

دانشكده : فيزيك
گروه : فيزيكى حالت جامد

عنوان پايان نامه ارشد :
رشد و مشخصه يابى لايه هاى نازك

$$
\mathrm{Cd}_{1-x} \mathrm{Co}_{\mathrm{x}} \mathrm{~S}
$$

دانشجو : سمانه اعتمادفرد
استاد راهنما :
دكتر محمد ابراهيم قاضى

پايان نامه ارشد جهت اخذ درجه كارشناسى ارشد
بهمن ماه 149

دانشگًاه صنعتى شاهرود

دانشكده : فيزيك

كروه : فيزيك حالت جامد

پايان نامه كارشناسى ارشد آقاى / خانم سمانه اعتمادفرد
$\mathrm{Cd}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}} \mathrm{S}$ تحت عنوان: رشد و مشخصه يابى لايه هاى نازك

$$
\begin{aligned}
& \text { در تـاريخ } \\
& \text { مورد ارزيابى و با درجه }
\end{aligned}
$$

تقديهم به

پدر و مادر عزيزم كه دعاى خيرشان هميشه بدرقه راهم بود ،
برادر دلسوزم كه در اين راه فانوس تاريكيهايمم بود

و همسر صبور و مهربانم كه بودن در كنارش سختيهاى اين راه را برايم آسان نمود.

تشـكر و قدر دانى

خداوند بزرگی را شكرگزارم كه اين توانيیى را به من عطا فرمود تا اين
مرحله از زندگى را نيز با پيروزى پشت سر بگَذارم.

لازم است قبل از ارائه ، از دوستان و عزيزانى كه در اين راه مرا يارى نمودند تشكر كنم. در ابتدا از استاد راهنماى عزيز و گرانقدر جناب آقاى دكتر قاضى كه بسيار صبورانه در اين كار مرا همراهی كردند. از آقاى احسانى استاد عاليقدرم كه راهنمايى هاى ايشان چراغ راهم بود ، آقاى مسكنى سريرست آزمايشگاه بلور كه براى اينكار و به راه انداختن دستگاه تبخير زحمات و مشقات بسيارى كشيدند. همحچنين ديكر عزيزان كه در به سرانجام رساندن اين پایيان نامه به نحوى به من كمك كرده و زحمت كشيدند.

دانشجو سمانه اعتماد فرد تأييد مى نمايد كه مطالب مندرج دراين پـايان نامه (رساله) نتيجه تحقيقات خودش مى باشد و در صورت استفاده از نتايج ديگران مرجع آن را ذكر نموده است.

كليه حقوق مادى مترتب از نتايج مطالعات ، آزمايشات و نو آورى ناشى از تحقيق موضوع اين پايان نامه (رساله) متعلق به دانشكاه صنعتى شاهرود مى باشد . بهمن ماه 1 14^9

تحكـه0

لايه هاى ناز كى سولفيد كاميوم (CdS) كاربردهاى فراوانى از جمله در سلولهاى خورشيدى دارند. در
اين پايان نامه به لايه نشانى لايه هاى نازک سولفيد كاميوم پرداخته و سعى نموديم با آلايش عنصر واسطه كبالت خواص فيزيكى آنها را مورد مطالعه قرار دهيم. كار تجربى ما در اين پايان نامه شامل سه مرحله است :

ابتدا لايه هاى نازك سولفيد كادميوم به ضخامت حدود ه/1 ميكرومتر بر روى زيرلايه شيشه و در
دماى محيط به روش تبخير حرارتى تهيه شد. نتايج حاصل از مطالعه طيف پراش پرتو ايكس آنها نشان داد كه نمونه ها داراى ساختار هگزاگونال با قله ارجح در راستاى (ץ ••) هستند. طيف هاى عبور و جذب آنها نيز توسط دستگاه طيف سنج (Uv - Vis) تهيه شد. گاف نوارى نمونه ها به كمك داده هاى جذب در

 شيشه لايه نشانى شدند. طيف پرتو ايكس نمونه ها نشان داد كه آلايش كبالت باعث تغيير ساختار نشده ولى موقعيت و شدت قله ارجح با تغيير پارامترهاى غلظت، دماى زيرلايه و ضخامت دستخوش تغيير شد. بنابراين به كمك داده هاى بدست آمده از طيف پراش ، آناليز ساختارى نمونه ها از جمله محاسبه پارامترهاى شبكه و اندازه دانه ها انجام گرفت. با افزايش غلظت كبالت در تركيب، اندازه دانه ها افزايش و پپارامترهاى شبكه كاهش يافتند. با افزايش ضخامت و دماى زيرلايه شاهد ظاهر شدن پيك هاى بيشترى بوديم و تغيير در پارامترهاى شبكه و اندازه دانه ها نيز كاملا مشهود بود. در زمينه مطالعه سطح نمونه ها تصاوير ميكروسكوپ الكترون روبشى (SEM) از نمونه ها تهيه شد. با استفاده از طيف هاى عبور و جذب نمونه هاى با غلظت هاى مختلف كبالت، كاف نوارى آنها محاسبه شد. نتايج نشان داد كه با افزايش غلظت

كبالت گاف نوارى كاهش مى يابد. براى بررسى خواص مغناطيسى، نمونه ها توسط دستگاه AGFM و مغناطواپتيكى از جمله اثر كر و فارادى مورد مطالعه قرار گرفت كه دستگاه هاى موجود قادر به آشكارسازى سيگنال نشدند. بدين منظور در مرحله سوم لايه هاى جديدى از اين تركيب را به روش نفوذى تهيه كرديم. ابتدا لايه هاى نازك سولفيد كادميوم را با ضخامت 19F نانومتر بر روى زيرلايه شيشه به روش تبخير حرارتى تهيه نموده و سپس روى آنها لايه ای از كبالت به ضخامت ^^نانومتر، ه/ \mid ا نانومتر
 نهايت به مطالعه ساختارى، اپتيكى و مغناطيسى آنها پرداختيم. براى اين نمونه ها از دستگاه VSM براى اندازه گيرى مغناطش در دماى اتاق استفاده نموديم. رفتار مشاهده شده رفتار آميخته ديامغناطيسى با آنتى فرو مغناطيسى بود.

كلمات كليدى : لايه هاى نازك، نيمه رساناهاى مغناطيسى رقيق، سولفيد كادميوم، كبالت، تبخير حرارتى، خواص ساختارى، خواص اپتيكى، خواص مغناطيسى.

ليست مقالات استخراجیى از پايان نامه

ا-رشد و مطالعه خواص اپتيكى لايه ناز ك CdS ؛ اعتمادفرد. س ، قاضى . م ، احسانى. م ، مسكنى. ر ؛ كنفرانس فيزيك ايران(همدان، شهريور 149).

Y- بررسى خواص ساختارى و ایتيكى لايه هاى نازک اعتمادفرد. س ، قاضى . م ، احسانى. م ؛ همايش تخصصى ماده چگال(شيراز، بهمن 9^^٪).
 روش تبخير حرارتى ؛ اعتمادفرد. س ، قاضى . م ، احسانى. م؛ هفدهمين كنفرانس اپتيك و فوتونيك (كرمان، بهمن 9^9٪).

فهرست مطالب

1. فصل اول
1.لايه هاى نازک
r. مقدمه
r
r ا-Y دسته بندى لايه ها
r
r. r-r-
f.
1-r-r-r لايه هاى نيمه رسانا :

$$
\Delta
$$

\qquada.(9.
ا
9.1v
\qquad
\qquad
1.
\qquad
1...
\qquadir
r-

فهرست اشكال

شكل (ץ-) : طرح شماتيك از روش تبخير حرارتى.
شكل(T-Y) : بسترى مسطح و عمود بر چشمه.
شكل (ץ-1) : لايه نازك سولفيد كادميوم در دو ساختار الف) شش گوشى و ب) سولفيد روى.
شكل (Y-Y) : طيف پراش پرتو ايكس لايه هاى نازک سولفيد كادميوم تهیه شده به روش اسپرى با دماى زيرلايه متفاوت.

شكل (ץ-ץ) : طيف هاى عبور لايه هاى نازك سولفيد كادميوم تهيه شده به روش اسپرى با دماى زيرلايه متفاوت.

شكل (زيرلايه متفاوت.
شكل (

شكل (r-צ) : رفتار فرو مغناطيسى لايه هاى نازک سولفيد كادميوم آلاييده شده با كبالت با غلظتهاى

شكل (†-1) : تصويرى از دستگاه تبخير در خلا .
شكل (
شكل(ץ-ץ) : طرح پراش پرتو ايكس لايه هاى نازك سولفيد كادميوم. شكل(Y-Y) : طيف عبور ایتيكى لايه نازک سولفيد كادميوم در دماى محيط وخط چیین، منحنى پوش

قسمت نوسانى طيف.
شكل(
 شكل(V-Y) : نمودار ضريب ضريب شكست لايه نازك سولفيد كادميوم بر حسب طول موج. شكل(1 ($)$ نمودار ضريب خاموشى لايه نازك سولفيد كادميوم بر حسب طول موج.

شكل (ץ-9) : طيف پراش پرتو ايكس لايه هاى نازک CdS:Co تهيه شده به روش تبخير حرارتى با
 شكل (ץ- (1) : طيف پراش پرتو ايكس لايه نازک CdS:Co تهيه شده به روش تبخير حرارتى با غلظت
 شكل (ץ-1) : پارامترهاى شبكه لايه هاى نازک CdS:Co تهيه شده به روش تبخير حرارتى با غلظت هاى مختلف. شكل (1-Y) : تصاوير SEM سطوح لايه هاى نازك CdS:Co تهيه شده به روش تبخير حرارتى با

شكل (Y-Y (Y) : طيف هاى عبور لايه هاى نازک CdS:Co تهيه شده به روش تبخير حرارتى با غلظتهاى
 شكل (
 شكل ($)$ كبالت.

شكل (Y \& \&) : نمودار ضريب شكست بر حسب طول موج براى نمونه هاى با غلظت هاى مختلف كبالت. شكل (IV-Y) : كوره تحت خلا دانشگاه سمنان.

شكل (Mبا دماهاى زير لايه YV درجه سانتى گراد و • • ا درجه سانتى گراد. شكل (دماهاى زيرلايه الف) YV درجه سانتى گراد و ب) • • ا درجه سانتى گراد. شكل (Y- -- • شكل (Y- - و • • ا درجه سانتى گراد.
 درجه سانتى گراد.
 زيرلايه YV و • • ا درجه سانتى گراد.

شكل (ضخامت الف) • ه و ب) • • • نانومتر.

شكل (Y Y ضخامت الف) • • و ب) • • •
 ضخامت هاى كبالت الف) • و ب) 19 نانومتر. شكل (YV-Y) : تصاوير YEM لايه هاى نازكى CdS:Co تهيه شده به روش نفوذى با ضخامت هاى مختلف

$$
\text { كبالت • و } 1 \text { و }
$$

شكل (YNمختلف كبالت.

شكل (
 ضخامت هاى مختلف كبالت.

شكل (ضخامت • • نانومتر.

شكل (($)$) : رفتار مغناطيسى براى لايه نازک CdS:Co تهيه شده به روش نفوذى با ضخامت كبالت 9 19 نانومتر. شكل (

فهرست جداول

جدول (جدول (Y-1) : لايه هاى ناز ك تهيه شده به همرا ه مشخصات لايه نشانى آنها. جدول (Y-Y) : پارامترهاى شبكه و اندازه بلورك ها. جدول (Y-Y) : تغييرات موقعيت قله ارجح (Y ••) با تغيير غلظت كبالت.

 دماهاى زيرلايه متفاوت.
 ضخامت مختلف.

فصل اول

لايه هاى نازى

> • مقدمه
> • تعريف لايه نازك
> • دسته بندى لايه ها
> •

مقدمه

تهيه اولين لايه نازك تقريبا به سال INIV بر مى گردد. فرانهوف' آلمانى با قرار دادن شيشه در اسيد
سولفوريك، به يك لايه نازك اپتيكى روى سطح شيشه دست يافت و توانست انعكاس از شيشه را كاهش دهد. پ夫وهشگران ديگرى در سال \^M از از روش شيميايى مشابهى براى ساخت آينه استفاده نمودند. اين شروع توليد صنعتى روكش كردن بود. بعد از آن در سال INT9 هر از دانشگاه پنسيلوانيا احتمالا اولين لايه نازكى را به روش الكتروليز بدست آورد[1].

MT سال بعد فارادى توانست با استفاده از تبخير حرارتى سيمى كه از آن جريان زيادى مى گذشت، لايه نازكى فلزى بسازد[ץ]. پی از آن براى اولين بار استفاده از محيط خلا براى لايه نشانى در سال INAV توسط نهروود ${ }^{\text { }}$ كنت ${ }^{〔}$ بكار گرفته شد، اين نقطه عطفى براى ساخت لايه نازک بود. بدين ترتيب دانشمندان و محققان گام به گام مراحل رشد و ترقى را در زمينه ساخت لايه هاى نازک پيمودند. از آن زمان به بعد موضوع لايه نازك مورد توجه مهندسين الكترونيك و بسيارى از دانشمندان مختلف قرار گرفت و با پا نهادن به عرصه تكنولوزى توانستند به نتايج علمى و صنعتى بزرگى دست يابند. به دليل كاربردهاى فراوان و مزاياى بيشمارى كه لايه نازک در زندگى روزمره ما دارد در كانون توجه مجامع علمى بسيارى قرار گرفته است. امروزه بسيارى از قطعات الكترونيكى و مدارات اپتوالكترونيكى به صورت لايه نازك ساخته مى شوند. هم چنين كاربرد در نمايش گرها و وسايل ذخيره اطلاعات با حجم كم، همه و همه از جاذبه هاى لايه نازكى است.

[^0]
†-

لايه نازک به پوششى از ماده بر روى يك سطح يا ماده ديگَر گفته مى شود كه سبب ايجاد خواص فيزيكى، مكانيكى و الكترونيكى جديدى ميشود كه در حالت كلى نه خصوصيات ماده تشكيل دهنده لايه را داشته و نه خصوصيات سطحى كه لايه بر روى آن انباشت شده است. به عبارت ديگر " يك لايه كه به صورت ورقه نازكى در اثر فرآيند چگَالش ايجاد شده باشد را لايه نازك مى نامند. " لايه را مى توان به سه گروه كلى دسته بندى نمود : رسانا، عايق و نيمه رسانا.

ا-

ا_-r-ا لايه هاى رسانا : لايه هاى نازك رسانا لايه هايى هستند كه در آنها از مواد رسانا بعنوان ماده انباشت براى لايه نشانى استفاده مى شود. به عبارتى استفاده از موادى كه نوار ظرفيت آنها نيمه پر باشد. در مواد رسانا (فلزات) الكترونها تحت تاثير ميدان خارجى به راحتى مى توانند انرزى كسب كرده و به نوار رسانش بروند. براى فلزات گاف نوارى تقريبا صفر است و به دليل تعداد زياد الكترونهايى كه در انتقال جريان شركت دارند داراى رسانندگى بسيار بالايى هستند. از لايه هاى نازک رسانا در بعضى از قطعات الكترونيكى، مقاومتها، اتصالات الكتريكى و غيره استفاده مى شود.

رسانش خالى از الكترون دارند. مواد عايق به دليل گاف نوارى بزرگى كه دارند (Eg> MeV)، داراى مقاومت ويره بينهايت هستند. از اين مواد مى توان در عايق سازى الكتريكى و يا جدا كردن مواد رسانا از يكديگر استفاده كرد.

ا_-r_r لايه هاى نيمه رسانا : يك سرى قطعات در شرايط عادى عايق هستند ولى تحت شرايطى وقتى تحت تاثير ميدان قرار گيرند، مى توانند رسانش الكتريكى داشته باشند، به اين قطعات نيمه رسانا مى گويند. نوار ظرفيت اين مواد مانند مواد عايق كاملا پر و نوار رسانش آنها خالى است. تفاوت آنها با عايق ها در دماى صفر كلوين، در اندازه كاف نوارى است. كاف نوارى آنها مابين رساناها و عايق ها مى باشد. نيمه رساناها در دماى صفر كلوين داراى رسانندگى صفر و در دماهاى پايين داراى رسانندگى كاملا
 الكتر يكى مواد نيمه رسانا به دما و همچچنين به ميدان مغناطيسى و مقدار ناخالصى و گاف نوارى بستگى دارد. از جمله مواد نيمه رسانايى كه با افزودن ناخالصى به آن مى توان رسانندگى آنرا تغيير داد و در اين چايان نامه به آن مى پردازيم، CdS است. در ساخت قطعات الكترونيكى و ميكروالكترونيكى نظير ديودها، ترانزيستورها و مهمتر از همه در سلولماى خورشيدى (زرمانيوم، سيليكون، سلنيد كادميوم، سولفيد كادميوم و ...) از اين دسته لايه ها مى توان بهره برد.

- نوع ديگرى از دسته بندى لايه ها بر حسب ضخامت مى باشد كه شامل سه دسته اند :

$$
\begin{aligned}
& \text { لايه هاى ضخيم : با ضخامت در حدود ميليمتر هاى نازى : با ضخامت كمتر از يك ميكرون هاى بسيار نازك : با ضخامت كمتر از . . ا نانومتر }
\end{aligned}
$$

لايه هاى نازك به دليل خواص الكتريكى، اپتيكى و مكانيكى ويزه اى كه دارند، نقش به سزايیى در
صنعت و تكنولوزى دارند. در حدود اواسط قرن بيستم كاربرد لايه هاى نازك تنها محدود به ساخت تك لايه هاى نازک مى شد. در سال •19 ا از آن بعنوان محافظ خوردگى در فلزات استفاده شد. همحنیين از لايه نازك براى پوشش- دهى اشيا فلزى در مصارف خانگى و مقاصد تزيينى نيز بكار گرفته شد. دانش و تكنولوزى ساخت لايه هاى نازك به ضخامت كمتر از يك ميكرون در دهه •199 پيشرفت عظيمى كرد. در سال 190^ دانشمندان مدارهاى مجتمع را مطرح كردند و در سال 1991 مدارهاى مجتمع Si به صورت تجارى توليد شد و به بازار آمد[٪]. همين طور پيشرفت تكنولوزى كامپيوتر احتياج به ذخيره سازى اطلاعات با چگالى بسيار بالا را بوجود آورد و باعث شد تحقيقات در زمينه خواص مغناطيسى لايه هاى نازک نيز به ميزان زيادى افزايش پيدا كند.

در سال •19V به خاطر بحران انرزى، نياز به لايه هاى پوششى بر روى شيشه ها و بافتهاى پليمرى جهت حفظ انرزى احساس شد. در سال •19^ رساناهاى شفاف و در سال •199 پوشش هاى سخت و كاربردهاى تزيينى از كاربردهاى جديد لايه نازک بودند[٪]. در سالهاى اخير با پيشرفت علم و تكنولوزى ساخت لايه نازك به روش هاى نوين شاهد كاربردهاى فراوان ديگرى در زمينه هاى مختلف الكترونيكى و
ميكروالكترونيكى و غيره هستيم كه در زير به برخى از آنها به طور مختصر اشاره مى كنيم :
(ا-Y-1 كاربردهاى مكانيكى : از آنجايى كه بعضى از لايه هاى نازك، در برابر سايش مقاوم

هستند مى توانند به صورت محافظ ضد زنگ زدگى استفاده شود. در قطعاتى كه در حال حركت هستند (در موتور اتومبيل) ، مته هايى كه با لايه نازک طلا و يا كروم پوشانده شده اند بكار گرفته مى شود. مقاومت شيشه ای كه با لايه الى از تيتانيوم پوشيده شده را مى توان افزايش داد و يا براى كاهش اصطكاك و افزايش عمر برخى وسايل از جنس استيل بهره جست.

با كذشت زمان افزايش يافته است. امروزه كاربرد آنها در قطعات الكترونيكى موجود در رايانه ها و ديگر وسايل الكترونيكى فراوان به چشم مى خورد. از جمله آنها عبارتند از : ديودها، مقاومتها و اتصالات الكترونيكى، بعنوان رساناى الكتريكى، سدهاى الكتريكى سدهاى نفوذى، بعنوان بخشى از ترانزيستورهاى نيمه رسانايی، ابر رساناها، در قطعات امواج آكوستيكى سطحى و

ك- r-1

از نمونه هاى بارز كاربرد لايه هاى نازک در اپتيك، به عنوان لايه پنجره ای در سلولهاى خورشيدى مى باشد. از جمله در سلولهاى خورشيدى InP/CdS ،CdTe/CdS و غيره كه كمك بزر گیى به صرفه جويى در هزينه ساخت و بازدهى بالا در افزايش جذب سلول خورشيدى مى كند. همچنین بعنوان پوشش ضد بازتابى روى شيشه عدسيهاى دوربين، عينكهاى فوتوكروميكى و ديگر قطعات اپتيكى استفاده مى شود. از ديگر كاربردهاى آنها در ليزرها، LED ها، آشكارسازها و غيره مى باشد.

از ديگر كاربردهاى جالب توجه لايه هاى نازى در مصارف تزيينى و لوازم خانگى است كه جزو دسته كابردهاى متالوزى لايه ناز ك محسوب مى شود كه به عنوان نمونه مى توان به پوششهاى نيتروتيتانيوم و آليازهاى Au و Cr بر روى قاب ساعتهاى مچֶى و فندك اشاره كرد كه علاوه بر زيبايی، مقاومت زيادى در برابر خراش برداشتن و فرسايش به همراه دارد.

تحقيقات پايه در زمينه لايه هاى نازک منجر به پیشرفت هاى قابل ملاحظه ای در شناخت ما از لايه هاى نازک و سطوح جامدات شده است كه اين خود منجر به توانايى بيشتر براى ساخت قطعاتى با خصوصيات پیش بينى شده، قابل كنترل و تكرارپذير شده است.

فصل دوم

روشهاى مختلف ساخت لايه نازک

روشهاى لايه نشانى
فيزيك تبخير
تئورى ضخامت لايه ها
عوامل موثر بر ساختار لايه نازك

「－ا روشهاى لايه نشانى

لايه هاى نازك از زيرلايه و يك لايه نازك تشكيل مى شوند كه مجموعه زيرلايه و لايه نازک خواص
جديدى را ايجاد مى كنند كه كاملا با خواص لايه و زيرلايه به تنهايى متفاوت است．زيرلايه بعنوان عامل نگگّدارنده لايه عمل مى كند و در كاربردهاى الكترونيك نقش عايق را دارد．زيرلايه بايد مقاومت مكانيكى كافى داشته باشد و نه تنها در دماى معمولى بلكه در تغييرات نسبتا زياد دمايى نيز چسببندگى خود را به لايه حفظ كند．براى ثابت بودن خواص لايه و چسبندگى بهتر لازم است كه سطح زيرلايه كاملا تميز و عارى از آلودگى باشد．لايه نازى ماده اى است كه توسط روشهايى كه در زير عنوان خواهد شد بر روى سطح زيرلايه نشانده مى شود．روشهايى كه براى ساخت لايه نازك مورد استفاده قرار مى گيرد به دو دسته كلى فيزيكى و شيميايى تقسيم مى شوند كه هر يك داراى روشهاى متعددى است كه به اختصار در

$$
\begin{aligned}
& \text { زير به آنها اشاره مى شود : } \\
& \text { 1- روش هاى فيزيكى (PVD) : } \\
& \text { I. تبخير } \\
& \text { • •تبخير گرمايى • تبخير پرتو الكترونى } \\
& \text { 「. كندویاش } \\
& \text { • كندوپاش } \\
& \text { • كندویاش مگنترون DC } \\
& \text { • كندوپاش RF } \\
& \text { • كندوپاش انفعالى } \\
& \text { Y- روش هاى شيميايى (CVD) : }
\end{aligned}
$$

(LPCVD) فشار پايين CVD. .
r. r . افزايش پاسما (PECVD) r. (MOCVD) ألى- فلز CVD ץ- ليزر پالسى (PLD) (MBE) (در روش PVD، لايه توسط انتقال مستقيم اتمها از منبع به بستر در فاز كازى تشكيل مى شود. در روش CVD، لايه توسط برهمكنش شيميايى روى سطح بستر شكل مى گيرد. از آنجايى كه روش بكار رفته براى تهيه لايه نازك مورد نظر ما به روش فيزيكى (تبخير) است،
بنابراين در ادامه به ويزگیيهاى آن مى پردازيم :

انباشت فيزيكى بخار (PVD) : به استفاده از روشهاى فيزيكى جهت تبخير يا تصعيد مواد بر روى زيرلايه گويند كه از مناسب ترين روشهاى تهيه لايه نازك مى باشد(مانند MOCVD و MBE). در اين روش مواد لايه، در چشمه گذاشته شده و تبخير يا تصعيد شده، به سمت بستر رفته و روى آن چگاليده شده، لايه نازك را تشكيل مى دهد. نكته قابل توجه در اين روش داشتن خلا مناسب و محيط بسيار تميز
است. اين روش به دو صورت انجام مى گيرد : كـندوياش

وقتى بر سطح جامدى پرتو يونى، الكترونى و يا نورى با انرزى كافى بتابد اتمهاى تشكيل دهنده جسم（اتمهاى هدف）از سطح آن آزاد شده و در فضا پراكنده مى شود．به این پديده كندوپاش مى گويند كه از انواع آن مى توان به كندوپاش ديودى، RF RC و تريود، مگَنترون و كندوپاش مگَنترون RF اصلاح شده اشاره كرد．روش كندوپاش از سال \＾Dr توسط گراو＇آغاز شد، پس از آن رايت＇؛ تكنولوزى لايه نشانى كندوپاش را با ساخت آينه ها توسعه داد［1］．تئورى روش كندوپاش DC توسط گانترشولزر「پيشنهاد شد［٪］و در سالهاى بعد به طور وسيعى مورد مطالعه و بررسى قرار گرفت و از نتايج آن ارائه
 كه از تاريخ توسعه روشها پیداست روش خواصى چون يكنواختى ضخامت و پوشش دهى را در لايه نازى در اواخر قرن بيستهم بهينه كرد．

r－r－1－
لايه نشانى به روش تبخير حرارتى در سال \AT توسط تيلور هُ عملا با لايه نشانى لايه نازک ایتيكى روى شيشه پا به عرصه آزمايشهاى تجربى ساخت لايه نازک نهاد．پيشرفت روش تبخير حرارتى در سالهاى 19ヶ＾تا • بخار（PVD）بيان شد［1］．دهd •19V يك دهه طلايى براى صنعتى شدن ساخت لايه نازك در خلا به

[^1]＇Wright
${ }^{〔}$ Gunther Shulzer
${ }^{\text {s }}$ Wehner
－H．D．Toylor

شمار مى آيد. در اين روش كه يكى از روشهاى معمول لايه نشانى مى باشد مواد تبخير شده بر روى بستر چگگاليده شده و تشكيل لايه مى دهند. اين لايه ها به روش هاى متعددى تهيه مى شوند كه عبارتند از : چشمه حرارتى مقاومتى، تبخير آنى، تبخير با قوس الكتريكى، روش انفجارى سيم فلزى، تبخير ليزرى، استفاده از گرماى امواج RF، استفاده از بمباران يونى كه در سالماى •19ヶ تا • $19 V$ بعضى از آنها روند رو به رشدى داشتند و به پيشرفت در زمينه كاربردهاى علمى و صنعتى لايه نازک كمک بسيار بزرگى كردند. به طورى كه از سالهاى •19٪ به بعد كارهاى آزمايشگاهى مربوط به ساخت لايه هاى نازک رونق گرفت. - فرايند لايه نشانى به روش تبخير گرمايى كه طرح شماتيك آن در شكل (ז-1) آمده است به

> صورت زير مى باشد :

شكل ((

$$
\begin{aligned}
& \text { ا- چشمه ای از ماده مورد نظر و تبديل آن به حالت گازى توسط گرما } \\
& \text { r- انتقال اتممهاى چشمه به سمت بستر } \\
& \text { r- انباشته شدن اتمها روى بستر }
\end{aligned}
$$

همانطور كه از شكل پيداست، گرما نقش حائز اهميتى را در اين روش بازى مى كند زيرا بواسطه گرما چشمه به بخار تبديل شده و بعد از رسيدن بخار روى بستر، اتمها و مولكولمها از فاز بخار به صورت لايه جامدى چگاليده شده و تغيير شكل ميدهند.

در زير به طور مختصر به برخى از روشهايى كه براى تبخير مواد بكار مى رود مى پردازيم :

روشى كه در آن تبخير مواد با عبور جريان الكتريكى از يك مقاومت انجام مى گيرد. اساس كار اين روش عبور جريان از بوته ای است كه در آن از مواد لايه، به اندازه مورد نياز پر شده است. معمولا بوته ها بايد دما را تا مقدار زيادى بالا ببرند، بنابراين بايد از جنس فلزاتى با دماى ذوب بسيار بالايى تهيه شوند. از
 : ا- نسبتا ساده و ارزان است. Y- ماده چشمه مى تواند به اشكال مختلف بسته به نياز ساخته شود.
و معايب آن :

1- احتمال ايجاد ناخالصى
「- تنها براى مواد فلزى بعنوان چشمه مناسب بوده ولى براى مواد دى الكتريك بسيار مشكل است.
「־- سرعت لايه نشانى خيلى كم است.

६- براى مواد تركيبى، ممكن است بوته در دماهاى بالا شكسته شود و يا مواد داراى نقاط ذوب متفاوتى باشند.
○- سختى فيلمها خوب نيست(جگًالى كم است).

چشمه حرارتى مقاومتى چند نوع است : چشمه هاى سيمى تنگستن، چشمه هاى فلزى ديرگداز، كوره هاى تصعيدى، چشمه هاى بوته ای.

仿

روش تبخير آنى براى تبخير آليازها با نقطه ذوب متفاوت بوجود آمد، زيرا تبخير چنين آليازهايى به روش قبل منجر به يك تبخير ناپيوسته و غيريكنواخت مى شود. به همين خاطر براى رفع اين مشكل، روش تبخير آنى در حجم كمى از مواد بكار برده شد. اين روش در سال 194^ توسط هريس سيگل با ريختن آنى ماده موردنظر روى يك سطح داغ ابداع شد[[]. از اين روش براى ساخت لايه هاى نازى از تركيبات چندتایی كه داراى همان ساختار تركيب اصلى باشد، استفاده مى گردد. ماده مورد نظر را به صورت پودر در آورده و بر روى سطح چشمه بسيار داغ ريخته و سريعا تبخير مى شود. از اين روش براى ساخت لايه هاى سراميكى سادگى قابل كنترل نيست زيرا مقدار زيادى گاز آزاد مى شود.

Y-Y-1-ץ

بكارگيرى اين روش به گذشته دور برمى گردد. در سال MAY اديسون توانست مقاله خود را مبنى بر استفاده از روش قوس الكتزيكى ثبت و كامل كند، البته قبل از وى نيز كسانى بودند كه از اين روش به طريق ابتدايى براى ساخت لايه نازك بهره مى جستند[4]. در اين روش با قراردادن ماده مورد نظر بين الكترودهاى قوس الكتريكى و ايجاد گرماى فوق العاده زياد، عمل تبخير انجام مى گيرد. از اين روش براى تبخير موادى مانند Nb و Ta و كربن استفاده مى شود. از معايب آن توليد ذرات با ابعاد بزرگ است.

با عبور جريان بسيار زيادى از سيم فلزى از جنس همان ماده ای كه روى سطح انباشته مى شود، عمل تبخير در سرعت بالايى انجام شده و سيم بخار مى شود. اين عمل با تخليه الكتريكى خازن با ولتاز
بالا صورت مى گيرد.

در اين روش ليزرى با شدت بالا بر ماده تابيده مى شود و سبب گرم شدن و تبخير آن مى گردد. در اين روش چشمه ليزر در خارج ار دستگاه خلا مى باشد. انرزى اين پرتو كافى است كه سطح هدف را ذوب كند و بنابراين مواد تبخير شده به سمت بستر حركت مى كنند. مقدار ماده لايه نشانى شده به ازاى هر پالس ليزر بسيار با ثبات است. اما اين روش به دليل تجهيزات گران قيمتى كه دارد براى مصارف صنعتى مقرون به صرفه نيست. قيمت بالاى اين دستگاه را مى توان يكى از معايب اين روش دانست.

V-Y-I-Y تبخير با استفاده از بمباران الكترونى

اين روش با تلاش دانشمندانى چون هانكس در سال 199^ و ديگر محققان با پيشرفت هاى فراوانى براى ساخت لايه هاى نازك بهبود يافت[[]. در اين روش ماده را داخل بوته اى كه با آب سرد نگگداشته
ا- خلوص لايه نازک تهيه شده به اين روش بالاتر از چشمه حرارتى مقاومتى است.
「- دى الكتريك ها هم در اين روش لايه نشانى مى شوند.
「- يكنواختى بهتر لايه

$$
\begin{aligned}
& \text { مى شود قرار داده و تحت بمباران الكترونهاى شتابدار قرار مى گيرد. } \\
& \text { از مزاياى اين روش مى توان كفت : }
\end{aligned}
$$

ا. به ترماى اعمالى بر سطح ماده در حال تبخير به اندازه مورد نياز محدود نمى شود.「. متناسب با اختلاف فشار تعادلى جيوه Ph P تبخير در دماى خاص است.

بنابراين مى توان معادله اوليه براى نرخ تبخير از سطح مايع يا جامد را با استفاده از نظريه جنبشى مولكولها چنين نوشت :
$\varphi_{e}=\frac{\alpha_{e} N_{A}\left(\mathrm{P}_{\mathrm{e}}-\mathrm{P}_{\mathrm{h}}\right)}{\sqrt{r} \pi M R T}$

كه در رابطه فوق بe، شار بخار (تعداد اتمها يا مولكولها بر واحد سطح بر واحد زمان) و تبخير است كه اندازه آن بين • تا ا مى باشد. زمانى حداكثر نرخ تبخير را خواهيم داشت كه Pباشد. در اينصورت داريم : با
$\varphi_{\mathrm{e}}=r / \Delta \left\lvert\, r \times 1 \cdot r \frac{P_{\mathrm{e}}}{\sqrt{M T}} \quad\right.$ Molecular/Cm Sec $\quad(r-r)$ مى توان اين رابطه را به شار جرمى تبديل كرد و به صورت زير نوشت :
$\Gamma_{e}=\Delta / \lambda \mu \mu \times 1 \cdot-r \sqrt{\frac{M}{T} P_{e}}$
بعنوان مثال زمانى كه فشار

[^2]
r-r-r

تهيه لايه نازك از فلزات آليازی به خاطر كاربردهاى الكترونيكى، مغناطيسى و اپتيكى فراوانى كه دارد مورد توجه بسيارى از محققان است. اجزاى اصلى هر آلياز به صورت تقريبا مستقل از همديگر تبخير مى شوند و وارد فاز بخار شده و اتمهاى منفردى را به صورت فلزات خالص گسيل مى كند. اگر ماده شامل اجزاى A ذرات رونشانى شده اجزا برابر است با [٪] :
$\frac{N A}{N B}=\frac{C A}{C B} \times \frac{P A}{P B} \times \frac{M A}{M B}$

بررسى مى باشد :
ا. پارامترهاى شبكه : براى آلياز AXB
$\mathrm{a}_{\text {Alloy }}=\mathrm{X} \mathrm{a}_{\mathrm{A}}+(1-X) \mathrm{a}_{\mathrm{B}}$ $(\omega-\Gamma)$

كه a و a ${ }^{\text {a }}$ ، ثابت هاى شبكه ماده B و A هستند. بدين ترتيب بسته به نسبت آلايش در تر كيب AB پارامترهاى متفاوتى خواهيم داشت. r. זاف نوارى : گاف نوارى آلياز AXX
$E g_{\text {Alloy }}=X E g_{A}+(1-X) E g_{B}$ (9-r)

در بيشتر آليازها اثر خمشى ناشى از افزايش بى نظمى حاصل از آلياز ايجاد مى شود كه به صورت زير
$\operatorname{Eg}_{\text {Alloy }}=a+b X+c X^{\top}$
كه در آن c را ضريب خمش مى نامند.

معمولا نسبت اجزاى A و A در بخار با نسبت استوكيومترى اين اجزا در ماده متفاوت است. زمانى لايه اى بهينه خواهيم داشت كه انرزى سطحى تركيب AB مورد نظر بيشتر از انرزى هاى جذب سطحى اجزاى A وB باشد. دماى زيرلايه را ميتوان به گونه اى تنظيم كرد كه تركيب و نه اجزاى تركيب روى زيرلايه چگال شود. از آنجایی كه هر يک از اجزا ممكن است با ماده زيرلايه واكنش كنند، در چنين مواردى زيرلايه هايى كه از نظر شيميايى غير فعال هستند توصيه مى شوند.

ت ت

در اين قسمت به هندسه لايه نشانى و ضخامت لايه وابسته به چشمه تبخير و محل بستر مى پردازيم.
توزيع ذرات بخار به هندسه چشمه بستگى دارد. دو نوع هندسه را مى توان در نظر گرفت : چششه نقطه ای و چششمه سطحى. I. چشمه نقطه ای :

$$
M_{e}=\iint_{.}^{t} \Gamma d A_{e} d t
$$

اگر Me جرم كل تبخير شده و Γ شار جرمى باشدا براى چشمه نقطه ای خواهيم داشت :
$\frac{d M_{s}}{M_{e}}=\frac{d A_{s} \cos \theta}{\varphi \pi r^{r}} \rightarrow \frac{d M_{s}}{d A_{s}}=\frac{M_{e} \cos \theta}{\varphi \pi r^{r}}$
 تصوير dA بر روى كره ای به شعاع r به صورت r باشد. اين تغييرات بستگى به r دارد. حال اگر بستر به صورت مماس بر سطح كره فرضى باشد، لايه نشانى به صورت يكنواخت انجام مى

$$
\text { شود. (} 1 \text {) }
$$

ז. چشمه سطحى : اما اگر از چشمه سطحى براى لايه نشانى استفاده كنيه، با انتگرال گيرى روى زمان و چشمه داريم :

$$
\begin{align*}
& \frac{\mathrm{dM}_{\mathrm{s}}}{\mathrm{M}_{\mathrm{e}}}=\frac{\mathrm{d} \mathrm{~A}_{\mathrm{s}} \cos \theta \cos \varphi}{\pi r^{r}} \rightarrow \frac{\mathrm{dM}}{\mathrm{~s}} \\
& \mathrm{dA} A_{\mathrm{s}}=\frac{\mathrm{M}_{\mathrm{e}} \cos \theta \cos \varphi}{\pi r^{r}} \tag{11-r}\\
& \frac{d M_{s}}{\mathrm{dA} \mathrm{~A}_{\mathrm{s}}}=\frac{\mathrm{M}_{\mathrm{e}}(\mathrm{n}+1) \cos ^{\mathrm{n}} \varphi \cos \theta}{r \pi \mathrm{r}^{r}}(11-r)
\end{align*}
$$

از آنجايى كه
داشت. بستر مسطحى را كه عمود بر چشمه است در نظر مى گیريم، براى اين هندسه شكل (Y-Y) را داريم :

شكل(ז-ז) : بسترى مسطح و عمود بر چشمه.
$\theta=\varphi \quad, \quad \cos \theta=\frac{h}{r}, r=\left(h^{r}+l^{r}\right)^{1 / r}$
$d=\frac{1}{\rho} \frac{d M_{s}}{d A_{s}}$
كه ρ چگَالى لايه است.
I. در حالت كلى براى چشمه نقطه ای :

$$
\begin{aligned}
& \mathrm{d}=\frac{1}{\rho} \frac{M_{e} \cos \theta}{ヶ \pi r^{r}}=\frac{M_{e} h}{4 \pi \rho\left(\mathrm{~h}^{r}+\mathrm{I}^{r}\right)^{r / \epsilon}} \quad(1 r-r) \\
& \frac{d M_{s}}{d A_{s}}=\frac{M_{e} \cos \theta}{4 \pi r^{r}} \rightarrow \frac{d}{d .}=\left[1+\left(\frac{l}{h}\right)^{r}\right]^{-r / \leftarrow} \quad(1 ヶ-r)
\end{aligned}
$$

 r. همچֶنين براى چشمه سطحى داریم :
$\frac{d}{d .}=\left[1+\left(\frac{l}{h}\right)^{r}\right]^{-r}$
d. $=\frac{1}{\rho} \frac{M_{e}}{\pi h^{r}}$

از نتيجه نهايیى حاصل از دو رابطه بدست آمده براى ضخامت با چشمه نقطه اى و سطحى در مى يابيم
كه چشمه هاى سطحى، يكنواختى ضعيفترى دارند.
قبل از بررسى عوامل موثر بر ساختار لايه نازى به آشنايى مختصرى در مورد زيرلايه مى پردازيم . لايه هاى نازک نمى توانند خودشان را نتَهدارند و در نتيجه احتياج به يك نتَهدارنده (زيرلايه) دارندكه اين زيرلايه تاثير قابل ملاحظه اى بر روى خصوصيات لايه نازك مى گذارد. البته در حد ايده آل يى زيرلايه بايستى فقط تكيه گاهى مكانيكى براى لايه نازك فراهم آورد و هيج اندر كنشى با آن نداشته باشد به جز مقدارى چسبندگى با لايه نازك نداشته باشد. انواع مختلف زيرلايه براى بس بلورها معمولا از جنس شيشه، كوارتز و سراميك بوده و براى تك بلورها مى توان هالوزنهاى قليايى، ميكا، اكسيد منيزيم، Ge Si و ... را نام برد.

عوامل موثر بر ساختار لايه نازكى F-Y

(-F-Y
پارامتر اصلى كنترل آهنگ تبخير، دماى منبع مى باشد. با فرض منبع خالص، دماى آن مستقيما آهنگى لايه نشانى لايه را تعيين مى كند. آلودگى منبع نيز ميتواند باعث بروز مسائلى در رشد لايه شود. از آنجايى كه ريخت شناسى لايه، خاصيت بلورى (پارامترهاى شبكه)، اندازه دانه، سمتگيرى، مقاومت ويزه و تنش ذاتى همگى تابع آهنگ لايه نشانى هستند. به همين خاطر بايد در انتخاب دماى منبع لايه نشانى دقت بيشترى نمود.

r-r-r

دماى زيرلايه بر روى يك سرى از خواص لايه از جمله پارامترهاى شبكه، اندازه دانه، مقاومت ويزه و ... تاثير گذار است به طوريكه با افزايش دماى زيرلايه خواص ذكر شده تغيير مى كند و نهايتا به افزايش
پيوند لايه با زيرلايه منجر مى شود.

r-F-Y

به طور كلى فاصله زياد موجب يكنواختى در شكل فيلم خواهد شد، اگر چه وقتى فاصله زيرلايه از منبع افزايش يابد آهنگ لايه نشانى براى يك دماى معين منبع كاهش مى يابد كه در چنين مواردى مى توان با استفاده از منابع متعدد و يا شكل ويزه منبع، لايه يكنواختى را ايجاد نمود. دليل ديگر اهميت فاصله منبع از زيرلايه به خاطر كيفيت لايه است. در برخى موارد اگر فاصله منبع از زيرلايه درست انتخاب نشود لايه مورد نظر بعد از گذشت مدت زمان معينى يا با در معرض هوا قرار گرفتن از بين مى رود.

كيفيت سطح زير لايه

كيفيت سطح زيرلايه از عوامل ممهم توليد نمونه هايى با كيفيت بالاست. يكى از الزامات براى داشتن لايه ای مرغوب تميز كردن زيرلايه است. وجود ناخالصى روى سطح زيرلايه چسبندگى لايه به زيرلايه را به طور چشمگیرى تغيير مى دهد. گرما دادن زيرلايه قبل از رونشانى يا دماى بالاى زيرلايه ضمن فرآيند رونشانى نيز اغلب، چسبندگى را بهتر مى كند. اما زيرلايه قبل از استفاده بايد به اندازه كافى تميز شود زيرا آلودگى هاى سطح زيرلايه سبب آلودگى محيط خلا و در نتيجه افزايش فشار شده و در نهايت، لايه اى غيرمطلوب داريم و همچچنين چسبندگى لايه به زيرلايه را كاهش ميدهد. روشهاى تميز كردن به دو صورت انجام مى گيرد :

1. تميز كردن با محلولها
r. تميز كردن با تخليه تابان

در نمودار زير برخى از خواص يكى زيرلايه ايده آل به همراه دلايل آن آورده شده است :

دليل	خاصيت
لايه ایى يكنواخت با ضخامت يكسان بدهد. از گَاز پس دهى زياد جلوگيرى ميكند. از شكستن جلوگيرى مى كند. از تنش در لايه جلوگيرى مى كند. مانع خسارت وارد كردن در ساخت مى شود. گرمادهى در ضمن ساخت را ممكن مى سازد. استفاده نامحدود از مواد شيميايى را ممكن مى سازد. عايق بندى بين قطعات مختلف مواد را بوجود مى آورد. - كاربرد تجارى را ممكن مى سازد.	1- داراى سطحى صاف در مقياس اتمى باشد. 「- خلل و فرج نداشته باشد. r- استحكام مكانيكى داشته باشد. ضريب انبساط ترمايى لايه و زيرلايه يكسان باشد. ه- در مقابل شوك گرمايى مقاوم باشد. 9- از نظر كرمايی اپايدار باشد. V- ال از نظر شيميايى پايدار باشد. ^- مقاومت الكتريكى بالا داشته باشد. 9- ارزان باشد.

فصل سوم

سولفيد كادميوم خالص و آلاييده شده با عناصر

واسطه

كاربر دهاى سولفيد كادميوم (CdS)
روشهاى تهيه سولفيد كادميوم
خواص فيزيكى سولفيد كادميوم

- خواص ساختارى و ایتيكى سولفيد كادميوم آلاييده شده با كبالت

مقلدمه

تركيبات نيمه رساناهاى II-VI كاربردهاى زيادى بعنوان فوتورساناها در نواحى فرابنفش و مرئى، در
ليز رهاى نيمه- رسانا، وسايل اپتيكى غيرخطى، سلولهاى خورشيدى فوتوولتايى، ترانزيستورهاى فيلم نازى و ... دارند. از ميان تركيبات نيمه رساناهاى CdS II-VI با گاف نوارى مستقيم حدود \&/ץ الكترون ولت كاربردهاى بيشترى از ديگر فوتورساناها در نواحى فرابنفش و مرئى دارد. از آنجايى كه از فيلمماى نازى ميتوان بعنوان لايه هاى پنجره ای در سلولماى خورشيدى و ترانزيستورهاى نيمه رسانا و غيره استفاده كرد، رشد اين لايه داراى اهميت زيادى بوده و نقش به سزايى در بهينه سازى مصرف انرثى ايفا مى كند. به همين منظور در دهه هاى اخير رشد و مشخصه يابى اين لايه به خاطر كاربردهاى فراوان آن به طور گسترده ای مطالعه مى شود.

به دليل دامنه وسيع كاربرد اين لايه دانستن خواص فيزيكى بويزه الكتريكى، ايتيكى و ساختارى آن ضرورى است. لايه هاى CdS به خاطر گاف نوارى متوسط و ضريب جذب بالا، پايدارى و قيمت پايين
بسيار مورد توجه مى باشد.

r-ا كاربردهاى سولفيد كادميوم (CdS)

ساخت لايه هاى نازک با ابعاد نانومتر به خاطر كاربردهاى احتمالى آنها در زمينه هاى مختلف علوم و تكنولوزى مهم مى باشند، از جمله در زمينه هاى الكترونيك، اپتيك، علم فضا، پدافند هواییى و ديگر صنعت ها. نيمه رساناهاى لايه نازک موادى مناسب براى وسايل فوتوولتايى ارزان قيمت مى باشند. تحقيقات گسترده ای در دو دهه اخير روى لايه هاى CdS انجام شده كه مهمترين كاربرد آنها در سلولهاى خورشيدى است. سلولهاى خورشيدى فوتوولتايى سولفيد كادميوم در سال 19DF ميلادى كشف شد [ヶ]. هدف از ساخت اين سلول تهيه قطعه هاى سبك وزن براى تبديل كم هزينه انرثى خورشيدى به

انرزى الكتريكى بوده و ديگر نياز به صرف هزينه بالا براى ساخت هر قطعه و سوار كردن بسيار زيادى از قطعات كوچک در سلولهاى خورشيدى سيليكونى نيست. از اينرو محققان در پى آنند كه به سلولهاى خورشيدى با بازده بالا بوسيله افزايش خواص الكتريكى و اپتيكى CdS خالص و آلاييده شده روى زيرلايه ارزان قيمت دست يابند. از جمله اين سلولماى خورشيدى عبارتند از : سلولهاى خورشيدى InP كه در سال I I توسط ما' و فريز ' و پس از آ آنها سلول CurS نوع P (بازده
 خيلى كمتر و ايده آل تر براى لايه هاى پنجره ایى در سلولهاى خورشيدى با جاذب CuInS را گزارش كرد (به روش حمام شيميايى) [[]. از ديگر كاربردهاى فيلم CdS مى توان به موارد زير اشاره كرد : مبدل هاى پيزوالكتريك، وسايل نورافشانى، مبدل هاى فراصوتى، در وسايل الكترونيكى شبيه ترانزيستورهاى اثرميدان، ساختارهاى ناهمگون ليزرى براى گسيل در فوتورساناهاى ناحيه طيف مرئى، فيلترهاى لايه هاى نازک اپتيكى، سنسورهاى گازى براى آشكار كردن اكسيڭن، فوتوآشكارسازها، LED هاى چندلايه، فوتوديودها و ...

r-r روشهاى تهيه سولفيد كادميوم

ساخت لايه CdS به طرق گوناگون انجام مى شود. كه مى توان به روشهاى زير اشاره كرد :

${ }^{\prime} \mathrm{Ma}$

${ }^{r}$ Fraas
${ }^{\top}$ Kashiwaba
${ }^{\text {K }}$ Basol

تبخير گرمايى، لايه نشانى بخار شيميايى، رونشانى فاز بخار -فلز آلى'، انتقال بخار فضاى بسته، لايه
نشانى حمام شيميايى، لايه نشانى فوتوشيميايى، كندوپاش، اسپرى، لايه نشانى انتقال بخار ־چاپ غربال׳ّ
لايه- نشانى الكتروشيميايى خلا، سل- زل، رونشانى پرتو مولكولى MBET.
روش مورد استفاده ما براى لايه نشانى، تبخير گرمايى است. لايه نشانى به روش تبخير گرمايى براى

 كرد كه هر روش محدوديت هاى خاص خود را داراست. بعنوان مثال CdS با استوكيومترى مناسب در روش تبخير بدست نمى آيد. روش اسپرى يك روش شيميايى بهتر با هزينه كمتر است. در هر حال لايه هاى CdS ساخته شده به روش تبخير در خلا، كندوپاش و تعدادى ديگر از روشها بس بلورى بوده، مقاومت بالا و قابليت تحرك پذيرى كمى دارند.

ץ-

CdS

سولفيد كادميوم با فرمول CdS يك نيمه رساناى مستقيم با كاف نوارى حدود ؟/ الكترون ولت مى باشد كه داراى وزن مولكولى FF/FFV آترم بر مول و به رنگَ زرد متمايل به نارنجى است. همچֶنين داراى ظاهر جامد بلورى در دماى اتاق بوده و نقطه ذوب آن •VQ ادرجه سانتى گراد است. ديگر ويزگییهاى آن در جدول (ז-ا) آمده است:

[^3]جدول ((

هكزاكونال	ساختار
r/Ara $\mathrm{g} / \mathrm{cm}^{r}$	جكالى
fs Gpa	مدول يانگى
$\begin{aligned} \alpha_{1} & =9 / \Gamma 9 \times 1 \cdot{ }^{-9} / \mathrm{k}, \\ \alpha_{\mathrm{r}} & =r / \Delta \times 1 \cdot \cdot^{-9} / \mathrm{k} \end{aligned}$	ضريب انبساط گرمايى
-/ $/ \mathrm{v} \mathrm{j} / \mathrm{g} . \mathrm{k}$	كرماى ويرّه
- /r w/cm.k	درجه كلوين)
$>\mathrm{Vr} \mathrm{\%}$	بريشينه عبور
$<\cdot 1 \cdot \vee \mathrm{~cm}^{-1}$	ضريب جذب
r/r	ضريب شكست

r_r-r-r خواص ساختارى سولفيد كادميوم

خواص ساختارى CdS بوسيله مطالعه ميكروساختار لايه در سال 191 توسط چپرا' و همكارش تعيين شد[]. تحقيقات به عمل آمده در اين زمينه نشان داد كه CdS در دو ساختار شش گوشى و سولفيد روى ${ }^{\text { }}$, لايه نشانى بستگى دارد. در ساخت CdS به روش تبخيرگرمايى تشكيل اين ساختارها به دماى زيرلايه بستگى دارد.
'Chopra
${ }^{`}$ Hexagonal
${ }^{「}$ Zinc Blend

مطالعات بيانگر اين هستند كه با افزايش دماى بستر، ضخامت فيلم و همچنیين آهنگ تبخير، اندازه دانه ها افزايش مى يابد. آقاى نشوا' و همكاران گزارش كردند كه افزايش ضخامت لايه CdS، (• تا • نانومتر) باعث افزايش اندازه دانه ها مى شود[٪]. آشور لايه هاى سولفيد كادميوم را به روش اسيرى با دماى زير لايه متفاوت تهيه كرده كه در شكل (r-Y) طيف پراش پرتو ايكس آنها آمده كه گوياى وابستگى ساختار اين لايه با دماى زير لايه مى

شكل (Ү-؟) : طيف پراش پرتو ايكس لايه هاى نازك سولفيد كادميوم تهيه شده به روش اسپرى با دماى زيرلايه متفاوت.

زيرلايه هاى مختلفى براى لايه نشانى لايه سولفيد كادميوم از جمله شيشه (از جنس لام ميكروسكوپ، Corning و غيره)، rITo SnO و... استفاده شده است كه به طبع تاثيرات متفاوتى روى خواص فيزيكى لايه مى گذارند. زيرلايه rSnO اندازه خوشه هاى CdS را تحت تاثير قرار مى دهد. تا سال 1991 زيرلايه براى CdS عمدتا شيشه بود، با اين حال مواد ديگر نيز بكار مى رفت. موليبدن مناسب ترين زيرلايه است، زيرا ضرايب انبساط حرارتى سولفيد كادميوم و موليبدن با يكديگر منطبق اند، در صورتى كه آلومينيوم اينطور نيست.

r-

مطالعات نشان مى دهد كه مقاومت الكتريكى فيلم CdS تهيه شده به روش اسپرى با دماى بستر تغيير مى كند[؟]. لايه هاى CdS ساخته شده به روش تبخير، صاف و انعكاسى بوده و ثابت هاى اپتيكى

فيلم توسط تاملين' و همكارش در سال I9Vه گزارش شده است. لايه هاى نازک CdS داراى عبور بالا در ناحيه مرئى مى باشند. در ساخت لايه CdS به روش تبخير با افزايش ضخامت، لبه جذب اپتيكى لايه به

سمت طول موجهاى بلندتر جابجا مى شود. سختى سطح نيز با افزايش ضخامت، افزايش مى يابد[V]]. همچنين آشور تغييرات خواص ایتيكى لايه هاى سولفيد كادميوم خالص با دماى زيرلايه را نيز بررسى

كرده است كه طيف عبور و تغييرات گاف نوارى آنها را در شكل هاى (ץ-

شكل (ץ-ץ) : طيف هاى عبور لايه هاى نازك سولفيد كادميوم تهيه شده به روش اسپرى با دماى زيرلايه متفاوت.

[^4]

شكل (¢-

خواص ساختارى و ایتيكى سولفيد كادميوم آلاييده شده با كبالت

به منظور تغيير در بعضى از خواص ساختارى، ایتيكى و مغناطيسى لايه سولفيد كادميوم مقدارى آلاينده به آن افزوده مى شود. آليازهاى فلزى به خاطر كاربرد در وسايل اپتوالكترونيكى مانند اپتيك هاى غير خطى، ديودهاى گسيل نور، ليزرها، ترانزيستورهاى لايه نازك و غيره توجه زيادى را به خود جلب كرده اند [^,]ـ. جانشينى عناصر مغناطيسى مثل Ni Co ، Fe ،Mn ور شبكه نيمه رساناهاى گروه ¢r F F- F r r شود. نيمه رساناهاى مغناطيسى رقيق نوع II-VI، نيمه رساناهايى هستند كه كاتيون هاى ميزبان (II) به طور تصادفى با يونهاى مغناطيسى جايگزين مى شوند. حضور يونهاى مغناطيسى جايگزيده در يكى آلياز نيمه رسانا منجر به برهمكنشهاى تبادلى بين الكترونهاى S-P (نوارى) و الكترونهاى d يونهاى مغناطيسى مى شود. اين برهمكنشها باعث تغيير خواص ایتيكى و مغناطيسى اين مواد مى گردند [9]. اين

[^5]مواد به مواد اسپينترونيک׳ معروفند. در اين مواد علاوه بر بار از اسپين هم براى كنترل جريان استفاده مى شود. بنابراين نيمه رساناهاى مغناطيسى رقيق كانديداى خوبى براى كاربرد در وسايل اسپينترونيى هستند.

لايه هاى نازك سولفيد كادميوم آلاييده شده با عناصر واسطه به روشهاى متعددى چون روش تبخير حرارتى، تبخير در خلا با پرتو الكترونى، اسپرى، كندویاش، ليزر پالسى، سل - زل و حمام شيميایی تهيه
مى شوند [[, • •

نانوساختارهاى CdS/Cr كه توسط كيان 「 و همكاران وى به روش تبخير حرارتى تهيه شدند از نظر
 بودند[•].

از ديگر عناصر آلاييده شده با سولفيد كادميوم مى توان به Fe اشاره كرد. آلايش ناخالصى آهن در نانوكريستالهاى نيمه رسانا اخيرا به خاطر خواص مغناطوایتيكى و الكتريكى آنها مورد توجه قرار گرفته
 تهيه كردند. با آلايش يونهاى مغناطيسى Fe در شبكه بلورى CdS، تغييرى در ساختار هگزاگونال شبكه حاصل نشد و تنها پارامترهاى شبكه با افزايش يونهاى Fe+r كاهش يافتند. در ضمن افزايش ناخالصى باعث كاهشى محسوس در گاف نوارى از r/DF تا T/ FV الكترون ولت گرديد كه به برهمكنشهاى تبادلى بين الكترونهاى نوارى و الكترونهاى تراز rd يونهاى ناخالصى نسبت داده شده است [[[]]. ناخالصى مس نيز تغييراتى در لايه نازك سولفيد كادميوم بوجود مى آورد كه باعث بهبود خواص فوتوالكتريكى آن مى شود. مهدوى از دانشگاه شريف لايه هاى نازك سولفيد كادميوم آلاييده شده با مس را به روش ليزر پالسى تهيه كرد و دريافت كه با آلايش مس گاف نوارى دستخوش تغيير مى شود. اندازه

[^6]${ }^{r}$ Qian
${ }^{r}$ Triphathi

دانه ها نيز با افزايش ناخالصى افزايش يافت[ّبا]. نوين روز نيز تاثير ناخالصى مس را بر روى ساختار بلورى و خواص اپتيكى و الكتريكى لايه هاى نازک سولفيد كادميوم بررسى كرده است. در اين تحقيق بررسى پراش پرتو ايكس نمونه ها همان ساختار بلورى هگزاگونال با راستاى ترجيحى (ץ ••) را نشان

از ويزگيهاى منحصر به فردى كه با حضور يونهاى مغناطيسى در شبكه سولفيد كادميوم ظاهر مى شود تغييرات زيادى در خواص مغناطيسى و مغناطواپتيكى به خاطر برهكنشهاى تبادلى s-p-d آنها است. منگَنز نيز يكى از اين يونهاى مغناطيسى مى باشد كه راجا ردى ' و دوستانش با تركيب CdS و MnS و x= • - لايه نشانى به روش تبخير حرارتى بر روى زيرلايه شيشه، آلياز با غلظت هاى Cd تهيه نمودند. آنها مشاهده كردند كه با افزايش غلظت منگَنز در اين تركيب، ساختار آن دستخوش تغيير مى شود. پارامترهاى شبكه كاهش يافته و اندازه هاى دانه ها تا غلظت x=/ x افزايش يافته و سپس كاهش مى يابد. در زمينه خواص مغناطيسى لايه ها، مى توان به تغييرات غيرخطى پذيرفتارى مغناطيسى آنها با دما و غلظت هاى مختلف منگَنز اشاره كرد[ه $]$]. عنصر مغناطيسى مورد نظر ما كه در اين پايان نامه روى آن كار شده كبالت است ـ در اينجا كبالت با

از آليازهاى CdCoS به دليل گاف نوارى مستقيم و متوسط آنها در سلولهاى خورشيدى كم هزينه استفاده مى شود. همچنين در ديودها، سنسورهاى مغناطيسى و غيره نيز مى توان از اين تركيب استفاده

[^7]بساكسيز' و همكاران آلياز در روش ديگَ ابتدا لايه CdS به روش اسپرى تهيه گرديده و سپس Co روى آن به روش تبخير حرارتى
 كه با افزايش غلظت كبالت در تركيب شدت پيك (IIT) كاهش يافته و راستاى ترجيحى از (IIT) به

 افزايش درصد كبالت به يك مقدار مينيمم • • نانومتر رسيد[IV]. آنها نيز كاهش در كاف نوارى با افزايش كبالت را به برهمكنشهاى تبادلى sp-d الكترونهاى نوارى و الكترونهاى d جايگزيده Co+r نسبت داده اند

' Bacaksiz

در كارى مشابه روش دوم لايه نشانى فوق، در لايه هاى CdTe با آلايش كبالت رفتار فرومغناطيسى را در دماى اتاق از خود نشان دادند[־٪]، بساكسيز و همكاران وى نيز انتظار مشاهده خواصى مشابه را داشتند. در لايه هاى نازك تهيه شده به روش اول هيج رفتار مغناطيسى مشاهده نكردند اما در نمونه هاى تهيه شده به روش نفوذى كه خواص ساختارى و ایتيكى مشابهى با روش اول داشتند رفتار فرومغناطيس در منحنى M-H آنها ديده شد[IV].
 شيميايى با كمك واكنشگر تهيه و مشاهده شد كه گاف نوارى از Y/A9 به Y/V الكترون ولت افزايش مى يابد[^1]. از آنجايى كه در اين آلياز، با افزايش غلظت كبالت، برهمكنش تبادلى بين Co+r و اتمماى S تقويت شده و نظم اسپينى قوى خواهيم داشت[[Y]، بنابراين افزايش مقدار كبالت، افزايش مغناظش را در بر خواهد داشت. رفتار فرومغناطيسى اين آلياز با غلظت هاى مختلف كبالت در شكل (ץ-؟) مشاهده مى شود.

شكل (ץ-؟) : رفتار فرو مغناطيسى لايه هاى نازك سولفيد كادميوم آلاييده شده با كبالت با غلظتههاى

$$
x=\cdot / r(c, X=\cdot / r(b, \quad X=\cdot /)(a
$$

بدين خاطر تحقيقات بسيارى در اين زمينه انجام مى گيرد و محققين سعى دارند لايه هاى لايه CdS آلايش يافته با عناصر واسطه ای را رشد دهند كه ضمن حفظ خواص اپتيكى مورد نظر، رفتار فرومغناطيسى را نيز در دماى اتاق داشته باشند.

فصل چهارم

لايه نشانى نمونه ها و نتايج

دستگَاه لايه نشانى
آماده سازى دستگًاه
آماده سازى زيرلايه

آماده سازى مواد و انتخاب بوته
لايه نشانى لايه هاى نازك سولفيد كادميوم خالص لايه نشانى لايه هاى نازك سولفيد كادميوم آلاييده شده با كبالت

 لايه نشانى لايه هاى نازك CdS:Co به روش نفوذى

مقدمه

در اين تحقيق لايه هاى نازك سولفيد كادميوم با ضخامت حدود ا/ ا/ ميكرومتر به روش تبخير حرارتى لايه نشانى شد. همحنين لايه هاى سولفيد كادميوم بدون آلايش و با آلايش با كبالت //•, ه•|•, x x = با ضخامت •ه و • •ه نانومتر و دماى زيرلايه متفاوت تهيه گرديده و سپس خواص ساختارى، ایتيكى و مغناطيسى لايه ها مورد مطالعه قرار گرفته است. لازم به ذكر است كه نمونه هاى آلاييده شده با دو روش تهيه گرديده است. در روش اول، تبخير حرارتى مخلوط پودرى سولفيد كادميوم وكبالت انجام شد و در روش دوم ابتدا سولفيد كادميوم انباشت شده و سپس لايه نازكى از كبالت بر روى آن لايه نشانى شده است و نمونه ها در خلا تحت عمليات حرارتى قرار گرفته تا كبالت به داخل سولفيد كادميوم نفوذ نمايد. در جدول (Y-1) لايه هاى تهيه شده به همراه مشخصات آنها آورده شده است: جدول (؟- () : لايه هاى نازك تهيه شده به همرا ه مشخصات لايه نشانى آنها.

ضخامت		دماى زير لايه	غلظت	روش تهيه	ماده
$10 \cdot \mathrm{~nm}$		دماى محيط	-	تبخير حرارتى	CdS
Q. nm		دماى محيط	-	تبخير حرارتى	CdS:Co
$\Delta \cdot \mathrm{nm}$		دماى دماى ديط	- 1. rs	تبخير حرارتى	CdS:Co
Q. nm		دماى محيط	$\cdot 1 \cdot \Delta$	تبخير حرارتى	CdS:Co
		$1 . .1{ }^{\circ} \mathrm{C}$			
$\Delta \cdots \mathrm{nm}$		$11 .{ }^{\circ} \mathrm{C}$			
Q. nm		دماى محيط	-/1	تبخير حرارتى	CdS:Co
194 nm CdS		دماى محيط	-	تبخير حرارتى/فوذى	CdS/Co
$\wedge \mathrm{nm}$	Co				
$1 r_{\text {nm }}$					
19 nm					

F-ا دستگَاه لايه نشانى

لايه نشانى در دانشگاه صنعتى شاهرود و دانشگاه فردوسى مشهد انجام گرفت. دستگاهى كه براى
ساخت لايه هاى نازک از آن استفاده كرديم در شكل (Y-1) نشان داده شده است. اين دستگاه داراى محفظه خلا شيشه اى استوانه ای عمودى مى باشد كه فرايند لايه نشانى در داخل آن انجام مى شود.

شكل (†-1) : تصويرى از دستگاه تبخير در خلا.

سيستمه شامل دو پمپ چرخشى و پخشى مى باشد و فشار داخل محفظه را مى توانند تا حدود -.. ميلى بار پايين بياورند. هم چنين گرمكن زيرلايه نيز در داخل محفظه خلا قراردارد كه در پشت زيرلايه تعبيه مى گردد و دماى آن قابل تنظيم مى باشد. ضخامت لايه هاى ساخته شده در حين لايه نشانى توسط ضخامت سنج بلور كوارتز اندازه گيرى و در صفحه نمايش ديده مى شود. ضخامت سنج در داخل

محفظه خلا و در نزديكى زيرلايه، در مكان مناسب قرارداده مى شود تا خطاى اندازه گيرى كاهش يابد. همچنیين استفاده از سيستم بسته گردش آب سرد در ضمن فرايند لايه نشانى دستيابى به خلا پايين را ممكن مى سازد.

- ا- - F

دستگاه تبخير حرارتى براى لايه نشانى لايه هاى نازك بر روى زير لايه هاى مختلف مورد استفاده قرار مى گیرد . ابتدا پمپ پرخشى فشار محفظه را تا حدود T. 1 ميلى بار پايين برده و سپس خلاء بالا (تا
 داخل محفظه خلاء دستگاه هاى سنجش فشار بر روى صفحه كنترل دستگاه نصب شده است. در اين دستگاه وسايل و امكاناتى براى انجام فرايند تبخير حرارتى در خلاء شامل منبع جريان بالا و الكترودهاى مسى براى انتقال جريان الكتريكى به قايق (بوته) هاى تبخيرى و نگگهدارنده زير لايه ها (يا امكان حرارت دهى زير لايه ها) وجود دارد. براى تبخير مواد، از بوته هاى تبخيرى استفاده مى شود . اين منابع با توجه به نوع ماده تبخير شونده، بايد از جنس هاى مختلف انتخاب شوند.

r-ヶ

قبل ار تهيه لايه ها محيط داخلى محفظه، اتصالات و اجزاى داخلى آن را در ابتدا با پارچه مناسب تميز و سپس توسط استون نيز تميز گرديد. بعد از آن براى پاک كردن آلودگى هاى احتمالى برجاى مانده روى دستگاه از گاز ازت استفاده مى كنيم. همحچنين از گريس خلا براى چرب نمودن واشر جهت جلوگيرى از نشتى استفاده مى شود تا دسترسى به خلا خوب را فراهم نمايد. قبل از استفاده از دستگاه

بايد از عملكرد قطعات مختلف از جمله ضخامت سنج، فشارسنج ها و پمپ ها (چرخشى و پخشى) اطمينان حاصل شود. در ضمن قبل از لايه نشانى بايد ضخامت سنج كاليبره شود.

F-F

تميز كردن زيرلايه قبل از آغاز فرايند لايه نشانى امرى ممهم در هر نوع روش لايه نشانى به شمار مى آيد. هدف از تميز كردن سطح زيرلايه، زدودن آلاينده هاى روى زيرلايه مى باشد، اين كار چسبندگى لايه را نيز بهتر مى كند. آماده سازى زيرلايه در تغييرات شيميايى، مورفولوزى و خواص مكانيكى سطح نيز موثر است. اين تغييرات مى تواند اثرات مثبتى در اتم هاى نشسته شده روى زيرلايه و سطوح و رشد آنها داشته باشد. زيرلايه مورد آزمايش از جنس شيشه لام ميكروسكوپ انتخاب گرديد. براى تميز نمودن زيرلايه ها، ابتدا آنها را با مواد شوينده شستشو داده سپس به مدت • • دقيقه در بشرى حاوى آب و مايع ظرفشويى بر روى هيتر قرار مى دهيه. بعد از آن زيرلايه ها داخل بشرى حاوى آب ولرم مى گذاريم. پس از اين مرحله زيرلايه ها در محلول استون در دستگاه آلتراسونيكى به مدت 「 تا 1 دقيقه مى گذاريم و در نهايت با آب دو بار يونيزه شسته وسپس توسط دستمال بدون پرز كاملا تميز كرده و با گاز ازت (يا نيتروثن) خشك مى كنيم. با آزمون و خطا دريافتيم كه اتانول از استون در پاك كردن آلودگى از روى سطح شيشه بهتر عمل مى كند. بنابراين در فرآيند تميزكارى زيرلايه ها اتانول را جايگزين استون نموديم.

F-₹-₹ آماده سازى مواد و انتخاب بوته

مواد اوليه مورد استفاده جهت لايه نشانى، سولفيد كادميوم با خلوص 99/99٪ به صورت پودر با مارى آلفا اى سر ' و پودر كبالت بودند. تركيبات را با توجه به نسبت هاى مورد نظر با يكديگر مخلوط كرده و در هاون شيشه ای خوب مى ساييم تا پودر ها به خوبى با يكديگر آميخته شوند و مخلوطى همگن از مواد بدست آيد. سپس اين مواد با نسبت هاى مشخص در ظرفى پلاستيكى نگَهدارى شدند. اين ظروف هيج واكنشى با مواد اوليه نداشته و براى اين كار مناسب بودند. براى اندازه گيرى وزن مواد اوليه از ترازوى حساس ديجيتالى با دقت ا.. /•گرم استفاده گرديد. از آنجايى كه مواد اوليه پودرى بودند ودر حين تبخير، مواد از داخل بوته به بيرون ريخته مى شد بوته اى دريوشدار از جنس موليبدن تعبيه گرديد تا به عنوان منبع تبخير استفاده شود كه در شكل (Y-Y) نشان داده شده است. روى دريوش بوته سوراخ هاى كوچكى جهت خروج ماده تبخير شده ايجاد گرديد. گزينه بهتر براى كار بوته تنگستنى بود اما به خاطر مواد انتخاب شده، بوته اى نياز بود كه شكلى قايقى داشته باشد و به دليل غير انعطاف پذيرى بوته هاى
تنگگتنى اين كار غير ممكن بود.

شكل (($)$) : بوته ای درب دار از جنس موليبدن.

[^8]
Q-F

لايه هاى نازک CdS توسط دستگاه لايه نشانى موجود در آزمايشگاه رشد دانشگاه صنعتى شاهرود تهيه شدند. ابتدا مقدارى پودر سولفيد كادميوم در داخل بوته ريخته شد. زيرلايه كه از جنس شيشه (لام ميكروسكوپ) انتخاب شده بود قبل از عمل لايه نشانى مطابق شيوه هايى كه در بالا توضيح داده شد، به
 رسانيده شد. فاصله منبع تا زيرلايه ه/ آ سانتيمتر انتخاب و نرخ لايه نشانى 「 نانومتر بر ثانيه تنظيم گرديد. در مورد انتخاب مقدار جريان و ولتاز اعمالى به بوته در حين آزمايش به صورت آزمون و خطا عمل شد تا نتيجه بهترى بدست آيد. اين انتخاب طورى بايد انتخاب مى شد كه مواد داخل بوته بصورت كامل تبخير شوند و در حين كار به بوته از نظر تحمل جريان آسيبى نرسد. لايه نشانى در دماى محيط (••• درجه كلوين) صورت گرفت. ضخامت نمونه ها در حدود ا/ ا/ ميكرومتر توسط بلور كوارتز تعيين گرديد. نمونه ها پس از انجام آزمايش حداقل يكى ساعت در محفظه باقى مى ماندند تا دماى داخل محفظه به دماى محيط برسد، در اين حالت زمان باز كردن در محفظه خلا، هيج شك حرارتى به نمونه ها وارد نمى شود. پس از بيرون آوردن نمونه ها جهت جلوگيرى از اكسيد شدن، آنها را در ظروف پاستيكى در بسته براى انجام مراحل بعدى محافظت كرديم.

- - - -

سولفيد كادميوم در دو ساختار مكعبى و هگزاگونال (شش گوشى) رشد مى يابد. جهت تعيين ساختار تشكيل شده، با استفاده از نرم افزار Powderx طرح پراش سولفيد كادميوم با هر دو ساختار هگزاگونال و مكعبى محاسبه و در شكل (Y-Y) به همراه طرح پراش تجربى نشان داده شده است. همانطور كه ملاحظه مى شود نتايج الگَوى پراش XRD تشكيل فاز هگگاگونال را براى اين نمونه ها نشان مى دهد. پيک ارجح (r) •• در • ديده مى شود. تشكيل اين سه قله در محل هاى مربوطه گواه بر ساختار بلورى خوب اين لايه ها مى باشد.

محاسبه پارامتر هاى شبكه و اندازه دانه ها r- r-

$\lambda=1 / \Delta F \cdot \mathcal{C l}^{\circ} \mathrm{A}$ با استفاده از اطلاعات بدست آمده از پراش پرتو ايكس نمونه ها و با در نظر گرفتن براى Cu نيمه شدت بيشينه و λ طول موج پرتو ايكس مى باشد. مى توان اندازه بلور ك ها را محاسبه نمود. براى ساختار هگزاگونال روابط زير را براى فاصله صفحات هم خانواده (d)، ارتباط فاصله صفحات هم خانواده، ثابت هاى شبكه و حجم سلول واحد داريم :
$d=\frac{n \lambda}{r \sin \theta} \quad, n=1$
$\frac{1}{d^{r}}=\frac{r}{r} \frac{\left(h^{r}+k h+k^{r}\right)}{a^{r}}+\frac{l^{r}}{c^{r}}$
$v=\frac{\sqrt{r}}{r} a^{r} \times c$
كه h و k و 1 انديس هاى ميلر صفحات مى باشند.
با استفاده از روابط فوق، اندازه متوسط بلور ک ها، پارامترهاى شبكه و حجم سلول واحد محاسبه گرديد كه در جدول (Y-Y) آورده شده است :

جدول (ץ-〒) : يارامترهاى شبكه و اندازه بلور ك ها

بارامتر ($\left.{ }^{\circ} \mathrm{A}\right)$	a ($\left.{ }^{\circ} \mathrm{A}\right)$	حجم سلول واحد (${ }^{\circ} \mathrm{A}^{\prime}$)	اندازه بلورك ها ($\left.{ }^{\circ} \mathrm{A}\right)$
9/9NT	4/. 97	$98 / 94$	VI/TM

براى مطالعه خواص نورى نمونه، طيف عبور نمونه در بازه طول موج 11 نانومتر توسط دستگاه...Uv (Uv - Vis) ثبت شد كه در شكل (Y-Y) نشان داده شده است. افت شديد عبور در طول موج حدود •ه نانومتر نشان از جذب بالا در طول موجهاى كمتر از آنرا دارد و همحنیين تشكيل حالتهاى نوسانى در طيف عبور نشان دهنده سطح هموار و كيفيت اپتيكى مناسب لايه مى باشد. به كمى اين نمودار و روش سان پل' ميتوان ضريب شكست لايه را محاسبه كرد. ضريب شكست لايه CdS را مى توان

$$
\begin{equation*}
n=\left[N+\left(N^{\top}-n_{a}{ }^{\top} S^{r}\right)\right]^{\frac{1}{r}} \tag{r-Y}
\end{equation*}
$$

$N=\frac{n_{a}^{r}+s^{r}}{r}+r n_{a} s T_{n}$
$T_{n}=\frac{T_{M a x}-T_{M i n}}{T_{M a x} T_{M i n}}$

در روابط بالا s، ضريب شكست زيرلايه و n=1 ، ضريب شكست هوا و n نيز ضريب شكست لايه است.
 خط چين نشان داده شده است.

[^9]

شكل(Y-Y) : طيف عبور ایتيكى لايه ناز ك سولفيد كادميوم در دماى محيط وخط چیی، منحنى پوش قسمت نوسانى طيف.

شكل((-) : طيف جذب لايه نازك سولفيد كادميوم در دماى محيط .

با كمكى داده هاى جذب نور در لايه (A) كه در شكل (Y- (4) نشان داده شده است و با استفاده از فرمول گرديد. از آنجايى كه CdS يك نيمه رساناى با گاف نوارى مستقيم است با استفاده از فرمول $(\alpha h v)^{r}=h v-E g$ $(v-Y)$
 شده است. با برون يابى قسمت خطى نمودار همانطور كه در شكل آمده، گاف نوارى لايه CdS معلوم مى شود. گاف نوارى محاسبه شده حدود Y/\& الكترون ولت بوده و گذارى مستقيم و مجاز ديده مى شود. اين

با استفاده از روابط (Y-Y) تا (Y-Y) و تعيين مقادير عبور ماكزيمه و مينيمم در شكل (Y-Y) و با كمك نرم افزار matlab ضريب شكست را بر حسب طول موج محاسبه كرديم كه در شكل (ץ-\&) نشان داده

شده است. رابطه بين ضريب شكست و طول موج طبق معادله كوشى ' [r [گردد:

$$
\mathrm{n}=\mathrm{a}+\frac{\mathrm{b}}{\lambda^{r}}
$$

$$
(\wedge-\psi)
$$

كه در آن a و b ثابت هاى كوشى هستند كه به جنس لايه بستگى دارند. منحنى ضريب شكست با رابطه (افزار matlab صورت گرفت. پارامترهاى بدست آمده فوق با نتايج ديگران همخوانى دارد[זץ,؟]. ضريب شكست بدست آمده در شكل (V-Y) نشان مى دهد كه در بازه طول موجى . .Y-. . . . ا نانومتر به مقدار بسيار كمى وابسته به طول موج مى باشد.

شكل(V-Y) : نمودار ضريب ضريب شكست لايه نازك سولفيد كادميوم بر حسب طول موج.

[^10]همچֶنين ضريب خاموشى نيز از رابطه[11]
$\mathrm{k}=\frac{\alpha \lambda}{\mu \pi}$
محاسبه شده و نمودار آن در شكل (母-9) آمده است. مى بينيم كه در لبه جذب ضريب خاموشى افت سريعى دارد، اين امر نشان دهنده ى ساختار بلورى خوب لايه است.

$$
\text { شكل((}- \text {): نمودار ضريب خاموشى لايه نازك سولفيد كادميوم بر حسب طول موج. }
$$

از پودر هاى سولفيد كادميوم و كبالت با خلوص 99/999٪ با مارك آلفا اى سر به عنوان مواد اوليه استفاده گرديد. اين مواد با نسبتهاى مختلف كه در بخش F-Y توضيح داده شد را براى لايه نشانى بر روى زيرلايه شيشه (لام ميكروسكوپ) بكار برديم. از جمله مشكلات در لايه نشانى به روش تبخير حرارتى در مواد تركيبى، اختلاف در نقطه ذوب آنهاست. بعنوان مثال براى مخلوط سولفيد كادميوم و كبالت چون نقطه ذوب كبالت (l\&9 أ درجه سانتيگراد) پايين تر از نقطه ذوب سولفيد كادميوم (•IVA درجه

سانتيگراد) مى باشد با حرارت دادن بوته، كبالت زودتر از سولفيد كادميوم تبخير مى شود در نتيجه ابتدا لايه ای كبالت روى زيرلايه مى نشيند و سچس سولفيد كادميوم خواهد نشست. براى رفع اين مشكل در اين روش لايه نشانى، لازم است كه اين دو ماده بخوبى با ساييدن در هاون مخلوط شوند و در هنگام اعمال جريان، جريان به طور ناگهانى به مقدار لازم رسانيده شود. فاصله منبع تبخير تا زيرلايه If سانتى متر و فاصله منبع تا بلور كوارتز II/V سانتيمتر تنظيم گرديد و قبل از عمل تبخير از گاز ازت براى رفع هر گَونه آلودگى باقيمانده روى دستگاه استفاده شد. غلظت هاى كبالت در تركيب براى لايه نشانى،
 تهيه كنيم، اما با چندين بار آزمايش در يافتيم كه در دماهاى بالا لايه ها احتمالا به دليل فرار مجدد ذرات از روى شيشه تشكيل نمى شود. بنابراين آزمايشات را در دماى محيط انجام داديم. نكته قابل توجه اينست كه در غلظت هاى بالاتر كبالت (ז/• , x =/ヶ)، به جريان بيشترى براى تبخير مواد نياز داشتيم و از آنجايى كه بوته انتخابى از جنس موليبدن بود، مشاهده شد كه با اعمال جريان بيشتر، بوته با مواد داخل آن (كبالت) واكنش داده و بوته مورد آزمايش خورده شد، به همين خاطر جنس بوته براى غلظت هاى بالاتر بايد عوض مى شد و از تنگستن استفاده مى شد كه به دليلى كه قبلا ذكر شد در لايه نشانى به روش تبخير حرارتى غير ممكن بود. ديگر اينكه افزايش جريان باعث ايجاد گرما در محفظه خلا شده و تشعشعات گرما بر روى بلور كوارتز تاثير گذاشته و سبب از كار افتادن ضخامت x ==/ / سنج ترديد. نتايج بدست آمده حاكى از آن بود كه بهتر است تحقيقات در غلظت هاى كمتر از انجام شود. بنابراين لايه نشانى در غلظت هاى // x x صورت ترفت. جريان منبع نيز تا •19 آمپر افزايش داده شد تا مواد تبخير شده، بر روى زيرلايه چگاليده شوند. فشار داخل محفظه در طول آزمايش
 -ه •ه النومتر انتخاب كه بوسيله ضخامت سنج بلور كوارتز اندازه گيرى شد. همچֶنين ضخامت نمونه ها

با نرم افزار PUMA نيز محاسبه گرديد كه با عدد نشان داده شده توسط ضخامت سنج كوارتز همخوانى دارد. نمونه ها پس از انجام هر آزمايش به مدت يك ساعت در محفظه خلا باقى ماندند تا از شوك حرارتى احتمالى وارد بر آنها جلوگيرى شود. سپس در محفظه بسته براى مراحل بعدى نگَهداشته شدند. در نهايت نمونه هاى تهيه شده مورد بررسى هاى ساختارى، اپتيكى و مغناطيسى قرار گرفتند.

Y-4-ا بر بسى خواص ساختارى

ا-1-9-F

 مشابه روش قبل بخش قبل، از طريق نرم افزار و با استفاده از ثابت هاى شبكه دو ساختار هگَاگونال و
 [٪9] مى باشند، الگوى پراش محاسبه كه به همراه نتيجه تجربى يكى از غلظت ها براى نمونه در شكل
 عنصر كبالت نيز نشان داده شده است.

شكل (؟-9) : طيف يراش پرتو ايكس لايه هاى نازک CdS:Co تهيه شده به روش تبخير حرارتى با غلظتهاى

شكل (ץ-• 1) : طيف پراش ریتو ايكس لايه نازك CdS:Co تهيه شده به روش تبخير حرارتى با غلظت

همانگَونه كه مشاهده مى شود همه لايه ها ساختار هگزاگونال ماده ميزبان، سولفيد كادميوم با جهت ترجيحى (ץ • •) را دارند. مقايسه شكل فوق با الگَى طرح پراش نمونه هاى قبلى نشان مى دهد كه در حالت قبلى قله هاى بيشترى مشاهده مى شود. در طرح پراش اخير قله ها آنقدر ضعيف اند كه قابل تشخيص نمى باشند كه احتمالا به دليل اختلاف زياد در ضخامت لايه ها مى باشد. محل قله (Y ••) براى غلظت هاى مختلف كبالت در جدول(ץ- (ץ) ذكر شده است. الگَى پراش نشان مى دهد كه شدت قله ارجح با افزايش غلظت كبالت كاهش يافته و همچچنين مكان آن اندكى جابجا گرديده است، اين امر دليلى بر جايگزينى كبالت به جاى كادميوم در شبكه ماده ميزبان و تشكيل آليازهاى تركيبى مى باشد[1V,1]]. اين جابجايى به دليل تفاوت شعاع يونى كادميوم (9V/ آنگستروم) با كبالت (VY/ آنگستروم) مى باشد. البته به علت اختلاف ناچیيز مقدار كبالت در آنها اين جابحايى بسيار اندك است كه در جدول (Y-Y) قابل رويت مى باشد. در الگوى طرح پراش هيجّ قله اى مربوط به عنصر Co خالص ديده نمى شود يعنى كبالت بصورت فاز جداگانه تشكيل نشده است و در نيمه رسانا آلاييده شده است. رنگ لايه ها نيز با افزايش غلظت كبالت تيره تر مى شود.

موقعيت پیک (\% .)	غلظت كبالت (x)
	-
$r \theta=r$ / $/ 9 \Delta r \cdot \Lambda$	-/.rs
$r \theta=r 9 / 9 \Delta r y \mid$	$\cdot 1 \cdot \Delta$
r $\theta=r$ r/gastr	-/1

r- محاسبه پارامترهاى شبكه و اندازه دانه ها

$\lambda=1 / \Delta F \cdot G^{\circ} \mathrm{C} A$ با استفاده از اطلاعات بدست آمده از پراش پرتو ايكس نمونه ها و با در نظر گرفتن
 است به ترتيب پارامترهاى شبكه، اندازه بلورك ها و حجم سلول ياخته واحد محاسبه گرديد كه در جدول (ارائه شده است.

غلظت (X)			حجم ياخته واحد (A^{5})	اندازه بلورك ها (A)
.	$4 / .9145$	9191115	$99 / \lambda \Delta T$	rimer
./.ra	4/.9141	9191111	$99 / \wedge \Delta 1$	r.9/9
. 1.0	4/.9178	91911.r	99/144	r99/va
-/1	41.9 .14	9/8N. HK	$99101 /$	ral/40

نتايج حاصل از محاسبه ثابت هاى شبكه در شكل (Y-1 (1) رسم شده است كه با افزايش درصد كبالت اندكى كاهش مى يابند.

شكل (ץ-1 () : بارارمترهاى شبكه لايه هاى نازى CdS:Co تهيه شده به روش تبخير حرارتى با غلظت هاى مختلف.

از آنجايیى كه شعاع يونى باعث انقباض شبكه و در نتيجه زاويه قله ارجح به سمت زواياى بزر گتر جابجا مى شود. جدول (Y-Y) Cd اين امر شاهدى ديگر بر تشكيل آليازهاى تركيبى $\mathrm{Cd}_{1-\mathrm{X}} \mathrm{T}_{\mathrm{K}} \mathrm{Co}_{\mathrm{K}} \mathrm{C}$ مى باشد و در توافق خوبى با نتايج قبلى
 مورد نظر در بازه 9 نانومتر تا YV نانومتر مى باشد كه با افزايش غلظت، ابتدا كمى كاهش و سپس افزايش يافته است. اندازه بلورك ها در حدود اندازه بلورك نمونه هاى تهيه شده به روش اسپپى پايروليز مى باشد[IV].

جهت مطالعه سطح نمونه هاى تهيه شده، تصاوير SEM از آنها تهيه شد كه به ازاى غلظت هاى مختلف كبالت در شكل(Y-Y Y Y نشان داده شده است.

شكل (Y-Y Y) : تصاوير SEM سطوح لايه هاى نازى CdS:Co تهيه شده به روش تبخير حرارتى با غلظتهاى

تصاوير بدست آمده تا حدودى كاهش اندازه دانه ها و يكنواختى بيشتر دانه ها را با افزايش غلظت كبالت در تر كيب نشان مى دهد. با مشاهده تصاوير، تاثير وجود كبالت در تركيب با ايجاد تغيير در اندازه ذرات كاملا مشهود است.

جهت بررسى تاثير آلايش كبالت بر روى خواص اپتيكى لايه سولفيد كادميوم، طيف عبور و جذب

 نمونه ها پيداست با افزايش غلظت كبالت در تركيب، طيف عبور آنها در ناحيه مرئى دچار تغيير مى شود. عبور نمونه ها با افزايش غلظت كبالت كاهش يافته است. همچچنين لبه جذب نيز از ناحيه طول موج هاى) $\mathrm{Cd}_{1-\mathrm{CO}}^{\mathrm{x}} \mathrm{S} \mathrm{S}$ كمتر به طول موج هاى بالاتر منتقل شده است. بساكسيز و همكاران وى لايه هاى ناز

كبالت مشاهده نمودند[] [].

شكل (() ¢) : طيف هاى جذب لايه هاى نازى CdS:Co تهيه شده به روش تبخير حرارتى با غلظتهاى

به كمى داده هاى جذب ضريب جذب را بدست مى آوريم. سیس با رسم 「ahv) بر حسب hv و برون يابى قسمت خطى نمودار و با استفاده از رابطه (V-Y) همانطور كه در شكل (Y-Y Y ا ا آمده كاف نوارى مستقيم لايه هاى با غلظت هاى مختلف كبالت تعيين گرديد.

شكل ($)$

همانطور كه از شكل پيداست تاثير كبالت موجود در نمونه ها باعث كاهش گاف مى شود. تا غلظت
 مقدار كاف نوارى حدود ז/• الكترون ولت تغيير مى كند. لازم به ذكر است كه اين نمونه داراى اندازه دانه بزرگتر مى باشد. به اين ترتيب مى توان با تغيير غلظت ناخالصى كبالت علاوه بر تغيير در خواص مغناطيسى، خواص اپتيكى تركيب از جمله گاف نوارى را تغيير داد. با افزايش غلظت كبالت در تركيب گاف نوارى از تقريبا Y/FY به Y/ تواند به دليل برهمكنش الكترونهاى نوارى CdS و الكترونهاى d يون Co+r باشد. حضور يونهاى مغناطيسى

جاي乏زيده در نيمه رسانا منجر به برهمكنش تبادلى بين الكترونهاى نوارى s-p و الكترونهاى da d dor شود[•

در نمونه هاى تهيه شده به روش اسپرى پايروليز نيز بساكسيز كاهش گاف نوارى را با افزايش غلظت كبالت مشاهده گرديد[IV]. همحنين ساسيمورسى' و همكاران وى به روش شيميايى به كمك واكنش گر لايه هاى سولفيد كادميوم آلاييده شده با كبالت را تا غلظت • • درصد رشد دادند كه در اين روش افزايش

گاف نوارى گزارش شده است [^1 [].

شكل (؟- (19) : نمودار ضريب شكست بر حسب طول موج براى نمونه هاى با غلظت هاى مختلف كبالت.

[^11]رفتار ضريب شكست براى غلظت هاى كبالت صفر و //• مشابه و براى دو درصد ديگر، مشابه هم هستند. ضريب شكست همه نمونه هاى آلاييده در بازه . . | ا-• "ه نانومتر كمى بيشتر از حالت بدون آلايش مى باشد.

پس از محاسبه ضريب شكست لايه، داده هاى بدست آمده را به كمك نرم افزار Matlab با معادله كوشى كه در رابطه (V-Y) آمده است برازش كرديم. با برازش نمودار با معادله كوشى، ثابت هاى a و b b براى غلظت هاى مختلف كبالت بدست آورديم كه در جدول (ץ-Q) ارائه شده است. به جز نمونه با بالاترين غلظت، براى نمونه هاى ديگر ثابت ها يك روند افزايشى را نشان مى دهند.

X	a	b
-	Q/ $\cdot 1$	1/br $\times 1 .{ }^{+}$
-1.ra	r/ast	1/94 $\times 1 .{ }^{+}$
$\cdot 1 \cdot \Delta$	¢/\^¢	$r / \cdot \Lambda \times 1 .{ }^{+}$
$\cdot / 1$	r/9 人1	$1 / 4 r^{*} \times .^{+}$

براى بررسى خواص مغناطيسى نمونه ها مغناطش آنها با اندازه گيرى حلقه پسماند توسط دستگاه مغناطش سنج گراديان نيروى متناوب 'AGFM (دانشگاه كاشان) و مطالعه نورى - مغناطيسى َ اثر كر و فارادى دانشگاه شهيد بهشتى بر روى آنها انجام شد. ولى احتمالا به خاطر مقدار كم عنصر مغناطيسى

[^12]موجود در نمونه ها و مغناطش بسيار كم در دماى اتاق قابل اندازه گيرى نبودند. بدين منظور نمونه ها در كوره تحت خلا (دانشگاه سمنان) تا دماى • هr درجه سانتى گراد به مدت يکى ساعت گرمادهى شدند كه تصوير دستگاه مورد نظر براى اينكار در شكل (IV -Y) ديده مى شود. بعد از گرمادهى مجدد اندازه گيرى مغناطيسى در دماى اتاق صورت گرفت و باز هم خاصيت مغناطيسى در نمونه ها مشاهده نشد. البته قابل ذكر است كه خواص مغناطيسى مشاهده شده در نمونه هاى مشابه با غلظت كبالت كمتر از |/• در دماهاى پايین بوده است.

شكل (IV-Y) : كوره تحت خلا دانشگاه سمنان.

آلور ' و همكاران وى در تهيه لايه هاى ناز ك CdTe آلاييده با كبالت از روش نفوذى استفاده كردند. آنما لايه هاى CdTe را به روش تبخير پرتو الكترونى به ضخامت ץ-ケ ميكرون تهيه كرده و سپس لايه ایى از Co , ال روى آن به روش تبخير در خلا نشاندند. آنگاه نمونه ها را در دماهاى مختلف در خلا گرمادهى

[^13]كردند [•٪]. در نهايت آنها به بررسى خواص اپتيكى، ساختارى و مغناطيسى لايه ها پرداختند. با اين روش شاهد خواص مغناطيسى بودند. ما نيز بر آن شديم تا اين روش را تجربه كنيم كه در بخش (ץ-• () به طور كامل شرح داده مى شود.

Cd./9هCo./.هS تاثير دماى زيرلايه بر روى خواص لايه هاى نازك V-F

 خواص ساختارى، اپتيكى و مغناطيسى آنها مى پردازيم. شرايط لايه نشانى اين لايه ها از جمله فشار محفظه خلا، فاصله منبع تبخير تا زيرلايه و تا بلور كوارتز مانند قبل مى باشد. در اينجا لايه هايى با
 گراد لايه نشانى شدند. شايان ذكر است كه در دماى زيرلايه •1 ا درجه هيج لايه ایى بر روى زيرلايه تشكيل نشد كه اين مى تواند از خاصيت گرماگريزى و باز تبخير بخار مواد در حال لايه نشانى روى زير لايه باشد.

(I-I-V-Y

 الگَوى پراش تشكيل فاز هگَاگونال را براى اين نمونه ها نشان مى دهد[IV]. همانطور كه ديده مى شود در هر دو الگوى پراش، قله ارجح (r ••) مى باشد. مشاهده مى گردد كه وقتى دماى زيرلايه افزايش مى يابد شدت قله ارجح افزايش يافته و قله هاى بيشترى ظاهر مى گردد كه نشان دهنده بهبود خاصيت

بلورى مى باشد. همحنين با افزايش دماى زيرلايه، تغيير بسيار جزئى در موقعيت پیى ارجح بوجود آمده [9, ¢¢] كه به كمك آن پارامترهاى شبكه و اندازه دانه ها قابل محاسبه خواهد شد.

 زيرلايه 「V درجه سانتى تراد و . . ا درجه سانتى گراد.

با استفاده از اطلاعات بدست آمده از طرح پراش پرتو ايكس نمونه ها و با در نظر گرفتن 1/DF• 4 º A $\lambda=$ ها و حجم سلول ياخته واحد محاسبه گرديد كه در جدول (Y-Y) ارائه شده است.
 زيرلايه متفاوت.

اندازه بلور ك ها ($\left.{ }^{\circ} \mathrm{A}\right)$	حجم ياخته واحد (${ }^{\circ} \mathrm{A}^{\prime}$)	c (${ }^{\circ} \mathrm{A}$)	a (${ }^{\circ} \mathrm{A}$)	$\begin{gathered} \hline \text { دماى زيرلايه } \mathrm{C} \text { "C } \end{gathered}$
r99/v^	99104	91911.	$4 / .915$	rV
rir/M	991^D	919×11	$4 / 915$	$1 .$.

همانطور كه ملاحظه مى گردد با افزايش دماى زيرلايه، اندازه بلور ك ها مقدارى افزايش يافته است. افزايش دماى زير لايه باعث افزايش مهاجرت اتم هاى در حال لايه نشانى روى سطح شده و اين مساله باعث افزايش اندازه بلورك ها شده است. ضمنا افزايش دماى زير لايه مى تواند چسبندگى بهتر لايه را به زير لايه بدنبال داشته باشد و نقايص بلورى را نيز كاهش دهد كه در طيف XRD خود را نشان مى دهد. افزايش اندازه بلورك ها و بهمر پيوستن جزاير و كاهش كانالهاى بوجود آمده در لايه نيز از اثرات تحر ك بيشتر اتمما در نمونه ها مى باشد كه با افزايش دما اين پارامتر تقويت شده است [٪].

مطالعه مورفولوزى سطح لايه ها با كمك تصاوير SEM-Y-Y-Y

زير لايه متفاوت

تصويرهاى سطوح لايه هاى تهيه شده در دو دماى زيرلايه YV و . • ا درجه توسط SEM گرفته شد كه در شكل(\&-9) آمده است. همانطور كه انتظار داشتيم و در تصاوير هم ديده مى شود با افزايش دماى زيرلايه، اندازه دانه ها افزايش مى يابد. اين تغييرات را در قسمت قبل كه اندازه بلورك ها را بدست آورديم نيز ديديم. به عبارتى اين تصاوير تصديق خوبى بر محاسبات قسمت قبل مى باشد.

شكل (

(T-V-F

مختلف

جهت بررسى تغييرات خواص ایتيكى نمونه ها، طيف جذب و عبور نمونه ها با دماهاى زير لايه متفاوت به وسيله دستگاه طيف سنج تهيه شد كه در شكل هاى (Y-Y) و (Y) (Y) ديده مى شود با افزايش دماى زيرلايه، افزايش عبور قابل توجهى و جابجايى لبه جذب به سمت طول موج هاى كمتر را مى بينيهم. اين افزايش در عبور نور احتمالا به دليل بهبود خواص بلورى مى باشد كه در الگوهاى پراش ملاحظه گرديد.

سانتى گراد.
 قسمت خطى نمودار همانطور كه در شكل (Y-Y) آمده گاف نوارى مستقيم لايه ها با دماى زيرلايه مختلف تعيين گرديد.

درجه سانتى كراد.

 كراد.

با افزايش دماى زيرلايه شاهد افزايش گاف نوارى از تقريبا 「 توافق با گزارش ديگران است［؟］．از آنجايى كه در تركيب ناخالصى وجود دارد، با بالا بردن دماى زيرلايه هنگام لايه نشانى، تراكم حاملما افزايش مى يابد كه باعث افزايش گاف نوارى مى شود．اين افزايش در گاف نوارى را مى توان به اثر برشتاين－موس＇نسبت داد．اين اثر عمدتا در نيمرسانا هايى مشاهده مى شود كه با ناخالصى آلاييده مى شوند［［［］．اثر برشتاين－موس با رابطه زير تعريف مى شود： $\mathrm{E}_{\mathrm{g}}=\mathrm{E}_{\mathrm{go}}+\Delta \mathrm{E}_{\mathrm{g}}^{\mathrm{Bm}}$

كه در آن Eg انرزى گاف نيمه رساناى آلاييده شده و Ego انرزى گاف اپتيكى مى باشند．همچنين的 $\mathrm{E}_{\mathrm{g}}^{\mathrm{Bm}}$
$\Delta \mathrm{E}_{\mathrm{g}}^{\mathrm{Bm}}=\frac{\mathrm{h}^{r}}{\Lambda \pi^{\ulcorner } \mathrm{m}^{*}}\left(r \pi^{r} \mathrm{~N}\right)^{r / r}$
كه در آن N تراكم ناخالصى و＊M جرم كاهش يافته مى باشد．
ايخمائيس روش اسپرى و با ضخامت يك ميكرومتر تهيه كرده و به بررسى تاثير دماى زيرلايه بر روى آنها پرداختند． آنها لايه ها را در دماهاى زيرلايه •هז و • • 9 درجه سانتى گراد مطالعه نمودند و به نتيجه ای مشابه كار ما رسيدند．آنها هم افزايش گاف نوارى از Y／FY به Y／FF الكترون ولت داشتند كه به اثر بوستين－موس نسبت دادند［سّ］．نوين روز و محمدى هم با وارد كردن ناخالصى مس به سولفيد كادميم اثر دماى زيرلايه

[^14]
 - • ا درجه سانتى گراد.

در شكل (Y-Y) مى توان كاهش سريع ضريب خاموشى را در هر دو نمونه مشاهده كرد. اين خصوصيت كه مربوط به نيمرساناها مى باشد در اين نمونه ها نيز ديده مى شود.

متفاوت

در مورد بررسى خواص مغناطيسى نمونه ها، تمام مراحل اندازه گيرى مغناطيسى نمونه هاى با غلظت هاى مختلف از جمله حلقه پسماند، اثر كر و فارادى در اينجا نيز انجام گَرفت اما به دلايلى كه در قبل بيان شد، سيستم هاى موجود در ايران قادر به اندازه گيرى آن نبودند.

در اين مرحله از تحقيق، شرايط لايه نشانى مانند مراحل قبل مى باشد. لايه ها در دماى محيط، با

I- - - F

ديده مى شود. مثل حالات قبل طرح پراش محاسباتى نيز براى در ساختار كبالت و هكزَاگونال و مكعبى در شكل نشان داده شده است. مقايسه الگوى پراش تجربى با محاسباتى نشان مى دهد كه نمونه ها داراى ساختار هكزَاگونال مى باشند.

الف) •ه و ب) • • ه نانومتر.

روشن است كه با افزايش ضخامت پيك هاى بيشترى ظاهر شده است كه نشان از بهبود ساختار با افزايش ضخامت لايه مى باشد. با كمك طرح پراش پرتو ايكس نمونه ها و روابط ذكر شده قبلى، پارامترهاى شبكه، حجم ياخته واحد و اندازه دانه ها محاسبه شد كه داده هاى آن در جدول (V-Y) آمده

مختلف.

ضخامت (نانومتر)	a إارامتر (آنگستروم)	v (آنگَستروم)	v حجم ياخته واحد (آنگَستروم*)	D اندازه دانه ها (آنگستروم)
Δ.	$4 / 9$	919×1	99/^¢	r99/v^
a..	$\uparrow \cdot 1$	91991	$99 / 51$	198/bF

شكل (
الف) • ه و ب) • • • نانومتر.

لازم به ذكر است كه به علت ضخامت زياد لايه قادر به اندازه گيرى عبور نورى نشديم.

از آنجايى كه قادر به اندازه گيرى مغناطش لايه هاى رشد داده شده به روش قبلى نبوديم، درصدد برآمديم تا روش ديگرى را براى لايه نشانى لايه هاى نازى CdS:Co استفاده نموده و خواص مغناطيسى را روى اين نمونه ها بررسى نماييم. با مطالعه كارهاى مشابه انجام شده بر روى اين لايه، دريافتيم لايه نشانى به روش نفوذى مى تواند مفيد باشد. آلوور و همكاران وى نيز لايه هاى CdTe آلاييده با كبالت را به همين روش تهيه نمودند[•][. بدين ترتيب روش نفوذى براى وارد كردن Co به تر كيب سولفيد كادميوم انتخاب شد. براى اينگار از دستگاه تبخير حرارتى آزمايشگاه بلور دانشگاه صنعتى شاهرود استفاده كرديم. زير لايه ها از جنس شيشه (لام ميكروسكوپ) انتخاب شد كه به خوبى مانند قبل مراحل تميز كارى

روى آن صورت گرفت. در ابتدا Ar/ • گرم پودر سولفيد كادميوم در بوته موليبدنى در پوشدار ريخته شد. فاصله منبع تا بستر If سانتيمتر و فاصله منبع تا بلور ضخامت سنج 1 | سانتيمتر تنظيم گرديد. فشار

 نشانى در دماى محيط انجام شد. حال از لايه هاى نازى CdS رشد داده به عنوان زيرلايه استفاده نموده و پودر Co را به سه ضخامت ^ نانومتر و ه/ ها نانومتر و 19 نانومتر روى آن لايه نشانى كرديم. در اين مرحله براى تبخير پودر كبالت بوته تنگستن بكار برديم زيرا نياز به اعمال جريان بيشترى داشتيم و بوته موليبدنى تحمل اين جريان را نداشته، تجزيه شده و با كبالت واكنش خواهد داد. فشار در حين لايه نشانى
 لايه نشانى، بعد از گذشت مدتى نمونه ها از محفظه خارج مى كنيم تا نمونه ها احيانا دچار شوك حرارتى نشوند. سچس نمونه ها را در دماى . F درجه سانتى گراد به مدت يكى ساعت در كوره تحت خلا گرمادهى كرديم تا اتمهاى Co به داخل شبكه CdS نفوذ كنند. لازم به يادآورى است كه ضخامت لايه ها در حين لايه نشانى توسط ضخامت سنج بلور كوارتز اندازه گيرى شد.

(- ا-9-F

طيف پراش پرتو ايكس نمونه ها تهيه شد كه در شكل (Y-\& (Y) براى دو نمونه يكى بدون لايه كبالت و ديگرى با لايه 19 نانومتر از كبالت نشان داده شده است. جهت تشخيص خلوص فاز، طرح پراش محاسباتى حاصل از كبالت نيز در قسمت (ب) شكل (Y-Y) نشان داده شده است. همانطور كه ملاحظه مى شود قله هاى پراش متناظر با كبالت خالص نمى باشد.

 كبالت الف) • و ب) 19 نانومتر.

در شكل بالا تشكيل فاز هگزاگونال با پيى ارجح (Y ••) براى نمونه ها ديده مى شود. در لايه هاى ناز ک CdS:Co با ضخامت كبالت بيشتر علاوه بر پيک هاى (Y •••) و (Y • •)، پيک (Y • ا) نيز ظاهر شد. موقعيت پيك ارجح نيز اندكى جابجا گرديده است كه به علت نفوذ كبالت در لايه سولفيد كادميوم و جانشينى آن به جاى كادميوم مى باشد. چنانچֶه قبلا گَته شد این دو يون داراى شعاع هاى يونى متفاوت مى باشند. آقاى چاندراموهان' و همكارانش اين تركيب را تهيه كردند. آنها لايه هاى سولفيد كادميوم را به روش تبخير حرارتى بر روى شيشه و در دماى زیرلايه • • ا درجه لايه نشانى كردند سپس يونهاى كبالت در آن به طور يكنواخت كاشته شدند. آنها نيز در نمونه هاى خود تغييرات ساختارى مشابه نتايج ما را
گزارش كرده اند [

[^15]به كمك اطلاعات بدست آمده از پراش پرتو ايكس نمونه ها، فرمول دبى - شرر و روابط (F-| (F) و (F-
 جدول (Yكبالت پارامترهاى شبكه اندكى كاهش يافته است. اندازه بلورى ها نيز كاهش چشمگیيرى را نشان مى

جدول (A- ()) : پارامترهاى شبكه و اندازه دانه ها مربوط به تركيب CdS:Co با دو ضخامت كبالت • و 9 ا نانومتر.

ضخامت كبالت (نانومتر)	$\begin{gathered} \text { a آنگستروم) } \\ \text { (انترامتر } \end{gathered}$	(آنگستروم)	v حجم ياخته واحد (آنگَتروم"	اندازه بلور ك ها (آنستروم)
-	$4 / 1$	9199	$9 \mathrm{~V} / 99$	DFF/G
19	$\mu \% \cdot 0$	9191	$97 / 19$	r...r

(- - - -

جهت مشاهده مورفولوزى سطح متاثر از وجود كبالت در لايه هاى سولفيد كادميوم، تصاوير SEM نمونه ها تهيه شد كه در شكل (YV-Y) آمده است. در اين تصاوير tco ضخامت لايه كبالت انباشت شده قبل از عمليات حرارتى را نشان مى دهد. اين تصاوير نشان مى دهند كه توزيع دانه ها تقريبا يكنواخت مى باشند و با افزايش ضخامت لايه كبالت در لايه ها و در نتيجه نفوذ بيشتر كبالت در سولفيد كادميوم، اندازه دانه ها كوچكتر شده است. نتايج حاصل از طرح پراش اشعه ايكس نيز مويد اين نكته بودند.

شكل (YV-Y) : تصاوير SEM لايه هاى نازک CdS:Co تهيه شده به روش نفوذى با ضخامت هاى مختلف كبالت الف) • و ب) ^ و ج) זا و د) 19 نانومتر.

r-9-₹

براى بررسى خواص ایتيكى لايه هاى تهيه شده به روش نفوذى طيف هاى عبور و جذب آنها توسط دستگاه طيف سنج تهيه شد كه در شكل هاى (YN-Y) و (YQ-Y) نشان داده شده است.

شكل (Y Y Y) : طيف هاى عبور لايه هاى نازک CdS:Co تهيه شده به روش نفوذى با ضخامت هاى مختلف كبالت.

شكل ((

در طيف هاى عبور نمونه ها بر حسب طول موج ديده مى شود كه با افزايش ضخامت لايه كبالت در تركيب، طيف عبور آنها دچار تغيير شده است. عبور نمونه ها با افزايش لايه كبالت كاهش يافته و لبه جذب تا به سمت طول موج هاى بزرگتر جابجا شده است. اين كاهش عبور به دليل افزايش ضخامت لايه
كبالت مى باشد.

براى تعيين گاف نوارى نمونه ها با استفاده از داده هاى جذب لايه ها، ضريب جذب آنها همانند مراحل قبل محاسبه شده و با توجه به اينكه كاف نوارى سولفيد كادميوم مستقيم است، نمودار hhv) بر حسب hv رسم گرديد. با برون يابى قسمت خطى نمودار، كاف نوارى نمونه ها بدست مى آيد كه در شكل (ץ- - - آمده است.

مشاهده مى شود كه با افزايش ضخامت لايه كبالت در نمونه ها، كاف نوارى به مقدار كمى كاهش مى يابد. البته اين تغيير بسيار ناحیيز و در حدود ٪٪/• الكترون ولت مى باشد[٪٪].

شكل (هاى مختلف كبالت.

P-9-F بر برسى خواص مغناطيسى

براى بررسى خواص مغناطيسى، ابتدا نمونه هاى تهيه شده توسط دستگاه AGFM دانشگاه كاشان آزمايش گرديد كه متاسفانه سيستم مذكور قادر به اندازه گيرى خواص مغناطيسى لايه ها در دماى اتاق نبود. سپس نمونه ها با روش هاى نورى- مغناطيسى اثر كر و فارادى نيز آزمايش شد كه دوباره نتيجه، منفى بود كه به ضخامت كم لايه كبالت و نفوذ مقدار كم كبالت به داخل شبكه سولفيد كادميوم نسبت دادند. از طرفى ديگَر هدف ما مطالعه خواص فيزيكى لايه هاى نازك سولفيد كادميوم با آلايش كم كبالت 'VSM بود. در تلاشى ديگر سعى شد اندازه گيرى خواص مغناطيسى لايه ها با روش ارتعاش نمونه (دانشگاه بيرجند) انجام گيرد. از طريق اين روش اندازه گيرى توانستيم در دماى محيط رفتار مغناطيسى

[^16]ضعيفى را در نمونه ها مشاهده كنيم. همانطور كه در شكل هاى (Y-Y) و (Y-Y) مشاهده مى شود رفتار مغناطيسى اندازه گيرى شده مشابه رفتار مغناطيسى ذكر شده در شكل (r-צ) مى باشد كه توسط آقاى ساتيمورسى و همكارانش گزارش شده است[^|]]. شايان ذكر است كه آنها لايه هاى سولفيد كادميوم با غلظت هاى كبالت بالاتر از • ا درصد تهيه نمودند. لازم به ذكر است كه شكل (Y-Y) مربوط به نمونه
 كه ابتدا لايه CdS و سپس لايه Co از طريق تبخير حرارتى انباشت و سپس تحت عمليات حرارتى تحت خلا قرار گرفته تا اينكه كبالت به داخل سولفيد كادميوم نفوذ نمايد.

 نانومتر.

شكل (Y-Y Y) : رفتار مغناطيسى براى لايه نازك CdS:Co تهيه شده به روش نفوذى با ضخامت كبالت 19 نانومتر.

حضور عناصر واسطه در تر كيب نيمه رساناها ايجاد جفت شدگى هاى اسپينى مى كند كه ناشى از برهمكنشهاى تبادلى بين ممان هاى مغناطيسى مربوط به همیوشانى اوربيتال هاى d عنصر مغناطيسى در تر كيب مى باشد [هّ]. لازم به ذكر است كه CdS خالص رفتار ديا مغناطيسى دارد. در درصد هاى كم آلايش، اسپين هاى عنصر آلايیده شده تشكيل حوزه هاى منزوى داده و منجر به رفتار پارا مغناطيسى براى ماده DMS مى شود. با افزايش آلايش، در اينجا با وارد شدن يون Co ${ }^{\text {آ }}$ به داخل شبكه نيمه رسانا، برهمكنشهای اسپينى بين Co-Co شروع مى شود كه ناشى از جفت شدگى نزديكترين همسايه (J) از طريق مكانيزم ابرتبادلى است. اين بر همكنشها منجر به بروز رفتار آنتى فرو مغناطيسى مى شود. مقدار اين برهمكنش (JNN) بين يونهاى Co ${ }^{+r}$ به غلظت كبالت آلايش شده در تر كيب بستگى دارد كه ممكن است با افزايش غلظت كبالت منجر به رفتار فرو مغناطيسى شود[عץ]. البته در اين پايان نامه به دليل محدوديت هاى موجود آلايش سنگَين (غلظت هاى بالاى كبالت) صورت نگرفته است.

در شكل زير نمونه اى از منحنى پسماند رفتار آميخته ديا مغناطيسى با آنتى فرو مغناطيسى نشان داده شده است.

 بالا دارد كه احتمالا سمهم ديا از ماده ميزبان است و سهم آنتى فرو از بر همكنش آنتى فرو مغناطيسى بين Co

نتيـجه گيرى

با استفاده از روش تبخير حرارتى، لايه هاى نازك سولفيد كادميوم خالص و آلاييده شده با كبالت بر
روى زيرلايه شيشه لايه نشانى شده و سپس به بررسى خواص ساختارى و اپتيكى آنها پرداختيه.طرح پراش نمونه ها، فاز هگزاگونال با قله ارجح (Y ••) را نشان داد. گاف نوارى نمونه بدون حدود Y/ الكترون
 در دماى محيط تهيه گرديد و خواص ساختارى، ایتيكى و مغناطيسى آنها مورد مطالعه قرار گرفت. طرح پراش پرتو ايكس نمونه ها قله ارجح (Y ••) را براى نمونه ها با غلظت هاى مختلف كبالت نشان مى دهد. با افزايش غلظت كبالت، شدت قله ارجح كاهش يافت و موقعيت آن با تغيير غلظت كبالت جابجا گرديد. گاف نوارى، ضريب شكست و ضريب خاموشى آنها نيز اندازه گيرى شد. با افزايش غلظت كبالت در تركيب كاهش كاف نوارى را شاهد بوديه. سپس لايه هاى سولفيد كادميوم آلاييده با كبالت (ه•• x =) با دماى زيرلايه VV و . . ا درجه ساتى تراد بر روى شيشه تهيه شد. خواص ساختارى و اتتيكى آنها نيز مورد مطالعه قرار گرفت. افزايش دماى زيرلايه بهبود خواص ساختارى را در پى داشت. همچچنين براى گاف نوارى نمونه ها، كاهش بسيار ناچییى با افزايش دماى زيرلايه مشاهده گرديد. در مرحله ديگر لايه هاى
 نشانى شدند. سپس خواص ساختارى و مغناطيسى انها را بررسى نموديم. مشاهده گرديد كه با افزايش ضخامت، خاصيت بلورى بهبود يافته و قله هاى بيشترى ظاهر گرديد. در تمام نمونه هاى تهيه شده به روش قبلى على رغم تلاشهاى بسيار قادر به اندازه گيرى خواص مغناطيسى نبوديم. بنابراين روش ديگرى را تجربه كرديم.بدين صورت كه به روش تبخير حرارتى ابتدا لايه هاى سولفيد كادميوم را بر روى زيرلايه شيشه لايه نشانى نموده و سپس لايه ای از كبالت با ضخامت هاى ^ ، r| و 19 نانومتر بر روى آنها لايه نشانى و سپّ نمونه ها را در كوره تحت خلا گرمادهى نموديم تا كبالت به داخل شبكه سولفيد كادميوم

نفوذ كند. خواص ساختارى، اپتيكى و مغناطيسى آنها بررسى گرديد. در زمينه بررسى اپتيكى، تغييرات گاف نوارى بسيار ناچیيز بود. اندازه گيرى مغناطيسى در دماى اتاق نشان داد كه نمونه ها رفتار آميخته اى از ديا مغناطيسى و آنتى فرومغناطيسى دارند.
[1] Society of Vacuum Coaters
 نازک كبالت ، نيكل ، آهن و آليازهاى آنها"، دانشكده علوم پايه، دانشگاه سمنان.
[] مجيدى ر، (l٪AV)، پايان نامه كارشناسى ارشد فيزيك: "تهيه و بررسى خواص ساختارى و ایتيكى لايه نازك سولفيد كادميوم آلاييده شده با منگَنز و آنتيموان"، دانشكده علوم پايه، دانشگاه سمنان.
[\downarrow] Ashcroft, N, (19vя), "Salid state physics",Cornell university .
[9] A. AShour; "Physical Properties of Spray Pyrolysed CdS Thin Films"; Turk J Phys; ヶv $(\Gamma \cdots r), \Delta \Delta 1-\Delta \Delta \Lambda$.
[v] H. Derin, K. Kantarl; "Structural and optical characterization of thermally evaporated cadmium sulfide thin films"; Published online inWiley Interscience: זヶ November $\Gamma \cdots \wedge$.
[^] R.Sathyamoorthy,et.al; "Structue and photoluminescence properties of swift heavy ion

[9] D. Sreekantha Reddy, D. Raja Reddy, N. Koteeswara Reddy, K.R. Gunasekhar,R.P. Vijayalakshmi, B.K. Reddy, P. Sreedhara Reddy; "Structural and photoluminescence properties of thermally evaporated $\mathrm{Cd}_{1 \square \mathrm{x}} \mathrm{Mn}_{\mathrm{x}} \mathrm{S}$ nano-crystalline films"; Solid State Communications Ifr($r \cdot \cdot v$) fsq-fvI.
[1•] L.Q. Qian, S.L. Wang, X. Jia, Y.Y. Liu and W.H. Tang; "Preparation, characterization and growth mechanism study of $\mathrm{CdS} / \mathrm{Cr}$ nanostructures" ; Journal of Alloys and Compounds; rv May r.•१, ^^л-л१).
[1I] A. Mycielski, J. Appl. Phys. 9μ (19^^), rrvq.
［Ir］Balram Tripathi，F．Singh，D．K．Avasthi，A．K．Bhati，D．Das and Y．K．Vijay ； ＂Structural，optical，electrical and positron annihilation studies of CdS：Fe system＂；Journal of Alloys and Compounds；rf April $\uparrow \cdot \wedge$ ，q४－।．1．
［Ir］S．M．Mahdavi，A．Irajizad，A．Azarian，R．M．Tilaki；＂Optical and Structural Properties of Copper Doped CdS Thin Films Prepared by Pulsed Laser Deposition＂；Scientia Iranica，

［［［［ عبدالجواد نوين روز، محمدرضا محمدى ؛＂تاثير ناخالصى فلزى Cu بر ساختار بلورى و خواص
ایتيكى و الكتريكى لايه هاى نازك سولفيد كادميوم" ؛ انجمن علوم و تكنولوزى سطح ايران (ITAV).
［1ه］D．Sreekantha Reddy，D．Raja Reddy，B．K．Reddy，N．Koteeswara Reddy，K．R． Gunasekhar，P．Sreedhara Reddy；＂Synthesis and optical characterization of $\mathrm{Cd}_{1_{-} \mathrm{X}} \mathrm{Mn}_{x} \mathrm{~S}$ nano－crystalline films＂；Optical Materials $\upharpoonright \cdot(\uparrow \cdot \wedge)$ qヶヶ－qヶq．
［19］D．S．Reddy ，K．N．Simha Rao，K．R．Gunasekhar，N．K．Reddy，K．S．Kumar，．S．Reddy， Materials Research Bulletin，In Press
［Iv］E．Bacaksiz ，M．Tomakin ，M．Altunbas ，M．Parlak ，T．C－olakog lu ；＂Structural， optical and magnetic properties of $\mathrm{Cd}_{1_{-x}} \mathrm{Co}_{x} \mathrm{~S}$ thin films prepared by spray pyrolysis＂； Physica B $\uparrow \cdot \mu(\Gamma \cdot \cdot \wedge) r Y \varphi \cdot-r V \varphi \Delta$.
［1＾］R．Sathyamoorthy ，P．Sudhagar，A．Balerna，C．Balasubramanianc，S．Bellucci，A．I． Popovd，，K．Asokan；＂Surfactant－assisted synthesis of $\mathrm{Cd}_{1 \mathrm{Dx}} \mathrm{Co}_{\mathrm{x}} \mathrm{S}$ nanocluster alloys and their structural，optical and magnetic properties＂；Journal of Alloys and Compounds （ $\Gamma \cdot \cdot q$ ）．
［19］P．Koidl，Phys．Rev．B is（1qyv）זłqr．
［r•］U ．Alver ，E．Bacaksız ，E．Yanmaz；＂Structural，magnetic and optical properties of Co－diffused CdTe thin films＂；Journal of Alloys and Compounds $\uparrow \Delta \varphi(\uparrow \cdots \wedge) ~ q-q$.
［rı］J．K．Furdyna，J．Appl．Phys． 94 （19 1 ）Rrq－R\＆q．
［rr］F．Lacomi，et．al；＂Structural studies on some doped Cds thin films deposited by thermal evaporation＂；Thin solid films $\Delta \mid \Delta(\Gamma \cdot \vee \gamma) \varphi \cdot \wedge \cdot-я \cdot \wedge \digamma$ ．
［rr］A．Ashour，et．al ；＂On the electrical and optical properties of CdS films thermally deposited by a modified source＂；Thin solid films $\uparrow 99(199 \Delta) 11 \mathrm{~V}-\mathrm{Ir}$.
［ Y ¢］Ilker AY and H＂useyin ；＂Optical Transmission Measurements onGlow－Discharge Amorphous Silicon Nitride Films＇＂；Turk J PhyS；ra（r．．1），rıa－Yrr．
［r＠］J．Torres，J．I．Cisneros \＆G．Gordillo；＂Determanation Of The OpticalLConstants Of Policrystalline CdSThin Films Prepared By Evaporation＂；Advances In Materials Science \＆Technilogy＂；Vol．I N？I Art．r，•V－Ir，1999．
［ヶя］P．Sahay，R．Nath，S．Tewari ；＂Optical properties of thermally evaporated CdS thin films＂；Cryst．Res．Technol．\ddagger r，No．r，rVa－r＾•（ $\upharpoonright \cdot \cdot \vee$ ）．
［「V］S．Kozhevnikovaa，A．Rempela，，F．Hergertb，and A．Magerlb；＂Structural study of the initial growth of nanocrystalline CdS thin films in a chemical bath＂；rv February $\uparrow \ldots 9$ ，

［「＾］A．Vorokh，A．Rempel；＂Disordered structure and the shape of nanoparticles of cadmium sulfide CdS＂；Doklady physics，$r \cdot \cdot \vee$ ，Vol．ar，No．\uparrow ，pp．$r \cdot \cdot-r \cdot r$ ．
［rq］J．Barman，K．Sarma，M．Sarma；＂Structural and optical studies of chemically prepared CdS nanocrystalline thin films＂；Indian journal of pure \＆applied physics；Vol． 4 ，May r．・ノ，rrq－rfr．
［r•］Mishack，N．nabuchaa，chinedu，Ekuma；＂Synthesis and characterization of chemical bath deposition CdCoS thin film＂；Chalcogenide Letters Vol．v，No．।，January r．l．，rı－ r＾．
[rı] X.L. Tong, D.S. Jiang, Z.M. Liu, M.Z. Luo, Y. Li, P.X. Lu, G. Yang, H. Long; "Structural characterization of CdS thin film on quartz formed by femtosecond pulsed laser deposition at high temperature"; Thin Solid Films $\Delta 19(\Gamma \cdots \wedge) ~ r \cdot \cdot r-\Gamma \cdot \wedge$.
[\quad ru] Shadia. J. Ikhmayies, Riyad N Ahmad-Bitar; "Effect of the substrate temperature on the quality of spray-deposited CdS:In thin films"; GCREEDER $\upharpoonright \cdot \cdot$. , Amman-Jordan, March rıst - April rnd r••१.
[μ_{μ}] S. Chandramohan, A. Kanjilal, S. N. Sarangi , S. Majumder , R. Sathyamoorthy, C.-H. Hong , T. Som; "Effect of substrate temperature on implantation doping of Co in CdS nanocrystalline thin films"; Nanoscale, r-।•.
[$\upharpoonright \Delta$] Stephan, Blundell, ($\upharpoonright \cdots 1$) ;"Magnetism in Condensed Matter"; Oxford University Press Inc, New York, $\uparrow \Delta-\Delta \cdot$.
[rc] J. K. Furdyna ;" Diluted magnetic semiconductors"; J. Appl. Phys. $9 \varphi(\uparrow)$, August $19 \wedge \wedge$.

Abstract

CdS thin films have many applications such as in solar cells. In this thesis, CdS and Co doped CdS thin films were deposited on glass substrate by thermal evaporation method and their physical properties were investigated. Our experimental works were as following:

At first, CdS thin films were prepared with thickness about 1.0 micrometers and at room temperature. X-ray diffraction results of showed that the films have hexagonal structure with preferred peak along $(\cdots r)$ direction. Their transmittance and absorption spectra were also recorded by Uv-Vis spectrometer and then their optical constants were calculated. The measured band gap of the films was about Γ. $\Sigma \uparrow \mathrm{eV}$.

In next step, $\mathrm{Cd}_{1-\mathrm{x}} \mathrm{Co}_{x} \mathrm{~S}$ thin films $\left.\left(\mathrm{x}=\cdot \cdot \cdot \cdot \mathrm{ro}^{\circ} \cdot \cdot \cdot \cdot 0, \cdot\right)^{\prime}\right)$ with thickness about $0 \cdot \mathrm{~nm}$, $\circ \cdot \cdot \mathrm{nm}$ were deposited on glass substrate with substrate temperatures of $\mathrm{Y}^{\circ} \mathrm{C},{ }^{\circ} \cdots{ }^{\circ} \mathrm{C}$ and $1 \Lambda \cdot{ }^{\circ} \mathrm{C}$. The X-ray diffraction spectra of the films revealed a little change in position and intensity of the $(\cdots r)$ peak by changing the Co concentration, substrate temperature and thickness of the films. No extra reflections were observed due to the Co cluster. Grain size increased and lattice parameters decreased by increase in Co concentration. The other structure peaks were observed in spectra by increasing of the film`s thickness and substrate temperature. Scanning electron microscope was used to study the surface of the films. Band gap of the Co doped films were calculated by measuring the transmittance and the results indicated decrease of the band gap by increasing of cobalt concentration. For investigation of magnetic properties, the films were studied by alternating gradient field magnetometer, magneto - optical study (Kerr- and Faraday effect) but these existing systems were not able to detect the magnetic signals.

Finally, new films were prepared by diffusion method. CdS thin films were deposited on glass substrate with thickness of about $19 \varepsilon \mathrm{~nm}$ and then cobalt was deposited on the CdS films with thicknesses of about $\lambda_{\mathrm{nm}}, 1{ }^{\mathrm{nnm}}$ and ${ }^{1} 9_{\mathrm{nm}}$. Then the films were annealed at £ $\cdot{ }^{\circ} \mathrm{C}$ in vacuum to diffuse the Co into the CdS matrix and their structure, optical and magnetic properties were studied as the others. But to investigate the magnetic properties of the films, hysteresis loops of the films were measured at room temperature by vibrating sample magnetometer. The results showed that the films have a mixed behavior of dia- and antiferromagnetism.

Keywords: Diluted magnetic semiconductors, CdS:Co films, Thermal evaporation, Structural properties, Optical properties, Magnetic properties.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

[^0]: ' Fraunhofe
 ${ }^{`}$ Hare
 ${ }^{r}$ Nahrwold
 ${ }^{\text {s Kundt }}$

[^1]: ＇W．RGrove

[^2]: ` Hertz

[^3]: ${ }^{\prime}$ Metal Organic (MOCVD)
 ${ }^{r}$ Screen Printing
 ${ }^{r}$ Molecular Beam Epitaxy
 ${ }^{〔}$ Hirashi
 ${ }^{-}$Yoshiosakia
 ${ }^{7}$ Sakarman
 ${ }^{v}$ Chambering

[^4]: ${ }^{`}$ Tamlin

[^5]: ${ }^{`}$ Dilute Magnetic Semiconductor (DMS)

[^6]: ${ }^{1}$ Spintronic

[^7]: ' Raja Reddy
 ${ }^{`}$ Surfactant-Assisted

[^8]: ${ }^{\prime}$ Alfa Aesar

[^9]: `Swanepoel

[^10]: 'Cauchy equation

[^11]: 'RSathymoorthy

[^12]: ${ }^{`}$ Alternat gradiant force micrometer
 'Magneto-optical

[^13]: 'Alver
 ${ }^{r}$ Diffused

[^14]: ＇Burstien－Moss
 「 Ikhmayies

[^15]: 'SChandramohan

[^16]: ' Vibrating sample method

