fade as an issue, at least in the classical sense.

In seeking a closed-form solution, a smooth boundary can be taken as an indi-
. cation that the solution may be smooth. In contrast, in approximate solutions by the

finite element method, a smooth boundary creates a new problem in that the choice
of the finite element mesh must not only permit an accurate approximate solution
but also the perimeter. of the bounding polygon must approximate well the bound-
ary itself. Indeed, when the boundary is smooth it is generally not feasible to devise
a finite element mesh covering the domain D exactly, so that there is a difference
between D and the domain D(n) covered by the finite element mesh, where the
latter is referred to as the finite element domain. An important question relates to
the shape of the elements minimizing the difference D - D(n) between the actual
domain bounded by a smooth curve and the finite element domain bounded by a
polygon. Experience shows that triangular elements are particularly suited to the
task of filling tightly domains with smooth boundaries, thus minimizing D - D(n).

Of course, this implies the use of increasingly smaller elements as we approach the
boundary. This is demonstrated in Fig. 9.8, in which D - D(n) represents the union

~

I
I

I
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Figure 9.8 Finite element mesh for a two-dimensional domain

of the small shaded areas. It is clear that, as the immber n of elements increases, the
difference D - D(n) tends to disappear. .

The problem of approximating a domain D with a smooth boundary S by a
domain D(Il) with a polygonal boundary s(n) can be regarded as the problem of ap-
proximating S by s(n). The latter problem is very old indeed, as mathematicians in
ancient times were able to calculate 1r with a high degree of accuracy by calculating
the perimeter of a polygon with equal sides inscribed in a circle and progressively
increasing the number of sides. This purely geometric idea was given physical con-
tent by Courant (Ref. 8), who used triangular elements to produce an approximate
solution to the plane torsion problem for multiconnected domains, ,thus anticipating
the finite element method by over a decade.

Triangular elements are equally useful in cases in which the boundaries pos-
sess corners. There are cases, however, in which quadrilateral elements may prove
superior, as they are able to produce a finite element mesh with fewer elements.

Another question arising in two-dimensional problems not encountered in one-
dimensional ones relates to the choice of a numbering scheme for the elements
and the nodal points. In the one-dimensional case, the nodes are along a straight
line and the numbering of the elements and nodes progresses uninterruptedly from
one boundary point to the other. The resulting mass and stiffness matrices are
banded, which is due to the fact that the interpolation functions are nearly orthog-
onal. Whereas a similar situation exists in the case of two-dimensional problems,
the bandedness is not guaranteed. Indeed, in two-dimensional problems there is a
large variety of choices in the numbering of the elements and nodes, and the band-
width tends to differ from choice to choice. Of course, the most desirable numbering
scheme is the one minimizing the bandwidth of the mass and stiffness matrices.

The procedure for obtaining the stiffness and mass matrices for systems defined
over two-dimensional domains parallels the procedure for one-dimensional domains,
except that certain details are different. In particular, we write once again Rayleigh's
quotient in the form given by Eq. (9.2), where Nj = [w, w lJ is the element energy
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inner product and Dj (~w ,~w ) j is tlle- elem~nt ,:eighted inner product.
Then, we use [w, w]j ~nd (~w, ~ W)j to derive element stiffness and mass
matrices Kj and Mj, respectively. Fin'ally, we assemble -the element stiffness and
mass matrices to obtain global stiffness and mass matrices. Differences arise in
the determinati~n of local, natural coordinates (in the finite element sense) and in
the assembly process, both being more involved for two-dimensional problems than
for one-dimensional ,ones. Perhaps this is the time to explain a statement made
earlier in this section that the choice of coordinates is not an issue when the finite
element method is applied to two-dimensional problems. Indeed, the shape of the
boundary plays no particular role in choosing coordinates and, almost as a rule,
[w, Whand (~w, ~ w) j are expressed in terms of rectangular coordinates prior
to the transformation to natural' coordinates. This is' the case even for boundaries
with nice analytical form,.such as circular and elliptic.

Next, we consider the problem"of deriving stiffness and mass matrices for a
membrane in transverse vibration by means of the finite element method. From
Eq. (7.252), we conclude that the elements must be from xh, so that linear elements
are admissible. In fact, they are the simplest elements admissible. Linear triangular
elements have some very desirable features: One of them is that the plane

t
J

/

W(x, y), = al + azx +a3Y (9.46)

(9.47)

defining the displacement at any point x, y of the element, is determined uniquely
by the values WI, Wz and W3 of the nodal displacements, namely, the values of W at
the three vertices ofthe triangle (Fig. 9.9). Moreover, we will show that the value
of W along an element edge reduces to a linear function of a single 'variable, a local
coordinate defined uniquely by the nodal displacements of the two end points of the
edge, which implies that the nodal displacement at the third point does not affect the
value of W along the edge in question. It follows that the continuity of W across the
edge is guaranteed by continuity at the nodal points.

Figure 9.9 Planar displacement over triangular element

. Using the analogy with Eq. (9.1), and dropping the superscr,ipt (n) for simplicity,
we write t?e finite element solution in the general form '

n

w(x, y) = L ajcjJj(x, y)
j=l

where (/Jj (x, y) are trial functions. For linear elements, the trial functions have the
form of pyramid functions, such as that depicted in Fig. 9.10, and they represent the

'------------------, -.-.-.------------



two-dimensional counterpart of the roof functions of Fig. 9.2. We ,take the height
of the pyramid equal to unity, so that the coefficients Qj can be identified as the
displacement of the membrane at the nodal points .
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1

I

. .

Figure 9.10 Pyramid function

At this point, we turn our attention to the derivation of local coordinates. To
this end, we consider the triangular element shown in Fig. 9.11 and denote the vectors
from the origin 0 of the rectangular system x, y to the vertices 1,2 and 3 by r], r2

and r3, respectively. Then, letting P (x, y) be a typical point inside the triangle and
denoting the radius vector from 0 to P by r, the vectors from 1,2 and 3 to Pare
simply r - r], r - r2 and r - r3, respectively. Because the three vectors lie in the
same plane, they must satisfy the relation

'Cl (r - r]) + c2(r -,'r2) + c3(r - r3) 0 (9.48)

which can be solved for r with the result

.,-'.

where

clrl + C2r2 + C3r3
r = --------

C1 + C2 + C3

3

L~iri
i=l,

(9.49)

. ~i

3ci/LCj,
j=l

3

1,2,3, (9.50)

x

Figure 9.11 lriangular clement with vectors defining the vertices and point
P(x. y)



612 The Finite Element Method Chap. 9

Equations (9.49) and (9.50) can be written in the more explicit form

Xl~l + X2~2 + X3~3 = x

Yl~l+ Y2~2 + Y3~3 Y

~l + ~2 + ~3 1

(9.51)

Equations (9.51) represent three equations in the unknowns ~l, ~2 and ~3 and have
the solution

(9.52)

where

(9.53)

The functions ~l, ~2 and ~3 possess some very interesting and useful properties.
We observe that for x = Xl, Y = Yl Eqs. (9.52) yield ~l = 1, ~2 = ~3= 0, for
x = X2, Y = Y2 they yield ~l = 0, ~2= 1, ~3= 0, and for x = X3, Y = Y3 they give
~l = ~2 = 0, ~3= 1. It follows that the vertices (Xl, YI), (X2, Y2) and (X3, Y3) of
the triangle are defined by the triplets (1,0,0), (0,1,0) and (0,0,1), respectively.
This suggests that the functions ~i (i = 1, 2, 3) can be used as coordinates, as shown
in Fig. 9.12. Indeed, they represent the local coordinates mentioned earlier in this
section. For example, the edge 2-3 is defined as ~l = 0 and the vertex 1 as ~l =
1. A line parallel to the edge 2-3 is described by ~l = C = constant, where the
constant c is proportional to the distance between 2-3 and the line in question.

y

2
(0,1,0)

x
o

Figure 9.12 Local coordinates for triangular element

L.__
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Similar geometric interpretations can be given to ~2 and ~3' The coordinates ~I, ~2

and ~3 can be identified as the natural coordinates for the triangular element. The
natural coordinates ~I, ~2, ~3 can be given a different geometric interpretation by
observing that ~ .= 2A, where A is the area of the triangular element. Letting
Xi = X, Yi = Y (i = 1, 2, 3) in Eq. (9.53), in sequence, we obtain

(X2Y3 - X3Y2) + (X3Y - XY3) + (XY2 ..:....X2Y) = 2AI

(XY3 - X3Y) + (X3YI - XIY3) + (XlY - XYl) = 2A2

(X2Y - XY2) + (XYI - XIY) + (XJ)12 - X2YI) = 2A3

(9.54)

where Ai is the area of the triangle formed by point P (x, y) with the side opposite
to vertex i (i = 1,2,3), as shown in Fig. 9.13. Then, comparing Eqs. (9.52) and
(9.54), we conclude that

1
2A [(Y2 - Y3)X + (X3 - X2)Y + X2)!3 - X3Y2]

1
2A [(Y3 - YI)X + (Xl - X3)Y + X3YI - XIY3]

l' J

- [(VI'- V2)X + (X2 - XI)V + Xl V2 - x?vd2A -.

(9.55)

In view of Eqs. (9.55), ~I, ~2 and ~3 are also called area coordinates.

3

y

1

2

x
o

Figure 9.13 Area coordinates for triangular element

By analogy with the linear interpolation functions for one-dimensional do-
mains, the natural coordinates ~I, ~2, ~3can be used as linear elements for our mem-
brane, the lowest-degree polynomials admissible. Letting

i = 1,2,3 (9.56)

___ ~ __ ~!!!!!!!!!!!!!!!~~----~ ~. ~J
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Figure 9.14 Linear interpolation functions for triangular element

and referring to Fig. 9.12, we can depict 4>1, 4>2 and 4>3' as the pyramid sections shown
in Figs. 9.14a, band c, respectively, so that they really represent linear interpolation
functions for the triangular element. The analogy can be extended by representing
the displacement at any point ~1, ~2, ~3 inside the triangle as a linear combination
of the interpolation functions 4>1 , 4>2 and 4>3 multiplied by the nodal displacements
W1, W2 and W3, respectively, or

<l>Tw (9.57)

where <I> = [~1 ~2 ~3f and w = [W1 W2 w3f· The function W(~l, ~2, ~3) is dis-
played in Fig. 9.15. Regarding Fig. 9.15 as representing the displacement over a
given element Dj, the displacement of the whole membrane can be expressed in the
form

(9.58)

Figure 9.15 Membrane displacement in terms of linear interpolation functions

~--- ._-~ --
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(9.59)

where Wj is the nodal vector corresponding to the jth finite element. Hence, by
analogy with the piecewise linear string displacement profile of Fig. 9.1, the displace-
ment of the membrane consists of a surface made up of flat triangular surfaces joined
along the edges. Moreover, the components of the nodal vectors Wj represent the
actual displacements of the membrane at the nodal points in question. It should be
remarked here that this solution of the membrane vibration problem is similar to
Courant's solution of the plane torsion problem (Ref. 8).

As suggested earlier in this section, we can write the energy inner product in
the form

n

[w, w] = I)w, w]j
j=l

where, using results from Sec. 7.12 and assuming that the tension T is constant,

(9.60)

..
in which Aj is the area of the jth element. Moreover, for constant mass density p,
the weighted inner product can be written as

where

n

(yr,nw, yr,nw) = L (yr,nw, yr,nw)j
j=l

(9.61)

(9.62)

To evaluate the integrals in Eqs.(9.60) and (9.62), it is necessary to carry out a
transformation from rectangular coordinates to natural coordinates. Hence, using
Eqs. (9.55) and (9.58), we can write

aw
ax

aw
ay
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so that, introducing Eqs. (9.63) into Eq. (9.60), we obtain'

. , [w, w]j = wJ K(j)wj .

where

(9.64)

(9.65)

(9.67)

(9.66)

4:; if {IE ::E] [Ear + [;; :: ;:J[;; ::;:ndAj

T [(Y2 - Y3)2 + (X3 - X2)2 (Y2 - Y3) (Y3 - Yl) + (X3 - X2) (Xl - X3)
= -. (Y3 - Yl)2 + (Xl - X3)2

4Aj symm

(Y2 -.,. Y3) (Yl - Y2). + (X3 - X2) (X2 - Xl.)]
(Y3 - Yl)(Yl - Y2) + (Xl - X3)(X2 - Xl)

(Yl - Y2)2 + (X2 - Xl)2..
is the element stiffness matrix,' and we note that the integral was trivially evaluated
because the integrand did not depend on the natural coordinates. On the other hand,
the integral iii the element mass matrix does involve the natural coordinates, and its
evaluation can be rendered routine by means of the formula (Ref. 11)

1m n p m!n!p!dA- - . 2A-
A ~l ~2 ~3 } - (m + n + p + 2)! }

J

Inserting Eq. (9.58) into Eq. (9.62), we have

(,Jrnw, ,Jrnw)j = wJM(j)wj

where M(j) is the element mass matrix, which, upon using Eq. (9.66), can be written
in the explicit form

(9.68)

L

The general ideas behind the assembly process for two-dimensional domains
are essentially the same as for one-dimensional domains, but the details are more
involved, which can be attributed to the fact that there is no longer a simple corre-
spondence between the node number and element number. To introduce the ideas,
we consider part of a uniform membrane consisting of four triangular elements, as
shown in Fig. 9.16, in which the encircled numbers represent the element number,
the outside numbers the global node number and the smaller size inside numbers the
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local node numbers for each element. The membrane is free on all sides. Inserting
the coordinates corresponding to the local node numbers into Eq. (9.65), we obtain
two types of element stiffness matrices, as follows:

T [ _:
-1 -:].K(j) = 2 } 1,3

2 0 -1

T [ 1
0 -1 ]

(9.69)

K(j) = - 0 1 -1 , j = 2,4
2 -1 -1 2

where we note that, to make the assembly process easier to implement, we identify
the element number by a superscript. On the other hand, letting Aj = h2/2 in
Eq. (9.68), we obtain the element mass matrices

M(j) ='mh2[i ~ ~],
24 1 1 2

Because the motion of the membrane is defined by the global nodal displacements
and the entries of the element stiffness and mass matrices correspond to local nodal
displacements, it is necessary to develop a scheme for placing the element entries in
the proper position in the global matrices. To this end, we define the connectivity
array C = [Cjk], where the subscript j identifies the element number and the sub-
script k the global node numbers listed in the order specified by the local nodes. The
connectivity array for the system of Fig. 9.16 is simply

j = 1,2,3,4 (9.70)

C (9.71 )

o
k(3)

23

k(3) + k(4)
33 22

o
k(3) + k(4)

13 12

k(4)
23 .oo

o

symm

As an illustration of the use of the connectivity array, we construct the 6 x 6 global
stiffness matrix for the system of Fig. 9.16. The first row in C represents the first

.•. (l) (J) k(l) III (I) (I)
element and It Instructs us to place the entnes kll ' k12, 13' k22 ' k23 and k33 of
the element stiffness matrix K(1) in the positions (1. 1). (1.4), 0,5), (4.4), (4,5)
and (5, 5) of the global stiffness matrix K. Of course, placement of the symmetric
entries is implied. Repeating the process for the remaining three rows of C, we
obtain the global stiffness matrix

k(J) + k(2) e2)
II 1I J3

k(2) + k(3) + k(4)
33 11 II

K

___ ~ ~_""""'!!!'!' ..~.."'!'!'!!'!"",~.~••. - •. _ ---d
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2 -1 0
4 -1

2
symm

-1 0 0
O. -2 0
o 0-1
2 -1. 0

4 . -1 '
2
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(9.72)

The same process applies to the construction of the global mass matrix.
I ,

l' ...

12 1
3

Figure 9.16 Four triangular elements with numbering scheme

The generation of the finite element mesh amounts to dividing the domain D
into triangular domains Dj in such a way that no vertex of one triangle lies on the
edge of another triangle. It is common practice to begin with a coarse mesh and refine
the mesh so as to improve the accuracy of the eigensolutions. A mesh refinement
guaranteeing that no vertex of one triangle lies on the edge of another consists of
dividing each triangle into four similar triangles obtained by joining the midpoints
of the edges .. With each refinement of the mesh, a check verifying that a reduction
in h leads indeed to a suitable reduction in the approximate eigenvalues is highly
,desirable.

As an alternative to refining the finite element mesh, the accuracy can be im-
proved by refining the elements. This implies higher-degree polynomials, such as
quadratic, cubic, etc. The various polynomials can be arranged in the so-called Pas-
cal's triangle displayed in Fig. 9.17. Of course, the top two rows represent the linear
polynomial, the top three the quadratic, etc. We consider first the quadratic elements

(9.73)

Because there are now six coefficients, we need six nodes. We choose three nodes
at the vertices of the triangle and three at the midpoints of the edges, as shown in
Fig. 9.18.

~-- - -.._----- ._-~-" ....--.- ------.--- - >----------
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constant '.
x y linear 3 terms

x2 xy J quadratic 6 terms

x3 x2v xi
I y3 cubic 10 terms

I

x4 x3y x2J xi i quartic 15 terms

Figure 9.17 Pascal's triangle

619

As in the case of linear elements, it is con,venient to use local, natural coordi-
nates in the form of the area coordinates ~1, ~2, ~3, instead of global rectangular co-
ordinates. Recalling that. the natural coordinates satisfy the relation ~1 +~2 +~3 = 1,
only two of the coordinates should be regarded as independent. It does not matter
which of the three coordinates are chosen as the independent ones, as the final result
is the same. Hence, we choose ~] and ~2 as the independent coordinates and express
the interpolation functions in the form

1,2, ... ,6

(9.74)

where the dependence on ~3 is only implicit. Equations (9.74) require six conditions
on each interpolation function, which can be generated by considering the six nodes
shown in Fig. 9.18 and insisting that each <Pi be equal to 1 at node i and equal to zero
at the remaining five nodes. Then, if we denote the values 9f ~] and ~2 at the node k
by ~],k and ~2.k, respectively, we can extend the procedure given by Eqs. (9.11 )-(9.14)
to the case of two variables and write

1 1 0 1 0 0

[ : .::: .::.: .: ~::. :::::: .:f.:] 1 0 1 0 0 1
A

1 0 0 0 0 0
= 1 1/2 1/2 1/4 1/4 1/4

1 ~),6 ~2,6 ~l,6 ~),6~2.6 ~i.6 1 0 1/2 0 0 1/4
1 1/2 0 1/4 0 0

(9.75)

y

o

4
] ]

(2' 2' 0)

2
(0, 1,0)

x

Figure 9.18, Triangular element with six nodes
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so that

0 0 1 0 0 0
-1 0 -3 0 0 4

[C1C2 ... C6] = A-I 0 -1 -3 0 4 0 (9.76)= 2 0 2 0 0 -4
0 0 4 4 -4 -4
0 2 2 0 -4 0

Inserting the elements in the columns of Eq. (9.76) into Eqs. (9.74) and recalling that
~1+ ~2+ ~3 = 1, we obtain the interpolation functions

¢1 = -~1 + 2~l= ~1(2~1 - 1)

¢2 = -~2 + 2~i= ~2(2~2 - 1)

¢3 1 - 3~1 - 3~2 + 2~l+ 4~1~2+ 2~i= ~3(2~3 - 1)

¢4 = 4~1~2

¢s = 4~2 - 4~1~2- 4M = 4~2~3

¢6= 4~l - 4~l - 4~1~2 = 4~1~3

(9.77)

The functions ¢l and ¢4 are displayed in Figs. 9.19a and 9.19b, respectively. The
functions ¢2 and ¢3 are similar to ¢1, except that the unit displacement is at the
nodes 2 and 3, respectively, and the same statement can be made concerning the
similarity between the functions ¢s and ¢6 and the function ¢4'

3 5

1~./ /,{jJM--'
1 1

2

(a) (b)

Figure 9.19 Quadratic interpolation functions

Cubic elements have the form

¢i(~l, ~2,~3) = ci1 + Ci2~1 + Ci3~2 + Ci4M + CiS~l~2+ Ci6~i + Ci7~1

+ Ci8~l~2 + Ci9~lM + cilo~i, i = 1,2, ... ,10 (9.78)

so that the triangular element must have ten nodes. An element satisfying this
requirement is depicted in Fig. 9.20. Using the same process as for quadratic elements,
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the interpolation functions can be shown to be (Prob. 9.17)

1
4>i 2~i(3~i - 1)(3~i - 2), i = 1, 2, 3

9 9 9
4>4= -~2~1 (3~1 - 1), 4>5= -~1~2(3~2 - 1), 4>6 -~3~2(3~2 - 1)

2 2 2

9 9 9
4>7 -~2~3(3~3 - 1), _ 4>8,= 2~1~3(3~3 - 1), 4>9= -~3~1 (3~1 - 1)

2 2

4>10= 27~1~2~3
(9.79)

3

Figure 9.20 Triangular element with ten nodes

2

Example 9.4

Derive the global stiffness and mass matrices for a 2h x 3h rectangular membrane. The
membrane is free on all sides.

We divide the membrane into 12 triangular elements, as shown in Fig. 9.21, and
note that the membrane of Fig. 9.16 represents a mere one third of that of Fig. 9.21.
In fact, the numbering of the elements, global and local nodes in Fig. 9.21 is entirely
consistent with that of Fig. 9.16. It can be verified that the element stiffness matrices
are still of two types, as in Eqs. (9.69), or

T [ 1 -1 0]K (j) = - -1 2 -1 ,
2 ° -1 1

j odd, K(j) = !.... [~ ~ =i],
2 -1 -1 2

j even

(a)

Moreover, from Eqs. (9.70), the element stiffness matrices are

mh2 [2 1 ilM(j) = - 1 2 j 1,2'00.,12
24 1 1

From Fig. 9.21, the connectivity array is

C = [~
1 2 2 4 4 5 5 7 7 8 8]'5 5 6 7 8 8 9 10 11 11 12
2 6 3 8 5 9 6 11 8 12 9

(b)

(c)
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Figure 9.21 Membrane with 12 triangular elements

Chap. 9

where the elements of K and M not listed are all zero. It is easy to verify that the stiffness
matrix is singular, which is consistent with the fact that all sides of the membrane are
free.

L ~
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3
(1,1)

~
0

(1, -1)
2

Figure 9.22 Rectangular element with natural coordinates

Both K and M are banded with half-bandwidth equal to three and four, re-
spectively. For banded matrices, it is more efficient to list the entries by the nonzero
diagonals.

9.6 RECTANGULAR ELEMENTS

When the membr~ne boundary possesses corners, quadrilateral elements may be
able to yield a more economical finite element mesh. In this section, we consider
the simplest quadrilateral elements, namely, rectang'lliarelements. Figure 9.22 shows
a typical rectangular element together with the corresponding natural coordinates
~, rJ. Regarding the four corners as nodal points, the lowest-degree polynomials
admissible are the bilinear, given by

i = 1,2,3,4 (9.80)

Hence, following the standard procedure, we obtain the bilinear interpolation func-
tions (Problem 9.19)·

1·
cPl 4 (1 - ~) (1 rJ) ,

1
cP3 = 4(1 + ~)(1 + rJ),

1
cP2 = 4(1 + ~)(1- rJ)

1
cP4 4(1 - ~)(1 + rJ)

(9.81)

The function cPl is shown in Fig. 9.23. The other three functions are relatively easy
to visualize.

1L
1

2

3

Figure 9.23 Bilinear interpolation function for rectangular element
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6 9 12

T 4 3 4 3 4 3

h CD CD @t 2 ~

52\ 1 82\ 1
2 11

3 4 3 4 3

h CD CD CD
1 2 1 2 1 2 x-

1 4 7 10

I-- h ---I- h ~ h.---1

Figure 9.24 Membrane with six rectangular elements .,

Next, we derive the stiffness and mass matrices for the membrane of Example
9.4 by means of the bilinear elements. ,We begin with the derivation of the element
stiffness and mass matrices. To 'this end, we express the displacement of the mem-
brane at any point of the rectangle in the form -'.

w(~, T]) = <l>Twi (9.82),
where <I> = [(1)14>2 4>3 4>4f is a four-dimensional vector of interpolation functions
and wi = [Wl W2 W3 w4f is the corresponding nodal vector for element j. We
recall from Sec. 9.5 that the stiffness matrix involves the terms ow/oxand ow/oy.
Because w is in terms of the natural coordinates ~, T], we must first write the relations
between the rectangular coordinates x, y and the local, natural coordinates ~, T] for
each element. From Fig. 9.24, we have simply

h h .
x 2(j + ~), y = 2(1 + T]), ] 1,3,5

h , h
(9.83)

x= 2(j - 1 + ~), y = 2(3 + T]), j = 2, 4; 6

L.

Hence, using Eqs. (9.81)-(9.83), we can write

ow o~ ow 2o<l>T
- - -- - ---W·
oX - ox o~ - h o~ J

, 1
2h [-(1 - T]) 1 - T] 1 + T] - (1 + T])f wi

ow OT]OW 2o<l>T
---W·

oy oy OT] h OT] J

(9.84a)
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1 ' T
= 2h' [-(1 -~) - (1 +~) 1 + ~ 1 -~] Wj
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(9.84b)

Introducing Eqs. (9.84) into Eq. (9.60) and recalling Eq. (9.64), we obtain the element
stiffness matrices

T { (a~ a~T a~ a~T)
= 4h2 JA

j
[Jf[Jf + a;; dTJ dAj

1 I {'[-(l-TJ
)][_(1-TJ)]TTf f 1-TJ 1-TJ

16 -I -1 1 + TJ 1 + TJ
-(1 + TJ) -(1 + TJ)

[
-(1 - ~)] [-(1 - ~)]T }

+ -(1,+~) -(1 +~) d~d
1+~ 1+~ TJ
1-~ 1-~

T [4 -~ =i
6 symm 4

-1]-2
-1

4

(9.85)

Moreover. inserting Eqs. (9.81)-(9.83) into Eq. (9.62) and recalling Eq. (9.67), we
obtain the element mass matrix

M(j) = P { ~~TdAj
Aj

ph~ flfl [ii ~~~g= ~~] [g ~~;g= ~~]T
= 64 -I -1. (1 + ~)(,1+ TJ) (1 + ~)(1 + I}) d~ dTJ
" (l - ~)(1.+ TJ) (1 - ~)(1 + TJ)

ph2 [4 ~ .~ i] , (9.86)
36 symm 4 ~ .

The assembly process is the same as that for triangular elements described in
Sec. 9.5. Hence, using the numbering scheme of Fig. 9.24, we obtain the connectivity
array

c= [~ ; ~
568
2 3 '5

5 7 8]8 10 11
9 11"12
6 8 9

(9.87)



Comparing the stiffness matrix computed in Example 9.4 by means of triangular
elements, Eq. (d), with that computed here using rectangular elements, Eq. (9.88),
we conclude tha"tthe first has half-bandwidth equal to three and the second has half-
bandwidth equal to four. Balancing this relatively minor disadvantage is the fact that
the latter matrix was easier to compute. The mass matrices in both cases have half-
bandwidth equal to four and the amount of work required for deriving the matrices
is about the same.

Quadratic rectangular elements are given by

i = 1,2, ... , 9 (9.90)

so that they require nine nodes. A rectangular element satisfying this requirement is
shown in Fig. 9.25. Hence, following the usual approach, the quadratic interpolation

L-.__ , _
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TJ

4 7 3
(-1,1) (U, 1) (1,1)

8 6 ~
(-1,0) 9 (0,0) (1,0)

(-1,-1) (0, -1) (1, -1)
1 5 2

Figure 9.25 Rectangular element with nine nodes
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1 ..,
-(1 - l;~)(1 - ."l.2 .
1 ..,
-(1 - ;-~)(1+ 1]).
2

functions can be shown to have the form

1 1
1>1 4~1](1 - ~)(l - 1]). 1>2 -4~1](1 + ~)(1 - 1])

1
1>~

1
1>3 -~1](1 + ~)(1 + 1]). -4~1](1 - ~)(1 + 1])

4

1>5
1 .., 1 .., (9.91)--1](1 - ;-~)(1 - 1]) 1>(i 2~(1 + ~)(1 - 1]~)2 .

1>7
1 .., 1 2

= 21](1 - ~~)(1 + .,,). 1>8 --~(1 - ';)(1 - ." )
2

1>9 (1 - ~2)(1 _ .,,2)

The quadratic interpolation functions 1>1, 1>5 and 1>9 are shown in Figs. 9.26a,b and
c, respectively.

The quadratic interpolation functions given by Eqs. (9.91) are characterized by
eight external nodes and one internal node. Because internal nodes do not cQntribute
to the interelement connectivity, their usefulness has come into question. A family
of rectangular elements known as serendipity elements contains only external nodes
(Ref. 9). Of course, the four-node element was already examined earlier in this
section. The eight-node element is obtained by simply omitting the ninth node from
Fig. 9.25 and the last term in Eq. (9.90). Following the same pf()Cedure as above, we
obtain the interpolation functions .

1 1- 4 (1 - l;)( 1 - 1]) (l + ~+ .,,). 1>2 - 4 (1 + ~)(1 - 1]) (l - l; + 7])

1 1
-4(1 + 0(1 + .,,)(1 - ~ - 'I). 1>4= -4(1 - ~)(1 + .,,)(1+ l; - 'I)

(9.92)
1 . ..,2 (1 + ;-)(1 - .,,~)

1 ..,
- (1 - l;) (1 - Yl~)2 . '/

_----o1l -_----_-----~
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r ¢Jl

4

2
(a)

4

7

6

3

1

1

2

(b)

2

(c)

3

3

,
I

L-..

Figure 9.26 Quadratic interpolation functions for rectangular elements

Figures 9.27a and 9.27b show the eight-node interpolation functions ¢1 and ¢s, re-
spectively.

Comparing Figs. 9.26 a and 9.27a, we conclude that there is not much difference
between the functionS ¢1 with eight nodes and nine nodes. On the other hand, from
Figs. 9.26b and 9.27b, we see that there is significant difference between the functions
¢s with eight nodes and nine nodes.
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4

2

(a)

4

2

(b)

Figure 9.27 Eight-node interpolation functions for rectangular elements

3

3
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9.7 ISOPARAMETRlC ELEMENTS

At times, the shape of the membrane boundary requires more versatile elements,
such as general quadrilateral elements and elements with curved boundaries. Yet, it
is difficult to forsake triangular and rectangular elements with their many advantages.
Fortunately, it is not necessary to abandon them due to some ingenuous coordinate
transformations introduced by Taig (Ref. 24) and generalized by Irons and Ergatoudis
et al. (Refs. 12 and 9, respectively).

The coordinate transformation

x = x(~. 1]), y = y(~. 1]) (9.93)

represents a mapping of the points (~. I}) in the ~, 1]-plane onto points (x. y) in the
x. y-plane. In particular, the objective is to use a coordinate transformation capable
of straightening out curved elements. Figure 9.28a shows a rectangular element in the
~,. 1]-plane and Fig. 9.28b shows a curved element in the x, y-plane. We refer to the

.element in the ~, 1]-plane as the master element and to the element in the x, y-plane
as an isoparametric element. Because in the finite element method displacements are
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(1, 1)

(-1,1)

(-1, -1)

'1
(1,1)

4 3
d-
~

0

1 2 -

(a)

o

(b)

Figure 9.28 (a) Master element (b) Isoparametric element

approximated by piecewise polynomials, there are reasons to believe that piecewise
polynomials can also be used for mapping one element onto another. We assume
that the finite element approximation of the displacement w over a given element
with n nodes has the form

w(~, 17)
n

I>l>i(~' 17)Wi
i=l

(9.94)

where <I> is an n-vector of interpolation functions and w an n-vector of nodal dis-
placements. Moreover, we assume that the mapping of (~, rJ) onto (x, y) is given
by

x
n

L:>i¢i(X, rJ)
i=l

n

LYi¢i(~' rJ)
i=l .

<l>T (~, rJ)Y (9.95)

I
L

in which x = [Xl X2 xnf and Y =' [Yl Y2 ... Ynf are n-vectors with entries
equal to the x-and y-components, respectively, of the nodal points (Xi, Yi). Equa-
tions (9.95) are said to represent an isoparametric mapping. If the dimension of <I> in
Eq. (9.95) is lower, or higher, than the dimension of <I> in Eq. (9.94), the transforma-
tion is said to be subparametric, or superparametric, respectively. We are concerned
only with isoparametric transformations.

Next, we consider the problem of deriving the stiffness and mass matrices for
isoparametric elements. As in the case of rectangular elements, the element stiffness
matrix requires the transformation from rectangular coordinates to natural coordi-
nates. In particular, we recall from Sec. 9.6 that the stiffness matrix involves the
partial derivatives owlox and owloy, as well as the differential element of area
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dx dy. Hence, for the general transformation described by Eqs. (9.93), we can write

ax axdx = -de + -dT]a~" aT] ,
ay ay

dy = -d~ + -dT]a~ aT].
(9.96)

Equations (9.96) can be rewritten in the matrix form

where

(9.97)

(9.98)

represents the Jacobian matrix. Then, the differential element of area can be shown
to transform according to (Ref. 22)

in which

dx dy = 111 d~ dT]

ax ay ax ay
IJI = -- - --a~ aT] aT] a~

(9.99)

(9.100)

is the Jacobian determinant, or simply the Jacobian of the transformation. The inverse
of the transformation (9.93) has the form

~ = ~(x, y), T] = T](x, y) (9.101)

so that we can write

where

(9.102)

]=[a~/ax aT]lax]
'a~/ay aT]lay

Comparing Eqs. (9.97) and (9.102), we conclude that

(9.103)

[a~/ax aT]lax] _ J-I
a~/ay aT]lay - (9.104)

Next we consider
aw a~ aw aT]aw aw a~ aw aT]aw- = --+ --, - = -- + -- (9.105)ax ax a~ ax aT] ay ay a~ ay ay

in which a~/ax, a~/ay, aT]laX and aT]lay can be obtained from Eq. (9.104). Equa-
tions (9.105) in conjunction with Eq. (9.104) can be arranged in the matrix form

[awlaX] = [a~/ax aT]lax] [atiJla~]
awlay a~/ay aT]lay awlaT]

1 [ aylaT] -aYla~] [awla~]
= m -axlaT] axla~ awlaT] (9.106)

_____________________ !"'!"""'u••••.. -' "!!. !'".'.• "!!. ""!'!.!!!!!'"',.- .. ""'!"""'--~~~-------~
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At this point, we are ready to write expressions for the isoparameteric element
stiffness and mass matrices. To this end, we assume that Fig. 9.28 represents the
transformation between the master element and a typical isoparametric element j,
insert Eqs. (9.99) and (9.106) into Eq. (9.60), consider Eq. (9.94) with w replaced by
Wj, as well as Eqs. (9.95) with x and Yreplaced bY,xj an~ Yj ,respectively, and obtain

{ [aWjax]T [aWjax][w, w]j = T JA awjay awjay dxdy
J

[

aW]T [(aX)2 (a
y
)2

1 1 1 a[ a'YJ + a'YJ
~ i1 i1 IIlj aw _ (ax ax ayay)'

a'YJ a~ a'YJ + a~ a'YJ

_ (ax ax + ay a
y
)] [aw ]a~ a'YJ a~ a'YJ a~

(
ax)2 (ay)2 aw d~ d'YJ

a~ + a~ a'YJ
(9.107)

where

K(J) = T 1111
_1 [a<l>

-1.-1 II Ij a~
(9.108)

is the isoparametric element stiffness matrix, in which, from Eq. (9.100),

and

(9.109)

B
[

T a<l>a<l>T T a<l>a <I> T
Xj a;J --a;]Xj + Yj a;J a;J Yj

symm

I
I

"'--

Moreover, introducing Eqs. (9.94) and (9.99) into Eq. (9.62), we can write
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where

633

(9.112)

is the isoparametric element mass matrix.
The simplest and most common isoparametric transformation is that in which

the.interpolation functions are bilinear and the rectangular element in the ~, 1]-plane
has four nodes. In this case, from Eqs. (9.81), the vector of interpolation functions is
simply .1 •. , -

.<1> = 4 [(1 - ~)(l - 1]) (1'+ ~)(1 -,1]) (1 + ~)(1' + 1])'(1 - ~)(1 + 1])f
. (9.113)

. Of course, the vectors Xj and Yj in Eqs. (9.109). and (9.110) an; four-dimensional.
From Eq. (9.113), we write

[
-0-1])]

0<1> 1 1 - 1]

[if = 4 . 1 +'1] .'

-(1 + 1])
[

-(1 - 0]
0<1> = ( ~(l +.' 0
01] 4 1 + ~ .

1 - ~

(9.114)

so that the Jacobian determinant, Eq. (9.109), can be written in the explicit form
I

Similarly, we can write

~(1 - 1]) -(~ - 1])

o 1 + ~
symm 0

-(1 - ~)] [YI]-(~ + 1]) Y2
1 + 1] Y3

o Y4 j

(9.115)

1

16

(1 - 1])2 -(1 - 1])2

(1 - 1])2

symm

-(1 - 1]2)

1 - 1]2

, (l + 1])2

1 - 1]2

-(1 - 1]2)

--":(1 + 1])2

(1 + 1])2

(9.116a)

0<1> 0<1>1'
---o~ 01]

(l - ~)(l -1])

1 (1 +0(1-1])
16 -(1+~)(1-1])

-(1 - ~)(l -1])

-(1-~)(1-.1])
-(1+~)(1~1])

(1+~)(1-1])

(1 - ~)(1 - 17)

-(1--'-~)O + 1])

-(1 +~)(1+1])

(1+~)(1+1])

(l - ~)(l + 1])

(1- ~)(l + 1])

(1 + ~)(1 + 1])

-(l+~)(1+1])

-(1 - ~)(l + 1])

(9.1l6b)

.'
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1
=

16

(1 - ~)2 1 _ ~2

(1 + ~)2

symm

-(1_ ~2)

-(1 + ~)2

(1 + ~)2

-(1 _ ~)2

-(1 _ ~2)

1 _ ~2

(1 _ ~)2

(9.116c)

The element stiffness matrix is obtained by inserting Eq. (9.110) in conjunction with
Eqs. (9.116), as well as Eqs. (9.114) and (9.115), into Eq. (9.108) and carrying out
the necessary integrations for given vectors Xj and Yj of global nodal positions.
Similarly, the element mass matrix is obtained by inserting Eqs. (9.113) and (9.115)
into Eq. (9.112) and performing the indicated integrations. The nature of the integrals
in Eqs. (9.108) and (9.112) dictates that the integrations be carried out numerically,
which is consistent with the idea of assigning as much of the routine work as possible
to the computer.

The assembly process is similar to the one described in Sec. 9.5. The element
stiffness and mass matrices are 4 x 4 and require the global nodal positions. Then, the
global stiffness and mass matrices are assembled through the use of a connectivity
array, as in Sec. ~.5. As an illustration, we consider the quadrilateral membrane
shown in Fig. 9.29. The numbering scheme is as for the rectangular membrane of
Fig. 9.24, so that the connectivity array remains in the form of Eq. (9.87). On the
other hand, the nodal positions are different and are given in Table 9.3

y

12
3 (5.4,6)

2
10 (6,1.5)

x

Figure 9.29 Quadrilateral membrane
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If a given element has a curved edge, then the isoparameteric transformation
must involve higher-degree interpolation functions, which complicates matters ap-
preciably. For a discussion of this subject, see Ref. 22 (p. 158).

TABLE 9.3 Nodal Position Vectors

~
1 2 3 4 5 6

1 0 -0.6 2 1.5 4 3.6
2 2 1.5 4 3.6 6 5.7

x·J 3 1.5 1 3.6 3.2 5.7 5.4
4 -0.6 -1.2 1.5 1 3.6 3.2

1 0 1.5 0.5 2.25 1 3
2 0.5 2.25 1 3 1.5 3.75

Yj
3 2.25 4 3 5 3.75 6
4 1.5 3 2.25 4 3 5

9.8 VIBRATION OF PLATES

As can be concluded from Sec. 7.13, plates are significantly more complex than mem-
branes, and the same can be said about finite element solutions to plate problems
versus membrane problems. The difficulties can be traced to the fact that the stiff-
ness operator L is the fourth-order biharmonic operator V4 for plates and only
the second-order Laplacian operator V2 for membranes. Hence, whereas for mem-
branes the continuity conditions between elements are imposed on the displacement
w alone, for plates the continuity conditions are imposed on the displacement and
its derivatives. Usually three continuity conditions, one concerning the displacement
and two concerning rotations about two orthogonal axes, must be satisfied at each
node. If complete intereIcment slope continuity is imposed, the derivation of inter-
polation functions becomes an intimidating task. The task is significantly simpler
if one insists only on interelement displacement continuity and slope continuity at
nodes alone, which gives rise to so-called nonconforming elements. Continuity at
interface points can be restored by introducing new interpolation functions, thus
obtaining conforming elements, but accuracy tends to suffer (Ref. 28, p. 227).

The process of deriving element stiffness and mass matrices involves the choice
of finite elements. We begin with rectangular elements, which are the simplest for
plate vibration. To this end, we consider the master element of Fig. 9.30, characterized
by three aegrees of freedom at each node, one translation and two rotations. Hence,
the element nodal displacement vector is twelve-dimensional, having the form

The relation between the translation and rotations in terms of natural coordinates is
simply

e~ = ow /017,

(9.117)

(9.118)



636 The Finite Element Method

. '1

o

Chap. 9

Figure 9.30 Rectangular element with three degrees of freedom at each node

The derivation of the interpolation functions follows the usual procedure, but the
details are different. Because there are twelve degrees of freedom, the polynomials
must contain twelve constants. A complete fourth-order polynomials has fourteen
terms that together with a constant term makes fifteen terms. Hence, certain terms
must be omitted. A good choice for the interpolation functions is (Ref. 28)

<Pi(~, 17) = Cil + Ci2~ + ci317 + Ci4~2 + Ci5~17 + Ci6172 + Ci7~3 + 'Ci8~217

+ Ci9~172 + CilO17
3 + Cill~317 + Ci12~173, i = 1,2, ... , 12

(9.119)

This polynomial has the advantage that along any line·~ = constant or 17 = constant,
such as the element boundaries, it reduces to a cubic containing four constants. But,
a cubic is defined unjquely by four constants, so that the displacements and slopes
at the two ends .of an element boundary define the displacement along this bound-
ary uniquely. Because the nodal displacements and slopes are shared by adjacent
elements, displacement continuity is ensured at all interface points. This does not
guarantee continuity of the slope in the direction normal to the boundary, so that this
is a nonconforming element (Ref. 28): As usual, we assume that the displacement at
any point of the master element is given by

1 r l~

w(~, 17) = <!IT w (9.120)
• f ! I ,

where <!l = [<PI <P2 ... <P12f is a vector of interpolation functions, whose compo-
nents are given by Eqs. (9.119). The coefficients Cil, Ci2, ... , Cm in Eqs. (9.119) can
be obtained by modifying the approach used in Sec. 9.5 for,membranes so as to take
into account Eqs. (9.118). Consistent with this, we write

(9.121)

Il.....- . _



-, Sec. 9.8 Vibration of Plates 637

in which[q, 17k ~1 ~k 17k 17Z ~3 ~l17k ~k 17Z 17t ~3 ~,"l]k k 17k

Ak = 0 0 0 ~k 217k 0 ~1 2~k 17k 317Z ~3 3~k 17Z 'k

o -1 0 -2~k' -TJk 0 -3~1 -2~kTJk -17Z 0 -3~lTJk _TJ3k

; k = 1, 2, 3,4 (9.122)
, .

The terms ~k and 17k (k = 1. 2. 3. 4) in Eqs. (9.122) represent the natural coordinates
of the nodal points, or

~l = TJl = -1, ~2 = 1: TJ2 = -1, ~3 ="73 = 1, ~4 = -1, '74 = 1
(9.123)

. Hence, inserting Eqs. (9.123) into Eqs. (9.122) and the result into Eq. (9.121), we
have

1 -1 -1 1 ] 1 -] -1 -1 -1 1 ]

0 0 ' ] o , -1 . -2 0 1 2 3 :-] -3

0 -] 0 2 ] 0 -3 -2 -1 0 3 ]

1 1 -I 1 -] 1 1 -1 1 -1 -1 -1
0 0 1 0 1 -2 0 1 -2 3 ] 3

A,,=
0 -1 0 -2 1 0 -3 2 -1 0 3 1

1
,: f" ] 1 1 J ] 1 ] 1 1 1 1

0 0 1 0 ] 2 0 1 2 3 1 3

0 -] 0 -2 -1 0 -3. -2 -;1 0 -3 -]
1 -1 ] 1 -1 1 -1 1 -1 ] -1 -]
o . 0 1 0 -] 2 0 1 -2 3 -1 -3
'0 -} 0 2

..
-1 O' -3 2 -] 0 -3 -1

(9.124)

which has the inverse
, ' l' ...2, 2 1 -1 2 1 -1 . 1 2 -1 -]

-3 -1 1 3 1 1 3 -1 ] -3 1 1

-3 -1 1 -3 -] -1 I 3 -1 1 3 -1 -1

0 0 1 0 0 0 0 0 -1 0 0 1

4 1 -1 ,;:-4 -] -1 .4 -1 ] -4 1 1, .

A~l. =
1 0 -] 0 0 -1 0 0 1 0 0 I 0
- 0 0 1 08 1 0 -1 -1 '-] -1 -] -1

0 0 -1 0 0 ] 0 0 -1 0 0 1

0 1 0 0 -1 0 0 1 0 0 -1 0
. 1. 1 0 1 1 0 -1 1 0 .-1 1 0
-1 0 1 1 0 1 -1 0 -1 ] 0 -1

-1 -1 0 1·· 1 0 -1 1 0 1 -1 0
(9.125)
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Inserting the columns of A -1 into Eqs. (9.119), we obtain the interpolation functions

4>1 = ~ (2 - 3~ - 31J + 4~1J + ~3 + 1J3 - ~31J _~1J3)8 .

4>2 = ~(1 - ~ - 1J + ~1) - 1J2 + ~1}2 + 1}3 - ~1}3)
8

4>3 = -~ (1 - ~ - 1) - ~2 + ~1} + ~3 + ~21J - ~31})
8

••••••••••••••••••••• •••••••••••••••••. 0 •••••••••••••

(9.126)

Next we address the task of deriving the element stiffness and mass matrices.
To this end, we consider Eqs. (7.316) and (7.318) and write the element energy inner
product

x,yinDj (9.127)

where DE is the plate flexural rigidity, Eq. (7.317), and the weighted inner product

x,yinDj (9.128)

To transform the integrals to ones in terms of natural coordinates, we refer to Fig. 9.31
and write the relations

x = Xj + a~, y = yj + bl} (9.129)

Then, following the usual procedure, we obtain the element stiffness matrix

(9.130)

in which D Ej is the flexural rigidity for element j, and the element mass matrix

1..... ..

(9.131)
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Figure 9.31 Global and local coordinates for a rectangular element

where mj is the mass density for element j. The element stiffness and mass matrices
are obtained by introducing Eqs. (9.126) into Eqs. (9.130) and (9.131), respectively,
and performing the indicated integrations.

The assembly process for rectangular plate elements is similar to that for rect-
angular membrane elements, the main difference being that for plates there are
three degrees of freedom per node. Keeping this in mind, the connectivity array for
rectangular plate elements remains the same as for rectangular membrane elements.

The generalization of rectangular elements to quadrilateral elements for plate
vibration is not trivial, and serious difficulties can be anticipated (Ref. 28, p. 240).

At this point, we turn our attention to triangular plate elements. In view of our
discussion earlier in this section, we consider a triangular element with three nodes
and three degrees of freedom per node, as shown in Fig. 9.32, for a total of nine
degrees of freedom per element. Here we encounter immediately a problem, as the
lowest-degree polynomial admissible is the cubic, which has nine terms. Adding the
constant term, this would yield interpolation functions in terms of area coordinates

____________ F!!!igu!!!!!!re!!!9!!!.3~2~11!!!r!!ia!!ng!!u!!la!!r!!e!!lc!!m!!c!!n!!t!!WllllllitllllllhIIIIIIthllllllrllllllcelllllld!!!ellllllgllllllrCIIIIIICIlllllS!!!O~ff~re~e~d=o=m=a=t=ea~C~h!!!n!!!od!!!e~~==~~~~J
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of the form

The Finite Element Method Chap. 9

(9.132)

where the dependence on the third area coordinate ~3 is implicit. Because there
are ten constants and only nine degrees of freedom, there are several alternatives.
One alternative ISto add an internalnode with only the transverse displacement as
a degree offreedom (Ref. 22). Another alternative is to take arbitrarily Ci8 = Ci9.

An alternative with sliperior convergence characteristics consists of the interpolation
functions (Ref. 28, p. 244)

4>1= ~l + ~t~2+ ~t~3- ~l~i - ~lM
. ' 2 1 . 2 1

4>2 (Y3 - Yl)(~3~1 + 2~1~2~3) - (Yl - Y2)(~1 ~2 + 2~1~2~3)

2 1 . 2 1
4>3 (Xl - X3)(~3~1 + 2~1~2~3) -(X2 -'- Xl)(~l ~2 + 2~1~2~3) (9.133)

and note that a difference in the sign of 4>2,4>3,4>5,... , 4>9is due to the fact that the
rotations defined in Ref. 28 are the negative of those defin~d by Eqs. (9.118).

The element stiffness and mass matrices are as given by Eqs. (9.127) and (9.128),
respectively, where

w = <l>Tw (9.134)

in which <I> is a nine-dimensional vector with components given by Eqs. (9.133) and
w is the nine-dimensional nodal vector

(9.135)

and note that the rotations are defined in terms of rectangular coordinates as

i = 1,2,3 (9.136)

The relation between the rectangular coordinates and area coordinates are given by
Eqs. (9.55). Hence, using Eqs. (9.55) with A replaced by Aj and Eq. (9.134) with w
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replaced by Wj, we can write

Then, using the chain rule again, we obtain

ax ay

641

(9.137)

(9.138)

,
I
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The element stiffness matrix can be obtained by inserting Eqs. (9;138) in conjunction
with Eqs. (9.133) into Eq. (9.127) and performing the indicated integrations. More-
over, the element mass matrix can be produced by introducing Eqs. (9.133) into
Eq. (9.131) and carrying out the required integrations. In both regards, Eq. (9.66)
should prove useful.

The assembly process for triangular plate elements, including the connectivity
array, is similar to that for triangular membrane elements, with the exception of the
fact that for plates there are three degrees of freedom at each node instead of one.

The generation of the element stiffness and mass matrices and the assembly
process are routine and can be carried out conveniently on a computer.

9.9 ERRORS IN THE APPROXIMATE EIGENVALUES AND EIGENFUNCTIONS

In view of the fact that for self-adjoint systems the finite element method represents
a Rayleigh-Ritz method, if the elements are conformable, then its convergence is as-
sured, although convergence ispossible even with nonconformable elements (Ref. 28,
p.244). Clearly, the problem of nonconformable elements arises in plates in bending.
It appears that convergence can be assumed if the elements pass the patch test (see
Ref. 28, Secs. 2.7 and 11.2). It has been shown by Irons (Ref. 4) in conjunction with
the interpolation functions given by Eqs. (9.133) that a mesh generated by three sets
of equally spaced parallel lines, such as that of Fig. 9.33a, passes the patch test and a
mesh of the type shown in Fig. 9.33b does not. The issue of convergence is to a large
extent only of academic interest, as for most systems the finite element method is
known to converge. Indeed, more important is the rate of convergence. It is here
that the finite element method pays the price for the simplicity arising from the use
of low-degree polynomials as admissible functions.

(a) (b)

tion

Figure 9.33 (a) Mesh passing the patch test (b) Mesh failing the patch test

Convergence is a qualitative concept. A more quantitative measure of the ac-
curacy of the approximate solution can be obtained from error estimates. In the case
of approximate solutions derived by the finite element method, the error estimates
can be quantified to some extent by tying them not only to the dimension of the Ritz
space but also to the degree of the elements. In this section, we give a summary of
results presented in Ref. 22 (Sec. 6.3).

We are concerned with eigenvalue problems described by the differential equa-
.,

Lw = 'Amw over D (9.139)
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where L is a linear homogeneous self-adjoint differential operator of order 2p, and
the boundary conditions

Bjw = 0 on S, i'= 1,2, ... ,p (9.140)

in which Bj are boundary operators of maximum order 2p - 1. Multiplying Eq.
(9.139) through by wand integrating by parts with due consideration to boundary
conditions (9.140), we obtain the weak form of the eigenvalue problem

[w, w] = A(.jmW, .jmw) (9.141)

(9.142)

where [w, w] is an energy inner product, a measure of the potential energy, and
(.jmw, .jmw) is a weighted inner product, a measure of the kinetic energy. Then,
dividing Eq. (9.141) by (.jmw, .jmw), Weobtain the Rayleigh's quotient

A = R(w) = . [w, w]
(.jmw, .jmw)

As shown in Sec. 7.14, rendering Rayleigh's quotient stationary is equivalent to
solving the weak form of the eigenvalue problem.

Throughout this chapter, we have been concerned with finite element approxi-
mate solutions to the eigenvalue problem obtained by rendering Rayleigh's quotient
stationary. Such solutions, denoted by W(II), have been assumed to have the form of
linear combinations of admissible functions ¢j (i = 1,2, ... , n) from the subspace
'R,l of the energy space X~, or

(9.143)

where ~ is an n-vector of admissible functions and a an n-vector of undetermined
coefficients. Inserting Eq. (9.143) into Eq. (9.142), we obtain the discretized version
of Rayleigh's quotient

[W(II), W(II)]

(.jm W(II), .jm W(II»)
(9.144)

in which K and M are stiffness and mass matrices. Rayleigh's quotient has stationary
values in the form of approximate eigenvalues A~Il) at the eigenvectors ar. The
eigenvectors are orthogonal with respect to M and K and can be normalized so that

T K - 1 (11)8a~ ar - Ar rs, r, S = 1, 2, ... , n (9.145)

Introducing the eigenvectors ar into Eq. (9.143), we obtain the approximate eigen-
functions

r = 1, 2, ... , n (9.146)

which satisfy the orthonormality relations

( lfii.w(lIl lfii.W(II)) = (5.s ,v 1ft r IS' [W(II) W<lIl]
S ' r

1 (11)8
r rs, r,s 1,2,oo.,n

(9.147)
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Then, using the analogy with Eq, (7.404), we can write the maximin theorem for the
approximate eigensolutions in the form

)..(n) = maxmin R(w(n),
r+l Vi wen) i = 1, 2, ... , r (9.148)

where Vi are r independent but otherwise arbitrary functions.
Using the maximin theorem, it is shown in Ref. 22 (Sec. 6.3) that the approxi-

mate eigenvalues are bounded for small h by

r = 1, 2, ... , n (9.149)

in which h is the longest side of the finite elements, k -1 is the degree of the elements
and 8 is some constant. The factor h2(k-p) in inequalities (9.149) implies that, for
a given small h, the errors decrease as the degree of the elements increases. On
the other hand, the factor ()..}n)klp indicates that the errors increase with the mode
number, so that higher approximate eigenvalues tend to be inaccurate. As a rule
of thumb, more than one half of the approximate eigenvalues must be regarded as
unreliable (Ref. 22, p. 227). Hence, the dimension of the Ritz space.'Rn must be at
least twice as large as the number of accurate eigenvalues desired:

As shown in Ref. 22 (Sec. 6.3) error estimates for approximate eigenfunctions
are alsopossible. These are not pointwise error estimates, but estimates in an average
sense. Indeed, it is demonstrated in Ref. 22 that for small h

and

[w - wen) w - wen)] < c'h2(k-p)().. (n)k1p
r r' r r - r'

r = 1,2, ... , n (9.150a)

r = 1,2, ... , n (9.150b)

Errors of a different type arise when the mass matrix is generated by a dif-
ferent process than the stiffness matrix, giving rise to so-called inconsistent mass
matrices. The most common example of an inconsistent mass matrix is the lumped
mass matrix. The use of a lumped matrix tends to raise the value of the denominator
in the Rayleigh's quotient, thus lowering the approximate eigenvalues compared to
the eigenvalues computed using a consistent mass matrix. Because the eigenvalues
computed by means of a Rayleigh-Ritz process tend to be higher than the actual
ones, this may appear as a good way of improving the estimates. This is not the case,
however, as the use of inconsistent mass matrices violates the Rayleigh-Ritz code, so
that the Rayleigh-Ritz theory can no longer be counted on to argue that the actual
eigenvalues represent lower bounds for the approximate eigenvalues. As a result,
the use of lumped masses can cause significant errors (Ref. 22, p. 228, and Ref. 25).

Before abandoning this section, it should be noted that, whereas the maximin
theorem does apply to the finite element method, in general the separation theorem
(Sec. 8.5) cannot be demonstrated to hold true. However, the fact that no proof
exists should not be construed to imply that the separation theorem does not hold
for the finite element method.
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9.10 THE HIERARCHICAL FINITE ELEMENT METHOD

As demonstrated in Sec. 8.5, the accuracy of the approximate eigenvalues obtained
by means of the Rayleigh-Ritz method can be improved by simply increasing the
number of admissible functions in the linear combination representing the approx-
imate solution. On the other hand, accuracy can be improved in the finite element
method by refining the mesh, which implies a reduction in the width h of the element,
or equivalently an increase in the number of elements. The procedure is character-
ized by the fact that the degree p of the elements is a fixed, generaIly low number.
No confusion should arise from the fact that earlier in this text we used the symbol p
in connection with the order of the stiffness operator L. Another way of improving
the accuracy of the finite element approximation is to keep the width h constant and
to increase the degree p of the polynomials. To distinguish between the two, the
approach whereby the accuracy is improved by refining the finite element mesh is
referred to as the h -version of the finite element method, and the approach whereby
the degree of t he polynomials is increased is known as the p -version (Refs. 2, 3 and
23).

Because in the p-versionof the finite element method accuracy is improved
through an increase in the degree of the polynomials, which implies an increase in the
number of admissible functions in the approximation, the p-version has something
in common with the classical Rayleigh-Ritz method. Of course, one of the main
differences remains, as the admissible functions used in the p-version of the finite
element method 'are I~cal functions and in the classical Rayleigh-Ritz method they
are,global functions. This gives the p-version greater versatility than the h-version.
As a result, the rate of convergence of the p-version can be higher than that of the
h-version ..

. In the p-version of the finite element method it is possible to choose from a
variety of different sets of polynomials, provided the sets are complete. Particularly
desirable are the so-caIled hierarchical polynomials, which have the property that
the set of polynomials in the approximation of degree p represents a subset of the
polynomials in the approximation of degree p + 1. This version is referred to as the
hierarchical finite element method (Refs. 18, 27 and 29) and is characterized by the
fact that the mass and stiffness matrices possess the embedding property indicated
by Eqs. (8.100). As a result, the separation theorem holds true for the hierarchical
finite element method (Ref. 14).

Next, we demonstrate the hierarchical finite element method by applying it to
the eigenvalue problem of a beam in bending. In Sec. 9.4, we have shown that the
most common polynomials for beams in bending are the Hermite cubics

(9.151)
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A suitable set of hierarchical functions consists of the polynomials

<Ps = ~2(1 _ ~)2

<P6 = ~2(1 - ~)2(1 - 2~)

<P7 = ~2(1 - ~)2(1 - 3~)(2 - 3~)

i

<P4+i = ~2(1 - ~)2 n(j - 1 - i~)
j=2

(9.152)

I
li........

and we note that all hierarchical functions and their slope have zero values at the
nodes ~ = 0 and ~ = 1. As a result, when one hierarchical function is added to
the approximating series fora given element, one row and one column are added to
the element stiffness and mass matrices without disturbing the previously computed
entries, so that they possess the embedding property. Hence, the separation theorem
applies ..

To develop an appreciation for the hierarchical finite element method, we con-
sider the numerical example of Ref. 14, in which the five lowest eigenvalues of a
uniform cantilever beam were computed by means of the h-version and p-version
ofthe finite element method. Results are displayed in Tables 9.4 and 9.5, respectively.
To place matters in proper perspective, we note that in the h-version 4, 6, 8 and 10
elements imply 8, 12, 16 and 20 degrees of freedom, respectively. On the other hand,
the number of degrees of freedom for the p-version ranges from 9 to 12 in the upper
columns in Table 9.5, from 10 to 16 in the middle columns and from 11 to 20 in the
bottom columns. Hence, a direct comparison can be made between columns 2,3 and
4 in Table 9.4 and the extreme right upper, middle and bottom columns in Table 9.5,
respectively. Clearly, the hierarchical finite element method gives significantly more
accurate results than the ordinary finite element method, particularly for the higher
eigenvalues. Examining results in the upper columns in Table 9.5, it is clear that the
separation theorem holds true for the hierarchical finite element method. It turns out
that the same is true for the eigenvalues in Table 9.4, the middle columns in Table 9.5
and the lower columns in Table 9.5. Not too much should be read into this, however.
Indeed, the explanation is that for one-dimensional domains the eigenvalues tend to
be well spaced, so it would be quite difficult to violate the separation theorem.

TABLE 9.4 The Five Lowest Eigenvalues Computed by the h-Version

Four Elements Six Elements Eight Elements Ten Elements
0.14065 0.14064 0.14064 0.14064
0.88241 0.88160 0.88145 0.88141
2.48700 2.47240 2.46991 2.46852
4.90631 4.86724 4.84691 4.84068
9.12550 8.11453 8.04064 8.01453
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TABLE 9.5 The Five Lowest Eigenvalues Computed by the p-Version
Using Four Finite Elements

cPl, cPz, ... , cP4 cPl, cPz, ... , cP4 cPl , cPz, ... , cP4
on ], 2, 3 onl,2 on 1 cPl, cPz,···, cPs

cPl' cPz,···, cPs cPl, cPz,···, cPs cPl, cPz,···, cPs on all

on 4 on 3,4 on 2, 3, 4

0.14065 0.14064 0.14064 0.14064

0.8822] 0.88190 0.88]42 0.88140

2.48687 2.48008 2.47145 2.46875

4.89846 4.89464 4.89295 4.85038

8.92140 8.53673 8.26909 8.01927

cPl, cPz, ... , cP4 cPl, cPz, ... , cP4 cPl , cPz, ... , cP4
on 1, 2, 3 on 1,2 on] cPl , cPz,· ..•. cP6

cPl' cPz, ... , cP6 cPl, cPz, ... , cP6 cPl, cPz, ... , cP6 on all

on 4 on 3, 4 on 2, 3, 4

0.14064 0.14064 0.14064 0.14064

0.88220 0.88188 0.88141 0.88138

2.48633 2.47948 2.47074 2.46790

4.89359 4.88554 4.87950 4.836] 9

8.90123 8.51833 8.24920 7.99920

cPl , cPz, ... , cP4 cPl, cPz, ... , cP4 cPl, cPz, ... , cP4
on ], 2, 3 on 1,2 on 1 cPl, cPz, ... , cP7

cPl , cPz, ... , cP7 cPl, cPz,···, cP7 cPl, cPz,···, cP7 on all

on 4 on 3,4 on 2, 3, 4

0.14064 0.14064 0.14064 0.14064

0.88220 0.88188 0.8814] 0.88138

2.48633 2.47947 2.47073 2.46789

4.89351 4.88545 4.8794] 4.83609

8.89793 8.51363 8.24405 7.99442
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9.11 SYSTEM RESPONSE

The response of systems discretized by the finite element method can be obtained
by an approach similar to that used in Sec. 8.10 in conjunction with the classical
Rayleigh-Ritz method. However, in view of the fact that our treatment of the finite
element method is based on the variational approach, we will modify the derivation
accordingly. As a result, the approach adopted here resembles that used in Sec. 8.7
in conjunction with the assumed-modes method, which is really a variant of the
Rayleigh-Ritz method.
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The kinetic energy of a distributed-parameter system can be written as a weight-
ed inner product in the form

Moreover, the virtual work of the no~~onservative forces has the form

oWnc(t) = L f(P, t) ow(P, t) dD(P) (9.155)

where f(P, t) is the distributed force.
The response of a system discretized by the finite element method can be ob-

tained by simply letting the J?-odalcoordinates be functions of time. Hence, by analogy
_with Eq. (9.5), we write the response in the form

w(P, t) ~ w(n)(p, t) = <l>T(P)qj(t) over Dj, j = 1,2, ... , n (9.156)

where <I> is a vector of interpolation functions and qj (t) a vector of time-dependent
nodal displacements for element j. Introducing Eq. (9.156) into Eq. (9.153), we
obtain the discretized kinetic energy

1 n 1 n

2: LqJ (Jm<l>, Jm<l>T) j qj = - LqJMAj
j=l 2 j=l

T(t) = ~ (Jm(P)w(P, t), Jm(P)w(P, t))
Similarly, the potential energy can be expressed as the energy inner product

_ 1
Vet) = - [w(P, t), w(P, t)]

2

T(l)

(9.153)

(9.154)

(9.157)

in which
(9.158)

are recognized as the element mass matrices. In the same manner, the discretized
potential energy can be written as

where

(9.159)

j = 1,2, ... , n (9.160)

are the element stiffness matrices. Similarly, the discretized virtual work has the..expreSSIOn

in which

(9.161)

Qj(t) = L f(P, t)<I>(P) dD(P),
J

are the element nodal force vectors.

I

I
":\.-~~~-~-~---------~

j =. 1, 2, ... , n (9.162)
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-l

(9.164)

The assembly process amounts to using the connectivity array (Sec. 9.5) to elim-
inate redundant coordinates. It is not difficult to show that, following the assembly,
the kinetic energy, potential energy and virtual work assume the usual form

1 . T . 1 T (9.163a, b)T .= 2:q Mq, V = -q Kq
2

and
8Wnc = QT8q (9.163c)

where q is the global nodal displacement vector, M and K are the global mass and
stiffness matrices and Q is the global nodal force vector. .

Using Lagrange's equations, the nodal equations of motion for the system are
simply

Mij + Kq = Q

The solution of Eq. (9.164) was discussed in Sec. 4.10.

Example 9.5

Determine the global mass matrix, stiffness matrix and nodal force vector defining the
response of a uniform simply supported beam to the distributed force f(x, t) = (1 -
x 12L) f (t) derived by the finite element method using Hermite cubics as interpolation
functions.

We begin by determining the element mass matrix, stiffness matrix and nodal
force vector. To this end, we recall from Eqs. (9.41) that the Hermite cubics have the
form
¢1 = 3~2 - 2~3, ¢2 = ~2 - ~3, ¢3= 1- 3~2 + 2~3, ¢4 = -~ + 2~2 - ~3 (a)

so that, using Eqs. (9.158) and recalling that x = (j - ~)h, the clement mass matrices
are .r

Ell]_ «j,"«j,"Td~
h3 0

. [3~2 _ 2~3 ] [ 3~2 _ 2~3 ] T[1 ~2 _ ~3 g2 _ g3
= mh 10 1 - 3r + 2g3 I _ 3~2 + 2g3 d~

_~ + 2r - ~3 _~ + 2~2 _ ~3

[

156 22 54 -13 ]
mL 4 13 -3

156 22' j 1,2, ... ,/1

10 1 - 3r + 2g3 I - 3~2 + 2g3 d~

and, using Eqs. (9.160), the element stiffness matrices are

T jih d2«j, d2«j,T
Ki = [«j" «j, Ii = . EI-2 --2 dx =

(;-I)" dx dx

[

6 - 12~ ] [ 6 - 12~ ] T
EI] 2-6g 2-6g
h3 1 -6 + 12g -6 + 12g dg

4 - 6~ 4 - 6~

(b)
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[

12 6
Eln3 4
-V symm

-126]-6 2
12' -6 '

4 .

j = 1,2, . '.. , n (c)

and we observe that Mj and Kj are consistent with results obtained in Example 9.3.
Then, from Eqs. (9.162), the element nodal force vectors are

I [30] [, 21] )Lf(t) . 5 3
= 120n2 (2n - J) ~~ + _;' j = 1,2, ... , n (d)

~--

At this point, we are ready for the assembly process. In view of the fact that
for a simply supported beam the displacement is zero at both ends, Wo = Wn = 0,
the structure of the global mass and stiffness matrices is somewhat different from that
indicated in Sec. 9.4. Indeed, in the case at hand, we must strike out the first and
(2n - l)st rows and columns from the global mass and stiffness matrices. Hence, using
Eqs. (b), we obtain the global mass matrix

4 13 -3 0 0 0 0 0
312 0 54 -13 0 0 0

8 13 -3 0 0 0
mL 312 0 0 0 0

M= -- 8 0 0 0 (e)420n symm ............... '.
312 0 -13

8 -3
4

Similarly, using Eqs. (c), we can write the global stiffness matrix

4 -6 2 0 0 0 0 0
24 0 -12 6 0 0 0

8 -6 2 0 0 0
Eln3 24 0 0 0 0

K
V 8 0 0 0 (f)

symm .............
24 0 6

8 2
4
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Finally, from Eqs. (d), striking out the first and (2n' - l)st components and adding the
contributions from Qj_1 and Qj corresponding to shared nodal forces, we obtain the
global nodal force vector

Q(t) = Lf(t) lIOn - 2 120/1 - 60 - 4 ]20n - ]20 - 4
]20/12

60n + 60 5n +] - 5n - 2f (g)

and we recognize that the global nodal displacement vector has the form

9.12 SYNOPSIS

As far as vibration theory is concerned, the finite element method represents a
Rayleigh-Ritz method. The main difference between the original Rayleigh-Ritz
method, referred to as the classical Rayleigh-Ritz method, and the finite element
method lies in the nature of the admissible functions. Indeed, the classical Rayleigh-
Ritz method uses global admissible functions and the finite element method uses
local admissible functions, generally called interpolation functions. This difference
has profound implications and is responsible for the success of the finite clement
method. In the first place, because the method works with small subdomains, i.e., the
finite elements over which the local functions are defined, systems with very complex
parameter distributions and irregular geometries can be accommodated. We recall
that one of the weaknesses of the classical Rayleigh-Ritz method and the weighted
residuals methods, such as Galerkin's method and the collocatio'n method, is the dif-
ficulty in handling systems with irregular boundaries. Moreover, because the finite
elements are generally very small, good representation ofthe motion can be achieved
with interpolation functions in the form of low-degree polynomials. An important
aspect of this is that the interpolation functions can be prescribed for given classes of
systems, a clear advantage over the classical Rayleigh-Ritz method and Galerkins'
method, for which the generation of suitable admissible and comparison functions,
respectively, requires experience and ingenuity. Another important aspect is that
the whole finite element spatial discretization process lends itself to easy computer
coding. This includes the generation of a finite element mesh, the computation of
the element mass matrix, stiffness matrix and nodal force vector and the assembly of
these clement quantities into global quantities. With the power of computers to carry
out the various steps increasing at a dizzying rate, finite element models involving
thousands of degrees of freedom are not uncommon.

The enthusiasm for the finite element method should be tempered somewhat
by other considerations. Some of the advantages cited above are more important to
static stress and structural analyses than to vibrations. In particular, stress analysis
problems are more typical of three-dimensional systems, which tend to be bulkier
and hence less prone to vibrate than one-dimensional and two-dimensional systems.
Hence complex geometries are more frequently encountered in stress analysis than
in vibrations. Then, for problems for which the classical Rayleigh-Ritz method is
able to produce a solution, it is reasonable to expect that, for a given accuracy, such
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a solution requires appreciably fewer degrees of freedom than a solution produced
. by the finite element method.

On balance, however, the advantages of the finite element method far outweigh
any disadvantages, as the method is capable of producing solutions where other
methods fail. Already very popular, the use ofthe finite element method can only
increase as vibration problems become progressively more complex.

PROBLEMS
(to be solved by the finite element method)

9.1 Solve Problem 8.1 using linear interpolation functions and determine the order of the
problem required to match the accuracy of the lowest natural frequency computed in
Problem 8.l.

9.2 Solve Problem 8.16 using linear interpolation functions and determine the order of the
problem required to match the accuracy' of the lowest natural frequency computed in
Problem 8.16 with n = 6.

9.3 Solve Problem 9.2 with Problem 8.17 replacing Problem 8.16.
9.4 Solve Problem 9.1 using quadratic interpolation functions. Discuss convergence charac-

teristic's compared with the solution obtained in Problem 9.l.
9.5 Solve Problem 9.4 with Problem 9.2 replacing Problem 9.l.
9.6 Solve Problem 9.4 with Problem 9.3 replacing Problem 9.l.
9.7 Use the approach of Sec. 9.3 to derive the cubic elements given by Eqs. (9.35).
9.8 Use Eqs. (9.17) to derive the element stiffness and mass matrices for a nonuniform string

fixed at x = 0 and supported by a spring at x = L using cubic interpolation functions.
Then, indicate the structure of the global stiffness and mass matrices and give the matrices
in explicit form.

9.9 Solve Problem 9.4 using cubic interpolation functions.
9.10 Solve Problem 9.5 using cubic interpolation functions.
9.11 Solve Problem 9.6 using cubic interpolation functions.
9.12 Solve Problem 8.4 using Hermite cubics and determine the order of the problem required

to match the accuracy of the lowe,st natural frequency computed in Problem 8.4.
9.13 Solve Problem 9.12 with Problem 8.18 with n =6 replacing Problem 8.4.
9.14 Soly<:Problem 9.12 with Problem 8.19 with n = 6 replacing Problem 8.4. ,
9.15 Solve Problem 7.39 with a = 2b = 4h using sixteen triangular elements in conjunction

with linear interpolation functions. Compare the three lowest natural frequencies with
those obtained in Problem 7.39 and draw conclusions.

9.16 Solve Problem 9.15 with quadratic interpolation functions instead of linear.
9.17 Use the approach of Sec. 9.5 to derive the cubic interpolation functions given by Eqs.

(9.79). '
9.18 Determine the element stiffness and mass matrices for the cubic interpolation functions

given by Eqs.(9.79) .•
9.19 Use the approach of Sec. 9.5 to derive the bilinear interpolation functions given by Eqs.

(9.81). "
'9.20 Solve Problem 9.15 using eight rectangular elements in conjunCtion with bilinear in-

terpolation functions. Compare results with those obtained in Problem 9.15 and draw
conclusions.

9.21 Determine the element stiffness and mass matrices for the,serendipity elements given
by Eqs. (9.92) .. "



Chap. 9 Bibliography 653

9.22 Use Eqs. (9.108) and (9.112) to determine the element stiffness matrix and mass matrix,
respectively, for the quadrilateral membrane of Fig. 9.29 using the bilinear interpolation
functions given by Eq. (9.113).

9.23 Determine the glohal stiffness and mass matrices for the membrane of Problem 9.22.
9.24 Determine the element stiffness and mass matrices for triangular plate elements using

the interpolation functions given by Eqs. (9.133). '.
9.25 Determine the global stiffness and mass matrices for the plate of Prohlem 8.23 using

results'from Problem 9.24.
9.26 Derive the response of the shaft of Problem 9.3 to the distributed torque m(x, t)

mox(L - x)u(t), where u(t) is the unit step function.
9.27 Solve Problem 9.26 with Problem 9.6 replacing Prohlem 9.3.
9.28 Derive the response of the cantilever beam of Problem 9.12 to the concentrated force

F(t) = Fo[u(t) - u(t - T)] applied at x = L, where u(t) is the unit step function.
9.29 Derive the response of the beam of Problem 9.14 to the distributed force f(x, t) =

Jo(l - xj2L) o(t), where o(t) is the unit impulse.
9.30 Derive the response of the membrane of Problem 9.15 to the force per unit area f (x, y. t)

= foy(b - y)u(t), where u(t) is the unit step function.
9.31 Solve Problem 9.30 with Problem 9.16 replacing Prohlem 9.15.
9.32 Derive the response of the plate of Problem 9.25 to the force f(x. y. t) = Jn [r(t) -

r(t - T)] distributed uniformly over the rectangular area defined by aj2 < x < 3aj4,
bj4 < y < 3bj4, where r(f) is the unit ramp function (Sec. 1.7).
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(A.I)

A

ELEMENTS OF LAPLACE
TRANSFORMATION

The solution of difficult mathematical problems can often be simplified greatly by
means of a suitable transformation. The process consists of transforming a difficult
problem into a simpler problem, solving the simpler problem and inverse transform-
ing the solution to the simpler problem to obtain the solution to the original problem.
Transformations are widely used in vibrations. In particular, the Laplace transfor-
mation can be used to obtain efficient solutions to ordinary differential equations
of motion for linear time-invariant systems, also known as systems with constant
coefficien ts.

A.I INTEGRAL TRANSFORMATIONS

We consider a function f(t) defined by an ordinary differential equation and certain
initial conditions and propose to obtain a solution by transforming the problem for
f(t) into a problem for F(s) given by the integral tramformation

F(s) = lb
f(t)K(s. t) dt

where K (s, t) is a given function of 5 and t called the kernel of the transformation.
When the limits a and b are finite, F (5) is a finite transformation. Such an integral
transformation converts the differential equation into an algebraic equation in terms
of the transformed function F(s), where 5 is a parameter. In the process, initial
conditions are accounted for automatically. The algebraic equation for F(s) can
in general be solved without much difficulty, and the function f(t) is obtained by
inverse transforming F (s).

655 I
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Integral transform methods can also be used to solve boundary-value problems
defined by partial differential equations. In such a case one transformation reduces
the number of independent variables by one. Hence, if two independent variables
are involved, instead of solving a partial differential equation one must solve an
ordinary differential equation, which is in general a considerably easier task.

The main difficulty in using integral transform methods lies in the inverse trans-
formation, which for the most part involves evaluation of an integral. The transform
and its inverse constitute a.transform pair, and for many transformations in use there
are tables of transform pairs available. More often than not, it is possible to find the
inverse transformation in tran.sforll1 tabl~s, thus eliminating the need to evaluate

,:an inversion integral. One of ,the most widely used integral transformations is the
Laplace transformation ..

A.2 THE LAPLACE TRANSFORMATION

The Laplace transformation method provides a very convenient means of solving
linear ordinary differential equations for linear time-invariant systems, or systems
with constant coefficients. Such equations arise frequently in the study of vibrations
of discrete linear systems. This type of problem was treated by Heaviside by means
of his operational calculus. Much of Heaviside's work was based on intuition and
the mathematical treatment was often obscure ..The Laplace transformation method,
although similar to Heaviside's operational calculus, is mathematically rigorous. The
method accounts automatically for initial conditions and provides a great deal of
insight into the physics ofthe system.

We consider a function f (t)given for all values of time larger than zero, t .:::0,
and define the unilateral Laplace transformation off(t) as

We note that the kernel of the transfonnation is K (s, t) ~ e-st, where s is a sub-
sidiary variable, which is in general a complex quantity. The complex plane defined
by s is referred to as the s-plane, or the Laplace:pla~e ... ,

The function f(t) is subjectto~ertain restrictions, because the integral, Eq.
(A.2), must converge. If f(t) is such that

le-st j(t)1 < Ce-(s-a)l,

!•.

Lf(t) = F(s) = 100

e-st f(t) dt

Re s > a

(A.2)

(A.3)

where C is a constant and Re s denotes the real part of s, then the Laplace trans-
formation of f(t) exists. Condition (A.3) implies that f(t) does not increase more
rapidly than Ceat with increasing t ..Such a function f (t) is said to be of exponential
order and is denoted f (t) = ,0 (eat). Another condition' for the existence of the
Laplace transformation is that f(t) bepieGewise continuous, which means that in a
"giveninterval it has a finite number 'of finite discontinuities and no infinite disconti-
nuity. Most functions describing physical phenomena satisfy these conditions.



Our interest lies in solving ordinary differential equations by means of the Laplace
transformation method, which. requires the transformation of derivatives of f(1).
To this end, we assume that the Laplace transformation of .f (t) exists and consider
first the transform of d.f(t)/dt. Integrating by parts, we can write

Ldf(t) = tJO
e-st ~f(t) dt

dt 10 dt . ".

= e~sl f(t)I: - tJO

(-se-SI)f(t) dt10 '

Sec. A.4 ",Transformation of Ordinary Differential Equations

A.3 TRANSFORMATION OF DERIVATIVES

- .f(O) + sF(s)

657

(A.4)

In general, for the nth derivative of J (t), we obtain

"(J'lf(t) . "0 •

L~ = Lfl1)(t) = _/(11-1)(0) - S/(11-2)(0) - ... - .1'11-1/(0) + .I'llF(s)

.. (A.5)
where we adopted the notation

d(I1-J)/(t)!
dtl1

- J 1=0
(A.6)

Equation (A5) is valid only if J(t) satisfies the conditions prescribed in Sec. A.3
and all its derivatives through the (n - 1)st are continuous.

A.4 TRANSFORMATION OF ORDINARY DIFFERENTIAL EQUATIONS

The differential equation of motion of a mass-damper-spring system is (Sec. 2.3)

. d2x<r) dx(t) ."
m--

2
- + c-"-" + kx(t) = f(.t)dt ~ " . (A.7)

where m. c and k are the mass, coefficient of viscous damping and spring constant,
respectively, x(t) is the displacement of m and F(t) the force acting on m. Trans-
forming both sides of Eq. (A7) and using Eq. (A.5), we can write

m[s2X(s) - sx(Ol - x(O)] +'c[sX(SI - x(U)] + kX(s) = F(s) (A.8)

where x(O) and ,\:(U) are the initial displacement and velocity, respectively. Solving
Eq. (A8) for Xes), we obtain

1 ms + c m
Xes) = ---- F(s)+ ----x(O) +. x(o)

. ms2 + cs + k ms2 + cs + k ms2 + cs + k
(A9)

Equation (A9) is called the subsidiary equation of the differential equation, Eq.
(A.7). To obtain the response x(t), we must evaluate the inverse transformation
of X (s). Note that the Laplace transformation method provides automatically for
initial conditions.
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A.5 THE INVERSE TRANSFORMATION

Elements of Laplace Transformation Appendix A

Equation (A.9) gives the transform' X (s) of x (t), which is a function of s. To obtain
the actual solution x(t) of Eq. (A.7),we must carry out an inverse transformation,
which is denoted symbolically as'

L-1X(s) = x(t) (A. 10)

(A. 11)

meaning that the inverse transform of X (s) is x (t'.
In general, the operation L-1 F (s) involves the evaluation of the integral

1 lY
+

ioo
f(t) = L-1 F(s) = -. est F(s) ds

27fl y-ioo

where the path of integration is a line parallel to the imaginary axis crossing the
real axis at Re s = y and extending from -00 to +00. In many cases, however,
we can carry out the inverse Laplace transformation without having to recourse to
line integrals. This is the case when Jordan's lemma can be used to replace the line
integral by a closed contour integral, which in turn can be evaluated by means of the
residue theorem (Ref. 1, Sec. 9-15). In most cases, however, it is possible to obtain the
inverse transformation by means of tables of Laplace transform pairs (see Sec. A.9).
Quite often, to increase the usefulness of the tables, we can use the method of partial
fractions to reduce seemingly complicated functions to a form listed in tables.

A.6 SHIFTING THEOREMS

We consider the function
!I(t) = f(t)eat (A. 12)

where a is a real or complex number, and evaluate its Laplace transformation as
follows:

It follows that

F1(s) = 1OO[f(t)eat]e-stdt

1
00

f(t)e~(s-a)tdt = F(s - a)

Lf(t)eat = F(s - a)

(A. B)

(A. 14)

Hence, the effect of multiplying f (t) by eat in the real domain is to shift the transform
F(s) of f(t) by an amount a in the s-domain. Because the s-domain is a complex
plane, this theorem is also called the complex shifting theorem.

Next, we consider the Laplace transformation

F(s) = 100

e-SA f(A) dA (A. 15)
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and let A.= t - a, so that

F(s) = 1°C e-S(I-a) f(t - a)dt = ells 100

e-S/[f(t - a)u(t - a)]dt (A.16)

where u(t - a) is the unit step function initiated at t = a. Multiplying both sides of
Eq. (A.16) bye-as, we obtain

e-asF(s) (A.17)

Hence,

£.-Ie-as F(s) = f(t - a)u(t - a)

Equation (A.18) represents the shifting theorem in the real domain.

A.7 METHOD OF PARTIAL FRACTIONS

Under consideration is the inverse transformation of the function

F(s) = A(s)
B(s)

(A.I8)

(A.19)

where both A(s) and B(s) are polynomials in s, and we recall that Eq. (A.9) is of
this type. In general, B(s) is a polynomial of higher degree than A(s). We assume
that B(s) is a polynomial of nth degree and write it in the factored form

B(s) = (s - al)(s - a2) ... (s - an) (A.20)

in which a}, a2, ... , an are the roots. We consider first the case in which all n roots
are distinct, in which case Eq. (A.19) can be expressed as

A(s) CI C2 Cn
F(s) = -- = --- + --- + ... + ---

B(s) s - al s - a2 s - an

where the coefficients Ck are given by

A(s) 0'Ck = lim [(s - adF(s)] = _0 _0.
s-->ak B'(s) s=ak

(A.2I)

(A.22)

in which B' is the derivative of B with respect to s. But, using the table of Laplace
transforms in Sec. A.9 and considering the complex shifting theorem, we have

(A.23)
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(A.24)

(A25)

so that the inverse transform of Eq. (A21) is

J(t) = £-1 F(s) = C1ealt + C2ea2t + ... + Cneant

n

L Ckeakt
k=l ,

n ·'n A(s) - IL lim [(s - ak)F(s)est] = L__est
k=l s--+ak k=l B' (s) s=ak

The roots al, a2, ... , an are called simple poles of F (s). It should be noted that
Eq. (A24) can be used for functions other than ratios of two polynomials, provided
the function has simple poles. Poles are points at which the function F (s) becomes
infinite.

Next, we consider the case in which B(s) has a multiple root of order k, i.e.,
F (s) has a pole of order k as opposed to poles of first order, or simple poles, examined
previously. Hence, we consider

B(s) = (s - al)k(s - a2)(s - a3) ... (s - an)

The partial-fractions expansion in this case is of the form

F(s) = A(s) = Cll'"+ Cl2 - Clk
---'7k k 1 + ... + ---

B(s) (s - al) (s - al) - s - a1

_ C2 C3 Cn+ -- + -- + ... + -- (A26)
s - a2 s - a3 s - an

It is not difficult to show that the coefficients corresponding to the repeated root a1
are . ,

1 . dr-1

Clr = (r _ 1)! dsr-l [(s - all F(s)]s=aj' r = 1,2, ... , k (A27)

The simple poles of F(s) are treated by means of (A22), as previously. For the
higher-order po'te, we use t~e table of Laplace transforms in conjunction with the
complex shifting theorem and write

1 tr-'-l
£-1 ---'--_eajt (A28)

(s - ad (r - 1)!

so that the inverse transform of Eq. (A26) becomes (.

[

tk-1 tk-2 ]
J(t). = Cll (k _ 1)! + Cl2 (k _ 2)! + ... + Clk e

ajt

+ C2ea2t + C3ea3t + ... + Cneant (A.29)
Equation (A29) can be shown to be equal to

1 . dk-1 n

J(t) = (k _ 1)! dsk-l [(s - a])k F(s)est]s=aj + t;[(S - ai)F(s)est]s=aj (A.30)
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l

(A.32)

A.S THE CONVOLUTION INTEGRAL

We consider two functions II (t) and h(t), both defined for t ::: 0, and assume that
II U) and hU) possess the Laplace transforms FI (s) and F2(s), respectively. Then,
we consider the integral

x(t) = l' Idr).f2(t - r)dr = 100

II(~)f2(t -'r)dr (A.31)

The function x(t) given by these integrals, sometimes denoted by x(t) II (t) *
12(t), is called the convolution of the functions II and 12 over the interval (0, 00).

The validity of the change in the upper limit of the first integral ean be explained
by the fact 12 (t - r) = 0 for r > t, or t - r < O. Transforming both sides of
Eq. (A.31), we obtain

Xes) = 100
e-S

' [100
Ij{r)fz(t - r)dr] dt

= 100

Il(r)dr100 e-"'fz(t - r)dt
o 0

100 100= 0 II(r) dr r e-s'h(t - r) dt

where the limit in the second integral was ehanged because .fz (t - r) = 0 for t < r.
Next, we let t - r = A in the second integral and note that A = 0 for t = r,

so that

xes) = 100
Idr)dr 1

00
e-"'hU - r)dt

[00 II (r) dr 100
e-s(r+A) 12 (A) dA

~ 0

100
e-sr II(r)dr 100

e-SA heAl dA F1(s)F2(s) (A.33)

From Eqs. (A.31) and (A.33), it follows that

x(t) = L-1 Xes)

= L-1 FI (s)F2(s)

= [' Idr).fz(t - r)dr = [' Il(t - r).f2(r) dr. (A.34)10, 10'
This is true because it does not matter which of the functions 11 (t) and h(t) is
shifted. Equation (A.34) can be stated in words as the following theorem: The
inverse transformation of the product of two transforms is equal to the convolution
of their inverse transforms. The integrals in (A.34) are called convolution integrals.
A special case of Eq. (A.34) was ,encountered in Sec. 1.7 without any reference to
Laplace transformations.
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A.9 TABLE OF LAPLACE TRANSFORM PAIRS

f(t)

8(t) (Dirac delta function)

u(t) (unit step function)

tn n = 1,2, ...

cos wt

sinwt

cosh wt

sinh wt

1 -(i)t-e

1- coswt

wt - sinwt

wt cos wt

wt sin wt
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F(s)

1
1
s
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sn+l

1
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1

(s + W)2

S

S2 + w2

W

S2 + w2
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S2 - w2
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ELEMENTS OF LINEAR ALGEBRA

The vibration of linear discrete systems is governed by sets of simultaneous linear
ordinary differential equations. The solution of such sets of equations can be obtained
most conveniently by means of a linear transformation rendering the set of equations
independent. To find this linear transformation, it is necessary to solve a set of
homogeneous algebraic equations containing a certain parameter. The problem
of determining the values of the parameter such that the set of equations admits
nontrivial solutions is known as the algebraic eigenvalue problem, a very important
problem in linear algebra. This appendix is devoted to concepts from linear algebra
of interest to the study of vibrations, such as vector spaces and matrices.

B.l LINEAR VECTOR SPACES

In discussing vector spaces, it proves convenient to introduce the concept of a field.
A field is defined as a set of scalars possessing certain algebraic properties. The real
numbers constitute a field, and so do the complex numbers.

We consider a set of elements F such that for any two elements a and fJ in F
it is possible to define another two unique elements belonging to F, the first denoted
by a + fJ and called the sum of a and fJ, and the second denoted by afJ and called
the product of a and fJ. The set F is called afield if these two operations satisfy the
five field postulates:

1. Commutative laws. For all a and fJ in F,
(i) a + f3 = fJ + a, (ii) afJ = fJa.

2. Associative laws. For all a, f3 and y in F,
(i) (a + fJ) + y = a(fJ + y), (ii) (afJ)y = a(fJy)·

3. Distributive laws. For all a, fJ and y in F,
a(fJ + y) = af3 + ay.

4. Identity elements. There exist in F elements 0 and 1 called the zero and the
unity elements, respectively, such that 0 #- 1, and for all a in F,
(i) a + 0 = a, (ii) la = a.

5. Inverse elements.
I. For every element a in F there exists a unique element -a, called the

additive inverse of a, such that a + (-a) = O.

663
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ii. For element a =j:. 0 in F there exists a unique element a-l, called the
multiplicative inverse of a, such that aa-l = 1.

Next, we define the concept of linear vector space, also referred to as linear space
and vector space. Let L be a set of elements called vectors and F a field of scalars.
Then, if Land F are such that two operations, namely, vector addition and scalar
multiplication, are defined for Land F, the set of vectors together with the two
operations are called a linear vector space L over a fiel1 F. For every two elementsx ,and y in'L:it satisfies the postulates:,'! '

1. Commutativity. x + y = y + x.

2. Associativity. (x + y) + z = x + (y + z) .
• ' .'" .• I _.ct

3. There exists a unique vector 0 in L such that x + 0 = 0 + x = x .
. .

4. For every vector x in L there exists a uniqu,e vector, 0"X such that x + (-x) =
(-:x) + x = O.

Hence, the rules of vector addition 'are similar to those of·ordinary algebra. More-
over, for' any vector x in .L and any scalar a in F, there· is a unique scalar product
ax which is also an element ofL. The scalar multiplication must be such that, for all
q and fJ in F and all x and y in L, it satisfies the postulates:

5. Associativity: a (fJx) = (afJ)x.

6. Distributivity. (i) a(x + y) = ax + ay, (ii) (a + fJ)x = ax + fJx.
7. 1x = x, where 1 is the unit scalar, and Ox= O.

We have considerable interest in a vector space L possessing n elements of the field
F, i.e., in a vector space of n-tuples. We write any two such vectors in L as

(B.l)

and refer to them as n-vectors. The set of all n-vectors is called the vector space Ln.
Then, the addition of these two vectors is defined as

x + y =[;:.1 ~].
Xn + Yn

Moreover, if a is a scalar in F, then the product of a scalar and a vector is defined as

.J

(B.2)

(B.3)ax = [.~~~]
aXn

Let S be a subset of the vector space L. Then, S is a subspace of L if the following
statements are true:
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1. If x and yare in S, then x + y is in S.
2. If x is in S and a is in F, then ax is in S.

B.2 LINEAR DEPENDENCE

We consider a set of vectors Xl, X2, ... ,Xn in ~ linear space L and a set of scalars
aI, a2, ... , an in F. Then, the vector x given by

(8.4)

is said to be a linear combination of Xl, X2, ... , Xn with coefficients aI, a2, ... , an·
The vectors Xl, X2, ... , Xn are said to be linearly independent if the relation

(8.5)

can be satisfied only for the trivial case, i.e., only when all the coefficients aI, a2, ... ,
an are identically zero. If relation (8.5) is satisfied and at least one of the coefficients
aI, a2, ... ,an is different from zero, then the vectors Xl, X2,"' .. , xnare said to be
linearly dependent, with the implication that one vector is a linear combination of
the remaining n - 1vectors.

The subspace S of L consisting of all the linear combinations of the vectors
Xl, X2, ... , Xn is called a subspace spanned by the vectors Xl, X2, ... , Xn· If S = L,
then Xl, X2, ... , Xn are said to span L.

Example B.1

Consider the two independent vectors

(a)

in a three-dimensional space. The set of all linear combinations of XI and X2span a
plane passing through the origin and the tips of XI and X2.The three vectors

x, ~ [il x, ~ Hl x, ~ m (b)

span the same plane,"because X3 lies in the plane spanned by XI and X2· Hence, the
three vectors are linearly dependent. Indeed, it can be easily verified that

Xl + 2X2 - X3 = 0 (c)

so that X3is really a linear combination of XI and X2(see Fig. B.1).
On the other hand, the three vectors

~ = [-f], ~ = [~] (d)

are linearly independent because

al XI + a2X2 + a4x4 i= 0 (e)

for all cases other than the trivial one. The three vectors x, , X2and X4span a three-
dimensional space.
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1

• 'I

The plane spanned by
~l and ~ (andx3)

Figure B.1 Linearly dependent vectors

2

B.3 BASES AND DIMENSION OF A VECTOR SPACE

A vector space Lover F is said to be finite-dimensional if there exists a finite set
of vectors Xl, X2, ... , Xn that span L, i.e., such that every vector in L is a linear
combination of Xl, X2, ... ,Xn.

Let L be a vector space over F. A set of vectors xI , X2, ... , Xn that span L is
called a generating system of L. If Xl, X2, ... , Xn are linearly ~ndependent and span
,L" then the generating system is called a basis for L. If L is a finite-dimensional
vector space, any two bases for L contain the same number of vectors. The basis can
be regarded as the generalization of the concept of a coordinate system.

Let L be a finite-dimensional vector space over F. The dimension of L is
defined as the number of vectors in any' basis fot L. This integer is denoted by
dim L. The vector space Ln is spanned by n linearly independent vectors, so that
dimLn = n.

Consider an arbitrary n -vector X in L n with components Xl, X2, ... ,Xn and
introduce a set of n-vectors given by

... , (B.6)



The vector x can be written in terms of the vectors e; (i = 1,2; ... n) as the linear
combination"

·'Sec. B.4' 'Inner Products and Orthogonal Vectors

•. of n

X = Xle] + X2e2 + ... -+- XIl~n, = Lx;e;
;=1

667

(B.7)

It follows that L n is spanned by the set of vectors e; (i = 1,2, ... , n), so that the
vectors e; constitute a generating system of L n: The set of vectors e; can be verified
as being linearly independent and they are generally referred to as the standard basis
for Ln.

Example B.2

The vectors Xl, X2 and X4 of Example B.1 form a basis for a three-dimensional vector
space. Any vector X in L3 can be written as a u'nique linear combination of XI, X2 and
X4. For example, it can be verified that the vector .

(a)

can be represented in the form
(b)

The same vector X can be also represented in the terms of the standard basis el. e2, e3
for L3. Indeed, it is easy to see that

,
X = ::IeI + De2 + 4e3

B.4 INNER PRODUCTS AND ORTHOGONAL VECTORS

(c)

Various concepts encountered in two- and three-dimensional spaces, such as the
length of a vector and orthogonality, can be generalized to n-dimensional spaces.
This requires the introduction of additional definitions.

Let L n be an n -dimensional vector space defined over the field F of scalars.
If to each pair of vectors x and y in L n is assigned a unique scalar in F, 'called the
inner product of x and y, then L" is said to be an inner product space. The vectors x
and y can be complex, in which case x and y denote their complex conjugates. The
inner product is denoted by (x, y) and must satisfy the following postulates:

1. (x, x) ~ 0 for all x in L" and (x, x) = 0 if and only if x = o.
2. (x,y) = (y,x).
3. (Ax, y) = A(X. y) and (x, AY) = X(x, y) for all A in F.
4. (x, y + z) = (x, y) + (x, z) for all x, y and z in L".

The most common definition of the complex inner product is

(x, y) = XIYl + X2Y2 + ... + xnYIl (B.8)

which represents a complex number. When x and yare real vectors, Eq. (B.8) reduces
to

. -

(x, y) = X1Yl + X2Y2 + ... + XnYn (B.9)
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which defines the real inner product, a real number. A finite-dimensional inner
product space defined over the real scalar field is called a Euclidean space.

It is often desirable to have a measure of the size of a vector. Such a measure
is called the norm. It is designated by the symbolllxll and is required to possess the
following' properties:

1. IIxll ~ 0 and IIxll =: 0 if and only if x = 0

2. IIAxIl= JAlllxll for any scalar A

3. IIx+ yll :S IIxll + lIyll

where property 3 is known as the triangle inequality. Note that IAI denotes the
absolute value, or modulus of A..

A commonly used norm is the quadratic norm

IIxll = (x, x)1/2 (B.IO)

which defines the length of the vector x. In the case of real vector spaces, Eq. (B.IO)
reduces to

(

n ) 1/2

IIxll = 8x1 . (B.ll )

which defines the Euclidean norm. Equation (B.ll) can be recognized as the exten-
sion to n dimensions of the ordinary concept of length of a vector in two and three
dimensions.

A vector whose normis equal to unity, IIxll = (x, x)1/2 = 1, is called a unit
vector. Any nonzero vector can be normalized so as to form a unit vector by simply
dividing the vector by its norm

A .x
x= -

IIxll
(B.I2)

It is easy to verify that the vectors ei defined by Eqs. (B.6) are unit vectors.
When the vectors x and yare real, the inner product is sometimes referred

to as the dot product. We recall from ordinary vector analysis that the dot product
of two vectors ~n the two- and three-dimensional space can be used to define the
cosine of the angle between the two vectors. This concept can be generalized to the
n -dimensional space by writing

cose
(x, y)

---'--- = (x, y)
IIxlillyll

(B.13)

Any two vectors x and yin Ln are said to be orthogonal if and only if

(x, y) = 0 (B.I4)

L.

which represents a generalization of the ordinary concept of perpendicularity. If
each pair of vectors in a given set are mutually orthogonal, then the set is said to
be an orthogonal set. If, in addition, the vectors have unit norms, the vectors are
said to be orthonormal. Any set of mutually orthogonal nonzero vectors in L n is
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(B.15)

linearly independent. To show this, we assume that the orthogonal set of vectors
xI, X2, ... ', Xn satisfies a relation of the type (B.5) and form the inner products

o = (Xi,O) = (Xi, £¥IXI + £¥2X2 + ... + £¥nXn)

= £¥1(!Xi' XI) + £¥2(Xi, X2) + .. , + £¥n(Xi, Xn)

= £¥i (Xi, Xi), i = 1,2, ... , n

Because (Xi, Xi) #- 0, it follows that Eqs. (B.l?) can be satisfied if and only if all
the coefficients £¥i !ire identically zero, so that the set of vectors Xl, X2, ... , Xn must
be linearly independent. Owing to the independence property, orthogonal vectors,
and in particular orthonormal vectors, are convenient choices for basis vectors. A
classical example of an orthonormal set of vectors used as a basis are the unit vectors
ei, which explains why these vectors are referred to as a standard basis for Ln.

B.5 THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS

Orthogonal vectors are by definition independent, but independent vectors are not
necessarily orthogonal. A set of independent vectors, however, c.an be rendered
orthogonal. In computational work, it is often desirable to work with a set of orthog-
onal vectors, so that the procedure for rendering independent vectors orthogonal is
of special interest. The procedure is known as the Gram-Schmidt orthogonalization
process. ,

We consider the set of independent vectors Xl, X2, ... , Xn and denote the de-
sired orthogonal vectors by YI, Y2, ... , Yn' These latter vectors can be normalized by
dividing each of the vectors by its norm, so that the orthonormal vectors Yl: Y2, ... , Yn
are given by

i = 1,2,oo.,n (B.16)

The first vector of the desired orthonormal set is simply

(B.17)

The second vector, Y2, must be orthogonal to YI. A vector Y2 satisfying this condition
can be taken in the form

(B.18)

Indeed, we have
(B.19)

Of course, the vector Y2 can be normalized by using the second of Eqs. (B.16) to
obtain Yz. The third vector, Y3, can be written in the form

"

Y3 = X3 - (X3, YdYI - (X3, Y2)Yz
which is orthonormal to YI and Y2, as it satisfies

(B.20)

(Y3,YI)

(Y3, Y2)

(X3, YI) - (X3,YI) = 0
(X3, Yz) - (X3, Y2) = 0

(B.21)
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i-=l

Yi = Xi - L(xi, Yj)Yj,
j=l

which can be used to compute Yi. Clearly, Yi is orthon()rmal to Y1, Y2, ... , Yi-1 (i =
1, 2, ... , n). The process is concluded with the computation of Yn.

The Gram-Schmidt process described above can often yield computed vectors
that are far from being orthogonal (Ref. 3, p. 148). An orthogonalization process
mathematically equivalent but computation ally superior to the Gram-Schmidt pro-
cess is the modified Gram-Schmidt process. In the ordinary Gram-Schmidt process,
an orthonormal basis Yi (i ~ 1,2, ... , n) is computed in successive steps without
'altering the original vectors Xi (i = 1, 2, ... , n). In the modified Gram-Schmidt pro-
cess, however, upon computing Yi the vectors Xi+1, Xi+2, , Xn are also changed by
insisting that they be orthogonal to Yi, as well asto h,Y2, , Yi-1: The first step is
as given by Eq. (B.17), but in addition the vectors Xi (i = 2,3, ... ,n) are modified
by writing

. x?) = ,Xi - (h, Xi)Y1, i = 2,3, ... , n (B.23)

Forming the inner product (h, x?\ we concl~de that x?) (i= 2, 3, ~.. , i1) are all

orthogonal to Y1.·The next step consists of normalizing x~l) to produce Y2as well as
of modifying x?) (i = 3,4, ... , n) by writing

x?) = xil) - (Y2, X?))Y2' i = 3,4, ... n (B.24)

It is not difficult to verify that x?) (i = 3,4, ... , n) are all orthogonal to both Y1and

Y2. Of course, h is obtained by normalizing x~2). Generalizing, the jth step consists
of computingxY-1) and normalizing it to produce Yj, or

The vector Y3can be normalized to obtain Y3. Generalizing, we can write

i = 1,2, ... , n

~. _ (j-1)/11 (j-1).11YJ - xj xj

. and then computing the modified vectors

(B.22)

(B.25)

(j) (j-1) (~ (j-1))~
xi = Xi - Yj.' Xi. Yj, - j + 1, j + 2, ... , n (B.26)

. h d (j) h I ~ II ~ ~ ~wh1c ren ers xi ort ogona to Yj as we as to Y1,Y2, ... , Yj-1, or-

I· ,

The process is completed with the computation and normalization of x~n.-1), yielding
Yn·

When the vectors Xi (i = 1,2, : .. , n) are independent, the ordinary and the
modified Gram-Schmidt processes yield the same results. When the vectors Xi are
nearly dependent, however, the ordinary Gram-Schmidt process fails to yield or-
thonormal vectors, but the modified Gram-Schmidt process does yield vectors that
are nearly orthonormal (Ref. 3, p. 149).

~ (j) •.
(n, Xi ) = 0, k = 1,2, ... , j (B.27)
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Example B.3

Consider the vectors

(a)

and obtain an orthonormal basis in terms of these vectors by the modified Gram-Schmidt
process. Use Euclidean norms for the vectors.

From Eg. (B.17), we obtain the first normalized vector

(b)

so that, from Egs. (B.23), we can write

xiI) = X2-(YI,X2)YI = [j] -(~Ul [j])~U] ~[-iJ

(c)

The second vector of the orthonormal set is obtained by simply normalizing xiI), or

~ (I) (I) 1 [ ]
Y2 = X2 IIIx2 II =.J6 -i

Finally, from Egs. (B.24), we can write

X~2) = xjl) - (Y2, xjl»)Y2

(d)

~[_;] (_1 [ ~], ~[_;])_] [~] [_~] (e)
3 1 .J6 -2 3 1 .J6 -2 0

so that
" (2) (2) 1 [ ]Y3 = x3 IIIx3 II =.j2 -1

It can be verified easily that the vectors YI, Y2 and h are orthonormal.

B.6 MATRICES

(f)

(B.28)

A matrix is a rectangular array of scalars of the form

[

all a]2 aln]
A = a2l a22 ... a2n

am! am2 ••• am/1

The scalars aij (i = 1. 2, ... , m: j = 1, 2, ... , n), called the elements of A, belong
to a given field F. "Thefield is assumed to be either the real field R or the complex
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field C. Because the matrix A has m rows and n columns it is referred to as an m x n
matrix. It is customary to say that the dimensions of A are m x n. The position of
the element aij in the matrix A is in the i th row and j th column, so that i is referred
to as the row index and, j as the column index.

If m = n, the matrix A reduces to a square matrix of order n. The elements
au in t~e square matrix are called the main diagonal elements of A. The remaining
elements are referred to as the off-diagonal elements of A. In the special case in
which all the off-diagonal elements of A are zero, A is said to be a diagonal matrix.
If A is diagonal and if all its diagonal elements are unity, au = 1, then the matrix is
called unit matrix, or identity matrix, and denoted by I. Introducing the Kronecker
delta symbol aij defined as

{
1 if~.. -

IJ - 0 if
I

=J
i-J (B.29)

the id~ntity matrix can be regarded as a matrix with every element equal to the
Kronecker delta and can be written in the form I = [aij]. Similarly, a diagonal
matrix D can be written in terms of the Kronecker delta in the form D = [aijaij].

A square matrix A is said to be upper (lower) triangular if aij = 0 for i >
j (i < j). If the diagonal elements of an upper (lower) triangular matrix are unity,
then the matrix is referred to as unit upper (lower) triangular. A square matrix A
is said to be upper (lower) Hessenberg if aij = 0 for i > j + 1 (i < j - 1). If
A is upper and lower Hessenberg simultaneously, then it is said to be tridiagonal.
Clearly, a tridiagonal matrix has nonzero elements only on the main diagonal and on
the diagonals immediately above and below the main diagonal.

A matrix obtained from A by interchanging all its rows and columns is referred
to as the transpose of A and is denoted by AT. Hence,

(B.30)

It is obvious that if A is an m x n matrix, then A T is an n x m matrix.
Next, we consider a square matrix A. If the elements of A are such that

aij = aji, then the matrix A is said to be symmetric. Otherwise, the matrix is
nonsymmetric. Hence, a matrix is symmetric if A = AT. On the other hand, if the
elements of A are such that aij = -aji for i i- j and au = 0, then the matrix A is
said to be skew symmetric. It follows that A is skev~;symmetric if A = - AT.

A matrix consisting of one column and n rows is called a column matrix and
denoted by

•....

(B.31)
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,
The column matrix x can clearly be identified with a vector in Ln and is also known
as a column vector. The transpose of the column matrix x is the row matrix

(B.32)

and is also called a row vector.
A matrix with all its elements equal to'zero is called the zero matrix or the null

matrix and is denoted by 0, 0, or 01', depending on whether it is a rectangular, a
column, or a row matrix, respectively.

B.7 BASIC MATRIX OPERATIONS

Two matrices A and B are said to be equal if and only if they have the same number
of rows and columns and Qij = bi} for all pairs of subscripts i and j.

If A and B are two m x n matrices, then the sum of A and B is defined as a
matrix C whose elements are

i = 1,2, ... ,m; j = 1,2, ... ,n (B.33)

Clearly, C = A + B is also an m x n matrix. Matrix addition is commutative and
associative. Indeed, if A, Band C are arbitrary m x n matrices, then

A + B = B + A, (A + B) + C = A + (B + C) (B.34)

Thc product of a matrix A and a scalar a implies that every element of A is multiplied
by a. Hence, if A is an m x 11 matrix, then the statement C = a A implies

i = 1,2, ... ,m; j = 1,2, ... ,n (B.35)

(B.36)

Next we define the product of two matrices. If A is an m x n matrix and B is an
n x p matrix, then the product C = A B of the two matrices is an m x p matrix with
the elements

II

cij = Qilblj + Qi2b2j + ... + Qillbllj = LQikbkj
k=l

It is c1car from the above that the matrix product is defined only if the number of
columns of A is equal to the number of rows of B. In this case, the matrices A
and B are said to be conformable in the order stated. The matrix product AB can
be described as B premultiplied by A or A postmultiplied by B. It can also be
described as B multiplied on the left by A or A multiplied on the right by B. Matrix
multiplication is in gencral not commutative

AB =1= BA (B.37)

or, statcd differently, matriccs A and B do not commute. In fact, unless m = p, the
matrix product B A is not even defined. One notable exception is the casc in which
one of the matrices is the identity matrix because then

AI=IA=A·

Clearly, the order of I must be such that the product is dcfined.

(B.38)
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(B.39)

does not imply that either A or B is a null matrix, or both A and B are null matrices.
Indeed, an illustration of this statement is provided by

-1] = [0 0]
1 0 0,

• ! i

"
(B.40)

The matrix product satisfies assoCiative laws. If A, B'imd Care m 'x n, n x p
and p x q matrices, respectively, then it can be verified that

D = (AB)C = A(BC)

is an m x q matrix whose elements are given by .

'j , . (B.41)

(B.42)
p n n p

dij = L L aikbklClj = L L aikbklClj
1=1k=l 'k=l 1=1

The matrix product satisfies distributive laws. If A and Bare m x n matrices,
C is an n x m matrix and D is an p x q matrix, then it can be showl? that

C(A:+B) = CA + CB, (A + B)D = AD + BD (B.43)

If A is an m x n matrix and B is an n x p matrix, so that the product C = A B
is given by Eq. (B.36), then

(B .44)

(B.4S)

'..
To show this, we recognize that to any element aik in A corresponds the element ak;

in AT, and to any element bkj in B corresponds J~e element bjk in BT., Then the
product

n

Lbjkak; = Cji
k=l

establishes the validity of Eq. (B.44). In words, the transpose of a product of two
matrices is equal to the product of the transposed matrices in reversed order. As a
corollary, it can be verified that if . '

'then

C '. (B .46)

CT = A; A;_l ... AI Ai (B.47)

We have considerable interest in the concepts of inner product and orthogonality of
vectors, so that we will find it convenient to recast some of the relations in Sec. B.4
in terms of matrix notation. The inner product of two n-vectors x and y,Eq. (B.9),
can be expressed as

i
I

i

I
I
~---

xT Y' = yTx = C

and it represents a scalar. When the inner product is zero, or

. xT Y = yT x = 0

(B .48)

(B.49)
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the vectors x and yare said to be orthogonal.,
Less frequently, we encounter the outer product of two vectors x and y, defined

. as
xyT 0 = C (8.50)

and if'repre:sentsa matrix C. If x is an m-vectorOOand y an n-vector, then the matrix
Cis m x n. Clearly, the outer product is not symmetric in x and y, because

yxT = CT =f xyT (8.51)
.,

Example B.4

Calculate the matrix product A B , where

. ' ,
[2 -3]

A = 1 5' (a)

What can be said about the matrix product B A ?
The matrix product AB is formed as follows:

AB = [2m - 3(-1)
1(1)+5(-1)

2(3) - 3(4)
1(3) + 5(4)

2(7) - 3(2) ] [5 -6 8]
1(7) + 5(2) -4 23 17

(b)

The matrix product B A is not defined, because B is a 2 x 3 matrix and A a 2 x 2 matrix
and hence the matrices are not conformable in that order.

Example 8.5

Calculate the matrix products AB and.~ A, where

[0 1]'A.= 1 0 ' [
.20 4 1 -2]

B =-1 5 7 03' t ~[ ~~]
-2 2'

(a)

The matrix products A Band C A are as follows:

[
-1 5 7 3]

AB = 2 4 1 -2 ' CA = U j] (b)

We observe that the matrix A B is obtained from B by interchanging the rows. Similarly,
C A is obtained from C by interchanging the columns. Hence, the effect of premulti-
plying a matrix by A is to permute its rows and the effect of post multiplying a matrix
by A is to permute its columns. For this reason, A is called a permutation matrix. In
general, a permutation matrix is a matrix obtained by interchanging rows or columns of
the identity matrix.

B.8 DETERMINANTS

If A is any square matrix of order n with elements in the'field F, then it is possible to
associate with A a number in F called the determinant of A, and denoted by det A
or IA I. The determinant of A is said to be of order n and can be exhibited in the
form

det A IAI =

all al2 alll

a21 a22 a2n (8.52)



676 Elements of Linear Algebra Appendix B

Determinants have many interesting and useful properties. We examine only those
properties pertinent to our study.

Unlike the matrix A, which represents a given array of numbers, the determi-
nant of A represents a single number with a unique value that can be calculated by
following rules for the expansion of determinants ..The expansion rules can be most
conveniently discussed by introducing the concept of minor determinants. The mi-
nor determinant IMrs I corresponding to the element ars is the determinant obtained
from IAI by striking out the rth row and sth column. Clearly, the order of IMrsl is
n - 1 The signed minor determinant corresponding to the element ars is called the
cofactor of ars and is given by ,

detArs = IArsl = (-lr+sIMrsl (B.53)

. The value of the determinant of A can be obtained by expanding in terms of cofactors
by the rth row as follows:

n

IAI = L:arslArsl
s=l

The determinant can also be expanded by the sth column in the form
n

IAI = L:arslArsl
r=l

(B.54)

(B.55)

The value of the determinant is unique, regardless of whether it is expanded by a row
or a column, and regardless of which row or column. The expansion by cofactors is
known as a Laplace expansion. The cofactors IArsl are determinants of order n -1.
It n = 2, then these cofactors are simply scalars. It n > 2, then these cofactors
can be expanded in terms of their own cofactors, and the process repeated until the
minor determinants are of order 2. As an illustration, let n = 3 and expand det A
by the first row,as follows:

det A
all a12 a13
a21 an a23 = alllAlll + aniAni + a13IA131

a31 a32 a33

I~ ~I ·I~ ~I+ I~ ~Iall - al2 a13
a32 a33 a31 ·a33 a31 a32

all(ana33 - a23a32) - a12(a21a33 - a23a31)
+ a13(a21a32 - ana31) (B.56)

Because the value of det A is the same, regardless of whether the determinant
is expanded by a row,or a column, it follows that

det A = det AT (B.57)

or the determinant of a matrix is equal to the determinant of the transposed matrix. It
is easy to verify that the determinant of a triangular matrix is equal to the product of
the main diagonal elements. It follows immediately that the determinant of a diagonal
matrix is equal to the product of the diagonal elements, and the determinant of the
identity matrix is equal to 1.
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(a)

If det A = 0, then the matrix A is said to be singular, and if det A =I 0,
the matrix is nonsingular. Clearly, a matrix with an entire row or an entire column
equal to zero is singular. The evaluation of determinants can be greatly simplified by
invoking certain properties of determinants. In fact, it is often possible to establish
that a determinant is zero without actually expanding it. From Eq. (B.54), one can
deduce the following properties:

1. If two rows (or two columns) are interchanged, then the determinant changes
sign.

2. If all the elements of one row (or of one column) are multiplied by a scalar a,
then the determinant is multiplied by a.

3. The value of a determinant does not change if one row (or one column) mul-
tiplied by a scalar a is added or subtracted from another row (or another
column).

4. If every element in one row (or one column) is the sum of two terms, then
the determinant is equal to the sum of two determinants, each of the two de-
terminants being obtained by splitting every sum so that one term is in one
determinant and the remaining term is in the other determinant.

..
The above properties permit us to make two observations. Property 2 implies that
det (aA) = an det A, where a is a scalar and n is the order of the rriatrix. On the
other hand, property 3 implies that a determinant with two proportional rows, or two
proportional columns, is equal to zero. Pr<?perty3 can be used in general to simplify
the evaluation of a determinant, and in particular to show that its value is zero, if
indeed this is the case.

Example B.6

Calculate the value of the determinant

'A'=liJ-~1
Expanding by the first row, we obtain

A = 3\_i ;1-21~ ;1-11~ -il
= 3[5(2) - 2(-1)] - 2[1(2) - 2(3)] - [1(-1) - 5(3)] = 60 (b)

On the other hand, subtracting three times the second row from the first and third rows,
we can write

1

0 -13 -271
A = 1 5

o -16 -4

Next, expanding by the first column, we obtain

1

-13 -71 .A = - = [(-13)(-4) - (-7)(-16)] = 60-16 -4

which is the same value as that given by Eq. (b).

(c)

(d)
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B.9 INVERSE OF A MATRIX
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If A and B are two nx n matrices such that ,

AB=' B A = I,-
then B is said to be the inverse of A and is denoted by

B = A-1
.i~< ~

(B.58)

(B.59)

Note that at the same time A is the inverse of B, A = B-1.

Next, we derive a formula for the inverse of a matrix. To this end, we consider
Eq. (B.53) and introduce the adjugate of A in the form
i.•.: adj A = [(-lr+sIMr;I]T

j .f'j, •

where (_l)r+s IMrs I is the cofactor corresponding to ars. Then we can write

(B.60)

(B.61)

(B.63)

,".,

A adjA ~ [t,(_l)'h~p'IM"I~

Recalling Eq.(13~54),we conclude that every element of A adj A can be regarded as
a.4eterminantal expansion. When p = r, ti!e element is simply equal to det A. On
the other hand, whenp =j:. r the result is zero. This can be explained by recognizing
that the determinant corresponding'to p =j:. r is obtained from the matrix A by

: .': .;- ....

replacing the rth row by the pth row and keeping the pth row intact. Because the
correspond~ng determinant has two identical rows, its value is zero. In view of this,
Eq. (B.61) can be rewritten as

A adj A = (det A)I (B.62)

where I is the identity matrix of order N. Multiplying Eq. (B.62) on the left by A-1

and dividing through by det A, we obtain

A -1 = adj A
det A

If det A = 0, then no matrix B exists such that Eq'. (B.58) is satisfied. To show
this, we invoke the following theorem (Ref. 2, p. 134): If A and Bare n x n matrices,
then

det AB = det A det Jj (B.64)

I
I

l.t "

But, from Eq. (B.58), we conclude that det'AB = I if B = A-1 exists, so that
det A =j:. O. Hence, if det A = 0, Eq. (B.58) cannot be satisfied, so that B = A-1

does not exist. Recalling that when det A = 0 the matrix is singular, it follows that
an n x n matrix A has an inverse if and only if A is nonsingular.

To calculate the inverse of a matrix of large order by means of formula (B.63)
it is necessary to evaluate a large number of determinants. For example, if A is of
order n, then the calculation of det A requires the evaluation of n! /2 determinants
of order 2. Hence, as n increases, it is necessary to carry out an increasingly large
number of multiplications with a progressive loss of accuracy, so that the use of the

~- -- -_._--~
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formula (8,63) is not recommended. In this text we study more efficient and more
accurate methods for the calculation of the inverse of a matrix (see Sec. 6.1).

Next we consider the product of matrices given by Eq. (B.46). Multiplying both
sides ofEq. (B.46) on the right by A.;I, A;~I' .:., All, in sequence, and then on the
left by C-1 , we obtain ..• J.

C-1 = A-1A-1 A-lA-Is s-1 ... 2 1 (B.65)

or the inverse o/a product o/matrices is equal to the product o/the inverse matrices in
reversed order. Of course, Eq. (B.65) implies that all the inverse matrices in question
exist.
Example 8.7 : . \

Calculate the inverse of the matrix

A = [! _~-n
First, we evaluate the minor determinants

(a)

I

IM13I'='I~IMil I = I_~ ; 1~ 12: . . 11
;1 = -~, .51=_16IMd= 3 -1

IM2I1 = I-~ -11_ 3, IMzzI = I; -11_ 9, IM231 = I; -il= -9 (b)2 - 2 -

IM311 = 1
2

-;1= IM321 = Ii -11_
; .

IM331 = Ii ;1 =5
9, 2 - 7, 13

Using Eq. (8.60), we obtain the adjugate matrix

. [' 12 -(3) 9]
adjA.= -(-4) 9 -(7) =

. (-16) -(-9) 13
(c)

Recalling from Example 8.6 that det A= 60 and using Eq. (8.63), we obtain

A-I = 2- [ 1~ -~ _;]
60 -16 9 13

B.10 PARTITIONED MATRICES

(d)

On occasion it is convenient to partition matrices into submatrices. Then, under
proper circumstances, certain matrix operations can be performed by treating the
submatrices as if they were single elements. As an example, we consider a 3 x 4
matrix A and partition it as follows:

r

A
[

1 ]

011 012: 013 014
1

a21 022: a23 a24
- - - - - - -1- - - - - --

a31 a32:. a33 a34

(B.66)
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where·
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(B.67)[ al1. ,al2 J, ' Al2 - [al3 al4 ]
a2l ,a22 .; .h' ., a23 a24

A2l [ a3l a32 ] , A22. = (!133 a34 ]

are the submatrices of A. Next, we consider a 4 x 4 matrix B partitioned in the form
1

bl1 bl2 1 bl3 bl41
1

~.[!t;+i~]b21 . b22 1 b23 b24\
B 1 (B.68)= -------1-------

b3l b32 1 b33 b341
1

b4l b42 1 b43 b441

where

[ bll bl2 ] Bl2 [bl3 bl4 ]
b21 b22 ' b23 b24

[
b3l b32 ] B22 [ b33 b34 ]
b4l b42 ' b43 b44 ....,

It is not difficult to verify that the matrix product AB can be obtained by treating
the submatrices Aik and Bkj as if they were ordinary matrices. Indeed, the elements
of the product C = AB are

I
2

Cij = L AikBkj,
k=l

It should be pointed out, however, that products such as (B.70) are possible only if
the matrix Aik has as many columns as the matrix Bkj has rows, which is clearly true
in the particular case at hand ..

If the off":diagonal submatrices of a square matrix are null matrices, then the
matrix is said to be block-diagonal. For block-diagonal matrices, the determinant
of the matrix is equal to the product of the determinants of the submatrices on the
main diagonal. For example,· if Bl2 and B2l in Eq. (B.68) are null matrices, then

det B·= det Bl1 det B22 (B.71)

Bll

i, j ,= 1,2

(B.69)

(B.70)

Actually the above statement is true even if the matrix is only block-triangular, i.e.,
if only the submatrices abbve (or below) the main diagonal are null matrices.

B.11 SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

We consider a system of m nonhomogeneous linear equations in n unknowns Xl, X2,
.•• , Xn of the form .

al1Xl + al2X2 + + alnXn = Cl

a21Xl + a22X2 + + a2nXn = C2
(B. 72)
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l
The system of equations can be written as the compact matrix equation

Ax = c (B.73)

where A = [aij] is an m x n matrix known as the matrix of the coefficients, x =
[Xl X2 ... xnf is the n-vector of the unknowns and c = [Cl" C2· .. cmf is the m-
vector of "nonhomogeneous terms." Our interest is in the conditions under which
Eq. (B.73) has a solution.

The matrix A can be partitioned into n column vectors of dimension m in the
form

(B.74)

where 31 = [all a21 ... amlf, etc., are the column vectors. In view of this, the matrix
product Ax can be looked upon as a linear combination of the columns of A, so that
Eq. (B.73) can be written as

Equation (B.75) implies that the set of all products Ax is the same as the set of linear
combinations of the columns of A. The subspace of L m spanned by the columns of
A is called the column space of A and denoted by R.(A). If y is an m-vector, then
yT is a row vector with m components. Now, if A is partitioned into m row vectors,
then the product yTA is linear combination of the rows of A whose coefficients are
the components of y. Hence, the row space of A, written R.(AT), is the subspace of
L n spanned by the row vectors of A.

Next, we define the rank of a matrix A, denoted by rank A, as the dimension of
the linear space spanned by its columns. Because the latter is simply the dimension

" of·R.(A), we have
; ,f rank A = dim R.(A)

(B.75)

(B. 76)
. "

It would appear that rank A should have been more properly.referred to as the
column rank of A, which would have naturally called for the introduction of a row
rank of A as the dimension of R.(A T). It turns out, however, that the column rank
and row rank of any matrix A are equal (Ref. 4, p. 93), so that no such distinction
is necessary. In view of the definition of the dimension of a linear space, it follows
that the rank of a matrix A is equal to the maximum number of linearly independent
columns of A, and it is also equal to the maximum number of linearly independent
rows of A, where the two numbers must be the same.

There is one more vector space associated with any m x n matrix A, the
nullspace of A. It is denoted by N(A) and defined as the space of all the solu-
tions x#-O satisfying the homogeneous equation Ax = O. The dimension of the
nullspace Nis called the nullity of A, dim N = null A.

Let us return now to Eq. (B.73) and introduce the augmented matrix of the
system defined by

[

all al2 aln C[]
a.2~ ~~2 ~~Il ••• ~.~

amI am2 amn Cm

__ ...-...--~~~,J
B [A, c] (B.77)
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Then, Eq. (B.73) has a solution x if and only if the rank of the augmented matrix
B is equal to the rank of A. If a solution x exists, then c is a linear combination
of the columns of A and hence lies inR(A). It follows that 'R(B) =R(A), and
rank B = rank A. "

The rank of an arbitrary matrix can be connected with the order of its nonsin-
gular square submatrices. Indeed, the rank of any matrix A is equal to the order of
the square submatrix of A of greatest order whose dete;minant does not vanish. It
follows that:

(a) If m :::n, then the largest possible rank of A is n. If rank A = rank B = n,
then Eq. (B.73) has a unique solution.

(b) If m < n, then the largest possible rank of A is m. If rank A = rank B = m,
then Eq.' (B.73) has an infinity of solutions. A unique solution can be chosen in
the form of the solution with the minimum norm

(B.78)

where AA T is an m x m matrix of rank m and is therefore nonsingular.
The case in which the number of equations is equal to the number of unknowns is of
particular interest. If A is a square matrix of order n, then the following statements
are equivale!lt:

1. ,The rank of A is n, rank A = n.
2. The system Ax = c has a unique solution for arbitrary vectors c.
3. The system Ax = 0 has only the trivial solution x = 0, which implies that

'null A = O~

The implication of statements 1 and 2 is that the matrix A is nonsingular, so that A
possesses an inverse. Considering the case in which the matrix A in Eq. (B.73) is
square and pre multiplying both sides of the equation by A -1, we obtain

, • f

X = A -lc (B.79)

Hence, when A is nonsingular the solution of Eq. (B.73) can be produced by simply
calculating the inverse of A. We have shown in Sec. B.9 that A-1 can be obtained
by dividing the adjugate of A by the determinant of A; this method for solving sets
of simultaneous equations is generally known as Cramer's rule. This approach is
mainly of academic interest, and in computational work the procedure is seldom
used, especially for large order matrices A. Indeed, the procedure involves the
evaluation of a large number of determinants, which is time-consuming and leads
to loss of accuracy. In Sec. 6.1, we discuss a more efficient method for deriving the
solution of Eq. (B.73), namely, the Gaussian elimination.

Next, we turn our attention to the homogeneous system Ax = O. As pointed
out earlier, the matrix product Ax represents a linear combination of the column
vectors of A. Because this linear combination must be equal to zero, it follows from
Sec. B.2 that the columt:ls of A are not independent. Hence, the rank of A must be
less than n, so that det A = O. This conclusion can be stated in a more formal manner
by means of the well-known theorem of linear algebra: If A is an n x n matrix, then
the equation Ax = 0 has a nontrivial solution xi' 0 if and only if det A = 0,

-----~~~~--------~-------_._- "- ----,---'"
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As an application of the above theorem, let us devise a test for the dependence
of a set of n-vectors Yl Y2, ... , Yn' If the vectors are to be linearly dependent, then
they must satisfy a relation of the type

alYl + a2Y2 + ... + anYn = o. (B.80)

where ai, a2, ... , an are constant scalars. Next we form the inner products (Yi, Yj)·
We have shown in Sec. B.6, however, that vectors can be represented by column
matrices. In view of this, the inner product can be written in the matrix form

Hence, premultiplying Eq. (B.80) by Y; , yr, , y~., in sequence, we obtain

alY; Yl + a2Y{Y2 + + anY; Yn 0

alyfYi + a2yr Y2 + + anyr Yn 0

(B.81)

(B.82)

-1' -1' -1'
alYn Yl + a2Yn Y2 + ... + anYn Yn = 0

Equations (B.82) represent a set of n homogeneous simultaneous equations in the
unknowns ai, a2, ... ,an' By the theorem just presented, Eqs. (B.82) have a non-
trivial solution if and only if the determinant of the coefficients vanishes, or

-1' -1' -1'
Yl Yl Yl Y2 Yl Yn
-1' -1' -1'

IGI.= Y2 Yl· Y2 Y2 Y2 Yn 0 (B.83)

-1' -1' -1'
YnYI YnY2 ... YnYn

where IG I is known as the Gramian determinant. Hence, a necessary and sufficient
condition for the set of vectors Yl, Y2, ... ,Yn to be linearly dependent is that the
Gramian determinant be zero.

As a simple illustration, we consider the unit vectors ei given by Eqs. (B.6).
In this case, the Gramian matrix G is equal to the identity matrix, G = I, so that
IG 1= 1. Hence, the unit vectors ei are linearly independent.

Example B.8

Determine the rank and nullity of the matrix

[

2 -1
A = 1 5

5 . 3
-I 6

4
-2

6
-6

(a)

It is not difficult to verify that det A = 0, so that rank A < 4. Hence, at least
one of the columns (rows) of A is a linear combination of the other. By inspection, we
observe that adding twice the first row to the second we obtain the third row. Moreover,
subtracting the first row from the second we obtain the fourth row. Further search will
reveal no other combinations of rows, so that two rows of A are linearly independent.
It follows that rank A = 2.
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To determine the nullity of A, we determine first the null space of A by solving
the equation

Ax = 0

which can be written in the explicit form

2.\) - X2 +.4X3 + 3X4 = 0

Xl + 5x2 - 2X3 + 4X4 = 0

5Xl + 3X2 + 6X3 + 10x4 = 0

-Xl + 6X2 - 6X3 + X4 = 0

The above four equations can be reduced to the two equations

Xl + (18jU)x3 + (19jU)x4 = 0

X2 - (8jU)X3 + (5jU)x4 = 0

(b)

(c)

(d)

while the remaining two equations are identically zero. It can be verified that every
solution of Eqs. (d) can be written in.the form

where

(e)

"I = [-18 8 U of, "2 = [-19 - 5 0 uf (f)

The vectors "1 and "2 are clearly independent and they span the null space. Hence, they
form a basis for the space. The dimension of the null space :N(A) is two, dim N = 2,
so that the nullity of A is two, null A = 2.

, B.12 LINEAR TRANSFORMATIONS

As shown in Sec.B.3, any n-vector x in Ln with components Xl, X2, ... , Xn can be
expressed as the linear combi1,1ation

(B.84)

where ej (i = 1,2, ... ,n) are the standard unit vectors. Moreover, the scalars
Xl, X2, , Xn are called the coordinates of the vector x with respect to the basis
el, e2, , en (Fig. B.2). Next, we consider an n x n matrix A and write

x' = Ax (B.85)

The resulting vector xlis another ~ector in L n, so that Eq. (B.85) represents a linear
transformation on the vector space L n which maps the vector x into a vector x'.
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Figure 8.2 Decomposition of a three-dimensional vector X in terms of the
standard basis e" e2, e3 and an arbitrary basis PI, P2' P3

Our interest lies in expressing the vector x in terms of any arbitrary basis
PI, P2, ... , Pn for Ln, rather than the standard basis, as follows:

n

X = YIPI + Y2P2 + ... + YnPn = LYiPi
i=l

where
•• P = [PI P2 .,. Pn]

IS an n x n matrix of basis vectors and

Py (B.86)

(B.87)

(B.88)

is an n -vector whose components YI, Y2, ... , Yn are the coordinates of x with re-
spect to the basis PI, P2, ... , Pn (Fig. B.2). By the definition of a basis, the vec-
tors PI, P2, ... ,Pn are linearly independent, so that the matrix P is nonsingular.

-
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Similarly, denoting by y~, y~, ... , y~ the coordinates of x' with respect to the basis
PI, P2, ... , Pn, we can use the analogy witlfEq. (B.86) and write

x' = Py'

Then, in,serting Eqs. (B.86) and (B.89) into Eq. (B.85), we have

Py' = A(Py)

so that, premultiplying both sides of Eq.(B.90) by p-l, we obtain

y' = By

where

(B.89)

(B.90)

(B.91)

(B.92)

The matrix B represents the same linear transformation as A, but in a different coor-
dinate system. Two square matrices A and B related by an equation of the type (B.92)
are said to be similar and Eq. (B.92) itself represents a similarity transformation.

A similarity transformation of particular interest is the orthonormal transfor-
mation. A matrix P is said to be orthonormal if it satisfies

pT P = I

from which it follows that an orthonormal matrix also satisfies

p-l = pT

Introducing Eq. (B.94) into Eq. (B.92), we obtain

B = pT AP

(B.93)

(B.94)

(B.95)

Equation (B.95) represents an orthonormal transformation, a very important special
type of similarity transformation, particularly when the matrix A is symmetric.

B.13 THE ALGEBRAIC EIGENVALUE PROBLEM

The equations for the free vibration of discrete systems can be written in the state
form

dx(t) J ,
-- = Ax(t)

dt
(B.96)

where x(t) is the n-dimensional state vector and A is an n x n matrix of coefficients,
Equation (B.96) represents a set of homogeneous ordinary differential equations and
has the solution

(B.97)

in which A is a constant scalar and x a constant vector. Inserting Eq. (B.97) into
Eq. (B.96) arid dividing through by eAt, we obtain

Ax = AX • (B.98)
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Equation (B.98) represents the algebraic eigenvalue problem and can be stated as
follows: Determine the values of the parameter A so that Eq. (8.98) admits nontriv-
ial solutions. The values of A are known as eigenvalues and are the roots of the
characteristic equation ' .

det (A - Al)" = 0 (B.99)

Similarity transformations are often used in numerical algorithms for the alge-
braic eigenvalue problem. To examine the reason why, we consider Eq. (B.92) and
write the characteristic determinant . :

det (B - AI) = det(P-1AP - AI) = det (P-l(A - Al)P)
det p-1det (.4. - AI)det P (B.100)

But,

so that

I
det (p~l P) = det p-1 det P

det (B :.- Al) = det (A - AI)

1 (B.101)

(B.102)

Because matrices A and B possess the same characteristic determinant, they pos-
sess the same eigenvalues. It follows that eigenvalues do not change under similarity
transformations. Of course the similarity transformations generally used in numer-
ical algorithms for the solution of the eigenvalue problem are orthogonal transfor-
mations.

The characteristic determinant can be expressed in the form of the characteristic
polynomial

det (A - AI)
n

(-It n(A - Ai)
i=l

(B.103)

where n is the product symbol. Because the eigenvalues do not change under
similarity transformations, it follows that the coefficients Ci(i = 1, 2, ... , n) of the
polynomial are invariant. Two of the coefficients have special significance, namely,
Cl, and Cn. It can be verified that

Cl = - in Ai = - in aii = -trA (B.104)
i=l i=l

in which tr A denotes the trace of the. matrix A, defined as the sum of the diagonal
elements of A. Hence, the trace of Ais invariant under similarity transformations.
Similarly, it can be shown that .

n

Cn = n(-Ad
i=l

n

(_1)n n Ai = (-l)ndetA
i=l

(B.105)

from which we conclude that the determinant of A is invariant under similarity trans-
formations .

-'
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8.14 MATRIX NORMS

,Elements of Linear Algebra : Appendix B

As with vectors, it is useful to assign a single number to a matrix, thus providing a
measure of ithe magnitude of the matrix in some sense'. Such a measure is provided
by the norm. The norm of a square matrix A is a nonnegative number IIA IIsatisfying
the conditions '

1. IIAII2: 0, IIAII= 0 if and only if A = O.
, ,

2. IIkAl1= IklliAIl for any complex scalar k.

3. IIA+ BII s IIAII+ IIBII.
4. IIABII s IIAII. IIBII.

Corresponding to any vector norm, one can associate with any matrix A a nonnega~
tive quantity defined by maxllAxll/llxll, IIxll"10. This quantity is a function ofthe
matrix A and it satisfies the conditions of a matrix norm. It is called the matrix norm
subordinate to the vector norm. Because

IIAII
IIAxl1= max--
IIxll '

IIxll "10 (B.l06)

we have
IIAxll s IIAII . IIxll (B .107)

where inequality (B.104) istruefor IIxll"I Oortor IIxll= O. Matrix and vector norms
satisfying an inequality of the type (B.l04) for all A and x are said to be compatible.
Hence, a vector norm and its subordinate matrix norm are always compatible.

A matrix norm of particular importance is the Euclidean norm, denoted by
II AllE and defined as

(B.l08)

The Euclidean norm has the advantage that it is easy to compute. Moreover, it has
the important property that its value is invariant under orthogonal transformations
(Ref. 3, p. 287).
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Constraint(s):

equation(s), 75,77,562
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kinematical, 76
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linear, 283,314
in the mean, 383
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Coordinate functions, 523
Coordinate transformation, 75,234,628

(see also Mapping)
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area, 613
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generalized, 74-76
ignorable, 96 -
modal, natural, normal, or principal,
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Corner condition, 445
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theorem, 249,461,523,644
Critical air speed, 552
Critical behavior, 169
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Cubic convergence, 283,318,326
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D' Alembert's principle, 80-82 .,
Damped systems, 108-111,113-119

structurally, 119-121
Damper, viscous, 55
Damping:

coefficient(s), viscous, 55,104,142,
164
complex, 121
critical, 110
factor, 108,485
hysteretic, (see structural)
Kelvin- Voigt model, 484
matrix, 144,148,164,166
proportional, 243-245, 483
structural, 119-121,484
viscous, 55,482,483

Data-hold circuit, 37
Decaying oscillation, 109
Deflated matrix, 286, 339
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Deflation (matrix), 287,339
Degenerate modes, 437,440
Degrees of freedom, 74-76
Delta function, Dirac, 17

spatial, 469,491,547
Delta, Kronecker, 672
Denumerably infinite set, 380
Deterrninant(s), 270,676-678

Gramian, 683
Determinant(s), characteristic, 173
DiagonalizatlOn method, 235,292

(see also Jacobi method)
Differential eigenvalue problem, • ,

(see Eigenvalue problem (differen-
tial»

Differential expression, 380
Differential operator,. 3,4,8,380

inverse of, 10 '
Digital signal, 38
Digital-to-analog converter, 38
Dirac delta function, 17

spatial, 469,491,547
Discrete-time:

impulse response, 39, 42, 1.30
signal, 37,38
step response, 42, 130
systems, 36-44,130-134,212-214
transition matrix, 41,128,213
unit impulse, 39

Dissipation function, 143,164
Rayleigh's, 142

Distortion angle (due to shear), 424
Divergence, 552
Divergence theorem, 432
Dominant eigenvalue, 284
Double pendulum, 75
Driving frequency, 11
Dual expansion theorem, 192
Dynamic boundary conditions, (see

Natural boundary conditions)
Dynamic potential, 94, 144, 151, 152,

160
Dynamical matrix, 287,503
Dynamical path, 83,149

Eigenfunctions, 380, 392, 397, 401 , 402
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Eigenvalue(s), 168,173,174,184,186,
190,380,391,687
denumerable, 380, 391
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multiplicity, 174, 186,286
perturbations, 260
repeated, 175,236,286,386

geometric interpretation, 236
shift in, 173,288,316,321,326,349
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zero, 180,396,403,430,509

Eigenvalue problem (algebraic), 168;
172,190,687-688
adjoint, 190
for real nonsymmetric matrices,
189-195
for real symmetric matrices, 171-185

geometric interpretation, 232-237
self-adjoint, 190,261

Eigenvalue problem (differential),
377-390,413-421
for beams in bending, 379,400-406
for membranes, 433,435
for plates, 449 .
for rods in axial vibration, 393-397
for shafts in torsion, 398-400
for strings in transverse vibration,

377-380,390-393
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Eigenvalue problem (differential)(con-
tinued)
variational fnrmulation, 458-461
weak form, 460,643

Eigenvalue problem, integral form,
461-468,503

Eigenvalue shift, 173, 28H,316,321,326,
349

Eigenvector(s), 168, 173
adjoint, 190
biorthogonality, 191,260
left, or right, 190
normalization, ]75
orthogonality, 174
perturbations, 261
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conforming, 635,642
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nonconforming, 635,636,642
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616,625,638
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Geometric boundarv conditions)
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invariance of, 294,68H
Euclidean space, 149,233,244,668
Euler-Bernoulli beam, 371
Expansion theorem, 178,179,191-193,

387,418
Exponential order, 656
Extended Hamilton's principle, 84,364,

372,425,478
External nodes, 598,601
Field, in step-by-step methods, 51]
Field transfer matrix, 512,517
Filter, low-pass. 1]2
Finite element domain, 60H
Finite clement method, 587-590,644,

647-651
convergence of, 595,603
h-version, 645
hierarchical, 645-647
p-version, 645

Finite elements, 587
mesh, 587
one-dimensional, 590
two-dimensional,

quadrilateral, 623,634
rectangular, 623

triangular, 608
Finite energy, function with, 3H I
First integral of motion, 96,97
First-order perturbation, 260
Flexibility influence coefficients, 503,

511,516
Flexibility influencc' function, 462,503
Flexibility matrix, 503
Flutter. 548-554
Fourier series, 121,122
Fredholm integral equation, 463 ,
Free vibration, 106,171-195,377-379
Frequcncy(ies):

of damped oscillation, 109
excitation, or driving, II
natural, 106, 108, 180,391

Frequencyequation, 391,436,513,5]8
(see a/so Characteristic equation)

Frequency response, 13,14,111-113,
123 ,
relation to transfer function, 16

Frequency spectrum:
continuous, 393
discrete, 123.] 24,392

Funetion(s):
admissible, 385,460,526,537,565,

566,570,587' ,
comparison, 3H5,414
complete (set of), 383

in energy, 385
with finite energy, 391
inner product of, 3Hl
linearly independent (dependent),

381
negative definite (senlidefinite), 156
norm of, 381
orthogonal, or orthonormal, 3Hl, 385,

386
positive definite (semidefinite), 156
quasi-comparison, 539,557,571
sign-variable, 156
square summable, 381

Function space, 387,523,588
basis for, 387,5H8
complete, 387,523

Fundamental frequency, 391

Galerkin's method, 546-547,551,
557-55H

Gaussian elimination, 269-280
Gauss-Jordan reduction, 275
General eigenvalue problem, 190

(see a/so Eigenvalue problem (alge-
braic))

Generalized:
coordinates, 74-76,78, 142
forces, 79,90,142,199,470
functions, 17-24
impedance, 8,12,16
momentum(a), 92, 145
velocities, 92,93, 142
virtual displacements, 79

Geometric boundary conditions, 367
Gerschgorin disks, 256,310
Gerschgorin's theorem(s), 2,~6-259,310
Givens' method for cigenvalue(s);

310-315
Givens' tridagonalization method,

298-303
Global basis, 588
Global mass matrix, 594,599,6]8,626
Global stiffness matrix, 594,599,617,

626
Global truncation error, 216

.-
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Gram-Schmidt orthogonalization, 245,
329,382,669-671

Gramian determinant, 683
Gramian matrix, 683
Green's function, 462,463
Gyroscopic:

coefficients, 165
forces, 94,142 "
matrix, 14H,165, 166

Gyroscopic systems, 183-189,204-206,
254-255,477-482

h-version, finite element method, 645
Half-bandwidth of matrix, 594,623
Half-power points, 115
Hamilton's equations, 91-95,143, ]45
Hamilton's principle, 82-88

extended, 84,334,372,425,478
Hamiltonian, 92,159

conservation of, 97,159
as a Liapunov function, 15H-162

Harmonic:
fundamental. 391
overtones, 391

Harmonic oscillator, 107
Hermite cubics, 604,645
Hessenbcrg form. 343-348
Hierarchical finite clement method,

572,645-647
Hierarchical functions, or polynomials,

645 .. ,
Hilbert space, 387

(,lee a/so Function space)
Holonomic system, 85
Holzer's method, 509-5] 5
Homogeneous:

boundary condition, 486
differential expression, 3HO
differential operator, 8,380
solution, 6

Hotelling deflation, 287,340
Householder transformation, 303
Householder's tridagonalization

method, 303-307
Hysteresis loop, 120
Hysteretic damping, (see Structural

damping)
Hysteretic damping matrix, 203

Ignorable coordinate(s), 96
Impedance, 8,12,16,196
Imposed boundary conditions, (see

Geometric boundary conditions)
Impulse, unit, 17
Impulse response, 18,22,126

discrete-time, 39,42,130
relation to step response, 2]

Inclusion principle, (see Separation
theorem)

Inconsistent mass matrix, 644
Inertia coefficients, 163
Inertia force, 81
Inertia matrix, 70,163
Influence coefficients, 503,511
Influence function, flexibility, 462,503
Initial conditions, 7,8, 198
Initial displacement(s), 7,8,104,106,

198, 200, 470
rcsponse to, 472-473

Initial excitations, H-IO,104-111
Initial velocity(ies), 7,8,106,198,470

response to, 200
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Laplace expansion, of determinants,
678

Laplace operator, 432,435,439,448
Laplace transformation(s), )5,17, '

656-662
Least squares approximation, 383
Least squares method, 338
Length of vectors, .

(see Euclidean norm, ,ofvectors)
Liapunov direct method, or second

method, 154-162
Liapunov function, 155
Liapunov stability definitions, 154
Liapunov stability theorems, 157-160
Linear algebra, elements of, 663-688
Linear algebraic equations, 269-280,

681-684
Linear combination, 382, 665
Linear convergence, 283,314
Linear elements, 590-598
Linear independence (dependence),

381, 665-666
Linear interpolation functions, 590-598
Linear momentum, 52,67,505

conservation of, 53, 66
Linear operator, 380
Linear system(s), 1,3,4,8
Linear transformation(s), 157,176,

684-686
Linear vector spaces, 663-665
Linearization about equilibrium,

162-167
Linearized equations of mqtion, 165
Lipschitz condition, 215
Local basis, 588
Local coordinates, 591,611-613
Local truncation error, 216 '
Longitudinal vibration,

(see Rods in axial vibration)
Low-pass filter, 112
Lower bound, 239
Lumped mass matrix, 503,644
Lumped-parameter method:

employing influence coefficients,
502-509
Holzer's, '509-515
Myklestad's, 515-518

Lumped-parameter model(s), 54,503;
504,510

Mapping (isoparametric), 629,630
Mass center, 65
Mass coefficients, 163,524
Mass matrix, 163,166,170,526,545,548

consistent (inconsistent), 644
lumped, 503,644

Mass operator, 413,415,429
Master element, 629
Matrix(ces):

circulatory, 144,148,164,166
of coefficients, 34,35,168
Coriolis, (see gyroscopic

damping), 144,148,164,166,203
de'flated, 286
dynamical, 287
of eigenvalues, 175
of eigenvectors, 175
flexibility, 503
gyroscopic, 148/165,166
impedance, 196
inertia, 70,163
mass, 163,166,169,525,545,548

consistent (inconsistent), 644
lumped, 503,644

modal, (see Modal matrix)

t /
i

Inner product:
energy, 384
of functions, 381
kinetic energy, 414
potential energy, 414
space, 667
of vectors, 667, 668

Integral equation, Fredholm's, 463
Integral form of the eigenvalue problem,

461-468, 503
Integral transformations, 15,463,

655-656
Interlacing property, (see Separation

theorem)
Intermediate structure, 561
Internal nodes, 598, 601
Interpolation functions, 587

bilinear, (see rectangular, bilinear)
cubic, 601
Hermite cubics, 604,645
hierarchical,645 '
linear, 590-598
quadratic, 598-600
rectangular, 623-629

bilinear, 623-626, 633
quadratic, 626-629
serendipity, 627

triangular, 608-623
cubic, 620-621
linear, 610,613-618
quadratic, 618-620

Interpolation functions derivation, 591,
598,604,619,636

Intertwining of eigenvalues, (see Separa-
tion theorem)

Invariance of:
characteristic polynomial, 176, 192,

688 '
Euclidean norm, 294

Inverse iteration, 321-325,353-356
Inverse Laplace transform, 15,17,658
Isoparametric element(s), 629-635
Iteration:

for integral equations, 465-468
for nonsymmetric matrices, 334-343,

348-353
for symmetric matrices, 283-298,

310-321,325-333

Jacobi integral, 97
Jacobi method, 235,292-298
Jacobian determinant, 631
Jacobian matrix, 631

Kelvin-Voigt model, 484
Kernel of transformation, 463,655
Kinematical constraints, 76
Kinetic energy, 61,68,72,93,94,142,

364, 368
inner product, 414
norm, 415

Kinetic energy density, 372, 406
Krasovskii's instability theorem, 158
Kronecker delta, 672

Lagrange's equation(s), 88-91,142,143,
371-377,406-413
linearized, 162

Lagrange's theorem, 160
Lagrangian, 85,144
Lagrangian densitY, 372
Lanczos' tridiagonalization method,

307-310
Laplace domain, or plane, 16, 656
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Index

reflector, 304
stiffness, 164
transfer, 512,513,517
transition, 32,127,194

Matrix deflation, 287,339
Matrix diagonalization, 176,192,235,

292
Matrix iteration, (see Iteration)
Matrix operations, 673-675
Matrix tridiagonalization, 298-310
Maximin theorem, 249,255,461,523,

644
Maximum-minimum characterization of

eigenvalues, 243-249,461,523,645
Maxwell's reciprocity theorem, 462,503
Mean square error, 382
Membranes, vibration of, 430-443,

474-476,608-635 '
Mesh, in the finite element method, ,587
Minimax theorem, 249
Minimizing sequence, 528
Minimum norm solution, 682
Minimum value of potential energy, 160
Minimum value of Rayleigh's quotient,

239,245
Minor determinants, 157,282,311,676
Modal analysis, 198-201,204-206,

469-485
Modal coordinates, 199,209,470
Modal equations, ,198, 199,470
Modal forces, 199,470
Modal initial displacements, 200,470
Modal initial velocities, 200,470 '
Modal matrix, 179
Modal truncation, 555
Modal vectors, 180
Moment of momentum, 59

conservation of, 60
Momentum(a):

angular, 59, 505
conservation of, 60, 67, 68

generalized, 92 '
conservation of, 96

linear, 52,505
conservation Clf, 53,66

Multi-input, multi-output systems, 30,
40, 130

Multiplicity, of eigenvalues, 174, 186,
286 .

Multistep methods, 219
Myklestad's method, 515-518

Natural coordinates, 199
Natural coordinates, in the finite ele-

ment method, 591,613
Natural frequency(ies), 106, 108, 180,

391
Natural modes, 180,392
Natural motions, 180
Natural systems, 94, 198
Negative definite (semidefinite) func-

tion, 156
Negative definite (semi definite) matrix,

156, 157
Newton's second law, 2,52-54,64,364
Newton's third law, 64
Newtonian path, 83
Nodal displacements, in the finite ele-

ment method, 587
Nodal vector, in the finite element

method, 591,594
Nodes, or nodal lines, 392,439,456 I

!
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Subject Index

Nodes, in the finite element method;
587
external, or internal, 598,601

Nonanticipatory systems, 15
Nonconforming elements, 635
Nonconservative:

forces, 63,85,90
.systems, 189-195,206-210
work, 63

Nondeterministic, (see Random)
Nonholonomic systems, 85'
Nonlinear initial-value problem,

214-223
Nonnatural systems, 93,142,163
Nonperiodic excitation, 7
~on-self-adjoint opcrator, 544,546
Non-self-adjoint systems, 544-554
Nonsymmetric eigenvalue problem,

189·195
Norm, 174,294,381,668,687

enerl\Y, 384
Euclidean, 154,162,668.

Normal coordinates, 199,470
Normal coordinates. in the finite ele-

ment method, 591
Normal equations, 470
Normal modes (see Natural modes)
Normalization, 172,174,177,392

One-step methods, 219
Operator(s): -

biharmonic, 445,451,455
boundary, 380,413
differential, 380
homogeneous. 4,380
Laplace, 432.435,439,448
linear, 4,380
mass, 413,429
non-self-adjoint .. 544,546
positive definite (scmidefinite), 384,

415,429
self-adjoint, 383,414,429
stiffness, 380.413,429

Orthogonal, or orthonormal:
functions, 381. 382

nearlv, 588
matrices, 175,179,234.686
transformation. 176,234,686
vectors, 175,179,669-671,675

Orthogonality, or orthonormality rela-
tions, 174,179,187,385-386,416

Orthogonalization, 245,329,382,
669-671

Overdamping, 109,110
Overtones. harmonic, 391

p-version, finite elemcnt method, 645
Partial fractions expansion, 22,23,

659-660
Particular solution, 6, 15
Pascal's triangle, 618
Patch test, 642
Path of integration, 61,658
Pendulum, 53,75,94,108
Period, 107
Periodic excitation(s), 121,122

response to, 121,125
Pcrmutation matrix, 276,675
Perturbation of eigenvalue problem,

259-264
Perturbed matrix, 260
Pervasive damping, 159
Phase angle, 107,180
Phase space. 150
Pivoting, 276

Plates, vibration of, 443-457,476-477,
635-642

Poles, 660
Positive definite (semidefinite):

discrete system, 179.180
distributed system, 384,415
function, 156
matrix, 157,176
operator, 384,395,415
quadratic function, or form, 157, 176

Potential energy, 142,152,160.182,365,
369
inner product, 414 .
norm, 416

Potential energy density, 372
Power method, 283-291,334-343
Predictor, 219
Principal axes of ellipsoid, 234
Principal coordinates, 199
Principal minor determinants, 157,282,

311
Proportional damping, 201-202
Pyramid functions. 610

QR method, 315-321.348-353
Quadratic convergence, 283,296
Quadratic elements, 598
Quadratic function, or form, 156,157,

176
Quadratic interpolation functions.

598-600.618-620,626-629
Quadrilateral elements. 623,634
Quality factor, 115
Quantization, 38
Quasi-comparison functions, 539,557,

571

Ramp function, unit. 19,20
Ramp response, 20,21

relation to step response, 21
Random excitatIOn, 7
Rate of convergence. 283
Rayleigh's dissipation function, 142,

143,144,151
Rayleigh's energy method, 518-522
Rayleigh's principle, 239.459,461,520
Rayleigh's quotient, 237,521,523,526

stationarity of, 237-243,458-460
geometric interpretation, 239

Rayleigh's <juotient iteration, 325,328
Rayleigh-Ritz method, 522-542,

554-556.585
convergence rate, 529,535,540
enhanced, 535-542,587

Rayleigh's theorem, 247,252
Reciprocity theorem, Maxwell's, 462,

503
Rectangular elements, 623-629,633
Rectangular plates, 451-454,476-477
Reduction to Hessenberg form, 343-348
Reference kinetic energy, 519
Repeated eigenvalues, 175,286,386,

437
geometric interpretation, 236

Representative point, 83
Residual(s), 544
Residue theorem. 16.658
Resonance, 114
Reversible virtual displacements, 78
Rigid bodies, 64-74
Rigid-body:

mode(s), 181,288,396,403,430,504
rotation, 403,504
translation, 403,504

693

Ritz:
eigenfunctions, 526
eigenvalues. 526,527
space, 523, 589

Rods in axial vibration. 363-368, .
393-397,473-474,590-598 .

Roof functions, 587 ,
Roots, of polynomial, 173,659'

repeated, 660 ., ,
Rotating beam, transverse vibration of,

376-377
Rotating eccentric masses; 117-119
Rotation angle, due to bending, 424
Rotation matrix. 234,291,292
Rotatory inertia, 413,423'430
Runge-KUlla methods. 214,216-218
Runge-Kulla-Fehlbcrg method, 217

Sampler, 37
Sampling period, 37, 130
Self-adjoint:

eigenvalue problem, 261,379-390
operator, 383,414,429
system, 261, 383,414

Self-starting methods, 219
Semidefinite system (see Systems, posi-

tive semidefinite)
Semigroup property, 209
Separation theorem, 249-255,312,527,

589,644,645,646
Separation of variables, 377
Serendipity elements. 627
Shafts in torsional vibration. 363-368,

398-400,509-515,590-598
Shape functions, 591

(see also Interpolation functions)
Shear deformation effect. 423-430
Shift in eigenvalues, 173.288,316,321,

326, 349
Shifting theorem, 658,659
Sign-variable function. or matrix, 156.

157
Signal(s), 37

analog, 38
continuous-lime, 37
digital, 38
discrete-time, 37

Significant behavior, 169
Similar matrices, 192,686
Similarity transformation(s), 176,192,

686, 687
Simple harmonic oscillation. 107
Simple pendulum, 53,108
Simultaneous iteration, 328·333
Single-degree-of-freedom system(s),

59,106
damped, 108
impulse response of, 127
overdamped; 108
transition matrix for, 128
undamped, 106
underdamped, 108

Single-input, single-output systems, 30,
40,130

Singular points, (see Equilibrium points)
Singularity functions, (see Generalized

functions)
Small-motions assumption, 162
Space:

configuration, 83.149
of constraint, 244
Euclidean, 149,233,244
phase, 150
state, 149
vector, (see Vector space)

.~-
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Test space, 544
Time conStant, 14,105
Time-dependent boundary conditions,

486
Time domain, 1
Time-invariance property, 3,24
Time-invariant (-varying) system(s),

5,8,15,25
Timoshenko beam, 423-430
Torsional vibration, (see Shafts in tor-

sional vibration)
Total energy, 63,94

conservation of, 63,97,160
as a Liapunov function, 159

Trajectory, in the state space, 150
Transfer function(s), 16,18
Transfer matrix, in step-by-step meth-

ods, 512,513,517
Transformation:

of coordinates, 75,234,629
Householder's, (see reflection) ~.'
integral, 463, 655-656
isoparametric, 630
Laplace, 16,656-662
linear, 157,176,684-686
matrix, 234, 271
orthogonal, or orthonormal, 176, 234, .{

686
reflection, 304
similarity, 176,686,687

Transient excitation, 7
Transient response, 7,116
Transition matrix, 30-36,128,194,207

computation by recursive process,
208
by Laplace transformation, 32,208

Trial functions, 521,523,542
Trial space, 544
Triangular decomposition,-' 277

(see also Cholesky decomposition)
'!tiangular elements, 608-623

• ..~~c, 620-621
linear, 610,613-618
quadratic, 618-620

Tridiagonal matrix, 299,672
Tridiagonalization method:

Givens', 298-303
Householder's, 303-307
Lanczos', 307-310

True path, 8;1
Truncation error, 21S

\
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Variation(s), 76
Variational principle(s), 76
Varied path, 84
Vector(s):

configuration, 149
force, 52
modal, 180
state, 30

Vector space(s): 663-665
basis for, 177, 666
dimension of, 667
generating system for, 666
.spanned, 665
standard basis for, 177, 667

Vector subspace, 665
Vibration, free, (see Free vibration)
Virtual displacements, 76,79

reversible, 78
Virtual work, 62,63,77,81,365,369

principle of, 76-80
Viscous damping, 142-148,206-212,

482-485
coefficient(s) of, 55,104,142
critical, 110
equivalent, 121
factor, 108, 114
matrix, 451
over-, 109,110
under-, 109

Viscoelastic model, (see Kelvin-Voigt
model)

Unit rafup function, 19
Unit step function, 18

discrete-time, 42 .
Uni'i sa'!1ple, 39
Unitvector(s),177,667,668,
Unperturbed matrix, 259
Unrestrained system, (see System, posi-

tive.semidefinite) .
Unstable equilibrium, 154
Upper bound, 240,460,461

Weak convergence, 545
Weak form, of the eigenvalue problem,

460-464 '
Weighted inner product, 460, 521
Weighted residual(s), 544
Weighted residuals method, 544-548

collocation method, 547-548
convergence of, 545
Galerkin's method, 546-547

Weighting functions, 544
Work, 61

function, 62
virtual, 77,81,85

'!!'
, Zero eigenvalues, 180,396,403,430,

509
Zero natural'l'refiuencies, 396,403,509
Zero-order hold, 37

"~. ' '1:(

Jq

117-119
~.' ..

UI),balanced rotating masses,
Uii.!ierd~ping, 109
Unit dop'l'>let,s~tial, 499
tJntt-itnpulse, '17

discrets-time, 39' ',., '
i\..
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natura!, 94,198' ' .•.
oonanticipatury, '15 .~.
nOI!conservative,' .189-195
nonholonori1ic, 85
nonlinear, 4,5,214-223
nonnatural, 93,142
non-self-adjoint, 544-554
positive definite (semidefinite), 180,

261
self-adjoint, 261
undamped, 106-108

System admittance, 13
System function, (see Transfer function)
System impedance, 8, 12
Systems of particles, 64-68

.,'

694
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Spatial Dirac delta function, 469,4Y'v,
547

Spherical pendulum, 94
5pring(s), 35 _ .'

.1iardening, 55-
in parallel, 56, 57
in series, 56, 58

':softening, 55
torsional, 3%·- _

Spring constant, 55,56,398
Spring force, 55
Square summable function(s), 381
Stability of equilibrium, 154-162,

167-171
Stable equilibrium, 154
Standard basis, 177
Standard unit vectors, 177
Standing waves, 393
Starting transients, 116
State equations, 30-36,92, 150, 156, 167,

189,686
State space, 149
State variables, 30
State vector, 30,150,162,167,189
Static equilibrium position, 118
Station, in step-by-step methods, 511
Station transfer matrix, 512,516
Station vector:

for beams in bending, 516
for shafts in torsion, 512

Stationary value(s):
of dynamic potential, 152
of potential energy, 152
of Rayleigh's quotient, 238, 459

Steady-state excitation, 7
Steady-state response, 7,14,111,116
Step-by-step methods, 509-518
Step function, 18

spatial, 490
Step response, 19, 126

discrete-time, 42
relation to impulse response, 20
relation to ramp response, 21

Step size, 216
Stiff differential equation, 220
Stiffness:

coefficients, 164,524,545
matrix, 164,179,180,181,504,526,

546
operator, 380,413,415,429

Strings in transverse vibration, 363-368,
377-379,390-393,467,591-604

Structural damping, 119-121,202-203,
484, 485

Sturm-Liouville problem, 379
Sturm sequence, 312
Sturm theorem, 312
Sub dominant eigensoJutions, 287
Subspace iteration, 330
Substructure synthesis, 565-572
Successive rotations, 235,293
Superposition integral, 25

(see also Convolution integral)
-Superposition principle, 3-6,15,24,116,

121
.Sylvester's criterion, 157,282
'SY'!1metric eigenvalue problem,

171-183
Synchronous motion, 171,377
System, 1 ;"

'" causal, 15.
, ---with constant coefficients, 5,

conservative, 171-189
with constraints, 76 '.'
damped, i08-111,113-121
gyroscopic, 183-189
holonomic, 85
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