Chapter 7.
Time-Varying Fields and
Maxwell’'s Equations



Electrostatic & Time Varying Fields

VxE=0, VeD=p
VeB=0, VxH=J
D=cE

1

H=-B
U

» In the electrostatic model, electric field and magnetic fields are not related
each other.



Faraday’s law

A major advance in EM theory was made by M. Faraday in 1831 ]
who discovered experimentally that a current was induced in a
conducting loop when the magnetic flux linking the loop changed.
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electromotive force (emf): V = —O:j—(f (V)



Faraday’s law

« Fundamental postulate for electromagnetic induction is ]
dd oB oB
V=-— oV = Eedl > Eedl =—¢ s [> VxE=-">

* The electric field intensity in a region of time-varying magnetic flux
density is therefore non conservative and cannot be expressed as
the negative gradient of a scalar potential.

« The negative sign is an assertion that the induced emf will cause a
current to flow in the closed loop in such a direction as to oppose the
change in the linking magnetic flux - Lentz’'s law



7-2.3. A moving conductor in a static magnetic field

« Charge separation by magnetic force
® © ® ® Fm — qu X B

« To an observer moving with the conductor, there is no apparent
motion and the magnetic force can be interpreted as an inducted
electric field acting along the conductor and producing a voltage.

V,y = [ (uxB)ed

« Around a circuit, motional emf or flux cutting emf

Vo = ¢ (uxB)-dl



A moving conductor in a static magnetic field

« Example 7-2 "’T

Rw; Vo

e+ ® { ® ¢
(a) Open voltage V, ? ® ]’ 5
(b) Electric powerin R - o —

(c) Mechanical power required to move the slldlng bar

@) Vo=V, -V, = (uxB)edi = [ (a,uxa,B,)(a,dl) =-uB,h

B,h)’
(b)/:‘l/?o =“igh—>Pe=/2R=(“ oh)

(W)

(c) B, =F,-u, F, =mechanical force to counteract the magnetic force F_

1
Fro =![ dixB=-a,/Bn (N) —F,=-F

mag

2 2
uBsh o u(B,h) P - u®(B;h)
R R R

| =

= P, =P,
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)



A moving conductor in a static magnetic field

 Example 7-3. Faraday disk generator ]

V, = <J5C(u x B )ed| :J':[(a¢ra)>< B,a, )-(ardr)]

wB b*
— (V)

= a)BOjbo rdr =—



Magnetic force & electric force ~ F=q(E+uxB)

When a charge q, moves parallel to the current on a wire, ]
the magnetic force on q, is equivalent to the electric force on q.

At the rest frame on wire At the moving frame on charge

F,.=q,vxB <+————— F_=qE

go @ — 7 o @ Atrest
g O—=> 00— 00— 00— 00— 00— Positive charges . _‘e O S ) S S Negative charges
(a) D) ) ® ® @ D) in wire at rest (c) le—PD—P—PD—D—D—D—D<—D in wire at rest

< |
L=L0\/1—(v/c)2 — p=p, /w/l—(v/c)2

® B 1‘1 ® B )
® B (in) 1‘1‘, ® B

o ® — 7 A
® B ® B (in) I e
® B TE ET Tl:‘ ® B
| O— 00— 00— 00— 00— 0 — Positive charges
(b) S S ) O ©) ® in wire at rest (d) *@ S o © © © Negative charges
| Y DD @D DD DD in wire at rest
<

® 2006 Brooks/Cole - Thomson

/

=» To observer moving with q, under E and B fields, there is no apparent motion.
But, the force on q, can be interpreted as caused by an electric field, E’.



7-2.4. A moving circuit in a time-varying magnetic field

=» To observer moving with g, under E and B fields, there is no apparent motion. w
But, the force on g, can be interpreted as caused by an electric field, E'.

E'=E+uxB

Now, consider a conducting circuit with contour C and surface S
moves with a velocity u under static E and B fields.

Changing in magnetic flux due to the circuit movement produces an emf, V:

dd
——=V,
dt
On the other hand, the moving circuit experiences an emf, V', due to E’:
¢ _E'dl =V,

S Isittruethat V; =V



V, =V, ??

E'=E+uxB

From the Faraday's law of cﬁc E.dl = —cﬁs %-ds,

by replacing E with E = E'- uxB,

, oB
¢_E'+dl =~ ~ ds+§_(uxB)dl (V)
- N . y
time variation motional emf
at rest
, _do _i
Note that Ve =) Esdl V= =g Js B

0B
s ot

Therefore, we need to prove that %L Beds = CJ} ods — Cj)c (u X B)-dl



V, =V, ??

« Time-rate of change of magnetic flux through the contour

————

dd d .1
o gt Js B my|J, Bt at)ds, = [ B0yl g5

B(t+At):B(t)+%§t)At+H.o.T.,

T
ij Beds = | B s+ tim L | Beds,— [ _Beds,+H.O.T. LR ¥ \
dt’s s ot At—0 At LIS, 2 s !

« In going from C, to C,, the circuit covers a region bounded by S, S,, and S,

[, VB dvo=0=[ Beds,~[ Beds,+| Beds,

ds, =dIxUAt — [ Beds, — [ Beds, =—Atd (uxB)eal emf = V'=¢ E'dl
’ S, 2 s ! c

d oB(t)
- E s Beds = Js7ods—€bc(u X B)'dl

« Therefore, the emf induced in the moving circuit C is equivalent
to the emf induced by the change in magnetic flux

do : :
> V=V, = V=—W : same form as not in motion.




A moving circuit in a time-varying magnetic field

« Example 7.3 ]
— Determine the open-circuit voltage of the Faraday disk generator

b rat b?
O = L Beds = Bojo jo rdrd¢ = B, (a)t)?

_do wB,b’
dt 2

Compare!

o= Endl = _qs/gdws uxB).

VE._CJS (uxB)e ara)xBa)(adr)]
a)BOb2

:“’BOL rdr =—



_ 1 f 0B ddo d
VE‘_¢CE.dI —_Cﬁs at °dS+CI)C(UXB)°d| VB :—W:—E SB.dS
(Example 7-4) Find the induced emf in the rotating loop under B(t)=a B sinwt /w
(a) when the loop is at rest with an angle o. \/K /
O = I Beds = (ayB0 sin a)t)-(anhw) = B,hwsin ot cos \} ’
do .
V, = prra —B,Swcosmtcosa, (S =hw : the area of the loop) @ 4

(b) When the loop rotates with an angular velocity w about the x-axis
, 1 Wi ] 3 W .
V' = <j‘>c(u xB)edl = L [(a, ) x (a,B,sin o)]-a,dx + L [(-a, - @) x(a,B;sin )] a,dx

- 2(ga)50 sin wtsin wt)h = B,Swsinwtsina (a=ot)
—> V.=V, +V.=B,Sw(cos’ mt —sin’ mt) = —B,Swcos 2wt
Compare!
®(t)=B(t)a,(t)S |=B,Ssinatcosa = B,S sin wt cos ot :%BOS sin (2at)

|:> V, :—dd—(f:—%(% BOSsin(Za)t)]:—BOSa)COSZa)t |:> VB :VE.



7-3. How Maxwell fixed Ampere’s law?

A

 We now have the following collection of two curl egns. and two divergence eqns.

Vsz—a—B, VxH=J
ot

ViD=p,  VB=0

« Charge conservation law - the equation of continuity

vel—_9P,
ot

» The set of four equations is now consistent with the equation of continuity?

Taking the divergence of VxH=J,

Vo(VxH)=VeJ =0« VeV xH)=0 from the vector null identity
V.J does not vanish in a time-varying situation

and this equation is, in general, not true.



Maxwell’s equations

* Aterm dp, /ot must be added to the equation.

V-(VxH):O:V-JJra’O” =V J+@ «V:D=p
ot ot v

VxH=J+—

VxB = u,J +,u050%—|§

« The additional term dD/ot means that a time-varying
electric field will give rise to a magnetic field,

even in the absence of a free current flow (J=0).

« dD/ot is called displacement current (density).



Maxwell’s equations

Maxwell’'s equations

VeD=p
V.B=0

oB

VxE=——

ot
oD

VxH=J+—

ot

Continuity equation

vel =P
ot

Lorentz’s force

F =q(E +0vxB)

These four equations, together with the equation of continuity and
Lorentz’s force equation form the foundation of electromagnetic
theory. These equations can be used to explain and predict

all macroscopic electromagnetic phenomena.

The four Maxwell’'s equations are not all independent

— The two divergence equations can be derived from the two curl
equations by making use of the equation of continuity



Maxwell’s equations

 Integral form & differential form of Maxwell’'s equations

Differential form Integral form Significance
VxE= _0_B cﬁ Eedl =—| — dS = _d_cI) Faraday’s law
ot S at dt

oD ,

VxH=J+— <_[>Hd|—|+j—ds Ampere’s law
ot
_ (s = G 's |
VeD = ol C.‘Sc Deds =Q auss’s law
— . No isolated
V-B=0 CJSS Beds =0 magnetic charge




Maxwell’s equations

 Example 7-5 ]
— Verify that the displacement current = conduction current in the wire.

I conduction current in the connecting wire

. =C, 9% _cv. weos ot
dt
c =4
i X
i
E = ¢ - uniform between the plates Fres=
d v, =V, sin ot

—>D=¢E :g\g—osina)t

Ib

jﬁD

\Y :
ds=| e2wcoswt [A=CV,wcoswt =i,
A ot d



Maxwell’s equations

Example 7-5
— Determine the magnetic field intensity at a distance r from the wire

Two typical open surfaces with rim C may be chosen:
(a) a planar disk surface S,,(b) a curved surface S,

For the surface S,, D=0

gS Hedl = 271H, :J Jeds =i, =CV,wcoswt - H, = SAL @ COS wt
C Sy 21y

Since the surface S, passes through the dielectric medium,
no conducting current flows through S, — displacement current

27rH, =1, :jA ods =i,
—H, = Vo @ COS wt
27r




7-5. Electromagnetic Boundary Conditions

cﬁEdI _ —dS — 0 when Ah — 0

Medium 1

— Elt o E2t

<ﬁ Hedl = j(J +%—Dj ods ; L(%}ds—) 0 when Ah —> 0

:>an2X(H1_H2):‘Js (Hlt_HZt :‘an)

$ D-ds=[ pdv — a,+(D,~D,)=p, when Ah -0
— Dln _D2n = Ps

<_[>SB-dS=o
— Bln _BZn =0 (ILLlHln ::u2H2n)



Electromagnetic Boundary Conditions

Both static and time-varying electromagnetic fields satisfy the same boundary conditions:

= The tangential component of an E field is continuous across an interface.

=>» The tangential component of an H field is discontinuous across an interface
where a surface current exists.

= The normal component of an B field is continuous across an interface.

=» The normal component of an D field is discontinuous across an interface
where a surface charge exists.



Boundary conditions at an interface between two lossless linear media

Between two lossless media (g, 1) witho=0,and p;=0,J,=0

Elt — E2t _)& :i
D, &

Hy=Hy - S =
B,,

Dln — D2n — glEln — 82E2n

B1n — BZn _)/ulHln :/quZn



Boundary conditions at an interface between dielectric and perfect conductor

In a perfect conductor (o 2 infinite, for example, supercondiuctors),

—>E,=0=D,, H,=0=B,

Medium 1(dielectric)

Medium2

(perfect metal)

E,=0
Hlt — ‘Js
Dln :ps
B1n :O

E, =0
H, =0
D, =0
B, =0

(a)

(b)

(c)

!



Boundary conditions

« Table
Field Components General Form Medium 1 Medium 2 Medium 1 Medium 2
POne ' * Dielectric Dhielectric Dielectric Conducton
Tangential E iy x (E) —Ex) =10 En= En Ey=Ex=10
Normal D iz (D —D2) = o Dhn — Doy = ps Din = ps Doy =10
Tangential H n: x (Hy —H:) = J. Hyy = Hy Hy = Jg Hy =1
Normal B n:-(B —B2) =0 Byn = B Byg = Byy =100

Notes: (1) ps is the surface charge density at the boundary; (2) J; is the surface current density at the boundary;
(3) normal components of all fields are along fi>. the outward unit vector of medium 2; (4) Eyy = Ez implies
that the tangential components are equal in magnitude and parallel in direction; (5) direction of J; 1s orthogonal

to (H; — H->).




7-4. Potential functions

 Vector potential B = Vv x A (T) («-V-B=0)
« Electric field for the time-varying case.

VxE:—Q(VxA)%Vx(E+%j=O

ot ot
E+8—A=—VV
ot
— E——VV —8—A (V/m)

Due to charge dIStrIbuN

Due to time-varying current J



Wave equation for vector potential A

From yuH =B =V x A, D=5E:5(—VV —%j,

ot
VxH =(J —I—@j
ot

0 OA
VxVxA=uld+us—\-VV ——
S at( 6tj

oV j 0% A
— UE or

V(VA)-VA =1l -V| us—
( ) # (”g ot ot?

O°A oV
VA - e =—uJ+V| VeA+ s — 0 (Lorenz condition, or gauge)
aZA (# Show that the Lorentz condition is consistent
VZA — uE — = _,UJ with the equation of continuity. Prob. P.7-12)
ot

> Non-homogeneous wave equation for vector potential A

. . ] 1
> traveling wave with a velocity of \/_
&l



Wave equations for scalar potential V

From E = —VV—% and V& = &,
ot £

V.(_W _6_Aj _P

ot €
viv: L (vea) =P ven= pe Y

ot £ ot

2

VV — e g t‘z/ = —% —> for scalar potential \V

oV
VeA+ ue—=0
( e j

= The Lorentz condition uncouples the wave equations for A and for V.

= The wave equations reduce to Poisson’s equations in static cases.



Gauge freedom

« Electric & magnetic field

« Gauge transformation

OA

E=-VV-— B=VxA

ot

If A— A+ Vi, Bremains unchanged.

OA

—-E=-VV -

ot

_y v :—V(V+8V/)—6A

ot

ot ot

— Thus, if V' is further changedto V —> V —aa—l/t/, E also remains same.

= Gauge invariance

E & B fields are unchanged if we take any function y(x,t) on simultaneously A and V via:

A—->A+Vy
vy
ot

5N

oV
VeA+ ue—=0
Y

> Vy — us

2
8‘2”:0
ot

=» The Lorentz condition can be converted to a wave equation.



7/-6. Solution of wave equations

« The mathematical form of waves ]
ft=0) 1150 L=t
L X = Upty

v




Wave equation

« Simple wave

— http://navercast.naver.com/science/physics/1376

¥ix, 0) Krpprbd

NN

7 T
7
(a) t=0
vix, TH4) \ ‘1
.:L
4 %\\'/ 1‘ 3
5 (b) t=Ti4

e

(c) t=T72

vix, 0)

an

0 \y s 3n
2 2
Ao
= A |

(a) vix, ) versusxatr=0

y(x,t)zAcos(

(b) ylx, 1) versus ratx =0

2Lyc—ﬁj:Acos(kx—a)t)
A T

@
A"k



Solution of wave equations from potentials

)

atZ - € for scalar electric potential

82V : Nonhomogeneous wave equation
do'

p,(t)
First consider a point charge at time t, p(t)Av’, located at a origin.
Except at the origin, V(R) satisfies the following homogeneous equation (p = 0):

Since VV :%(Rzg—\éj for spherical symmetry V (R, 6,¢)=V (R)

BN (AR
R° OR OR ot

Introducing a new varible, V (R,t) = %U (R,1)

o°U o°U R 1
T Mo =O—>U(R,t):U[t—up} or U (R-u,t),u, =

N

—

= Thus, we can write in a form of V (R,t)=V [t Rj

Uy



Solution of wave equations

The potential at R for a point charge p, (t)Av is, '}/'
P, (t)Av' do'
AV(R)_ AzeR pu(t)

yox (t—R/up)Au’

V(R,t)=V£t—u5J — AV (t-R/u, )=

p dreR
R
Now consider a charge distribution over a volume V’. /
1 pU(R',t—R/up) , R
V(Rt)=,— [ - dv' (V) v
I(R't=R/u AR
A(R,t)=~ ( p)du’ (Wb/m)
A V' R

= The potentials at a distance R from the source at time t depend on the values of p and J
at an earlier time (t- R/u) =» Retarded in time

= Time-varying charges and currents generate retarded scalar potential, retarded vector potential.



Source free wave equations

Maxwell's equations in source-free non-conducting media (g, y, 0=0). ]

VxE :—,uﬁ, V x HZEE,V-E =0, VeH=0
ot ot

« Homogeneous wave equation for E & H.

f—¢ﬁ fJﬁ
VxVsz—,ug(VxH)z— &
ot ot
2
:VZE—U—lz%—O
p
1 o°H B

In an entirely similar way, V°"H—-—- =0

2 2
upat




Review —The use of Phasors

. N\
Consider a RLC circuit Switch o
dl 1 :'I' E — Inductor
L—+Ri+— | idt=V(t), i(t)=1,cos(wt+ =
LRI+ [ dt=V (1), i(t)= 1, cos(at+)
Resistor

Phasor method (exponential representation)
V(t)=V,cosawt = Re[(voejo)eiwt] _ Re(Vsej”‘)
(0)-Re] (1o |- et

_\/ pl0
Vo =Vie =>» (Scalar) phasors that contain amplitude and phase information

| =1,e" but are independent of time t.

If we use phasors in the RLC circuit, %: Re( ja)lsej“’t),j idt = Re[l_seiwtj

jw
i)
—>| R+ oL ——+ ]|l =V,
oC
ai(t):Re{VS/{R+ j(a)l_—ine‘w‘
aC



Time-harmonic Maxwell’'s & wave equations

* Vector phasors. ]
E(x,y,zt)= Re[E(x, Y, z)ej”t]
H(X,y,z,t)= Re[H(x, Y, z)ej“’t]

« Time-harmonic (cos wt) Maxwell’'s equations in terms of vector phasors

VeD=p, V.E =~

oB &
VXE:_E VxE=-jouH
V'B:O V.H :O
VXH:J+8_D VxH=J+ JoeE

ot



Time-harmonic Maxwell’'s & wave equations

)

Time-harmonic wave equations (honhomogeneous Helmholtz’'s equations)

VR __p(R1)

VV(R,t) -
(R,t)— ue pw .
— V2V (R) - ue(jo) V(R) =2 (F)
&
k = wave number =@,/ ue = © 2;

p

V2V (R)+k*V(R)=-£2
E
2 2 ) 0°A
VAR)+RFAR)=—ud | | « VA—ue P =—1J




Time-harmonic retarded potential

« Phasor form of retarded scalar potential

cos(awt —kx)

do' (V)

1 pU(Rr)e—ij
V(R)=
(R) j ' R —>e

e i(et-kx)

_ eja)te—kx

* Phasor form of retarded vector potential.

u ¢ J(R)e ¥
A(R):47z v’ ( Il

dv' (Wb/m)

* When kR = 272'% <<1

2p?2

e MR =1— jkR+ +..~1

V (R),A(R) — static expressions(Eq. 3-39 & Eq. 5-22)



Time-harmonic retarded potential

- Example: Find the magnetic field intensity H and the value of § when & = 9¢, ]

E(zt)=a,5c0s(10°t—-pBz) (V/m)

a a a

X y z

_1n9
w=10" (1/s) H(z)=—_1 o Jd 0
Jou, |ox oy oz
| - ip2
E(z)=a,b5e " o ¥
1 - 1 (_axﬁ5ewzj:(_£5eiﬂ2]ax =H,(2)a,
H(Z):— - VxE |:> Jop, 0z Ot
Jou,
2
E(Z)z_iVXHZ _1 (ay 0 Hx)zay( '28 ]Eejﬂz
jos Joe o/ W Hy&

P geir — g (0.0398)e

H(z)=-a
()=~

X

P e —a, (0.0398)cos (109t —102)

H(z,t)=-
(20)=-a—~

X



The EM Waves in lossy media

» If a medium is conducting (o+0), a current J=0E will flow ]
oD : : o :
VxH=J - —> VxH=(0+ joc)E= jo| e+— |E= joe,E,
o

¢, (complex permittivity = &' — j&") =& — | %

 When an external time-varying electric field is applied to material bodies,
small displacements of bound charges result, giving rise to a volume density
of polarization. This polarization vector will vary with the same frequency as
that of the applied field.

» As the frequency increases, the inertia of the charged particles tends to
prevent the particle displacements from keeping in phase with the field
changes, leading to a frictional damping mechanism that causes power
loss.

» This phenomenon of out of phase polarization can be characterized by a
complex electric susceptibility and hence a complex permittivity.

* Loss tangent, o,



The EM Waves in lossy media

* Loss tangent, o,

VxHZJ+gE:ja) <9+_i
. : o ot [
VxH=JosE=Jo|l es+— |E
jo
gC:gl_jgll J
tan5czg—,zi, o, - loss angle 0,
& &

« Good conductorif 2 >>1
(A

. . O
e Goodinsulatorif —<<1
A

« Moist ground : loss tangent ~ 1.8x10*@1kHz, 1.8 x103 @10GHz



The electromagnetic spectrum

« Spectrum of electromagnetic waves

Wavelength (m) Frequency (Hz) Classification Applications
- 1034
l{]_ lfiﬁ
i P-rays  Food irradiation,
1 102! cancer Lherapy
1012
1 v
-10 X-rays Medical diagnosis
(A) 10 , e En
(nm) 10771 Ultraviolet Sterilization
g E
_b"' 103 {PHZ) Visible Tight
(um) 10°° 4
1 Infrared Night vision
(mm) 10 ? i 10 (TH2) ' wave
B EHF {30—300 GH?,] Radar, space exploration
2
[cm} 10 1 SHF (3 30 GH Radar, satellite
101 e Z} communication
1 - 107 [GHZ) UHF (300—3&)0 MHZ) Radar, TV, navigation
(m) T VHF (30-300 MHz) TV, FM, police, mobile
10 - ( Z radio, air |ra‘1l'ﬁ: control
.y HF 3-30 MHZ)  Giliens band
B | 10° (MHz) MF (300-3000 kHz) 3-.'&3;‘:;:%?;;"'“-
i LF (30-300 kH2)  niio‘bescon
105 = VLF (3-30 kHz) Navigation, sonar
& - 107 (kHz) ULF (300-3000 Hz)  Telephone audio range
{Mml 10 T 60 {HZ] SLF (30_309 HZ] Communication with submerged
]07 " o submaring, eleciric power
- ELF (3-30 Hz) ?:ﬁn?’qeo‘fsbun:d
108 4 il il
~1(Hz)

Wavelength range of human vision: 720(nm)— 380 (nm)

(Deep red)

(Violet)

LIVAVAVAVA N

10%0m 10 30m Inm 10%nm 10%nm 1m 10%m
| 1 ‘ 1 1 L 1 1 1 | 1 1 | Il 1 | |
2o | x| mes|] =us | zem | aden |
7hA| M ©EnCyber.com
\ |
380 400 500 TR0
IHEM(nm )
ojokg| RxE
szt 2ate| 7.

\ | 24 M=

2hu Aeli i AT
ANE  ss gz HE HE



