By Ali Reza Khoddami and applying several environments

1. \begin{itemize} \item If \$x\$ is even and \$y\$ is odd then \$x+y\$ is odd. \item If \$x\$ is even and \$y\$ is even then \$x+y\$ is even. \item If \$x\$ is odd and \$y\$ is odd then \$x+y\$ is even. \end{itemize}

- If x is even and y is odd then x + y is odd.
- If x is even and y is even then x + y is even.
- If x is odd and y is odd then x + y is even.
- 2. \renewcommand{\labelitemi}{\$\otimes\$}
 \begin{itemize}

\item

If x is even and y is odd then x+y is odd.

\item

If x is even and y is even then x+y is even.

\item

If x is odd and y is odd then x+y is even. \end{itemize}

- \otimes If x is even and y is odd then x + y is odd.
- \otimes If x is even and y is even then x + y is even.
- \otimes If x is odd and y is odd then x + y is even.
- 3. \renewcommand{\labelitemi}{\$\blacktriangleright\$}
 \begin{itemize}

\item

If x is even and y is odd then x+y is odd.

\item

If x is even and y is even then x+y is even.

\item

If \$x\$ is odd and \$y\$ is odd then \$x+y\$ is even. \end{itemize}

- \blacktriangleright If x is even and y is odd then x + y is odd.
- \blacktriangleright If x is even and y is even then x+y is even.
- ▶ If x is odd and y is odd then x + y is even.
- 4. \renewcommand{\labelitemi}{\$\divideontimes\$} \begin{itemize}

\item

If x is even and y is odd then x+y is odd. \item

If x is even and y is even then x+y is even. \item

If x is odd and y is odd then x+y is even. \end{itemize}

- * If x is even and y is odd then x + y is odd.
- * If x is even and y is even then x + y is even.
- * If x is odd and y is odd then x + y is even.
- 5. \begin{enumerate}

\item

If x is even and y is odd then x+y is odd.

\item

If x is even and y is even then x+y is even.

\item

If x is odd and y is odd then x+y is even.

\end{enumerate}

- (a) If x is even and y is odd then x + y is odd.
- (b) If x is even and y is even then x + y is even.
- (c) If x is odd and y is odd then x + y is even.
- 6. \begin{align*}

(sinx+cosx)^2-sinxcosx&=sin^2x+2sinxcosx+cos^2x-sinxcosx\\

&=1+sinxcosx\\

 $\&=1+\frac{1}{2}\sin 2x$

\end{align*}

$$(sinx + cosx)^{2} - sinxcosx = sin^{2}x + 2sinxcosx + cos^{2}x - sinxcosx$$
$$= 1 + sinxcosx$$
$$= 1 + \frac{1}{2}sin2x$$

7. \begin{align*}

\end{align*}

$$\begin{split} \frac{\|T \otimes S - T^2 \otimes S^2\|}{\|S - T\| + \|S^2 + T^2\|} &\leqslant \frac{\|S \circ T\|^3}{\|S + T \circ S^2\|^4} \\ &\leqslant 12\|S\| + 3\|T\| + 8 \\ &= 5\|S^3 - T^5\| + 10. \end{split}$$

8. f(x)=\$

\begin{cases}

 ${\sin^2x + \cos^2z - 10, \& \det\{if\} \setminus x < -4 \setminus a}$

 $4x^2+3x+\frac{1}{2}$, & \text{if}\ -4\leqslant x<10\\

sinhx, & \text{if}\ x\geqslant 10

\end{cases}}

$$f(x) = \begin{cases} \sin^2 x + \cos x^2 - 10, & \text{if } x < -4\\ 4x^2 + 3x + \frac{1}{2}, & \text{if } -4 \le x < 10\\ \sinh x, & \text{if } x \geqslant 10 \end{cases}$$

9. g(x)=

\begin{cases}

2x, & x<-100\\

 $5x^3$, & $-100 < x < 200 \setminus$

 $34x^5+12$, & 200\leqslant x\leqslant 500\\

 $cosh^5x$, & $x\geq 100$

\end{cases}

$$g(x) = \begin{cases} 2x, & x < -100 \\ 5x^3, & -100 < x < 200 \\ 34x^5 + 12, & 200 \le x \le 500 \\ \cosh^5 x, & x \ge 700 \end{cases}$$

10. \begin{description}

\item[limit point :] a point \$x\in X\$ is a limit point of \$A\$ if ...
\item[interior point :] a point \$x\in A\$ is an interior point of \$A\$ if ...
\item[boundry point :] a point \$x\in X\$ is a boundry point of \$A\$ if ...
\end{description}

limit point : a point $x \in X$ is a limit point of A if ...

interior point: a point $x \in A$ is an interior point of A if ...

boundary point: a point $x \in X$ is a boundary point of A if ...

Be successful Ali Reza Khoddami