Skip navigation

TN211 : بهینه سازی ضرایب آرچی در یکی از مخازن کربناته جنوب ایران با استفاده از روش های آماری و شبکه های عصبی مصنوعی
پایان نامه > کتابخانه مرکزی دانشگاه صنعتی شاهرود > مهندسی معدن، ژئوفیزیک و نفت > مقطع کارشناسی ارشد > سال 1391
پدیدآورندگان:
مجتبی معمارزاده زواره [پدیدآور اصلی]، ابوالقاسم کامکار روحانی[استاد راهنما]، محمد کنشلو[استاد راهنما]، شاهین کرد [استاد مشاور]
چکیده: اشباع از آّب یکی از پارامترهای مهم و کاربردی در مخازن هیدروکربوری می باشد. رایج ترین رابطه محاسبه اشباع از آب در این مخازن رابطه آرچی است. این رابطه دارای سه پارامتر با عناوین سیمان شدگی (m)، توان اشباع (n) و پیچاپیچی (a) است که پارامترهای آرچی نامیده می شوند. تغییر اندکی در هر یک از این ضرایب باعث تغییرات قابل توجه در محاسبه اشباع از آب می شود. اگرچه تا به امروز روش های زیادی برای تخمین این پارامترها ارائه شده است اما روش دقیق و قابل اعتمادی برای تعیین این پارامترها در همه شرایط وجود ندارد. در این پایان نامه پارامترهای آرچی مربوط به سه چاه در یک میدان کربناته با استفاده از روش های آماری و شبکه عصبی محاسبه شد و توانایی هر یک از روش ها مورد ارزیابی قرار گرفته است. در ابتدا ضرایب آرچی به کمک دو روش آماری موجود یعنی روش متداول و روش رگرسیون سه بعدی محاسبه و نتایج این دو روش بررسی و مقایسه شدند. در مجموع روش رگرسیون سه بعدی به دلیل محاسبه هم زمان پارامترهای آرچی نتایج بهتری را نسبت به روش متداول داشته است. از آن جایی که رفتار پارامترهای آرچی به عوامل زیادی وابسته است، و تعیین رفتار هر یک از این ضرایب، به سادگی امکان پذیر نمی باشد. با توجه به قابلیت شبکه های عصبی در یادگیری این ارتباط ها، روش شبکه عصبی می تواند در تعیین این ضرایب مؤثر باشد. به همین دلیل با استفاده از شبکه عصبی ضریب سیمان شدگی برای هر نمونه در میدان مورد مطالعه محاسبه گردید. در این تحقیق شبکه پس انتشار خطای پیش خور به دو روش توقف سریع و مرتب سازی آموزش داده شد. برای این منظور از چاه نمودارهای گامای تصحیح شده (CGR)، گامای کل (SGR)، وزن مخصوص توده (RHOB)، زمان گذر (DT)، القایی عمیق (ILD)، تخلخل نوترونی (NPHI) و اثر فوتوالکتریک (PEF) به عنوان ورودی شبکه و فاکتور سیمان شدگی به عنوان خروجی استفاده شده است. در روش توقف سریع به کمک الگوریتم لونبرگ-مارکوارت و در روش مرتب سازی با تابع مرتب ساز بیزین شبکه ها آموزش داده شدند. به دلیل کم بودن تعداد نمونه ها و داده های ورودی شبکه، نتایج حاصل از شبکه عصبی آن چنان که مورد نیاز بود، با دقت و صحت بالا به دست نیامده است. با این حال روش توقف سریع نسبت به روش مرتب سازی نتایج بهتری در بر داشته است. در این روش، شبکه ای با سه لایه میانی، دارای میانگین مربعات خطای (MSE) 01/0 و ضریب تعیین 02/91 درصد برای داده های آزمون به دست آمده است.
کلید واژه ها (نمایه ها):
#پارامترهای آرچی #روش متداول #روش رگرسیون سه بعدی #شبکه عصبی #اشباع از آب
محل نگهداری: کتابخانه مرکزی دانشگاه صنعتی شاهرود
یادداشت: حقوق مادی و معنوی متعلق به دانشگاه صنعتی شاهرود می باشد.
تعداد بازدید کننده: 76
پایان نامه های مرتبط (بر اساس کلیدواژه ها)