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It is of interest to inquire whether gauge
vector mesons acquire mass through interac-
tion'; by a gauge vector meson we mean a
Yang-Mills field® associated with the extension
of a Lie group from global to local symmetry.
The importance of this problem resides in the
possibility that strong-interaction physics orig-
inates from massive gauge fields related to a
system of conserved currents.® In this note,
we shall show that in certain cases vector
mesons do indeed acquire mass when the vac-
uum is degenerate with respect to a compact
Lie group.

Theories with degenerate vacuum (broken
symmetry) have been the subject of intensive
study since their inception by Nambu.*™® A
characteristic feature of such theories is the
possible existence of zero-mass bosons which
tend to restore the symmetry.”»® We shall
show that it is precisely these singularities
which maintain the gauge invariance of the
theory, despite the fact that the vector meson
acquires mass.

We shall first treat the case where the orig-
inal fields are a set of bosons ¢4 which trans-
form as a basis for a representation of a com-
pact Lie group. This example should be con-
sidered as a rather general phenomenological
model. As such, we shall not study the par-
ticular mechanism by which the symmetry is
broken but simply assume that such a mech-
anism exists. A calculation performed in low-
est order perturbation theory indicates that

those vector mesons which are coupled to cur-
rents that “rotate” the original vacuum are the
ones which acquire mass [see Eq. (6)].

We shall then examine a particular model
based on chirality invariance which may have a
more fundamental significance. Here we begin
with a chirality-invariant Lagrangian and intro-
duce both vector and pseudovector gauge fields,
thereby guaranteeing invariance under both local
phase and local y,-phase transformations. In
this model the gauge fields themselves may break
the y, invariance leading to a mass for the orig-
inal Fermi field. We shall show in this case
that the pseudovector field acquires mass.

In the last paragraph we sketch a simple
argument which renders these results reason-
able.

(1) Lest the simplicity of the argument be
shrouded in a cloud of indices, we first con-
sider a one-parameter Abelian group, repre-
senting, for example, the phase transformation
of a charged boson; we then present the general-
ization to an arbitrary compact Lie group.

The interaction between the ¢ and the A m
fields is

Hint=ieA“<p*'5u<p—e2<p*<pA #Au, (1)
where ¢ =(¢, +i@,)/V2. We shall break the
symmetry by fixing (¢) #0 in the vacuum, with
the phase chosen for convenience such that
(@) =(p® =(pp /2.

We shall assume that the application of the

321



VoOLUME 13, NUMBER 9

PHYSICAL REVIEW LETTERS

31 AucusT 1964

theorem of Goldstone, Salam, and Weinberg’
is straightforward and thus that the propagator
of the field ¢,, which is “orthogonal” to ¢,,
has a pole at ¢ =0 which is not isolated.

We calculate the vacuum polarization loop
I, for the field A  in lowest order pertur-
bation theory about the self-consistent vacuum.
We take into consideration only the broken-sym-
metry diagrams (Fig. 1). The conventional
terms do not lead to a mass in this approxi-
mation if gauge invariance is carefully main-
tained. One evaluates directly

H“u(q) = (21r)“ie2[gw(<p1)2—(q “qv/qz)wl)z]. (2)

Here we have used for the propagator of ¢,
the value [i/(27)%]/q%; the fact that the re-
normalization constant is 1 is consistent with
our approximation.” We then note that Eq. (2)
both maintains gauge invariance (II W4, =0)
and causes the A# field to acquire a mass

u?=e*e,)*. (3)

We have not yet constructed a proof in arbi-
trary order; however, the similar appearance of
higher order graphs leads one to surmise the
general truth of the theorem.

Consider now, in general, a set of boson-field
operators ¢4 (which we may always choose to be
Hermitian) and the associated Yang-Mills field
A a, i The Lagrangian is invariant under the
transformation'®

50,=2, 4.7, aB?B’

GAa’ u =EC’ bec(x)cach + au ea(x), (4)

b,u

where ¢,y are the structure constants of a com-
pact Lie group and T, 4p the antisymmetric
generators of the grou’p in the representation de-
fined by the ¢pg.

Suppose that in the vacuum {¢ B’>* 0 for some
B’, Then the propagator of EA,B'Ta,AB'q’A

. . .,

.
4 ~ a

N,

W~——’<fw
(a) (b)

FIG. 1. Broken-symmetry diagram leading to a
mass for the gauge field. Short-dashed line, {(¢,);
long-dashed line, ¢, propagator; wavy line, A,, propa-
g:ztox;z. (a)— (2m)‘ie’gy , (9%, (b)—~ —(2mtie(q,q,/q")
x{py )%,

’
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X{ppg) is, in the lowest order,

[_’__] = Ta, 48984 ac'Pc”

(2‘”)4 A BI CI qz
=[ —i ](<¢>TaTa<<p>)
“Lemn q? ’

With A the coupling constant of the Yang-Mills
field, the same calculation as before yields

o, Va(q) = -i(27T)4?t2(<(P>TaTa<<p>)

2
X [gu V—ququ/q ],

giving a value for the mass

uaz = —(<¢>TaTa<<p>)- (6)

(2) Consider the interaction Hamiltonian
Hint=-n¢Y#75¢Bu-€¢7“¢A v (7)

where A  and B, are vector and pseudovector
gauge fields. The vector field causes attraction
whereas the pseudovector leads to repulsion be-
tween particle and antiparticle. For a suitable
choice of € and 7 there exists, as in Johnson’s
model,'! a broken-symmetry solution correspond-
ing to an arbitrary mass m for the y field fixing
the scale of the problem. Thus the fermion
propagator S(p) is

S=HP) =yp-Z(p) =yp[1-Z,(p)]-Z,(p?),  (8)
with
Z,(pH 20

and

m([1-Z,(m?) ]-Z,(m? =0.

We define the gauage-invariant current J #5 by
using Johnson’s method!?:

0= P ety g (),

v =expl-i [ B (ay"y ). @)

This gives for the polarization tensor of the
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pseudovector field
5() =2t _1 _1.. 1
Huv (@) =n (2n)4fTr{S(P )T (p-30;p +39)

1
Xs(p + ‘24)}’#)’5

=S(p)eS™M(p)/2p JS(p)y Fd'P,  (10)

where the vertex function I' 5=y ,y5+A g satis-
. . .5 v v v
fies the Ward identity

a,A, s(p-3a;p +30) =Z(p—3)y 5+ Z(p + 34), (11)

which for low g reads

quru5 :quyuy5[1—22] * 2217/5

~20g p ), )T, /0%y, (12)

The singularity in the longitudinal I', 5 vertex
due to the broken-symmetry term 23,y in the
Ward identity leads to a nonvanishing gauge-
invariant II uvs(q) in the limit ¢ — 0, while the
usual spurious “photon mass” drops because of
the second term in (10). The mass of the pseudo-
vector field is roughly 7*m? as can be checked by
inserting into (10) the lowest approximation for
I, g consistant with the Ward identity.

Thus, in this case the general feature of the
phenomenological boson system survives. We
would like to emphasize that here the symmetry
is broken through the gauge fields themselves.
One might hope that such a feature is quite gen-
eral and is possibly instrumental in the realiza-
tion of Sakurai’s program.®

(3) We present below a simple argument which
indicates why the gauge vector field need not
have zero mass in the presence of broken sym-
metry. Let us recall that these fields were in-

troduced in the first place in order to extend the
symmetry group to transformations which were
different at various space-time points. Thus one
expects that when the group transformations be-
come homogeneous in space-time, that is ¢ -0,
no dynamical manifestation of these fields should
appear. This means that it should cost no energy
to create a Yang-Mills quantum at ¢ =0 and thus
the mass is zero. However, if we break gauge
invariance of the first kind and still maintain
gauge invariance of the second kind this reason-
ing is obviously incorrect. Indeed, in Fig. 1,
one sees that the A propagator connects to in-
termediate states, which are ‘“rotated” vacua.
This is seen most clearly by writing {(¢,) ={[Q¢, ]
where @ is the group generator. This effect can-
not vanish in the limit ¢ - 0.
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