Fault Detection, Isolation and Fault-Tolerant Control of Wind Turbines

A Takagi-Sugeno and Sliding Mode Approach

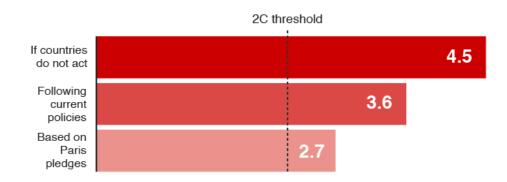
Prof. Dr.-Ing. Horst Schulte

University of Applied Sciences Berlin School of Engineering I: Energy and Information Science Chair of Control Engineering

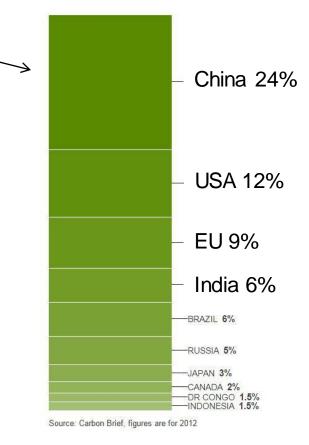
Lecture at the Shahrood University of Technology, Department of Mechanics, 1st October 2019, Shahrood, Iran

University of Applied Sciences

- 1. Motivation and Problem Formulation
- 2. Fault Tolerant Control (FTC) Architecture for Wind Turbine and Sustainable Power Systems
- 3. Review of Takagi-Sugeno and Sliding Mode Approaches
- 4. Fault Detection, Isolation and FTC on *Component* Level, Power plant level and Network Level
- 5. Conclusion

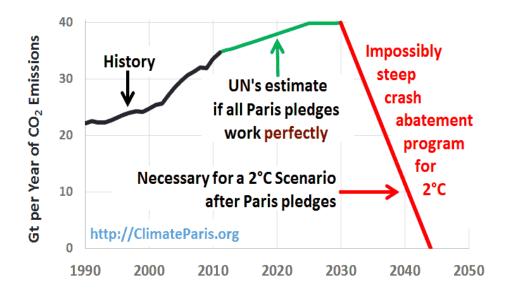

Motivation

- **Global climate agreement** has been finalised in Paris 12/12/2015
- Key elements are
 - To keep global temperatures "well below" <u>2.0°C (3.6F)</u> and "endeavour to limit" them even more, to 1.5°C
 - To limit the amount of greenhouse gases
 emitted by human activity to the same levels
 that trees, soil and oceans can absorb naturally,
 beginning at some point between 2050 and
 2100
 - For rich countries to help poorer nations by providing "climate finance" to adapt to climate change and switch to <u>renewable energy</u>.



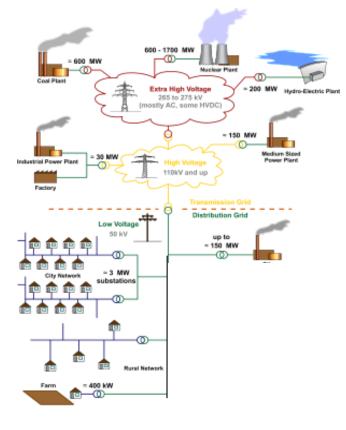
Motivation

- Global climate agreement has been finalised in Paris 12/12/2015
- Import is that
 - The top 10 greenhouse gas emitters make up over 70% of total emissions
 - Comparison of average warming

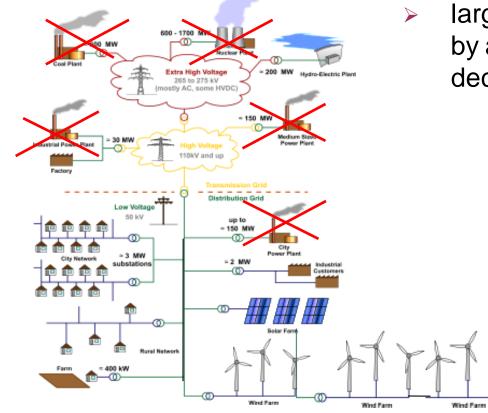


Source: Climate Action Tracker, data compiled by Climate Analytics, ECOFYS, New Climate Institute and Potsdam Institute for Climate Impact Research.

Motivation

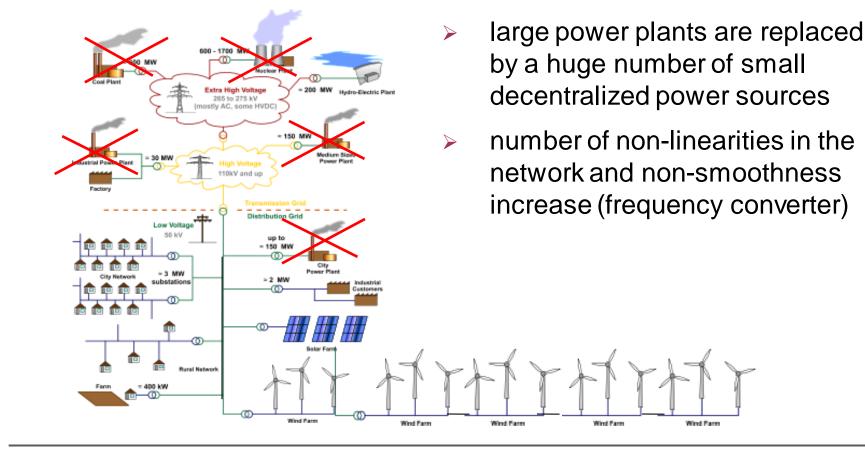

 But the agreement must be stepped up if it is to have any chance of curbing dangerous climate change

 That means i.e. a rapid expansion and total switch to renewable energy


Motivation

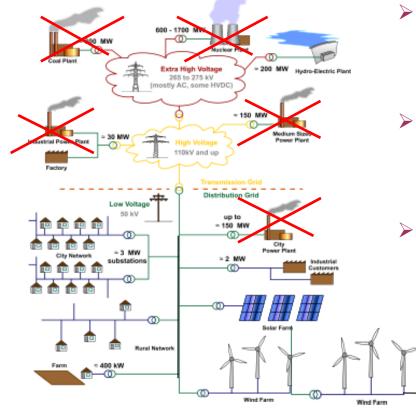
 total switch to <u>renewable energy systems</u> has a couple of consequences

Motivation


 total switch to <u>renewable energy systems</u> has a couple of consequences

large power plants are replaced by a huge number of small decentralized power sources

Motivation


total switch to <u>renewable energy systems</u> has a couple of consequences

Wind Farm

Motivation

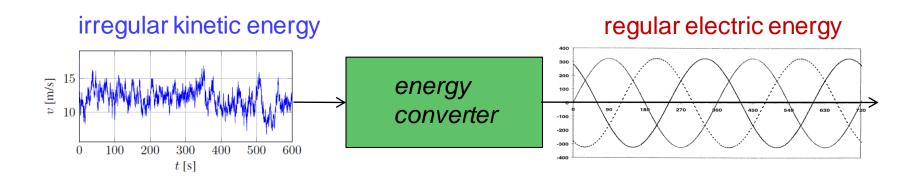
 total switch to <u>renewable energy systems</u> has a couple of consequences

- large power plants are replaced by a huge number of small decentralized power sources
- number of non-linearities in the network and non-smoothness increase (frequency converter)
- decentralized power sources are feeded by fluctuating renewable energy

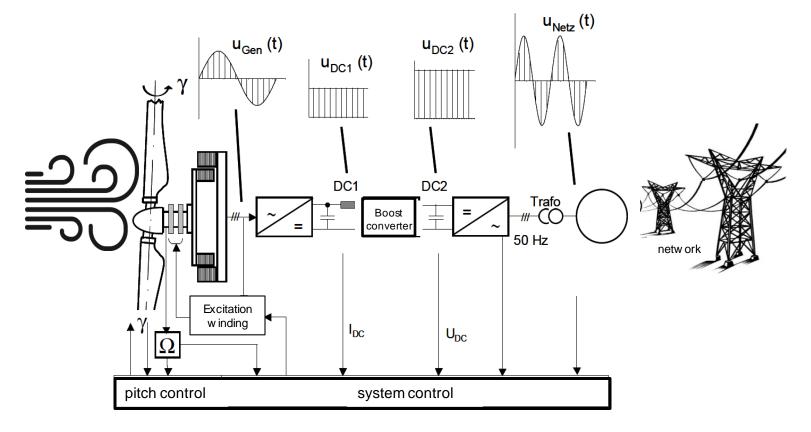
Wind Farm

Wind Farm

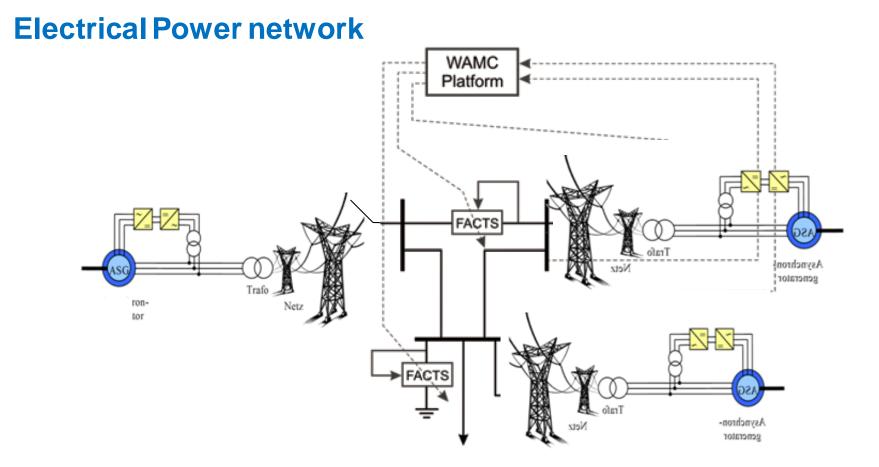
Wind Farm

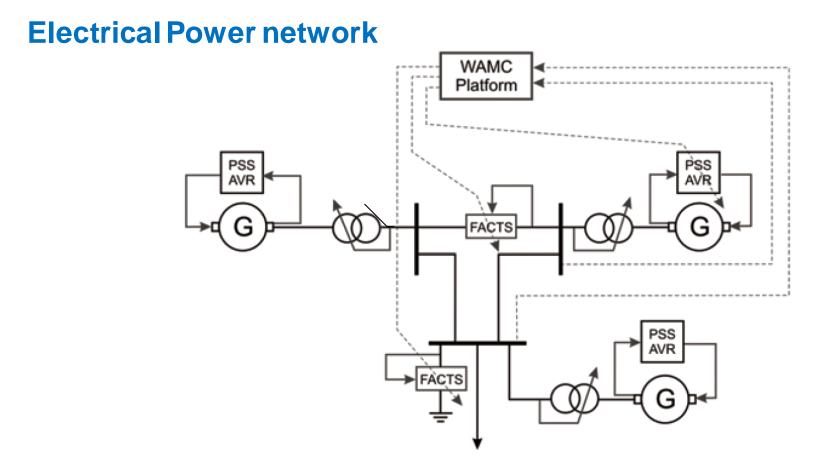

Wind Farm

Renewable Energy Systems

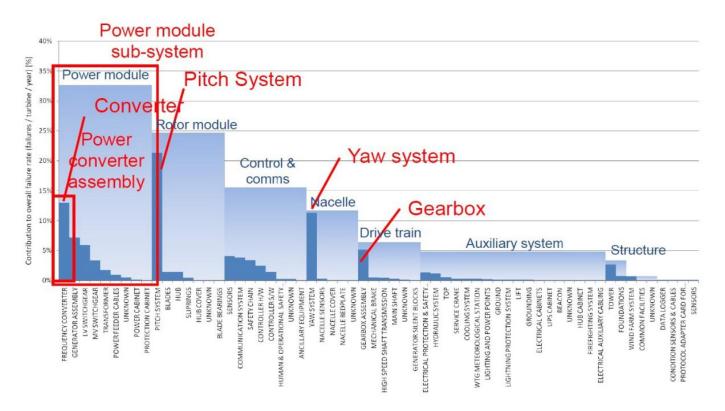

Classification	Technical realization	Open problems	Possible solutions
energy conversion	 wind turbines photo voltaic systems wave-energy 	 failure probability increase lifetime is to short cost of energy is to high 	 mitigation of induced loads FDI and FTC
energy distribution	 power network with different voltage levels 	 control of strongly increasing number of RE sources 	 distributed control fault tolerant control (FTC)
storage	battery,flywheel energy storagepower to x	 long-term storage energy density 	 active energy management new materials
load	 private consumers Industrial consumers Infrastructure and transportation 	 loads have to participate in the regulation process 	 smart meetering distributed control over networks with signal latency

Energy converter : {wind energy system, PV system, ...}


- fluctuating <u>renewable energy</u> (1) is converted into <u>three-phase</u> <u>electrical power system</u> (2) with fixed voltage and frequency (50Hz /60Hz)
 - 1) geothermal-, wind-, solar-, wave-, tidal-, wind-energy
 - 2) three-phase electrical system:
 - > straightforward AC/AC transformation and distribution
 - rotating field generation


Energy conversion by means of Wind energy systems

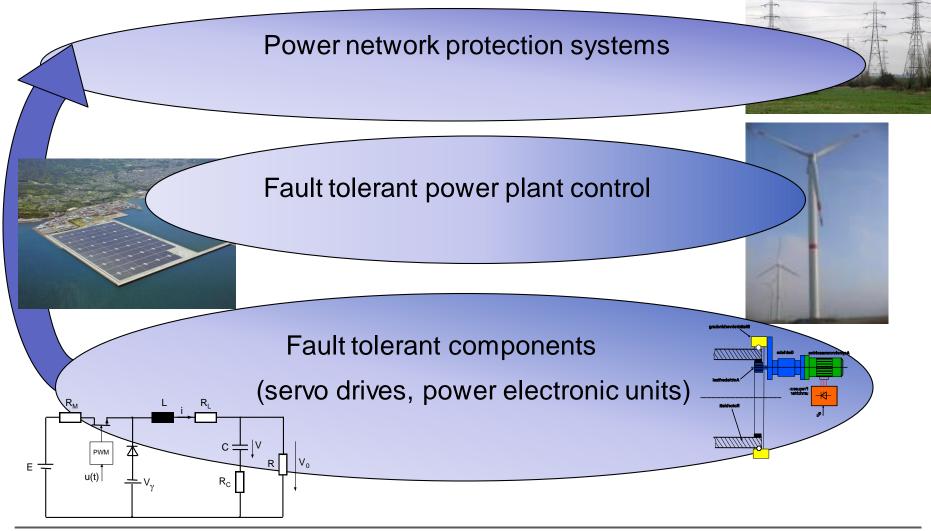
$\longrightarrow AC/DC \rightarrow DC/DC \rightarrow DC/AC \rightarrow AC/AC \rightarrow$


<u>WAMC</u>: wide area monitoring and control

- <u>WAMC</u>: wide area monitoring and control
- <u>AVR</u>: automatic voltage regulation; <u>PSS</u>: power system stabilizer

Need for fault tolerant control: Wind energy systems

Normalized failure rate related to different subsystems [1]



[1] Reliawind Project, FP7 Energy, 2008-03-15 to 2011-03-14

Need for fault tolerant control: Electrical power network

- Electric power networks (EPN) are the backbone of contemporary technical civilization
- EPN is a vast structure embracing a huge number of generators in conventional and icreasing number of regenerative power plants
 - hundreds of thousand kilometers of lines
 - thousand of transformators and power electronic devices connected in the grid
- From the very beginning electric power systems had to be protected against faults and other abnormal phenomena (embedded fault tolerance)
- Example of earlier electro-mechanical protection
 - overcurrent
 - undervoltage relays actuated by r.m.s or mean values of rectified signals

FTC methods: Requirements

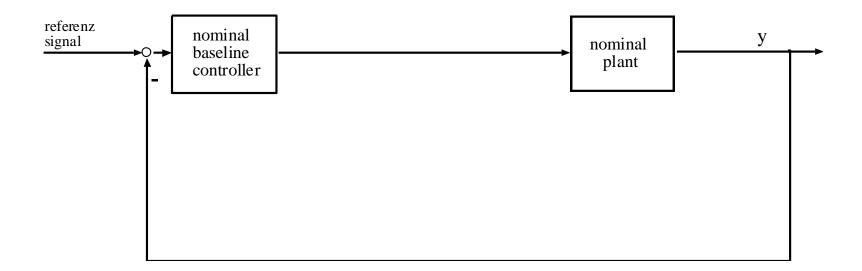
- 1.) **Robustness** due to uncertainty in power system dynamics
 - loads and renewable generation can never be known precisely
 - To ensure robust performance, controller design must take into account plausible parameter ranges and system conditions
 - challenge due to the nonlinear, nonsmooth, large-scale nature of power systems

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \sum_{i=1}^{N_r} h_i(\boldsymbol{z}(t)) \Big((\boldsymbol{A}_i + \Delta \boldsymbol{A}_i) \boldsymbol{x}(t) + (\boldsymbol{B}_i + \Delta \boldsymbol{B}_i) \boldsymbol{u}(t) + \boldsymbol{D}_i \boldsymbol{\xi}(t) + \boldsymbol{E}_i \boldsymbol{f}_a(t) \Big) \\ \boldsymbol{y}(t) &= \sum_{i=1}^{N_r} h_i(\boldsymbol{z}(t)) \Big((\boldsymbol{C}_i + \Delta \boldsymbol{C}_i) \boldsymbol{x}(t) + (\boldsymbol{H}_i + \Delta \boldsymbol{H}_i) \boldsymbol{u}(t) + \boldsymbol{F}_i \boldsymbol{\xi}(t) + \boldsymbol{f}_s(t) \Big) \quad , \end{split}$$

FTC methods: Requirements

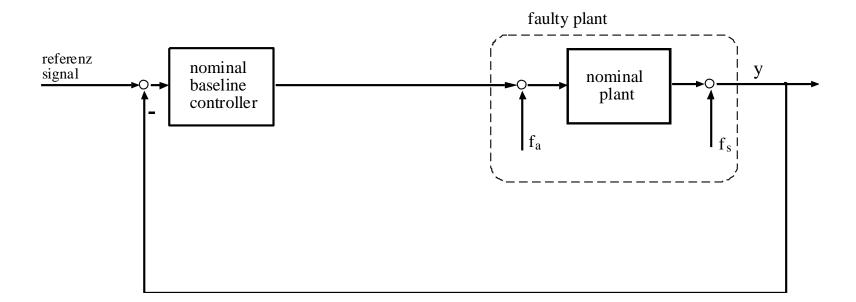
- 2.) Systematic Design Process: from linear to nonlinear design
 - Scalability
 - Consideration of various faults

3.) **Computability**: Synthesis of FTC via computable algorithms

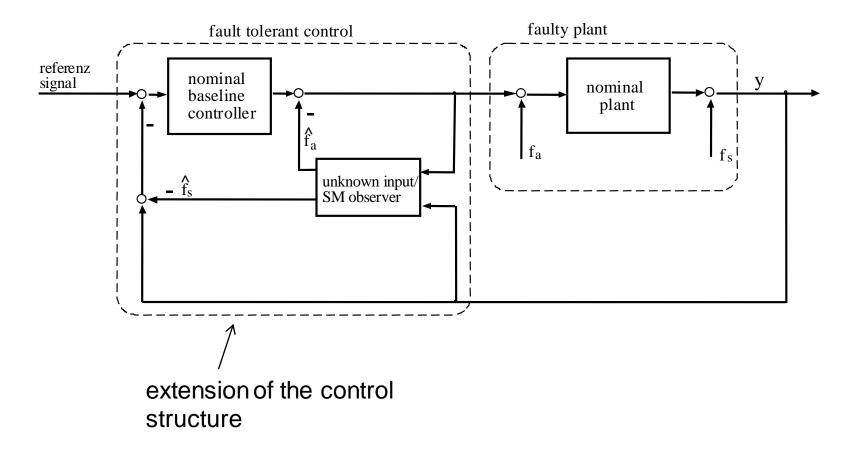

- LMI formulation
- Riccati Equations

FTC methods: Review

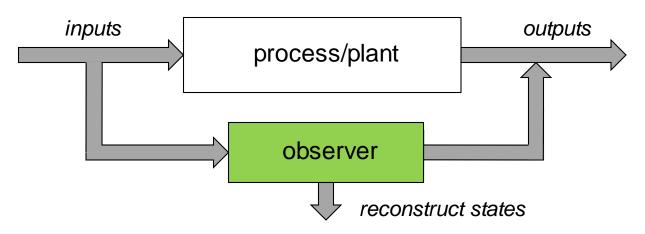
- there are several approaches to fault tolerant control (FTC), i.e. [Patton,1997], [Zhang and Jiang, 2003], [Blanke et al., 2006], [Noura, Theilliol et. Al, 2009]
- FTC can be broadly categorised into passive (PFTC) and active approaches (AFTC)
- AFTC methods, one can distinguish between fault accomodation and control reconfiguration
 - Fault accomodation means the adaptation of the controller parameters to the faulty plant
 - Control reconfiguration may involve the use of a different control structure altogether, like different inputs and outputs.


FTC methods: Control reconfiguration

Fault Tolerant Control architecture


FTC methods: Control reconfiguration

Fault Tolerant Control architecture


FTC methods: Control reconfiguration

Fault Tolerant Control architecture

Observer / Takagi-Sugeno (TS) Observer

- <u>Observer</u> is a dynamical system to reconstruct unmeasurable states
- Observer uses the available information on the <u>process inputs</u> and outputs

 <u>TS fuzzy observer</u> is a flexible structure to reconstruct unmeasurable states of nonlinear systems

TS Fuzzy Observer

$$\dot{\hat{\mathbf{x}}} = \sum_{i=1}^{N_r} h_i(\mathbf{z}) \left(\mathbf{A}_i \, \hat{\mathbf{x}} + \mathbf{B}_i \, \mathbf{u} + \, \mathbf{a}_i + \, \mathbf{L}_i \, (\mathbf{y} - \, \hat{\mathbf{y}}) \right)$$

- <u>Condtion 1</u>: nonlinear plant/process have to formulated as a TS fuzzy system
- <u>Condition 2</u>: the vector of premise variables may comprise states, inputs, and external variables χ

$$\mathbf{z} = \mathbf{z} \left(\mathbf{x}, \mathbf{u}, \boldsymbol{\chi}
ight)$$

<u>Condition 3</u>: membership functions fulfill the conditions

$$\sum_{i=1}^{N_r} h_i(\mathbf{z}) = 1, \quad h_i(\mathbf{z}) \ge 0 \quad \forall i \in \{1, \dots, N_r\}$$

3. Review of Takagi-Sugeno and Sliding Mode Approach

Sliding Mode Techniques (Utkin 1977, Edwards 2010 for LPV Systems)

- Nonlinear switching term establishes and maintains a motion on a so-called sliding surface => robustness
- Takagi-Sugeno Sliding Mode Observer (Gerland/Schulte et al. 2010)

$$\dot{\hat{\mathbf{x}}} = \sum_{i=1}^{N_r} h_i \left(\mathbf{z} \right) \left(\mathbf{A}_i \hat{\mathbf{x}} + \mathbf{B}_i \mathbf{u} - \mathbf{G}_{l,i} \mathbf{e}_y + \mathbf{G}_{n,i} \boldsymbol{\nu} \right)$$

$$\boldsymbol{\nu} = -\rho \frac{\mathbf{P}_2 \mathbf{e}_y}{\|\mathbf{P}_2 \mathbf{e}_y\|} , \quad \text{if } \mathbf{e}_y \neq \mathbf{0} ,$$

$$\boldsymbol{\nu} = -\rho \frac{\mathbf{P}_2 \mathbf{e}_y}{\|\mathbf{P}_2 \mathbf{e}_y\|} , \quad \text{if } \mathbf{e}_y \neq \mathbf{0} ,$$

$$\boldsymbol{\nabla} = -\rho \frac{\mathbf{P}_2 \mathbf{e}_y}{\|\mathbf{P}_2 \mathbf{e}_y\|} , \quad \text{if } \mathbf{e}_y \neq \mathbf{0} ,$$

$$\boldsymbol{\nabla} = -\rho \frac{\mathbf{P}_2 \mathbf{e}_y}{\|\mathbf{P}_2 \mathbf{e}_y\|} , \quad \text{if } \mathbf{e}_y \neq \mathbf{0} ,$$

$$\boldsymbol{\nabla} = -\rho \frac{\mathbf{P}_2 \mathbf{e}_y}{\|\mathbf{P}_2 \mathbf{e}_y\|} , \quad \text{if } \mathbf{e}_y \neq \mathbf{0} ,$$

Characteristics

- necessary condition: p > q where p=dim(u)
- robustness with simultaneous disturbances, uncertainties and fault

3. Review of Takagi-Sugeno and Sliding Mode Approach

Sliding Mode Techniques (Gerland/Schulte et al. 2010, Schulte 2015)

Takagi-Sugeno Sliding Mode Observer with unmeasurable z

$$\dot{\hat{\mathbf{x}}} = \sum_{i=1}^{N_r} h_i(\hat{\mathbf{z}}) \left(\mathbf{A}_i \hat{\mathbf{x}} + \mathbf{B}_i \mathbf{u} - \mathbf{G}_{l,i} \mathbf{e}_y + \mathbf{G}_{n,i} \boldsymbol{\nu} \right)$$
$$\hat{\mathbf{z}} = \mathbf{f}(\hat{\mathbf{x}})$$

- vector of premise variables includes unmeasurable states
- unmeasurable states are reconstructed by the observer himself
- distinguish between: $\hat{\mathbf{Z}} \neq \mathbf{Z}$

Error dynamics

• error dynamics in the case of unmeasurable premise variables

$$\begin{split} \dot{\mathbf{e}} &= \sum_{i=1}^{N_r} \, h_i(\hat{\mathbf{z}}) \Big(\big(\mathbf{A}_i - \mathbf{L}_i \mathbf{C} \big) \mathbf{e} + \mathbf{D}_i \, \boldsymbol{\xi} \Big) \\ & \swarrow \quad \text{apriori knowledge} \\ \text{with } \sum_{i=1}^{N_r} \, h_i(\hat{\mathbf{z}}) \, \mathbf{D}_i \, \boldsymbol{\xi} = \Delta(\mathbf{z}, \hat{\mathbf{z}}, \mathbf{x}, \mathbf{u}) \end{split}$$

• error vector is seperated into *measurable* e_x and *unmeasurable* error variables e_y

$$\dot{\hat{\mathbf{e}}}_x = \sum_{i=1}^{N_r} h_i(\hat{\mathbf{z}}) \Big(\tilde{\mathbf{A}}_i \, \hat{\mathbf{e}}_x - \mathbf{G}_{l,i} \, \mathbf{e}_y - \rho \, \mathbf{G}_{n,i} \, \frac{\mathbf{P}_2 \, \mathbf{e}_y}{||\mathbf{P}_2 \, \mathbf{e}_y||} \Big)$$

Observer Design

- Condition 1 $\underbrace{\sum_{i=1}^{N_r} (h_i(\mathbf{z}) - h_i(\hat{\mathbf{z}})) (\mathbf{A}_i \mathbf{x} + \mathbf{B}_i \mathbf{u} + \mathbf{a}_i)}_{\Delta = \Delta(\mathbf{z}, \hat{\mathbf{z}}, \mathbf{x}, \mathbf{u})}$ unknown but bounded

=> upper bound determine the gain factor ρ to establish a sliding motion

- Condition 2 All invariant zeros of (Ai, Di, C) must lie in \mathbb{C}_{-}
- Condition 3 $q = \operatorname{rank}(\mathbf{C} \mathbf{Di}) = \operatorname{rank}(\mathbf{Di})$ must be fullfilled

<u>Condition 2 and 3 must be fullfilled</u> to decompose the error vector into measurable states (disturbed and undisturbed) and unmeasurable states

$$\dot{\hat{\mathbf{x}}}_{1} = \sum_{i=1}^{N_{r}} h_{i} \left(\mathbf{z} \right) \left(\mathcal{A}_{11,i} \, \hat{\mathbf{x}}_{1} + \mathcal{A}_{12,i} \, \hat{\mathbf{y}} + \mathcal{B}_{1,i} \, \mathbf{u} - \mathcal{A}_{12,i} \, \tilde{\mathbf{e}}_{y} \right),$$

$$\dot{\hat{\mathbf{y}}} = \sum_{i=1}^{N_{r}} h_{i} \left(\mathbf{z} \right) \left(\mathcal{A}_{21,i} \, \hat{\mathbf{x}}_{1} + \mathcal{A}_{22,i} \, \hat{\mathbf{y}} + \mathcal{B}_{2,i} \, \mathbf{u} - \left(\mathcal{A}_{22,i} - \mathcal{A}_{22}^{s} \right) \, \tilde{\mathbf{e}}_{y} + \boldsymbol{\nu} \right)$$

Observer Design

- Condition 1 $\underbrace{\sum_{i=1}^{N_r} (h_i(\mathbf{z}) - h_i(\hat{\mathbf{z}})) (\mathbf{A}_i \mathbf{x} + \mathbf{B}_i \mathbf{u} + \mathbf{a}_i)}_{\Delta = \Delta(\mathbf{z}, \hat{\mathbf{z}}, \mathbf{x}, \mathbf{u})}$ unknown but bounded

=> upper bound determine the gain factor ρ to establish a sliding motion

- Condition 2 All invariant zeros of (Ai, Di, C) must lie in \mathbb{C}_{-}
- Condition 3 $q = \operatorname{rank}(\mathbf{C} \mathbf{Di}) = \operatorname{rank}(\mathbf{Di})$ must be fullfilled

<u>Condition 2 and 3 must be fullfilled</u> to decompose the error vector into measurable states (disturbed and undisturbed) and unmeasurable states

$$\mathbf{G}_{l,i} = \mathbf{T}_i^{-1} \begin{pmatrix} \boldsymbol{\mathcal{A}}_{12,i} \\ \boldsymbol{\mathcal{A}}_{22,i} - \boldsymbol{\mathcal{A}}_{22}^s \end{pmatrix}, \quad \mathbf{G}_{n,i} = \mathbf{T}_i^{-1} \begin{pmatrix} \mathbf{0}_{(n-p) \times p} \\ \mathbf{I}_p \end{pmatrix}$$

3. Review of Takagi-Sugeno and Sliding Mode Approach

Reconstruction of faults and unknown inputs

- reconstruction by <u>equivalent output injection (EOI) signal</u>
- it describes the average of the effort to maintain the sliding motion

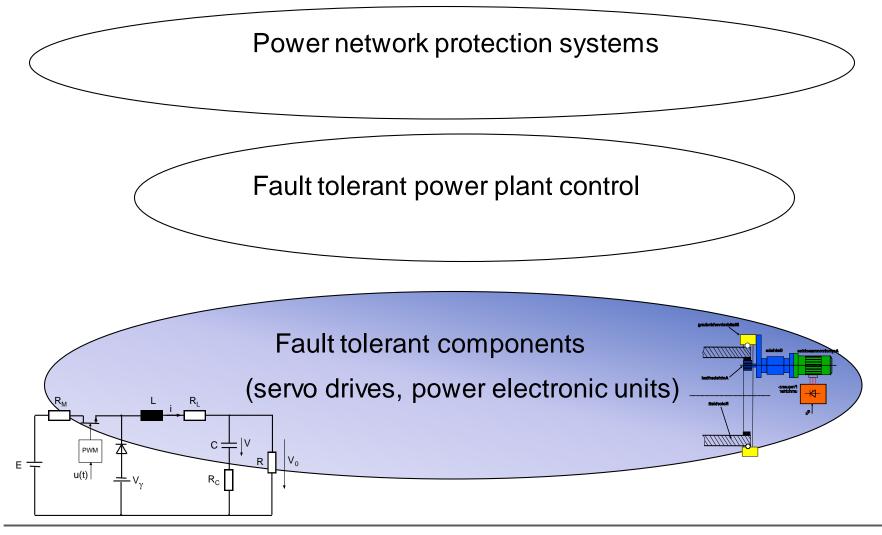
$$\boldsymbol{\nu}_{\mathrm{eq}} = -\rho \, \frac{\mathbf{P}_2 \, \tilde{\mathbf{e}}_y}{\|\mathbf{P}_2 \, \tilde{\mathbf{e}}_y\| + \delta} \,, \qquad \delta << 1$$

if the observer error reach the sliding motion then EOI is given by

$$\boldsymbol{\nu}_{eq} = \sum_{i=1}^{N_r} h_i \left(\mathbf{z} \right) \left[\boldsymbol{\mathcal{D}}_{2,i} \, \boldsymbol{\mathcal{F}}_{2,i} \right] \begin{pmatrix} \boldsymbol{\xi} \\ \mathbf{f}_a \end{pmatrix} \quad \text{or}$$
$$\boldsymbol{\nu}_{eq} = -\left(\boldsymbol{\mathcal{A}}_{22} \left(\mathbf{z} \right) - \boldsymbol{\mathcal{A}}_{21} \left(\mathbf{z} \right) \, \boldsymbol{\mathcal{A}}_{11}^{-1} \left(\mathbf{z} \right) \, \boldsymbol{\mathcal{A}}_{12} \left(\mathbf{z} \right) \right) \, \mathbf{f}_s$$

Reconstruction of faults and unknown inputs

actuator faults and unknown inputs can be reconstructed by

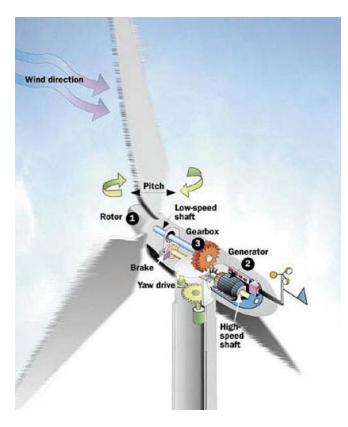

$$egin{pmatrix} \hat{oldsymbol{\xi}} \ \hat{oldsymbol{f}}_a \end{pmatrix} \,=\, \left[oldsymbol{\mathcal{D}}_2\left(\mathbf{z}
ight) \;\; oldsymbol{\mathcal{F}}_2\left(\mathbf{z}
ight)
ight]^+ \;oldsymbol{
u}_{ ext{eq}}$$

sensor faults can be reconstructed by

$$\hat{\mathbf{f}}_{s}\,=\,-oldsymbol{\mathcal{A}}_{ ext{FDI}}^{-1}\left(\mathbf{z}
ight)\,oldsymbol{
u}_{ ext{eq}}$$

if
$$\mathcal{A}_{\text{FDI}}(\mathbf{z}) := \left(\mathcal{A}_{22}(\mathbf{z}) - \mathcal{A}_{21}(\mathbf{z}) \ \mathcal{A}_{11}^{-1}(\mathbf{z}) \ \mathcal{A}_{12}(\mathbf{z}) \right)$$

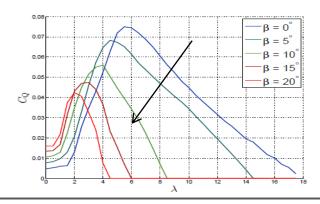
is non-singular

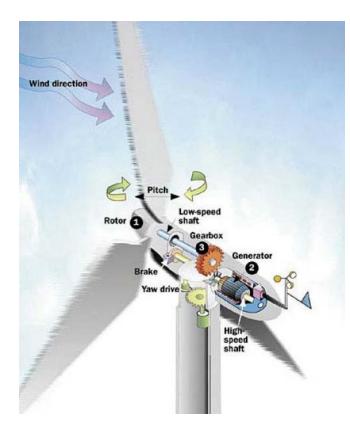

4.1 FDI and FTC on Component Level

4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- Motivation
 - safty critical function: shut down
 - power/torque limitation in full-load region

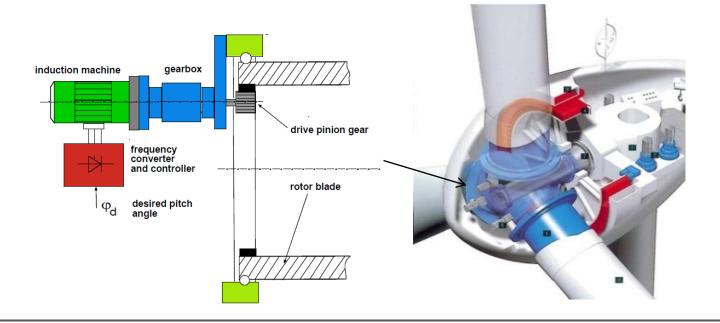

4.1 FDI and FTC on Component Level


Example: Electrical pitch drive of wind turbines

- Motivation
 - safty critical function: shut down
 - power/torque limitation in full-load region

$$T_a = \frac{1}{2} \rho \pi R^3 C_Q(\lambda, \beta) v^2 \xrightarrow{T_a \to \omega_r} \left(\begin{array}{c} & & \\ &$$

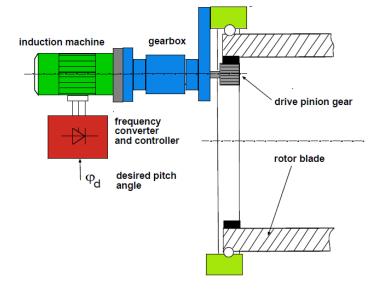
- reduction due to increasing pitch angle



4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- **Objectives**
 - FDI/FTC of current sensor faults _____ component level
 - FDI/FTC pitch angle sensor fault **component** or system level



4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- Objectives
 - FDI/FTC of current sensor faults _____ component level
 - FDI/FTC pitch angle sensor fault > component or system level

4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- Approach [Schulte, Zajac, Gerland, SAFEPROCESS 2012]
 - > model-based reconstruction of sensor faults by TS-SM Observer
 - sixth order model of induction machine with unknown load TL

$$\dot{x}_{1} = -\frac{R_{S}}{\sigma L_{S}} \left(x_{1} - \frac{L_{M}}{L_{R}} x_{3} \right) + \omega_{1} x_{2} + u_{1}$$

$$\dot{x}_{2} = -\frac{R_{S}}{\sigma L_{S}} \left(x_{2} - \frac{L_{M}}{L_{R}} x_{4} \right) - \omega_{1} x_{1} + u_{2}$$

$$\dot{x}_{3} = -\frac{R_{R}}{\sigma L_{R}} \left(x_{3} - \frac{L_{M}}{L_{S}} x_{1} \right) + (\omega_{1} - Z_{P} x_{5}) x_{4}$$

$$\dot{x}_{4} = -\frac{R_{R}}{\sigma L_{R}} \left(x_{4} - \frac{L_{M}}{L_{S}} x_{2} \right) - (\omega_{1} - Z_{P} x_{5}) x_{3}$$

$$\dot{x}_{5} = \frac{3}{2} \frac{Z_{P}}{J} \frac{L_{M}}{\sigma L_{S} L_{R}} (x_{2} x_{3} - x_{1} x_{4}) - \frac{T_{L}}{i_{g} J}$$

$$\dot{x}_{6} = x_{5}$$

$$\boldsymbol{x} = [x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}]^{T} := [\Psi_{sd} \Psi_{sq} \Psi_{rd} \Psi_{rq} \omega_{m} \varphi_{m}]^{T}$$

4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- Observer Structure and Law
 - Reconstruction of current sensor faults by

> using equivalent control that maintain the sliding motion

$$\boldsymbol{\nu}(t) \approx \sum_{i=1}^{N_r} \sum_{j=1}^{N_r} h_i(\hat{\boldsymbol{\alpha}}(t)) h_j(\hat{\boldsymbol{\alpha}}(t)) \left[\boldsymbol{\mathcal{A}}_{FDI,ij} \ \boldsymbol{\mathcal{D}}_{2,i} \right] \begin{bmatrix} \boldsymbol{f}_s(t) \\ \boldsymbol{\xi}(t) \end{bmatrix} \quad \hat{\boldsymbol{f}}_s(t) = \left[\sum_{i=1}^{N_r} \sum_{j=1}^{N_r} h_i(\hat{\boldsymbol{\alpha}}(t)) h_j(\hat{\boldsymbol{\alpha}}(t)) \boldsymbol{\mathcal{A}}_{FDI,ij} \right]^{-1} \boldsymbol{\nu}(t)$$

4.1 FDI and FTC on Component Level

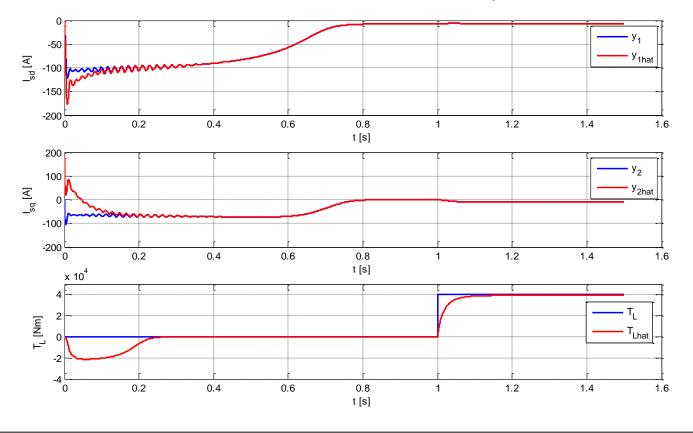
Example: Electrical pitch drive of wind turbines

Results for a 1.2 MW turbine

$$\begin{split} R_S &= 0.8817 \; [\Omega] & L_S = 0.1094 \; [\text{H}] & R_R = 0.4321 \; [\Omega] \\ L_R &= 0.1071 \; [\text{H}] & L_M = 0.1054 \; [\Omega] & J_A = 0.4724 \; [\text{kg m}^2] & Z_P = 3 \\ J_G &= 0.2 \; [\text{kg m}^2] & i_g = 1200 & J_B = 1977 \; [\text{kg m}^2] \end{split}$$

 $\xi = [\xi_{min}, \xi_{max}] = [-5.27 \cdot 10^4 \,\mathrm{Nm}, 5.27 \cdot 10^4 \,\mathrm{Nm}]$ uncertainty load bounds

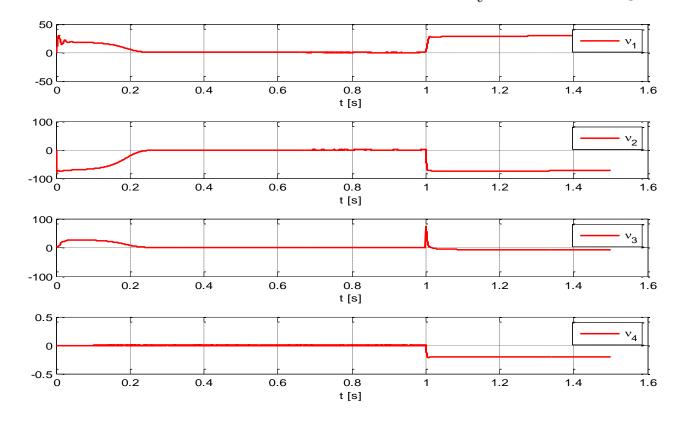
linear observer gain :
$$A_{22}^s = \begin{bmatrix} -10 & 0 & 0 & 0 \\ 0 & -10 & 0 & 0 \\ 0 & 0 & -10 & 0 \\ 0 & 0 & 0 & -10 \end{bmatrix}$$
 sliding mode gain: $\rho = 80$


$$\mathbf{G}_{l,i=1} = \boldsymbol{T}_{i}^{-1} \begin{bmatrix} \boldsymbol{\mathcal{A}}_{12,i=1} \\ \boldsymbol{\mathcal{A}}_{22,i=1} - \boldsymbol{\mathcal{A}}_{22}^{s} \end{bmatrix} = \begin{bmatrix} 4.3711e - 003 & 3.8669e + 001 & 0 & 0 \\ -3.8669e + 001 & 4.3711e - 003 & 0 & 0 \\ -1.3229e - 003 & 3.9293e + 001 & 0 & 0 \\ -3.9293e + 001 & -1.3229e - 003 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{G}_{n,i=1} = \boldsymbol{T}_{i}^{-1} \begin{bmatrix} \mathbf{0}_{(n-p)\times p} \\ \mathbf{I}_{p} \end{bmatrix} = \begin{bmatrix} 1.4616e + 004 & 3.8504e + 002 & 0 & 0 \\ -3.8504e + 002 & 1.4616e + 004 & 4.4436e - 012 & 0 \\ 1.4853e + 004 & 2.3490e + 002 & 3.0000e + 000 & 0 \\ -2.3490e + 002 & 1.4853e + 004 & -3.0000e + 000 & 0 \\ 6.3908e + 004 & 6.3894e + 004 & 1.0000e + 001 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

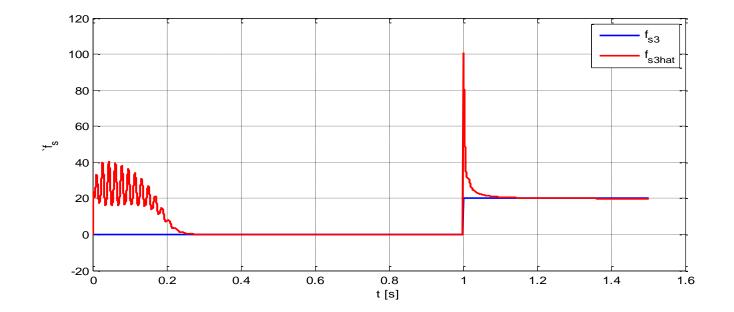
4.1 FDI and FTC on Component Level

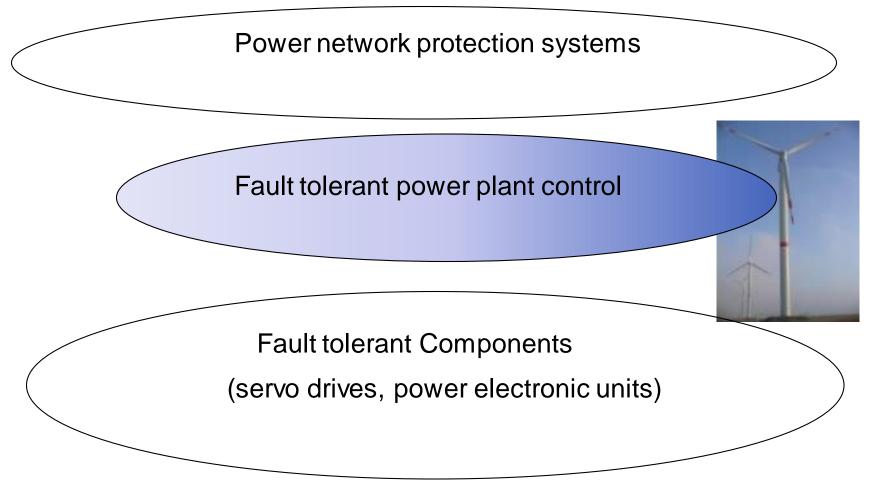
Example: Electrical pitch drive of wind turbines


• without sensor faults, with external load step and load reconstruction

4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

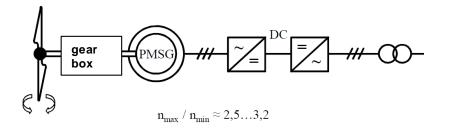

• equivalent output error injection terms ν_{eq_i} of the sliding mode term


4.1 FDI and FTC on Component Level

Example: Electrical pitch drive of wind turbines

- sensor fault and sensor fault reconstruction $\hat{\mathbf{f}}_s(t) = \mathscr{W}(\boldsymbol{\alpha}(t))\boldsymbol{\nu}_{eq}(t)$

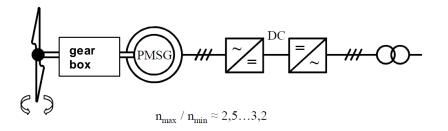
4.2 FDI and FTC on Power Plant Level



4.2 FDI and FTC on Power Plant Level

- Objectives
- Partial- / full-load region
- Baseline Controller
- FTC scheme
- Results
 - Simulation with Hardware-In-the Loop test-bed

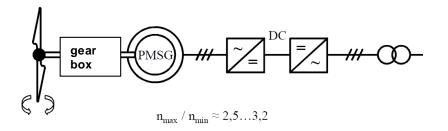
- **Objectives**: Increasing of availability and reliability
- Reduction of shutdowns caused by sensor and actuator faults



[Siemens 2012]

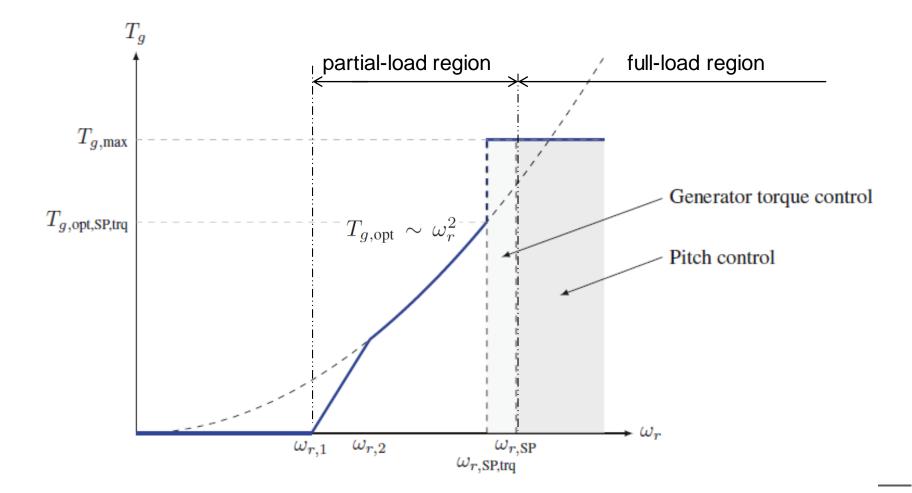
- **Objectives**: Increasing of availability and reliability
- Reduction of shutdowns caused by sensor and actuator faults

[Siemens 2012]

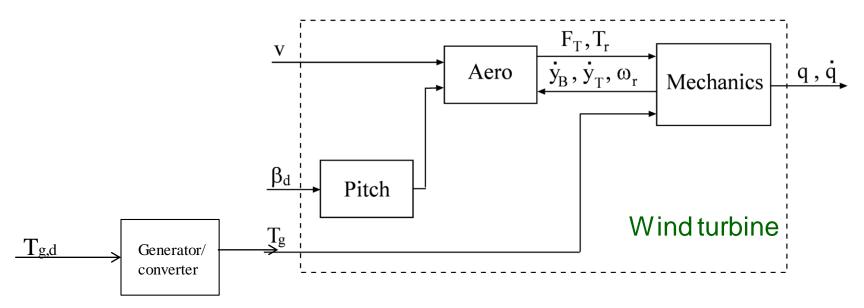

sensors for control

- pitch angle
- yaw angle
- generator speed

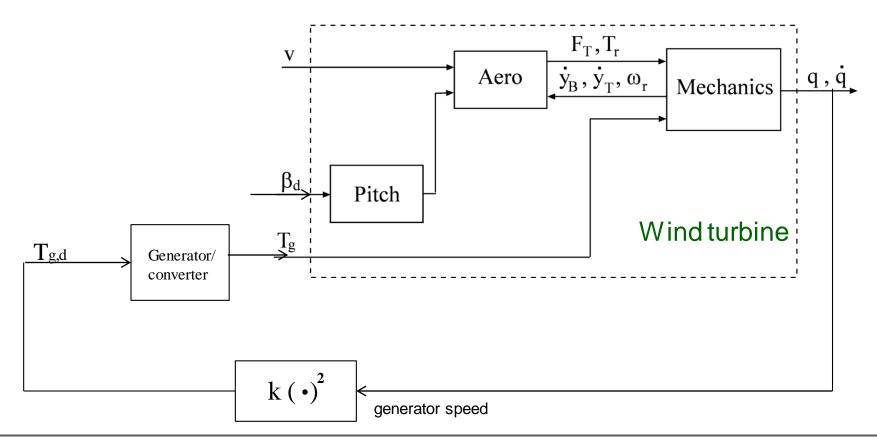
- **Objectives**: Increasing of availability and reliability
- Reduction of shutdowns caused by sensor and actuator faults

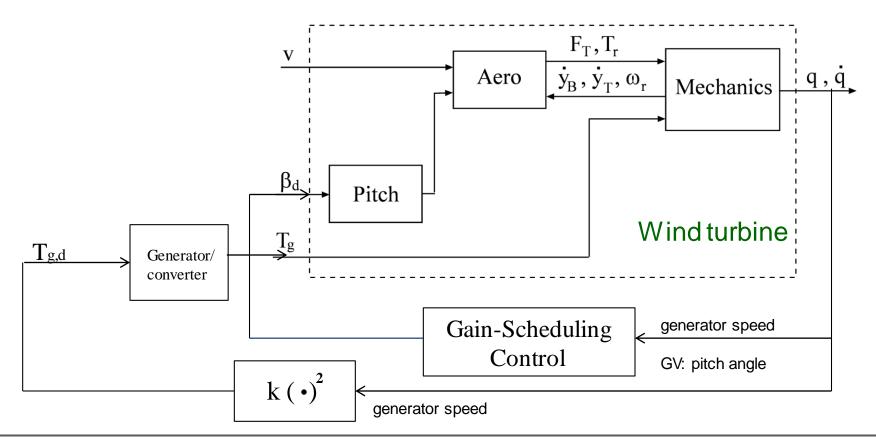


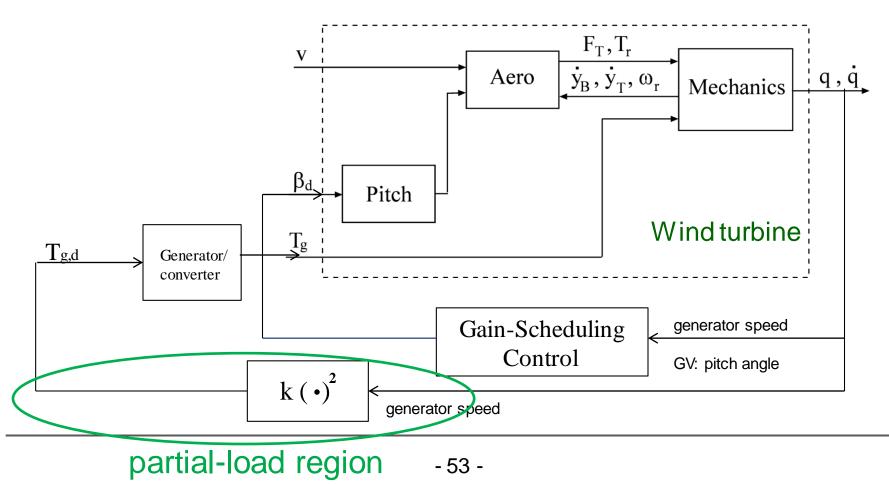
[Siemens 2012]

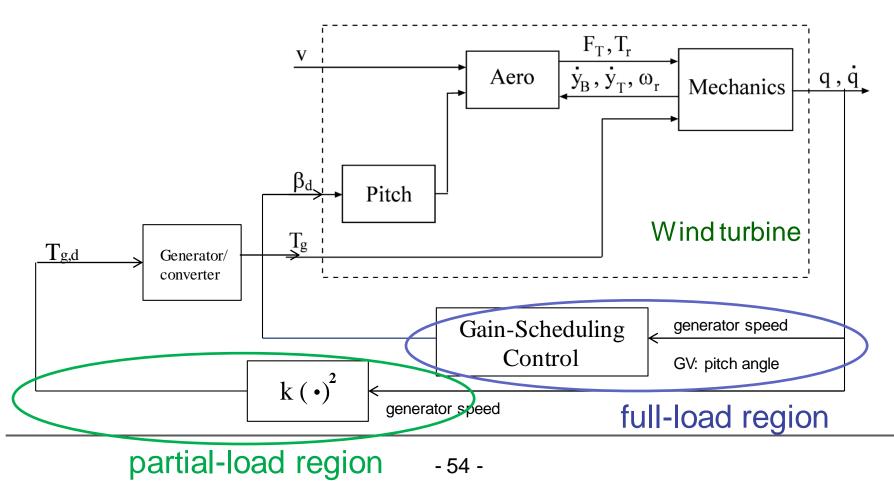


actuators for control

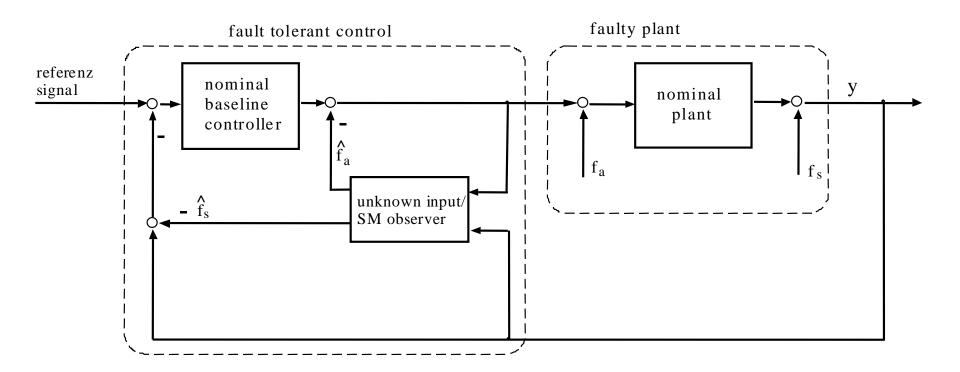

- pitch drives (full load)
- generator (partial load)


4.2 FDI and FTC on Power Plant Level

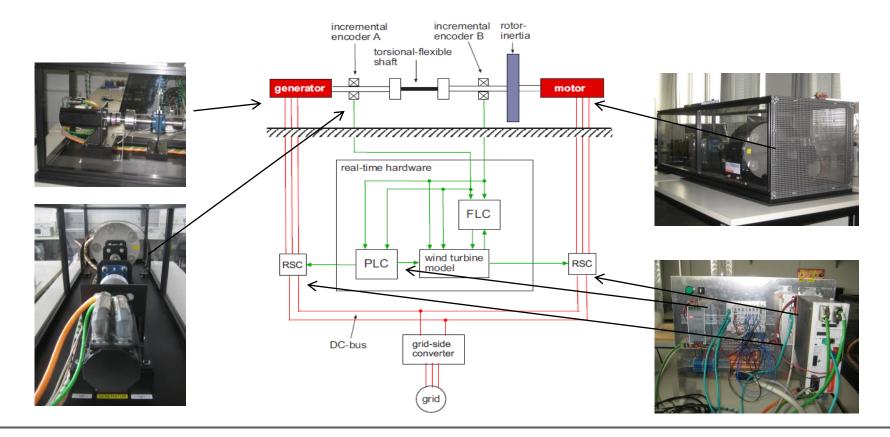

4.2 FDI and FTC on Power Plant Level


4.2 FDI and FTC on Power Plant Level

4.2 FDI and FTC on Power Plant Level



4.2 FDI and FTC on Power Plant Level


4.2 FDI and FTC on Power Plant Level

FTC scheme

4.2 FDI and FTC on Power Plant Level

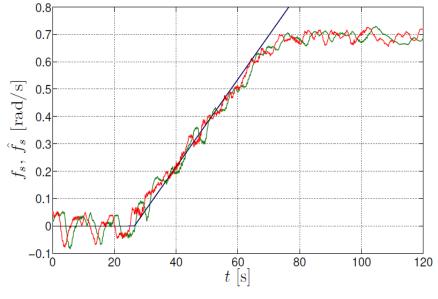
• **Results:** Simulation with Hardware-In-the Loop test-bed

Experimental design

- generator speed sensor fault
- Five different measurements over 120 s period
- simulated turbulent wind speed with mean value 18 m/s
- > TS fuzzy gain-scheduling controller (full-load region)

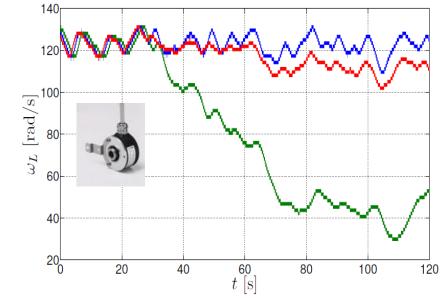
Test cases

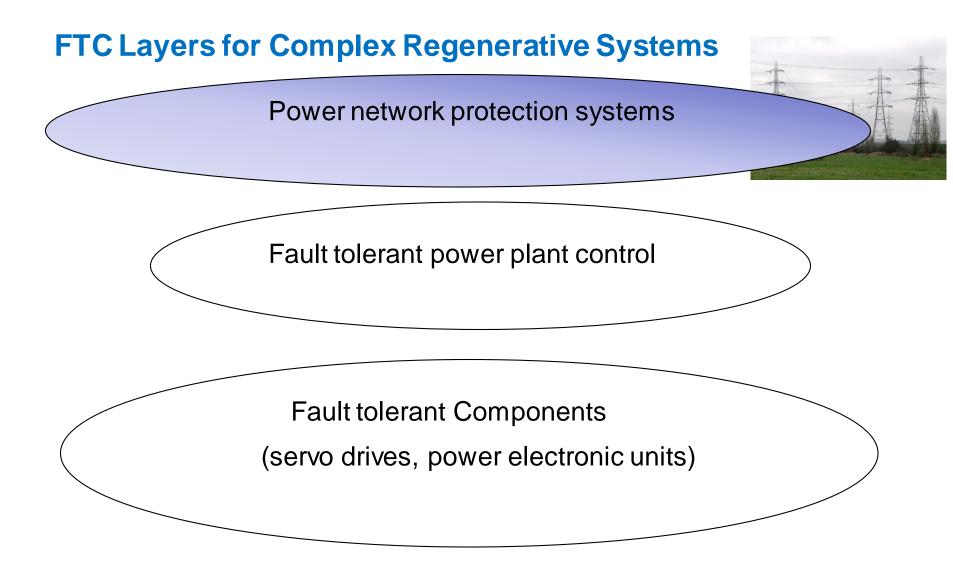
- > without fault $y_{corr} = y$
- without fault compensation
- > with active compensation: $\mathbf{y}_{corr} = (\mathbf{y} + \mathbf{f}_s)$


$$\mathbf{y}_{\text{corr}} = \mathbf{y}$$
$$\mathbf{y}_{\text{corr}} = (\mathbf{y} + \mathbf{f}_s)$$
$$\mathbf{y}_{\text{corr}} = (\mathbf{y} + \mathbf{f}_s) - \mathbf{y}_s$$

 $\hat{\mathbf{f}}_s$

4.2 FDI and FTC on Power Plant Level


Sensor fault and reconstruction


- --- sensor fault
- --- fault reconstruction without fault compensation
- --- fault reconstruction with active fault compensation

⇒ Speed measurements

- --- without fault
- --- without fault compensation
- --- with active fault compensation

4.3 FDI and FTC on Network Level

Example: Network Protection System

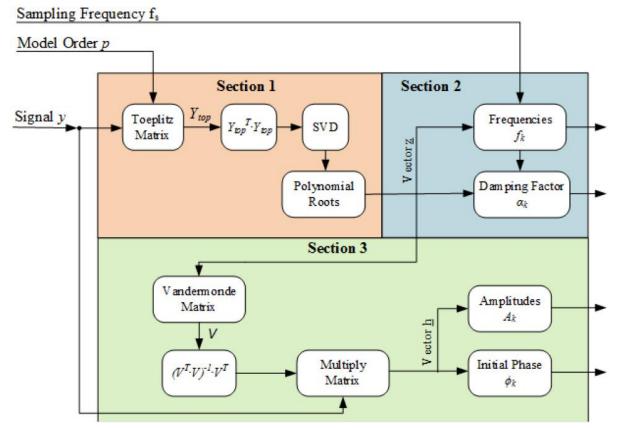
- Motivation
 - number of non-linearities in the network and non-smoothness increase
 - precise determination of the network state is necessary
 - detection of fast changes in the power dynamics is essential
 - protection concepts have to be faster and more agile
- Application: High voltage power network
 - protection device: Siemens SIPROTEC

- phasor quantities determined by fourier-based (i.e. FFT) algorithms
- good results for many applications but *limited performance* in dynamic processes

4.3 FDI and FTC on Network Level

Example: Network Protection System

Approach: Prony's method


- Mathematical model of the power network is unknown
- state and parameter estimation by observer techniques is not feasible
- measurements are locally available
- Prony's method is a kind of system identification
 - > model structure selection by validation criteria
 - black box model but physical interpretable parameters

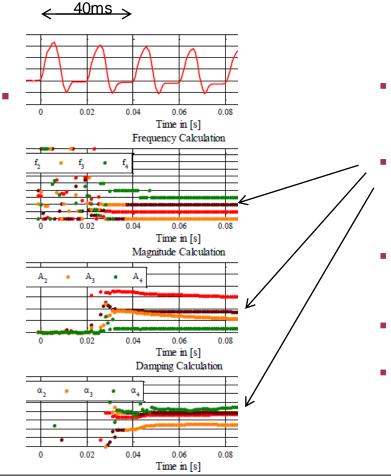
$$\hat{y}[n] = \sum_{k=1}^{p} A_k \cdot e^{(\alpha_k + j\omega_k) \cdot (n-1) \cdot T_s} \cdot e^{j\varphi_k}$$

4.3 FDI and FTC on Network Level

Example: Network Protection System

4.3 FDI and FTC on Network Level

Example: Network Protection System


Inrush Current 2 1.5 Current in [A] 0.5 -0.5 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Time in [s] Frequency Calculation 500 450 350 250 200 100 100 -0.04 Frequency in [Hz] -0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Time in [s] Magnitude Calculation 1.5 Magnitude in [A] 1.25 А, А, A., А, 0.75 0.5 0.25 -! --0.04 0.08 -0.02 0 0.02 0.04 0.06 0.1 0.12 0.14 0.16 Time in [s] Damping Calculation 20 15 10 Damping in [1/s] α_1 α α, α_4 -10 -20 -0.02 0.02 0.04 0.06 0.08 0.1 0.14 0.16 -0.04 0.12 0 Time in [s]

Inrush detection: Ts = 1ms, p = 20, N = 2p

4.3 FDI and FTC on Network Level

Example: Network Protection System

- General, power system faults consists of a large ratio of fundamental freq.
- Model order selection is important

p = 20, N = 2p

- Second harmonic is an appropriate indicator to detect inrush events
- robust detection time is 40 ms
- faster as FFT based signal processing

Conclusion

- FDI /FTC scheme for renewable energy systems were presented
- Problem was decomposed into three different levels
- 3 examples of FDI and FTC are discussed in detail

Current and Future Work

- RE systems such as wind turbines and PV have to support the power network like conventional power plant with huge inertia
- Output only FDI using machine learning methods

Papers and reports: www.researchgate.net/profile/Horst_Schulte2

Appendix A: Review of TS and Sliding Mode Approach

Reconstruction of faults and unknown inputs

• Existence of pseudo inverse of convex combination of matrices for

$$\begin{pmatrix} \hat{\boldsymbol{\xi}} \\ \hat{\mathbf{f}}_{a} \end{pmatrix} = \begin{bmatrix} \boldsymbol{\mathcal{D}}_{2} (\mathbf{z}) & \boldsymbol{\mathcal{F}}_{2} (\mathbf{z}) \end{bmatrix}^{+} \boldsymbol{\nu}_{eq}$$
where $\boldsymbol{\mathcal{D}}_{2} (\mathbf{z}) := \sum_{i=1}^{N_{r}} h_{i} (\mathbf{z}) \boldsymbol{\mathcal{D}}_{2,i} \qquad \boldsymbol{\mathcal{F}}_{2} (\mathbf{z}) := \sum_{i=1}^{N_{r}} h_{i} (\mathbf{z}) \boldsymbol{\mathcal{F}}_{2,i}$

if the Theorem 2 in [Kolodziejczak, Szulc, *Linear Algebra and its Application* 287, 1999] is fullfilled ,

Reconstruction of faults and unknown inputs

• [Kolodziejczak, Szulc, Linear Algebra and its Application 287, 1999, (215-222)]

Theorem 2. The following are equivalent.
(i) All convex combinations of A₁,..., A_k have full row rank.
(ii) A_k has full row rank and the (k - 1)kn-by-(k - 1)kn matrix

$$\begin{bmatrix} \mathbf{B}_1 \mathbf{B}_k^{-1} & (\mathbf{B}_2 - \mathbf{B}_1) \mathbf{B}_k^{-1} & (\mathbf{B}_3 - \mathbf{B}_2) \mathbf{B}_k^{-1} & \cdots & (\mathbf{B}_{k-1} - \mathbf{B}_{k-2}) \mathbf{B}_k^{-1} \\ -\mathbf{I}_{kn} & \mathbf{I}_{kn} & \mathbf{\Theta}_{kn} & \cdots & \mathbf{\Theta}_{kn} \\ \mathbf{\Theta}_{kn} & -\mathbf{I}_{kn} & \mathbf{I}_{kn} & \cdots & \mathbf{\Theta}_{kn} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{\Theta}_{kn} & \cdots & \mathbf{\Theta}_{kn} & -\mathbf{I}_{kn} & \mathbf{I}_{kn} \end{bmatrix}$$

is a block P-matrix with respect to the partition $\{\tilde{M}_1, \ldots, \tilde{M}_{k-1}\}$ of $\{1, \ldots, (k-1)kn\}$, with $\tilde{M}_i = \{(i-1)kn+1, \ldots, ikn\}$, $i = 1, \ldots, k-1$. (iii) All convex combinations of $\mathbf{B}_1, \ldots, \mathbf{B}_k$ are nonsingular.