CHAPTER 2:

CONVEX SETS

Let $x \in conv(S_1 \cap S_2)$. Then there exists $\lambda \in [0,1]$ and $x_1, x_2 \in S_1 \cap S_2$ 2.1 such that $x = \lambda x_1 + (1 - \lambda)x_2$. Since x_1 and x_2 are both in S_1 , x must be in $conv(S_1)$. Similarly, x must be in $conv(S_2)$. Therefore, $x \in conv(S_1)$ *conv*(S₂). (Alternatively, since $S_1 \subseteq conv(S_1)$ and $S_2 \subseteq conv(S_2)$, we $S_1 \cap S_2 \subseteq conv(S_1) \cap conv(S_2)$ or that $conv[S_1 \cap S_2] \subseteq$ have $conv(S_1) \cap conv(S_2)$.)

An example in which $conv(S_1 \cap S_2) \neq conv(S_1) \cap conv(S_2)$ is given below:

Here, $conv(S_1 \cap S_2) = \emptyset$, while $conv(S_1) \cap conv(S_2) = S_1$ in this case.

2.2 Let S be of the form $S = \{x : Ax \leq b\}$ in general, where the constraints might include bound restrictions. Since S is a polytope, it is bounded by definition. To show that it is convex, let y and z be any points in S , and let $x = \lambda y + (1 - \lambda)z$, for $0 \le \lambda \le 1$. Then we have $Ay \le b$ and $Az \le b$, which implies that

$$
Ax = \lambda Ay + (1 - \lambda)Az \le \lambda b + (1 - \lambda)b = b,
$$

or that $x \in S$. Hence, S is convex.

Finally, to show that S is closed, consider any sequence $\{x_n\} \to x$ such that $x_n \in S$, $\forall n$. Then we have $Ax_n \leq b$, $\forall n$, or by taking limits as $n \to \infty$, we get $Ax \leq b$, i.e., $x \in S$ as well. Thus S is closed.

2.3 Consider the closed set S shown below along with $conv(S)$, where $conv(S)$ is not closed:

Now, suppose that $S \subseteq \mathbb{R}^p$ is closed. Toward this end, consider any sequence $\{x_n\} \to x$, where $x_n \in conv(S)$, $\forall n$. We must show that $x \in conv(S)$. Since $x_n \in conv(S)$, by definition (using Theorem 2.1.6), we have that we can write $x_n = \sum_{n=1}^{p+1} \lambda_n x_n^r$, where $x_n^r \in S$ for $r = 1,..., p + 1, \forall n$, and where $\sum_{n=1}^{p+1} \lambda_{nr} = 1, \forall n$, with $\lambda_{nr} \geq 0, \forall r, n$. Since the λ_{nr} -values as well as the x_n^r -points belong to compact sets, there exists a subsequence K such that $\{\lambda_{nr}\}_K \to \lambda_r$, $\forall r = 1,..., p + 1$, and $\{x_{n}^{r}\}\rightarrow x^{r}$, $\forall r=1,...,p+1$. From above, we have taking limits as $n \to \infty$, $n \in K$, that $x = \sum_{r=1}^{p+1} \lambda_r x^r$, with $\sum_{r=1}^{p+1} \lambda_r = 1$, $\lambda_r \ge 0$, $\forall r = 1, ..., p+1$,

where $x^r \in S$, $\forall r = 1,..., p+1$ since S is closed. Thus by definition, $x \in conv(S)$ and so $conv(S)$ is closed. \square

- a. Let y^1 and y^2 belong to AS. Thus, $y^1 = Ax^1$ for some $x^1 \in S$ and 2.7 $y^2 = Ax^2$ for some $x^2 \in S$. Consider $y = \lambda y^1 + (1 - \lambda)y^2$, for any $0 \le \lambda \le 1$. Then $v = A[\lambda x^1 + (1 - \lambda)x^2]$. Thus. letting $x = \lambda x^{1} + (1 - \lambda)x^{2}$, we have that $x \in S$ since S is convex and that $y = Ax$. Thus $y \in AS$, and so, AS is convex.
	- If $\alpha = 0$, then $\alpha S = \{0\}$, which is a convex set. Hence, suppose that b_{-} $\alpha \neq 0$. Let αx^1 and $\alpha x^2 \in \alpha S$, where $x^1 \in S$ and $x^2 \in S$. Consider $\alpha x = \lambda \alpha x^1 + (1 - \lambda) \alpha x^2$ for any $0 \le \lambda \le 1$. Then, $\alpha x = \alpha [\lambda x^1 +$ $(1-\lambda)x^2$]. Since $\alpha \neq 0$, we have that $x = \lambda x^1 + (1-\lambda)x^2$, or that $x \in S$ since S is convex. Hence $\alpha x \in \alpha S$ for any $0 \le \lambda \le 1$, and thus αS is a convex set.

2.8
$$
S_1 + S_2 = \{(x_1, x_2) : 0 \le x_1 \le 1, 2 \le x_2 \le 3\}.
$$

$$
S_1 - S_2 = \{(x_1, x_2) : -1 \le x_1 \le 0, -2 \le x_2 \le -1\}.
$$

2.12 Let $S = S_1 + S_2$. Consider any $y, z \in S$, and any $\lambda \in (0,1)$ such that $y = y_1 + y_2$ and $z = z_1 + z_2$, with $\{y_1, z_1\} \subseteq S_1$ and $\{y_2, z_2\} \subseteq S_2$. Then $\lambda y + (1 - \lambda)z = \lambda y_1 + \lambda y_2 + (1 - \lambda)z_1 + (1 - \lambda)z_2$. Since both sets S_1 and S_2 are convex, we have $\lambda y_i + (1 - \lambda)z_i \in S_i$, $i = 1, 2$. Therefore, $\lambda y + (1 - \lambda)z$ is still a sum of a vector from S_1 and a vector from S_2 , and so it is in S . Thus S is a convex set.

Consider the following example, where S_1 and S_2 are closed, and convex.

Let $x_n = y_n + z_n$, for the sequences $\{y_n\}$ and $\{z_n\}$ shown in the figure, where $\{y_n\} \subseteq S_1$, and $\{z_n\} \subseteq S_2$. Then $\{x_n\} \to 0$ where $x_n \in S$, $\forall n$, but $0 \notin S$. Thus S is not closed.

Next, we show that if S_1 is compact and S_2 is closed, then S is closed. Consider a convergent sequence $\{x_n\}$ of points from S, and let x denote its limit. By definition, $x_n = y_n + z_n$, where for each $n, y_n \in S_1$ and $z_n \in S_2$. Since $\{y_n\}$ is a sequence of points from a compact set, it must be bounded, and hence it has a convergent subsequence. For notational simplicity and without loss of generality, assume that the sequence $\{y_n\}$ itself is convergent, and let y denote its limit. Hence, $y \in S_1$. This result taken together with the convergence of the sequence $\{x_n\}$ implies that $\{z_n\}$ is convergent to z, say. The limit, z, of $\{z_n\}$ must be in S_2 , since S_2 is a closed set. Thus, $x = y + z$, where $y \in S_1$ and $z \in S_2$, and therefore, $x \in S$. This completes the proof. \Box

First, we show that $conv(S) \subseteq \hat{S}$. For this purpose, let us begin by 2.15 a. showing that S_1 and S_2 both belong to \hat{S} . Consider the case of S_1 (the case of S_2 is similar). If $x \in S_1$, then $A_1 x \leq b_1$, and so, $x \in \hat{S}$ with $y = x$, $z = 0$, $\lambda_1 = 1$, and $\lambda_2 = 0$. Thus $S_1 \cup S_2 \subseteq \hat{S}$, and since \hat{S} is convex, we have that $\text{conv}[S_1 \cup S_2] \subseteq \hat{S}$.

> Next, we show that $\hat{S} \subseteq conv(S)$. Let $x \in \hat{S}$. Then, there exist vectors y and z such that $x = y + z$, and $A_1 y \le b_1 \lambda_1$, $A_2 z \le b_2 \lambda_2$ for some $(\lambda_1, \lambda_2) \ge 0$ such that $\lambda_1 + \lambda_2 = 1$. If $\lambda_1 = 0$ or $\lambda_2 = 0$, then we readily obtain $y = 0$ or $z = 0$, respectively (by the boundedness of S_1 and S_2), with $x = z \in S_2$ or $x = y \in S_1$, respectively, which yields $x \in S$, and so $x \in conv(S)$. If $\lambda_1 > 0$ and $\lambda_2 > 0$, then $x = \lambda_1 y_1 + \lambda_2 z_2$, where $y_1 = \frac{1}{\lambda_1} y$ and $z_2 = \frac{1}{\lambda_2} z$. It can be easily verified in this case that $y_1 \in S_1$ and $z_2 \in S_2$, which implies that both vectors y_1 and z_2 are in S. Therefore, x is a convex combination of points in S, and so $x \in conv(S)$. This completes the proof \square

b. Now, suppose that S_1 and S_2 are not necessarily bounded. As above, it follows that $conv(S) \subseteq \hat{S}$, and since \hat{S} is closed, we have that $\text{c} \ell \text{conv}(S) \subseteq \hat{S}$. To complete the proof, we need to show that $\hat{S} \subseteq \mathit{clconv}(S)$. Let $x \in \hat{S}$, where $x = y + z$ with $A_1 y \le b_1 \lambda_1$, $A_2 z \leq b_2 \lambda_2$, for some $(\lambda_1, \lambda_2) \geq 0$ such that $\lambda_1 + \lambda_2 = 1$. If $(\lambda_1, \lambda_2) > 0$, then as above we have that $x \in conv(S)$, so that $x \in \mathit{clconv}(S)$. Thus suppose that $\lambda_1 = 0$ so that $\lambda_2 = 1$ (the case of $\lambda_1 = 1$ and $\lambda_2 = 0$ is similar). Hence, we have $A_1 y \le 0$ and $A_2 z \leq b_2$, which implies that y is a recession direction of S₁ and $z \in S_2$ (if S_1 is bounded, then $y \equiv 0$ and then $x = z \in S_2$ yields $x \in \mathit{clconv}(S)$). Let $\overline{y} \in S_1$ and consider the sequence

$$
x_n = \lambda_n [\overline{y} + \frac{1}{\lambda_n} y] + (1 - \lambda_n) z, \text{ where } 0 < \lambda_n \le 1 \text{ for all } n.
$$

Note that $\overline{y} + \frac{1}{\lambda} y \in S_1$, $z \in S_2$, and so $x_n \in conv(S)$, $\forall n$. Moreover, letting $\{\lambda_n\} \to 0^+$, we get that $\{x_n\} \to y + z = x$, and so $x \in \mathit{clconv}(S)$ by definition. This completes the proof. \Box

 $2.21 a$ The extreme points of S are defined by the intersection of the two defining constraints, which yield upon solving for x_1 and x_2 in terms of x_3 that

$$
x_1 = -1 \pm \sqrt{5 - 2x_3}
$$
, $x_2 = \frac{3 - x_3 \mp \sqrt{5 - 2x_3}}{2}$, where $x_3 \le \frac{5}{2}$.

For characterizing the extreme directions of S, first note that for any fixed x_3 , we have that S is bounded. Thus, any extreme direction must have $d_3 \neq 0$. Moreover, the maximum value of x_3 over S is readily verified to be bounded. Thus, we can set $d_3 = -1$. Furthermore, if \overline{x} = (0,0,0) and $d = (d_1, d_2, -1)$, then $\overline{x} + \lambda d \in S$, $\forall \lambda > 0$, implies that

$$
d_1 + 2d_2 \le 1\tag{1}
$$

and that $4\lambda d_2 \geq \lambda^2 d_1^2$, i.e., $4d_2 \geq \lambda^2 d_1^2$, $\forall \lambda > 0$. Hence, if $d_1 \neq 0$, then we will have $d_2 \rightarrow \infty$, and so (for bounded direction components) we must have $d_1 = 0$ and $d_2 \ge 0$. Thus together with (1), for extreme directions, we can take $d_2 = 0$ or $d_2 = 1/2$, yielding $(0,0,-1)$ and $(0,\frac{1}{2},-1)$ as the extreme directions of S.

b. Since S is a polyhedron in R^3 , its extreme points are feasible solutions defined by the intersection of three linearly independent defining hyperplanes, of which one must be the equality restriction $x_1 + x_2 = 1$. Of the six possible choices of selecting two from the remaining four defining constraints, we get extreme points defined by four such choices (easily verified), which yields $(0,1,\frac{3}{2})$, $(1,0,\frac{3}{2})$, $(0,1,0)$, and $(1,0,0)$ as the four extreme points of S. The extreme directions of S are given by extreme points of $D = \{(d_1, d_2, d_3)$: $d_1 + d_2 + 2d_3 \le 0$, $d_1 + d_2 = 0$, $d_1 + d_2 + d_3 = 1$, $d \ge 0$, which is empty. Thus, there are no extreme directions of S (i.e., S is bounded).

- c. From a plot of S , it is readily seen that the extreme points of S are given by (0, 0), plus all point on the circle boundary $x_1^2 + x_2^2 = 2$ that lie between the points $(-\sqrt{2/5}, 2\sqrt{2/5})$ and $(\sqrt{2/5}, 2\sqrt{2/5})$, including the two end-points. Furthermore, since S is bounded, it has no extreme direction.
- 2.24 By plotting (or examining pairs of linearly independent active constraints), we have that the extreme points of S are given by $(0, 0)$, $(3, 0)$, and $(0, 2)$. Furthermore, the extreme directions of S are given by extreme points of $D = \{ (d_1, d_2) : -d_1 + 2d_2 \le 0 \mid d_1 - 3d_2 \le 0, \mid d_1 + d_2 = 1, \mid d \ge 0 \},\$ which are readily obtained as $(\frac{2}{3}, \frac{1}{3})$ and $(\frac{3}{4}, \frac{1}{4})$. Now, let $\begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} + \lambda \begin{bmatrix} 3/4 \\ 1/4 \end{bmatrix}$, where $\begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \mu \begin{bmatrix} 3 \\ 0 \end{bmatrix} + (1 - \mu) \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, for $(\mu, \lambda) > 0$. Solving, we get $\mu = 7/9$ and $\lambda = 20/9$, which yields $\begin{bmatrix} 4 \\ 1 \end{bmatrix} = \frac{7}{0} \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \frac{2}{0} \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \frac{20}{0} \begin{bmatrix} 3/4 \\ 1/4 \end{bmatrix}.$
- **2.31** The following result from linear algebra is very useful in this proof:

(*) An $(m + 1) \times (m + 1)$ matrix G with a row of ones is invertible if and only if the remaining m rows of G are linearly independent. In other words, if $G = \begin{bmatrix} B & a \\ a^t & 1 \end{bmatrix}$, where B is an $m \times m$ matrix, a is an $m \times 1$ vector, and e is an $m \times 1$ vector of ones, then G is invertible if and only if B is invertible. Moreover, if G is invertible, then $\left[\begin{matrix}M&\sigma\end{matrix}\right]$ $1 t_{\rm rel}$ \mathbf{r}

$$
G^{-1} = \begin{bmatrix} a & b \\ h^t & f \end{bmatrix}, \text{ where } M = B^{-1}(I + \frac{1}{\alpha}ae^tB^{-1}), g = -\frac{1}{\alpha}B^{-1}a
$$

$$
h^t = -\frac{1}{\alpha}e^tB^{-1}, \text{ and } f = \frac{1}{\alpha}, \text{ and where } \alpha = 1 - e^tB^{-1}a.
$$

By Theorem 2.6.4, an *n*-dimensional vector d is an extreme point of D if and only if the matrix $\begin{bmatrix} A \\ e^t \end{bmatrix}$ can be decomposed into $\begin{bmatrix} B_D & N_D \end{bmatrix}$ such that $\begin{bmatrix} d_B \\ d_B \end{bmatrix}$, where $d_N = 0$ and $d_B = B_D^{-1} b_D \ge 0$, where $b_D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. From Property (*) above, the matrix $\begin{bmatrix} A \\ e^t \end{bmatrix}$ can be decomposed into $\begin{bmatrix} B_D N_D \end{bmatrix}$, where B_D is a nonsingular matrix, if and only if A can be decomposed into [B N], where B is an $m \times m$ invertible matrix. Thus, the matrix B_D must

necessarily be of the form $\begin{bmatrix} B & a_j \\ e^t & 1 \end{bmatrix}$, where *B* is an $m \times m$ invertible submatrix of A . By applying the above equation for the inverse of G , we ohtain

$$
d_B = B_D^{-1}b_D = \begin{bmatrix} -\frac{1}{\alpha}B^{-1}a_j \\ \frac{1}{\alpha} \end{bmatrix} = \frac{1}{\alpha} \begin{bmatrix} -B^{-1}a_j \\ 1 \end{bmatrix},
$$

where $\alpha = 1 - e^t B^{-1} a_i$. Notice that $d_R \ge 0$ if and only if $\alpha > 0$ and $B^{-1}a_j \le 0$. This result, together with Theorem 2.6.6, leads to the conclusion that d is an extreme point of D if and only if d is an extreme direction of S .

Thus, for characterizing the extreme points of D , we can examine bases of $\begin{bmatrix} A \\ e^t \end{bmatrix}$, which are limited by the number of ways we can select $(m + 1)$ columns out of n , i.e.,

$$
\binom{n}{m+1} = \frac{n!}{(m+1)!(n-m-1)!},
$$

which is fewer by a factor of $\frac{1}{(m+1)}$ than that of the Corollary to Theorem 2.6.6.

2.42 Problem P: Minimize $\{c^t x : Ax = b, x \ge 0\}$.

(Homogeneous) Problem D: Maximize $\{b^t y : A^t y \le 0\}$.

Problem P has no feasible solution if and only if the system $Ax = b$, $x \ge 0$, is inconsistent. That is, by Farkas' Theorem (Theorem 2.4.5), this occurs if and only if the system $A^{t} y \le 0$, $b^{t} y > 0$ has a solution, i.e., if and only if the homogeneous version of the dual problem is unbounded. \Box

2.45 Consider the following pair of primal and dual LPs, where e is a vector of ones in \mathbb{R}^m :

Then, System 2 has a solution $\Leftrightarrow P$ is unbounded (take any feasible solution to System 2, multiply it by a scalar λ , and take $\lambda \to \infty$ $\Rightarrow D$ is infeasible (since P is homogeneous) \Leftrightarrow \exists a solution to $Ax > 0 \Leftrightarrow$ \sharp a solution to $Ax < 0$. \Box

2.47 Consider the system $A^t y = c$, $y \ge 0$: $2y_1 + 2y_2 = -3$ $y_1 + 2y_2 = 1$ $-3y_1 = -2$ $(y_1, y_2) \ge 0$.

> The first equation is in conflict with $(y_1, y_2) \ge 0$. Therefore, this system has no solution. By Farkas' Theorem we then conclude that the system $Ax \leq 0$, $c^t x > 0$ has a solution.

2.49 (\Rightarrow) We show that if System 2 has a solution, then System 1 is inconsistent. Suppose that System 2 is consistent and let y_0 be its solution. If System 1 has a solution, x_0 , say, then we necessarily have $x_0^t A^t y_0 = 0$. However, since $x_0^t A^t = c^t$, this result leads to $c^t y_0 = 0$, thus contradicting $c^t y_0 = 1$. Therefore, System 1 must be inconsistent. (\Leftarrow) In this part we show that if System 2 has no solution, then System 1 has one. Assume that System 2 has no solution, and let $S = \{(z_1, z_0) :$ $z_1 = -A^t y$, $z_0 = c^t y$, $y \in \mathbb{R}^m$. Then S is a nonempty convex set, and $(z_1, z_0) = (0,1) \notin S$. Therefore, there exists a nonzero vector (p_1, p_0) and a real number α such that $p_1^t z_1 + p_0 z_0 \le \alpha < p_1^t 0 + p_0$ for any $(z_1, z_0) \in S$. By the definition of S, this implies that $-p_1^t A^t y + p_0 c^t y \le \alpha < p_0$ for any $y \in \mathbb{R}^m$. In particular, for $y = 0$, we obtain $0 \le \alpha < p_0$. Next, observe that since α is nonnegative and $(-p_1^t A^t + p_0 c^t)y \le \alpha$ for any $y \in \mathbb{R}^m$, then we necessarily have $-p_1^t A^t + p_0 c^t = 0$ (or else y can be readily selected to violate this inequality). We have thus shown that there exists a vector (p_1, p_0) where $p_0 > 0$, such that $Ap_1 - p_0 c = 0$. By letting $x = \frac{1}{p_0} p_1$, we conclude that x solves the system $Ax - c = 0$. This shows that System 1 has a solution. \Box

2.50 Consider the pair of primal and dual LPs below, where e is a vector of ones in \mathbb{R}^p :

Hence, System 2 has a solution $\Leftrightarrow P$ is unbounded (take any solution to System 2 and multiply it with a scalar λ and take $\lambda \to \infty$ \Rightarrow D is infeasible (since P is homogeneous) \Leftrightarrow there does not exist a solution to $Ax > 0$, $Bx = 0 \Leftrightarrow$ System 1 has no solution. \Box

2.51 Consider the following two systems for each $i \in \{1, ..., m\}$: **System I:** $Ax \ge 0$ with $A_i x > 0$

System II: $A^t y = 0$, $y \ge 0$, with $y_i > 0$,

where A_i is the *i*th row of A. Accordingly, consider the following pair of primal and dual LPs:

where e_i is the *i*th unit vector. Then, we have that System II has a solution \Leftrightarrow P is unbounded \Leftrightarrow D is infeasible \Leftrightarrow System I has no solution. Thus, exactly one of the systems has a solution for each $i \in \{1,...,m\}$. Let $I_1 = \{i \in \{1, ..., m\} :$ System I has a solution; say $x^i\}$, and let $I_2 = \{i \in \{1,...,m\} :$ System II has a solution; say, y^i . Note that $I_1 \cup I_2 = \{1,...,m\}$ with $I_1 \cap I_2 = \emptyset$. Accordingly, let $\bar{x} = \sum_{i \in I_1} x^i$ and $\overline{y} = \sum_{i \in I_2} y^i$, where $\overline{x} = 0$ if $I_1 = \emptyset$ and $\overline{y} = 0$ if $I_2 = \emptyset$. Then it is easily verified that \bar{x} and \bar{y} satisfy Systems 1 and 2, respectively, with $A\overline{x} + \overline{y} = \sum_{i \in I_1} Ax^i + \sum_{i \in I_2} y^i > 0$ since $Ax^i \ge 0$, $\forall i \in I_1$, and $y^i \ge 0$, $\forall i \in I_2$, and moreover, for each row i of this system, if $\forall i \in I_1$ then we have $A_i x^i > 0$ and if $i \in I_2$ then we have $y^i > 0$.

- **2.52** Let $f(x) = e^{-x_1} x_2$. Then $S_1 = \{x : f(x) \le 0\}$. Moreover, the Hessian of f is given by $\begin{bmatrix} e^{-x_1} & 0 \\ 0 & 0 \end{bmatrix}$, which is positive semidefinite, and so, f is a convex function. Thus, S is a convex set since it is a lower-level set of a convex function. Similarly, it is readily verified that S_2 is a convex set. Furthermore, if $\bar{x} \in S_1 \cap S_2$, then we have $-e^{-\bar{x_1}} \ge \bar{x_2} \ge e^{-\bar{x_1}}$ or $2e^{-\overline{x_1}} \le 0$, which is achieved only in the limit as $\overline{x_1} \to \infty$. Thus, $S_1 \cap S_2 = \emptyset$. A separating hyperplane is given by $x_2 = 0$, with $S_1 \subseteq \{x : x_2 \ge 0\}$ and $S_2 \subseteq \{x : x_2 \le 0\}$, but there does not exist any strongly separately hyperplane (since from above, both S_1 and S_2 contain points having $x_2 \to 0$).
- **2.53** Let $f(x) = x_1^2 + x_2^2 4$. Let $X = \{\overline{x} : \overline{x}_1^2 + \overline{x}_2^2 = 4\}$. Then, for any $\overline{x} \in X$, the first-order approximation to $f(x)$ is given by

$$
f_{FO}(x) = f(\overline{x}) + (x - \overline{x})^t \nabla f(\overline{x}) = (x - \overline{x})^t \left[\frac{2\overline{x}_1}{2\overline{x}_2} \right] = (2\overline{x}_1)x_1 + (2\overline{x}_2)x_2 - 8.
$$

Thus S is described by the intersection of infinite halfspaces as follows:

$$
(2\overline{x}_1)x_1 + (2\overline{x}_2)x_2 \le 8, \ \forall \overline{x} \in X,
$$

which represents replacing the constraint defining S by its first-order approximation at all boundary points.

2.57 For the existence and uniqueness proof see, for example, *Linear Algebra* and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc., 1988).

If
$$
L = \{(x_1, x_2, x_3) : 2x_1 + x_2 - x_3 = 0\}
$$
, then L is the nullspace of
\n $A = [2 \ 1 \ -1]$, and its orthogonal complement is given by $\lambda \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ for any $\lambda \in \mathbb{R}$. Therefore, \mathbf{x}_1 and \mathbf{x}_2 are orthogonal projections of **x** onto L, and

$$
L^{\perp}
$$
, respectively. If $\mathbf{x} = (1 \quad 2 \quad 3)$, then $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{x}_1 + \mathbf{x}_2$ where $\mathbf{x}_2 = \lambda \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$

Thus,
$$
\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}^t \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \lambda \begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}^2 \implies \lambda = \frac{1}{6}
$$
. Hence, $\mathbf{x}_1 = \frac{1}{6}(4 \ 11 \ 19)$ and $\mathbf{x}_2 = \frac{1}{6}(2 \ 1 \ -1)$.

CHAPTER 3:

CONVEX FUNCTIONS AND GENERALIZATIONS

3.1 a. $\begin{bmatrix} 4 & -4 \\ -4 & 0 \end{bmatrix}$ is indefinite. Therefore, $f(x)$ is neither convex nor b. $H(x) = e^{-(x_1 + 3x_2)} \begin{bmatrix} x_1 - 2 & 3(x_1 - 1) \\ 3(x_1 - 1) & 9x_1 \end{bmatrix}$. Definiteness of the matrix $H(x)$ depends on x_1 . Therefore, $f(x)$ is neither convex nor concave (over R^2). c. $H = \begin{bmatrix} -2 & 4 \\ 4 & -6 \end{bmatrix}$ is indefinite since the determinant is negative. Therefore, $f(x)$ is neither convex nor concave. d. $H = \begin{bmatrix} 4 & 2 & -5 \\ 2 & 2 & 0 \\ -5 & 0 & 4 \end{bmatrix}$ is indefinite. Therefore, $f(x)$ is neither convex nor concave e. $H = \begin{bmatrix} -4 & 8 & 3 \\ 8 & -6 & 4 \\ 3 & 4 & -4 \end{bmatrix}$ is indefinite. Therefore, $f(x)$ is neither convex nor concave 3.2 $f''(x) = abx^{b-2}e^{-ax^b}[abx^b - (b-1)]$. Hence, if $b = 1$, then f is convex

over {x : x > 0}. If
$$
b > 1
$$
, then f is convex whenever $abx^0 \ge (b - 1)$, i.e.,

$$
x \ge \left[\frac{(b - 1)}{ab}\right]^{1/b}.
$$

3.3
$$
f(x) = 10 - 3(x_2 - x_1^2)^2
$$
, and its Hessian matrix is
\n
$$
H(x) = 6 \begin{bmatrix} -6x_1^2 + 2x_2 & 2x_1 \\ 2x_1 & -1 \end{bmatrix}
$$
 Thus, f is not convex anywhere and for f to
\nbe concave, we need $-6x_1^2 + 2x_2 \le 0$ and $6x_1^2 - 2x_2 - 4x_1^2 \ge 0$, i.e.,
\n $3x_1^2 \ge x_2$ and $x_1^2 \ge x_2$, i.e., $x_1^2 \ge x_2$. Hence, if $S = \{(x_1, x_2) : -1 \le x_1 \le 1, -1 \le x_2 \le 1\}$, then $f(x)$ is neither convex nor concave on S.

If S is a convex set such that $S \subseteq \{(x_1, x_2) : x_1^2 \ge x_2\}$, then $H(x)$ is negative semidefinite for all $x \in S$. Therefore, $f(x)$ is concave on S.

- **3.4** $f(x) = x^2(x^2 1)$, $f'(x) = 4x^3 2x$, and $f''(x) = 12x^2 2 \ge 0$ if $x^2 \ge 1/6$. Thus f is convex over $S_1 = \{x : x \ge 1/\sqrt{6}\}$ and over $S_2 = \{x : x \le -1/\sqrt{6}\}\.$ Moreover, since $f''(x) > 0$ whenever $x > 1/\sqrt{6}$ or $x < -1/\sqrt{6}$, and thus f lies strictly above the tangent plane for all $x \in S_1$ as well as for all $x \in S_2$, f is strictly convex over S_1 and over S_2 . For all the remaining values for x, $f(x)$ is strictly concave.
- 3.9 Consider any x_1 , $x_2 \in R^n$, and let $x_2 = \lambda x_1 + (1 \lambda)x_2$ for any $0 \leq \lambda \leq 1$. Then

 $f(x_1) = \max\{f_1(x_1),...,f_k(x_n)\} = f_r(x_1)$ for some $r \in \{1,...,k\}$, whence $f_r(x_1) \leq \lambda f_r(x_1) + (1 - \lambda)f_r(x_2)$ by the convexity of f_r , i.e., $f(x_1) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$ since $f(x_1) \ge f_r(x_1)$ and $f(x_2) \ge f(x_2)$. Thus f is convex.

If $f_1, ..., f_k$ are concave functions, then $-f_1, ..., -f_k$ are convex functions \Rightarrow max{ $-f_1(x),..., -f_k(x)$ } is convex i.e., $-\min\{f_1(x),..., f_k(x)\}$ is convex, i.e., $f(x) = \min\{f_1(x),..., f_k(x)\}\$ is concave.

3.10 Let $x_1, x_2 \in \mathbb{R}^n$, $\lambda \in [0,1]$, and let $x_2 = \lambda x_1 + (1 - \lambda)x_2$. To establish the convexity of $f(\cdot)$ we need to show that $f(x_1) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$. Notice that NOTE that
 $f(x) = \sigma[h(x)] < \sigma[2h(x) + (1 - \lambda)h(x)]$

$$
f(x_{\lambda}) = g[h(x_{\lambda})] \le g[\lambda h(x_1) + (1 - \lambda)h(x_2)]
$$

\n
$$
\le \lambda g[h(x_1)] + (1 - \lambda)g[h(x_2)]
$$

\n
$$
= \lambda f(x_1) + (1 - \lambda) f(x_2).
$$

In this derivation, the first inequality follows since h is convex and g is nondecreasing, and the second inequality follows from the convexity of g. This completes the proof.

3.11 Let $x_1, x_2 \in S$, $\lambda \in [0,1]$, and let $x_2 = \lambda x_1 + (1 - \lambda)x_2$. To establish the convexity of f over S we need to show that $f(x_1) - \lambda f(x_1) - (1 - \lambda)f(x_2) \le 0$. For notational convenience, let

 $D(x) = g(x_1)g(x_2) - \lambda g(x_2)g(x_2) - (1 - \lambda)g(x_2)g(x_2)$. Under the assumption that $g(x) > 0$ for all $x \in S$, our task reduces to demonstrating that $D(x) \le 0$ for any $x_1, x_2 \in S$, and any $\lambda \in [0,1]$. By the concavity of $g(x)$ we have

$$
D(x) \le g(x_1)g(x_2) - \lambda[\lambda g(x_1) + (1 - \lambda)g(x_2)]g(x_2) -
$$

$$
(1 - \lambda)[\lambda g(x_1) + (1 - \lambda)g(x_2)]g(x_1).
$$

After a rearrangement of terms on the right-hand side of this inequality we obtain

$$
D(x) \le -\lambda (1 - \lambda) [g(x_1)^2 + g(x_2)^2] + 2\lambda (1 - \lambda) g(x_1) g(x_2)
$$

= $-\lambda (1 - \lambda) [g(x_1)^2 + g(x_2)^2] + 2\lambda (1 - \lambda) g(x_1) g(x_2)$
= $-\lambda (1 - \lambda) [g(x_1)^2 + g(x_2)^2 - 2g(x_1) g(x_2)]$
= $-\lambda (1 - \lambda) [g(x_1) - g(x_2)]^2$.

Therefore, $D(x) \le 0$ for any $x_1, x_2 \in S$, and any $\lambda \in [0,1]$, and thus $f(x)$ is a convex function.

Symmetrically, if g is convex, $S = \{x : g(x) < 0\}$, then from above, $\frac{1}{\sqrt{2}}$ is convex over S, and so $f(x) = 1/g(x)$ is concave over S. \Box

3.16 Let x_1 , x_2 be any two vectors in R^n , and let $\lambda \in [0,1]$. Then, by the definition of $h(\cdot)$, we obtain $h(\lambda x_1 + (1 - \lambda)x_2) = \lambda (Ax_1 + b) +$ $(1 - \lambda)(Ax_2 + b) = \lambda h(x_1) + (1 - \lambda)h(x_2)$. Therefore, $f(\lambda x_1 + (1 - \lambda)x_2) = g[h(\lambda x_1 + (1 - \lambda)x_2)] = g[\lambda h(x_1) + (1 - \lambda)h(x_2)]$ $\leq \lambda g[h(x_1)] + (1 - \lambda)g[h(x_2)] = \lambda f(x_1) + (1 - \lambda)f(x_2),$ where the above inequality follows from the convexity of g. Hence, $f(x)$ is convex. \square By multivariate calculus, we obtain $\nabla f(x) = A^t \nabla g[h(x)]$, and $H_f(x) =$

$$
A^t H_g[h(x)]A
$$

3.18 Assume that $f(x)$ is convex. Consider any $x, y \in \mathbb{R}^n$, and let $\lambda \in (0,1)$. Then

$$
f(x + y) = f\left[\lambda\left(\frac{x}{\lambda}\right) + (1 - \lambda)\left(\frac{y}{1 - \lambda}\right)\right] \le \lambda f\left(\frac{x}{\lambda}\right) + (1 - \lambda)f\left(\frac{y}{1 - \lambda}\right)
$$

 $= f(x) + f(y),$

and so f is subadditive.

Conversely, let f be a subadditive gauge function. Let $x, y \in R^n$ and $\lambda \in [0,1]$. Then $f(\lambda x + (1 - \lambda)y) \le f(\lambda x) + f[(1 - \lambda)y] = \lambda f(x) + (1 - \lambda)f(y),$ and so f is convex.

- **3.21** See the answer to Exercise 6.4.
- $3.22 a$ See the answer to Exercise 6.4.
	- b. If $y_1 \le y_2$, then $\{x : g(x) \le y_1, x \in S\} \subseteq \{x : g(x) \le y_2, x \in S\}$, and so $\phi(y_1) \ge \phi(y_2)$.

3.26 First assume that $\bar{x} = 0$. Note that then $f(\bar{x}) = 0$ and $\xi^t \bar{x} = 0$ for any vector ξ in R^n . (\Rightarrow) If ξ is a subgradient of $f(x) = ||x||$ at $x = 0$, then by definition we have $||x|| \ge \xi^t x$ for all $x \in R^n$. Thus in particular for $x = \xi$, we obtain $\|\xi\| \ge \|\xi\|^2$, which yields $\|\xi\| \le 1$. (\Leftarrow) Suppose that $\|\xi\| \leq 1$. By the Schwarz inequality, we then obtain $\xi^t x \le ||\xi|| \, ||x|| \le ||x||$, and so ξ is a subgradient of $f(x) = ||x||$ at $x = 0$. This completes the proof for the case when $\bar{x} = 0$. Now, consider $\bar{x} \neq 0$. (\Rightarrow) Suppose that ξ is a subgradient of $f(x) = ||x||$ at \overline{x} . Then by definition, we have

$$
||x|| - ||\overline{x}|| \ge \xi^t (x - \overline{x}) \text{ for all } x \in R^n. \tag{1}
$$

In particular, the above inequality holds for $x = 0$, for $x = \lambda \overline{x}$, where $\lambda > 0$, and for $x = \xi$. If $x = 0$, then $\xi^t \overline{x} \ge ||\overline{x}||$. Furthermore, by employing the Schwarz inequality we obtain

$$
\|\overline{x}\| \le \xi^t \overline{x} \le \|\xi\| \|\overline{x}\| \,.
$$

If $x = \lambda \overline{x}$, $\lambda > 0$, then $||x|| = \lambda ||\overline{x}||$, and Equation (1) yields $(\lambda - 1) \|\overline{x}\| \ge (\lambda - 1)\xi^t \overline{x}$. If $\lambda > 1$, then $\|\overline{x}\| \ge \xi^t \overline{x}$, and if $\lambda < 1$, then $\|\overline{x}\| \leq \xi^t \overline{x}$. Therefore, in either case, if ξ is a subgradient at \overline{x} , then it must satisfy the equation.

$$
\xi^t \overline{x} = \|\overline{x}\|.\tag{3}
$$

Finally, if $x = \xi$, then Equation (1) results in $\|\xi\| - \|\overline{x}\| \ge \xi^t \xi - \xi^t \overline{x}$. However, by (2), we have $\xi^t \overline{x} = ||\overline{x}||$. Therefore, $||\xi||(1 - ||\xi||) \ge 0$. This vields

$$
1 - \|\xi\| \ge 0\tag{4}
$$

Combining (2) – (4), we conclude that if ξ is a subgradient of $f(x) = ||x||$ at $\bar{x} \neq 0$, then $\xi^t \bar{x} = ||\bar{x}||$ and $||\xi|| = 1$.

(←) Consider a vector $\xi \in R^n$ such that $\|\xi\| = 1$ and $\xi^t \overline{x} = \|\overline{x}\|$, where $\overline{x} \neq 0$. Then for any x, we have $f(x) - f(\overline{x}) - \xi^{t}(x - \overline{x}) = ||x|| - ||\overline{x}|| \xi^{t}(x-\overline{x}) = ||x|| - \xi^{t}x \ge ||x||(1-||\xi||) = 0$, where we have used the Schwarz inequality $(\xi^t x \le ||\xi|| ||x||)$ to derive the last inequality. Thus ξ is a subgradient of $f(x) = ||x||$ at $\bar{x} \neq 0$. This completes the proof. \Box In order to derive the gradient of $f(x)$ at $\bar{x} \neq 0$, notice that $\|\xi\| = 1$ and $\zeta^t \overline{x} = ||\overline{x}||$ if and only if $\zeta = \frac{1}{||\overline{x}||} \overline{x}$. Thus $\nabla f(\overline{x}) = \frac{1}{||\overline{x}||} \overline{x}$.

3.27 Since f_1 and f_2 are convex and differentiable, we have

$$
f_1(x) \ge f_1(\overline{x}) + (x - \overline{x})^t \nabla f_1(\overline{x}), \quad \forall x.
$$

\n
$$
f_2(x) \ge f_2(\overline{x}) + (x - \overline{x})^t \nabla f_2(\overline{x}), \quad \forall x.
$$

\nHence, $f(x) = \max\{f_1(x), f_2(x)\}\$ and $f(\overline{x}) = f_1(\overline{x}) = f_2(\overline{x})$ give

$$
f(x) \ge f(\overline{x}) + (x - \overline{x})^t \nabla f_1(\overline{x}), \quad \forall x \tag{1}
$$

$$
f(x) \ge f(\overline{x}) + (x - \overline{x})^t \nabla f_{2}(\overline{x}), \quad \forall x.
$$
 (2)

Multiplying (1) and (2) by λ and $(1 - \lambda)$, respectively, where $0 \le \lambda \le 1$, yields upon summing:

$$
f(x) \ge f(\overline{x}) + (x - \overline{x})^t [\lambda \nabla f_1(\overline{x}) + (1 - \lambda) \nabla f_2(\overline{x})], \quad \forall x,
$$

\n
$$
\Rightarrow \xi = \lambda \nabla f_1(\overline{x}) + (1 - \lambda) \nabla f_2(\overline{x}), \quad 0 \le \lambda \le 1, \text{ is a subgradient of } f \text{ at } \overline{x}.
$$

 (\Rightarrow) Let ξ be a subgradient of f at \overline{x} . Then, we have,

$$
f(x) \ge f(\overline{x}) + (x - \overline{x})^t \xi, \quad \forall x. \tag{3}
$$

But $f(x) = \max\{f_1(x), f_2(x)\}\$

$$
\max \{f_1(\overline{x}) + (x - \overline{x})^t \nabla f_1(\overline{x}) + \|x - \overline{x}\| 0_1(x \to \overline{x}),
$$

$$
f_2(\overline{x}) + (x - \overline{x})^t \nabla f_2(\overline{x}) + \|x - \overline{x}\| 0_2(x \to \overline{x})\},
$$
 (4)

where $0_1(x \to \overline{x})$ and $0_2(x \to \overline{x})$ are functions that approach zero as $x \to \overline{x}$. Since $f_1(\overline{x}) = f_2(\overline{x}) = f(\overline{x})$, putting (3) and (4) together yields

$$
\max \{ (x - \overline{x})^t [\nabla f_1(\overline{x}) - \xi] + \|x - \overline{x}\| 0_1(x \to \overline{x}),
$$

$$
(x - \overline{x})^t [\nabla f_2(\overline{x}) - \xi] + \|x - \overline{x}\| 0_2(x \to \overline{x}) \} \ge 0, \quad \forall x.
$$
 (5)

Now, on the contrary, suppose that $\xi \notin conv\{\nabla f_1(\overline{x}), \nabla f_2(\overline{x})\}\.$ Then, there exists a strictly separating hyperplane $\alpha x = \beta$ such that $\|\alpha\| = 1$ and $\alpha^t \xi > \beta$ and $\{\alpha^t \nabla f_1(\overline{x}) < \beta, \alpha^t \nabla f_2(\overline{x}) < \beta\}$, i.e.,

$$
\alpha^t[\xi - \nabla f_1(\overline{x})] > 0 \text{ and } \alpha^t[\xi - \nabla f_2(\overline{x})] > 0. \tag{6}
$$

Letting $(x - \overline{x}) = \varepsilon \alpha$ in (5), with $\varepsilon \to 0^+$, we get upon dividing with $\varepsilon > 0$:

$$
\max \{\alpha^t [\nabla f_1(\overline{x}) - \xi] + 0_1(\varepsilon \to 0),
$$

\n
$$
\alpha^t [\nabla f_2(\overline{x}) - \xi] + 0_2(\varepsilon \to 0)\} \ge 0, \ \forall \varepsilon > 0.
$$
 (7)

But the first terms in both maxands in (7) are negative by (6) , while the second terms $\rightarrow 0$. Hence we get a contradiction. Thus $\xi \in conv\{\nabla f_1(\overline{x}),\}$ $\nabla f_{2}(\overline{x})$, i.e., it is of the given form.

Similarly, if $f(x) = \max\{f_1(x),..., f_m(x)\}\,$, where $f_1,..., f_m$ differentiable convex functions and \bar{x} is such that $f(\bar{x}) = f(x)$, $\forall i \in I \subseteq \{1,...,m\}$, then ξ is a subgradient of f at $\bar{x} \Leftrightarrow \xi \in conv\{\nabla f_i(\bar{x}), i \in I\}$. A likewise result holds for the minimum of differentiable concave functions.

- 3.28 a. See Theorem 6.3.1 and its proof. (Alternatively, since θ is the minimum of several affine functions, one for each extreme point of X , we have that θ is a piecewise linear and concave.)
	- See Theorem 6.3.7. In particular, for a given vector \overline{u} , let \mathbf{b} . $X(\overline{u}) = \{x_1, ..., x_k\}$ denote the set of all extreme points of the set X that are optimal solutions for the problem to minimize $\{c^t x + \overline{u}^t (Ax - b) : x \in X\}$. Then $\xi(\overline{u})$ is a subgradient of $\theta(u)$ at \overline{u} if and only if $\xi(\overline{u})$ is in the convex hull of $Ax_1 - b, ..., Ax_k - b$, where $x_i \in X(\overline{u})$ for $i = 1,...,k$. That is, $\xi(\overline{u})$ is a subgradient of $\theta(u)$ at \bar{u} if and only if $\xi(\bar{u}) = A \sum_{i=1}^{k} \lambda_i x_i - b$ for some nonnegative $\lambda_1, ..., \lambda_k$, such that $\sum_{i=1}^k \lambda_i = 1$.

3.31 Let P_1 : $\min\{f(x) : x \in S\}$ and P_2 : $\min\{f_s(x) : x \in S\}$, and let $S_1 = \{x^* \in S : f(x^*) \le f(x), \forall x \in S\}$ and $S_2 = \{x^* \in S : f_s(x^*) \le f_s(x^*)\}$ $f_{s}(x), \forall x \in S$. Consider any $x^* \in S_1$. Hence, x^* solves Problem P₁. Define $h(x) = f(x^*)$, $\forall x \in S$. Thus, the constant function h is a convex underestimating function for f over S, and so by the definition of f_s , we have that

$$
f_{\mathfrak{g}}(x) \ge h(x) = f(x^*) , \forall x \in S. \tag{1}
$$

But $f_{s}(x^{*}) \le f(x^{*})$ since $f_{s}(x) \le f(x), \forall x \in S$. This, together with (1), thus yields $f_c(x^*) = f(x^*)$ and that x^* solves Problem P₂ (since (1) asserts that $f(x^*)$ is a lower bound on Problem P_2). Therefore, $x^* \in S_2$. Thus, we have shown that the optimal values of Problems P_1 and P_2 match, and that $S_1 \subseteq S_2$. \Box

$$
3.37 \quad \nabla f(x) = \begin{bmatrix} 4x_1 e^{2x_1^2 - x_2^2} & -3 \\ -2x_2 e^{2x_1^2 - x_2^2} & +5 \end{bmatrix}, \quad \nabla f\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4e - 3 \\ -2e + 5 \end{bmatrix}
$$
\n
$$
H(x) = 2e^{2x_1^2 - x_2^2} \begin{bmatrix} 8x_1^2 + 2 & -4x_1x_2 \\ -4x_1x_2 & 2x_2^2 - 1 \end{bmatrix}, \quad H\begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2e \begin{bmatrix} 10 & -4 \\ -4 & 1 \end{bmatrix},
$$
\n
$$
\text{with } f\begin{bmatrix} 1 \\ 1 \end{bmatrix} = e + 2.
$$

Thus, the linear (first-order) approximation of f at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is given by $f_1(x) = (e + 2) + (x_1 - 1)(4e - 3) + (x_2 - 1)(-2e + 5),$ and the second-order approximation of f at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is given by $f_2(x) = (e + 2) + (x_1 - 1)(4e - 3) + (x_2 - 1)(-2e + 5) +$ $e\left[10(x_1-1)^2-8(x_1-1)(x_2-1)+(x_2-1)^2\right]$.

 f_1 is both convex and concave (since it is affine). The Hessian of f_2 is given by $H\begin{bmatrix}1\\1\end{bmatrix}$, which is indefinite, and so f_2 is neither convex nor concave.

3.39 The function $f(x) = x^t A x$ can be represented in a more convenient form as $f(x) = \frac{1}{2}x^{t}(A + A^{t})x$, where $(A + A^{t})$ is symmetric. Hence, the Hessian matrix of $f(x)$ is $H = A + A^t$. By the superdiagonalization procedure, we can readily verify that $H = \begin{bmatrix} 4 & 3 & 4 \\ 3 & 6 & 3 \\ 4 & 3 & 24 \end{bmatrix}$. H is positive semidefinite if and only if $\theta \ge 2$, and is positive definite for $\theta > 2$. Therefore, if $\theta > 2$, then $f(x)$ is strictly convex. To examine the case when $\theta = 2$, consider the following three points: $x_1 = (1, 0, 0)$, $x_2 = (0, 0, 0)$ 1), and $\bar{x} = \frac{1}{2}x_1 + \frac{1}{2}x_2$. As a result of direct substitution, we obtain $f(x_1) = f(x_2) = 2$, and $f(\overline{x}) = 2$. This shows that $f(x)$ is not strictly convex (although it is still convex) when $\theta = 2$.

- **3.40** $f(x) = x^3 \implies f'(x) = 3x^2$ and $f''(x) = 6x \ge 0, \forall x \in S$. Hence f is convex on S. Moreover, $f''(x) > 0$, $\forall x \in \text{int}(S)$, and so f is strictly convex on $int(S)$. To show that f is strictly convex on S, note that $f''(x) = 0$ only for $x = 0 \in S$, and so following the argument given after Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at any point \bar{x} must touch it only at $[\bar{x}, f(\bar{x})]$, or else this would contradict the strict convexity of f over $int(S)$. Note that the first nonzero derivative of order greater than or equal to 2 at $\bar{x} = 0$ is $f'''(\bar{x}) = 6$, but Theorem 3.3.9 does not apply here since $\bar{x} = 0 \in \partial(S)$. Indeed, this shows that $f(x) = x³$ is neither convex nor concave over R. But Theorem 3.3.9 applies (and holds) over $int(S)$ in this case.
- **3.41** The matrix H is symmetric, and therefore, it is diagonalizable. That is, there exists an orthogonal $n \times n$ matrix O, and a diagonal $n \times n$ matrix D such that $H = ODO^t$. The columns of the matrix O are simply normalized eigenvectors of the matrix H , and the diagonal elements of the matrix D are the eigenvalues of H . By the positive semidefiniteness of H , we have $diag\{D\} \ge 0$, and hence there exists a square root matrix $D^{1/2}$ of D (that is $D = D^{1/2} D^{1/2}$

If $x = 0$, then readily $Hx = 0$. Suppose that $x^t Hx = 0$ for some $x \ne 0$. Below we show that then Hx is necessarily 0. For notational convenience let $z = D^{1/2}O^{t}x$. Then the following equations are equivalent to $x^t Hx = 0$.

$$
x^{t}QD^{1/2}D^{1/2}Q^{t}x = 0
$$

\n
$$
\Leftrightarrow z^{t}z = 0, \text{ i.e., } ||z||^{2} = 0
$$

\n
$$
\Leftrightarrow z = 0
$$

By premultiplying the last equation by $OD^{1/2}$, we obtain $OD^{1/2}z = 0$, which by the definition of z gives $ODO^t x = 0$. Thus $Hx = 0$, which completes the proof. \square

3.45 Consider the problem

P: Minimize
$$
(x_1 - 4)^2 + (x_2 - 6)^2
$$

subject to $x_2 \ge x_1^2$
 $x_2 \le 4$.

Note that the feasible region (denote this by X) of Problem P is convex. Hence, a necessary condition for $\bar{x} \in X$ to be an optimal solution for Problem P is that

$$
\nabla f(\overline{x})^l (x - \overline{x}) \ge 0, \ \forall x \in X,
$$
\n⁽¹⁾

because if there exists an $\hat{x} \in X$ such that $\nabla f(\overline{x})^t (\hat{x} - \overline{x}) < 0$, then $d = (\hat{x} - \overline{x})$ would be an improving (since f is differentiable) and feasible $(since X is convex)$ direction.

For
$$
\overline{x} = (2,4)^t
$$
, we have $\nabla f(\overline{x}) = \begin{bmatrix} 2(2-4) \\ 2(4-6) \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$.

Hence,

$$
\nabla f(\overline{x})^t (x - \overline{x}) = [-4, -4] = \begin{bmatrix} x_1 - 2 \\ x_2 - 4 \end{bmatrix} = -4x_1 - 4x_2 + 24.
$$
 (2)

But $x_1^2 \le x_2 \le 4$, $\forall x \in X \Rightarrow x_2 \le 4$ and $-2 \le x_1 \le 2$, and so $-4x_1 \ge -8$ and $-4x_2 \ge -16$. Hence, $\nabla f(\overline{x})^t (x - \overline{x}) \ge 0$ from (2).

Furthermore, observe that the objective function of Problem P (denoted by $f(x)$) is (strictly) convex since its Hessian is given by $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, which is positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1) is also sufficient for optimality to P, and so $\bar{x} = (2, 4)^t$ (uniquely) solves Problem P.

3.48 Suppose that λ_1 and λ_2 are in the interval $(0, \delta)$, and such that $\lambda_2 > \lambda_1$. We need to show that $f(x + \lambda_2 d) \ge f(x + \lambda_1 d)$.

Let $\alpha = \lambda_1/\lambda_2$. Note that $\alpha \in (0,1)$, and $x + \lambda_1 d = \alpha(x + \lambda_2 d)$ + $(1 - \alpha)x$. Therefore, by the convexity of f, we obtain $f(x + \lambda_1 d) \le$ $\alpha f(x + \lambda, d) + (1 - \alpha)f(x)$, which leads to $f(x + \lambda_1 d) \le f(x + \lambda_2 d)$ since, by assumption, $f(x) \le f(x + \lambda d)$ for any $\lambda \in (0, \delta)$.

When f is strictly convex, we can simply replace the weak inequalities above with strict inequalities to conclude that $f(x + \lambda d)$ is strictly increasing over the interval $(0, \delta)$.

3.51 (\Leftrightarrow) If the vector d is a descent direction of f at \overline{x} , then $f(\overline{x} + \lambda d)$ – $f(\overline{x}) < 0$ for all $\lambda \in (0, \delta)$. Moreover, since f is a convex and differentiable function, we have that $f(\overline{x} + \lambda d) - f(\overline{x}) \ge \lambda \nabla f(\overline{x})^t d$. Therefore, $\nabla f(\overline{x})^t d < 0$. (\Leftrightarrow) See the proof of Theorem 4.1.2. \Box Note: If the function $f(x)$ is not convex, then it is not true that $\nabla f(\overline{x})^t d < 0$ whenever d is a descent direction of $f(x)$ at \overline{x} . For example, if $f(x) = x^3$, then $d = -1$ is a descent direction of f at $\bar{x} = 0$, but $f'(\overline{x})d = 0$.

3.54 (\Rightarrow) If \bar{x} is an optimal solution, then we must have $f'(\bar{x}; d) \ge 0$, $\forall d \in D$, since $f'(\overline{x}; d) < 0$ for any $d \in D$ implies the existence of improving feasible solutions by Exercise 3.5.1. (\Leftarrow) Suppose $f'(\overline{x}; d) \ge 0$, $\forall d \in D$, but on the contrary, \overline{x} is not an optimal solution, i.e., there exists $\hat{x} \in S$ with $f(\hat{x}) < f(\overline{x})$. Consider $d = (\hat{x} - \overline{x})$. Then $d \in D$ since S is convex. Moreover, $f(\overline{x} + \lambda d) =$ $f(\lambda \hat{x} + (1 - \lambda)\overline{x}) \leq \lambda f(\hat{x}) + (1 - \lambda)f(\overline{x}) < f(\overline{x}), \ \forall 0 < \lambda \leq 1.$ Thus d is a feasible, descent direction, and so $f'(\overline{x}; d) < 0$ by Exercise 3.51, a contradiction.

Theorem 3.4.3 similarly deals with nondifferentiable convex functions.

- If $S = R^n$, then \bar{x} is optimal $\Leftrightarrow \nabla f(\bar{x})^t d \geq 0$, $\forall d \in R^n$ $\Leftrightarrow \nabla f(\overline{x}) = 0$ (else, pick $d = -\nabla f(\overline{x})$ to get a contradiction).
- **3.56** Let $x_1, x_2 \in \mathbb{R}^n$. Without loss of generality assume that $h(x_1) \ge h(x_2)$. Since the function g is nondecreasing, the foregoing assumption implies that $g[h(x_1)] \ge g[h(x_2)]$, or equivalently, that $f(x_1) \ge f(x_2)$. By the quasiconvexity of h, we have $h(\alpha x_1 + (1 - \alpha)x_2) \le h(x_1)$ for any $\alpha \in [0,1]$. Since the function g is nondecreasing, we therefore have, $f(\alpha x_1 + (1 - \alpha)x_2) = g[h(\alpha x_1 + (1 - \alpha)x_2)] \le g[h(x_1)] = f(x_1).$ This shows that $f(x)$ is quasiconvex. \Box

3.61 Let α be an arbitrary real number, and let $S = \{x : f(x) \leq \alpha\}.$ Furthermore, let x_1 and x_2 be any two elements of S. By Theorem 3.5.2, we need to show that S is a convex set, that is, $f(\lambda x_1 + (1 - \lambda)x_2) \le \alpha$ for any $\lambda \in [0,1]$. By the definition of $f(x)$, we have

$$
f(\lambda x_1 + (1 - \lambda)x_2) = \frac{g(\lambda x_1 + (1 - \lambda)x_2)}{h(\lambda x_1 + (1 - \lambda)x_2)} \le \frac{\lambda g(x_1) + (1 - \lambda)g(x_2)}{\lambda h(x_1) + (1 - \lambda)h(x_2)},
$$
(1)

where the inequality follows from the assumed properties of the functions g and h. Furthermore, since $f(x_1) \le \alpha$ and $f(x_2) \le \alpha$, we obtain

$$
\lambda g(x_1) \leq \lambda \alpha h(x_1)
$$
 and $(1 - \lambda)g(x_2) \leq (1 - \lambda) \alpha h(x_2)$.

By adding these two inequalities, we obtain $\lambda g(x_1) + (1 - \lambda)g(x_2) \le$ $\alpha[\lambda h(x_1) + (1 - \lambda)h(x_2)]$. Since h is assumed to be a positive-valued function, the last inequality yields

$$
\frac{\lambda g(x_1) + (1 - \lambda)g(x_2)}{\lambda h(x_1) + (1 - \lambda)h(x_2)} \le \alpha,
$$

or by (1), $f(\lambda x_1 + (1 - \lambda)x_2) \le \alpha$. Thus, S is a convex set, and therefore, $f(x)$ is a quasiconvex function. \square

Alternative proof: For any $\alpha \in R$, let $S_{\alpha} = \{x \in S : g(x)/h(x) \leq \alpha\}$. We need to show that S_{α} is a convex set. If $\alpha < 0$, then $S_{\alpha} = \emptyset$ since $g(x) \ge 0$ and $h(x) \ge 0$, $\forall x \in S$, and so S_{α} is convex. If $\alpha \ge 0$, then $S_{\alpha} = \{x \in S : g(x) - \alpha h(x) \le 0\}$ is convex since $g(x) - \alpha h(x)$ is a convex function, and S_{α} is a lower level set of this function. \square

3.62 We need to prove that if $g(x)$ is a convex nonpositive-valued function on S and $h(x)$ is a convex and positive-valued function on S, then $f(x) = g(x)/h(x)$ is a quasiconvex function on S. For this purpose we show that for any $x_1, x_2 \in S$, if $f(x_1) \ge f(x_2)$, then $f(x_2) \le f(x_1)$, where $x_2 = \lambda x_1 + (1 - \lambda)x_2$, and $\lambda \in [0,1]$. Note that by the definition of f and the assumption that $h(x) > 0$ for all $x \in S$, it suffices to show that $g(x_1)h(x_1) - g(x_1)h(x_2) \le 0$. Towards this end, observe that

$$
g(x_{\lambda})h(x_1) \leq [\lambda g(x_1) + (1 - \lambda)g(x_2)]h(x_1)
$$
 since $g(x)$ is convex and $h(x) > 0$ on S ;
\n
$$
g(x_1)h(x_{\lambda}) \geq g(x_1)[\lambda h(x_1) + (1 - \lambda)h(x_2)]
$$
 since $h(x)$ is convex and $g(x) \leq 0$ on S ;
\n
$$
g(x_2)h(x_1) - g(x_1)h(x_2) \leq 0
$$
, since $f(x_1) \geq f(x_2)$ and $h(x) > 0$ on S .

From the foregoing inequalities we obtain $g(x_1)h(x_1) - g(x_1)h(x_2)$ $\leq [\lambda g(x_1) + (1 - \lambda)g(x_2)]h(x_1) - g(x_1)[\lambda h(x_1) + (1 - \lambda)h(x_2)]$ = $(1 - \lambda)[g(x_2)h(x_1) - g(x_1)h(x_2)] \le 0$,

which implies that $f(x_1) \le \max\{f(x_1), f(x_2)\} = f(x_1)$. \Box

Note: See also the alternative proof technique for Exercise 3.61 for a similar simpler proof of this result.

- 3.63 By assumption, $h(x) \neq 0$, and so the function $f(x)$ can be rewritten as $f(x) = g(x)/p(x)$, where $p(x) = 1/h(x)$. Furthermore, since $h(x)$ is a concave and positive-valued function, we conclude that $p(x)$ is convex and positive-valued on S (see Exercise 3.11). Therefore, the result given in Exercise 3.62 applies. This completes the proof. \Box
- **3.64** Let us show that if $g(x)$ and $h(x)$ are differentiable, then the function defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62) and 3.63 are similar.) To prove this, we show that for any x_1 , $x_2 \in S$, if $\nabla f(x_1)^t (x_2 - x_1) \ge 0$, then $f(x_2) \ge f(x_1)$. From the assumption that $h(x) > 0$, it follows that $\nabla f(x_1)^t (x_2 - x_1) \ge 0$ if and only if $[h(x_1)\nabla g(x_1) - g(x_1)\nabla h(x_1)]^t (x_2 - x_1) \ge 0$. Furthermore, note that $\nabla g(x_1)^t (x_2 - x_1) \le g(x_2) - g(x_1)$, since $g(x)$ is a convex and differentiable function on S, and $\nabla h(x_1)^t (x_2 - x_1) \ge h(x_2) - h(x_1)$, since $h(x)$ is a concave and differentiable function on S. By multiplying the latter inequality by $-g(x_1) \le 0$, and the former one by $h(x_1) > 0$, and adding the resulting inequalities, we obtain (after rearrangement of terms):

$$
[h(x_1)\nabla g(x_1) - g(x_1)\nabla h(x_1)]^t (x_2 - x_1) \leq h(x_1)g(x_2) - g(x_1)h(x_2).
$$

The left-hand side expression is nonegative by our assumption, and therefore, $h(x_1)g(x_2) - g(x_1)h(x_2) \ge 0$, which implies that $f(x_2) \ge f(x_1)$. This completes the proof. \Box

3.65 For notational convenience let $g(x) = c_1^t x + \alpha_1$, and let $h(x) = c_2^t x + \alpha_2$. In order to prove pseudoconvexity of $f(x) = \frac{g(x)}{h(x)}$ on the set $S = \{x : h(x) > 0\}$ we need to show that for any $x_1, x_2 \in S$, if $\nabla f(x_1)^t (x_2 - x_1) \ge 0$, then $f(x_2) \ge f(x_1)$.

Assume that $\nabla f(x_1)^t (x_2 - x_1) \ge 0$ for some $x_1, x_2 \in S$. By the definition of f, we have $\nabla f(x) = \frac{1}{[h(x)]^2} [h(x)c_1 - g(x)c_2].$ Therefore, our assumption yields $[h(x_1)c_1 - g(x_1)c_2]^t (x_2 - x_1) \ge 0$. Furthermore, by adding and subtracting $\alpha_1 h(x_1) + \alpha_2 g(x_1)$ we obtain $g(x_2)h(x_1)$ $h(x_2)g(x_1) \ge 0$. Finally, by dividing this inequality by $h(x_1)h(x_2)$ (> 0), we obtain $f(x_2) \ge f(x_1)$, which completes the proof of pseudoconvexity of $f(x)$. The psueoconcavity of $f(x)$ on S can be shown in a similar way. Thus, f is pseudolinear. \square