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Abstract

We consider l-order linear control systems � with coefficients in a commutative ring R. The notion of
reachability is studied for such systems and it is related to the reachability of the associated linearized system
lin(�).

We prove that reachability is a pointwise property, just as in the case of first order systems.
The feedback equivalence of l-order linear control systems over a commutative ring is also studied. We

introduce some feedback invariants that generalize the Hermida–Pérez–SánchezGiralda invariant modules
Mi . To conclude we apply results in order to give classification results in low dimension.
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1. Introduction

Consider the linear difference equation

x(t + l) = Al−1x(t + l − 1) + · · · + A1x(t + 1) + A0x(t) + Bu(t),

where x(t) ∈ Rn, u(t) ∈ Rm for each t ; Ai ∈ Rn×n, B ∈ Rn×m are matrices with entries in R and
R denotes a commutative ring with identity. For fixed initial values (x0, . . . , xl−1) = xinit ∈ (Rn)l

and a sequence of controls u : {0, 1, 2, . . .} → Rm one has the evolution of system obtained from
the difference equation

��(0, xinit, u)=x0

��(1, xinit, u)=x1

...

��(l − 1, xinit, u)=xl−1

��(l, xinit, u)=
l−1∑
i=0

Ai��(i, xinit, u) + Bu(0)

��(l + 1, xinit, u)=
l−1∑
i=0

Ai��(i + 1, xinit, u) + Bu(1)

...

��(l + t, xinit, u)=
l−1∑
i=0

Ai��(i + t, xinit, u) + Bu(t)

��(l + t + 1, xinit, u)=
l−1∑
i=0

Ai��(i + t + 1, xinit, u) + Bu(t + 1)

... (1)

The difference equation gives rise to a higher order linear (dynamical) system. We denote that
system by � = (A0, . . . , Al−1; B). In the case l = 1 we obtain the classical definition of linear
system over a ring (see [2] or [7]).

Linearization is one of the usual ways to study an l-order linear system (see, for example
[6]): One consider chains of l internal states (x(t), x(t + 1), . . . , x(t + l − 1)) as new states and
consequently the l-order linear system � = (A0, . . . , Al−1; B) is transformed in a first order
linear system lin(�) = (Â, B̂) (see Section 2 below).

In Section 2 we study the reachability property of l-order systems. This notion is characterized
and we prove that the reachability of a system � is not equivalent to the reachability of the first
order system lin(�). Note that this notion is closely related to the notion of controllability given
in [8,6] for higher order linear systems over C.

Section 3 is devoted to study feedback actions on l-order linear systems. After a review of the
feedback actions we introduce some feedback invariants associated to an l-order system following
the Hermida–Pérez–SánchezGiralda invariants for the case of first order linear systems.

In Section 4 we discuss the notion of reachability of higher order linear systems from the
pointwise point of view.
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Finally, in Section 5 we give some classification results by using the invariants obtained in
Section 3.

2. Reachability

Let � be an l-order, m-input linear system over Rn. Let x0, x1, . . . , xl−1, ω be elements of
Rn. Following Sontag [7] we say that the state ω is reachable from the initial condition xinit =
(x0, . . . , xl−1) if there exists a control function u : {0, 1, . . .} → Rm such that ��(t, xinit, u) =
ω for some t � 0. In this case we denote the fact by (x0, x1, . . . , xl−1) �

u
ω, or simply by

(x0, x1, . . . , xl−1) � ω, when the expression of the control function is not needed.

Definition 1. An l-order, m-input linear system � over Rn is reachable if for each xinit ∈ (Rn)l

and each ω ∈ Rn there exists a control function u such that (x0, x1, . . . , xl−1) �
u

ω.

Now we give a characterization of the property of reachability using the linearized system �̂
of a given system �.

Definition 2. Let � be an l-order, m-input linear system over Rn. Then we define the linearization
of � as the system: lin(�) = �̂ = (Â, B̂) where

Â =




0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 1
A0 A1 . . . Al−2 Al−1




B̂ =




0
...

0
B


 .

Note that the linearization (Â, B̂) of the system � = (A0, . . . , Al−1; B) is just the first order
linear system




x (t + 1)

x (t + 2)

...

x(t + l)


 =




0 1 0 . . . 0

0 0 1
. . .

...

...
...

. . .
. . . 0

0 0 . . . 0 1
A0 A1 . . . Al−2 Al−1







x(t)

x(t + 1)

...

x(t + l − 1)


 +




0
...

0
B


 u(t)

associated to the l-order system �. Denote also (Â ∗ B̂) = (B̂, ÂB̂, Â2B̂, . . .).

Theorem 3. Let R be a commutative ring with identity element. Let � = (A0, . . . ,

Al−1; B) be an l-order, m-input linear system over Rn. The following statements are equivalent:

(i) System � is reachable.
(ii) For each ω ∈ Rn one has that (0, 0, . . . , 0) � ω.

(iii) The linear map given by the block matrix (0, 0, . . . , 0, 1)(Â ∗ B̂) is onto.
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Proof. (i) ⇒ (ii) is straightforward. To prove (ii) ⇒ (iii) it is sufficient to show that the evolution
of system �, with initial condition, �0 = (0, . . . , 0) is given by the image of (0, 0, . . . , 0, 1)(Â ∗ B̂).
In fact we prove that, for each t

��(l + t, �0, u) = (0, 0, . . . , 0, 1)(Â ∗ B̂)Ut ,

where Ut will be the matrix




u(t)

u(t − 1)
...

u(0)

0
0
...




for the rest of the proof.

(Note that it is clear that ��(i, �0, u) = 0 for each 0 � i � l − 1; i.e., for the initial conditions).
The first case t = 0 is clear because ��(l, �0, u) = Bu(0) = (0, 0, . . . , 0, 1)(Â ∗ B̂)U0.
Note that the block matrix (Â ∗ B̂) is the reachability matrix of the linearized system lin(�) =

�̂. For the induction step ((0, 1, . . . , l + t) ⇒ l + t + 1) we need to show the structure of the

matrix (Â ∗ B̂) = (B̂, ÂB̂, Â2B̂, . . .). Denote by �A the last block-row of matrix Â, that is, �A =
(A0 A1 · · · Al−2 Al−1). Denote by Ci the ith block-column of matrix (Â ∗ B̂); that is, Ci =
Âi−1B̂. Then it follows that the block-structure of the matrix (Â ∗ B̂) is given by the equality

(Â ∗ B̂) =




0 0 0 · · · 0 B �AC1 �AC2 · · ·
... q B �AC1 �AC2

... · · ·
... 0 q �AC1 �AC2

... · · ·
... 0 B q �AC2

... · · ·
0 B �AC1 q

... · · ·
B �AC1 �AC2 · · · · · ·




.

Hence, by the induction hypothesis, we have the equality

(Â ∗ B̂)Ut =




0 0 · · · 0 B · · ·
... q B �AC1 · · ·
... 0 q �AC1 �AC2 · · ·
0 B q

...
... · · ·

B �AC1 · · · · · ·




Ut =




��(t + 1, �0, u)

��(t + 2, �0, u)
...

��(l + t − 1, �0, u)

��(l + t, �0, u)


 .

(2)

By the discussion in Section 1 we have that

��(l + t + 1, �0, u) =
l−1∑
i=0

Ai��(i + t + 1, �0, u) + Bu(t + 1)
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= (0, 0, . . . , 0, 1)




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
A0 · · · · · · Al−2 Al−1




·




��(t + 1, �0, u)

��(t + 2, �0, u)
...

��(l + t − 1, �0, u)

��(l + t, �0, u)


 + Bu(t + 1)

(by the induction hypothesis (equality 2))

= (0, 0, . . . , 0, 1)Â(Â ∗ B̂)Ut + Bu(t + 1)

= (0, 0, . . . , 0, 1)(B̂, ÂB̂, Â2B̂, Â3B̂, . . .)Ut+1

= (0, 0, . . . , 0, 1)(Â ∗ B̂)Ut+1

as desired.
Finally, (iii) ⇒ (i) follows from the fact that for each t and each initial condition xinit one

has that ��(l + t, xinit, u) = ξ + ��(l + t, �0, u), for some ξ ∈ Rn, that depends only on initial
conditions xinit and not on the controls u. If the linear map

(0, 0, . . . , 0, 1)(Â ∗ B̂) = �(−, �0, −) : (Rm)⊕∞ → Rn

is surjective (where (Rm)⊕∞ denotes the direct sum of countably many copies of Rm), then for
some t � 0 the linear map

(0, 0, . . . , 0, 1)(Â ∗ B̂) = �(l + t, �0, −) : (Rm)⊕(t+1) → Rn

u = (u(0), . . . , u(t)) → �(l + t, �0, u)

is surjective (where (Rm)⊕(t+1) denotes the direct sum of t + 1 copies of Rm) and therefore any
state ω − ξ can be reached from �0 (i.e., �0 �

u
(ω − ξ)). Consequently any state ω can be reached

from xinit (i.e., xinit �
u

ω). �

As a first consequence of the above result we point out that if the linearized system �̂ is
reachable (i.e., the linear map (Â ∗ B̂) is onto) then the l-order linear system � is reachable, but
the converse is not true in general. This is because of the reachability character of �̂ requires that
every sequence of l states can be reached, but for the reachability of � it is sufficient to reach every
single state. Note that in [6] the controllability is defined in this terms, that is, by the ability of
reaching, in the future, every sequence of l states from every sequence of l initial conditions. This
is the main difference between controllability and reachability for higher order linear systems.
We may see this in the following example:

Example 4. Let R be any commutative ring with 1 /= 0. Consider the second order single input
linear system over R2 given by

� =
(

A0 =
(

0 0
0 0

)
, A1 =

(
0 0
1 0

)
; B =

(
1
0

))
.
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We have that system � is reachable because

(0, 1)

(
0 1
A0 A1

)
∗

(
0
B

)
= (B, A1B, A0B + A2

1B, . . .) =
(

1
0

∣∣∣∣ 0
1

∣∣∣∣ 0
0

∣∣∣∣ · · ·
)

.

But, on the other hand, its linearized system

lin(�) =
((

0 1
A0 A1

)
,

(
0
B

))
is not reachable because the linear map(

0 1
A0 A1

)
∗

(
0
B

)
=

(
0 B A1B A0B + A2

1B

B A1B A0B + A2
1B A0A1B + A1A0B + A3

1B
. . .

)

=




0
0
1
0

∣∣∣∣∣∣∣∣
1
0
0
1

∣∣∣∣∣∣∣∣
0
1
0
0

∣∣∣∣∣∣∣∣
0
0
0
0

∣∣∣∣∣∣∣∣ · · ·



is not onto.

3. Feedback equivalence of higher order systems

Let � = (A0, . . . , Al−1; B) be an l-order, m-input linear system over Rn. The feedback group
acting on such systems is the group generated by the following elementary actions:

A1 Change of basis P −1 ∈ GLn(R) in the state-space Rn, which transforms:

Ai →A′
i = PAiP

−1,

B →B ′ = PB.

A2 Change of basis Q ∈ GLm(R) in the input-space Rm, which transforms:

Ai →A′
i = Ai,

B →B ′ = BQ.

A3 Generalized feedback actions (F0, . . . , Fl−1) ∈ (Rm×n)l , which transforms:

Ai →A′
i = Ai + BFi,

B →B ′ = B.

Note that in the case l = 1 we have the standard feedback group.

Definition 5. We say that the systems � and �′ are feedback equivalent if � can be transformed
to �′ by one element of the feedback group acting on �.

Next we will introduce the invariants N�
i and M�

i . Associated to the standard linearization �̂ of
� we consider the block matrices

(Â ∗ B̂)(i) = (B̂, Â B̂, Â 2B̂, . . . , Âi−1B̂).
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Let N�
i be the R-module (submodule of Rn) generated by the columns of the block matrix

(0, 0, . . . , 0, 1)(Â ∗ B̂)(i). Let M�
i be the quotient R-module M�

i = Rn/N�
i .

As in the case of first order linear systems (see [3,5]) we have the following invariance theorem:

Theorem 6. Let R be a commutative ring and let � = (A0, . . . , Al−1; B) be an l-order, m-input
linear system over Rn. With the above notations, the R-modules N�

i and the quotient R-modules
M�

i are feedback invariants, up to isomorphism, associated to �. That is, if � and �′ are feedback
equivalent then:

(a) N�
i is isomorphic to N�′

i for each i = 1, 2, . . .

(b) M�
i is isomorphic to M�′

i for each i = 1, 2, . . .

Proof. It is sufficient to prove that the modules N�
i and M�

i are invariants, up to isomorphism,
when we consider actions of type A1, A2, and A3.

First suppose that � and �′ = (A′
0, . . . , A

′
l−1; B ′) are equivalent via a change of basis P −1 ∈

GLn(R); that is A′
i = PAiP

−1 and B ′ = PB. Then it follows that

Â′ =




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1
A′

0 · · · · · · A′
l−2 A′

l−1




=




P

. . .
. . .

. . .
P




Â




P −1

. . .
. . .

. . .
P −1




and

B̂ ′ =




0
...

0
B ′


 =




P

. . .
. . .

P







0
...

0
B


 .

Therefore

Â′B̂ ′ =



P

. . .
P


 ÂB̂

and it is now clear that

(Â′ ∗ B̂ ′)(i) = (B̂ ′, Â′B̂ ′, . . . , Â′i−1B̂ ′) =



P

. . .
P


 (Â ∗ B̂)(i)
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and

(0, 0, . . . , 0, 1)(Â′ ∗ B̂ ′)(i) = (0, 0, . . . , 0, P)(Â ∗ B̂)(i) = P(0, 0, . . . , 0, 1)(Â ∗ B̂)(i).

Since P is invertible it follows that N�
i

∼= N�′
i and M�

i
∼= M�′

i .
Now suppose that � and �′ are equivalent via a change of basis Q ∈ GLm(R); that is A′

i = Ai

and B ′ = BQ. It follows that Â′B̂ ′ = ÂB̂Q and consequently

(0, 0, . . . , 0, 1)(Â′ ∗ B̂ ′)(i) =(0, 0, . . . , 0, 1)(B̂ ′, Â′B̂ ′, . . . , Â′i−1
B̂ ′)

=(0, 0, . . . , 0, 1)(B̂, ÂB̂, . . . , Âi−1B̂)




Q

. . .
Q


 .

Since




Q

. . .
Q


 is invertible, it follows that N�

i
∼= N�′

i and M�
i

∼= M�′
i .

To conclude suppose that � and �′ are equivalent via an action of type A3; that is A′
i =

Ai + BFi and B ′ = B. We claim that N�
i = N�′

i (not only isomorphic but equal). From this point

it will be straightforward that M�
i = M�′

i .
Note that the above equalities hold when � = � = (F, G) and �′ = �′ = (F ′, G′) are first

order linear systems (see [2] or [5, Lemma 2.1]); that is, if � and �′ are feedback equivalent via
a feedback action K (i.e., F ′ = F + GK and G′ = G) then Im((F ∗ G)(i)) = Im((F ′ ∗ G′)(i)).

Since linearizations lin(�) and lin(�′) are first order linear systems it follows that Im((Â′ ∗
B̂ ′)(i)) = Im((Â ∗ B̂)(i)), when a type A3 action is considered. Thus the equalities

N�′
i = Im((0, 0, . . . , 0, 1)(Â′ ∗ B̂ ′)(i)) = (0, 0, . . . , 0, 1)Im((Â′ ∗ B̂ ′)(i))

=(0, 0, . . . , 0, 1)Im((Â ∗ B̂)(i)) = N�
i .

are now clear. This proves the claim and the result. �

Note that in Theorem 3 it is shown that system � is reachable if and only if the quotient R-module
M�

i is zero for some i. Thus the following result is now straightforward.

Corollary 7. Reachability is a feedback invariant also for l-order linear control systems.

Now we give a reduction result which will be useful in Section 5. Let R be a commutative ring
and let � = (A0, . . . , Al−1; B) be an l-order, m-input linear system over Rn. Suppose that both
N�

1 = Im(B) and M�
1 = Rn/Im(B) are free (if R = k is a field, this is always the case); first of

all we put B in Hermite form, using actions A1 and A2, thus � is transformed into the system((
X0 Y0

G0 H0

)
, . . . ,

(
Xl−1 Yl−1

Gl−1 Hl−1

)
;
(

1r 0
0 0

))

and then, we can use generalized feedback actions A3 with

Fi =
(−Xi −Yi

0 0

)
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so we have that � is equivalent to the system((
0 0

G0 H0

)
, . . . ,

(
0 0

Gl−1 Hl−1

)
;
(

1r 0
0 0

))
, (3)

where r = rank(B) = dim(N�
1 ). Now we look at the r-input first order systems (H0, G0) . . .

(Hl−1, Gl−1) over Rn−r to give our result:

Theorem 8. Let R be a commutative ring with identity element. Let � and �′ be two m-input
l-order linear systems over Rn in the above reduced form. Then � and �′ are feedback equivalent if
and only if there exist a feedback action (P, Q, F ) such that (Hi, Gi) and (H ′

i , G
′
i ) are equivalent

via (U, V, K). That is to say

G′
i =UGiV,

H ′
i =UHiU

−1 + UGiK

for i = 0, 1, . . . , l − 1.

Proof. Assume that system � = (A0, . . . , Al−1; B) is on its reduced form (3).
First suppose that (Hi, Gi) is equivalent to (H ′

i , G
′
i ) via (U, V, K) for all i. Then consider the

generalized feedback action (on �) given by(
P =

(
V −1 −V −1KU

0 U

)
, Q =

(
V 0
0 1

)
, F =

(
F11 F12

0 0

))
.

Since UFiU
−1 + UGiK = F ′

i , and UGiV = G′
i , it follows that

PAiP
−1 + PBF =

(
V −1 −V −1KU

0 U

) (
0 0
Gi Hi

) (
V K

0 U−1

)

+
(

V −1 −V −1KU

0 U

) (
1r 0
0 0

) (
F11 F12
0 0

)

=
( ∗ ∗

UGiV UHiU
−1 + UGiK

)
+

(
V −1F11 V −1F12

0 0

)

=
(

0 0
UGiV UHiU

−1 + UGiK

)
=

(
0 0
G′

i H ′
i

)
= A′

i

for a suitable F . In the same way we can prove that UBV = B ′. Thus l-order systems � and �′
are equivalent via (P, Q, F ).

To prove the converse suppose that the l-order systems((
0 0

G0 F0

)
, . . . ,

(
0 0

Gl−1 Fl−1

)
;
(

1r 0
0 0

))
and

((
0 0

G′
0 F ′

0

)
, . . . ,

(
0 0

G′
l−1 F ′

l−1

)
;
(

1r 0
0 0

))

are feedback equivalent via (P, Q, K). Since P

(
1r 0
0 0

)
=

(
1r 0
0 0

)
Q−1, it follows that P

has the block structure

(
P11 P12

0 P22

)
. Therefore (Hi, Gi) and (H ′

i , G
′
i ) are equivalent via the

action (P22, P
−1
11 , −P −1

11 P12P
−1
22 ). �
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4. Reachability is a local and pointwise property

Let R be a conmutative ring with identity, let p be any prime ideal of R and let � be an l-order,
m-input system over Rn. We denote by (Ai)p : (Rn)p → (Rn)p and Bp : (Rm)p → (Rn)p the
linear maps obtained by natural extension of scalars from R to the local ring Rp. The system
�p = ((Ai)p, Bp) is the localization of � at p. On the other hand, the linear maps Ai(p) and
B(p), obtained by natural extension of scalars from R to the residual field k(p) = Rp/pRp, are
considered in order to obtain �(p) = ((Ai)(p), B(p)), which is the residual system of � at p (see
[3] for details).

Pointwise study can be applied in some interesting cases (see, for example [4]). In fact if we
consider a compact topological space X and systems with coefficients in C(X; R) (the ring of
continuous real functions defined on X), then residual systems are the evaluations �(x) of � at
points x ∈ X. Hence the word pointwise, in this case, has its “natural” sense.

A property of a system � is local if it is verified by all localizations �p of �. A property of a
system � is pointwise if it is verified by all residual systems. In the particular case of C(X; R) a
property of � is pointwise if and only if is verified by the evaluation �(x) for all x ∈ X.

Because of the reachability is characterized in terms of the surjectivity of a linear map and
the surjectivity of a linear map is a local and pointwise property (see [1]), it follows that the
reachability is a local and pointwise property. Thus the following results are straightforward:

Theorem 9. � is reachable (over R) if and only if �(p) is reachable (over the residual field k(p)

of R at the prime ideal p) for each prime ideal p of R.

Corollary 10. Let X be a compact topological space. Then an l-order system � over the ring
R = C(X; R) is reachable if and only if all the evaluations �(x) at points x ∈ X are reachable
over R.

5. Reachability and equivalence for low dimension systems over fields

In this section we will show, for low dimension systems over fields, how to verify if two systems
are feedback equivalent and if a system is reachable. As every system is feedback equivalent to
a system in the reduced form (3) and by means of Corollary 7 it is sufficient to study systems in
reduced form.

5.1. The case l = m = n = 2

Next, we study the case l = m = n = 2 for R = k a field. All the systems with these parame-
ters belong to one of the following three types (distinguished by the invariant σ1 = dim(M1) =
2 − rank(B)).

σ1 = 2. Systems with no controls. The classification problem here is equivalent to the simul-
taneous similarity of pairs of 2 × 2 matrices problem.

σ1 = 0. There is only one system of this type (up to feedback actions):

� =
(

A0 =
(

0 0
0 0

)
, A1 =

(
0 0
0 0

)
; B =

(
1 0
0 1

))
.

Thus all these systems are equivalent to each other.
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σ1 = 1. All this systems have the following reduced structure.

� =
(

A0 =
(

0 0
b0 a0

)
, A1 =

(
0 0
b1 a1

)
; B =

(
1 0
0 0

))
. (4)

According to Theorem 3, the reachability of this system is given by the matrix

(0, 1)
(
Â ∗ B̂

) =
(

1 0
0 0

∣∣∣∣ 0 0
b1 0

∣∣∣∣ 0 0
b0 + a1b1 0

∣∣∣∣ · · ·
)

.

This matrix has full rank (that is, � is reachable) if and only if b0 /= 0 or b1 /= 0.
The equivalence of two systems of the form (4) can be studied by means of Theorem 8 by check-

ing the k-equivalence of the systems� = (a0 + a1x , b0 + b1x) and�′ = (a′
0 + a′

1x , b′
0 + b′

1x).
Systems � and �′ are feedback equivalent if we can find p /= 0, q /= 0 and f in the field k

satisfying:

p(a0 + a1x)p−1 + p(b0 + b1x)qf = a′
0 + a′

1x,

p(b0 + b1x)q = (b′
0 + b′

1x)

and we obtain the equivalence condition b0
b1

= b′
0

b′
1

= a0−a′
0

a1−a′
1
. We can use these conditions for reach-

able system because we have shown that for these systems b0 /= 0 or b1 /= 0. Note that the above
results for systems with l = m = n = 2 can be easily extended for m = n = 2 and arbitrary l.

5.2. Systems with l = m = 2 and n = 3

As before we divide the systems depending on the invariant σ1 = dim(M1) = 3 − rank(B).
We will consider the case σ1 = 1. These systems have the structure

� =

A0 =


 0 0 0

0 0 0
b01 b02 a0


 , A1 =


 0 0 0

0 0 0
b11 b12 a1


 ; B =


1 0

0 1
0 0





 .

To study the reachability we study the rank of the matrix

(0, 1)
(
Â ∗ B̂

) =

1 0

0 0
0 0

∣∣∣∣∣∣
0 0
0 0

b11 b12

∣∣∣∣∣∣
0 0
0 0

b01 + a1b11 b02 + a1b12

∣∣∣∣∣∣ · · ·



and we can see that � is reachable if and only if at least one of the bij is not equal to 0.
Again we can use the reduction result so we can study the reachability of the systems studying

the k-equivalence of systems of the type

� = (
a0 + a1x; (

b01 b02
) + (

b11 b12
)
x
)
. (5)

And from here we obtain that � is k-equivalent to �′ if and only if one can find (f, g) in k solving
the following linear equation:(

a0
a1

)
=

(
a′

0
a′

1

)
+

(
b′

01 b′
02

b′
11 b′

12

) (
f

g

)
.
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