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Preface

Preface to the Second Edition

It has been eight years now since the appearance of the first edition of this book in 2001. During
this time, many courteous users—professors who have been adopting the book, researchers, and
students—have taken the time and care to provide me with valuable feedback about the book.
In preparing the second edition, I have taken into consideration the generous feedback I have
received from these users. To them, and from the very outset, I want to express my deep sense
of gratitude and appreciation.

The underlying focus of the book has remained the same: to provide a well-structured and
self-contained, yet concise, text that is backed by a rich collection of fully solved examples
and problems illustrating various aspects of nonrelativistic quantum mechanics. The book is
intended to achieve a double aim: on the one hand, to provide instructors with a pedagogically
suitable teaching tool and, on the other, to help students not only master the underpinnings of
the theory but also become effective practitioners of quantum mechanics.

Although the overall structure and contents of the book have remained the same upon the
insistence of numerous users, [ have carried out a number of streamlining, surgical type changes
in the second edition. These changes were aimed at fixing the weaknesses (such as typos)
detected in the first edition while reinforcing and improving on its strengths. I have introduced a
number of sections, new examples and problems, and new material; these are spread throughout
the text. Additionally, I have operated substantive revisions of the exercises at the end of the
chapters; I have added a number of new exercises, jettisoned some, and streamlined the rest.
I may underscore the fact that the collection of end-of-chapter exercises has been thoroughly
classroom tested for a number of years now.

The book has now a collection of almost six hundred examples, problems, and exercises.
Every chapter contains: (a) a number of solved examples each of which is designed to illustrate
a specific concept pertaining to a particular section within the chapter, (b) plenty of fully solved
problems (which come at the end of every chapter) that are generally comprehensive and, hence,
cover several concepts at once, and (c) an abundance of unsolved exercises intended for home-
work assignments. Through this rich collection of examples, problems, and exercises, I want
to empower the student to become an independent learner and an adept practitioner of quantum
mechanics. Being able to solve problems is an unfailing evidence of a real understanding of the
subject.

The second edition is backed by useful resources designed for instructors adopting the book
(please contact the author or Wiley to receive these free resources).

The material in this book is suitable for three semesters—a two-semester undergraduate
course and a one-semester graduate course. A pertinent question arises: How to actually use

xiii



Xiv PREFACE

the book in an undergraduate or graduate course(s)? There is no simple answer to this ques-
tion as this depends on the background of the students and on the nature of the course(s) at
hand. First, I want to underscore this important observation: As the book offers an abundance
of information, every instructor should certainly select the topics that will be most relevant
to her/his students; going systematically over all the sections of a particular chapter (notably
Chapter 2), one might run the risk of getting bogged down and, hence, ending up spending too
much time on technical topics. Instead, one should be highly selective. For instance, for a one-
semester course where the students have not taken modern physics before, I would recommend
to cover these topics: Sections 1.1-1.6; 2.2.2,2.2.4,2.3,2.4.1-2.4.8,2.5.1,2.5.3,2.6.1-2.6.2,
2.7;3.2-3.6; 4.3-4.8; 5.2-5.4, 5.6-5.7; and 6.2-6.4. However, if the students have taken mod-
ern physics before, I would skip Chapter 1 altogether and would deal with these sections: 2.2.2,
224,23,241-248,2.5.1,2.53,2.6.1-2.6.2, 2.7; 3.2-3.6; 4.3-4.8; 5.2-5.4, 5.6-5.7; 6.2—
6.4; 9.2.1-9.2.2, 9.3, and 9.4. For a two-semester course, I think the instructor has plenty of
time and flexibility to maneuver and select the topics that would be most suitable for her/his
students; in this case, I would certainly include some topics from Chapters 7-11 as well (but
not all sections of these chapters as this would be unrealistically time demanding). On the other
hand, for a one-semester graduate course, I would cover topics such as Sections 1.7-1.8; 2.4.9,
2.6.3-2.6.5; 3.7-3.8; 4.9; and most topics of Chapters 7—-11.

Acknowledgments
I have received very useful feedback from many users of the first edition; I am deeply grateful
and thankful to everyone of them. I would like to thank in particular Richard Lebed (Ari-
zona State University) who has worked selflessly and tirelessly to provide me with valuable
comments, corrections, and suggestions. I want also to thank Jearl Walker (Cleveland State
University)—the author of The Flying Circus of Physics and of the Halliday—Resnick—Walker
classics, Fundamentals of Physics—for having read the manuscript and for his wise sugges-
tions; Milton Cha (University of Hawaii System) for having proofread the entire book; Felix
Chen (Powerwave Technologies, Santa Ana) for his reading of the first 6 chapters. My special
thanks are also due to the following courteous users/readers who have provided me with lists of
typos/errors they have detected in the first edition: Thomas Sayetta (East Carolina University),
Moritz Braun (University of South Africa, Pretoria), David Berkowitz (California State Univer-
sity at Northridge), John Douglas Hey (University of KwaZulu-Natal, Durban, South Africa),
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Preface to the First Edition

Books on quantum mechanics can be grouped into two main categories: textbooks, where
the focus is on the formalism, and purely problem-solving books, where the emphasis is on
applications. While many fine textbooks on quantum mechanics exist, problem-solving books
are far fewer. It is not my intention to merely add a text to either of these two lists. My intention
is to combine the two formats into a single text which includes the ingredients of both a textbook
and a problem-solving book. Books in this format are practically nonexistent. I have found this
idea particularly useful, for it gives the student easy and quick access not only to the essential
elements of the theory but also to its practical aspects in a unified setting.

During many years of teaching quantum mechanics, I have noticed that students generally
find it easier to learn its underlying ideas than to handle the practical aspects of the formalism.
Not knowing how to calculate and extract numbers out of the formalism, one misses the full
power and utility of the theory. Mastering the techniques of problem-solving is an essential part
of learning physics. To address this issue, the problems solved in this text are designed to teach
the student how to calculate. No real mastery of quantum mechanics can be achieved without
learning how to derive and calculate quantities.

In this book I want to achieve a double aim: to give a self-contained, yet concise, presenta-
tion of most issues of nonrelativistic quantum mechanics, and to offer a rich collection of fully
solved examples and problems. This unified format is not without cost. Size! Judicious care
has been exercised to achieve conciseness without compromising coherence and completeness.

This book is an outgrowth of undergraduate and graduate lecture notes I have been sup-
plying to my students for about one decade; the problems included have been culled from a
large collection of homework and exam exercises I have been assigning to the students. It is
intended for senior undergraduate and first-year graduate students. The material in this book
could be covered in three semesters: Chapters 1 to 5 (excluding Section 3.7) in a one-semester
undergraduate course; Chapter 6, Section 7.3, Chapter 8, Section 9.2 (excluding fine structure
and the anomalous Zeeman effect), and Sections 11.1 to 11.3 in the second semester; and the
rest of the book in a one-semester graduate course.

The book begins with the experimental basis of quantum mechanics, where we look at
those atomic and subatomic phenomena which confirm the failure of classical physics at the
microscopic scale and establish the need for a new approach. Then come the mathematical
tools of quantum mechanics such as linear spaces, operator algebra, matrix mechanics, and
eigenvalue problems; all these are treated by means of Dirac’s bra-ket notation. After that we
discuss the formal foundations of quantum mechanics and then deal with the exact solutions
of the Schrodinger equation when applied to one-dimensional and three-dimensional problems.
We then look at the stationary and the time-dependent approximation methods and, finally,
present the theory of scattering.

I would like to thank Professors Ismail Zahed (University of New York at Stony Brook)
and Gerry O. Sullivan (University College Dublin, Ireland) for their meticulous reading and
comments on an early draft of the manuscript. I am grateful to the four anonymous reviewers
who provided insightful comments and suggestions. Special thanks go to my editor, Dr Andy
Slade, for his constant support, encouragement, and efficient supervision of this project.

I want to acknowledge the hospitality of the Center for Theoretical Physics of MIT, Cam-
bridge, for the two years I spent there as a visitor. I would like to thank in particular Professors
Alan Guth, Robert Jaffee, and John Negele for their support.
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Note to the student

We are what we repeatedly do. Excellence, then, is not an act, but a habit.
Aristotle

No one expects to learn swimming without getting wet. Nor does anyone expect to learn
it by merely reading books or by watching others swim. Swimming cannot be learned without
practice. There is absolutely no substitute for throwing yourself into water and training for
weeks, or even months, till the exercise becomes a smooth reflex.

Similarly, physics cannot be learned passively. Without tackling various challenging prob-
lems, the student has no other way of testing the quality of his or her understanding of the
subject. Here is where the student gains the sense of satisfaction and involvement produced by
a genuine understanding of the underlying principles. The ability to solve problems is the best
proof of mastering the subject. As in swimming, the more you solve problems, the more you
sharpen and fine-tune your problem-solving skills.

To derive full benefit from the examples and problems solved in the text, avoid consulting
the solution too early. If you cannot solve the problem after your first attempt, try again! If
you look up the solution only after several attempts, it will remain etched in your mind for a
long time. But if you manage to solve the problem on your own, you should still compare your
solution with the book’s solution. You might find a shorter or more elegant approach.

One important observation: as the book is laden with a rich collection of fully solved ex-
amples and problems, one should absolutely avoid the temptation of memorizing the various
techniques and solutions; instead, one should focus on understanding the concepts and the un-
derpinnings of the formalism involved. It is not my intention in this book to teach the student a
number of tricks or techniques for acquiring good grades in quantum mechanics classes without
genuine understanding or mastery of the subject; that is, I didn’t mean to teach the student how
to pass quantum mechanics exams without a deep and lasting understanding. However, the stu-
dent who focuses on understanding the underlying foundations of the subject and on reinforcing
that by solving numerous problems and thoroughly understanding them will doubtlessly achieve
a double aim: reaping good grades as well as obtaining a sound and long-lasting education.

N. Zettili



Chapter 1

Origins of Quantum Physics

In this chapter we are going to review the main physical ideas and experimental facts that
defied classical physics and led to the birth of quantum mechanics. The introduction of quan-
tum mechanics was prompted by the failure of classical physics in explaining a number of
microphysical phenomena that were observed at the end of the nineteenth and early twentieth
centuries.

1.1 Historical Note

At the end of the nineteenth century, physics consisted essentially of classical mechanics, the
theory of electromagnetism', and thermodynamics. Classical mechanics was used to predict
the dynamics of material bodies, and Maxwell’s electromagnetism provided the proper frame-
work to study radiation; matter and radiation were described in terms of particles and waves,
respectively. As for the interactions between matter and radiation, they were well explained
by the Lorentz force or by thermodynamics. The overwhelming success of classical physics—
classical mechanics, classical theory of electromagnetism, and thermodynamics—made people
believe that the ultimate description of nature had been achieved. It seemed that all known
physical phenomena could be explained within the framework of the general theories of matter
and radiation.

At the turn of the twentieth century, however, classical physics, which had been quite unas-
sailable, was seriously challenged on two major fronts:

e Relativistic domain: Einstein’s 1905 theory of relativity showed that the validity of
Newtonian mechanics ceases at very high speeds (i.e., at speeds comparable to that of
light).

e Microscopic domain: As soon as new experimental techniques were developed to the
point of probing atomic and subatomic structures, it turned out that classical physics fails
miserably in providing the proper explanation for several newly discovered phenomena.
It thus became evident that the validity of classical physics ceases at the microscopic
level and that new concepts had to be invoked to describe, for instance, the structure of
atoms and molecules and how light interacts with them.

IMaxwell’s theory of electromagnetism had unified the, then ostensibly different, three branches of physics: elec-
tricity, magnetism, and optics.
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The failure of classical physics to explain several microscopic phenomena—such as black-
body radiation, the photoelectric effect, atomic stability, and atomic spectroscopy—had cleared
the way for seeking new ideas outside its purview.

The first real breakthrough came in 1900 when Max Planck introduced the concept of the
quantum of energy. In his efforts to explain the phenomenon of blackbody radiation, he suc-
ceeded in reproducing the experimental results only after postulating that the energy exchange
between radiation and its surroundings takes place in discrete, or quantized, amounts. He ar-
gued that the energy exchange between an electromagnetic wave of frequency v and matter
occurs only in integer multiples of hv, which he called the energy of a quantum, where 4 is a
fundamental constant called Planck’s constant. The quantization of electromagnetic radiation
turned out to be an idea with far-reaching consequences.

Planck’s idea, which gave an accurate explanation of blackbody radiation, prompted new
thinking and triggered an avalanche of new discoveries that yielded solutions to the most out-
standing problems of the time.

In 1905 Einstein provided a powerful consolidation to Planck’s quantum concept. In trying
to understand the photoelectric effect, Einstein recognized that Planck’s idea of the quantization
of the electromagnetic waves must be valid for light as well. So, following Planck’s approach,
he posited that light itself is made of discrete bits of energy (or tiny particles), called photons,
each of energy /v, v being the frequency of the light. The introduction of the photon concept
enabled Einstein to give an elegantly accurate explanation to the photoelectric problem, which
had been waiting for a solution ever since its first experimental observation by Hertz in 1887.

Another seminal breakthrough was due to Niels Bohr. Right after Rutherford’s experimental
discovery of the atomic nucleus in 1911, and combining Rutherford’s atomic model, Planck’s
quantum concept, and Einstein’s photons, Bohr introduced in 1913 his model of the hydrogen
atom. In this work, he argued that atoms can be found only in discrete states of energy and
that the interaction of atoms with radiation, i.e., the emission or absorption of radiation by
atoms, takes place only in discrete amounts of hv because it results from transitions of the atom
between its various discrete energy states. This work provided a satisfactory explanation to
several outstanding problems such as atomic stability and atomic spectroscopy.

Then in 1923 Compton made an important discovery that gave the most conclusive confir-
mation for the corpuscular aspect of light. By scattering X-rays with electrons, he confirmed
that the X-ray photons behave like particles with momenta /4v/c; v is the frequency of the
X-rays.

This series of breakthroughs—due to Planck, Einstein, Bohr, and Compton—gave both
the theoretical foundations as well as the conclusive experimental confirmation for the particle
aspect of waves; that is, the concept that waves exhibit particle behavior at the microscopic
scale. At this scale, classical physics fails not only quantitatively but even qualitatively and
conceptually.

As if things were not bad enough for classical physics, de Broglie introduced in 1923 an-
other powerful new concept that classical physics could not reconcile: he postulated that not
only does radiation exhibit particle-like behavior but, conversely, material particles themselves
display wave-like behavior. This concept was confirmed experimentally in 1927 by Davisson
and Germer; they showed that interference patterns, a property of waves, can be obtained with
material particles such as electrons.

Although Bohr’s model for the atom produced results that agree well with experimental
spectroscopy, it was criticized for lacking the ingredients of a theory. Like the “quantization”
scheme introduced by Planck in 1900, the postulates and assumptions adopted by Bohr in 1913
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were quite arbitrary and do not follow from the first principles of a theory. It was the dissatis-
faction with the arbitrary nature of Planck’s idea and Bohr’s postulates as well as the need to fit
them within the context of a consistent theory that had prompted Heisenberg and Schrodinger
to search for the theoretical foundation underlying these new ideas. By 1925 their efforts paid
off: they skillfully welded the various experimental findings as well as Bohr’s postulates into
a refined theory: quantum mechanics. In addition to providing an accurate reproduction of the
existing experimental data, this theory turned out to possess an astonishingly reliable predic-
tion power which enabled it to explore and unravel many uncharted areas of the microphysical
world. This new theory had put an end to twenty five years (1900-1925) of patchwork which
was dominated by the ideas of Planck and Bohr and which later became known as the old
quantum theory.

Historically, there were two independent formulations of quantum mechanics. The first
formulation, called matrix mechanics, was developed by Heisenberg (1925) to describe atomic
structure starting from the observed spectral lines. Inspired by Planck’s quantization of waves
and by Bohr’s model of the hydrogen atom, Heisenberg founded his theory on the notion that
the only allowed values of energy exchange between microphysical systems are those that are
discrete: quanta. Expressing dynamical quantities such as energy, position, momentum and
angular momentum in terms of matrices, he obtained an eigenvalue problem that describes the
dynamics of microscopic systems; the diagonalization of the Hamiltonian matrix yields the
energy spectrum and the state vectors of the system. Matrix mechanics was very successful in
accounting for the discrete quanta of light emitted and absorbed by atoms.

The second formulation, called wave mechanics, was due to Schrodinger (1926); it is a
generalization of the de Broglie postulate. This method, more intuitive than matrix mechan-
ics, describes the dynamics of microscopic matter by means of a wave equation, called the
Schrodinger equation; instead of the matrix eigenvalue problem of Heisenberg, Schrodinger
obtained a differential equation. The solutions of this equation yield the energy spectrum and
the wave function of the system under consideration. In 1927 Max Born proposed his proba-
bilistic interpretation of wave mechanics: he took the square moduli of the wave functions that
are solutions to the Schrodinger equation and he interpreted them as probability densities.

These two ostensibly different formulations—Schrodinger’s wave formulation and Heisen-
berg’s matrix approach—were shown to be equivalent. Dirac then suggested a more general
formulation of quantum mechanics which deals with abstract objects such as kets (state vec-
tors), bras, and operators. The representation of Dirac’s formalism in a continuous basis—the
position or momentum representations—gives back Schrodinger’s wave mechanics. As for
Heisenberg’s matrix formulation, it can be obtained by representing Dirac’s formalism in a
discrete basis. In this context, the approaches of Schrodinger and Heisenberg represent, re-
spectively, the wave formulation and the matrix formulation of the general theory of quantum
mechanics.

Combining special relativity with quantum mechanics, Dirac derived in 1928 an equation
which describes the motion of electrons. This equation, known as Dirac’s equation, predicted
the existence of an antiparticle, the positron, which has similar properties, but opposite charge,
with the electron; the positron was discovered in 1932, four years after its prediction by quan-
tum mechanics.

In summary, quantum mechanics is the theory that describes the dynamics of matter at the
microscopic scale. Fine! But is it that important to learn? This is no less than an otiose question,
for quantum mechanics is the only valid framework for describing the microphysical world.
It is vital for understanding the physics of solids, lasers, semiconductor and superconductor
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devices, plasmas, etc. In short, quantum mechanics is the founding basis of all modern physics:
solid state, molecular, atomic, nuclear, and particle physics, optics, thermodynamics, statistical
mechanics, and so on. Not only that, it is also considered to be the foundation of chemistry and
biology.

1.2 Particle Aspect of Radiation

According to classical physics, a particle is characterized by an energy £ and a momentum
p, whereas a wave is characterized by an amplitude and a wave vector k (|l€| = 2z /2) that
specifies the direction of propagation of the wave. Particles and waves exhibit entirely different
behaviors; for instance, the “particle” and “wave” properties are mutually exclusive. We should
note that waves can exchange any (continuous) amount of energy with particles.

In this section we are going to see how these rigid concepts of classical physics led to its
failure in explaining a number of microscopic phenomena such as blackbody radiation, the
photoelectric effect, and the Compton effect. As it turned out, these phenomena could only be
explained by abandoning the rigid concepts of classical physics and introducing a new concept:
the particle aspect of radiation.

1.2.1 Blackbody Radiation

At issue here is how radiation interacts with matter. When heated, a solid object glows and
emits thermal radiation. As the temperature increases, the object becomes red, then yellow,
then white. The thermal radiation emitted by glowing solid objects consists of a continuous
distribution of frequencies ranging from infrared to ultraviolet. The continuous pattern of the
distribution spectrum is in sharp contrast to the radiation emitted by heated gases; the radiation
emitted by gases has a discrete distribution spectrum: a few sharp (narrow), colored lines with
no light (i.e., darkness) in between.

Understanding the continuous character of the radiation emitted by a glowing solid object
constituted one of the major unsolved problems during the second half of the nineteenth century.
All attempts to explain this phenomenon by means of the available theories of classical physics
(statistical thermodynamics and classical electromagnetic theory) ended up in miserable failure.
This problem consisted in essence of specifying the proper theory of thermodynamics that
describes how energy gets exchanged between radiation and matter.

When radiation falls on an object, some of it might be absorbed and some reflected. An
idealized “blackbody” is a material object that absorbs all of the radiation falling on it, and
hence appears as black under reflection when illuminated from outside. When an object is
heated, it radiates electromagnetic energy as a result of the thermal agitation of the electrons
in its surface. The intensity of this radiation depends on its frequency and on the temperature;
the light it emits ranges over the entire spectrum. An object in thermal equilibrium with its
surroundings radiates as much energy as it absorbs. It thus follows that a blackbody is a perfect
absorber as well as a perfect emitter of radiation.

A practical blackbody can be constructed by taking a hollow cavity whose internal walls
perfectly reflect electromagnetic radiation (e.g., metallic walls) and which has a very small
hole on its surface. Radiation that enters through the hole will be trapped inside the cavity and
gets completely absorbed after successive reflections on the inner surfaces of the cavity. The
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Figure 1.1 Spectral energy density u(v, T') of blackbody radiation at different temperatures as
a function of the frequency v.

hole thus absorbs radiation like a black body. On the other hand, when this cavity is heated? to
a temperature 7', the radiation that leaves the hole is blackbody radiation, for the hole behaves
as a perfect emitter; as the temperature increases, the hole will eventually begin to glow. To
understand the radiation inside the cavity, one needs simply to analyze the spectral distribution
of the radiation coming out of the hole. In what follows, the term blackbody radiation will
then refer to the radiation leaving the hole of a heated hollow cavity; the radiation emitted by a
blackbody when hot is called blackbody radiation.

By the mid-1800s, a wealth of experimental data about blackbody radiation was obtained
for various objects. All these results show that, at equilibrium, the radiation emitted has a well-
defined, continuous energy distribution: to each frequency there corresponds an energy density
which depends neither on the chemical composition of the object nor on its shape, but only
on the temperature of the cavity’s walls (Figure 1.1). The energy density shows a pronounced
maximum at a given frequency, which increases with temperature; that is, the peak of the radi-
ation spectrum occurs at a frequency that is proportional to the temperature (1.16). This is the
underlying reason behind the change in color of a heated object as its temperature increases, no-
tably from red to yellow to white. It turned out that the explanation of the blackbody spectrum
was not so easy.

A number of attempts aimed at explaining the origin of the continuous character of this
radiation were carried out. The most serious among such attempts, and which made use of
classical physics, were due to Wilhelm Wien in 1889 and Rayleigh in 1900. In 1879 J. Stefan
found experimentally that the total intensity (or the total power per unit surface area) radiated
by a glowing object of temperature 7T is given by

P=acT? (1.1)

which is known as the Stefan—Boltzmann law, where ¢ = 5.67 x 1078 Wm—2K~* is the

2When the walls are heated uniformly to a temperature 7', they emit radiation (due to thermal agitation or vibrations
of the electrons in the metallic walls).
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Figure 1.2 Comparison of various spectral densities: while the Planck and experimental dis-
tributions match perfectly (solid curve), the Rayleigh—Jeans and the Wien distributions (dotted
curves) agree only partially with the experimental distribution.

Stefan—Boltzmann constant, and « is a coefficient which is less than or equal to 1; in the case
of a blackbody a = 1. Then in 1884 Boltzmann provided a theoretical derivation for Stefan’s
experimental law by combining thermodynamics and Maxwell’s theory of electromagnetism.

Wien’s energy density distribution
Using thermodynamic arguments, Wien took the Stefan—Boltzmann law (1.1) and in 1894 he
extended it to obtain the energy density per unit frequency of the emitted blackbody radiation:

u(w, T) = Av3e /T, (1.2)

where 4 and £ are empirically defined parameters (they can be adjusted to fit the experimental
data). Note: u(v, T) has the dimensions of an energy per unit volume per unit frequency; its SI
units are Jm~3 Hz~!. Although Wien’s formula fits the high-frequency data remarkably well,
it fails badly at low frequencies (Figure 1.2).

Rayleigh’s energy density distribution

In his 1900 attempt, Rayleigh focused on understanding the nature of the electromagnetic ra-
diation inside the cavity. He considered the radiation to consist of standing waves having a
temperature 7 with nodes at the metallic surfaces. These standing waves, he argued, are equiv-
alent to harmonic oscillators, for they result from the harmonic oscillations of a large number
of electrical charges, electrons, that are present in the walls of the cavity. When the cavity is in
thermal equilibrium, the electromagnetic energy density inside the cavity is equal to the energy
density of the charged particles in the walls of the cavity; the average total energy of the radia-
tion leaving the cavity can be obtained by multiplying the average energy of the oscillators by
the number of modes (standing waves) of the radiation in the frequency interval v to v 4 dv:

2
NQ) = 8723” : (1.3)
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where ¢ = 3 x 108 ms~! is the speed of light; the quantity (87 v2/c3)dv gives the number of
modes of oscillation per unit volume in the frequency range v to v +dv. So the electromagnetic
energy density in the frequency range v to v + dv is given by

8 2
u(v, T) = NO)E) =~ (E), (1.4)

where (E) is the average energy of the oscillators present on the walls of the cavity (or of the
electromagnetic radiation in that frequency interval); the temperature dependence of u (v, T') is
buried in (E).

How does one calculate (E)? According to the equipartition theorem of classical thermo-
dynamics, all oscillators in the cavity have the same mean energy, irrespective of their frequen-

cies3:
J§ et
~fFeEiag T ()

where k = 1.3807 x 10723 JK~! is the Boltzmann constant. An insertion of (1.5) into (1.4)
leads to the Rayleigh—Jeans formula:

(E)

8rv?
3

u@,T) = kT. (1.6)
Except for low frequencies, this law is in complete disagreement with experimental data: u(v, T)
as given by (1.6) diverges for high values of v, whereas experimentally it must be finite (Fig-
ure 1.2). Moreover, if we integrate (1.6) over all frequencies, the integral diverges. This implies
that the cavity contains an infinite amount of energy. This result is absurd. Historically, this was
called the ultraviolet catastrophe, for (1.6) diverges for high frequencies (i.e., in the ultraviolet
range)—a real catastrophical failure of classical physics indeed! The origin of this failure can
be traced to the derivation of the average energy (1.5). It was founded on an erroneous premise:
the energy exchange between radiation and matter is continuous; any amount of energy can be
exchanged.

Planck’s energy density distribution

By devising an ingenious scheme—interpolation between Wien’s rule and the Rayleigh—Jeans
rule—Planck succeeded in 1900 in avoiding the ultraviolet catastrophe and proposed an ac-
curate description of blackbody radiation. In sharp contrast to Rayleigh’s assumption that a
standing wave can exchange any amount (continuum) of energy with matter, Planck considered
that the energy exchange between radiation and matter must be discrete. He then postulated
that the energy of the radiation (of frequency v) emitted by the oscillating charges (from the
walls of the cavity) must come only in integer multiples of hv:

E =nhv, n=0,1,2,3, .-, (1.7)

where / is a universal constant and /v is the energy of a “quantum ” of radiation (v represents
the frequency of the oscillating charge in the cavity’s walls as well as the frequency of the
radiation emitted from the walls, because the frequency of the radiation emitted by an oscil-
lating charged particle is equal to the frequency of oscillation of the particle itself). That is,
the energy of an oscillator of natural frequency v (which corresponds to the energy of a charge

3Using a variable change § = 1/(kT), we have (E) = —% In (fooo e_ﬁEdE) = —% In(1/8) =1/ =kT.
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oscillating with a frequency v) must be an integral multiple of hv; note that v is not the same
for all oscillators, because it depends on the frequency of each oscillator. Classical mechanics,
however, puts no restrictions whatsoever on the frequency, and hence on the energy, an oscilla-
tor can have. The energy of oscillators, such as pendulums, mass—spring systems, and electric
oscillators, varies continuously in terms of the frequency. Equation (1.7) is known as Planck’s
quantization rule for energy or Planck’s postulate.

So, assuming that the energy of an oscillator is quantized, Planck showed that the cor-
rect thermodynamic relation for the average energy can be obtained by merely replacing the
integration of (1.5)—that corresponds to an energy continuum—by a discrete summation cor-
responding to the discreteness of the oscillators” energies*:

Dot gnhve™ KTy L8
S0 eI IKT | Ghv/RT — 1’ (1.8)
n=

(E) =

and hence, by inserting (1.8) into (1.4), the energy density per unit frequency of the radiation
emitted from the hole of a cavity is given by

82 hv

u, )= ———mmr 7

(1.9)

This is known as Planck’s distribution. It gives an exact fit to the various experimental radiation
distributions, as displayed in Figure 1.2. The numerical value of / obtained by fitting (1.9) with
the experimental data is # = 6.626 x 1073* J s. We should note that, as shown in (1.12), we
can rewrite Planck’s energy density (1.9) to obtain the energy density per unit wavelength

. 8mhe 1
4, T) = —s—omr —1-

(1.10)

Let us now look at the behavior of Planck’s distribution (1.9) in the limits of both low and
high frequencies, and then try to establish its connection to the relations of Rayleigh—Jeans,
Stefan—Boltzmann, and Wien. First, in the case of very low frequencies v < kT, we can
show that (1.9) reduces to the Rayleigh—Jeans law (1.6), since exp(hv/kT) ~ 1 + hv/kT.
Moreover, if we integrate Planck’s distribution (1.9) over the whole spectrum (where we use a
change of variable x = v /kT and make use of a special integral®), we obtain the total energy
density which is expressed in terms of Stefan—Boltzmann’s total power per unit surface area
(1.1) as follows:

o 8th [ 3 STkiT* [ X3 87kt . 4,
/O u(v, T)d\} = 0—3/0' de = h3c3 /0' o _ ldx = 15h3C3T = EO'T 5
(1.11)
where 0 = 273k*/15h3¢? = 5.67 x 1078 Wm™2K~* is the Stefan-Boltzmann constant. In
this way, Planck’s relation (1.9) leads to a finite total energy density of the radiation emitted
from a blackbody, and hence avoids the ultraviolet catastrophe. Second, in the limit of &igh
frequencies, we can easily ascertain that Planck’s distribution (1.9) yields Wien’s rule (1.2).
In summary, the spectrum of the blackbody radiation reveals the quantization of radiation,
notably the particle behavior of electromagnetic waves.

4To derive (1.8) one needs: 1/(1 — x) = >0 X andx/(1 — x)? = o0 o nx" withx = e~ /KT
3 4
SIn integrating (1.11), we need to make use of this integral: (;"OO ef—l dx = %
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The introduction of the constant /# had indeed heralded the end of classical physics and the
dawn of a new era: physics of the microphysical world. Stimulated by the success of Planck’s
quantization of radiation, other physicists, notably Einstein, Compton, de Broglie, and Bohr,
skillfully adapted it to explain a host of other outstanding problems that had been unanswered
for decades.

Example 1.1 (Wien’s displacement law)

(a) Show that the maximum of the Planck energy density (1.9) occurs for a wavelength of
the form A,,,x = b/ T, where T is the temperature and b is a constant that needs to be estimated.

(b) Use the relation derived in (a) to estimate the surface temperature of a star if the radiation
it emits has a maximum intensity at a wavelength of 446 nm. What is the intensity radiated by
the star?

(c) Estimate the wavelength and the intensity of the radiation emitted by a glowing tungsten
filament whose surface temperature is 3300 K.

Solution
(a) Since v = ¢/, we have dv = |dv/(dA)|dA = (c/A?)dA; we can thus write Planck’s
energy density (1.9) in terms of the wavelength as follows:

- dv 8The 1
u(/l, T):u(v, T) d7 :TW. (1.12)
The maximum of (4, T') corresponds to du (4, T)/d4 = 0, which yields
8T he heli he ehe/ kT
—5(1 = he/MT =0 1.13
26 [ ( ¢ ) T (ehe/ 2T — 1)2 ’ (1.13)
and hence “
S=s(i-e), (1.14)

where o = hc/(kT). We can solve this transcendental equation either graphically or numeri-
cally by writing a /4 = 5 — ¢. Inserting this value into (1.14), we obtain 5 — & = 5 — 5¢™>+¢,
which leads to a suggestive approximate solution & ~ 5¢™ = 0.0337 and hence a/1 =
5 —0.0337 = 4.9663. Since a = hc/(kT) and using the values & = 6.626 x 1073* J s and
k = 1.3807 x 10723 JK~!, we can write the wavelength that corresponds to the maximum of
the Planck energy density (1.9) as follows:

Lo he 1 28989x10°mK
" 49663k T T '

(1.15)

This relation, which shows that 4,,,, decreases with increasing temperature of the body, is
called Wien’s displacement law. 1t can be used to determine the wavelength corresponding to
the maximum intensity if the temperature of the body is known or, conversely, to determine the
temperature of the radiating body if the wavelength of greatest intensity is known. This law
can be used, in particular, to estimate the temperature of stars (or of glowing objects) from their
radiation, as shown in part (b). From (1.15) we obtain

c 4.9663
vV = — =
max imax h

kT. (1.16)
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This relation shows that the peak of the radiation spectrum occurs at a frequency that is propor-
tional to the temperature.

(b) If the radiation emitted by the star has a maximum intensity at a wavelength of 4,5, =
446 nm, its surface temperature is given by

28989 x 107°m K
© 446x10°m

~ 6500 K. (1.17)

Using Stefan—Boltzmann’s law (1.1), and assuming the star to radiate like a blackbody, we can
estimate the total power per unit surface area emitted at the surface of the star:

P=06T*=567x10" Wm2K™* x (6500 K)* ~ 101.2 x 10° Wm™2. (1.18)

This is an enormous intensity which will decrease as it spreads over space.
(c) The wavelength of greatest intensity of the radiation emitted by a glowing tungsten
filament of temperature 3300 K is

2898.9 x 107 m K

The intensity (or total power per unit surface area) radiated by the filament is given by

P=06T"=567x10Wm2K™* x (3300 K)* ~ 6.7 x 10° Wm™2. (1.20)

1.2.2 Photoelectric Effect

The photoelectric effect provides a direct confirmation for the energy quantization of light. In
1887 Hertz discovered the photoelectric effect: electrons® were observed to be ejected from
metals when irradiated with light (Figure 1.3a). Moreover, the following experimental laws
were discovered prior to 1905:

e Ifthe frequency of the incident radiation is smaller than the metal’s threshold frequency—
a frequency that depends on the properties of the metal—no electron can be emitted
regardless of the radiation’s intensity (Philip Lenard, 1902).

e No matter how low the intensity of the incident radiation, electrons will be ejected in-
stantly the moment the frequency of the radiation exceeds the threshold frequency vy.

e At any frequency above vg, the number of electrons ejected increases with the intensity
of the light but does not depend on the light’s frequency.

e The kinetic energy of the ejected electrons depends on the frequency but not on the in-
tensity of the beam; the kinetic energy of the ejected electron increases linearly with the
incident frequency.

6In 1899 I. J. Thomson confirmed that the particles giving rise to the photoelectric effect (i.e., the particles ejected
from the metals) are electrons.
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K
Incident light 1
of energy hv Electrons ejected
with kinetic energy
AN K=hv—W
Metal of work function W and
threshold frequency vo = W/ h L
(2) v ()

Figure 1.3 (a) Photoelectric effect: when a metal is irradiated with light, electrons may get
emitted. (b) Kinetic energy K of the electron leaving the metal when irradiated with a light of
frequency v; when v < vy no electron is ejected from the metal regardless of the intensity of
the radiation.

These experimental findings cannot be explained within the context of a purely classical
picture of radiation, notably the dependence of the effect on the threshold frequency. According
to classical physics, any (continuous) amount of energy can be exchanged with matter. That is,
since the intensity of an electromagnetic wave is proportional to the square of its amplitude, any
frequency with sufficient intensity can supply the necessary energy to free the electron from the
metal.

But what would happen when using a weak light source? According to classical physics,
an electron would keep on absorbing energy—at a continuous rate—until it gained a sufficient
amount; then it would leave the metal. If this argument is to hold, then when using very weak
radiation, the photoelectric effect would not take place for a long time, possibly hours, until an
electron gradually accumulated the necessary amount of energy. This conclusion, however, dis-
agrees utterly with experimental observation. Experiments were conducted with a light source
that was so weak it would have taken several hours for an electron to accumulate the energy
needed for its ejection, and yet some electrons were observed to leave the metal instantly. Fur-
ther experiments showed that an increase in intensity (brightness) alone can in no way dislodge
electrons from the metal. But by increasing the frequency of the incident radiation beyond a cer-
tain threshold, even at very weak intensity, the emission of electrons starts immediately. These
experimental facts indicate that the concept of gradual accumulation, or continuous absorption,
of energy by the electron, as predicated by classical physics, is indeed erroneous.

Inspired by Planck’s quantization of electromagnetic radiation, Einstein succeeded in 1905
in giving a theoretical explanation for the dependence of photoelectric emission on the fre-
quency of the incident radiation. He assumed that light is made of corpuscles each carrying an
energy hv, called photons. When a beam of light of frequency v is incident on a metal, each
photon transmits all its energy /v to an electron near the surface; in the process, the photon is
entirely absorbed by the electron. The electron will thus absorb energy only in quanta of energy
hv, irrespective of the intensity of the incident radiation. If 4v is larger than the metal’s work
Sfunction W—the energy required to dislodge the electron from the metal (every metal has free
electrons that move from one atom to another; the minimum energy required to free the electron
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from the metal is called the work function of that metal}—the electron will then be knocked out
of the metal. Hence no electron can be emitted from the metal’s surface unless Av > W:

h =W +K, (1.21)

where K represents the kinetic energy of the electron leaving the material.

Equation (1.21), which was derived by Einstein, gives the proper explanation to the exper-
imental observation that the kinetic energy of the ejected electron increases linearly with the
incident frequency v, as shown in Figure 1.3b:

K=hv—W=h@-vy), (1.22)

where vg = W/h is called the threshold or cutoff frequency of the metal. Moreover, this
relation shows clearly why no electron can be ejected from the metal unless v > vg: since the
kinetic energy cannot be negative, the photoelectric effect cannot occur when v < vg regardless
of the intensity of the radiation. The ejected electrons acquire their kinetic energy from the
excess energy /(v — vg) supplied by the incident radiation.

The kinetic energy of the emitted electrons can be experimentally determined as follows.
The setup, which was devised by Lenard, consists of the photoelectric metal (cathode) that is
placed next to an anode inside an evacuated glass tube. When light strikes the cathode’s surface,
the electrons ejected will be attracted to the anode, thereby generating a photoelectric current.
It was found that the magnitude of the photoelectric current thus generated is proportional to
the intensity of the incident radiation, yet the speed of the electrons does not depend on the
radiation’s intensity, but on its frequency. To measure the kinetic energy of the electrons, we
simply need to use a varying voltage source and reverse the terminals. When the potential
across the tube is reversed, the liberated electrons will be prevented from reaching the anode;
only those electrons with kinetic energy larger than e| V| will make it to the negative plate and
contribute to the current. We vary 7 until it reaches a value V;, called the stopping potential,
at which all of the electrons, even the most energetic ones, will be turned back before reaching
the collector; hence the flow of photoelectric current ceases completely. The stopping potential
Vs is connected to the electrons’ kinetic energy by e|Vs| = %mezﬂ = K (in what follows, Vj
will implicitly denote | Vs |). Thus, the relation (1.22) becomes eVy = hv — W or

W he W
o=ty L _2_ 2 (1.23)
e e el e

The shape of the plot of V; against frequency is a straight line, much like Figure 1.3b with
the slope now given by //e. This shows that the stopping potential depends linearly on the
frequency of the incident radiation.

It was Millikan who, in 1916, gave a systematic experimental confirmation to Einstein’s
photoelectric theory. He produced an extensive collection of photoelectric data using various
metals. He verified that Einstein’s relation (1.23) reproduced his data exactly. In addition,
Millikan found that his empirical value for /, which he obtained by measuring the slope / /e of
(1.23) (Figure 1.3b), is equal to Planck’s constant to within a 0.5% experimental error.

In summary, the photoelectric effect does provide compelling evidence for the corpuscular
nature of the electromagnetic radiation.
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Example 1.2 (Estimation of the Planck constant)
When two ultraviolet beams of wavelengths 41 = 80 nm and 4, = 110 nm fall on a lead surface,
they produce photoelectrons with maximum energies 11.390 eV and 7.154 eV, respectively.
(a) Estimate the numerical value of the Planck constant.
(b) Calculate the work function, the cutoff frequency, and the cutoff wavelength of lead.

Solution

(a) From (1.22) we can write the kinetic energies of the emitted electrons as K| = hc/1| —
W and K> = hc/Ay — W the difference between these two expressions is given by K1 — K =
hc(/lz - /11)/(/11/12) and hence

. Ki—Ky 114

h .
c Ay — A

(1.24)

Since 1 eV = 1.6 x 10~19 J, the numerical value of 4 follows at once:

11.390 — 7.154) x 1.6 x 1071 T (80 x 10~ m)(110 x 10~°
pet ) x 1.6 x (80 x m)(A10 x ™ 6.627x10-3 7 s.

3% 108 ms—! “T10 x 109 m — 80 x 10~ m
(1.25)
This is a very accurate result indeed.
(b) The work function of the metal can be obtained from either one of the two data
h 6.627 x 1073 J s x 3 x 10 ms~!
W="-K = a S Y 11390 x 1.6x 1071° ]
o 80 x 10~ m
= 6.627x 107 1=4.14eV. (1.26)

The cutoff frequency and wavelength of lead are

W 6.627x 107197 05 | Lo _3x 108 m/s
— = = Z, = =
h 6627 x10-34] s "= % 1015 Hz

Vo = =300 nm. (1.27)

1.2.3 Compton Effect

In his 1923 experiment, Compton provided the most conclusive confirmation of the particle
aspect of radiation. By scattering X-rays off free electrons, he found that the wavelength of the
scattered radiation is larger than the wavelength of the incident radiation. This can be explained
only by assuming that the X-ray photons behave like particles.

At issue here is to study how X-rays scatter off free electrons. According to classical
physics, the incident and scattered radiation should have the same wavelength. This can be
viewed as follows. Classically, since the energy of the X-ray radiation is too high to be ab-
sorbed by a free electron, the incident X-ray would then provide an oscillatory electric field
which sets the electron into oscillatory motion, hence making it radiate light with the same
wavelength but with an intensity / that depends on the intensity of the incident radiation Iy
(i.e., I o Ip). Neither of these two predictions of classical physics is compatible with ex-
periment. The experimental findings of Compton reveal that the wavelength of the scattered
X-radiation increases by an amount A4, called the wavelength shift, and that A4 depends not
on the intensity of the incident radiation, but only on the scattering angle.
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Figure 1.4 Compton scattering of a photon (of energy v and momentum p) off a free, sta-
tionary electron. After collision, the photon is scattered at angle 6 with energy hv’.

Compton succeeded in explaining his experimental results only after treating the incident
radiation as a stream of particles—photons—colliding elastically with individual electrons. In
this scattering process, which can be illustrated by the elastic scattering of a photon from a free’
electron (Figure 1.4), the laws of elastic collisions can be invoked, notably the conservation of
energy and momentum.

Consider that the incident photon, of energy £ = hv and momentum p = hv/c, collides
with an electron that is initially at rest. If the photon scatters with a momentum p at an angle®
6 while the electron recoils with a momentum Pe, the conservation of linear momentum yields

p=P.+p (1.28)
which leads to
h2
=(p-p)V=p*+p° —2ppcosf=— (v +v' —2vv’cos€). (1.29)

Let us now turn to the energy conservation. The energies of the electron before and after
the collision are given, respectively, by

E —mecz, (1.30)

0=
> m2c*
=/ P2c2 + m2c* = h[v2 + 1'% — 21/ cos O + —%— W (1.31)

in deriving this relation, we have used (1.29). Since the energies of the incident and scattered
photons are given by E = hv and E’ = hV’, respectively, conservation of energy dictates that

E+Ey=E +E, (1.32)

7When a metal is irradiated with high energy radiation, and at sufficiently high frequencies—as in the case of X-
rays—so that v is much larger than the binding energies of the electrons in the metal, these electrons can be considered
as free.

8Here 6 is the angle between p and p’, the photons’ momenta before and after collision.
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or
2 2 mgct
hv 4+ mec® = hv' + hy[vZ 4+ V% — 20V’ cos 0 + ;2 , (1.33)
which in turn leads to
2 2 04
v—v’+%:\/v2+v/2—2vv’cosﬁ+m;26 ) (1.34)
Squaring both sides of (1.34) and simplifying, we end up with
1 1 h 2h ., (0
; - ; = mec2 (1 — COS (9) = mecz Sm (E) . (135)
Hence the wavelength shift is given by
/ h 2 0
AL =1 —/’{:mc(l—cos6)=21csm 5) (1.36)
e

where Ac = h/(me.c) = 2.426 x 10712 m is called the Compton wavelength of the electron.
This relation, which connects the initial and final wavelengths to the scattering angle, confirms
Compton’s experimental observation: the wavelength shift of the X-rays depends only on the
angle at which they are scattered and not on the frequency (or wavelength) of the incident
photons.

In summary, the Compton effect confirms that photons behave like particles: they collide
with electrons like material particles.

Example 1.3 (Compton effect)
High energy photons (y -rays) are scattered from electrons initially at rest. Assume the photons
are backscatterred and their energies are much larger than the electron’s rest-mass energy, £ >
mec?.

(a) Calculate the wavelength shift.

(b) Show that the energy of the scattered photons is half the rest mass energy of the electron,
regardless of the energy of the incident photons.

(c) Calculate the electron’s recoil kinetic energy if the energy of the incident photons is
150 MeV.

Solution
(a) In the case where the photons backscatter (i.e., 8 = =), the wavelength shift (1.36)
becomes T
AL =2 — ) =2icsin > (5) —2)c =486 x 1072 m, (1.37)
since Ac = h/(meqc) = 2.426 x 10712 m,
(b) Since the energy of the scattered photons E’ is related to the wavelength 1’ by E’ =
he/ A, equation (1.37) yields
,  hc hc mec? mec?

T T At 2h/(mee)  muc2i)(he) + 2 muci/E 42

(1.38)
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Figure 1.5 Pair production: a highly energetic photon, interacting with a nucleus, disappears
and produces an electron and a positron.

where E = hc/J is the energy of the incident photons. If £ > mc?

(1.38) by

we can approximate

2 291 2 2\2 2
MeC MeC MeC (mec?) MmecC
E = |:1 + ] ~ - ~

2 4E 2

= 0.25 MeV. (1.39)

(c) If E = 150 MeV, the kinetic energy of the recoiling electrons can be obtained from
conservation of energy

Ke = E — E' =~ 150 MeV — 0.25 MeV = 149.75 MeV. (1.40)

1.2.4 Pair Production

We deal here with another physical process which confirms that radiation (the photon) has
corpuscular properties.

The theory of quantum mechanics that Schrodinger and Heisenberg proposed works only
for nonrelativistic phenomena. This theory, which is called nonrelativistic quantum mechanics,
was immensely successful in explaining a wide range of such phenomena. Combining the the-
ory of special relativity with quantum mechanics, Dirac succeeded (1928) in extending quantum
mechanics to the realm of relativistic phenomena. The new theory, called relativistic quantum
mechanics, predicted the existence of a new particle, the positron. This particle, defined as the
antiparticle of the electron, was predicted to have the same mass as the electron and an equal
but opposite (positive) charge.

Four years after its prediction by Dirac’s relativistic quantum mechanics, the positron was
discovered by Anderson in 1932 while studying the trails left by cosmic rays in a cloud chamber.
When high-frequency electromagnetic radiation passes through a foil, individual photons of
this radiation disappear by producing a pair of particles consisting of an electron, e~, and a
positron, e*: photon— e~ 4+ e™. This process is called pair production; Anderson obtained
such a process by exposing a lead foil to cosmic rays from outer space which contained highly
energetic X-rays. It is useless to attempt to explain the pair production phenomenon by means
of classical physics, because even nonrelativistic quantum mechanics fails utterly to account
for it.

Due to charge, momentum, and energy conservation, pair production cannot occur in empty
space. For the process photon— e~ + e™ to occur, the photon must interact with an external
field such as the Coulomb field of an atomic nucleus to absorb some of its momentum. In the
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reaction depicted in Figure 1.5, an electron—positron pair is produced when the photon comes
near (interacts with) a nucleus at rest; energy conservation dictates that

o = Eo +Eq+Ey= (mec2 +kef) + (mecz +ke+) + Ky
~ 2moc? 4 kp + kot (1.41)

where % is the energy of the incident photon, 2m.c? is the sum of the rest masses of the
electron and positron, and k.- and k,+ are the kinetic energies of the electron and positron,
respectively. As for £y = Ky, it represents the recoil energy of the nucleus which is purely
kinetic. Since the nucleus is very massive compared to the electron and the positron, K can
be neglected to a good approximation. Note that the photon cannot produce an electron or a
positron alone, for electric charge would not be conserved. Also, a massive object, such as the
nucleus, must participate in the process to take away some of the photon’s momentum.

The inverse of pair production, called pair annihilation, also occurs. For instance, when
an electron and a positron collide, they annihilate each other and give rise to electromagnetic
radiation’: e~ 4 et — photon. This process explains why positrons do not last long in nature.
When a positron is generated in a pair production process, its passage through matter will make
it lose some of its energy and it eventually gets annihilated after colliding with an electron.
The collision of a positron with an electron produces a hydrogen-like atom, called positronium,
with a mean lifetime of about 10~!9 s; positronium is like the hydrogen atom where the proton
is replaced by the positron. Note that, unlike pair production, energy and momentum can
simultaneously be conserved in pair annihilation processes without any additional (external)
field or mass such as the nucleus.

The pair production process is a direct consequence of the mass—energy equation of Einstein
E = mc?, which states that pure energy can be converted into mass and vice versa. Conversely,
pair annihilation occurs as a result of mass being converted into pure energy. All subatomic
particles also have antiparticles (e.g., antiproton). Even neutral particles have antiparticles;
for instance, the antineutron is the neutron’s antiparticle. Although this text deals only with
nonrelativistic quantum mechanics, we have included pair production and pair annihilation,
which are relativistic processes, merely to illustrate how radiation interacts with matter, and
also to underscore the fact that the quantum theory of Schrodinger and Heisenberg is limited to
nonrelativistic phenomena only.

Example 1.4 (Minimum energy for pair production)
Calculate the minimum energy of a photon so that it converts into an electron—positron pair.
Find the photon’s frequency and wavelength.

Solution

The minimum energy E,,;, of a photon required to produce an electron—positron pair must be
equal to the sum of rest mass energies of the electron and positron; this corresponds to the case
where the kinetic energies of the electron and positron are zero. Equation (1.41) yields

Epin = 2mec® =2 x 0.511 MeV = 1.02 MeV. (1.42)

9When an electron—positron pair annihilate, they produce at least two photons each having an energy Mmec? =

0.511 MeV.



18 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

If the photon’s energy is smaller than 1.02 MeV, no pair will be produced. The photon’s
frequency and wavelength can be obtained at once from E,,;, = hv = 2mectand A = ¢ /v:

_ 2mec® 2% 9.1 x 1073 kg x (3 x 108 ms™1)?

— =2.47 x 10°° Hz, 1.43
Y= 6.63 x 10377 s % z (1.43)

3 x 108ms~!
a=<

= _12x107 2% m 1.44
v T 247 x 109 Hz % m (1.44)

1.3 Wave Aspect of Particles

1.3.1 de Broglie’s Hypothesis: Matter Waves

As discussed above—in the photoelectric effect, the Compton effect, and the pair production
effect—radiation exhibits particle-like characteristics in addition to its wave nature. In 1923 de
Broglie took things even further by suggesting that this wave—particle duality is not restricted to
radiation, but must be universal: all material particles should also display a dual wave—particle
behavior. That is, the wave—particle duality present in light must also occur in matter.

So, starting from the momentum of a photon p = hv/c = h/i, we can generalize this
relation to any material particle'® with nonzero rest mass: each material particle of momentum
p behaves as a group of waves (matter waves) whose wavelength A and wave vector k are
governed by the speed and mass of the particle

bl
Il

A==,
p

, (1.45)

S

where # = h/2z. The expression (1.45), known as the de Broglie relation, connects the mo-
mentum of a particle with the wavelength and wave vector of the wave corresponding to this
particle.

1.3.2 Experimental Confirmation of de Broglie’s Hypothesis

de Broglie’s idea was confirmed experimentally in 1927 by Davisson and Germer, and later by
Thomson, who obtained interference patterns with electrons.

1.3.2.1 Davisson—Germer Experiment

In their experiment, Davisson and Germer scattered a 54 eV monoenergetic beam of electrons
from a nickel (Ni) crystal. The electron source and detector were symmetrically located with
respect to the crystal’s normal, as indicated in Figure 1.6; this is similar to the Bragg setup
for X-ray diffraction by a grating. What Davisson and Germer found was that, although the
electrons are scattered in all directions from the crystal, the intensity was a minimum atf = 35°

101y classical physics a particle is characterized by its energy £ and its momentum P, whereas a wave is characterized
by its wavelength 4 and its wave vector k = (27 /1)n, where 7 is a unit vector that specifies the direction of propagation
of the wave.
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Figure 1.6 Davisson—Germer experiment: electrons strike the crystal’s surface at an angle ¢;
the detector, symmetrically located from the electron source, measures the number of electrons
scattered at an angle 6, where 6 is the angle between the incident and scattered electron beams.

and a maximum at & = 50°; that is, the bulk of the electrons scatter only in well-specified
directions. They showed that the pattern persisted even when the intensity of the beam was so
low that the incident electrons were sent one at a time. This can only result from a constructive
interference of the scattered electrons. So, instead of the diffuse distribution pattern that results
from material particles, the reflected electrons formed diffraction patterns that were identical
with Bragg’s X-ray diffraction by a grating. In fact, the intensity maximum of the scattered
electrons in the Davisson—Germer experiment corresponds to the first maximum (n = 1) of
the Bragg formula,

nA =2dsin ¢, (1.46)

where d is the spacing between the Bragg planes, ¢ is the angle between the incident ray and the
crystal’s reflecting planes, 6 is the angle between the incident and scattered beams (d is given
in terms of the separation D between successive atomic layers in the crystal by d = D sin6).
For an Ni crystal, we have d = 0.091 nm, since D = 0.215 nm. Since only one maximum
is seen at & = 50° for a mono-energetic beam of electrons of kinetic energy 54 eV, and since
2¢ + 6 = 7w and hence sin ¢ = cos(0/2) (Figure 1.6), we can obtain from (1.46) the
wavelength associated with the scattered electrons:
2d 2d 1 2 x 0.091 nm .

A=—sin¢ = —cos -0 =
n n 2

0s 25° = 0.165 nm. (1.47)

Now, let us look for the numerical value of A that results from de Broglie’s relation. Since the
kinetic energy of the electrons is K = 54 eV, and since the momentum is p = /2m.K with
mec? = 0.511 MeV (the rest mass energy of the electron) and /ic ~ 197.33 ¢V nm, we can
show that the de Broglie wavelength is

h_ h _ 2rnhc
P 2mK  \2m.c2K

which is in excellent agreement with the experimental value (1.47).

We have seen that the scattered electrons in the Davisson—Germer experiment produced
interference fringes that were identical to those of Bragg’s X-ray diffraction. Since the Bragg
formula provided an accurate prediction of the electrons’ interference fringes, the motion of an
electron of momentum p must be described by means of a plane wave

=0.167 nm, (1.48)

(1) = A EF=00 = 4ol (PF=ED/A (1.49)
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Figure 1.7 Thomson experiment: diffraction of electrons through a thin film of polycrystalline
material yields fringes that usually result from light diffraction.

where A is a constant, lais the wave vector of the plane wave, and w is its angular frequency;
the wave’s parameters, k and w, are related to the electron’s momentum p and energy E by
means of de Broglie’s relations: k= p/h, o =E/h.

We should note that, inspired by de Broglie’s hypothesis, Schrodinger constructed the the-
ory of wave mechanics which deals with the dynamics of microscopic particles. He described
the motion of particles by means of a wave function y (¥, t) which corresponds to the de Broglie
wave of the particle. We will deal with the physical interpretation of w (7, ¢) in the following
section.

1.3.2.2 Thomson Experiment

In the Thomson experiment (Figure 1.7), electrons were diffracted through a polycrystalline
thin film. Diffraction fringes were also observed. This result confirmed again the wave behavior
of electrons.

The Davisson—Germer experiment has inspired others to obtain diffraction patterns with a
large variety of particles. Interference patterns were obtained with bigger and bigger particles
such as neutrons, protons, helium atoms, and hydrogen molecules. de Broglie wave interference
of carbon 60 (C60) molecules were recently!! observed by diffraction at a material absorption
grating; these observations supported the view that each C60 molecule interferes only with
itself (a C60 molecule is nearly a classical object).

1.3.3 Matter Waves for Macroscopic Objects

We have seen that microscopic particles, such as electrons, display wave behavior. What about
macroscopic objects? Do they also display wave features? They surely do. Although macro-

M Markus Arndt, et al., "Wave—Particle Duality of C60 Molecules", Nature, V401, n6754, 680 (Oct. 14, 1999).
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scopic material particles display wave properties, the corresponding wavelengths are too small
to detect; being very massive'?, macroscopic objects have extremely small wavelengths. At the
microscopic level, however, the waves associated with material particles are of the same size
or exceed the size of the system. Microscopic particles therefore exhibit clearly discernible
wave-like aspects.

The general rule is: whenever the de Broglie wavelength of an object is in the range of, or
exceeds, its size, the wave nature of the object is detectable and hence cannot be neglected. But
if its de Broglie wavelength is much too small compared to its size, the wave behavior of this
object is undetectable. For a quantitative illustration of this general rule, let us calculate in the
following example the wavelengths corresponding to two particles, one microscopic and the
other macroscopic.

Example 1.5 (Matter waves for microscopic and macroscopic systems)
Calculate the de Broglie wavelength for

(a) a proton of kinetic energy 70 MeV kinetic energy and

(b) a 100 g bullet moving at 900 ms~!.

Solution

(a) Since the kinetic energy of the proton is 7' = p?/(2m p), its momentum is p = /2T m,.
The de Broglie wavelengthis A, = h/p = h/,/2T'm . To calculate this quantity numerically,
it is more efficient to introduce the well-known quantity ic =~ 197 MeV fm and the rest mass
of the proton m pc2 = 938.3 MeV, where c is the speed of light:

h h 197 MeV f
Ip=21— =2r—— =2 =

T
pe [2Tm ,c? V2 x 938.3 x 70 MeV?

(b) As for the bullet, its de Broglie wavelength is A, = A/p = h/(mv) and since & =
6.626 x 10734 J s, we have

=34x107""m.  (1.50)

h 6.626 x 10734 ]
dp= — = X > 74x107®m. (1.51)
mo  0.1kg x 900 ms—!

The ratio of the two wavelengths is 45/4, ~ 2.2 x 1072, Clearly, the wave aspect of this
bullet lies beyond human observational abilities. As for the wave aspect of the proton, it cannot
be neglected; its de Broglie wavelength of 3.4 x 10~!5 m has the same order of magnitude as
the size of a typical atomic nucleus.

We may conclude that, whereas the wavelengths associated with microscopic systems are
finite and display easily detectable wave-like patterns, the wavelengths associated with macro-
scopic systems are infinitesimally small and display no discernible wave-like behavior. So,
when the wavelength approaches zero, the wave-like properties of the system disappear. In
such cases of infinitesimally small wavelengths, geometrical optics should be used to describe
the motion of the object, for the wave associated with it behaves as a ray.

12Very massive compared to microscopic garticles. For instance, the ratio between the mass of an electron and a
100 g bullet is infinitesimal: me/mp =~ 10~2
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Figure 1.8 The double-slit experiment with particles: S is a source of bullets; I and I, are
the intensities recorded on the screen, respectively, when only Sj is open and then when only
S, is open. When both slits are open, the total intensity is / = I + .

1.4 Particles versus Waves

In this section we are going to study the properties of particles and waves within the contexts of
classical and quantum physics. The experimental setup to study these aspects is the double-slit
experiment, which consists of a source S (S can be a source of material particles or of waves),
a wall with two slits S7 and S,, and a back screen equipped with counters that record whatever
arrives at it from the slits.

1.4.1 Classical View of Particles and Waves

In classical physics, particles and waves are mutually exclusive; they exhibit completely differ-
ent behaviors. While the full description of a particle requires only one parameter, the position
vector 7(¢), the complete description of a wave requires two, the amplitude and the phase. For
instance, three-dimensional plane waves can be described by wave functions w (7, ¢):

WP, 1) = AekT=on — goi¢, (1.52)

where A is the amplitude of the wave and ¢ is its phase (l; is the wave vector and w is the
angular frequency). We may recall the physical meaning of y: the intensity of the wave is
given by 7 = |y|?.

(a) S is a source of streams of bullets

Consider three different experiments as displayed in Figure 1.8, in which a source S fires a
stream of bullets; the bullets are assumed to be indestructible and hence arrive on the screen
in identical lumps. In the first experiment, only slit S; is open; let /1(y) be the corresponding
intensity collected on the screen (the number of bullets arriving per second at a given point y).
In the second experiment, let />(y) be the intensity collected on the screen when only S, is
open. In the third experiments, if S; and S, are both open, the total intensity collected on the
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Figure 1.9 The double-slit experiment: S is a source of waves, I and I, are the intensities
recorded on the screen when only S is open, and then when only S; is open, respectively. When
both slits are open, the total intensity is no longer equal to the sum of /; and I; an oscillating
term has to be added.

screen behind the two slits must be equal to the sum of /; and /»:

I(y)=1L0»)+ L) (1.53)

(b) S'is a source of waves

Now, as depicted in Figure 1.9, S is a source of waves (e.g., light or water waves). Let I be
the intensity collected on the screen when only Sj is open and /, be the intensity when only S>
is open. Recall that a wave is represented by a complex function y, and its intensity is propor-
tional to its amplitude (e.g., height of water or electric field) squared: I} = |y1]?, I = |y2|*.
When both slits are open, the total intensity collected on the screen displays an interference
pattern; hence it cannot be equal to the sum of /1 and /;. The amplitudes, not the intensities,
must add: the total amplitude v is the sum of | and w»; hence the total intensity is given by

I=lyi+wl* = vl +1vl+ (yiv2 + w3w) = L + L+ 2Re(y] v2)
= L1+ L +2IIcos 9, (1.54)

where 0 is the phase difference between w; and w2, and 24/11 1> cos ¢ is an oscillating term,
which is responsible for the interference pattern (Figure 1.9). So the resulting intensity distrib-
ution cannot be predicted from /; or from 7, alone, for it depends on the phase J, which cannot
be measured when only one slit is open (J can be calculated from the slits separation or from
the observed intensities /1, /> and 7).

Conclusion: Classically, waves exhibit interference patterns, particles do not. When two non-
interacting streams of particles combine in the same region of space, their intensities add; when
waves combine, their amplitudes add but their intensities do not.

1.4.2 Quantum View of Particles and Waves

Let us now discuss the double-slit experiment with quantum material particles such as electrons.
Figure 1.10 shows three different experiments where the source S shoots a stream of electrons,
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Figure 1.10 The double-slit experiment: S is a source of electrons, I and I are the intensities
recorded on the screen when only Sj is open, and then when only S, is open, respectively. When
both slits are open, the total intensity is equal to the sum of /1, /> and an oscillating term.

first with only S; open, then with only S» open, and finally with both slits open. In the first two
cases, the distributions of the electrons on the screen are smooth; the sum of these distributions
is also smooth, a bell-shaped curve like the one obtained for classical particles (Figure 1.8).

But when both slits are open, we see a rapid variation in the distribution, an inferference
pattern. So in spite of their discreteness, the electrons seem to interfere with themselves; this
means that each electron seems to have gone through both slits at once! One might ask, if
an electron cannot be split, how can it appear to go through both slits at once? Note that
this interference pattern has nothing to do with the intensity of the electron beam. In fact,
experiments were carried out with beams so weak that the electrons were sent one at a time
(i.e., each electron was sent only after the previous electron has reached the screen). In this
case, if both slits were open and if we wait long enough so that sufficient impacts are collected
on the screen, the interference pattern appears again.

The crucial question now is to find out the slit through which the electron went. To answer
this query, an experiment can be performed to watch the electrons as they leave the slits. It
consists of placing a strong light source behind the wall containing the slits, as shown in Fig-
ure 1.11. We place Geiger counters all over the screen so that whenever an electron reaches the
screen we hear a click on the counter.

Since electric charges scatter light, whenever an electron passes through either of the slits,
on its way to the counter, it will scatter light to our eyes. So, whenever we hear a click on
the counter, we see a flash near either S or Sy but never near both at once. After recording
the various counts with both slits open, we find out that the distribution is similar to that of
classical bullets in Figure 1.8: the interference pattern has disappeared! But if we turn off the
light source, the interference pattern appears again.

From this experiment we conclude that the mere act of looking at the electrons immensely
affects their distribution on the screen. Clearly, electrons are very delicate: their motion gets
modified when one watches them. This is the very quantum mechanical principle which states
that measurements interfere with the states of microscopic objects. One might think of turning
down the brightness (intensity) of the light source so that it is weak enough not to disturb the
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Figure 1.11 The double-slit experiment: S is a source of electrons. A light source is placed
behind the wall containing S; and S>. When both slits are open, the interference pattern is
destroyed and the total intensity is [ = I + 1.

electrons. We find that the light scattered from the electrons, as they pass by, does not get
weaker; the same sized flash is seen, but only every once in a while. This means that, at low
brightness levels, we miss some electrons: we hear the click from the counter but see no flash
at all. At still lower brightness levels, we miss most of the electrons. We conclude, in this case,
that some electrons went through the slits without being seen, because there were no photons
around at the right moment to catch them. This process is important because it confirms that
light has particle properties: light also arrives in lumps (photons) at the screen.

Two distribution profiles are compiled from this dim light source experiment, one corre-
sponding to the electrons that were seen and the other to the electrons that were not seen (but
heard on the counter). The first distribution contains no interference (i.c., it is similar to classi-
cal bullets); but the second distribution displays an interference pattern. This results from the
fact that when the electrons are not seen, they display interference. When we do not see the
electron, no photon has disturbed it but when we see it, a photon has disturbed it.

For the electrons that display interference, it is impossible to identify the slit that each
electron had gone through. This experimental finding introduces a new fundamental concept:
the microphysical world is indeterministic. Unlike classical physics, where we can follow
accurately the particles along their trajectories, we cannot follow a microscopic particle along
its motion nor can we determine its path. It is technically impossible to perform such detailed
tracing of the particle’s motion. Such results inspired Heisenberg to postulate the uncertainty
principle, which states that it is impossible to design an apparatus which allows us to determine
the slit that the electron went through without disturbing the electron enough to destroy the
interference pattern (we shall return to this principle later).

The interference pattern obtained from the double-slit experiment indicates that electrons
display both particle and wave properties. When electrons are observed or detected one by one,
they behave like particles, but when they are detected after many measurements (distribution
of the detected electrons), they behave like waves of wavelength A = //p and display an
interference pattern.
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1.4.3 Wave—Particle Duality: Complementarity

The various experimental findings discussed so far—blackbody radiation, photoelectric and
Compton effect, pair production, Davisson—Germer, Thomson, and the double-slit experiments—
reveal that photons, electrons, and any other microscopic particles behave unlike classical par-
ticles and unlike classical waves. These findings indicate that, at the microscopic scale, nature
can display particle behavior as well as wave behavior. The question now is, how can something
behave as a particle and as a wave at the same time? Aren’t these notions mutually exclusive?
In the realm of classical physics the answer is yes, but not in quantum mechanics. This dual
behavior can in no way be reconciled within the context of classical physics, for particles and
waves are mutually exclusive entities.

The theory of quantum mechanics, however, provides the proper framework for reconcil-
ing the particle and wave aspects of matter. By using a wave function y (¥, t) (see (1.49))
to describe material particles such as electrons, quantum mechanics can simultaneously make
statements about the particle behavior and the wave behavior of microscopic systems. It com-
bines the quantization of energy or intensity with a wave description of matter. That is, it uses
both particle and wave pictures to describe the same material particle.

Our ordinary concepts of particles or waves are thus inadequate when applied to micro-
scopic systems. These two concepts, which preclude each other in the macroscopic realm, do
not strictly apply to the microphysical world. No longer valid at the microscopic scale is the
notion that a wave cannot behave as a particle and vice versa. The true reality of a quantum
system is that it is neither a pure particle nor a pure wave. The particle and wave aspects of
a quantum system manifest themselves only when subjected to, or intruded on by, penetrating
means of observation (any procedure of penetrating observation would destroy the initial state
of the quantum system; for instance, the mere act of looking at an electron will knock it out
of its orbit). Depending on the type of equipment used to observe an electron, the electron
has the capacity to display either “grain” or wave features. As illustrated by the double-slit
experiment, if we wanted to look at the particle aspect of the electron, we would need only to
block one slit (or leave both slits open but introduce an observational apparatus), but if we were
interested only in its wave features, we would have to leave both slits open and not intrude on
it by observational tools. This means that both the “grain” and “wave” features are embedded
into the electron, and by modifying the probing tool, we can suppress one aspect of the electron
and keep the other. An experiment designed to isolate the particle features of a quantum system
gives no information about its wave features, and vice versa. When we subject an electron to
Compton scattering, we observe only its particle aspects, but when we involve it in a diffraction
experiment (as in Davisson—Germer, Thomson, or the double-slit experiment), we observe its
wave behavior only. So if we measure the particle properties of a quantum system, this will
destroy its wave properties, and vice versa. Any measurement gives either one property or the
other, but never both at once. We can get either the wave property or the particle but not both
of them together.

Microscopic systems, therefore, are neither pure particles nor pure waves, they are both.
The particle and wave manifestations do not contradict or preclude one another, but, as sug-
gested by Bohr, they are just complementary. Both concepts are complementary in describing
the true nature of microscopic systems. Being complementary features of microscopic matter,
particles and waves are equally important for a complete description of quantum systems. From
here comes the essence of the complementarity principle.

We have seen that when the rigid concept of either/or (i.e., either a particle or a wave)
is indiscriminately applied or imposed on quantum systems, we get into trouble with reality.
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Without the complementarity principle, quantum mechanics would not have been in a position
to produce the accurate results it does.

1.4.4 Principle of Linear Superposition

How do we account mathematically for the existence of the interference pattern in the double-
slit experiment with material particles such as electrons? An answer is offered by the superpo-
sition principle. The interference results from the superposition of the waves emitted by slits
1 and 2. If the functions wi (¥, t) and w» (7, t), which denote the waves reaching the screen
emitted respectively by slits 1 and 2, represent two physically possible states of the system,
then any linear superposition

w(, 1) = ey (F, 1) + a2y (. 1) (1.55)

also represents a physically possible outcome of the system; a1 and a; are complex constants.
This is the superposition principle. The intensity produced on the screen by opening only slit
1is |y1(7, t)|2 and it is |y, (7, t)I2 when only slit 2 is open. When both slits are open, the
intensity is

ly @O = |y, 0+ w0
= |y O + 1y O + i G O G t) + yi G O w7 0),
(1.56)

where the asterisk denotes the complex conjugate. Note that (1.56) is not equal to the sum of
lyi (7, )|* and | w2 (7, £)|?; it contains an additional term wi(r, Dy (P ) + yi (7, Dy, 0).
This is the very term which gives rise in the case of electrons to an interference pattern similar
to light waves. The interference pattern therefore results from the existence of a phase shift
between (7, ¢) and w, (7, t). We can measure this phase shift from the interference pattern,
but we can in no way measure the phases of y1 and y, separately.

We can summarize the double-slit results in three principles:

e Intensities add for classical particles: [ = I} + .

e Amplitudes, not intensities, add for quantum particles: w (¥, ) = w1 (#,t) + w2 (7, 1);
this gives rise to interference.

e Whenever one attempts to determine experimentally the outcome of individual events
for microscopic material particles (such as trying to specify the slit through which an
electron has gone), the interference pattern gets destroyed. In this case the intensities add
in much the same way as for classical particles: [ = I + I>.

1.5 Indeterministic Nature of the Microphysical World

Let us first mention two important experimental findings that were outlined above. On the one
hand, the Davisson—Germer and the double-slit experiments have shown that microscopic ma-
terial particles do give rise to interference patterns. To account for the interference pattern, we
have seen that it is imperative to describe microscopic particles by means of waves. Waves are
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not localized in space. As a result, we have to give up on accuracy to describe microscopic
particles, for waves give at best a probabilistic account. On the other hand, we have seen in the
double-slit experiment that it is impossible to trace the motion of individual electrons; there is
no experimental device that would determine the slit through which a given electron has gone.
Not being able to predict single events is a stark violation of a founding principle of classi-
cal physics: predictability or determinacy. These experimental findings inspired Heisenberg
to postulate the indeterministic nature of the microphysical world and Born to introduce the
probabilistic interpretation of quantum mechanics.

1.5.1 Heisenberg’s Uncertainty Principle

According to classical physics, given the initial conditions and the forces acting on a system,
the future behavior (unique path) of this physical system can be determined exactly. That is,
if the initial coordinates 7, velocity v, and all the forces acting on the particle are known,
the position 7(¢) and velocity v (¢) are uniquely determined by means of Newton’s second law.
Classical physics is thus completely deterministic.

Does this deterministic view hold also for the microphysical world? Since a particle is rep-
resented within the context of quantum mechanics by means of a wave function corresponding
to the particle’s wave, and since wave functions cannot be localized, then a microscopic particle
is somewhat spread over space and, unlike classical particles, cannot be localized in space. In
addition, we have seen in the double-slit experiment that it is impossible to determine the slit
that the electron went through without disturbing it. The classical concepts of exact position,
exact momentum, and unique path of a particle therefore make no sense at the microscopic
scale. This is the essence of Heisenberg’s uncertainty principle.

In its original form, Heisenberg’s uncertainty principle states that: If the x-component of
the momentum of a particle is measured with an uncertainty Apy, then its x-position cannot,
at the same time, be measured more accurately than Ax = h/(2Ap,). The three-dimensional
form of the uncertainty relations for position and momentum can be written as follows:

7 7 7
AxApy > > AyAp, > > AzAp, > 5 (1.57)

This principle indicates that, although it is possible to measure the momentum or position
of a particle accurately, it is not possible to measure these two observables simultaneously to
an arbitrary accuracy. That is, we cannot localize a microscopic particle without giving to it
a rather large momentum. We cannot measure the position without disturbing it; there is no
way to carry out such a measurement passively as it is bound to change the momentum. To
understand this, consider measuring the position of a macroscopic object (e.g., a car) and the
position of a microscopic system (e.g., an electron in an atom). On the one hand, to locate the
position of a macroscopic object, you need simply to observe it; the light that strikes it and gets
reflected to the detector (your eyes or a measuring device) can in no measurable way affect the
motion of the object. On the other hand, to measure the position of an electron in an atom, you
must use radiation of very short wavelength (the size of the atom). The energy of this radiation
is high enough to change tremendously the momentum of the electron; the mere observation
of the electron affects its motion so much that it can knock it entirely out of its orbit. It is
therefore impossible to determine the position and the momentum simultaneously to arbitrary
accuracy. If a particle were localized, its wave function would become zero everywhere else and
its wave would then have a very short wavelength. According to de Broglie’s relation p = //4,
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the momentum of this particle will be rather high. Formally, this means that if a particle is
accurately localized (i.e., Ax — 0), there will be total uncertainty about its momentum (i.e.,
Apy — 00). To summarize, since all quantum phenomena are described by waves, we have no
choice but to accept limits on our ability to measure simultaneously any two complementary
variables.

Heisenberg’s uncertainty principle can be generalized to any pair of complementary, or
canonically conjugate, dynamical variables: it is impossible to devise an experiment that can
measure simultaneously two complementary variables to arbitrary accuracy (if this were ever
achieved, the theory of quantum mechanics would collapse).

Energy and time, for instance, form a pair of complementary variables. Their simultaneous
measurement must obey the time—energy uncertainty relation:

AEAt > (1.58)

NS

This relation states that if we make two measurements of the energy of a system and if these
measurements are separated by a time interval A¢, the measured energies will differ by an
amount A £ which can in no way be smaller than 7 /A¢. If the time interval between the two
measurements is large, the energy difference will be small. This can be attributed to the fact
that, when the first measurement is carried out, the system becomes perturbed and it takes it
a long time to return to its initial, unperturbed state. This expression is particularly useful in
the study of decay processes, for it specifies the relationship between the mean lifetime and the
energy width of the excited states.

We see that, in sharp contrast to classical physics, quantum mechanics is a completely
indeterministic theory. Asking about the position or momentum of an electron, one cannot
get a definite answer; only a probabilistic answer is possible. According to the uncertainty
principle, if the position of a quantum system is well defined, its momentum will be totally
undefined. In this context, the uncertainty principle has clearly brought down one of the most
sacrosanct concepts of classical physics: the deterministic nature of Newtonian mechanics.

Example 1.6 (Uncertainties for microscopic and macroscopic systems)
Estimate the uncertainty in the position of (a) a neutron moving at 5 x 10°ms~! and (b) a 50 kg
person moving at 2ms~!.

Solution
(a) Using (1.57), we can write the position uncertainty as

h A 1.05x 107347 s

Ax > ~ =
YZ0Ap T 2mpo 2% 1.65x 1027 kg x 5 x 106 ms—T

=64x 107" m. (1.59)

This distance is comparable to the size of a nucleus.
(b) The position uncertainty for the person is

A 1.05x 107347 s
Ax >

~ - =05x 1073 m. 1.60
T 2Ap  2mv 2 x50kg x2ms™! x m (1.60)

An uncertainty of this magnitude is beyond human detection; therefore, it can be neglected. The
accuracy of the person’s position is limited only by the uncertainties induced by the device used
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in the measurement. So the position and momentum uncertainties are important for microscopic
systems, but negligible for macroscopic systems.

1.5.2 Probabilistic Interpretation

In quantum mechanics the state (or one of the states) of a particle is described by a wave
function y (¥, t) corresponding to the de Broglie wave of this particle; so w (7, ) describes the
wave properties of a particle. As a result, when discussing quantum effects, it is suitable to
use the amplitude function, y, whose square modulus, ||?, is equal to the intensity of the
wave associated with this quantum effect. The intensity of a wave at a given point in space is
proportional to the probability of finding, at that point, the material particle that corresponds to
the wave.

In 1927 Born interpreted |y |? as the probability density and |y (7, t)|*d>r as the probability,
dP(#, 1), of finding a particle at time 7 in the volume element 37 located between 7 and 7 +d7:

lw(F, O*d*r = dP(F, 1), (1.61)

where ||? has the dimensions of [Length] 3. If we integrate over the entire space, we are
certain that the particle is somewhere in it. Thus, the total probability of finding the particle
somewhere in space must be equal to one:

/ lw (P, 0))Pd*r = 1. (1.62)
all space

The main question now is, how does one determine the wave function y of a particle? The
answer to this question is given by the theory of quantum mechanics, where y is determined
by the Schrodinger equation (Chapters 3 and 4).

1.6 Atomic Transitions and Spectroscopy

Besides failing to explain blackbody radiation, the Compton, photoelectric, and pair production
effects and the wave—particle duality, classical physics also fails to account for many other
phenomena at the microscopic scale. In this section we consider another area where classical
physics breaks down—the atom. Experimental observations reveal that atoms exist as stable,
bound systems that have discrete numbers of energy levels. Classical physics, however, states
that any such bound system must have a continuum of energy levels.

1.6.1 Rutherford Planetary Model of the Atom

After his experimental discovery of the atomic nucleus in 1911, Rutherford proposed a model
in an attempt to explain the properties of the atom. Inspired by the orbiting motion of the
planets around the sun, Rutherford considered the atom to consist of electrons orbiting around
a positively charged massive center, the nucleus. It was soon recognized that, within the context
of classical physics, this model suffers from two serious deficiencies: (a) atoms are unstable
and (b) atoms radiate energy over a continuous range of frequencies.

The first deficiency results from the application of Maxwell’s electromagnetic theory to
Rutherford’s model: as the electron orbits around the nucleus, it accelerates and hence radiates
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energy. It must therefore lose energy. The radius of the orbit should then decrease continuously
(spiral motion) until the electron collapses onto the nucleus; the typical time for such a collapse
is about 10~8 s. Second, since the frequency of the radiated energy is the same as the orbiting
frequency, and as the electron orbit collapses, its orbiting frequency increases continuously.
Thus, the spectrum of the radiation emitted by the atom should be continuous. These two
conclusions completely disagree with experiment, since atoms are stable and radiate energy
over discrete frequency ranges.

1.6.2 Bohr Model of the Hydrogen Atom

Combining Rutherford’s planetary model, Planck’s quantum hypothesis, and Einstein’s pho-
ton concept, Bohr proposed in 1913 a model that gives an accurate account of the observed
spectrum of the hydrogen atom as well as a convincing explanation for its stability.

Bohr assumed, as in Rutherford’s model, that each atom’s electron moves in an orbit around
the nucleus under the influence of the electrostatic attraction of the nucleus; circular or elliptic
orbits are allowed by classical mechanics. For simplicity, Bohr considered only circular orbits,
and introduced several, rather arbitrary assumptions which violate classical physics but which
are immensely successful in explaining many properties of the hydrogen atom:

e Instead of a continuum of orbits, which are possible in classical mechanics, only a dis-
crete set of circular stable orbits, called stationary states, are allowed. Atoms can exist
only in certain stable states with definite energies: £, E», E3, etc.

e The allowed (stationary) orbits correspond to those for which the orbital angular momen-
tum of the electron is an integer multiple of h (h = h/2x):

L = nh. (1.63)
This relation is known as the Bohr quantization rule of the angular momentum.

e As long as an electron remains in a stationary orbit, it does not radiate electromagnetic
energy. Emission or absorption of radiation can take place only when an electron jumps
from one allowed orbit to another. The radiation corresponding to the electron’s transition
from an orbit of energy £, to another E,, is carried out by a photon of energy

hv = E, — Ep. (1.64)

So an atom may emit (or absorb) radiation by having the electron jump to a lower (or
higher) orbit.

In what follows we are going to apply Bohr’s assumptions to the hydrogen atom. We want to
provide a quantitative description of its energy levels and its spectroscopy.

1.6.2.1 Energy Levels of the Hydrogen Atom

Let us see how Bohr’s quantization condition (1.63) leads to a discrete set of energies £, and
radii 7,. When the electron of the hydrogen atom moves in a circular orbit, the application
of Newton’s second law to the electron yields F = mea, = mev? /r. Since the only force!3

13 At the atomic scale, gravity has no measurable effect. The gravitational force between the hydrogen’s proton and
electron, Fg = (Gmemp)/rz, is negligible compared to the electrostatic force Fp = ez/(47r gorz), since Fg/Fe =
(4me0)Gmem p /e = 10740,
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acting on the electron is the electrostatic force applied on it by the proton, we can equate the
electrostatic force to the centripetal force and obtain

2 2
e v
=me—. 1.65
47 gor? e r ( )
Now, assumption (1.63) yields
L = moor = nh, (1.66)

hence m.v?/r = n*h%/(m.r?), which when combined with (1.65) yields e?/(4megr?) =
n%h? /(mer); this relation in turn leads to a quantized expression for the radius:

47 gl
. =( Al )n2 — n2ay, (1.67)
mee
where s
Areoh
ay = —22 (1.68)
mee

is the Bohr radius, ag = 0.053 nm. The speed of the orbiting electron can be obtained from

(1.66) and (1.67):
nh 2 1
n == == —_—. 1.69
v Mol (477,'80) nh ( )

Note that the ratio between the speed of the electron in the first Bohr orbit, v, and the speed of
light is equal to a dimensionless constant o, known as the fine structure constant:

1 e 1 3x 108 ms™!
a=to ¢ L mae=22"" 5 19x10°ms!. (1.70)
c dreg he 137 137

As for the total energy of the electron, it is given by

1 1 &
E = —mev2 — e—;
2 dmey r

(1.71)

in deriving this relation, we have assumed that the nucleus, i.e., the proton, is infinitely heavy
compared with the electron and hence it can be considered at rest; that is, the energy of the
electron—proton system consists of the kinetic energy of the electron plus the electrostatic po-
tential energy. From (1.65) we see that the kinetic energy, %melﬂ, is equal to %82 /(4megr),
which when inserted into (1.71) leads to

pe L (-2 (1.72)
T 2 \dmeyr ) '

This equation shows that the electron circulates in an orbit of radius » with a kinetic energy
equal to minus one half the potential energy (this result is the well known Virial theorem of
classical mechanics). Substituting 7, of (1.67) into (1.72), we obtain

2 2 \?2
es 1 Me e 1 R
! 8eg 1y 2h% (47780) n’ n’ 47
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Figure 1.12 Energy levels and transitions between them for the hydrogen atom.

known as the Bohr energy, where R is the Rydberg constant:

2

2
Me ( ¢ ) — 13.6¢V. (1.74)

- ﬁ 4 e

The energy E,, of each state of the atom is determined by the value of the quantum number 7.
The negative sign of the energy (1.73) is due to the bound state nature of the atom. That is,
states with negative energy £, < 0 correspond to bound states.

The structure of the atom’s energy spectrum as given by (1.73) is displayed in Figure 1.12
(where, by convention, the energy levels are shown as horizontal lines). As n increases, the
energy level separation decreases rapidly. Since n can take all integral values from n = 1
to n = 400, the energy spectrum of the atom contains an infinite number of discrete energy
levels. In the ground state (n = 1), the atom has an energy £1 = —R and a radius ag. The states
n =2,3,4,...correspond to the excited states of the atom, since their energies are greater than
the ground state energy.

When the quantum number # is very large, n — 400, the atom’s radius r,, will also be very
large but the energy values go to zero, £, — 0. This means that the proton and the electron are
infinitely far away from one another and hence they are no longer bound; the atom is ionized.
In this case there is no restriction on the amount of kinetic energy the electron can take, for it
is free. This situation is represented in Figure 1.12 by the continuum of positive energy states,
E, > 0.

Recall that in deriving (1.67) and (1.73) we have neglected the mass of the proton. If we
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include it, the expressions (1.67) and (1.73) become

2
47r80h2 m &2 1 1 R
=Tt = (1 s B= 1 (57) = T
P 0 e/Mp
75

where u = mpme/(m, +me) = me/(1 + me/mp) is the reduced mass of the proton—electron
system.

We should note that 7, and E, of (1.75), which were derived for the hydrogen atom, can
be generalized to hydrogen-like ions where all electrons save one are removed. To obtain the
radius and energy of a single electron orbiting a fixed nucleus of Z protons, we need simply to
replace e in (1.75) by Ze?,

zZ R
ry = (l + %) @nz, E, =

_ 1.76
M) zZ 14+ me/M n?’ (1.76)

where M is the mass of the nucleus; when m,./M < 1 we can just drop the term m,/M.

de Broglie’s hypothesis and Bohr’s quantization condition

The Bohr quantization condition (1.63) can be viewed as a manifestation of de Broglie’s hypoth-
esis. For the wave associated with the atom’s electron to be a standing wave, the circumference
of the electron’s orbit must be equal to an integral multiple of the electron’s wavelength:

2zr = nl n=1,23,..). (1.77)

This relation can be reduced to (1.63) or to (1.66), provided that we make use of de Broglie’s
relation, L = h/p = h/(mev). That is, inserting A = & /(m.v) into (1.77) and using the fact
that the electron’s orbital angular momentum is L = mvr, we have

h
2nr =nl=n = medr =no— = L =nh, (1.78)
T

M
which is identical with Bohr’s quantization condition (1.63). In essence, this condition states
that the only allowed orbits for the electron are those whose circumferences are equal to integral
multiples of the de Broglie wavelength. For example, in the hydrogen atom, the circumference
of the electron’s orbit is equal to 4 when the atom is in its ground state (» = 1); it is equal to
2/ when the atom is in its first excited state (n = 2); equal to 31 when the atom is in its second
excited state (n = 3); and so on.

1.6.2.2 Spectroscopy of the Hydrogen Atom

Having specified the energy spectrum of the hydrogen atom, let us now study its spectroscopy.
In sharp contrast to the continuous nature of the spectral distribution of the radiation emitted by
glowing solid objects, the radiation emitted or absorbed by a gas displays a discrete spectrum
distribution. When subjecting a gas to an electric discharge (or to a flame), the radiation emitted
from the excited atoms of the gas discharge consists of a few sharp lines (bright lines of pure
color, with darkness in between). A major success of Bohr’s model lies in its ability to predict
accurately the sharpness of the spectral lines emitted or absorbed by the atom. The model
shows clearly that these discrete lines correspond to the sharply defined energy levels of the
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atom. The radiation emitted from the atom results from the transition of the electron from an
allowed state n to another m; this radiation has a well defined (sharp) frequency v:

11
hv:En—Em:R(—z——z). (1.79)
m n

For instance, the Lyman series, which corresponds to the emission of ultraviolet radiation, is
due to transitions from excited states n = 2, 3,4, 5, ... to the ground state n = 1 (Figure 1.12):

1 1
hvp = E, — E| =R (— - —) (> 1). (1.80)
12 n?

Another transition series, the Balmer series, is due to transitions to the first excited state (n =
2):

11
hszEn—EZZR(Z—Z—nT) (n > 2). (1.81)

The atom emits visible radiation as a result of the Balmer transitions. Other series are Paschen,
n — 3 with n > 3; Brackett, n —» 4 with n > 4; Pfund, n — 5 with n > 5; and so on. They
correspond to the emission of infrared radiation. Note that the results obtained from (1.79) are
in spectacular agreement with those of experimental spectroscopy.

So far in this chapter, we have seen that when a photon passes through matter, it interacts
as follows:

e If it comes in contact with an electron that is at rest, it will scatter from it like a corpus-
cular particle: it will impart a momentum to the electron, it will scatter and continue its
travel with the speed of light but with a lower frequency (or higher wavelength). This is
the Compton effect.

e If it comes into contact with an atom’s electron, it will interact according to one of the
following scenarios:

— If it has enough energy, it will knock the electron completely out of the atom and
then vanish, for it transmits all its energy to the electron. This is the photoelectric
effect.

— Ifiits energy /v is not sufficient to knock out the electron altogether, it will kick the
electron to a higher orbit, provided /v is equal to the energy difference between the
initial and final orbits: v = E,, — E,,. In the process it will transmit all its energy
to the electron and then vanish. The atom will be left in an excited state. However,
if hv # E, — E,,, nothing will happen (the photon simply scatters away).

e If it comes in contact with an atomic nucleus and if its energy is sufficiently high (Av >
2m.c?), it will vanish by creating matter: an electron—positron pair will be produced.
This is pair production.

Example 1.7 (Positronium’s radius and energy spectrum)
Positronium is the bound state of an electron and a positron; it is a short-lived, hydrogen-like
atom where the proton is replaced by a positron.
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(a) Calculate the energy and radius expressions, £, and r,.

(b) Estimate the values of the energies and radii of the three lowest states.

(c) Calculate the frequency and wavelength of the electromagnetic radiation that will just
ionize the positronium atom when it is in its first excited state.

Solution

(a) The radius and energy expressions of the positronium can be obtained at once from
(1.75) by simply replacing the reduced mass u with that of the electron—positron system u =
Meme/(Mme +me) = %me:

2
87 eoh? 2 Me &2 1
— , E,=———) —. 1.82
T ( mee? )n " 452 \dreg) n? (1.82)
We can rewrite r, and E, in terms of the Bohr radius, ag = 4 eoh> /(mee?) = 0.053 nm, and

2
the Rydberg constant, R = ;’;—"2 ( 4;280) = 13.6 eV, as follows:

rp = 2aon?, E,=— (1.83)

2n?’
These are related to the expressions for the hydrogen by ry,,, = 2y, and E, ,,, = %En -

(b) The radii of the three lowest states of the positronium are given by »; = 2a¢ = 0.106 nm,
rpy = 8ap = 0.424 nm, and r3 = 18a9 = 0.954 nm. The corresponding energies are £ =
—1R =—-68¢eV,E;=—4R=—-1.7eV,and E3 = —kR = —0.756 eV.

(c) Since the energy of the first excited state of the positroniumis £, = —1.7eV = —1.7 x
1.6x10719 J = —2.72x 10719 J, the energy of the electromagnetic radiation that will just ionize
the positronium is equal to 7iv = Eoo — Ey = 0—(—2.72 X 10~ H=272x 107 T = Ejpp;
hence the frequency and wavelength of the ionizing radiation are given by

Eion _ 272x1071]
h 6.6x10737s
c 3x 108 ms™!

Jo= — =" 2  _—728x 107 m. 1.85
b T 412 x 10 Hz % m (1.85)

=4.12 x 10" Hz, (1.84)

1.7 Quantization Rules

The ideas that led to successful explanations of blackbody radiation, the photoelectric effect,
and the hydrogen’s energy levels rest on two quantization rules: (a) the relation (1.7) that Planck
postulated to explain the quantization of energy, £ = nhv, and (b) the condition (1.63) that
Bohr postulated to account for the quantization of the electron’s orbital angular momentum,
L = nh. A number of attempts were undertaken to understand or interpret these rules. In 1916
Wilson and Sommerfeld offered a scheme that included both quantization rules as special cases.
In essence, their scheme, which applies only to systems with coordinates that are periodic in
time, consists in quantizing the action variable, J = § p dq, of classical mechanics:

%pdq:nh n=0,1,2,3,...), (1.86)
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where n is a quantum number, p is the momentum conjugate associated with the coordinate
¢; the closed integral § is taken over one period of g. This relation is known as the Wilson—
Sommerfeld quantization rule.

Wilson—-Sommerfeld quantization rule and Planck’s quantization relation
In what follows we are going to show how the Wilson—Sommerfeld rule (1.86) leads to Planck’s
quantization relation £ = rhv. For an illustration, consider a one-dimensional harmonic os-
cillator where a particle of mass m oscillates harmonically between —a < x < a; its classical
energy is given by

»’ 1 22

E(x, p)=— 4+ —mwx*; (1.87)

2m 2
hence p(E,x) = £+2mE — m?w?x?. At the turning points, x,,;, = —a and X4 = a,
the energy is purely potential: £ = V(Za) = %mwzazg hence a = /2E/(mw?). Using
p(E, x) = +v/2mE — m2w*x? and from symmetry considerations, we can write the action as

a a
%pdx = 2/ V2mE — m2w?x2dx = 4ma)/ Vva? —x2dx. (1.88)
—a 0

The change of variables x = a sin 4 leads to

a /2 2 rn)2 2 E
/ Va? —x2dx = az/ cos?0do = a—/ (14 c0s20)d0 = Z2 — 2= (1.89)
0 0 2 0 4 Zma)2
Since w = 27 v, where v is the frequency of oscillations, we have
2 E E
fpdxz_z__ (1.90)
1) v

Inserting (1.90) into (1.86), we end up with the Planck quantization rule £ = nhv, i.e.,

j{pdx =nh = % =nh == E, =nhv. (1.91)
We can interpret this relation as follows. From classical mechanics, we know that the motion of
a mass subject to harmonic oscillations is represented in the xp phase space by a continuum of
ellipses whose areas are given by § pdx = E /v, because the integral § p(x) dx gives the area
enclosed by the closed trajectory of the particle in the xp phase space. The condition (1.86) or
(1.91) provides a mechanism for selecting, from the continuum of the oscillator’s energy values,
only those energies E, for which the areas of the contours p(x, E,) = /2m (E, — V(x)) are
equal to nh withn = 0, 1, 2, 3, .... That is, the only allowed states of oscillation are those
represented in the phase space by a series of ellipses with “quantized” areas § p dx = nh. Note
that the area between two successive states is equal to h: ¢ p(x, E,q1) dx—¢ p(x, E,) dx = h.
This simple calculation shows that the Planck rule for energy quantization is equivalent to

the quantization of action.

Wilson—-Sommerfeld quantization rule and Bohr’s quantization condition

Let us now show how the Wilson—Sommerfeld rule (1.86) leads to Bohr’s quantization condi-
tion (1.63). For an electron moving in a circular orbit of radius r, it is suitable to use polar
coordinates (7, ¢). The action J = § p dg, which is expressed in Cartesian coordinates by the
linear momentum p and its conjugate variable x, is characterized in polar coordinates by the
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orbital angular momentum L and its conjugate variable ¢, the polar angle, where ¢ is periodic

in time. Thatis, J = § pdg is given in polar coordinates by fozn Ldg. In this case (1.86)
becomes

2n
/ Ldp =nh. (1.92)
0

For spherically symmetric potentials—as it is the case here where the electron experiences the
proton’s Coulomb potential—the angular momentum L is a constant of the motion. Hence
(1.92) shows that angular momentum can change only in integral units of %:

2 h
L/ dp =nh = L =n— =nh, (1.93)
0 2w
which is identical with the Bohr quantization condition (1.63). This calculation also shows
that the Bohr quantization is equivalent to the quantization of action. As stated above (1.78),
the Bohr quantization condition (1.63) has the following physical meaning: while orbiting the
nucleus, the electron moves only in well specified orbits, orbits with circumferences equal to
integral multiples of the de Broglie wavelength.
Note that the Wilson—Sommerfeld quantization rule (1.86) does not tell us how to calculate
the energy levels of non-periodic systems; it applies only to systems which are periodic. On a
historical note, the quantization rules of Planck and Bohr have dominated quantum physics from
1900 to 1925; the quantum physics of this period is known as the “old quantum theory.” The
success of these quantization rules, as measured by the striking agreement of their results with
experiment, gave irrefutable evidence for the quantization hypothesis of all material systems
and constituted a triumph of the “old quantum theory.” In spite of their quantitative success,
these quantization conditions suffer from a serious inconsistency: they do not originate from a
theory, they were postulated rather arbitrarily.

1.8 Wave Packets

At issue here is how to describe a particle within the context of quantum mechanics. As quan-
tum particles jointly display particle and wave features, we need to look for a mathematical
scheme that can embody them simultaneously.

In classical physics, a particle is well localized in space, for its position and velocity can
be calculated simultaneously to arbitrary precision. As for quantum mechanics, it describes
a material particle by a wave function corresponding to the matter wave associated with the
particle (de Broglie’s conjecture). Wave functions, however, depend on the whole space; hence
they cannot be localized. If the wave function is made to vanish everywhere except in the
neighborhood of the particle or the neighborhood of the “classical trajectory,” it can then be
used to describe the dynamics of the particle. That is, a particle which is localized within a
certain region of space can be described by a matter wave whose amplitude is large in that
region and zero outside it. This matter wave must then be localized around the region of space
within which the particle is confined.

A localized wave function is called a wave packet. A wave packet therefore consists of a
group of waves of slightly different wavelengths, with phases and amplitudes so chosen that
they interfere constructively over a small region of space and destructively elsewhere. Not only
are wave packets useful in the description of “isolated” particles that are confined to a certain
spatial region, they also play a key role in understanding the connection between quantum
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mechanics and classical mechanics. The wave packet concept therefore represents a unifying
mathematical tool that can cope with and embody nature’s particle-like behavior and also its
wave-like behavior.

1.8.1 Localized Wave Packets

Localized wave packets can be constructed by superposing, in the same region of space, waves
of slightly different wavelengths, but with phases and amplitudes chosen to make the super-
position constructive in the desired region and destructive outside it. Mathematically, we can
carry out this superposition by means of Fourier transforms. For simplicity, we are going to
consider a one-dimensional wave packet; this packet is intended to describe a “classical” parti-
cle confined to a one-dimensional region, for instance, a particle moving along the x-axis. We
can construct the packet w (x, ¢) by superposing plane waves (propagating along the x-axis) of
different frequencies (or wavelengths):

! e i (kx—oot
w(x, 1) :E/— ¢ (kye' F=oD g (1.94)

¢ (k) is the amplitude of the wave packet.

In what follows we want to look at the form of the packet at a given time; we will deal
with the time evolution of wave packets later. Choosing this time to be ¢ = 0 and abbreviating
w(x, 0) by wo(x), we can reduce (1.94) to

1 +00 )
po(x) = N p (ke dk, (1.95)
where ¢ (k) is the Fourier transform of yq(x),
1 0 .
P k) = E/_m wo(x)e " dx. (1.96)

The relations (1.95) and (1.96) show that ¢ (k) determines w((x) and vice versa. The packet
(1.95), whose form is determined by the x-dependence of wq(x), does indeed have the required
property of localization: |wg(x)| peaks at x = 0 and vanishes far away from x = 0. On the
one hand, as x — 0 we have ¢/** — 1; hence the waves of different frequencies interfere
constructively (i.e., the various k-integrations in (1.95) add constructively). On the other hand,
far away from x = 0 (i.e., |x| >> 0) the phase ¢/** goes through many periods leading to violent
oscillations, thereby yielding destructive interference (i.e., the various k-integrations in (1.95)
add up to zero). This implies, in the language of Born’s probabilistic interpretation, that the
particle has a greater probability of being found near x = 0 and a scant chance of being found
far away from x = 0. The same comments apply to the amplitude ¢ (k) as well: ¢ (k) peaks at
k = 0 and vanishes far away. Figure 1.13 displays a typical wave packet that has the required
localization properties we have just discussed.

In summary, the particle is represented not by a single de Broglie wave of well-defined
frequency and wavelength, but by a wave packet that is obtained by adding a large number of
waves of different frequencies.

The physical interpretation of the wave packet is obvious: wo(x) is the wave function or
probability amplitude for finding the particle at position x; hence |yo(x)|? gives the probability
density for finding the particle at x, and P(x) dx = |wo(x)|>dx gives the probability of finding
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lwo(x)|? | (k)|

A A
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Figure 1.13 Two localized wave packets: wo(x) = 2/ a2)1/4e_x2/“2eik°x and ¢ (k) =
(a?/27)/ 4 p=a? (k=ko)*/ 4: they peak at x = 0 and k = ko, respectively, and vanish far away.

the particle between x and x +dx. What about the physical interpretation of ¢ (k)? From (1.95)
and (1.96) it follows that

“+00 +0oo
/_ o o) P = /_ b (k) Pk (197)

then if y (x) is normalized so is ¢ (k), and vice versa. Thus, the function ¢ (k) can be interpreted
most naturally, like o (x), as a probability amplitude for measuring a wave vector k for a parti-
cle in the state ¢ (k). Moreover, while |¢ (k) 1? represents the probability density for measuring &
as the particle’s wave vector, the quantity P (k) dk = |¢(k)|>dk gives the probability of finding
the particle’s wave vector between k and k + dk.

We can extract information about the particle’s motion by simply expressing its correspond-
ing matter wave in terms of the particle’s energy, E, and momentum, p. Using k = p/#,
dk = dp/h, E = ho and redefining ¢(p) = ¢ (k)//B, we can rewrite (1.94) to (1.96) as
follows:

1 too
w(x, 1) W d(p)e! P —EDIMgp, (1.98)
—0Q
1 ‘oo
wo(x) = \/ﬁ ¢(p)€lpx/hdp, (1.99)
—0Q
- 1 +o00 » 5
#(p) = —27rh/ wo(x)e P Mdx, (1.100)
% —00

where E (p) is the total energy of the particle described by the wave packet  (x, t) and ¢ (p) is
the momentum amplitude of the packet.

In what follows we are going to illustrate the basic ideas of wave packets on a simple,
instructive example: the Gaussian and square wave packets.

Example 1.8 (Gaussian and square wave packets)

(a) Find y (x, 0) for a Gaussian wave packet ¢ (k) = A exp [—a®(k — ko)* /4], where 4 is
a normalization factor to be found. Calculate the probability of finding the particle in the region
—a/2 <x <a/2.
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ikox
(b) Find ¢ (k) for a square wave packet yo(x) = H Ae", x| < a,

0, x| > a.
Find the factor A4 so that y (x) is normalized.
Solution
(a) The normalization factor 4 is easy to obtain:
+o0 +00 a2
1:/ | (k)| >dk = |A|2/ exp ——(k—ko)z] dk, (1.101)
oo oo 2

which, by using a change of variable z = k — ko and using the integral fjof e~ 2z =

V27 Ja, leads at once to A = /a//2m = [a®/(27)]'/*. Now, the wave packet corresponding
to

2\ 174 2
¢(k)=(a) exp[—%(k—ko)z} (1.102)

27
is
1/4

()_L +oo¢(k) ikxdk_L(i)
O = e O T

To carry out the integration, we need simply to rearrange the exponent’s argument as follows:

oo 2 (k—ko)? /A+ik.
/ e~ @ =k /A+ikx gp —(1.103)

—00

2 -T2 2
S k= ko) 4 ikx = — | Lk —ko) = Z| =L 4 ikox. (1.104)
4 2 a a?
The introduction of a new variable y = a(k — ko9)/2 — ix/a yields dk = 2dy/a, and when
combined with (1.103) and (1.104), this leads to

1/4
1 a? +0 2/ 2 (2
(= —x%/a jikox ,=y* [ Z g
wo(x) = (27[) /_oo e ere (a y)

1 2 174 2k oo 2
= — (= —x?/a’ gikox > dy. 1.105
) e [ (1109

. 1,2 . .
Since [T eV dy = 7, this expression becomes
—o v

2 \'/4 2,2
wo(x) = (_2) o™X/ glhox | (1.106)
Ta

where ¢'%0* is the phase of g (x); wo(x) is an oscillating wave with wave number ko modulated
by a Gaussian envelope centered at the origin. We will see later that the phase factor e%0* has
real physical significance. The wave function wo(x) is complex, as necessitated by quantum
mechanics. Note that yo(x), like ¢ (k), is normalized. Moreover, equations (1.102) and (1.106)
show that the Fourier transform of a Gaussian wave packet is also a Gaussian wave packet.

The probability of finding the particle in the region —a/2 < x < a/2 can be obtained at
once from (1.106):

+a/2 2 +a/2 2,2 1 o, 2
P =/ lyo(x)1*dx = ,/—/ e/ gy = —/ e Pdz ~ 2, (1.107)
2 4 ma J_qp V2r S 3

—a —
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where we have used the change of variable z = 2x /a.
(b) The normalization of o (x) is straightforward:

“+o00 a . . a

1 =/ lwo(x)Pdx = |A]> | e hovelkovgy — 1412 | dx = 2al4); (1.108)
—0o0 —a —a

hence A = 1/+/2a. The Fourier transform of o (x) is

1 /a ko ik g _ 1 sin[(k— ko)a]'

2J/ma JrTa k — ko
(1.109)

po(x)e " dx =

1 00
=7 L.

1.8.2 'Wave Packets and the Uncertainty Relations

We want to show here that the width of a wave packet wo(x) and the width of its amplitude
¢ (k) are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and & spaces has a direct connection to
Heisenberg’s uncertainty relation.

For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the
previous example (see (1.102) and (1.106)):

1/4

2 1/4 2,2 ik a2 / 2k e 2 4
wo(x) = (_2) e X/ gikox | P (k) = (2_) e~ (k=ko)"/4, (1.110)
Ta T

As displayed in Figure 1.13, |wo(x)|* and |¢ (k)|* are centered at x = 0 and k = ko, respec-
tively. It is convenient to define the half-widths Ax and Ak as corresponding to the half-maxima
of | 1,1/0(x)|2 and |¢(k)|2. In this way, when x varies from 0 to £Ax and & from kg to ko £ Ak,
the functions |wo(x)|? and |¢ (k)|* drop to e~1/2:

2 2
y&EAn OF _ p W2 ADE _ 1o (L111)
ly (0, 0)] | (ko)

These equations, combined with (1.110), lead to e728x% /0% — o=1/2 gpd o=@’ AR/2 — /2,

respectively, or to

1
Ax=2  Ak=-; (1.112)
2 a
hence .
Axdk= 5. (1.113)
Since Ak = Ap/hi we have
7
AxAp = 5 (1.114)

This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.

A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the
Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is
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the lowest limit of Heisenberg’s inequality. As a result, the Gaussian wave packet is called the
minimum uncertainty wave packet. All other wave packets yield higher values for the product
of the x and p uncertainties: Ax Ap > #/2; for an illustration see Problem 1.11. In conclusion,
the value of the uncertainties product Ax Ap varies with the choice of y, but the lowest bound,
7i/2, is provided by a Gaussian wave function. We have now seen how the wave packet concept
offers a heuristic way of deriving Heisenberg’s uncertainty relations; a more rigorous derivation
is given in Chapter 2.

1.8.3 Motion of Wave Packets

How do wave packets evolve in time? The answer is important, for it gives an idea not only
about the motion of a quantum particle in space but also about the connection between classical
and quantum mechanics. Besides studying how wave packets propagate in space, we will also
examine the conditions under which packets may or may not spread.

At issue here is, knowing the initial wave packet yo(x) or the amplitude ¢ (k), how do we
find y (x, ) atany later time #? This issue reduces to calculating the integral [ ¢ (k)e! kx=o) g
in (1.94). To calculate this integral, we need to specify the angular frequency w and the ampli-
tude ¢ (k). We will see that the spreading or nonspreading of the packet is dictated by the form
of the function w (k).

1.8.3.1 Propagation of a Wave Packet without Distortion

The simplest form of the angular frequency w is when it is proportional to the wave number k;
this case corresponds to a nondispersive propagation. Since the constant of proportionality has
the dimension of a velocity!#, which we denote by vg (i.e., @ = vok), the wave packet (1.94)
becomes

1 +00 T
t//(x,t):E/_ ¢ (ke =0l g, (1.115)

This relation has the same structure as (1.95), which suggests that v (x, ¢) is identical with
wo(x — vol):
w(x, 1) = wolx —vot); (1.116)

the form of the wave packet at time ¢ is identical with the initial form. Therefore, when w is
proportional to &, so that w = vok, the wave packet travels to the right with constant velocity
vo without distortion.

However, since we are interested in wave packets that describe particles, we need to con-
sider the more general case of dispersive media which transmit harmonic waves of different
frequencies at different velocities. This means that  is a function of k: @ = w(k). The form
of w (k) is determined by the requirement that the wave packet y (x, ¢) describes the particle.
Assuming that the amplitude ¢ (k) peaks at k = ko, then ¢p(k) = g(k — ko) is appreciably
different from zero only in a narrow range Ak = k — kg, and we can Taylor expand w (k) about
ko:

B o do®) 1. 5 d*w(k)
o) = wlk) + (k—ko) oK k:k0+2(k ko) — k:k0+
= (ko) + (k — ko)og + (k — ko)?oc + - - - (1.117)

l4Eor propagation of light in a vacuum this constant is equal to c, the speed of light.
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Figure 1.14 The function Re y (x, t) of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity v, along the
x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities v ).

_ dok _ 1 dPok)
where vg = =7 ko anda = 5 —3

k=ky
Now, to determine  (x, t) we need simp(l)y to substitute (1.117) into (1.94) with ¢ (k) =

g(k — ko). This leads to

+
(//(x, t) = %eiko(x—vpht)/ OOg(k _ ko)ei(k—ko)(x—l)gt)e—i(k—ko)zat-{—“-dk (1.118)
T -

[e.¢]

where!?

_do(k) k)
Vg = ak Uph = T’

(1.119)

vpn and v, are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, e —vp1?) " and
the group velocity represents the velocity of motion for the group of waves that make up the
packet. One should not confuse the phase velocity and the group velocity; in general they are
different. Only when w is proportional to £ will they be equal, as can be inferred from (1.119).

Group and phase velocities
Let us take a short detour to explain the meanings of v,; and vg. As mentioned above, when
we superimpose many waves of different amplitudes and frequencies, we can obtain a wave
packet or pulse which travels at the group velocity vy; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity
vpp. Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with
which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As
shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region
and falls rapidly outside this region.

The difference between the group velocity and the phase velocity can be understood quan-
titatively by deriving a relationship between them. A differentiation of w = kv (see (1.119))
with respect to k yields dw/dk = vy, +k(dvpy/dk), and since k = 27 /A, we have dv,;, /dk =

30 these equations we have omitted k( since they are valid for any choice of k.
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(dvpp/dA)(dA/dk) = —(27r/k2)(dvph/d/1) or k(dvp/dk) = —A(dvpp/dA); combining these
relations, we obtain

do dv,p dvpp
_do _ ook _ L0k 1.120
Ve = g T T T A (1.120)
which we can also write as
dvph
Vg =Vpp + p , (1.121)
14 p dp

since k(dvp,/dk) = (p/h)(dvpr/dp)(dp/dk) = p(dv,/dp) because k = p/h. Equations
(1.120) and (1.121) show that the group velocity may be larger or smaller than the phase veloc-
ity; it may also be equal to the phase velocity depending on the medium. If the phase velocity
does not depend on the wavelength—this occurs in nondispersive media—the group and phase
velocities are equal, since dv,;/dA = 0. But if v, depends on the wavelength—this occurs in
dispersive media—then dv ), /d 2 # 0; hence the group velocity may be smaller or larger than
the phase velocity. An example of a nondispersive medium is an inextensible string; we would
expect vg = vp;. Water waves offer a typical dispersive medium; in Problem 1.13 we show
that for deepwater waves we have v, = %u pn and for surface waves we have v, = %v ph’ See
(1.212) and (1.214).

Consider the case of a particle traveling in a constant potential V'; its total energy is
E(p) = p?/(2m)+ V. Since the corpuscular features (energy and momentum) of a particle are
connected to its wave characteristics (wave frequency and number) by the relations £ = fiw
and p = Ak, we can rewrite (1.119) as follows:

’ _dE(®) A E(p)
8 dp 4 P p ’

(1.122)

which, when combined with E (p) = % + V, yield

d (p* P L (P’ p .V
= — —_— V — e N e _— V = I 1.123
vs dp (Zm + ) m Uparticle Oph p \2m + 2m + p ( )

The group velocity of the wave packet is thus equal to the classical velocity of the particle,
Vg = Uparticle- This suggests we should view the “center” of the wave packet as traveling like
a classical particle that obeys the laws of classical mechanics: the center would then follow
the “classical trajectory” of the particle. We now see how the wave packet concept offers a
clear connection between the classical description of a particle and its quantum mechanical
description. In the case of a free particle, an insertion of V' = 0 into (1.123) yields

o=l o=t L, (1.124)

£ m’ PR om — 278

This shows that, while the group velocity of the wave packet corresponding to a free particle
is equal to the particle’s velocity, p/m, the phase velocity is half the group velocity. The
expression v, = %vg is meaningless, for it states that the wave function travels at half the
speed of the particle it is intended to represent. This is unphysical indeed. The phase velocity
has in general no meaningful physical significance.
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Time-evolution of the packet
Having taken a short detour to discuss the phase and group velocities, let us now return to our
main task of calculating the packet y (x, ¢) as listed in (1.118). For this, we need to decide on
where to terminate the expansion (1.117) or the exponent in the integrand of (1.118). We are
going to consider two separate cases corresponding to whether we terminate the exponent in
(1.118) at the linear term, (kK — ko)vgt, or at the quadratic term, (k — ko)*at. These two cases
are respectively known as the linear approximation and the quadratic approximation.

In the linear approximation, which is justified when g(k — kq) is narrow enough to neglect
the quadratic k% term, (k — ko)?at < 1, the wave packet (1.118) becomes

1 ko (x— oo i (k—k —vgt
w(x, 1) = etkotx=vpnt) gk — ko)e! KR —veh) g (1.125)
2w -

o0

This relation can be rewritten as
w(x, 1) = Ty (x — pot)e kol =0 (1.126)

where yy is the initial wave packet (see (1.95))

1 +oo . .
ol =gt = —= [ gl)e OO0 gy (1.127)
—00
the new variable ¢ stands for ¢ = k — ko. Equation (1.126) leads to

ly (e, )P = |wolx —gt)| (1.128)

Equation (1.126) represents a wave packet whose amplitude is modulated. As depicted in Fig-
ure 1.14, the modulating wave, y(x — vgt), propagates to the right with the group velocity vg;
the modulated wave, /%0 —0p) represents a pure harmonic wave of constant wave number kg
that also travels to the right with the phase velocity v . That is, (1.126) and (1.128) represent
a wave packet whose peak travels as a whole with the velocity vg, while the individual wave
propagates inside the envelope with the velocity v ;. The group velocity, which gives the ve-
locity of the packet’s peak, clearly represents the velocity of the particle, since the chance of
finding the particle around the packet’s peak is much higher than finding it in any other region
of space; the wave packet is highly localized in the neighborhood of the particle’s position and
vanishes elsewhere. It is therefore the group velocity, not the phase velocity, that is equal to the
velocity of the particle represented by the packet. This suggests that the motion of a material
particle can be described well by wave packets. By establishing a correspondence between
the particle’s velocity and the velocity of the wave packet’s peak, we see that the wave packet
concept jointly embodies the particle aspect and the wave aspect of material particles.

Now, what about the size of the wave packet in the linear approximation? Is it affected
by the particle’s propagation? Clearly not. This can be inferred immediately from (1.126):
wo(x —vgt) represents, mathematically speaking, a curve that travels to the right with a velocity
vg without deformation. This means that if the packet is initially Gaussian, it will remain
Gaussian as it propagates in space without any change in its size.

To summarize, we have shown that, in the linear approximation, the wave packet propagates
undistorted and undergoes a uniform translational motion. Next we are going to study the
conditions under which the packet experiences deformation.
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1.8.3.2 Propagation of a Wave Packet with Distortion

Let us now include the quadratic k> term, (k — ko)?at, in the integrand’s exponent of (1.118)
and drop the higher terms. This leads to

w(x, 1) = PG £(x 1), (1.129)

where f(x, t), which represents the envelope of the packet, is given by

flx,0) = g(q)eldC—vet) gmid’at g (1.130)

1 +oo
kY4 2 /—oo
with ¢ = k — ko. Were it not for the quadratic g2 correction, ig2at, the wave packet would
move uniformly without any change of shape, since similarly to (1.116), f(x, ¢) would be given
by /(¥ 1) = pox — vgt).

To show how a affects the width of the packet, let us consider the Gaussian packet (1.102)
whose amplitude is given by ¢ (k) = (a*/27)"/* exp [—a*(k — ko)? /4] and whose initial width
is Axg = a/2 and Ak = h/a. Substituting ¢ (k) into (1.129), we obtain

1 /a2\'4 o b [F° ) )
y(x,t) = — | — e o\ =Uph / ex |:i x—vt—(——i—iat) i|d.
y(x, 1) \/2—7[(27[) o q(x —vgh) — | 5 q° |dq
(1.131)
Evaluating the integral (the calculations are detailed in the following example, see Eq. (1.145)),

we can show that the packet’s density distribution is given by

R S BT, 132
Varax@o U | 20ax0F | (152

where Ax(¢) is the width of the packet at time #:

a 1602 a?t?
Ax(t) = =,/ 1 2=A 1+ ——-. 1.133
x(t) 2‘/ + e x0,/ 1 4 (Bxo)? ( )

We see that the packet’s width, which was initially given by Axg = a/2, has grown by a factor

1 4+ a2t2/(Axp)* after time ¢. Hence the wave packet is spreading; the spreading is due

to the inclusion of the quadratic q* term, ig*at. Should we drop this term, the packet’s width
Ax(t) would then remain constant, equal to Axg.

The density distribution (1.132) displays two results: (1) the center of the packet moves

with the group velocity; (2) the packet’s width increases linearly with time. From (1.133) we

see that the packet begins to spread appreciably only when a?#% /(Ax¢)* & 1 or t & (Ax)?/a.

In fact, if 1 <« (Axo)*/a the packet’s spread will be negligible, whereas if ¢ > (A%ﬁ the

packet’s spread will be significant.

To be able to make concrete statements about the growth of the packet, as displayed in
(1.133), we need to specify a; this reduces to determining the function w(k), since a =
% ZT‘Z" b For this, let us invoke an example that yields itself to explicit calculation. In

=Ko
fact, the example we are going to consider—a free particle with a Gaussian amplitude—allows
the calculations to be performed exactly; hence there is no need to expand w (k).

ly (x, )|* =
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Example 1.9 (Free particle with a Gaussian wave packet)
Determine how the wave packet corresponding to a free particle, with an initial Gaussian packet,
spreads in time.

Solution
The issue here is to find out how the wave packet corresponding to a free particle with ¢ (k) =
(a2/27r)1/4e‘”2(k‘k0)2/4 (see (1.110)) spreads in time.

First, we need to find the form of the wave packet, w(x,?). Substituting the amplitude
o (k) = (a?/2m)Y/ 4¢=a(k=k0)*/4 into the Fourier integral (1.94), we obtain

1 2\ /4 100 2
v = —— (;’—ﬂ) /_OO exp [—%(k — ko)* + i (kx — a)t)i| dk. (1.134)

Since w(k) = %k*/(2m) (the dispersion relation for a free particle), and using a change of
variables ¢ = k — ko, we can write the exponent in the integrand of (1.134) as a perfect square
for g:

a? hk? a? ht hkot
—— =k +ilbkx——t)=—(—+i— ) ¢?>+i([x——
7 k= Ho) +’(x Zm) (4+12m)q +’( m)q

hkot hkot
=—aq2—l—i(x——0)q+iko(x——0)
m 2m
i hkot\ 1> 1 hikot \
=—a|lqg——x——— ——x-—
2a m 4o m

fikot
+,-k0( _ Dikot ) (1.135)
2m
where we have used the relation — ag? +iyqg = — a g — iy/(20c)]2 — y?/(4a), with y =
x — hkot/m and
a® ht
=—+i—. 1.136
=Tt (1.136)

Substituting (1.135) into (1.134) we obtain
.y = L a’ " hkot 1 hkot\*
w(x, = 7\ exp | iko | x — — = ) fexp | =~ | X —
+oo ' fikot \ 12
x/ exp{—a[q—L(x——O)} ]dq. (1.137)
o 2a m

Combined with the integral'® [*% exp[— a (¢ — iy/(20))*|dg = /7 /a, (1.137) leads to

2\ /4 2
wix,t) = % (g—n) exp |:iko (x — %)] exp [—% (x - ?) :| . (1.138)

1(’Ifﬂ and ¢ are two complex numbers and if Re f > 0, we have fj_oos e_ﬂ(q+5)2 dq = /7 /B.

1/4
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Since « is a complex number (see (1.136)), we can write it in terms of its modulus and phase

12
2 2 2,2
a 2ht a 4h“t 0
a:Z(l_'_lW):?(l-i_W) éev, (1.139)
where 6 = tan™! [27¢/(ma?)]; hence
—1/4

1 2 4h%1? ”

_— _Z - —i6/2

ﬁ_a(1+m2a4) emi0/2, (1.140)

Substituting (1.136) and (1.140) into (1.138), we have

—1/4
2 \'/4 45212 o — hkot /m)?
w(x, 1) = (m) (1 + o102 giko (x—hkot /2m) exp _(x ot/m)

m2a* a? 4+ 2ikt/m
(1.141)
Since ‘e‘yz/(azﬁ"m/"’) eV} /@ =2iht/m) =y /(@ +2iht/m) where y = x — hkot/m, and
since y2/(a® — 2ikt/m) + y*/(a® + 2ikit)m) = 2a*y?*/(a* + 4h%t* /m?), we have

2612)/2
—exp(——22 ), 1.142
exp( e —— /m2) (1.142)

2

2

2
a’ 4 2ikt/m

2 44242 1z
ly (x, )] ”_az(HW)
[2 1 2 fikot \ 2
ma? y () exp{_[ay(t)]2 (x— m ) }’ (149

where y (1) = \/1 + 45212 /(m2a*).

We see that both the wave packet (1.141) and the probability density (1.143) remain Gaussian
as time evolves. This can be traced to the fact that the x-dependence of the phase, /%%, of g (x)
as displayed in (1.110) is linear. If the x-dependence of the phase were other than linear, say
quadratic, the form of the wave packet would not remain Gaussian. So the phase factor e%0*,
which was present in g (x), allows us to account for the motion of the particle.

hence

2
. (x — hkot/m)?
i | = T Kot/ m)”
P a’ + 2ikt/m

Since the group velocity of a free particle is vy = dw/dk = % (%) ‘k = fiky/m, we can
0

rewrite (1.141) as follows'”:

2
O t) = 02 ka0t /) g [_%] , (1.144)
V27 Ax (1)
2 (x = Ug’)z
- expl-— ) 14
v V2 Ax(0) eXp< 2[Ax(t)]2}’ (1149

171t is interesting to note that the harmonic wave etko(x—vgt/2) propagates with a phase velocity which is zalf the
group velocity; as shown in (1.124), this is a property of free particles.
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2
ly (x, 1)
A
V2/ma?
1 .
V27 Axoa/14(t /)2 . :
...... r= OH Ug
PEuN : t=1
/\ -
: <y J LA : - X
—0gh —0gl 0 Vgl Vgl

Figure 1.15 Time evolution of |y (x, #)|?: the peak of the packet, which is centered at x =
vgt, moves with the speed vy from left to right. The height of the packet, represented here
by the dotted envelope, is modulated by the function 1/(+/27 Ax(¢)), which goes to zero at

t = oo and is equal to /2/wa? at t = 0. The width of the packet Ax(¢) = Axoy/1 + (¢/7)2

increases linearly with time.
a a 4112
Ax(t)==y() = —=,/1 —_— 1.146
X0 =570 =51+ (1.146)

represents the width of the wave packet at time ¢. Equations (1.144) and (1.145) describe a
Gaussian wave packet that is centered at x = vg¢ whose peak travels with the group speed vy =
hko/m and whose width Ax(z) increases linearly with time. So, during time 7, the packet’s
center has moved from x = 0 to x = v, and its width has expanded from Axp = a/2 to

where!8

Ax(t) = Axo\/ 1 + 45212 /(m2a*). The wave packet therefore undergoes a distortion; although

it remains Gaussian, its width broadens linearly with time whereas its height, 1/(v/27 Ax(¢)),
decreases with time. As depicted in Figure 1.15, the wave packet, which had a very broad width
and a very small amplitude at # — —oo, becomes narrower and narrower and its amplitude
larger and larger as time increases towards ¢ = 0; at ¢t = 0 the packet is very localized, its width
and amplitude being given by Axg = a/2 and /2/ma?, respectively. Then, as time increases
(t > 0), the width of the packet becomes broader and broader, and its amplitude becomes
smaller and smaller.

In the rest of this section we are going to comment on several features that are relevant not
only to the Gaussian packet considered above but also to more general wave packets. First, let
us begin by estimating the time at which the wave packet starts to spread out appreciably. The
packet, which is initially narrow, begins to grow out noticeably only when the second term,
2ht /(ma®), under the square root sign of (1.146) is of order unity. For convenience, let us write

18We can derive (1.146) also from (1.111): a combination of the half-width |y (£Ax, t)l2 /1w (0, 0)|2 =e 12
with (1.143) yields e=2[8x/a7 OF — o=1/2 which in turn leads to (1.146).
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2
Ax(t) = Axo, |1 + (;) , (1.147)

2m(Axg)?
T = —
h

represents a time constant that characterizes the rate of the packet’s spreading. Now we can
estimate the order of magnitude of 7; it is instructive to evaluate it for microscopic particles
as well as for macroscopic particles. For instance, ¢ for an electron whose position is defined
to within 10719 m is given by!® 7 ~ 1.7 x 107'® s; on the other hand, the time constant
for a macroscopic particle of mass say 1 g whose position is defined to within 1 mm is of the
order?® of 7 ~ 2x 10% s (for an illustration see Problems 1.15 and 1.16). This crude calculation
suggests that the wave packets of microscopic systems very quickly undergo significant growth;
as for the packets of macroscopic systems, they begin to grow out noticeably only after the
system has been in motion for an absurdly long time, a time of the order of, if not much higher
than, the age of the Universe itself, which is about 4.7 x 1017 s. Having estimated the times
at which the packet’s spread becomes appreciable, let us now shed some light on the size of
the spread. From (1.147) we see that when ¢ >> 7 the packet’s spreading is significant and,
conversely, when ¢ << 7 the spread is negligible. As the cases ¢ > 7 and ¢ < 7 correspond
to microscopic and macroscopic systems, respectively, we infer that the packet’s dispersion is
significant for microphysical systems and negligible for macroscopic systems. In the case of
macroscopic systems, the spread is there but it is too small to detect. For an illustration see
Problem 1.15 where we show that the width of a 100 g object increases by an absurdly small
factor of about 10727 after traveling a distance of 100 m, but the width of a 25 eV electron
increases by a factor of 10? after traveling the same distance (in a time of 3.3 x 107> s). Such
an immense dispersion in such a short time is indeed hard to visualize classically; this motion
cannot be explained by classical physics.

So the wave packets of propagating, microscopic particles are prone to spreading out very
significantly in a short time. This spatial spreading seems to generate a conceptual problem:
the spreading is incompatible with our expectation that the packet should remain highly local-
ized at all times. After all, the wave packet is supposed to represent the particle and, as such,
it is expected to travel without dispersion. For instance, the charge of an electron does not
spread out while moving in space; the charge should remain localized inside the corresponding
wave packet. In fact, whenever microscopic particles (electrons, neutrons, protons, etc.) are
observed, they are always confined to small, finite regions of space; they never spread out as
suggested by equation (1.146). How do we explain this apparent contradiction? The problem
here has to do with the proper interpretation of the situation: we must modify the classical
concepts pertaining to the meaning of the position of a particle. The wave function (1.141)
cannot be identified with a material particle. The quantity |y (x, 7)|>dx represents the proba-
bility (Born’s interpretation) of finding the particle described by the packet v (x, ¢) at time ¢ in
the spatial region located between x and x + dx. The material particle does not disperse (or
fuzz out); yet its position cannot be known exactly. The spreading of the matter wave, which is
accompanied by a shrinkage of its height, as indicated in Figure 1.15, corresponds to a decrease

(1.146) in the form

where
(1.148)

191¢ Axg = 10710 m and since the rest mass energy of an electron is mc? = 0.5 MeV and using fic =~ 197 x
10~15 MeV m, we have t = 2mcz(Ax0)2/((hc)c) ~1.7x 107165,
208ince # = 1.05 x 10734 J s we have 7 = 2 x 0.001 kg x (0.001 m)2/(1.05 x 10734 J s) ~2 x 10% s.
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of the probability density |y (x, 7)|> and implies in no way a growth in the size of the particle.
So the wave packet gives only the probability that the particle it represents will be found at a
given position. No matter how broad the packet becomes, we can show that its norm is always
conserved, for it does not depend on time. In fact, as can be inferred from (1.143), the norm of
the packet is equal to one:

4o 21 [ 20— hkot/m)? \/7 \/?
2 _ -
[ wor d"—\/;y | exp< T @’ ] e

(1.149)
since fj;o e=**’dx = /xJa. This is expected, since the probability of finding the particle
somewhere along the x-axis must be equal to one. The important issue here is that the norm
of the packet is time independent and that its spread does not imply that the material particle
becomes bloated during its motion, but simply implies a redistribution of the probability density.
So, in spite of the significant spread of the packets of microscopic particles, the norms of these
packets are always conserved—normalized to unity.

Besides, we should note that the example considered here is an idealized case, for we are
dealing with a free particle. If the particle is subject to a potential, as in the general case, its
wave packet will not spread as dramatically as that of a free particle. In fact, a varying potential
can cause the wave packet to become narrow. This is indeed what happens when a measurement
is performed on a microscopic system; the interaction of the system with the measuring device
makes the packet very narrow, as will be seen in Chapter 3.

Let us now study how the spreading of the wave packet affects the uncertainties product
Ax(t)Ap(t). First, we should point out that the average momentum of the packet 7k and its
uncertainty Ak do not change in time. This can be easily inferred as follows. Rewriting (1.94)
in the form

+o00 +o00

1 ‘ .
w(x, 1) = = é(k, 0)e! F¥ =N g = = bk, 1)e'* dk, (1.150)
hY% —00 v —00
we have A
Pk, 1) = e Dk, 0), (1.151)
where ¢ (k, 0) = (a2/27r)1/4e_“2(k_k0)2/4; hence
|k, P = | (k, 0)I. (1.152)

This suggests that the widths of ¢ (k, t) and ¢ (k, 0) are equal; hence Ak remains constant and
so must the momentum dispersion Ap (this is expected because the momentum of a free particle
is a constant of the motion). Since the width of ¢ (k, 0) is given by Ak = 1/a (see (1.112)), we
have

A
Ap =hAk = —. (1.153)
a
Multiplying this relation by (1.146), we have
h 4n?
Ax()Ap = =1 + ——12, (1.154)
2 m2a*

which shows that Ax(¢)Ap > h/2 is satisfied at all times. Notably, when ¢t = 0 we obtain
the lower bound limit AxgAp = #/2; this is the uncertainty relation for a stationary Gaussian
packet (see (1.114)). As |¢] increases, however, we obtain an inequality, Ax(¢#)Ap > Fi/2.
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oxc = —ht/(ma) oxc = hit/(ma)

t

>
o

Figure 1.16 Time evolutions of the packet’s width Ax(¢) = Axo\/ 1 + (0xi(t)/ Axo)? (dotted
curve) and of the classical dispersion dx;(¢t) = +#t/(ma) (solid lines). For large values of |¢],
Ax(t) approaches dx;(¢) and att = 0, Ax(0) = Axp = a/2.

Having shown that the width of the packet does not disperse in momentum space, let us now
study the dispersion of the packet’s width in x-space. Since Axg = a/2 we can write (1.146)

as
a 4522 Sxa () \?
Ax(t) = =,/ 1 + —— = Axo |1+ [ ——=) , 1.155
x(1) =51+ 53 X0 +( Are ) (1.155)

where the dispersion factor dx.;(¢)/ Axg is given by

Oxe(t 2h h
ralt) _ 2k, _ . (1.156)
Axo ma? 2mAx§

As shown in Figure 1.16, when |¢] is large (i.e., t = $00), we have Ax(t) — dx.(¢) with

Oxe(t) = iﬁ = :I:gt = +Avt, (1.157)
ma m

where Av = /i/(ma) represents the dispersion in velocity. This means that if a particle starts
initially (# = 0) at x = 0 with a velocity dispersion equal to Ao, then Av will remain constant
but the dispersion of the particle’s position will increase linearly with time: dx.;(¢) = %l|t|/(ma)
(Figure 1.16). We see from (1.155) that if ox.;(¢)/Axp < 1, the spreading of the wave packet
is negligible, but if dx.; (t)/ Axo > 1, the wave packet will spread out without bound.

We should highlight at this level the importance of the classical limit of (1.154): in the limit
i — 0, the product Ax(¢) Ap goes to zero. This means that the x and p uncertainties become
negligible; that is, in the classical limit, the wave packet will propagate without spreading. In
this case the center of the wave packet moves like a free particle that obeys the laws of classical
mechanics. The spread of wave packets is thus a purely quantum effect. So when i — 0 all
quantum effects, the spread of the packet, disappear.

We may conclude this study of wave packets by highlighting their importance:

e They provide a linkage with the Heisenberg uncertainty principle.
e They embody and unify the particle and wave features of matter waves.
e They provide a linkage between wave intensities and probabilities.

e They provide a connection between classical and quantum mechanics.



54 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

1.9 Concluding Remarks

Despite its striking success in predicting the hydrogen’s energy levels and transition rates, the
Bohr model suffers from a number of limitations:

e It works only for hydrogen and hydrogen-like ions such as Hetand Li**.

e It provides no explanation for the origin of its various assumptions. For instance, it gives
no theoretical justification for the quantization condition (1.63) nor does it explain why
stationary states radiate no energy.

e It fails to explain why, instead of moving continuously from one energy level to another,
the electrons jump from one level to the other.

The model therefore requires considerable extension to account for the electronic properties
and spectra of a wide range of atoms. Even in its present limited form, Bohr’s model represents
a bold and major departure from classical physics: classical physics offers no justification for
the existence of discrete energy states in a system such as a hydrogen atom and no justification
for the quantization of the angular momentum.

In its present form, the model not only suffers from incompleteness but also lacks the ingre-
dients of a consistent theory. It was built upon a series of ad hoc, piecemeal assumptions. These
assumptions were not derived from the first principles of a more general theory, but postulated
rather arbitrarily.

The formulation of the theory of quantum mechanics was largely precipitated by the need
to find a theoretical foundation for Bohr’s ideas as well as to explain, from first principles, a
wide variety of other microphysical phenomena such as the puzzling processes discussed in
this chapter. It is indeed surprising that a single theory, quantum mechanics, is powerful and
rich enough to explain accurately a wide variety of phenomena taking place at the molecular,
atomic, and subatomic levels.

In this chapter we have dealt with the most important experimental facts which confirmed
the failure of classical physics and subsequently led to the birth of quantum mechanics. In the
rest of this text we will focus on the formalism of quantum mechanics and on its application to
various microphysical processes. To prepare for this task, we need first to study the mathemat-
ical tools necessary for understanding the formalism of quantum mechanics; this is taken up in
Chapter 2.

1.10 Solved Problems

Numerical calculations in quantum physics can be made simpler by using the following units.
First, it is convenient to express energies in units of electronvolt ( €V): one eV is defined as
the energy acquired by an electron passing through a potential difference of one Volt. The
electronvolt unit can be expressed in terms of joules and vice versa: 1 eV = (1.6 x 1071 C) x
(1V)=1.6x10"12Jand 1 J = 0.625 x 10! eV.

It is also convenient to express the masses of subatomic particles, such as the electron,
proton, and neutron, in terms of their rest mass energies: mec? = 0.511 MeV, m pcz =
938.27 MeV, and m,c? = 939.56 MeV.

In addition, the quantities 7ic = 197.33 MeV fm = 197.33 x 10~15 MeV m or hc =

1242.37 x 10710 ¢V m are sometimes more convenient to use than # = 1.05 x 10734 J s.
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Additionally, instead of 1/(47&p) = 8.9 x 10° N m?> C~2, one should sometimes use the fine
structure constant o = e?/[(4meo)hic] = 1/137.

Problem 1.1
A 45 kW broadcasting antenna emits radio waves at a frequency of 4 MHz.

(a) How many photons are emitted per second?

(b) Is the quantum nature of the electromagnetic radiation important in analyzing the radia-
tion emitted from this antenna?

Solution
(a) The electromagnetic energy emitted by the antenna in one second is £ = 45000 J.
Thus, the number of photons emitted in one second is

E 4500017

=— = =1.7 x 10°". 1.158
Ty T 6.63x 1021 s x 4 x 106 Hz % (1.158)

(b) Since the antenna emits a huge number of photons every second, 1.7 x 103!, the quantum
nature of this radiation is unimportant. As a result, this radiation can be treated fairly accurately
by the classical theory of electromagnetism.

Problem 1.2
Consider a mass—spring system where a 4 kg mass is attached to a massless spring of constant
k = 196 Nm™!; the system is set to oscillate on a frictionless, horizontal table. The mass is
pulled 25 cm away from the equilibrium position and then released.

(a) Use classical mechanics to find the total energy and frequency of oscillations of the
system.

(b) Treating the oscillator with quantum theory, find the energy spacing between two con-
secutive energy levels and the total number of quanta involved. Are the quantum effects impor-
tant in this system?

Solution
(a) According to classical mechanics, the frequency and the total energy of oscillations are
given by

1 [k 1 [19 1 196
v=—/—=—/— =1.11Hz E = —kA®> = —=—(0.25% =6.125J. (1.159)
27 Vm 2z 4 2 2

(b) The energy spacing between two consecutive energy levels is given by
AE =hv = (6.63 x 1073*J s) x (1.11 Hz) = 7.4 x 1073*J (1.160)

and the total number of quanta is given by

E 6.125]

— — _ 33

We see that the energy of one quantum, 7.4 x 1073* J, is completely negligible compared to
the total energy 6.125 J, and that the number of quanta is very large. As a result, the energy
levels of the oscillator can be viewed as continuous, for it is not feasible classically to measure
the spacings between them. Although the quantum effects are present in the system, they are
beyond human detection. So quantum effects are negligible for macroscopic systems.
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Problem 1.3
When light of a given wavelength is incident on a metallic surface, the stopping potential for
the photoelectrons is 3.2 V. If a second light source whose wavelength is double that of the first
is used, the stopping potential drops to 0.8 V. From these data, calculate

(a) the wavelength of the first radiation and

(b) the work function and the cutoff frequency of the metal.

Solution
(a) Using (1.23) and since the wavelength of the second radiation is double that of the first
one, A = 211, we can write

he W

Vsy = —/———, (1.162)
el e
hc w he w
Vs, = ———= - —. 1.163
2 el e 2el| e ( )
To obtain 41 we have only to subtract (1.163) from (1.162):
hc 1 he
Ve = Ve =— (1 —=) = . 1.164
TR T e ( 2) 2el (1.164)
The wavelength is thus given by
he 6.6x 10734J s x 3 x 103ms~!

v =26x%x10""m. (1.165)

T 2e(Vy —Vyy) 2x1.6x1009Cx (3.2V—08V)

(b) To obtain the work function, we simply need to multiply (1.163) by 2 and subtract the
result from (1.162), Vs, — 2V, = W/e, which leads to

W=e(Vs —2Vs) =1.6eV=16x1.6x10"1 =256 x 1071 J. (1.166)
The cutoff frequency is

W 256x107197]

=~ _39x10"Hz 1.167
T 66x10-47 s % z (1.167)

VvV =

Problem 1.4

(a) Estimate the energy of the electrons that we need to use in an electron microscope to
resolve a separation of 0.27 nm.

(b) In a scattering of 2 eV protons from a crystal, the fifth maximum of the intensity is
observed at an angle of 30°. Estimate the crystal’s planar separation.

Solution
(a) Since the electron’s momentum is p = 2z /i /4, its kinetic energy is given by
_ p? . 2m2h?
T 2me meA?’

(1.168)

Since m.c? = 0.511 MeV, fic = 197.33 x 10715 MeV m, and 1 = 0.27 x 10~ m, we have

_ 2x%(he)*  27%(197.33 x 10715 MeV m)?
T (mec®)A2 T (0.511 MeV)(0.27 x 10=9 m)2

—20.6eV. (1.169)
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(b) Using Bragg’s relation (1.46), 1 = (2d/n) sin ¢, where d is the crystal’s planar separa-
tion, we can infer the proton’s kinetic energy from (1.168):

p2 2ﬂ2h2 n2n,2h2
E = — — s , (1.170)
2m,  mpi*  2mpd?sin 2¢
which leads to 5 5
nmw nrhc (1.171)

d=— = .
(in @)y2mpE (sin @) /2m 2 E
Since n = 5 (the fifth maximum), ¢ = 30°, £ =2 eV, and mpc2 = 938.27 MeV, we have

B 5w x 197.33 x 1071° MeV m
(sin 30°)4/2 x 938.27 MeV x 2 x 10-6 MeV

= 0.101 nm. (1.172)

Problem 1.5
A photon of energy 3 keV collides elastically with an electron initially at rest. If the photon
emerges at an angle of 60°, calculate

(a) the kinetic energy of the recoiling electron and

(b) the angle at which the electron recoils.

Solution
(a) From energy conservation, we have

hv 4+ mec? = ' + (Ke + mec?), (1.173)

where Av and v’ are the energies of the initial and scattered photons, respectively, m.c? is the
rest mass energy of the initial electron, (K, 4+ m.c?) is the total energy of the recoiling electron,
and K, is its recoil kinetic energy. The expression for K, can immediately be inferred from
(1.173):

1 1 he M — A AL
Kezh(v—v/)zhc (I—?) 27 o Z(hU)T, (1174)
where the wave shift A4 is given by (1.36):
h 2rh
AL = V—-i= (1 —cos 0) = nzc(l—cosé))
mec mec
27 x 197.33 x 10715 MeV
- X x €Y 1~ cos 60°)
0.511 MeV
= 0.0012 nm. (1.175)

Since the wavelength of the incident photon is 4 = 2z fic/(hv), we have 1 = 27 x 197.33 x
10715 MeV m/(0.003 MeV) = 0.414 nm; the wavelength of the scattered photon is given by

) =+ Al =04152nm. (1.176)

Now, substituting the numerical values of A’ and A4 into (1.174), we obtain the kinetic energy
of the recoiling electron
0.0012 nm

AL
Ke = (hU)T = (3 keV) X m = 8.671 V. (1177)
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(b) To obtain the angle at which the electron recoils, we need simply to use the conservation
of the total momentum along the x — and y— axes:

P = pecos ¢+ p'cos 0, 0 = pesin ¢ — p’sin 0. (1.178)
These can be rewritten as
pecos ¢ = p— p’cos 6, pesin ¢ = p’sin 0, (1.179)

where p and p’ are the momenta of the initial and final photons, p, is the momentum of the
recoiling electron, and 6 and ¢ are the angles at which the photon and electron scatter, respec-
tively (Figure 1.4). Taking (1.179) and dividing the second equation by the first, we obtain

sin 6 sin 0

t = = ,
ang p/p' —cos@  A'/A—cos b

(1.180)

where we have used the momentum expressions of the incident photon p = &/1 and of the
scattered photon p’ = h/A’. Since 4 = 0.414 nm and A’ = 0.4152 nm, the angle at which the
electron recoils is given by

in 0 in 60°
$=tan"' [ ——" ) = tan~! a —59.86°.  (1.181)
A'JA —cos 6 0.4152/0.414 — cos 60°

Problem 1.6
Show that the maximum kinetic energy transferred to a proton when hit by a photon of energy
hvis K, =hv/[1+ mpcz/(Zhv)], where m , is the mass of the proton.

Solution
Using (1.35), we have

1 1

—=-+ 5 (1 —cos 0), (1.182)

v Vo ompe
which leads to

, hv

hv (1.183)

" 1+ (hw/mpc®)(1 —cos )
Since the kinetic energy transferred to the proton is given by K, = hv — hv’, we obtain

_ hv . hv
1+ (hv/mpc?)(1 —cos @) 1+ mpyc?/[hv(1l — cos 0)]

Ky=hv (1.184)
Clearly, the maximum kinetic energy of the proton corresponds to the case where the photon

scatters backwards (0 = ),
hv

Ky=—"¢-+/¥+Z7-—.
P L+ mpe?/(2hv)

(1.185)

Problem 1.7
Consider a photon that scatters from an electron at rest. If the Compton wavelength shift is
observed to be triple the wavelength of the incident photon and if the photon scatters at 60°,
calculate

(a) the wavelength of the incident photon,

(b) the energy of the recoiling electron, and

(c) the angle at which the electron scatters.
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Solution
(a) In the case where the photons scatter at & = 60° and since A4 = 34, the wave shift
relation (1.36) yields
h

3= (1 — cos 60°), (1.186)
meC
which in turn leads to
h h 3.14 x 197.33 x 10”15 MeV
- L R R s Cl _404x107%m (1.187)
6mec  3mec? 3 x 0.511 MeV

(b) The energy of the recoiling electron can be obtained from the conservation of energy:

= 2.3 MeV.
(1.188)

11 3he  3mhe 3 x3.14 % 19733 x 1071 MeV m
K, = hc = = =

2T 4 T 24 2 x4.04x10-3m

In deriving this relation, we have used the fact that ' = 1 + A1 = 44.
(c) Since 1’ = 4/ the angle ¢ at which the electron recoils can be inferred from (1.181)

_ sin 0 _ sin 60° o
¢ = tan ! (m) = tan~! (m) = 13.9°. (1.189)

Problem 1.8
In a double-slit experiment with a source of monoenergetic electrons, detectors are placed along
a vertical screen parallel to the y-axis to monitor the diffraction pattern of the electrons emitted
from the two slits. When only one slit is open, the amplitude of the electrons detected on the
screen is w1 (v, 1) = Aje='®=®0/ /1 + y2_ and when only the other is open the amplitude is
wr(v, 1) = Ape Wy tmy—on ;) /1 4 2 where A1 and A, are normalization constants that need
to be found. Calculate the intensity detected on the screen when

(a) both slits are open and a light source is used to determine which of the slits the electron
went through and

(b) both slits are open and no light source is used.
Plot the intensity registered on the screen as a function of y for cases (a) and (b).

Solution
Using the integral fj;o dy/(1 + y?) = m, we can obtain the normalization constants at once:

A1 = Ay = 1//T; hence y and y; become w1 (v, 1) = e 6=/ [x (T 12), ya(y, 1) =
e—i(ky+7ry—cot)/ /77:(1 +y2).

(a) When we use a light source to observe the electrons as they exit from the two slits on
their way to the vertical screen, the total intensity recorded on the screen will be determined by
a simple addition of the probability densities (or of the separate intensities):

1) =y OF + lya (. )1 = (1.190)

r(1+y?)’

As depicted in Figure 1.17a, the shape of the total intensity displays no interference pattern.
Intruding on the electrons with the light source, we distort their motion.
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Figure 1.17 Shape of the total intensity generated in a double slit experiment when both slits
are open and (a) a light source is used to observe the electrons’ motion, /(y) = 2/z (1 + y?),
and no interference is registered; (b) no light source is used, / (y) = 4/[z (14+y*)] cos>(zy/2),
and an interference pattern occurs.

(b) When no light source is used to observe the electrons, the motion will not be distorted
and the total intensity will be determined by an addition of the amplitudes, not the intensities:

1 T . _ 2
10) = 100+ y2000F = s [ Brmen  emitbrmrmen
_ 1 iy —iry
= iy (+em) (™)
4 2 (T
= — =y). 1.191
z(1+,2) % (2y) (1.191)

The shape of this intensity does display an interference pattern which, as shown in Figure 1.17b,
results from an oscillating function, cos?(z y/2), modulated by 4/[z (1 + y?)].

Problem 1.9

Consider a head-on collision between an a-particle and a lead nucleus. Neglecting the recoil
of the lead nucleus, calculate the distance of closest approach of a 9.0 MeV a-particle to the
nucleus.

Solution

In this head-on collision the distance of closest approach 7 can be obtained from the conserva-
tion of energy E; = E s, where E; is the initial energy of the system, a-particle plus the lead
nucleus, when the particle and the nucleus are far from each other and thus feel no electrostatic
potential between them. Assuming the lead nucleus to be at rest, E; is simply the energy of the
a-particle: E; =9.0 MeV =9 x 10° x 1.6 x 10717 J.

As for E y, it represents the energy of the system when the a-particle is at its closest distance
from the nucleus. At this position, the a-particle is at rest and hence has no kinetic energy.
The only energy the system has is the electrostatic potential energy between the a-particle
and the lead nucleus, which has a positive charge of 82e. Neglecting the recoil of the lead
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nucleus and since the charge of the a-particle is positive and equal to 2e, we have £y =
(2e)(82e)/(4megro). The energy conservation E; = E r or (2e)(82e)/(4mweorg) = E; leads at

once to 2 82
ro = QaB2) _ ;) 6 x 10-14 m, (1.192)
dreoE;

where we used the values e = 1.6 x 107!° C and 1 /(47w eg) = 8.9 x 10° N m? C2.

Problem 1.10
Considering that a quintuply ionized carbon ion, C>*, behaves like a hydrogen atom, calculate
(a) the radius r,, and energy E, for a given state n and compare them with the corresponding
expressions for hydrogen,
(b) the ionization energy of C>+ when it is in its first excited state and compare it with the
corresponding value for hydrogen, and
(c) the wavelength corresponding to the transition from state n = 3 to state n = 1; compare
it with the corresponding value for hydrogen.

Solution
(a) The C°* ion is generated by removing five electrons from the carbon atom. To find the
expressions for 7, and E,. for the C>* ion (which has 6 protons), we need simply to insert
Z = 6 into (1.76): 6%
a
Fne = €0n2, Enc = _n_2
where we have dropped the term m./M, since it is too small compared to one. Clearly, these
expressions are related to their hydrogen counterparts by

: (1.193)

36R
Fne = %Onz - r”?” Ene = == =36E,,. (1.194)

(b) The ionization energy is the one needed to remove the only remaining electron of the
C>* ion. When the C>* ion is in its first excited state, the ionization energy is
36R

Eye = —== =9 x 13.6eV =~1224eV, (1.195)

which is equal to 36 times the energy needed to ionize the hydrogen atom in its first excited
state: E»,, = —3.4 eV (note that we have taken n = 2 to correspond to the first excited state;
as a result, the cases » = 1 and n = 3 will correspond to the ground and second excited states,
respectively).

(c) The wavelength corresponding to the transition from state # = 3 to state n = 1 can be
inferred from the relation hc/A = E3. — E1. which, when combined with E1. = —489.6 eV
and £3. = —54.4 eV, leads to

he 2nhe 27197.33 x 107 eV m

/’{ = = —
Es. — Ei. Es. —Ei, —54.4 eV 4+ 489.6 eV

=2.85nm. (1.196)

Problem 1.11

(a) Find the Fourier transform for ¢ (k) = Aa—IkD), Ik < a,

0, k] > a.
where a is a positive parameter and A4 is a normalization factor to be found.

(b) Calculate the uncertainties Ax and Ap and check whether they satisfy the uncertainty
principle.
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wo(x) = (4/x%) sin?(ax/2)

2
a
¢ (k) = /3/(24%) (a ~ IK])
A
V3/Qad)
k >
—a 0 a &0 A

Figure 1.18 The shape of the function ¢ (k) and its Fourier transform g (x).

Solution
(a) The normalization factor 4 can be found at once:

_
Il

+00 0 a
/ lp(k)12dk = |A)> | (a +k)*dk + |A|2/ (a — k)?>dk
0

- a - a
= 2|A|2/ (a—k)zdk=2|A|2/ (a2—2ak+k2) dk
0 0
2 3
- %|A|2, (1.197)

which yields 4 = /3/(2a3). The shape of ¢ (k) = +/3/(2a3) (a — |k|) is displayed in Fig-
ure 1.18.
Now, the Fourier transform of ¢ (k) is

1 too

_ ikx
yo(x) = N ¢(k)e"™ dk

1 3 0 , a :
- |2 k lkxdk —k lkxdk
=\ 203 |:/_a(a+ )e +/O (a—k)e :|

_ L /i /0 keik"dk—/a keikxdk+a/a e ar |
V2 2a3 —a 0 a

(1.198)
Using the integrations
0 ik a . 1 ,
/ ke¥dk = Lemior 4 (1 - e_’”x) , (1.199)
—a ix X
a i a - 1 .
/ ke¥dk = et 4 = (emx - 1) , (1.200)
0 ix x
/“ gk = i (eiax _ e—iax) _ M, (1.201)
—a ix x
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and after some straightforward calculations, we end up with

wo(x) = iz sin 2 (ﬂ) . (1.202)
X 2

As shown in Figure 1.18, this wave packet is localized: it peaks at x = 0 and decreases gradu-

ally as x increases. We can verify that the maximum of w(x) occurs at x = 0; writing yo(x)

as a®(ax /2)~2 sin’(ax/2) and since lim,_,¢ sin (bx)/(bx) — 1, we obtain y((0) = a>.

(b) Figure 1.18a is quite suggestive in defining the half-width of ¢(k): Ak = a (hence
the momentum uncertainty is Ap = #a). By defining the width as Ak = a, we know with
full certainty that the particle is located between —a < k < a; according to Figure 1.18a, the
probability of finding the particle outside this interval is zero, for ¢ (k) vanishes when |k| > a.

Now, let us find the width Ax of wo(x). Since sin(az/2a) = 1, yo(r/a) = 4a*/x?, and
that yo(0) = a2, we can obtain from (1.202) that yo (7 /a) = 4a®/n? = 4/7x%y(0), or

wom/a) _ 4 (1.203)

wo(0) 2

This suggests that Ax = 7 /a: when x = £Ax = 4 /a the wave packet yo(x) drops to 4/ 2
from its maximum value yo(0) = @?. In sum, we have Ax = 7 /a and Ak = a; hence

AxAk = (1.204)

or
AxAp =rh, (1.205)

since Ak = Ap/Ah. In addition to satisfying Heisenberg’s uncertainty principle (1.57), this
relation shows that the product Ax Ap is higher than %/2: AxAp > #/2. The wave packet
(1.202) therefore offers a clear illustration of the general statement outlined above; namely, only
Gaussian wave packets yield the lowest limit to Heisenberg’s uncertainty principle Ax Ap =
7i/2 (see (1.114)). All other wave packets, such as (1.202), yield higher values for the product
Ax Ap.

Problem 1.12
Calculate the group and phase velocities for the wave packet corresponding to a relativistic
particle.

Solution
Recall that the energy and momentum of a relativistic particle are given by

moc moov

E=mc*= ———, p=mp=—--—,
V1 —0v%/c? V1 —0v%/c?

where my is the rest mass of the particle and c is the speed of light in a vacuum. Squaring and
adding the expressions of £ and p, we obtain £ = p*c? + m%c“; hence

E = ¢,/ p* + m}c2. (1.207)

(1.206)
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Using this relation along with p* + m%c2 = m%cz/(l —0%/c?) and (1.122), we can show that
the group velocity is given as follows:

dE d c
ug=5=%(c,/p2+m%c2)=ﬁ=o. (1.208)
\J PT+me

The group velocity is thus equal to the speed of the particle, vy = v.
The phase velocity can be found from (1.122) and (1.207): v = E/p = ¢,/ 1 + m}c?/ p?

which, when combined with p = mov//1 — v2/c2, leads to /1 + m§c?/p? = ¢/v; hence

E
=_— = 1 = 1.209
Oph P c + S » ( )

This shows that the phase velocity of the wave corresponding to a relativistic particle with
mqo # 0 is larger than the speed of light, v,;, = c?/v > c. This is indeed unphysical. The
result v, > c seems to violate the special theory of relativity, which states that the speed
of material particles cannot exceed c. In fact, this principle is not violated because v, does
not represent the velocity of the particle; the velocity of the particle is represented by the group
velocity (1.208). As a result, the phase speed of a relativistic particle has no meaningful physical
significance.
Finally, the product of the group and phase velocities is equal to ¢?, i.e., Vglph = 2.

Problem 1.13

The angular frequency of the surface waves in a liquid is given in terms of the wave number &
by w = \/gk + Tk3/p, where g is the acceleration due to gravity, p is the density of the liquid,
and T is the surface tension (which gives an upward force on an element of the surface liquid).
Find the phase and group velocities for the limiting cases when the surface waves have: (a) very
large wavelengths and (b) very small wavelengths.

Solution
The phase velocity can be found at once from (1.119):

g gl 2T

W T
L _ fally N A T il 1.210
Uph k \/k + P 2T + pi’ ( )

where we have used the fact that k = 2z /4, 1 being the wavelength of the surface waves.
(a) If A is very large, we can neglect the second term in (1.210); hence

gl g
— &2 _ /& 1.211
Uph b & ( )

In this approximation the phase velocity does not depend on the nature of the liquid, since it
depends on no parameter pertaining to the liquid such as its density or surface tension. This
case corresponds, for instance, to deepwater waves, called gravity waves.
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To obtain the group velocity, let us differentiate (1.211) with respect to k: dv,,/dk =
—(1/2k)\/g/k = —vpp/2k. A substitution of this relation into (1.120) shows that the group
velocity is half the phase velocity:

do dv pp 1 1 1 /g
Ug:E:l)ph +kW:DPh—§Uph:EUph:§ E (1212)
The longer the wavelength, the faster the group velocity. This explains why a strong, steady
wind will produce waves of longer wavelength than those produced by a swift wind.
(b) If 4 is very small, the second term in (1.210) becomes the dominant one. So, retaining

only the second term, we have
2z T T
= |[— = |—k, 1.213
Uph Py P ( )

which leads to dvp,/dk = /Tk/p/2k = vpp/2k. Inserting this expression into (1.120), we
obtain the group velocity
dvpj 1 3
Vg = Uph +kW=Uph+§l)ph:EUph; (1214)
hence the smaller the wavelength, the faster the group velocity. These are called ripple waves;
they occur, for instance, when a container is subject to vibrations of high frequency and small
amplitude or when a gentle wind blows on the surface of a fluid.

Problem 1.14

This problem is designed to illustrate the superposition principle and the concepts of modulated
and modulating functions in a wave packet. Consider two wave functions y(y, t) = 5y cos 7t
and y(v,t) = —5ycos 9¢, where y and ¢ are in meters and seconds, respectively. Show that
their superposition generates a wave packet. Plot it and identify the modulated and modulating
functions.

Solution
Using the relation cos (o £ ) = cos a cos B F sin a sin 8, we can write the superposition of
w1(y, t) and w2 (y, t) as follows:

v, t) = wvi(y,t)+ wa(y,t) =5ycos 7t — 5y cos 9t
= Sy (cos 8¢ cos t + sin 8¢ sin ¢) — 5y (cos 8¢ cos ¢ — sin 8¢ sin 1)
= 10y sin ¢ sin 8¢. (1.215)

The periods of 10y sin ¢ and sin(8¢) are given by 2z and 27 /8, respectively. Since the period of
10y sin ¢ is larger than that of sin 8¢, 10y sin # must be the modulating function and sin 8¢ the
modulated function. As depicted in Figure 1.19, we see that sin 8¢ is modulated by 10y sin ¢.

Problem 1.15

(a) Calculate the final size of the wave packet representing a free particle after traveling a
distance of 100 m for the following four cases where the particle is

(i) a 25 eV electron whose wave packet has an initial width of 107¢ m,
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Figure 1.19 Shape of the wave packet y(y,) = 10y sin ¢ sin 8¢. The function sin 8¢, the
solid curve, is modulated by 10y sin ¢, the dashed curve.

(i) a 25 eV electron whose wave packet has an initial width of 1078 m,

(iii) a 100 MeV electron whose wave packet has an initial width of 1 mm, and
(iv) a 100 g object of size 1 cm moving at a speed of 50 ms™.

(b) Estimate the times required for the wave packets of the electron in (i) and the object in

(iv) to spread to 10 mm and 10 cm, respectively. Discuss the results obtained.

Solution
(a) If the initial width of the wave packet of the particle is Axg, the width at time ¢ is given
by

ox

2
Ax(t) = Axo /1 + (—) , (1.216)
Axg

where the dispersion factor is given by

ox 2nt hit . hit (1.217)
Axo  ma®*  2m(a/2)?  2m (Ax)? -

(1) For the 25 eV electron, which is clearly not relativistic, the time to travel the L = 100 m
distance is given by t = L/v = L/mc?/2E/c, since E = %mv2 = %mc2(vz/cz) orov =
c/2E /(mc?). We can therefore write the dispersion factor as

ox fi A L |mc? ficL mc?
o St = ey R R iy (1.218)
Axo  2mAxg 2mAxj ¢\ 2E 2mc2AxO 2E

The numerics of this expression can be made easy by using the following quantities: zic =
197 x 10715 MeV m, the rest mass energy of an electron is mc? = 0.5 MeV, Axg = 107% m,
E =25eV =25 x 107% MeV, and L = 100 m. Inserting these quantities into (1.218), we
obtain

ox 197 x 10715 MeV m x 100 m 0.5 MeV

Z ~ ~2x10%; (1.219)
Axg 2 x 0.5 MeV x 1012 m?2 2 x 25 x 1076 MeV

the time it takes the electron to travel the 100 m distance is given, as shown above, by

L [mc? 100 m \/ 0.5 MeV

t== =33x%x107s. (1.220)
2 x 25 x 1076 MeV

cV2E ~ 3x10°ms!
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Using ¢ = 3.3 x 107> s and substituting (1.219) into (1.216), we obtain
Ax(t=33x1078)=10"mxv14+4x10°~2x 107> m =2 mm. (1.221)

The width of the wave packet representing the electron has increased from an initial value of
107® mto 2 x 1073 m, i.e., by a factor of about 103. The spread of the electron’s wave packet
is thus quite large.

(i1) The calculation needed here is identical to that of part (i), except the value of Axg is
now 1078 m instead of 10~ m. This leads to dx/Axg =~ 2 x 107 and hence the width is
Ax(t) = 20 cm; the width has therefore increased by a factor of about 107. This calculation is
intended to show that the narrower the initial wave packet, the larger the final spread. In fact,
starting in part (i) with an initial width of 10~ m, the final width has increased to 2 x 1073 m
by a factor of about 103; but in part (ii) we started with an initial width of 108 m, and the final
width has increased to 20 cm by a factor of about 107 .

(iii) The motion of a 100 MeV electron is relativistic; hence to good approximation, its
speed is equal to the speed of light, v =~ ¢. Therefore the time it takes the electron to travel a
distance of L = 100 mis ¢ ~ L/c = 3.3 x 107 s. The dispersion factor for this electron can
be obtained from (1.217) where Axg = 1073 m:

ox hL hel 197 x 10715 MeV m x 100 m s
— = = ~ ~2x 1070, (1.222)
Axo  2mcAx}  2mc?Ax} 2 x 0.5MeV x 1076 m?

The increase in the width of the wave packet is relatively small:

Ax(t=33x10""5) =10 mx V144 x 10710~ 1073 m = Ax. (1.223)

So the width did not increase appreciably. We can conclude from this calculation that, when
the motion of a microscopic particle is relativistic, the width of the corresponding wave packet
increases by a relatively small amount.

(iv) In the case of a macroscopic object of mass m = 0.1 kg, the time to travel the distance
L =100mist = L/v = 100 m/50 ms~! = 2's. Since the size of the system is about
Axg=1cm = 0.0l mand & = 1.05 x 10734 J s, the dispersion factor for the object can be
obtained from (1.217):

ox ht 1.05x 1073 T sx2s 2
— = ~ ~107%, (1.224)
Axg  2mAx}  2x0.1kgx 107%m?

Since dx/Axg = 1072° « 1, the increase in the width of the wave packet is utterly unde-
tectable:

Ax(25) =102 m x v/ 14 10758 =~ 1072 m = Ax,. (1.225)
(b) Using (1.216) and (1.217) we obtain the expression for the time ¢ in which the wave

packet spreads to Ax (¢):

2
f=1 (Ax(’)) —1, (1.226)
Axp

where 7 represents a time constant 7 = 2m(Axo)? /% (see (1.148)). The time constant for the
electron of part (i) is given by
2mc*(Axo)? 2 x 0.5MeV x 10712 m?
T = ~

~ =1.7x 1078, 1.227
2 197 x 10-15 MeV m x 3 x 10°ms—! s (1.227)
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and the time constant for the object of part (iv) is given by

2m(Axg)?> 2 x0.1kgx 107% m?
T = ~
h 1.05 x 10734 T s

Note that the time constant, while very small for a microscopic particle, is exceedingly large
for macroscopic objects.

On the one hand, a substitution of the time constant (1.227) into (1.226) yields the time
required for the electron’s packet to spread to 10 mm:

2\ 2
t=17x10"%s, (%) —1~17x107%s. (1.229)

On the other hand, a substitution of (1.228) into (1.226) gives the time required for the object

to spread to 10 cm:
10-1\?
r=19x10"s (F) —1~19x%x10%s. (1.230)

The result (1.229) shows that the size of the electron’s wave packet grows in a matter of 1.7 x
107% s from 107% m to 1072 m, a very large spread in a very short time. As for (1.230), it
shows that the object has to be constantly in motion for about 1.9 x 103 s for its wave packet
to grow from 1 cm to 10 cm, a small spread for such an absurdly large time; this time is absurd
because it is much larger than the age of the Universe, which is about 4.7 x 10'7 s. We see that
the spread of macroscopic objects becomes appreciable only if the motion lasts for a long, long
time. However, the spread of microscopic objects is fast and large.
We can summarize these ideas in three points:

=19x%x10%s. (1.228)

e The width of the wave packet of a nonrelativistic, microscopic particle increases substan-
tially and quickly. The narrower the wave packet at the start, the further and the quicker
it will spread.

e When the particle is microscopic and relativistic, the width corresponding to its wave
packet does not increase appreciably.

e For a nonrelativistic, macroscopic particle, the width of its corresponding wave packet
remains practically constant. The spread becomes appreciable only after absurdly long
times, times that are larger than the lifetime of the Universe itself!

Problem 1.16

A neutron is confined in space to 10~1% m. Calculate the time its packet will take to spread to
(a) four times its original size,
(b) a size equal to the Earth’s diameter, and
(c) a size equal to the distance between the Earth and the Moon.

Solution
Since the rest mass energy of a neutron is equal to m,c? = 939.6 MeV, we can infer the time
constant for the neutron from (1.227):

2mpc?(Axg)? 2 % 939.6 MeV x (10714 m)?
T = ~

~ =32x10"2's.  (1.231
2 197 x 10-15 MeV m x 3 x 105 ms—! s (1.230)
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Inserting this value in (1.226) we obtain the time it takes for the neutron’s packet to grow from
an initial width Axg to a final size Ax (¢):

2 2
f=1 (Ax(’)) —1=32x10"2s (Ax—(”) —1 (1.232)

Axo Axg

The calculation of ¢ reduces to simple substitutions.
(a) Substituting Ax(#) = 4Axp into (1.232), we obtain the time needed for the neutron’s
packet to expand to four times its original size:

t=32x10"21s/16 - 1=12x 10725, (1.233)

(b) The neutron’s packet will expand from an initial size of 10~ m to 12.7 x 10° m (the
diameter of the Earth) in a time of

6 2
1=32x1072 s\/(%) —1=4ls, (1.234)
m

(¢) The time needed for the neutron’s packet to spread from 10™1% m to 3.84 x 10% m (the
distance between the Earth and the Moon) is

8 2
N C ) REEEEN 0.2%9
m

The calculations carried out in this problem show that the spread of the packets of micro-
scopic particles is significant and occurs very fast: the size of the packet for an earthly neutron
can expand to reach the Moon in a mere 12.3 s! Such an immense expansion in such a short
time is indeed hard to visualize classically. One should not confuse the packet’s expansion with
a growth in the size of the system. As mentioned above, the spread of the wave packet does
not mean that the material particle becomes bloated. It simply implies a redistribution of the
probability density. In spite of the significant spread of the wave packet, the packet’s norm is
always conserved; as shown in (1.149) it is equal to 1.

Problem 1.17
Use the uncertainty principle to estimate: (a) the ground state radius of the hydrogen atom and
(b) the ground state energy of the hydrogen atom.

Solution

(a) According to the uncertainty principle, the electron’s momentum and the radius of its
orbit are related by rp ~ #; hence p ~ % /r. To find the ground state radius, we simply need to
minimize the electron—proton energy

2 2 2 2
p e i e
E(r) = — = — 1.236
") 2m, Amegr 2m.r?  A4megr ( )
with respect to 7:
dE n? 2
0=22 ¢ (1.237)

= = 3T 0
dr mery  4meor;
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This leads to the Bohr radius

4 eoh2
ro = 5

— 0.053 nm. (1.238)

mee
(b) Inserting (1.238) into (1.236), we obtain the Bohr energy:

2

h2 &2 me e?
E = - =" = —13.6¢V. 1.239
0= 2 " e on? (3r) ) (-2

The results obtained for ¢ and E (rg), as shown in (1.238) and (1.239), are indeed impressively
accurate given the crudeness of the approximation.

Problem 1.18
Consider the bound state of two quarks having the same mass m and interacting via a potential
energy V (r) = kr where k is a constant.

(a) Using the Bohr model, find the speed, the radius, and the energy of the system in the
case of circular orbits. Determine also the angular frequency of the radiation generated by a
transition of the system from energy state n to energy state m.

(b) Obtain numerical values for the speed, the radius, and the energy for the case of the
ground state, n = 1, by taking a quark mass of mc? = 2 GeV and k = 0.5 GeV fm ™.

Solution
(a) Consider the two quarks to move circularly, much like the electron and proton in a
hydrogen atom; then we can write the force between them as

vl dV(r)

— = k 1.240
r . , ( )

where u = m/2 is the reduced mass and V() is the potential. From the Bohr quantization
condition of the orbital angular momentum, we have

L = por = nh. (1.241)

Multiplying (1.240) by (1.241), we end up with u?v® = nhik, which yields the (quantized)
speed of the relative motion for the two-quark system:

A\ 1/3
Oy = (_2) n'/3. (1.242)
U
The radius can be obtained from (1.241), r, = nfi/(uvy); using (1.242), this leads to
22 1/3
p = (—k) n?/3. (1.243)
u

We can obtain the total energy of the relative motion by adding the kinetic and potential

energies:
1/3
1 3 [ 1n*k?
E, = 5“0’3 + kry = E(T) n2/3 (1.244)
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In deriving this relation, we have used the relations for v,, and r,, as given by (1.242) by (1.243),
respectively.
The angular frequency of the radiation generated by a transition from # to m is given by

En—En 3 (K\"
Opm = % =3 (E) (n2/3 _ m2/3) . (1.245)

(b) Inserting n = 1, fic ~ 0.197 GeV fm, puc* = mc?/2 =1 GeV, and k = 0.5 GeV fm™!
into (1.242) to (1.244), we have

hick \'/3 0.197 GeV fm x 0.5 GeV fm~!
v =—>5 ~
)2 (1 GeV)?

where c is the speed of light and

1/3
) ¢ = 0.46c, (1.246)

(he)\'? (0.197 GeV fm)?
ry = =~
! 1 GeV x 0.5 GeV fm-!

1/3
) = 0.427 fm, (1.247)

3 i 2k2 1/3
E1=—((C) ) ~

((0.197 GeV fm)2(0.5 GeV fm~1)?2
2\ wuc?

1/3
=0.32 GeV. (1.248)
1 GeV

1.11 Exercises

Exercise 1.1
Consider a metal that is being welded.
(a) How hot is the metal when it radiates most strongly at 490 nm?
(b) Assuming that it radiates like a blackbody, calculate the intensity of its radiation.

Exercise 1.2
Consider a star, a light bulb, and a slab of ice; their respective temperatures are 8500 K, 850K,
and 273.15K.

(a) Estimate the wavelength at which their radiated energies peak.

(b) Estimate the intensities of their radiation.

Exercise 1.3

Consider a 75 W light bulb and an 850 W microwave oven. If the wavelengths of the radiation
they emit are 500 nm and 150 mm, respectively, estimate the number of photons they emit per
second. Are the quantum effects important in them?

Exercise 1.4

Assuming that a given star radiates like a blackbody, estimate
(a) the temperature at its surface and
(b) the wavelength of its strongest radiation,

when it emits a total intensity of 575 MW m™2.
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Exercise 1.5
The intensity reaching the surface of the Earth from the Sun is about 1.36 kW m~2. Assuming
the Sun to be a sphere (of radius 6.96 x 103 m) that radiates like a blackbody, estimate

(a) the temperature at its surface and the wavelength of its strongest radiation, and

(b) the total power radiated by the Sun (the Earth—Sun distance is 1.5 x 10! m).

Exercise 1.6

(a) Calculate: (i) the energy spacing AE between the ground state and the first excited
state of the hydrogen atom; (ii) and the ratio A E/E| between the spacing and the ground state
energy.

(b) Consider now a macroscopic system: a simple pendulum which consists of a 5 g mass
attached to a 2m long, massless and inextensible string. Calculate (i) the total energy E; of
the pendulum when the string makes an angle of 60° with the vertical; (ii) the frequency of the
pendulum’s small oscillations and the energy A E of one quantum; and (iii) the ratio AE/E|.

(c) Examine the sizes of the ratio AE/E calculated in parts (a) and (b) and comment on
the importance of the quantum effects for the hydrogen atom and the pendulum.

Exercise 1.7
A beam of X-rays from a sulfur source (A = 53.7nm) and a y -ray beam from a Cs*>/ sample
(2 = 0.19nm) impinge on a graphite target. Two detectors are set up at angles 30° and 120°
from the direction of the incident beams.
(a) Estimate the wavelength shifts of the X-rays and the y -rays recorded at both detectors.
(b) Find the kinetic energy of the recoiling electron in each of the four cases.
(c) What percentage of the incident photon energy is lost in the collision in each of the four
cases?

137

Exercise 1.8

It has been suggested that high energy photons might be found in cosmic radiation, as a result
of the inverse Compton effect, i.e., a photon of visible light gains energy by scattering from
a high energy proton. If the proton has a momentum of 10'* eV/c, find the maximum final
energy of an initially yellow photon emitted by a sodium atom (19 = 2.1 nm).

Exercise 1.9

Estimate the number of photons emitted per second from a 75 rm W light bulb; use 575 nm as
the average wavelength of the (visible) light emitted. Is the quantum nature of this radiation
important?

Exercise 1.10
A 0.7MeV photon scatters from an electron initially at rest. If the photon scatters at an angle
of 35°, calculate

(a) the energy and wavelength of the scattered photon,

(b) the kinetic energy of the recoiling electron, and

(c) the angle at which the electron recoils.

Exercise 1.11

Light of wavelength 350 nm is incident on a metallic surface of work function 1.9 eV.
(a) Calculate the kinetic energy of the ejected electrons.
(b) Calculate the cutoff frequency of the metal.
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Exercise 1.12

Find the wavelength of the radiation that can eject electrons from the surface of a zinc sheet with
a kinetic energy of 75 eV; the work function of zinc is 3.74 eV. Find also the cutoff wavelength
of the metal.

Exercise 1.13
If the stopping potential of a metal when illuminated with a radiation of wavelength 480 nm is
1.2V, find

(a) the work function of the metal,

(b) the cutoff wavelength of the metal, and

(c) the maximum energy of the ejected electrons.

Exercise 1.14
Find the maximum Compton wave shift corresponding to a collision between a photon and a
proton at rest.

Exercise 1.15
If the stopping potential of a metal when illuminated with a radiation of wavelength 150 nm is
7.5V, calculate the stopping potential of the metal when illuminated by a radiation of wave-
length 275 nm.

Exercise 1.16
A light source of frequency 9.5 x 10'% Hz illuminates the surface of a metal of work function
2.8 eV and ejects electrons. Calculate

(a) the stopping potential,

(b) the cutoff frequency, and

(c) the kinetic energy of the ejected electrons.

Exercise 1.17
Consider a metal with a cutoff frequency of 1.2 x 10'4 Hz.

(a) Find the work function of the metal.

(b) Find the kinetic energy of the ejected electrons when the metal is illuminated with a
radiation of frequency 7 x 10'% Hz.

Exercise 1.18
A light of frequency 7.2 x 10'# Hz is incident on four different metallic surfaces of cesium, alu-
minum, cobalt, and platinum whose work functions are 2.14¢eV, 4.08¢V, 3.9¢V, and 6.35¢V,
respectively.

(a) Which among these metals will exhibit the photoelectric effect?

(b) For each one of the metals producing photoelectrons, calculate the maximum kinetic
energy for the electrons ejected.

Exercise 1.19
Consider a metal with stopping potentials of 9V and 4 V when illuminated by two sources of
frequencies 17 x 10'* Hz and 8 x 10'% Hz, respectively.

(a) Use these data to find a numerical value for the Planck constant.

(b) Find the work function and the cutoff frequency of the metal.

(c) Find the maximum kinetic energy of the ejected electrons when the metal is illuminated
with a radiation of frequency 12 x 10'4 Hz.
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Exercise 1.20
Using energy and momentum conservation requirements, show that a free electron cannot ab-
sorb all the energy of a photon.

Exercise 1.21
Photons of wavelength 5 nm are scattered from electrons that are at rest. If the photons scatter
at 60° relative to the incident photons, calculate

(a) the Compton wave shift,

(b) the kinetic energy imparted to the recoiling electrons, and

(c) the angle at which the electrons recoil.

Exercise 1.22
X-rays of wavelength 0.0008 nm collide with electrons initially at rest. If the wavelength of the
scattered photons is 0.0017 nm, determine

(a) the kinetic energy of the recoiling electrons,

(b) the angle at which the photons scatter, and

(c) the angle at which the electrons recoil.

Exercise 1.23
Photons of energy 0.7 MeV are scattered from electrons initially at rest. If the energy of the
scattered photons is 0.5 MeV, find

(a) the wave shift,

(b) the angle at which the photons scatter,

(c) the angle at which the electrons recoil, and

(d) the kinetic energy of the recoiling electrons.

Exercise 1.24
In a Compton scattering of photons from electrons at rest, if the photons scatter at an angle of
45° and if the wavelength of the scattered photons is 9 x 10~!3 m, find

(a) the wavelength and the energy of the incident photons,

(b) the energy of the recoiling electrons and the angle at which they recoil.

Exercise 1.25
When scattering photons from electrons at rest, if the scattered photons are detected at 90° and
if their wavelength is double that of the incident photons, find

(a) the wavelength of the incident photons,

(b) the energy of the recoiling electrons and the angle at which they recoil, and

(c) the energies of the incident and scattered photons.

Exercise 1.26

In scattering electrons from a crystal, the first maximum is observed at an angle of 60°. What
must be the energy of the electrons that will enable us to probe as deep as 19 nm inside the
crystal?

Exercise 1.27
Estimate the resolution of a microscope which uses electrons of energy 175 eV.

Exercise 1.28
What are the longest and shortest wavelengths in the Balmer and Paschen series for hydrogen?
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Exercise 1.29

(a) Calculate the ground state energy of the doubly ionized lithium ion, Li>*, obtained when
one removes two electrons from the lithium atom.

(b) If the lithium ion Li*>* is bombarded with a photon and subsequently absorbs it, calculate
the energy and wavelength of the photon needed to excite the Li>* ion into its third excited state.

Exercise 1.30
Consider a tenfold ionized sodium ion, Na!®*, which is obtained by removing ten electrons
from an Na atom.

(a) Calculate the orbiting speed and orbital angular momentum of the electron (with respect
to the ion’s origin) when the ion is in its fourth excited state.

(b) Calculate the frequency of the radiation emitted when the ion deexcites from its fourth
excited state to the first excited state.

Exercise 1.31
Calculate the wavelength of the radiation needed to excite the triply ionized beryllium atom,
Be3*, from the ground state to its third excited state.

Exercise 1.32
According to the classical model of the hydrogen atom, an electron moving in a circular orbit
of radius 0.053 nm around a proton fixed at the center is unstable, and the electron should
eventually collapse into the proton. Estimate how long it would take for the electron to collapse
into the proton.
Hint: Start with the classical expression for radiation from an accelerated charge
dE 2 é%a? p? e’ e?

dt  3dmepcd’ T 2m Amegr  Smegr’

where a is the acceleration of the electron and F is its total energy.

Exercise 1.33
Calculate the de Broglie wavelength of
(a) an electron of kinetic energy 54 eV,
(b) a proton of kinetic energy 70 MeV,
(¢) a 100 g bullet moving at 1200 ms™', and
Useful data: mec? = 0.511 MeV, m,c? = 938.3MeV, fic ~ 197.3eV nm.

Exercise 1.34

A simple one-dimensional harmonic oscillator is a particle acted upon by a linear restoring
force F(x) = —ma?x. Classically, the minimum energy of the oscillator is zero, because we
can place it precisely at x = 0, its equilibrium position, while giving it zero initial velocity.
Quantum mechanically, the uncertainty principle does not allow us to localize the particle pre-
cisely and simultaneously have it at rest. Using the uncertainty principle, estimate the minimum
energy of the quantum mechanical oscillator.

Exercise 1.35
Consider a double-slit experiment where the waves emitted from the slits superpose on a vertical
screen parallel to the y-axis. When only one slit is open, the amplitude of the wave which gets
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through is w1 (y, 1) = e ?/32¢i(@1=ay) and when only the other slit is open, the amplitude is
l//2()/, t) — e—y2/32ei(wt—ay—7ry).

(a) What is the interference pattern along the y-axis with both slits open? Plot the intensity
of the wave as a function of y.

(b) What would be the intensity if we put a light source behind the screen to measure which
of the slits the light went through? Plot the intensity of the wave as a function of y.

Exercise 1.36
Consider the following three wave functions:

—y? -2 2 .2
w1(y) = Are™", wa(y) = dye™ /2, w3(y) = As(e™ + ye 12,

where A1, A, and A3 are normalization constants.
(a) Find the constants 41, 4>, and A3 so that y1, w», and w3 are normalized.
(b) Find the probability that each one of the states will be in the interval —1 <y < 1.

Exercise 1.37
Find the Fourier transform ¢ (p) of the following function and plot it:

[ -k <
"’(x)‘[ 0. izl

Exercise 1.38

(a) Find the Fourier transform of ¢ (k) = Ae~**1=k where a and b are real numbers, but
a is positive.

(b) Find 4 so that y(x) is normalized.

(c) Find the x and k uncertainties and calculate the uncertainty product Ax Ap. Does it
satisfy Heisenberg’s uncertainty principle?

Exercise 1.39
(a) Find the Fourier transform y (x) of

0, p <-—po,
d(p)=1 4, —po <p < po,
0, po<p,

where 4 is a real constant.

(b) Find 4 so that y (x) is normalized and plot ¢ (p) and w (x). Hint: The following integral
might be needed: fj;o dx (sin®(ax))/x? = na.

(c) Estimate the uncertainties Ap and Ax and then verify that Ax Ap satisfies Heisenberg’s
uncertainty relation.

Exercise 1.40
Estimate the lifetime of the excited state of an atom whose natural width is 3 x 10™*eV; you
may need the value /i = 6.626 x 10734Js = 4.14 x 10~ eVs.

Exercise 1.41
Calculate the final width of the wave packet corresponding to an 80 g bullet after traveling for
20 s; the size of the bullet is 2 cm.
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Exercise 1.42
A 100 g arrow travels with a speed of 30 ms™! over a distance of 50 m. If the initial size of the
wave packet is 5 cm, what will be its final size?

Exercise 1.43
A 50MeV beam of protons is fired over a distance of 10km. If the initial size of the wave
packet is 1.5 x 10~® m, what will be the final size upon arrival?

Exercise 1.44
A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet
i1s 1 mm, find its final size.

Exercise 1.45

Consider an inextensible string of linear density x (mass per unit length). If the string is subject
to a tension 7', the angular frequency of the string waves is given in terms of the wave number
k by w = k+/T/u. Find the phase and group velocities.

Exercise 1.46
The angular frequency for a wave propagating inside a waveguide is given in terms of the wave

number k and the width b of the guide by o = kc[1 — 2/ (b2k2)]_1/ ?. Find the phase and
group velocities of the wave.

Exercise 1.47
Show that for those waves whose angular frequency @ and wave number & obey the dispersion
relation k%c> = w?* + constant, the product of the phase and group velocities is equal to ¢2,

g0 pn = c?, where ¢ is the speed of light.

Exercise 1.48
How long will the wave packet of a 10 g object, initially confined to 1 mm, take to quadruple
its size?

Exercise 1.49
How long will it take for the wave packet of a proton confined to 10~13 m to grow to a size
equal to the distance between the Earth and the Sun? This distance is equal to 1.5 x 108 km.

Exercise 1.50
Assuming the wave packet representing the Moon to be confined to 1 m, how long will the
packet take to reach a size triple that of the Sun? The Sun’s radius is 6.96 x 10° km.
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Chapter 2

Mathematical Tools of Quantum
Mechanics

2.1 Introduction

We deal here with the mathematical machinery needed to study quantum mechanics. Although
this chapter is mathematical in scope, no attempt is made to be mathematically complete or
rigorous. We limit ourselves to those practical issues that are relevant to the formalism of
quantum mechanics.

The Schrodinger equation is one of the cornerstones of the theory of quantum mechan-
ics; it has the structure of a linear equation. The formalism of quantum mechanics deals with
operators that are linear and wave functions that belong to an abstract Hilbert space. The math-
ematical properties and structure of Hilbert spaces are essential for a proper understanding of
the formalism of quantum mechanics. For this, we are going to review briefly the properties of
Hilbert spaces and those of linear operators. We will then consider Dirac’s bra-ket notation.

Quantum mechanics was formulated in two different ways by Schrodinger and Heisenberg.
Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of
the general formalism of quantum mechanics in continuous and discrete basis systems, respec-
tively. For this, we will also examine the mathematics involved in representing kets, bras,
bra-kets, and operators in discrete and continuous bases.

2.2 The Hilbert Space and Wave Functions

2.2.1 The Linear Vector Space

A linear vector space consists of two sets of elements and two algebraic rules:
e aset of vectors v, ¢, y, ...and asetof scalarsa, b, c, ...
e a rule for vector addition and a rule for scalar multiplication.

(a) Addition rule
The addition rule has the properties and structure of an abelian group:

79
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If w and ¢ are vectors (elements) of a space, their sum, y + ¢, is also a vector of the
same space.

Commutativity: w + ¢ = ¢ + .

Associativity: (y + @)+ x = v + (¢ + x).

e Existence of a zero or neutral vector: for each vector y, there must exist a zero vector
Osuchthat: O4+yw=w+ O =y.

e Existence of a symmetric or inverse vector: each vector y must have a symmetric vector
(—y)suchthat y + (—y) =(—y)+y =0.

(b) Multiplication rule
The multiplication of vectors by scalars (scalars can be real or complex numbers) has these
properties:

e The product of a scalar with a vector gives another vector. In general, if y and ¢ are two
vectors of the space, any linear combination ay + b¢ is also a vector of the space, a and
b being scalars.

e Distributivity with respect to addition:
ay +¢) =ay +ag, (@a+by =ay +by, 2.1
e Associativity with respect to multiplication of scalars:
a(by) = (ab)y 2.2)
e For each element y there must exist a unitary scalar / and a zero scalar "o" such that

ly=yl=y and oy =yo=o. (2.3)

2.2.2 The Hilbert Space

A Hilbert space H consists of a set of vectors v, ¢, y, ... and a set of scalars a, b, c, . .. which
satisfy the following four properties:

(a) H is a linear space

The properties of a linear space were considered in the previous section.

(b) H has a defined scalar product that is strictly positive

The scalar product of an element y with another element ¢ is in general a complex
number, denoted by (w, ¢), where (v, ¢) = complex number. Note: Watch out for the
order! Since the scalar product is a complex number, the quantity (i, ¢) is generally not
equal to (¢, v): (v, ) = w*¢ while (¢, w) = ¢*w. The scalar product satisfies the
following properties:

e The scalar product of y with ¢ is equal to the complex conjugate of the scalar
product of ¢ with y:

(v, ¢) = (¢, )" 24
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e The scalar product of ¢ with y is linear with respect to the second factor if y =

ayy + byo:

(P, ayr +by2) = alp, y1) + b(, y2), 25)
and antilinear with respect to the first factor if ¢ = a¢; + bes:

(agr + bga, y) = a* (1, ) + b*(¢2, ). (2.6)

e The scalar product of a vector y with itself is a positive real number:

(v, v) =l y II>> 0, (2.7)

where the equality holds only for y = O.

(c) 'H is separable

There exists a Cauchy sequence y, € H (n = 1, 2, ...) such that for every y of H and
& > 0, there exists at least one y,, of the sequence for which

'y —wall < e (2.8)

(d) 'H is complete

Every Cauchy sequence y, € H converges to an element of H . That is, for any y,, the
relation

lim || wy, — wm =0, (2.9)

n,m— 00

defines a unique limit y of H such that

Tim |y =y [|= 0. (2.10)

Remark

We should note that in a scalar product (¢, v), the second factor, y, belongs to the Hilbert
space H, while the first factor, ¢, belongs to its dual Hilbert space H;. The distinction between
‘H and H, is due to the fact that, as mentioned above, the scalar product is not commutative:
(¢, w) # (v, p); the order matters! From linear algebra, we know that every vector space can
be associated with a dual vector space.

2.2.3 Dimension and Basis of a Vector Space

A set of N nonzero vectors ¢1, ¢2, ..., ¢n is said to be linearly independent if and only if the
solution of the equation
N
> aigi =0 (2.11)
i=1
isa; = ay = --- = ay = 0. But if there exists a set of scalars, which are not all zero, so that

one of the vectors (say ¢,) can be expressed as a linear combination of the others,

n—1 N
b= D aii+ D aidi, 2.12)
i=1

i=n+1
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the set {¢;} is said to be linearly dependent.

Dimension: The dimension of a vector space is given by the maximum number of linearly
independent vectors the space can have. For instance, if the maximum number of linearly inde-
pendent vectors a space has is N (i.e., ¢1, ¢, ..., ¢n), this space is said to be N-dimensional.
In this N-dimensional vector space, any vector ¥ can be expanded as a linear combination:

N
v=> aipi. (2.13)
i=1

Basis: The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. This set of vectors, @1, ¢, .. ., Py, to be denoted
in short by {¢;}, is called the basis of the vector space, while the vectors ¢1, ¢o, ..., Py are
called the base vectors. Although the set of these linearly independent vectors is arbitrary,
it is convenient to choose them orthonormal; that is, their scalar products satisfy the relation
(¢i, ¢j) = J;; (we may recall that §;; = 1 whenever i = j and zero otherwise). The basis is
said to be orthonormal if it consists of a set of orthonormal vectors. Moreover, the basis is said
to be complete if it spans the entire space; that is, there is no need to introduce any additional
base vector. The expansion coefficients a; in (2.13) are called the components of the vector w
in the basis. Each component is given by the scalar product of y with the corresponding base
vector, a; = (¢, ¥).

Examples of linear vector spaces
Let us give two examples of linear spaces that are Hilbert spaces: one having a finite (discrete)
set of base vectors, the other an infinite (continuous) basis.

e The first one is the three-dimensional Euclidean vector space; the basis of this space
consists of three linearly independent vectors, usually denoted by z ], k. _Any vector of
the Euclidean space can be written in terms of the base vectors as 4 = ayi +an ] + a3k
where ai, ap, and a3 are the components of A in the basis; each component can be
determined by taking the scalar product of A with the corresponding base vector: a; =
i A a=j- A and a3 = k- A. Note that the scalar product in the Euclidean space is real
and hence symmetric. The norm in this space is the usual length of vectors || A I= 4
Note also that whegeve£a1l + az] + agk = 0 we have a; = ap = a3 = 0 and that none
of the unit vectors 7, ]’, k can be expressed as a linear combination of the other two.

e The second example is the space of the entire complex functions y (x); the dimension of
this space is infinite for it has an infinite number of linearly independent basis vectors.

Example 2.1
Check whether the following sets of functions are linearly independent or dependent on the real
X-axis.

(a) f(x) =4, g(x) = x%, h(x) = &

(b) f(x) = x, g(x) = x%, h(x) = x°

(©) f(x) = x, g(x) = 5x, h(x) = x*

(d) f(x) =2+x2, g(x) =3 —x +4x3, h(x) = 2x + 3x% — 8x3

Solution
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(a) The first set is clearly linearly independent since a; f'(x) + axg(x) + azh(x) = 4a; +
ar)x? + aze* = 0 implies that a; = a; = a3z = 0 for any value of x.

(b) The functions f(x) = x, g(x) = x2, h(x) = x> are also linearly independent since
aix + axx? +azx3 =0 implies that a; = a; = a3 = 0 no matter what the value of x. For
instance, taking x = —1, 1, 3, the following system of three equations

—a1+ay —az3 =0, ar+ay+a3; =0, 3a1 +9a; +27a3 =0 (2.14)

yieldsa; = a3 = a3 =0.

(c) The functions f(x) = x, g(x) = 5x, h(x) = x? are not linearly independent, since
gx)=5f(x)+0 x h(x).

(d) The functions f(x) = 2 +x2, g(x) = 3 —x + 4x3, h(x) = 2x + 3x% — 8 are not
linearly independent since A (x) = 3 f(x) — 2g(x).

Example 2.2
Are the following sets of vectors (in the three-dimensional Euclidean space) linearly indepen-
dent or dependent?

(@) 4=, 00),§f( 0,-2,0),C = (0,0, —1)

(b) 4 = (6,-9,0), B = (-2,3,0)

©A4=23-1),8=(012),C=(00,-5

() A =(1.-2.3). B = (—4.1.7).C = (0,10, 11), and D = (14, 3, —4)
Solution

(a) The three vectors A= (3,0,0), B = 0, =2,0), C = (0,0, —1) are linearly indepen-
dent, since B B R R R R
alA+aB+a3C=0= 3aji —2a2j —azk =0 (2.15)

leads to
3a; =0, —2ay =0, —a3 =0, (2.16)
which yields a; = ay =a3 =0. .
(b) The vectors 4 = (6, =9, 0), B = (=2, 3, 0) are linearly dependent, since the solution
to
aA+amB=0 = (6a1 —2a)i + (—9a; +3az)j =0 2.17)

isa; = az/3. The ﬁrst vector 1S equal to —3 times the second one: 4 = —3B.
(¢) The vectors A= 2,3,-1), B = 0,1,2), C = (0,0, —5) are linearly independent,
since

a1A+ay B+ a3C =0 = 2a1i + Ba; +a2)j + (—a1 +2a3 —Sa3)k =0  (2.18)

leads to
2a;1 =0, 3a1 +ap; =0, —ay1 + 2a; — S5a3 = 0. (2.19)

The only solution of this system is ar=a =a3 = 0 .
(d) The vectors A= 1,-2,3), B= (=4,1,7), C = (0,10, 11), and D = (14, 3, —4) are
not linearly independent, because D can be expressed in terms of the other vectors:

D=24-3B+C. (2.20)
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2.2.4 Square-Integrable Functions: Wave Functions

In the case of function spaces, a “vector” element is given by a complex function and the scalar
product by integrals. That is, the scalar product of two functions y (x) and ¢ (x) is given by

(v. ) = / v (1) () dx. (2.21)

If this integral diverges, the scalar product does not exist. As a result, if we want the function
space to possess a scalar product, we must select only those functions for which (v, ¢) is finite.
In particular, a function y (x) is said to be square integrable if the scalar product of y with
itself,

(v, )= / ly () dx, (2.22)

18 finite.

It is easy to verify that the space of square-integrable functions possesses the properties of
a Hilbert space. For instance, any linear combination of square-integrable functions is also a
square-integrable function and (2.21) satisfies all the properties of the scalar product of a Hilbert
space.

Note that the dimension of the Hilbert space of square-integrable functions is infinite, since
each wave function can be expanded in terms of an infinite number of linearly independent
functions. The dimension of a space is given by the maximum number of linearly independent
basis vectors required to span that space.

A good example of square-integrable functions is the wave function of quantum mechanics,
w(7,t). We have seen in Chapter 1 that, according to Born’s probabilistic interpretation of
w(r, 1), the quantity | w (7, 1) |> d°r represents the probability of finding, at time ¢, the particle
in a volume d>r, centered around the point 7. The probability of finding the particle somewhere
in space must then be equal to 1:

400 400 ~+00
/ | w(,0) |> dr :/ dx/ dy/ |y, 0) P dz=1; (2.23)
—00 —00 —00

hence the wave functions of quantum mechanics are square-integrable. Wave functions sat-
isfying (2.23) are said to be normalized or square-integrable. As wave mechanics deals with
square-integrable functions, any wave function which is not square-integrable has no physical
meaning in quantum mechanics.

2.3 Dirac Notation

The physical state of a system is represented in quantum mechanics by elements of a Hilbert
space; these elements are called state vectors. We can represent the state vectors in different
bases by means of function expansions. This is analogous to specifying an ordinary (Euclid-
ean) vector by its components in various coordinate systems. For instance, we can represent
equivalently a vector by its components in a Cartesian coordinate system, in a spherical coor-
dinate system, or in a cylindrical coordinate system. The meaning of a vector is, of course,
independent of the coordinate system chosen to represent its components. Similarly, the state
of a microscopic system has a meaning independent of the basis in which it is expanded.

To free state vectors from coordinate meaning, Dirac introduced what was to become an in-
valuable notation in quantum mechanics; it allows one to manipulate the formalism of quantum
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mechanics with ease and clarity. He introduced the concepts of kets, bras, and bra-kets, which
will be explained below.

Kets: elements of a vector space
Dirac denoted the state vector y by the symbol | ), which he called a ket vector, or simply a
ket. Kets belong to the Hilbert (vector) space H, or, in short, to the ket-space.

Bras: elements of a dual space

As mentioned above, we know from linear algebra that a dual space can be associated with
every vector space. Dirac denoted the elements of a dual space by the symbol (|, which he
called a bra vector, or simply a bra; for instance, the element (y | represents a bra. Note: For
every ket | w) there exists a unique bra (y | and vice versa. Again, while kets belong to the
Hilbert space H, the corresponding bras belong to its dual (Hilbert) space H.

Bra-ket: Dirac notation for the scalar product
Dirac denoted the scalar (inner) product by the symbol (| ), which he called a a bra-ket. For
instance, the scalar product (¢, ) is denoted by the bra-ket (¢ | w):

(@, w) — (Ply). (2.24)
Note: When a ket (or bra) is multiplied by a complex number, we also get a ket (or bra).

Remark: In wave mechanics we deal with wave functions (7, ¢), but in the more general
formalism of quantum mechanics we deal with abstract kets | w). Wave functions, like kets,
are elements of a Hilbert space. We should note that, like a wave function, a ket represents the
system completely, and hence knowing | y) means knowing all its amplitudes in all possible
representations. As mentioned above, kets are independent of any particular representation.
There is no reason to single out a particular representation basis such as the representation in
the position space. Of course, if we want to know the probability of finding the particle at some
position in space, we need to work out the formalism within the coordinate representation. The
state vector of this particle at time ¢ will be given by the spatial wave function (7, ¢ | y) =
w (7, t). In the coordinate representation, the scalar product (¢ | ) is given by

@1 )= / 8 G, w0y dPr. (2.25)

Similarly, if we are considering the three-dimensional momentum of a particle, the ket | y) will
have to be expressed in momentum space. In this case the state of the particle will be described
by a wave function y (p, ), where p is the momentum of the particle.

Properties of kets, bras, and bra-kets

e Every ket has a corresponding bra

To every ket | w), there corresponds a unique bra (y | and vice versa:
ly) <«— (y]. (2.26)
There is a one-to-one correspondence between bras and kets:
aly)+ble) «— a(y|+b%el, (2.27)
where a and b are complex numbers. The following is a common notation:

lay) =ay), (ay |=a*(y|. (2.28)
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e Properties of the scalar product

In quantum mechanics, since the scalar product is a complex number, the ordering matters
a lot. We must be careful to distinguish a scalar product from its complex conjugate;
(w | ¢) is not the same thing as (¢ | w):

Ply) =y lg). (2.29)
This property becomes clearer if we apply it to (2.21):
(@1 y) = (/¢*<7, Dy (F, r)d3r) =/w*(7, DG 0 dr = (y | $). (230)

When | w) and | ¢) are real, we would have (v | ¢) = (¢ | w). Let us list some
additional properties of the scalar product:

(v laryr +a2w2) = ai{y | y1)+ax(y | va), (2.31)
(a1 +axp | w) = af{p1 | y)+ asid2 | v), (2.32)
(a1 + aapp | bryr +baya) = aybilgr | yi) + ayba(dr | w2)

+a3bi(g | w1) + azbaldn | w2).
(2.33)

The norm is real and positive

For any state vector | y) of the Hilbert space H, the norm (y | ) is real and positive;
(w | v) is equal to zero only for the case where | ) = O, where O is the zero vector.
If the state | w) is normalized then (yw | y) = 1.

Schwarz inequality

For any two states | w) and | ¢) of the Hilbert space, we can show that

Ky | &) < (wy)g|d). (2.34)

If | w) and | ¢) are linearly dependent (i.e., proportional: | w) = a | ¢), where a is a
scalar), this relation becomes an equality. The Schwarz inequality (2.34) is analogous to
the following relation of the real Euclidean space

=

|4-BP <|APIBP. (2.35)
Triangle inequality

Vi +oly+é) < Jylw) + V@) (2.36)

If | v) and | ¢) are linearly dependent, | w) = a | ¢), and if the proportionality scalar o
is real and positive, the triangle inequality becomes an equality. The counterpart of this
inequality in Euclidean space is given by |4 + B| < |4| + |B|.

Orthogonal states

Two kets, | ) and | ¢), are said to be orthogonal if they have a vanishing scalar product:

(v 1¢) =0. (2.37)
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e Orthonormal states

Two kets, | w) and | ¢), are said to be orthonormal if they are orthogonal and if each one
of them has a unit norm:

(w1¢) =0, (wly) =1, (@) =1 (2.38)

e Forbidden quantities

If | w) and | ¢) belong to the same vector (Hilbert) space, products of the type | v) | ¢)
and (y | (¢ | are forbidden. They are nonsensical, since | y) | ¢) and (y | (¢ | are
neither kets nor bras (an explicit illustration of this will be carried out in the example
below and later on when we discuss the representation in a discrete basis). If | ) and
| ¢) belong, however, to different vector spaces (e.g., | w) belongs to a spin space and
| ¢) to an orbital angular momentum space), then the product | ) | ¢), written as
| ) ® | ¢), represents a tensor product of | w) and | ¢). Only in these typical cases are
such products meaningful.

Example 2.3

(Note: We will see later in this chapter that kets are represented by column matrices and bras
by row matrices; this example is offered earlier than it should because we need to show some
concrete illustrations of the formalism.) Consider the following two kets:

—3i 2
ly)=1{ 2+i |, | ¢) = —i
4 2 —3i

(a) Find the bra (¢ |.
(b) Evaluate the scalar product (¢ | v).
(c) Examine why the products | y) | ¢) and (¢ | (v | do not make sense.

Solution
(a) As will be explained later when we introduce the Hermitian adjoint of kets and bras, we
want to mention that the bra (¢ | can be obtained by simply taking the complex conjugate of
the transpose of the ket | ¢):
@l=@2 1 243i). (2.39)

(b) The scalar product (¢ | w) can be calculated as follows:

-3i
Plw) = @ i 243i)| 2+i
4
= 2(=3i)+i(2+i)+42+3i)
= 7+8i. (2.40)

(c) First, the product | w) | ¢) cannot be performed because, from linear algebra, the
product of two column matrices cannot be performed. Similarly, since two row matrices cannot
be multiplied, the product (¢ | (y | is meaningless.
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Physical meaning of the scalar product

The scalar product can be interpreted in two ways. First, by analogy with the scalar product
of ordinary vectors in the Euclidean space, where A-B represents the projection of B on 4,

the product (¢ | w) also represents the projection of | y) onto | ¢). Second, in the case of
normalized states and according to Born’s probabilistic interpretation, the quantity (¢ | w)
represents the probability amplitude that the system’s state | ) will, after a measurement is
performed on the system, be found to be in another state | ¢).

Example 2.4 (Bra-ket algebra)
Consider the states | ) =3i | ¢1) — 7i | ¢a2) and | y) = — | ¢1) + 2i | ¢2), where | ¢1) and
| ¢2) are orthonormal.

(a) Calculate | w + x) and (y + x |.

(b) Calculate the scalar products (y | y) and () | w). Are they equal?

(c) Show that the states | w) and | y) satisfy the Schwarz inequality.

(d) Show that the states | y) and | y) satisfy the triangle inequality.

Solution
(a) The calculation of | ¥ + ) is straightforward:

lwy+x) = 1w+ 1x0)=0il¢1) = Til¢2)+ (= 1¢1) + 2i | $2))
(=143i) [ ¢1) — 5i | 2). (2.41)
This leads at once to the expression of (y + y |:
(w +x 1= (14301 | +(=5) (2 | = (=1 = 3i) {1 | +5i(¢2 | . (2.42)
(b) Since (p1 | 1) = (P2 | 2) = 1, (¢1 | ¢2) = (#2 | ¢1) = 0, and since the bras
corresponding to the kets | w) =3i | ¢1) —7i | ¢2) and | y) = — | ¢1) + 2i | ¢o) are given by
(w |= =3i{¢1 | +7i{¢ | and (x | = —(¢1 | —2i (¢ |, the scalar products are

wlx) = (=3il1 | +7i(da ) (= | d1) +2i | )
= (=30 (=1 | p1) + (7)) Q2i) {2 | p2)
= —14+43i, (2.43)
(xlwy) = (=1 |=2i{g2 ) Bi | 1) —7i | ¢2))
= (=D@Gi){¢1 | ¢1) + (=2i)(=Ti){¢2 | $2)
14— 3i. (2.44)

We see that (y | y) is equal to the complex conjugate of (y | y).
(c) Let us first calculate (v | w) and (y | x):

(w1 w) = (S3i{g1 | +T7id2 1) Bi | §1) = Ti | $2)) = (=30)(3i) + (7i)(=Ti) = 58, (2.45)

1 x)= (=1 | =2i(p2 ) (= | @1} +2i | ¢2)) = (=D)(=1) + (=2i)(2i)) =5.  (2.46)

Since (y | x) = —14 + 3i we have | (y | x) |>= 14%> 4+ 3% = 205. Combining the values of
| (w | x) 1% (v | w),and (y | x), we see that the Schwarz inequality (2.34) is satisfied:

205 < (38)5) == | (w | ) P < (v | w)x | x)- (2.47)
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(d) First, let us use (2.41) and (2.42) to calculate (v + y | v + x):

w+yxly+y) = [(=1=3i)¢1 | +5i(d2 [1[(=1+3i) | ¢1) — 5i | $2)]
= (=1 —=3i)(=1+3i) + (5i)(=50)
35. (2.48)

Since (y | ) =58 and (y | y) = 5, we infer that the triangle inequality (2.36) is satisfied:

V35 < VS8+Vs= Viwt+x v+ < Swlv)+Vxlx. (2.49)

Example 2.5

Consider two states |y1) = 2i|p1)+|¢2) —alp3) +4|p4) and |y2) = 3|p1) —i]|p2) +5|p3) —|pa),
where |¢1), |$2), |¢3), and |p4) are orthonormal kets, and where a is a constant. Find the value
of a so that |y) and |y;) are orthogonal.

Solution
For the states |y) and |w») to be orthogonal, the scalar product (y» | w1) must be zero. Using
the relation (y7 | = 3(p1| + i{¢2| + 5(¢3| — (Pal, we can easily find the scalar product

(w2 lw1) = Glod1l +i{pal + 5(d3] — (dal) Qilgr) + |¢2) — alps) + 4lpa))
= 7i—5a—4. (2.50)

Since (w2 | w1) = 7i — 5a —4 = 0, the value of a isa = (7i — 4)/5.

2.4 Operators

2.4.1 General Definitions

Definition of an operator: An operator! A is a mathematical rule that when applied to a ket
| w) transforms it into another ket | ') of the same space and when it acts on a bra (¢ |
transforms it into another bra (¢’ |:

Aly) =1y,  (B1d=1. (2.51)
A similar definition applies to wave functions:
Ay ) = v/, B4 = ¢'(. (2.52)

Examples of operators
Here are some of the operators that we will use in this text:

e Unity operator: it leaves any ket unchanged, 1] v)=|y).

e The gradient operator: Vy (7) = (0w (7)/0x)i + (0w (#)/3y)j + 0w (F)/0z)k.

I'The hat on 4 will be used throughout this text to distinguish an operator A froma complex number or a matrix A.
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e The linear momentum operator: p w(r) =—ih Y w (7).
e The Laplacian operator: V2 (¥) = 62y () /6x% + 02w () /oy* + 62w (¥) /62>
e The parity operator: Py (F) = w (—F).

Products of operators
The product of two operators is generally not commutative:

AB + BA. (2.53)
The product of operators is, however, associative:
ABC = A(BC) = (4B)C. (2.54)
We may also write A" = A When the product AB operates on aket | y) (the order
of application is important), the operator B acts first on | ) and then A acts on the new ket
(B y)): .. .
AB | y) = A(B | y)). (2.55)
Similarly, when ABCD ) operates on a ket | ), D acts first, then C, then B, and then A.
When an operator A is sandwiched between a bra (¢ | and a ket | y), it yields in general
a complex number: (¢ | A | y) = complex number. The quantity (¢ | A | w) can also be a
purely real or a purely imaginary number. Note: In evaluating (¢ | 4 | y) it does not matter if

one first applies 4 to the ket and then takes the bra-ket or one first applies 4 to the bra and then
takes the bra-ket; thatis ((¢ | 4) | w) = (P | (4 | w)).

Linear operators

An operator A is said to be linear if it obeys the distributive law and, like all operators, it
commutes with constants. That is, an operator A is linear if, for any vectors | 1) and | y7) and
any complex numbers a; and a,, we have

Aar ly) + @ ly) =aid | yi) + wd | y), (2.56)

and
(yilar + (ya la)A=ai{y1 | A + ax(yz | A. (2.57)

Remarks

e The expectation or mean value (A 1) of an operator A with respect to a state | ) is defined
by
R A
Ay =4y (2.58)
(v lw)
e The quantity | ¢)(w | (i.e., the product of a ket with a bra) is a linear operator in Dirac’s
notation. To see this, when | ¢)(y | is applied to a ket | w’), we obtain another ket:

L)y v’y =(w v, (2.59)

since (y | ') is a complex number.

e Products of the type | z//)/I and 4 (v | (i.e., when an operator stands on the right of a ket
or on the left of a bra) are forbidden. They are not operators, or kets, or bras; they have
no mathematical or physical meanings (see equation (2.219) for an illustration).
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2.4.2 Hermitian Adjoint

The Hermitian adjoint or conjugate?, aT, of a complex number « is the complex conjugate of

this number: of = a*. The Hermitian adjoint, or simply the adjoint, /IT, of an operator Ais
defined by this relation:
t

(W A 1¢)=(p]4| )" (2.60)

Properties of the Hermitian conjugate rule
To obtain the Hermitian adjoint of any expression, we must cyclically reverse the order of the
factors and make three replacements:

e Replace constants by their complex conjugates: al =a*.

e Replace kets (bras) by the corresponding bras (kets): (| z//>)]L = (y | and ((y |)]L =| w).
e Replace operators by their adjoints.

Following these rules, we can write

aht = 4 (2.61)

@it = il (2.62)

At = aly, (2.63)
A+b+c+D)t = A1t et4hf, (2.64)
asepyt = pietstal, (2.65)
(ABCD | y)T = (v DIctBT AT, (2.66)

The Hermitian adjoint of the operator | w)(¢ | is given by

() DT =1 1. (2.67)
Operators act inside kets and bras, respectively, as follows:
|ady) =ad ]| y), v 1=a*ty | 4. (2.68)
Note also that (aﬁTy/ |=a*{y | (/I]L)Jr =a*(y | A. Hence, we can also write:
widlg =1y 19) = w1 dg). (2.69)
Hermitian and skew-Hermitian operators
An operator A is said to be Hermitian if it is equal to its adjoint fIT:
A=Al o widlg = widlw 2.70)

2The terms “adjoint” and “conjugate” are used indiscriminately.
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On the other hand, an operator B is said to be skew-Hermitian or anti-Hermitian if

Bl=—B o (y|Blg)=—(p|B|y)" @.71)

Remark
The Hermitian adjoint of an operator is not, in general, equal to its complex conjugate: A f #+

A

A .

Example 2.6
(a) Discuss the hermiticity of the operators (/I + /IT), i(/j + /IT), and i (4 — /IT).
A A A2 A A2 ~
(b) Find the Hermitian adjoint of f(4) = (14+i4+34 )1 —2i4—-94")/(5+74).
(c) Show that the expectation value of a Hermitian operator is real and that of an anti-
Hermitian operator is imaginary.

Solution
(a) The operator B=A4+ /iT is Hermitian regardless of whether or not A is Hermitian,
since
B+ dhi=i'+izs @72)

Similarly, the operator i(/i - /IT) is also Hermitian; but i(/j + /IT) is anti-Hermitian, since
A+ AN = —icd+ AN,

(b) Since the Hermitian adjoint of an operator function f' (ﬁ) is given by f t (/i) = f* (4 T),
we can write
A 2 A 2\ T A }2 At }2
(14+id+34)1—-2i4-94)) (1 +2id —941 )1 —id +341) 2.73)
5+74 54741 -

(c) From (2.70) we immediately infer that the expectation value of a Hermitian operator is
real, for it satisfies the following property:

(wldly) = (wldly* (2.74)

that is, if /iT = A then A A | w) isreal. Similarly, for an anti-Hermitian operator, Bf = —B,
we have . .
(w1 Bly)=—(yl|Bly), (2.75)

which means that (y | B | w) is a purely imaginary number.

2.4.3 Projection Operators
An operator Pissaidtobea projection operator if it is Hermitian and equal to its own square:

pt=p, P2=p (2.76)

The unit operator [isa simple example of a projection operator, since iT=17 , 1?=1.
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Properties of projection operators

e The product of two commuting projection operators, Py and P, is also a projection
operator, since

(P By = BIB] = By = PI Py and (PPy)? = PiyPr By = PRE2 = Pr oy,
(2.77)
e The sum of two projection operators is generally not a projection operator.
e Two projection operators are said to be orthogonal if their product is zero.

e For a sum of projection operators 131 + 132 + 133 + - - - to be a projection operator, it is
necessary and sufficient that these projection operators be mutually orthogonal (i.e., the
cross-product terms must vanish).

Example 2.7
Show that the operator | y)(y | is a projection operator only when | ) is normalized.

Solution
It is easy to ascertain that the operator | w)(y | is Hermitian, since (| y){y |)T =| w){y |. As
for the square of this operator, it is given by

Ay D=0y DAy D=1y | y)iy]. (2.78)

Thus, if | w) is normalized, we have (| w)(y |)2 =| w)(w |. In sum, if the state | y) is
normalized, the product of the ket | ) with the bra (y | is a projection operator.

2.4.4 Commutator Algebra

The commutator of two operators A and B, denoted by [/I , B ], is defined by

[A, Bl= AB — BA, (2.79)
and the anticommutator {/i , B } is defined by
{4, B} = AB + BA. (2.80)

Two operators are said to commute if their commutator is equal to zero and hence AB = BA.
Any operator commutes with itself:
[4, A]=0. (2.81)

Note that if two operators are Hermitian and their product is also Hermitian, these operators
commute:
= BA, (2.82)

A A

and since (fil?)Jf = AB wehave AB = BA.
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A

As an example, we may mention the commutators involving the x-position operator, X,

and the x-component of the momentum operator, P = —i h0/0x, as well as the y and the z
components
(X, P]=ihl, [V, P]=ihl, [Z, P.] =ihl, (2.83)

where 7 is the unit operator.

Properties of commutators
Using the commutator relation (2.79), we can establish the following properties:

e Antisymmetry: o A
[4, B]=—[B, 4] (2.84)

Linearity:

(A, B+C+D+--1=[4, B]+[A4, C1+[4, D]+ (2.85)

—_

e Hermitian conjugate of a commutator:
(4. By =(af, 4" (2.86)

e Distributivity:

[4, BCl=[A, BIC + B[4, C] (2.87)
[AB, C]= A[B, C1+[A4, C]B (2.88)
e Jacobi identity:
[4,[B, C11+[B, [C, Al +[C, [4, B]]=0 (2.89)
e By repeated applications of (2.87), we can show that
o n—1 A )
[4. B") =D B/[4, B)B"~/! (2.90)
j=0
AnoA nl An—j—=1_~r A Aj
(4", B1=>4""""[4, B4 (2.91)
j=0

e Operators commute with scalars: an operator A commutes with any scalar b:

[4, b]=0 (2.92)

Example 2.8
(a) Show that the commutator of two Hermitian operators is anti-Hermitian.
(b) Evaluate the commutator [4, [B, C]D].
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Solution A
(a) If 4 and B are Hermitian, we can write

L, Bt = (AB - BAy = 314" - ATBT = BA—- 4B = (4, By, (2.93)
that is, the commutator of 4 and B is anti-Hermitian: [/i E]T = —[/I , Z§].
(b) Using the distributivity relation (2.87), we have

A~ A A

[4, [B, C1D] = [B, Cl[4, D1+I[A, [B, C11D
B

2.4.5 Uncertainty Relation between Two Operators

An interesting application of the commutator algebra is to derive a general relation giving the
uncertainties product of two operators, Aand B. In particular, we want to give a formal deriva-
tion of Heisenberg’s uncertainty relations.

Let (A4) and (B) denote the expectation values of two Hermitian operators A and B with
respect to a normalized state vector | y): (A) = v | A | w)and (B) = (y | B | w).
Introducing the operators AA and AB,

A

=4 — (4), AB =B — (B), (2.95)

A NG

A
we have (AA)2 = A° = 24(A) + (A)2 and (AB)2 = B2 — 2B(B) + (B)2, and hence
(w1 (A2 |y = (ADY) = ()= (A2 (MDY = (B)—(B)?,  (296)

A2 A2 ~ A
where (A7) = (y | A" | w) and (B?) = (y | B? | w). The uncertainties AA and AB are

defined by
= Ji(AaAR) = (4 — (42, AB =\/((A1§)2) =\/<z§2> —(B)2.| (297

Let us write the action of the operators (2.95) on any state | y) as follows:

10 =adiyy = (A= D) 1w 1) =281y = (B-B)1w. @99
The Schwarz inequality for the states | y) and | ¢) is given by
G INe o) = 1 1) (2.99)
Al Al

Since 4 and B are Hermitian, AA and A B must also be Hermitian: A4 = 4' — (/I) =
A - (A) —Adand ABT = B — (B) = AB. Thus, we can show the following three relations:

10 =Wl AD 1 y), @1e)=w | AB*y), (x|¢)=(y|AAAB|y).
(2.100)
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f

For instance, since adl = ad wehave (y | x)=(y | AA AA | w) = (y | (AA)? | y) =

( (A/I)z). Hence, the Schwarz inequality (2.99) becomes

~ ~ A A |2
(AAPN(ABY) = [(AdAB) (2.101)
Notice that the last term A A A B of this equation can be written as
PP P I~ 1 o~ & I~
AAAB = E[AA’ AB]+ E{AA’ AB} = E[A’ Bl1+ E{AA’ AB}, (2.102)

where we have used the fact that [A/i, Afr’] = [/I, 3’]. Since [/i, ﬁ’] is anti-Hermitian and
{Azi , Aé} is Hermitian and since the expectation value of a Hermitian operator is real and
that the expectation value of an anti-Hermitian operator is imaginary (see Example 2.6), the
expectation value (AAAB) of (2.102) becomes equal to the sum of a real part ({AA, AB)) /2
and an imaginary part ([/i, E])/Z; hence

noa 2 1 A a2 1 a2
‘(AAAB) - Z‘([A, B])‘ +Z‘({AA, AB})‘ . (2.103)
Since the last term is a positive real number, we can infer the following relation:
A~ A |2 1 A A |2
‘(AAAB)‘ > Z‘([A, B])‘ . (2.104)
Comparing equations (2.101) and (2.104), we conclude that
N2 2 Lios anl?
(aD@B? = |14 B[, (2.105)
which (by taking its square root) can be reduced to
1 A A
IVIVES (<[A, B])(. (2.106)

This uncertainty relation plays an important role in the formalism of quantum mechanics. Its
application to position and momentum operators leads to the Heisenberg uncertainty relations,
which represent one of the cornerstones of quantum mechanics; see the next example.

Example 2.9 (Heisenberg uncertainty relations)
Find the uncertainty relations between the components of the position and the momentum op-
erators.

Solution

By applying (2.106) to the x-components of thg position operator )A{ , and the momentum op-
erator P, we obtain AxAp, > % | ([X, Py]) |. Butsince [X, P,] = ihl, we have
Ax Ap, > h/2; the uncertainty relations for the y— and z— components follow immediately:

h h h
AxApy > > AyAp, > > AzAp,; > > (2.107)

These are the Heisenberg uncertainty relations.
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2.4.6 Functions of Operators

Let F(A) bea function of an operator A. If 4 is a linear operator, we can Taylor expand F(A)
in a power series of A4:

o
F(A) =Y a,4", (2.108)
n=0

where a,, is just an expansion coefficient. As an illustration of an operator function, consider
e?4, where a is a scalar which can be complex or real. We can expand it as follows:

3

o0 n 2
e“A:z%An:I+aA+%A2+% S (2.109)

Commutators involving function operators
If A commutes with another operator B, then B commutes with any operator function that
depends on A: A A

[4, B]=0 = [B, F(4)]=0; (2.110)

in particular, (/I) commutes with 4 and with any other function, G(/I), of 4:

[4, F(4)] =0, (4", F(A)] =0, [F(4), G(4)] = 0. (2.111)

Hermitian adjoint of function operators
The adjoint of F(A) is given by

T

(F(AT = Fr(dh). 2.112)

Note that if 4 is Hermitian, ¥ (/I) is not necessarily Hermitian; F (fi) will be Hermitian only if
F is a real function and A4 is Hermitian. An example is

iyt = eﬂ’ @y = gmidl (gadyt il 2.113)

where a is a complex number. So if A is Hermitian, an operator function which can be ex-
panded as F(4) = > 02, a,,An will be Hermitian only if the expansion coefficients a,, are real
numbers. But in general, ' (/i) is not Hermitian even if 4 is Hermitian, since

Al = ia;(/ﬁ)”. (2.114)

n=0

Relations involving function operators
Note that . A .
[4, B1#£0 = [B, F(D)]#0; (2.115)

in particular, e4e® #£ 415, Using (2.109) we can ascertain that

eAeB — (AtB A B2, (2.116)

A 7 A A A l A A A 1 A A A A
bt = B[4 B+ 5lA [, B+ 5[4, 4 (4 Bm+--. @)
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2.4.7 Inverse and Unitary Operators

L. . . ~—1 . A
Inverse of an operator: Assuming it exists® the inverse 4  of a linear operator A4 is defined

by the relation
Ali=a4it =1, 2.118)

where [ is the unit operator, the operator that leaves any state | ) unchanged.
Quotient of two operators: Dividing an operator A by another operator B (provided that the

inverse B~! exists) is equivalent to multiplying A by B~

4_ AB™! (2.119)
5= . .

A 1 . 7. .-
Z=4-=4B7" and =4=B7'4. (2.120)
B B B

In general, we have AB™! #+ B~1A4. For an illustration of these ideas, see Problem 2.12. We
may mention here the following properties about the inverse of operators:

aAn A A\—1 N ~ ~ ~ an\ —1 A\ 7
(ABCD) = D¢ B AT, (A”) :(A 1) . 2.121)

Unitary operators: A linear operator U is said to be unitary if its inverse U-is equal to its
adjoint ot
of = 0! or 00t =070 =1. (2.122)

The product of two unitary operators is also unitary, since
O @t =onatoh =owihiot =oot =1, (2.123)

or (U I7)T = (U I7)‘1. This result can be generalized to any number of operators; the product
of a number of unitary operators is also unitary, since

(ABED - YABCD-- T = AbeDe.ypietat il = dsedphetatal
_ Ap@echatat = agahal
= il =1, (2.124)

or (ABCD-- T = (ABED -1,

Example 2.10 (Unitary operator)
What conditions must the parameter ¢ and the operator G satisfy so that the operator U=e
is unitary?

ieG

3Not every operator has an inverse, just as in the case of matrices. The inverse of a matrix exists only when its
determinant is nonzero.
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Solution
Clearly, if ¢ is real and G is Hermitian, the operator e

[F(fi)]Jr = F* (AT), we see that

i2G would be unitary. Using the property

(eiEG)T — e—ieé — (eisé)—l’ (2125)

that is, ot =01,

2.4.8 Eigenvalues and Eigenvectors of an Operator

Having studied the properties of operators and states, we are now ready to discuss how to find
the eigenvalues and eigenvectors of an operator.

A state vector | ) is said to be an eigenvector (also called an eigenket or eigenstate) of an
operator A if the application of Ato | v) gives

Aly) =alw), (2.126)

where a is a complex number, called an eigenvalue of A. This equation is known as the eigen-
value equation, or eigenvalue problem, of the operator A. Tts solutions yield the eigenvalues
and eigenvectors of 4. In Section 2.5.3 we will see how to solve the eigenvalue problem in a
discrete basis.

A simple example is the eigenvalue problem for the unity operator I:

Iy)=|y). (2.127)
This means that all vectors are eigenvectors of I with one eigenvalue, 1. Note that
Aly)=aly) = A"|y) =a"|y) and F)|y)=F@)|y). (2128

For instance, we have

Aly)=aly) = 1|y)=|y). (2.129)

Example 2.11 (Eigenvalues of the inverse of an operator)
aml acl . -
Show that if A ~ exists, the eigenvalues of 4  are just the inverses of those of 4.

SolutioAn_ o
Since A A = I we have on the one hand

ael ~
4 Aly) =|w), (2.130)
and on the other hand
Al A Al A Al
4 Aly)=4 (Aly) =ad |y). (2.131)

Combining the previous two equations, we obtain

~A—1
ad |y) =|y), (2.132)
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hence )
4 |y = - | w). (2.133)

. . . A=l . R B
This means that | ) is also an eigenvector of A ~ with eigenvalue 1/a. Thatis, if A  exists,
then

~ A 1
Aly)=aly) = AlIV/):;IV/)- (2.134)

Some useful theorems pertaining to the eigenvalue problem

Theorem 2.1 For a Hermitian operator, all of its eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are orthogonal.

If AT = /i, A | $n) = an | pn) = a, = real number, and (¢, | dn) = Imn-
(2.135)
Proof of Theorem 2.1
Note that . .
A ¢n> = an |¢n) - <¢m | 4| ¢n> = an(¢m |¢n)a (2-136)
and . .
n | AT =aipn | = (fu | AT 1) = (b | S0). (2.137)
Subtracting (2.137) from (2.136) and using the fact that A is Hermitian, 4 = AT, we have
(an = ap){pm | pn) = 0. (2.138)

Two cases must be considered separately:

e Case m = n: since (¢, | ¢,) > 0, we must have a, = aj;; hence the eigenvalues a,, must
be real.

e Case m # n: since in general a, # aj,, we must have (¢, | ¢,) = 0; thatis, | ¢,,) and
| ¢,,) must be orthogonal.

Theorem 2.2 The eigenstates of a Hermitian operator define a complete set of mutually or-
thonormal basis states. The operator is diagonal in this eigenbasis with its diagonal elements
equal to the eigenvalues. This basis set is unique if the operator has no degenerate eigenvalues
and not unique (in fact it is infinite) if there is any degeneracy.

Theorem 2.3 Iftwo Hermitian operators, A and B, commute and if A has no degenerate eigen-
value, then each eigenvector of A is also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint eigenvectors of A and B.

Proof of Theorem 2.3
Since A4 is Hermitian with no degenerate eigenvalue, to each eigenvalue of 4 there corresponds
only one eigenvector. Consider the equation

Aldn) = an | ). (2.139)
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Since A4 commutes with B we can write
BA\¢n) = AB | ¢a) or AB | ¢pn) = an(B | bn)); (2.140)

that is, (B | ¢n)) 1s an eigenvector of A with eigenvalue a,. But since this eigenvector is unique
(apart from an arbitrary phase constant), the ket | ¢,,) must also be an eigenvector of B:

Bl gn) = byl ). (2.141)

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators
must have a common basis. This basis is unique; it is made of the joint eigenvectors of A and
B. This theorem also holds for any number of mutually commuting Hermitian operators.

Now, if a, is a degenerate eigenvalue, we can only say that B | ¢») is an eigenvector of
A with eigenvalue a,; | ¢,) is not necessarily an eigenvector of B. If one of the operators is
degenerate, there exist an infinite number of orthonormal basis sets that are common to these
two operators; that is, the joint basis does exist and it is not unique.

Theorem 2.4 The eigenvalues of an anti-Hermitian operator are either purely imaginary or
equal to zero.

Theorem 2.5 The eigenvalues of a unitary operator are complex numbers of moduli equal to
one, the eigenvectors of a unitary operator that has no degenerate eigenvalues are mutually
orthogonal.

Proof of Theorem 2.5
Let | ¢,) and | ¢,,) be eigenvectors to the unitary operator U with eigenvalues @, and a,,,
respectively. We can write

(g | OO 1 ) = ajanlgn | ). (2.142)
Since UTU = T this equation can be rewritten as
(@pan — 1){dm | ¢n) =0, (2.143)
which in turn leads to the following two cases:
e Case n = m: since (¢, | ¢,) > Othena,a, =] a, |2= 1, and hence | a, |= 1.

e Case n # m: the only possibility for this case is that | ¢,,) and | ¢,) are orthogonal,
(¢m |¢n> = 0.

2.4.9 Infinitesimal and Finite Unitary Transformations

We want to study here how quantities such as kets, bras, operators, and scalars transform under
unitary transformations. A unitary transformation is the application of a unitary operator U to
one of these quantities.
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2.4.9.1 Unitary Transformations

Kets | w) and bras (y | transform as follows:

ly') = U |y,

(' 1= (y | OT.
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(2.144)

Let us now find out how operators transform under unitary transformations. Since the transform
of Al y) =I¢)isd | y') =|¢), wecanrewrite A | y') =| ¢ as AU | y) = U | ) =
UA | w) which, in turn, leads to AU =04 Multiplying both sides of AU=04 by Ut and

since 00T = UTU = f, we have

A =04i0t, i=0T10. (2.145)
The results reached in (2.144) and (2.145) may be summarized as follows:
)y =Uly), = w0, 4 =040, (2.146)
v =0T1y),  wli=w 10, 4=01i0 (2.147)
Properties of unitary transformations
e If an operator A is Hermitian, its transformed A is also Hermitian, since
it=@ioht =oilot —oaot = 7. (2.148)
e The eigenvalues of A and those of its transformed A~ are the same:
~ ~!
Alyn) = anlyn) = A | ‘/’;,) = ay | l;/,’,), (2.149)
since
A/ A A A A A A A A
Ay = QAN | ) = 0AOT) | y)
= Ud |y = a0 | yu)) =an | vy). (2.150)

e Commutators that are equal to (complex) numbers remain unchanged under unitary trans-
formations, since the transformation of [4, B] = a, where a is a complex number, is

given by
i B 7 A0T. UBOT TAOTYVOBUTY — (O BOTYWOTADT
[4,B1 = [UAU",UBU"1=UAUNYUBU" —(UBUNYUAU)
= U[4, l}]lﬁ = 0a0t =a00T =4
[4, B]. (2.151)
e We can also verify the following general relations:

A=pB+yC = A4 =pB +yC, (2.152)
A=aBCD = A =aBCD, (2.153)
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e Since the result (2.151) is valid for any complex number, we can state that complex
numbers, such as (y | 4 | x), remain unchanged under unitary transformations, since

Al ~ A A A A A~ A A A ~
WA L) = G 1OD@ AN | ) = (v 1 OTOYADTUY | x) =ty 1 A1 y).
o (2.154)
Taking A = I we see that scalar products of the type

Wixh =l (2.155)

are invariant under unitary transformations; notably, the norm of a state vector is con-
served:

W'y = (wly. (2.156)

=

e We can also verify that (U 10 T) = 04" U7 since

(mﬁ)” — (mzﬁ) (0A0T)...(Ufim):04(0T0)2<0T0)...<0T0)40T
- 04"0". (2.157)

e We can generalize the previous result to obtain the transformation of any operator func-
tion f(A4):
00T = f0A0T = 1), (2.158)
or more generally

A

Uf(A,B,C,-- 0T = p(0A0T, 0BOT,0C0T,.. )= r(4, B, C,--). (2.159)

A unitary transformation does not change the physics of a system; it merely transforms one
description of the system to another physically equivalent description.

In what follows we want to consider two types of unitary transformations: infinitesimal
transformations and finite transformations.

2.4.9.2 Infinitesimal Unitary Transformations

Consider an operator U which depends on an infinitesimally small real parameter ¢ and which
varies only slightly from the unity operator /:

U,(G) =1 +ieG, (2.160)

where G is called the generator of the infinitesimal transformation. Clearly, U, is a unitary
transformation only when the parameter ¢ is real and G is Hermitian, since

0,00 = (T +ieG)( —ieGYy = T4 ie(G - Gy =1, 2.161)

where we have neglected the quadratic terms in ¢.
The transformation of a state vector | y) is

ly') = U+ieG) | w) =l y)+3| ), (2.162)
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where
Sly) = ieG | y). (2.163)

The transformation of an operator Ais given by

A =d +ieG)AU —ieG) ~ 4 +ie[G, A). (2.164)

If G commutes with A, the unitary transformation will leave A unchanged, A =4

[G,Al=0 — A =0{+ieG)Ad —ieG) = A. (2.165)

2.4.9.3 Finite Unitary Transformations

We can construct a finite unitary transformation from (2.160) by performing a succession of
infinitesimal transformations in steps of &; the application of a series of successive unitary
transformations is equivalent to the application of a single unitary transformation. Denoting
e = a/N, where N is an integer and a is a finite parameter, we can apply the same unitary
transformation N times; in the limit N — 400 we obtain

A I O A . o AN\N 6
Ua(G)legnoog(HzNG)=N2Tm(1+lﬁG) — ¢i90, (2.166)

where G is now the generator of the finite transformation and a is its parameter.
As shown in (2.125), U is unitary only when the parameter a is real and G is Hermitian,
since R R R
(eiaG)"' — e—iaG — (@iaG)_l. (2167)

. . . . . At ~
Using the commutation relation (2.117), we can write the transformation 4 of an operator 4
as follows:

. \2 . \3
%G je=1%G — J 4 ia[G, A] + (%) [G, G, A]] + % [G, 6, 16, A]]] n
(2.168)
If G commutes with A, the unitary transformation will leave A unchanged, A = 4:
[G, Al = 0= 4 = /%G je1vG — ] (2.169)

In Chapter 3, we will consider some important applications of infinitesimal unitary transfor-
mations to study time translations, space translations, space rotations, and conservation laws.

2.5 Representation in Discrete Bases
By analogy with the expansion of Euclidean space vectors in terms of the basis vectors, we need

to express any ket | y) of the Hilbert space in terms of a complete set of mutually orthonormal
base kets. State vectors are then represented by their components in this basis.



2.5. REPRESENTATION IN DISCRETE BASES 105

2.5.1 Matrix Representation of Kets, Bras, and Operators

Consider a discrete, complete, and orthonormal basis which is made of an infinite* set of kets
| d1), | P20, | P3), ..., | dn) and denote it by {| ¢, )}. Note that the basis {| ¢,)} is discrete, yet
it has an infinite number of unit vectors. In the limit » — oo, the ordering index » of the unit
vectors | ¢,) is discrete or countable; that is, the sequence | ¢1), | ¢2), | ¢3), ... is countably
infinite. As an illustration, consider the special functions, such as the Hermite, Legendre, or
Laguerre polynomials, H,(x), P,(x), and L, (x). These polynomials are identified by a discrete
index n and by a continuous variable x; although » varies discretely, it can be infinite.

In Section 2.6, we will consider bases that have a continuous and infinite number of base
vectors; in these bases the index 7 increases continuously. Thus, each basis has a continuum of
base vectors.

In this section the notation {| ¢,)} will be used to abbreviate an infinitely countable set of
vectors (i.e., | ¢1), | ¢2), | @3), ...) of the Hilbert space H. The orthonormality condition of
the base kets is expressed by

(n | ém) = Onm, (2.170)
where d,,, is the Kronecker delta symbol defined by
1, n=m,

The completeness, or closure, relation for this basis is given by
x ~
DI gadign I =1, (2.172)
n=1

where 1 is the unit operator; when the unit operator acts on any ket, it leaves the ket unchanged.

2.5.1.1 Matrix Representation of Kets and Bras

Let us now examine how to represent the vector | w) within the context of the basis {| ¢,)}.
The completeness property of this basis enables us to expand any state vector | ) in terms of
the base kets | ¢, ):

ly) =11y = (Z|¢n><¢n |)| p) = D an | dn), (2.173)
n=1 n=1

where the coefficient a,,, which is equal to (¢, | w), represents the projection of | ) onto | ¢, );
ay is the component of | y) along the vector | ¢,). Recall that the coefficients a, are complex
numbers. So, within the basis {| ¢,)}, the ket | w) is represented by the set of its components,

ai, az, as, ... along | ¢1), | ¢2), | ¢3), ..., respectively. Hence | w) can be represented by a
column vector which has a countably infinite number of components:
(@1 | w) ai
(P2 | w) a
| y) — : =1 : |. (2.174)
an

(én | v}

4Kets are elements of the Hilbert space, and the dimension of a Hilbert space is infinite.
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The bra (y | can be represented by a row vector:

(wl— Wwlo) (wld2) - (wldn) )

Ut Ly)" (2 lw)™ e pn L) -0)
= (af a3 ---a, --). (2.175)
Using this representation, we see that a bra-ket (v | ¢) is a complex number equal to the matrix
product of the row matrix corresponding to the bra (y | with the column matrix corresponding
to the ket | ¢):
by
by

(wig=(aj a3 ar | o [=Dabu. (2.176)
by "

where b, = (¢n | ¢). We see that, within this representation, the matrices representing | )
and (y | are Hermitian adjoints of each other.

Remark

A ket |y) is normalized if (y | y) = >, la,|? = 1. If |yw) is not normalized and we want
to normalized it, we need simply to multiply it by a constant « so that (ay | ay) = |a|*(y |

w) = 1,and hence a = 1//Ty | y).

Example 2.12
Consider the following two kets:
Si 3
lyv)=1 2 |, l¢)=1 8i
—i —9i

(a) Find | w)* and (w |.
(b) Is | ) normalized? If not, normalize it.
(c) Are | w) and | ¢) orthogonal?

Solution
(a) The expressions of | w)* and (y | are given by

—5i
| w)* = 2 , (| = (=5 2 i), (2.177)

where we have used the fact that (y | is equal to the complex conjugate of the transpose of the
ket | w). Hence, we should reiterate the important fact that | w)* # (y |.
(b) The norm of | ) is given by

5i
wiyy==5i 2 O 2 | =(=5)Gi)+Q)Q) + ()(=i) = 30. (2.178)

—i
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Thus, | ) is not normalized. By multiplying it with 1/4/30, it becomes normalized:

5i
|>—1|>—1 2
AT AN

= (g =L (2.179)

(c) The kets | y) and | ¢) are not orthogonal since their scalar product is not zero:

3
wldy=(=5 2 | 8 |=(=5)3)+Q@)@®)+()=9)=9+i (2.180)
—9i

2.5.1.2 Matrix Representation of Operators

For each linear operator 4, we can write

A= Mi:( | $u) b |)A(Z | Bm) |)= D Awn | )b |, (2181
n=l1 m=1 nm

where A, is the nm matrix element of the operator A:

Aum = (pn | A| ). (2.182)

We see that the operator Ais represented, within the basis {| ¢,)}, by a square matrix 4 (4
without a hat designates a matrix), which has a countably infinite number of columns and a
countably infinite number of rows:

A A Az
Ay Axp Az

A=\ A3 A3 Ay - | (2.183)

For instance, the unit operator Iis represented by the unit matrix; when the unit matrix is
multiplied with another matrix, it leaves that unchanged:

1 0
0 1
I'=10 0

—_ o O

(2.184)

In summary, kets are represented by column vectors, bras by row vectors, and operators by
square matrices.
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2.5.1.3 Matrix Representation of Some Other Operators

(a) Hermitian adjoint operation

Let us now look at the matrix representation of the Hermitian adjoint operation of an operator.
First, recall that the transpose of a matrix 4, denoted by A7, is obtained by interchanging the
rows with the columns:

T
A A Az - A Axn Az
Ay Axp Ay - Ay Apn A3

T
(A" )um = Amn  or A3y Az Azz - = A1z Az Ass

(2.185)
Similarly, the transpose of a column matrix is a row matrix, and the transpose of a row matrix
is a column matrix:

al T ai
aj az
: =(a a - a ---) and (a1 a - ay ...)T=
Qn Qn
(2.186)
So a square matrix 4 is symmetric if it is equal to its transpose, 47 = 4. A skew-symmetric
matrix is a square matrix whose transpose equals the negative of the matrix, 47 = — 4.

The complex conjugate of a matrix is obtained by simply taking the complex conjugate of
all its elements: (4*),m = (Aum)*.

The matrix which represents the operator A f is obtained by taking the complex conjugate
of the matrix transpose of 4:

f f

AT =Ty or (AN =@ | A" | bw) = | A1 ¢0)* = Ay (2.187)
that is,
Ay A Az - f A7, A A3,
Ay Axp A - A, Ay Ay -
A1 Az Az - =\ 43 43 45 - |- (2.188)

If an operator A is Hermitian, its matrix satisfies this condition:

ATy =4 or A%, = Aum. (2.189)
The diagonal elements of a Hermitian matrix therefore must be real numbers. Note that a
Hermitian matrix must be square.

(b) Inverse and unitary operators
A matrix has an inverse only if it is square and its determinant is nonzero; a matrix that has
an inverse is called a nonsingular matrix and a matrix that has no inverse is called a singular
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. . . . A1 .
matrix. The elements An‘,; of the inverse matrix A~!, representing an operator 4 , are given
by the relation

1 cofactor of A, -1 _ B—T (2.190)

nm T determinant of 4 " determinant of 4’

where B is the matrix of cofactors (also called the minor); the cofactor of element 4,,, is equal
to (—1)™*" times the determinant of the submatrix obtained from 4 by removing the mth row
and the nth column. Note that when the matrix, representing an operator, has a determinant
equal to zero, this operator does not possess an inverse. Note that A~!4 = 4A4~! = I where /
is the unit matrix.

The inverse of a product of matrices is obtained as follows:

(4BC---POY" ' =7 'p7t...cB7I 47N, (2.191)
The inverse of the inverse of a matrix is equal to the matrix itself, (A_l)_1 = A.

A unitary operator Uis represented by a unitary matrix. A matrix U is said to be unitary if
its inverse is equal to its adjoint:

vl =ut o vlu=1, (2.192)

where [ is the unit matrix.

Example 2.13 (Inverse of a matrix)

2
Calculate the inverse of the matrix 4 = | 3 1 5 |]. Is this matrix unitary?
0 .

Solution

Since the determinant of 4 is det(4) = —4 + 16i, we have 4~' = BT /(=4 + 16i), where the
elements of the cofactor matrix B are given by B, = (—1)"*" times the determinant of the
submatrix obtained from A4 by removing the nth row and the mth column. In this way, we have

Az A

Bn = (=p'f! dss Ann = (1| _2‘=—2+5i, (2.193)
B = (-D'*? ji ji = (-1’ (3) _52 ‘=6, (2.194)
Bz = (-D'*3 j?: jz = (-1* (3) _11. = -3, (2.195)
By = (—1)3 _il. _02 ‘:21', By = (—1?* f) _02 ‘:—4, (2.196)
By = (1)’ (2) _ii =i, By = (=1)* ’1 (5)‘=5i, (2.197)
By = (=1 g 2‘:-10, By = (=1)° § i‘=2—3i, (2.198)
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and hence
-2+ 5i 6 —3i
B = 2i —4 2i . (2.199)
5i —-10 2-3;

Taking the transpose of B, we obtain

/2450 20 Si
1 14
A7t = pr_ T 6 -4 —10
—4+ 16 68 3 20 2-3i
L[ 2243 8-2 20-5i
= — | -6-24i a+160 10+40i |. (2.200)
B8\ _1243 8-2i —14-5i

Clearly, this matrix is not unitary since its inverse is not equal to its Hermitian adjoint:
A~V # 4T,

(c) Matrix representation of | y)(y |
It is now easy to see that the product | w)(y | is indeed an operator, since its representation
within {| ¢,)} is a square matrix:

aj aja} aa;, aa;
a .. @mal aa; axa; ---
Ly i=| o |@ a3 ai - )=| wa’ wd ad - | (2.201)

(d) Trace of an operator .
The trace Tr(A) of an operator A is given, within an orthonormal basis {| ¢, )}, by the expression

Tr(A) = D (G | A1 ) = D Aun; (2.202)

we will see later that the trace of an operator does not depend on the basis. The trace of a matrix
is equal to the sum of its diagonal elements:

Ay A A
Ayy Axp Ay -
Trl A3 A3 Ay - | =Ant+dnt At (2.203)

Properties of the trace
We can ascertain that

Tr(/IT) = (Tr(4))*, (2.204)
Tr(@A+ BB+ 7yC + ) = aTr(4) + BTe(B) + y Tr(C) + - - -, (2.205)

and the trace of a product of operators is invariant under the cyclic permutations of these oper-
ators:

Tr(ABCDE) = Te(EABCD) = Ti(DEABC) = Te(CDEAB) = - - - . (2.206)
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Example 2.14
(a) Show that Tr(/fé) = Tr(éﬁ).
(b) Show that the trace of a commutator is always zero.
(c) Hlustrate the results shown in (a) and (b) on the following matrices:

8—2i 4i 0 —i 2 1—i
A= 1 0 1—-i |, B = 6 1+ 3i
-8 i 6i 1 547 0
Solution
(a) Using the definition of the trace,
Tr(AB) =D (¢ | AB | $u), (2.207)

n

and inserting the unit operator between A and B we have

Tr(AB) = D (¢nl A(Z | Gm)(bm |)é | ) =D An | A | pm)ibm | B bn)

n nm

= > AynBun. (2.208)

On the other hand, since Tr(/IlA?) = {dn | AB | ¢n), we have

Tr(BA) D (w1 B D1 pudi |)fi | ) =D {hm | B 1) | A | pm)

m

= > BunAum. (2.209)

Comparing (2.208) and (2.209), we see that Tr(/Ilg’) = Tr(ff’/I).
(b) Since Tr(A4 B) = Tr(B A) we can infer at once that the trace of any commutator is always
Zero:
Tr([4, B]) = Tr(AB) — Tr(BA) = 0. (2.210)

(c) Let us verify that the traces of the products 4B and B A are equal. Since

-2+ 16i 12 —6—10i -8 5+i 8+ 4i
AB = 1—2i 14 + 2i 1—i , BA=| 49-35 -3+4+24 —16 ,

20i —-59+431i —-11+48i 13+ 5 4 12+ 2i
(2.211)
we have
—2 4 16i 12 —6 — 10i
Tr(AB) = Tr 1—-2i 14 +2i 1—1i =1+ 26i, (2.212)
20i —594+31i —11+4+8i
-8 541 8+ 4i
Tr(BA) =Tr| 49—35i —-3+424i —16 =1426i = Tr(4B). (2.213)
1345 4i 12 4 2i

This leads to Tr(4B) — Tr(BA) = (1 +26i) — (1 +26i) =0 or Tr([4, B]) =0.
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2.5.1.4 Matrix Representation of Several Other Quantities

(a) Matrix representation of | ¢) = A | v) L
The relation | ¢) = A | w) can be cast into the algebraic form / | ¢) = 1Al | ) or

(Z | Bn) (B |) | ¢) = (Z | Bn) (n |)A(Z | B ) (bm |) | ), (2214)

which in turn can be written as

an | $n) = Zam | @n){dn | A | $m) = ZamAnm | &n), (2.215)

where b, = (¢, | ¢), Apm = (Pn | A | dm), and ap, = (D | w). Itjs easy to see that (2.215)
yields b, = >, Aumam; hence the matrix representation of | ¢) = 4 | ) is given by

by A A Ao - ai
by Ay Axp Ay - as

by | = | A4n Axn Az .- a |- (2.216)

(b) Matrix representation of (| A | w)
As for (¢ | A | w) we have

pldly) = <¢|fﬁf|w>=<¢|(2|¢n><¢n|)fi(
n=1

= DA 1 dadln | A1 dndidm | w)

nm

o0

m=

| &m) (&m I) | y)
1

= ZbZAnmam~ (2217)
nm
This is a complex number; its matrix representation goes as follows:
An A Az - ai
An Axn Az - as

@1ALy)— 0 b5 b5 )| ay Ay Ay - || e |- @218

Remark

It is now easy to see explicitly why products of the type | w) | ¢), (v | (¢ |, AA<1// |, or | 1//)141
are forbidden. They cannot have matrix representations; they are nonsensical. For instance,
| v) | @) is represented by the product of two column matrices:

(@11 vy) (P11 )
| w) | ¢) — (P21 y) (P2 | &) . (2.219)

This product is clearly not possible to perform, for the product of two matrices is possible only
when the number of columns of the first is equal to the number of rows of the second; in (2.219)
the first matrix has one single column and the second an infinite number of rows.



2.5. REPRESENTATION IN DISCRETE BASES 113

2.5.1.5 Properties of a Matrix 4
e Realif 4= A"or 4y, = 4,,

Imaginary if 4 = —A4" or A,y = —4;,,

Symmetric if 4 = AT or Apy = Apm

Antisymmetric if 4 = —A” or Ay = — Ay With Ay =0

Hermitian if 4 = AT or 4,,, = A*

nm

e Anti-Hermitian if 4 = —AT or Amn = =4},

Orthogonal if A7 = A7  or 44T =T or (AAT )y = Sun

o Unitary if AT = 4= or 44T = I or (44T)0n = Spn

Example 2.15 .
Consider a matrix A (which represents an operator A), aket| y), and a bra (¢ |:
5 3+2i 3i —1+i
A= —i 3i 8 |, lw = 3 . (pl=(6 —i 5).
1—i 1 4 24+ 3i

(a) Calculate the quantities 4 | ), (¢ | A, (¢ | A | v),and | w){¢ |.
(b) Find the complex conjugate, the transpose, and the Hermitian conjugate of 4, | ), and

(@1
(c) Calculate (¢ | w) and (y | ¢); are they equal? Comment on the differences between the
complex conjugate, Hermitian conjugate, and transpose of kets and bras.

Solution
(a) The calculations are straightforward:

5 342 3i —1+i =5+ 17
Aly)y=| =—i 3i 8 3 = 17+34i |, (2.220)
1—i 1 4 2+43i 11+ 14i
5 342 3i
pla=(6 —i 5)| —i 3i 8 | =(34-5 26+12i 20+10i ),
1—i 1 4
(2.221)
5 342 3i —14i
@laly)y=(6 —i 5) —i 3i 8 3 =59 + 155i, (2.222)
1—i 1 4 243i
—14i —64+6i 14+i —545i
| y)(p|= 3 (6 —i 5)= 18 —3i 15 . (2223)

24 3i 12418 3—-2i 10+ 15i
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(b) To obtain the complex conjugate of 4, | w), and (¢ |, we need simply to take the
complex conjugate of their elements:

5 3-2i =3i —1—i
A* = i -3 8 |, |w)r= 3 . pl'=(6 i 5).
1+ 1 4 2—-3i
(2.224)
For the transpose of 4, | ), and (¢ |, we simply interchange columns with rows:
5 —i 1—i 6
AT = 3421 3 1 T =(—1+i 3 243 ), (@I'=| —i
3i 8 4 5
(2.225)

The Hermitian conjugate can be obtained by taking the complex conjugates of the transpose
expressions calculated above: AT = (47)*, | y)T = (Iv)") =y, (¢ = (B 17)" =1 ¢):

5 i 1+ 6
At={3-2i =3i 1 |, wi=(-1-i 3 2=3i), |¢) =] i
—3i 8 4 5
(2.226)
(c) Using the kets and bras above, we can easily calculate the needed scalar products:
—1+i
@Ply)=(6 —i 5) 3 = 6(=14+i)+(=)(3)+50243i) =4+18i, (2.227)
243i
6
(W | @) = ( —1—-i 3 2-3i ) i | =6(—-1-0)4+G)B3)+5(2-3i) =4—18i. (2.228)
5

We see that (¢ | w) and (w | ¢) are not equal; they are complex conjugates of each other:

(W lg)=(ly) =4—18i (2.229)

Remark
We should underscore the importance of the differences between | y)*, | )T, and | z//)T. Most
notably, we should note (from equations (2.224)—(2.226)) that | y)* is a ket, while | w)” and

| (//)Jr are bras. Additionally, we should note that (¢ |* is a bra, while (¢ |7 and (¢ |Jr are kets.

2.5.2 Change of Bases and Unitary Transformations

In a Euclidean space, a vector A may be represented by its components in different coordinate
systems or in different bases. The transformation from one basis to the other is called a change
of basis. The components of 4 in a given basis can be expressed in terms of the components of
A in another basis by means of a transformation matrix.

Similarly, state vectors and operators of quantum mechanics may also be represented in
different bases. In this section we are going to study how to transform from one basis to
another. That is, knowing the components of kets, bras, and operators in a basis {| ¢,)}, how
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does one determine the corresponding components in a different basis {| ¢,,)}? Assuming that
{l ¢n)} and {| ¢;,)} are two different bases, we can expand each ket | ¢,) of the old basis in
terms of the new basis {| ¢,)} as follows:

| ) = (Z | 1) |) | ) = D Unn | 1) (2.230)

where
Unn = (P | dn)- (2.231)

The matrix U, providing the transformation from the old basis {| ¢,)} to the new basis {| ¢})},
is given by
(@11 d1) (@) 1) (&) | ¢3)
U=| & 1o1) (B51d2) (hr1¢s) |. (2.232)
(P51 d1) (B 1¢2) (P51 3)

Example 2.16 (Unitarity of the transformation matrix)
Let U be a transformation matrix which connects two complete and orthonormal bases {| ¢,,)}
and {| ¢;,)}. Show that U is unitary.

Solution
For this we need to prove that oot =1 , which reduces to showing that (¢, | oot | ¢n) =
Omn- This goes as follows:

G | OO 1 40) = (¢ | 0(2 | 1) |) OV g0 = D Ul (2233
! /

where Ui = (¢ | U | ¢1) and Uy = (¢ | OT | ¢w) = (hn | U | ¢1)*. According to
(2.231), Ui = (¢, | 1) and Uy, = (1 | #},); we can thus rewrite (2.233) as

D UntUsy =D | $)b1 | $3) = (1 | B3 = O (2.234)
!

i

Combining (2.233) and (2.234), we infer (¢, | UUT | ) = Spn, or OUT = 1.

2.5.2.1 Transformations of Kets, Bras, and Operators

The components (¢, | w) of a state vector | y) in a new basis {| ¢},)} can be expressed in terms
of the components (¢, | ) of | w) in an old basis {| ¢,)} as follows:

(B L v = (B | L1 y) = (g}, |(Z | Bn)(n |)| W) =D Unnlgn | w). (2.235)

This relation, along with its complex conjugate, can be generalized into

| Wnew) = U | Wota), (Wnew | = (Wota | 0T (2.236)



116 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

Let us now examine how operators transform when we change from one basis to another. The
matrix elements 4, = (¢, | 4 | ¢,) of an operator 4 in the new basis can be expressed in
terms of the old matrix elements, 4;; = (¢; | 4 | ¢1), as follows:

A;nn = <¢;/71 | (Z | ¢I><¢] |)/,1\(Z | ¢1) (1 |) | ¢;,> = Z UnjAji ;1; (2.237)
J / jl

that is,
I‘Inew = 0/’1\01(10T or /Iold = U-I-/i\newfﬁ (2.238)

We may summarize the results of the change of basis in the following relations:

| Wneu)) = 0 | Wold); (Wneu) | = <l//old | UT, /inew = &A\old(\ﬂ-a (2239)

or

| V/old> = UT | Wnew): <l//old |= (V/new | 0; /iold = UTlinew[} (2240)

These relations are similar to the ones we derived when we studied unitary transformations; see
(2.146) and (2.147).

Example 2.17 .
Show that the operator U = ", | ¢,) (¢, | satisfies all the properties discussed above.

Solution
First, note that U is unitary:

TUT =" 10 1 1)@ 1= D 1) 1 = D | gy |= 1. (2.241)
nl n

nl

Second, the action of U on a ket of the old basis gives the corresponding ket from the new basis:

Ulgn) = D180 ba L dm) = D1 81)0wm =I ¢} (2242)

We can also verify that the action U7 on a ket of the new basis gives the corresponding ket from
the old basis:

TV 1) =D 18061 1) = D1 ¢1)0im =1 dm). (2.243)
1 l

How does a trace transform under unitary transformations? Using the cyclic property of the
trace, Tr(ABC) = Tr(CAB) = Tr(BC A), we can ascertain that

Te(4) = Te( UAUT) = (010 4) = Te(A), (2.244)
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Tr (| ¢n){hm 1) D i L )i | 1) = D (b | $1)(h1 | hn)

i i

= (¢m | (Z | 1) |) | $n) = (B | ¢n) =Omn,  (2.245)
!

Tr (I ) (Pn 1) = (B | G- (2.246)

Example 2.18 (The trace is base independent)
Show that the trace of an operator does not depend on the basis in which it is expressed.

Solution
Let us show that the trace of an operator A in a basis {| &n)} is equal to its trace in another basis
{l ¢,)}. First, the trace of 4 in the basis {| ¢,)} is given by

Tr(A) = D (pn | 41 40) (2.247)
and in {| )} by
Tr(d) =D (¢ | 41 4}). (2.248)

n

Starting from (2.247) and using the completeness of the other basis, {| ¢;,)}, we have

Tr(d) = Z<¢n|2|¢n>=Z<¢n|(2|¢:n><¢,; |)fi|¢n>
= D (Bl G | Al du). (2.249)

All we need to do now is simply to interchange the positions of the numbers (scalars) (¢, | ¢),)
and (¢, | 4| ¢n):

Tr(d) = > (4, | 4 (Z | Bn) (n |) [ d) = D (B | A1 ). (2.250)

m m

From (2.249) and (2.250) we see that

Tr(d) =D (a1 A1 d0) = D (B 1 A1 ). (2.251)

n n

2.5.3 Matrix Representation of the Eigenvalue Problem

At issue here is to work out the matrix representation of the eigenvalue problem (2.126) and
then solve it. That is, we want to find the eigenvalues a and the eigenvectors | ) of an operator
A such that

N

Aly) =aly), (2.252)
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where a is a complex number. Inserting the unit operator between Aand | w) and multiplying
by (¢ |, we can cast the eigenvalue equation in the form

(¢ | A(Z | Bn) (Bn |) | y) = algm | (Z | Bn) (Bn |) |y, (2.253)

or

D Amnln | w) = a D (Bu | ¥)oum, (2.254)

which can be rewritten as

D [ Amn — adun]pn | w) =0, (2.255)

n

with 4y = (b | A | ¢n)-

This equation represents an infinite, homogeneous system of equations for the coefficients
(én | w), since the basis {| ¢,)} is made of an infinite number of base kets. This system of
equations can have nonzero solutions only if its determinant vanishes:

det (Apn — adym) = 0. (2.256)

The problem that arises here is that this determinant corresponds to a matrix with an infinite
number of columns and rows. To solve (2.256) we need to truncate the basis {| ¢,)} and assume
that it contains only N terms, where N must be large enough to guarantee convergence. In this
case we can reduce (2.256) to the following Nth degree determinant:

Ay —a A1z A3 Ay
Ao Ap —a A3 Aon
43 An Az —a - Asn | . (2.257)
AN An> An3 -+ Ann—a

This is known as the secular or characteristic equation. The solutions of this equation yield

the N eigenvalues a1, a», a3, .. ., ay, since it is an Nth order equation in a. The set of these
N eigenvalues is called the spectrum of 4. Knowing the set of eigenvalues ay, az, a3, .. ., ay,
we can easily determine the corresponding set of eigenvectors | ¢1), | ¢2), ..., | ¢n). For

each eigenvalue a,, of A, we can obtain from the “secular” equation (2.257) the N components
@11 w), (2| w) (@3] ), ... (¢n | w) of the corresponding eigenvector | ¢ ).

If a number of different eigenvectors (two or more) have the same eigenvalue, this eigen-
value is said to be degenerate. The order of degeneracy is determined by the number of linearly
independent eigenvectors that have the same eigenvalue. For instance, if an eigenvalue has five
different eigenvectors, it is said to be fivefold degenerate.

In the case where the set of eigenvectors | ¢,) of A is complete and orthonormal, this set
can be used as a basis. In this basis the matrix representing the operator Ais diagonal,

a 0 0
0 ar 0 ..
A= 0 0 a ... | (2.258)
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the diagonal elements being the eigenvalues a, of A, since

(i | A1 pn) = an(m | $n) = @pun. (2.259)

Note that the trace and determinant of a matrix are given, respectively, by the sum and product
of the eigenvalues:

Tr(d) = D ap=ar+ar+as+-, (2.260)
n

det(4) = [Jan=aazas---. (2.261)
n

Properties of determinants
Let us mention several useful properties that pertain to determinants. The determinant of a
product of matrices is equal to the product of their determinants:

det(ABCD ---) = det(A) - det(B) - det(C) - det(D) - - -, (2.262)
det(4*) = (det (4))*, det(4T) = (det (4))*, (2.263)
det(47) = det (4), det (4) = 1T ), (2.264)

Some theorems pertaining to the eigenvalue problem
Here is a list of useful theorems (the proofs are left as exercises):

The eigenvalues of a symmetric matrix are real; the eigenvectors form an orthonormal
basis.

The eigenvalues of an antisymmetric matrix are purely imaginary or zero.

The eigenvalues of a Hermitian matrix are real; the eigenvectors form an orthonormal
basis.

The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.
The eigenvalues of a unitary matrix have absolute value equal to one.

If the eigenvalues of a square matrix are not degenerate (distinct), the corresponding
eigenvectors form a basis (i.e., they form a linearly independent set).

Example 2.19 (Eigenvalues and eigenvectors of a matrix)
Find the eigenvalues and the normalized eigenvectors of the matrix

7 0 0
A=1 0 1
0 i

-1
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Solution
To find the eigenvalues of 4, we simply need to solve the secular equation det(4 — al) = 0:
T—a 0 0
0=| 0 1-a —i |=(7-a [—(1 —a) —|—a)+i2] — (7 —a)(@® -2).
0 i —1—a
(2.265)

The eigenvalues of 4 are thus given by

a=7 a=+2, a3=-2. (2.266)

Let us now calculate the eigenvectors of 4. To find the eigenvector corresponding to the first
eigenvalue, a; = 7, we need to solve the matrix equation

7 0 0 X X Tx = Tx
0 1 —i vy =7y | = y—iz = Ty; (2.267)
0 i -1 z z iy—z = 7z

this yields x = 1 (because the eigenvector is normalized) and y = z = 0. So the eigenvector
corresponding to a; = 7 is given by the column matrix

1
la)) = [ 0 . (2.268)
0

This eigenvector is normalized since {a; | a;) = 1.
The eigenvector corresponding to the second eigenvalue, a» = +/2, can be obtained from
the matrix equation

70 0 x X 7-v2)x =0
0 1 —i y | =v2|y | = 0-V2)y—iz = 0; (2.269)
0 i -1 z z iy—(1++2)z = 0

this yields x = 0 and z = i (+/2 — 1)y. So the eigenvector corresponding to a» = ~/2 is given
by the column matrix

0
| a2) = Y (2.270)
iW2—-1)y
The value of the variable y can be obtained from the normalization condition of | a3):
0
l=(aala) = (0 y* —i(vV2=-1)") y =22-vV2) Iy .
i(vV2 -1y
(2.271)

Taking only the positive value of y (a similar calculation can be performed easily if one is

interested in the negative value of y), we have y = 1/4/2(2 — +/2); hence the eigenvector
(2.270) becomes

0
1

| a2) = 20-v2) |- (2.272)
i(v/2-1)
22-v2)
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Following the same procedure that led to (2.272), we can show that the third eigenvector is
given by
0
| a3) = ; (2.273)

¥
—i(14++/2)y

its normalization leads to y = 1/,/2(2 + +/2) (we have considered only the positive value of
y); hence

0
1
| az) = 20+v2) |- (2.274)
(1442
2024++/2)

2.6 Representation in Continuous Bases

In this section we are going to consider the representation of state vectors, bras, and operators
in continuous bases. After presenting the general formalism, we will consider two important
applications: representations in the position and momentum spaces.

In the previous section we saw that the representations of kets, bras, and operators in a
discrete basis are given by discrete matrices. We will show here that these quantities are repre-
sented in a continuous basis by continuous matrices, that is, by noncountable infinite matrices.

2.6.1 General Treatment

The orthonormality condition of the base kets of the continuous basis | yz) is expressed not by
the usual discrete Kronecker delta as in (2.170) but by Dirac’s continuous delta function:

e | ) = (k" — k), (2.275)
where k and &’ are continuous parameters and where d(k’ — k) is the Dirac delta function (see

Appendix A), which is defined by

1 [t
S(x) = — / e*dk. (2.276)
21 J_

As for the completeness condition of this continuous basis, it is not given by a discrete sum as
in (2.172), but by an integral over the continuous variable

+00 R
/ dk | e 1= 1. (2.277)

—0oQ

where 7 is the unit operator.
Every state vector | w) can be expanded in terms of the complete set of basis kets | yx):

) =1y = (/ dk | 1) I)|w> =/ dkb() | )e  2278)

—00 —00
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where b(;), which is equal to (% | w), represents the projection of | w) on | yx).
The norm of the discrete base kets is finite ({(¢,, | ¢,) = 1), but the norm of the continuous
base kets is infinite; a combination of (2.275) and (2.276) leads to

1 [reo

(xk | xx) = 0(0) = 2—/ dk — oo (2.279)
T J-co

This implies that the kets | yj) are not square integrable and hence are not elements of the

Hilbert space; recall that the space spanned by square-integrable functions is a Hilbert space.

Despite the divergence of the norm of | y), the set | yx) does constitute a valid basis of vectors

that span the Hilbert space, since for any state vector | ), the scalar product (yx | v) is finite.

The Dirac delta function

Before dealing with the representation of kets, bras, and operators, let us make a short detour
to list some of the most important properties of the Dirac delta function (for a more detailed
presentation, see Appendix A):

5(x)=0, for x#0, (2.280)
/ ’ F()8(x — x0) dx = [ Of (x0) iflsejvhzr’e“) <b, (2.281)

/ Sf(x )dn(j(x ) x = (=)' ——— dnf(x) o (2.282)

OF =) = d(x =x )3y = y)3(z = 2') = =0 = ')5(0 = 0)5(p — 9. (2.283)

Representation of kets, bras, and operators

The representation of kets, bras, and operators can be easily inferred from the study that was
carried out in the previous section, for the case of a discrete basis. For instance, the ket | )
is represented by a single column matrix which has a continuous (noncountable) and infinite
number of components (rows) b(k):

ly) — e lw) |- (2.284)

The bra (y | is represented by a single row matrix which has a continuous (noncountable)
and infinite number of components (columns):

(W |— (oeee (W gk) eeeee ). (2.285)

Operators are represented by square continuous matrices whose rows and columns have
continuous and infinite numbers of components:

A—

R ... A(k., k) (2.286)

As an application, we are going to consider the representations in the position and momentum
bases.
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2.6.2 Position Representation

In the position representation, the basis consists of an infinite set of vectors {| #)} which are

eigenkets to the position operator R:

=0

|F) =F|F), (2.287)

where 7 (without a hat), the position vector, is the eigenvalue of the operator R. The orthonor-
mality and completeness conditions are respectively given by

FlrY=60¢—-7") = 6@x—x"No(y —y)dz—172), (2.288)
/d3 PR = I, (2.289)
since, as discussed in Appendix A, the three-dimensional delta function is given by
1 ey
S o 37 ik-G—F")
or—r')= ) /d ke, (2.290)

So every state vector | i) can be expanded as follows:

= [@rineie = [ @i in, (2.291)
where () denotes the components of | y) in the {| )} basis:

Fly) = w). (2.292)

This is known as the wave function for the state vector | y). Recall that, according to the
probabilistic interpretation of Born, the quantity | (# | y) |* d°r represents the probability of
finding the system in the volume element d>r.

The scalar product between two state vectors, | i) and | ¢), can be expressed in this form:

@ly) = (o] (/ &r | P |) ly) = /d3r ¢ Py @). (2.293)
Since R | 7y =7 | 7) we have
F IR =F"SGE —F). (2.294)
Note that the operator 13 is Hermitian, since

/d3r?<¢|?><?| w) = [/d3r?(w|?)(7|¢>}

= (y| R | )" (2.295)

@Ry
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2.6.3 Momentum Representation

The basis {| p)} of the momentum representation is obtained from the eigenkets of the momen-
tum operator }3:
P|p)=plp), (2.296)

where p is the momentum vector. The algebra relevant to this representation can be easily
inferred from the position representation. The orthonormality and completeness conditions of
the momentum space basis | p) are given by

G150 =oG=5)  ad [ & IpGI=1 (2.297)
Expanding | v) in this basis, we obtain

) = / S| DG w) = / Fp ¥R | B, (2.298)

where the expansion coefficient ¥ (p) represents the momentum space wave function. The
quantity | W(p) |> d°p is the probability of finding the system’s momentum in the volume
element d° p located between p and p + dp.

By analogy with (2.293) the scalar product between two states is given in the momentum
space by

Bly) = (¢ ( / d*p | p)p |) | y) = / d*p ©*(p)¥(p). (2.299)
Since P | p) = p| p) we have

(P 1P| p)=p"5(p - p). (2.300)

2.6.4 Connecting the Position and Momentum Representations

Let us now study how to establish a connection between the position and the momentum rep-
resentations. By analogy with the foregoing study, when changing from the {| 7)} basis to the
{| p)} basis, we encounter the transformation function (¥ | p).

To find the expression for the transformation function (7 | p), let us establish a connection
between the position and momentum representations of the state vector | y):

Fly) =l (/d3p | PP |) | y) = /d3p 7| pY¥(D); (2.301)

that is,
y(E) = / & p | B E). (2.302)

Similarly, we can write

YG) = (Bly) = (] / Pr ) | y) = / LT G) (2.303)
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The last two relations imply that y (+) and ¥ (p) are to be viewed as Fourier transforms of each
other. In quantum mechanics the Fourier transform of a function f'(r) is given by

S 1 i ,
fr) = W/“’SP e Mg (p); (2.304)

notice the presence of Planck’s constant. Hence the function (¥ | p) is given by

1

_ - ipFt/h
= Gay /P, (2.305)

(r1p)

This function transforms from the momentum to the position representation. The function
corresponding to the inverse transformation, (p | ), is given by

N S 1 T
(PI7) = (F | p) = =———e P7/N. (2.306)

The quantity [(7 | f))l2 represents the probability density of finding the particle in a region
around 7 where its momentum is equal to p.

Remark

If the position wave function

w(F) = / d>p P/ (p) (2.307)

1
Qrh)3/2

is normalized (i.e., [ d*r y (F)y*(F) = 1), its Fourier transform

¥(p) = / PPr e Py ) (2.308)

Qrh)3?

must also be normalized, since

- - N 1 ] .
[ owe = [Epvo)]| o [aret )]

- 1 %N —ipr
/d3r w(r) [W/d3p‘i’ (p)e™'? /h}
= [Ervov e
= 1 (2.309)

This result is known as Parseval’s theorem.

2.6.4.1 Momentum Operator in the Position Representation

To determine the form of the momentum operator P in the position representation, let us cal-
culate (7 | P | y):

r | Ply)

/<; | P1A)G w>d3p=/ﬁ<F | VB | w)dp
1

e [ pér ey, (2:310)
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where we have used the relation [ | p){(p | d°p = [ along with Eq. (2.305). Now, since
pePT/h = _iVelPT/h and using Eq. (2.305) again, we can rewrite (2.310) as

5 Y L2 1 iDr -
(r | Ply) = —th(W/ep /h\P(P)dsp)
= —ih%(/ | p)p w>d3p)
= —ikV{F | y). (2.311)

Thus, Pis given in the position representation by

P =—ihV. (2.312)
Its Cartesian components are
R n L0 o 0
P :—zh— P, =—ih—, P, =—ihi—. (2.313)
ox’ oy oz

Note that the form of the momentum operator (2.312) can be derived by simply applying the
gradient operator Vona plane wave function w (v, t) = Ae' (pr=En/h,

—inVy P 0) = pu 1) = Py, 1). (2.314)

It is easy to verlfy that P is Hermitian (see equation (2.378)).

Now, since P = —i/V, we can write the Hamiltonian operator H = P 2/(2m) + V in the
position representation as follows:

. K2 K2 (32 0% o2
H=——V4+ V@) =— (— + — 14 2315
T @) 2m (ax +8 +62)+ ©, ( )

where V? is the Laplacian operator; it is given in Cartesian coordinates by V2 = 8%/ox? +
d%/0y* + 0% /622

2.6.4.2 Position Operator in the Momentum Representation

The form of the position operator R in the momentum representation can be easily inferred

from the representation of P in the position space. In momentum space the position operator
can be written as follows:

N 0
R; =ih— (G=x,y,2) (2.316)
op;
or
N 0 A 0 A 0
X=ih , Y=ii—1, Z=ih (2.317)
Opx apy op:
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2.6.4.3 Important Commutation Relations

Let us now calculate the commutator [ﬁ’ s ﬁk] in the position representation. As the separate
actions of X P, and P, X on the wave function w () are given by

A oy (r
KBy ) = —ina O (2.318)
ox
I 0 . . oy (r
PRw ) = —inL ey ) = —iny () — i D). (2.319)
ox ox
we have
oA PP o1 71 () K 1V (
[X, P ly(@) = XPw(@F)— P Xy(r)=—ihx lg)(c)+lh(//(r)+lhx v
= ihy(@) (2.320)
or o
[X, Py] = ih. (2.321)
Similar relations can be derived at once for the y and the z components:
(X, Pl =ih, [Y, Pyl = ih, [Z, Py]=ih. (2.322)
We can verify that
(X, 2] =X, B1=V, Pl =V, P) =2, P = [Z, B] =, (2.323)

since the x, y, z degrees of freedom are independent; the previous two relations can be grouped
into

[Rj, P =ihojr,  [Rj,R1=0, [P, P]l=0 (j,k=x,y,2).] (2324)

These relations are often called the canonical commutation relations.
Now, from (2.321) we can show that (for the proof see Problem 2.8 on page 139)

[X", P.]=ihinX""", [X, P =ihn P!, (2.325)

Following the same procedure that led to (2.320), we can obtain a more general commutation
relation of Py with an arbitrary function f(X):

o B dfD SR T
), Bl =i = [P, F(R)]_—thF(R)), (2.326)

where F is a function of the operator R.

The explicit form of operators thus depends on the representation adopted. We have seen,
however, that the commutation relations for operators are representation independent. In par-
ticular, the commutator [Iéj, ﬁk] is given by i/ in the position and the momentum represen-
tations; see the next example.
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Example 2.20 (Commutators are representation independent)
Calculate the commutator [X P] in the momentum representation and verify that it is equal to
ih.

Solution
As the operator X is given in the momentum representation by X = i%40/0p, we have

N o 5 55 0 oy (p)
[X, Ply(p) = XPy(p)—PXy(p)= lhg (pw(p)) —lhpF
0
= i) +inp P i, 2P o), (2.327)
op op
Thus, the commutator [)A( , f’] is given in the momentum representation by
[X, P] = [zh— } = ih. (2.328)
op

The commutator [)A( , 13] was also shown to be equal to i/ in the position representation (see
equation (2.321):

[X, P]=— [X in2 ]:ih. (2.329)

Opx

2.6.5 Parity Operator

The space reflection about the origin of the coordinate system is called an inversion or a parity
operation. This transformation is discrete. The parity operator P is defined by its action on the
kets | 7) of the position space:

PR = =), P = (=), (2.330)

such that R
Py ) = w(=r). (2.331)

The parity operator is Hermitian, Pt = P, since

[ereoPvo] = [ = [dre e
_ / &r [75¢(?)]* (@) (2332)
From the definition (2.331), we have
PPy () = Py(—7) = y () (2.333)
hence P2 is equal to the unity operator:
P2=f o P=P (2.334)
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The parity operator is therefore unitary, since its Hermitian adjoint is equal to its inverse:
pt=p-L. (2.335)
Now, since P2 = I, the eigenvalues of P are +1 or —1 with the corresponding eigenstates
Pur() =y (=) = ys @), Py—() = y— (=) = —y—(). (2.336)

The eigenstate | ) is said to be even and | w_) is odd. Therefore, the eigenfunctions of the
parity operator have definite parity: they are either even or odd.

Since | w4 ) and | w_) are joint eigenstates of the same Hermitian operator P but with
different eigenvalues, these eigenstates must be orthogonal:

(wy ly-) = /d3r yi(=ry_(-r) = —/d3r i y-(F) = —(wy | w-); (2.337)

hence (w4 | w_) is zero. The states | y4) and | w_) form a complete set since any function
can be written as v () = w4 (¥) + w—(#), which leads to

1

. . . S IPR .
pi(r) = 3 [w() + w(=F)], w_(F) = 3 [w() — w(=F)]. (2.338)

Since P? = I we have

P — 73 when n %s odd, (2.339)
I when n is even.
Even and odd operators
An operator 4 is said to be even if it obeys the condition
PAP =4 (2.340)
and an operator B is odd if o
PBP = —B. (2.341)

We can easily verify that even operators commute with the parity operator P and that odd
operators anticommute with P:

P — (PAPYP = PAPE=PA, (2.342)

y
BP = —(PBPYP = —PBP = -Ph. (2343)

>

The fact that even operators commute with the parity operator has very useful consequences.
Let us examine the following two important cases depending on whether an even operator has
nondegenerate or degenerate eigenvalues:

e If an even operator is Hermitian and none of its eigenvalues is degenerate, then this oper-
ator has the same eigenvectors as those of the parity operator. And since the eigenvectors
of the parity operator are either even or odd, the eigenvectors of an even, Hermitian, and
nondegenerate operator must also be either even or odd; they are said to have a defi-
nite parity. This property will have useful applications when we solve the Schrodinger
equation for even Hamiltonians.
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e Ifthe even operator has a degenerate spectrum, its eigenvectors do not necessarily have a
definite parity.

What about the parity of the position and momentum operators, R and P? We can easily show
that both of them are odd, since they anticommute with the parity operator:

A
5 A

= —PP; (2.344)

e

— &P, P

=

P

hence

PRPT = R, pppT = _p, (2.345)

since PPT = 1. For instance, to show that R anticommutes with P, we need simply to look at
the following relations:

PRIF) = iP|F) = 7 | 7). (2.346)
RPIF) = R|—F) = —F | —F). (2.347)

If the operators A and B are even and odd, respectively, we can verify that

A AN A AN A A

PAP=4", PB"P = (=1)"B". (2.348)

These relations can be shown as follows:

PA'P = (PAP) (PAP).. (PAP) = 4", (2.349)
PP (PBP) (PBP)--- (PBP) = (=1)"B". (2.350)

2.7 Matrix and Wave Mechanics

In this chapter we have so far worked out the mathematics pertaining to quantum mechanics in
two different representations: discrete basis systems and continuous basis systems. The theory
of quantum mechanics deals in essence with solving the following eigenvalue problem:

Hly)=E|y), (2.351)

where H is the Hamiltonian of the system. This equation is general and does not depend on
any coordinate system or representation. But to solve it, we need to represent it in a given basis
system. The complexity associated with solving this eigenvalue equation will then vary from
one basis to another.

In what follows we are going to examine the representation of this eigenvalue equation in a
discrete basis and then in a continuous basis.

2.7.1 Matrix Mechanics

The representation of quantum mechanics in a discrete basis yields a matrix eigenvalue prob-
lem. That is, the representation of (2.351) in a discrete basis {| ¢,)} yields the following matrix
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eigenvalue equation (see (2.257)):

Hy —E Hip His Hiy
Hy; Hy — E Hys e Hyy
Hs; Hy  Hy3—E - H3n =0. (2.352)
Hy, Hy, Hpys -+ Hyy—E

This is an Nth order equation in £ its solutions yield the energy spectrum of the system: E1,
E», E3, ..., En. Knowing the set of eigenvalues Ey, E>, E3, ..., Ex, we can easily determine
the corresponding set of eigenvectors | ¢1), | ¢2), ..., | o).

The diagonalization of the Hamiltonian matrix (2.352) of a system yields the energy spec-
trum as well as the state vectors of the system. This procedure, which was worked out by
Heisenberg, involves only matrix quantities and matrix eigenvalue equations. This formulation
of quantum mechanics is known as matrix mechanics.

The starting point of Heisenberg, in his attempt to find a theoretical foundation to Bohr’s
ideas, was the atomic transition relation, vy, = (£,, — E,)/ h, which gives the frequencies of
the radiation associated with the electron’s transition from orbit m to orbit n. The frequencies
Vmn can be arranged in a square matrix, where the mn element corresponds to the transition
from the mth to the nth quantum state.

We can also construct matrices for other dynamical quantities related to the transition
m — n. In this way, every physical quantity is represented by a matrix. For instance, we
represent the energy levels by an energy matrix, the position by a position matrix, the momen-
tum by a momentum matrix, the angular momentum by an angular momentum matrix, and so
on. In calculating the various physical magnitudes, one has thus to deal with the algebra of
matrix quantities. So, within the context of matrix mechanics, one deals with noncommuting
quantities, for the product of matrices does not commute. This is an essential feature that dis-
tinguishes matrix mechanics from classical mechanics, where all the quantities commute. Take,
for instance, the position and momentum quantities. While commuting in classical mechanics,
px = xp, they do not commute within the context of matrix mechanics; they are related by
the commutation relation [X, P.] = iA. The same thing applies for the components of an-
gular momentum. We should note that the role played by the commutation relations within
the context of matrix mechanics is similar to the role played by Bohr’s quantization condition
in atomic theory. Heisenberg’s matrix mechanics therefore requires the introduction of some
mathematical machinery—Ilinear vector spaces, Hilbert space, commutator algebra, and matrix
algebra—that is entirely different from the mathematical machinery of classical mechanics.
Here lies the justification for having devoted a somewhat lengthy section, Section 2.5, to study
the matrix representation of quantum mechanics.

2.7.2 Wave Mechanics

Representing the formalism of quantum mechanics in a continuous basis yields an eigenvalue
problem not in the form of a matrix equation, as in Heisenberg’s formulation, but in the form
of a differential equation. The representation of the eigenvalue equation (2.351) in the position
space yields

F1H | y) = EF|y). (2.353)
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As shown in (2.315), the Hamiltonian is given in the position representation by —h2VZ%/(2m)+
V (¥), so we can rewrite (2.353) in a more familiar form:

h2 A .
—%Vzl//(r) + V@A) = Ey (), (2.354)

where (¥ | w) = w(F) is the wave function of the system. This differential equation is known
as the Schrédinger equation (its origin will be discussed in Chapter 3). Its solutions yield
the energy spectrum of the system as well as its wave function. This formulation of quantum
mechanics in the position representation is called wave mechanics.

Unlike Heisenberg, Schodinger took an entirely different starting point in his quest to find
a theoretical justification for Bohr’s ideas. He started from the de Broglie particle—wave hy-
pothesis and extended it to the electrons orbiting around the nucleus. Schrodinger aimed at
finding an equation that describes the motion of the electron within an atom. Here the focus
is on the wave aspect of the electron. We can show, as we did in Chapter 1, that the Bohr
quantization condition, L = n#, is equivalent to the de Broglie relation, A = 2z %/p. To es-
tablish this connection, we need simply to make three assumptions: (a) the wavelength of the
wave associated with the orbiting electron is connected to the electron’s linear momentum p
by 2 = 2z %/ p, (b) the electron’s orbit is circular, and (¢) the circumference of the electron’s
orbit is an integer multiple of the electron’s wavelength, i.e., 2z = nA. This leads at once
to 2rr = n x 2rxh/p) or nhi = rp = L. This means that, for every orbit, there is only one
wavelength (or one wave) associated with the electron while revolving in that orbit. This wave
can be described by means of a wave function. So Bohr’s quantization condition implies, in
essence, a uniqueness of the wave function for each orbit of the electron. In Chapter 3 we will
show how Schrddinger obtained his differential equation (2.354) to describe the motion of an
electron in an atom.

2.8 Concluding Remarks

Historically, the matrix formulation of quantum mechanics was worked out by Heisenberg
shortly before Schrodinger introduced his wave theory. The equivalence between the matrix
and wave formulations was proved a few years later by using the theory of unitary transfor-
mations. Different in form, yet identical in contents, wave mechanics and matrix mechanics
achieve the same goal: finding the energy spectrum and the states of quantum systems.

The matrix formulation has the advantage of greater (formal) generality, yet it suffers from
a number of disadvantages. On the conceptual side, it offers no visual idea about the structure
of the atom; it is less intuitive than wave mechanics. On the technical side, it is difficult to
use in some problems of relative ease such as finding the stationary states of atoms. Matrix
mechanics, however, becomes powerful and practical in solving problems such as the harmonic
oscillator or in treating the formalism of angular momentum.

But most of the efforts of quantum mechanics focus on solving the Schrodinger equation,
not the Heisenberg matrix eigenvalue problem. So in the rest of this text we deal mostly with
wave mechanics. Matrix mechanics is used only in a few problems, such as the harmonic
oscillator, where it is more suitable than Schrodinger’s wave mechanics.

In wave mechanics we need only to specify the potential in which the particle moves; the
Schrodinger equation takes care of the rest. That is, knowing 17(17), we can in principle solve
equation (2.354) to obtain the various energy levels of the particle and their corresponding wave
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functions. The complexity we encounter in solving the differential equation depends entirely on
the form of the potential; the simpler the potential the easier the solution. Exact solutions of the
Schroédinger equation are possible only for a few idealized systems; we deal with such systems
in Chapters 4 and 6. However, exact solutions are generally not possible, for real systems do not
yield themselves to exact solutions. In such cases one has to resort to approximate solutions.
We deal with such approximate treatments in Chapters 9 and 10; Chapter 9 deals with time-
independent potentials and Chapter 10 with time-dependent potentials.

Before embarking on the applications of the Schrédinger equation, we need first to lay down
the theoretical foundations of quantum mechanics. We take up this task in Chapter 3, where
we deal with the postulates of the theory as well as their implications; the postulates are the
bedrock on which the theory is built.

2.9 Solved Problems

Problem 2.1
Consider the states | w) =9i | ¢1) +2 | ¢2) and | y) = —ﬁ | $1) + % | ¢2), where the two
vectors | ¢1) and | ¢o) form a complete and orthonormal basis.

(a) Calculate the operators | y){(y | and | y){w |. Are they equal?

(b) Find the Hermitian conjugates of | w), | x), | w)(x |, and | y){y |.

(c) Calculate Tr(] w){(x |) and Tr(] y){y |). Are they equal?

(d) Calculate | w)(y | and | y){x | and the traces Tr(| y){y |) and Tr(| y){y |). Are they
projection operators?

Solution

(a) The bras corresponding to | y) = 9i | $1)+2 | ¢2) and | x) = —i | ¢1)/v/2+ | $2)/+/2
are given by (y | = —9i{¢1 | +2(¢p2 | and (y |= ﬁ(f/ﬁl | +%(¢>2 |, respectively. Hence we
have

W] = s 0190 +21 6 Gl |+ D
= %(—9 | $1)(p1 | +9i | $1){a | +2i | d2) {1 | +2 | $2) (2 D),
(2.355)
ot = %(—9 | p)(B1 | =20 | $1)(g2 | =9 | $2)ight | 421 d2)(d2 ). (2.356)

As expected, | w)(y | and | y)(w | are not equal; they would be equal only if the states | )
and | y) were proportional and the proportionality constant real.

(b) To find the Hermitian conjugates of | w), | x), | w){x |, and | y){w |, we need simply
to replace the factors with their respective complex conjugates, the bras with kets, and the kets
with bras:

Lot = 1==9ig 142021, 10T =(x 1= % Gl ] +iga D, (2.357)
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Gz b =l w1 = %(—9 L)1 | =20 [ 1) 2 |

=9 | )1 | +2 | d2)(2 D), (2.358)
QoD =lwixl = %(—9 | 1)1 | 49 | d1) (b |

+2i | g2 (1 | +2 | ) (2 ])- (2.359)

(c) Using the property Tr(4B) = Tr(BA) and since (¢; | ¢1) = (¢ | ¢2) = 1 and
(@11 $2) = (@2 | ¢1) = 0, we obtain

Tr(y)(x ) = Tex 1l w) = (x| w)

- (%(@ | +%(¢2 |) 1 | d1)+2| ) = —%, (2.360)
Tr(| xXw ) = Te(w | x) =(yw | x)

= (9l | 422 ) (—% 1) + % | ¢2>) _ —%

= T vy D) 2.361)

The traces Tr(| w){y |) and Tr(] x){w |) are equal only because the scalar product of | ) and
| x) is a real number. Were this product a complex number, the traces would be different; in
fact, they would be the complex conjugate of one another.

(d) The expressions | w){w | and | y){y | are

lyXw | = ild1)+2]¢2) (=91 | +2(¢h2 ])
= 81| 1)(d1 | +18i | ¢1) {2 | —18i | ¢2) (1 | +4 | h2) (2 |,

(2.362)
00D = 5 A0 =i 1#ids |+ 1 )i 1+ 1 )i D
= =i 1giiga |+ 142 D). (2.363)

In deriving (2.363) we have used the fact that the basis is complete, | ¢1)(¢1 | + | P2) {2 | = 1.
The traces Tr(| w){y |) and Tr(] y){ |) can then be calculated immediately:

Tr(ly)w ) = (v lyw)=(9%(dr | +2(d2 ) 90 | 1) +2 | ¢2)) =85, (2.364)
1
T ) D = =501 Hea D (=i [ di)+142)) =1. (2.365)

So | y) is normalized but | ) is not. Since | y) is normalized, we can easily ascertain that

| x){x | is a projection operator, because it is Hermitian, (| y){y |)J[ =| x){x |, and equal to
its own square:

A0 D=0 0 =W la) T 1=l (2.366)

As for | w)(w |, although it is Hermitian, it cannot be a projection operator since | ) is not
normalized. That is, | y)(w | is not equal to its own square:

Ay)w D2 =1y Ly =Gy L) L y)y =85 y)iy . (2.367)
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Problem 2.2

(a) Find a complete and orthonormal basis for a space of the trigonometric functions of the
form w (0) = qu\;o a, cos(nb).

(b) Ilustrate the results derived in (a) for the case N = 5; find the basis vectors.

Solution
(a) Since cos(nf) = % (e’”e + e_”’e), we can write quvzo ay cos(nf) as

1 & . . 1| & 4 0 4 N .
- Zan (e’"e + e_’”e) = - |:Z ane"? + Z a_ne"’g:| = Z C,e"?, (2.368)
2 n=0 2 n=0 n=—N n=—N

where C, = a,/2 forn > 0, C, = a_,/2 forn < 0, and Cyp = ap. Since any trigonometric
function of the form w(x) = Z;]z\;o a, cos(nf) can be expressed in terms of the functions
¢ (0) = €0 /27, we can try to take the set ¢, (0) as a basis. As this set is complete, let us
see if it is orthonormal. The various functions ¢, (f) are indeed orthonormal, since their scalar
products are given by

T 1 /4 .
(b | ) = /_ G (O)pn(0)d0 = - / =m0 4o = §,.. (2.369)

-7

In deriving this result, we have considered two cases: n = m and n # m. First, the case n = m
is obvious, since (¢, | ¢,) = % ffﬂ d6 = 1. On the other hand, when n # m we have

b | ) = 1 T im0 gy _ 1 eftn—mz _ j—i(n—m)z 21- sin((n — m)x) o
S PO 2 i(n—m)  2itn—m)
(2.370)

since sin((n — m)x) = 0. So the functions ¢, () = €"? /v/2x form a complete and orthonor-
mal basis. From (2.368) we see that the basis has 2N 4 1 functions ¢, (¢); hence the dimension
of this space of functions is equal to 2N + 1.

(b) In the case where N = 5, the dimension of the space is equal to 11, for the basis
has 11 vectors: ¢_s5(0) = e/ 2m, p_4(0) = e 40/ 2x, ..., po(®) = 1/ 2, ...,
$a(0) = %0/ 2m, ¢5(0) = & )V 2m.

Problem 2.3

(a) Show that the sum of two projection operators cannot be a projection operator unless
their product is zero.

(b) Show that the product of two projection operators cannot be a projection operator unless
they commute.

Solution
Recall that an operator P is a projection operator if it satisfies pt=p and P2 P.
(a) If two operators A and B are pI‘OJeCtIOI’l operators and if AB = B A, we want to show

that (A4 + B)Jr = A+ B and that (4 + B)2 A+ B. First, the hermiticity is easy to ascertain
since 4 and B are both Hermitian: (4 + B)Jr = A + B. Let us now look at the square of
(A + B) since A = A and B? = B, we can write

(A+BP =4 + B2+ (AB+BA) = A+ B+ (AB + BA). (2.371)



136 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

Clearly, only when the product of A and B is zero will their sum be a projection operator.
(b) At issue here is to show that if two operators A and B are projection operators and if
they commute, [A B] = 0, their product is a pl"O_]CCthIl operator. That is, we need to show that

(4 B)Jf = AB and (AB)2 AB. Again, since A and B are Hermitian and since they commute,
we see that (AB)Jf = BA = AB. As for the square of AB, we have

(AB) = (AB)(AB) = A(BAYB = A(AB)B = A°B% = 4B, (2.372)
hence the product ABisa projection operator.

Problem 2.4
Consider a state | /) f |p1)+—= f |p2)+——= J_ |¢3) which is given in terms of three orthonormal

eigenstates |¢1), |¢2) and |¢3) of an operator B such that B |pn) = n%|n). Find the expectation
value of B for the state |y/).

Solution . . .
Using Eq (2.58), we can write the expectation value of B for the state |y) as (B) = (w | B |
w)/{w | y) where

1 1 1
(wly) = (f ¢1|+f ¢2|+J_ ¢3|)(E|¢1>+ﬁ|¢2>+ﬁ|¢3>)
8

= = (2373)
and
wlBly) = ( B1 ] +—mldn |+ ¢>|) (i|¢>>+i|¢>+L|¢>)
"4 "4 == f 1 «/_ 2 \/— 3 \/E 1 ﬁ 2 m 3
1 223
=275 0
= 22 2.374
- = (2.374)

Hence, the expectation value of Bis given by

By = 18lv) 221011 (2.375)
(v | w) 8/10 4

Problem 2.5

(a) Study the hermiticity of these operators: X, d /dx, and id /dx. What about the complex
conjugate of these operators? Are the Hermitian conjugates of the position and momentum
operators equal to their complex conjugates?

(b) Use the results of (a) to discuss the hermiticity of the operators eX d/dx and eld/dx
(¢) Find the Hermitian conjugate of the operator Xd /dx.

(d) Use the results of (a) to discuss the hermiticity of the components of the angular mo-
mentum operator (Chapter 5): L, =—ih (Ya/az — Za/ay) y = —ih (Za/ax - Xa/az)

i, =—in (Xa/ay — Ya/ax).
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Solution ) )
(a) Using (2.69) and (2.70), and using the fact that the eigenvalues of X are real (i.e., X* =

Xorx* = x), we can verify that X is Hermitian (ie., Xt = )A() since

w1 Xv) =/ w*(x)(xw(x))dxz/ (0 (0)*) (@) dx

- -
_ /_ ey () w () dx = (Ky | ). (2.376)

Now, since y (x) vanishes as x — £00, an integration by parts leads to

d +00 d x=+00 100/ dy*
Wiz = [ vw (B2 ar= wewo| 7 - [ () vwas

—o0 dx =—00 —c0 dx

too g * d
_ —/ ( ‘Z(x)) @) dx =~y L), (2.377)
— x dx

So, d/dx is anti-Hermitian: (a’/abc)]L = —d/dx. Since d/dx is anti-Hermitian, id /dx must be
Hermitian, since (id /abc)Jf = —i(—d/dx) = id/dx. The results derived above are

T T
v % 4y __4 -i) 4
X'=X, (dx) =— (ldx _ldx’ (2.378)

From this relation we see that the momentum operator P =—ihd /dx is Hermitian: pt = p.
We can also infer that, although the momentum operator is Hermitian, its complex conjugate is
not equal to P, since P* = (—ihd/dx)* = ihd/dx = —P. We may group these results into
the following relation:

M=% x=x  pPt=p, P*=_bp (2.379)

(b) Using the relations (e4)T = oA and (@4 = =41 derived in (2.113), we infer

(e}Y)T _ ef(’ (ed/dx)T — o4z (eid/dx)T — pid/dx (2.380)

(c) Since X is Hermitian and d /dx is anti-Hermitian, we have

~d f d LA t d -
where d X /dx is given by
d (- d
- (Xz//(x)) - (1 +x5) v (x): (2.382)

hence

T
(X—) - X1 (2.383)
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(d) From the results derived in (a), we infer that the operators Y, Z,i0 /0x, and i0/0y are
Hermitian. We can verify that L, is also Hermitian:

A 0o 0 4 A 0 A 0 A
LI:—ih —Y—-—Z)=—ih\Y——Z— ) =Ly; (2.384)
oz oy oz oy

in deriving this relation, we used the fact that the y and z degrees of freedom commute (i.e.,
0Y/0z =Y0o/0z and 0Z /0y = Z/0dy), for they are independent. Similarly, the hermiticity of

iy = —ih (26/8x — f(a/az) and L. = —ih (f(a/ay - ?8/6}6) is obvious.

Problem 2.6

(a) Show that the operator A=i(X*+ )d/dx +1i X is Hermitian.

(b) Find the state  (x) for which A w(x) = 0 and normalize it.

(c) Calculate the probability of finding the particle (represented by  (x)) in the region:
-1 <x <1

Solution
(a) From the previous problem we know that Xt = Xand d/ a’x)Jr = —d/dx. We can thus
infer the Hermitian conjugate of A4:

T f
/IT = —i(d(i) (XZ)T—I(;;) —zXTzz(Cid)(Xz)—i— (%)—Z)A(

d d d .
i)(2a +i [d—x, X2] i —ik. (2.385)

Using the relation [E, 6’2] = CA‘[Z?, é] + [Z§, é]é‘ along with [d/dx, )A(] = 1, we can easily
evaluate the commutator [d/dx, X?]:

d ~[d . d 7« .
— Xl=X|= X —. X|X=2X. 2.386
|:dx i| |:dx’ ]+|:dx’ ] ( )

A combination of (2.385) and (2.386) shows that A is Hermitian:
At PEY d &
A =i(X*+ 1)_d +iX =A. (2.387)
X

(b) The state y (x) for which Ay (x) = 0, i.e.,

(X2 +1) "’( )+1Xt//(x) —0, (2.388)
corresponds to
dy(x) X
=— ) 2.
WL 40) (2.389)

The solution to this equation is given by

(2.390)
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Since fjozo dx/(x* + 1) = & we have

+00 +00 dx
1 =/ ly () dx = B2/ —— = B’r, (2.391)
—oo —oo X741
hich 1 B=1 h ==L
which leads to /+/7 and hence y (x) Neremy
(c) Using the integral fjll dx/(x? 4+ 1) = 7 /2, we can obtain the probability immediately:
+1 ) 1 +1 dx 1
P = dx = — - = . 2.392
[k =~ [ o= (2392)

Problem 2.7 A
Discuss the conditions for these operators to be unitary: (a) (1 +i4)/(1 —i A),

by (A+iB)yNA + B2

Solution
An operator U is unitary if 0ot =0t =17 (see (2.122)).
(a) Since
(1 Jrz'/I)T 1—idl
=] = , (2.393)
I—id 14idl

we see that if 4 is Hermitian, the expression (1 + i /i) /(1 —i /i) is unitary:

N .
t4id\ 1+id 1—id14+id
( aal ) RLEC el e L (2.394)

1—id) 1—id 1+idl1—id

(b) Similarly, if A and B are Hermitian and commute, the expression (A+i é) / 132 + B2
is unitary:

N S S e s 2 AU
A+iB \ A+iB A-iB A+iB A +B+i(AB- B
- - +i4
Jivp) Ji+p JE+ i+ B A+ B
2
A+ B> .
= %:1. (2.395)
A"+ B?

Problem 2.8

(a) Using the commutator [)A(, pl = ih, show that [)A(m, 13] = imhi’m‘l, withm > 1. Can
you think of a direct way to get to the same result?

(b) Use the result of (a) to show the general relation [F ()AO, P] = ihdF ()AO /d)A( , where
F ()A() is a differentiable operator function of X.
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Solution A A A
(a) Let us attempt a proof by induction. Assuming that [X"™, P] =1 mh X"~ is valid for
m = k (note that it holds forn = 1; i.e., [X, P] =ih),

[X*, Pl =ikhX*!, (2.396)
let us show that it holds form =k + 1:
[XFH1) Pl =[X*X, P]=X'[X, P+ [XF, P)X, (2.397)

A

where we have used the relation [/ié, é] = fi[é, C‘] + [/f, é]é. Now, since [)A(, Pl=in
and [X*, P] = ikh X*~!, we rewrite (2.397) as

(X, Pl =ihX* + (ikh XX = in(k + 1) X*. (2.398)

So this relation is valid for any value of &, notably for k =m — 1:

[X™, Pl =imhX" "\ (2.399)

In fact, it is easy to arrive at this result directly through brute force as follows. Using the relation
A A =1 A A =1 A A . ~ A .
[A",B]= A" [A, Bl +[A" ", B]4 along with [X, P,] = ih, we can obtain

(X2, P\ = X[X, P.]+[X, P]X = 2ihX, (2.400)
which leads to
[X3, Pl = X2[X, P+ [X2, POX =3i XPh; (2.401)
this in turn leads to
(X% Pl = XX, P+ [X3, PolX = 4i . (2.402)

Continuing in this way, we can get to any power of X: [)A( ", 13] =i mhA)A( m_lA.
A more direct and simpler method is to apply the commutator [X™, P] on some wave
function y (x):

L Pwe) = (X7P = PR") yio)
d d
= x" (—ih IZ’)(CX)) +ih£ (xmt//(x))
= x" (—ide(x)) + imhx™ "y (x) — x™ (—ihdl//(x))
dx dx
= imhx" "y (x). (2.403)

Since [X™, Pl (x) = imhx™ =y (x) we see that [X", P]=imhX"~".
(b) Let us Taylor expand F(X) in powers of X, F(X) = >, ax X k and insert this expres-
sion into [F()b, 13]:

[F(fo, ﬁ] - |:Zakf(k, ﬁ] = > alkt, P, (2.404)
k k



2.9. SOLVED PROBLEMS 141

where the commutator [)A( k. 13] is given by (2.396). Thus, we have

i ;
L ) _ g dFE

[F(f(), ﬁ] —in> ka X =i (2.405)
k

A much simpler method again consists in applying the commutator [F (/{ﬁ, f’] on some

wave function y (x). Since F(X’) w(x) = F(x)w(x), we have

PSR an d
[FD. Ply) = FOPy@) +int- (Fop )

= F)Py()— (—ihdz(x)) F(x) +ih d';(x) v (x)
o o dF
= FWPy @~ F Py +inT 0y
- ihdF)(Cx)t//(x). (2.406)

Since [F()AQ, 13] w(x) = ih%w(x) we see that [F()AO, 13] = ih%.

Problem 2.9
7 0 0 1 0 3
Consider the matrices 4 = 0 1 —i and B = 0 2 0
0 i -1 i 0 =5

(a) Are 4 and B Hermitian? Calculate A B and B A4 and verify that Tr(4B) = Tr(B A); then
calculate [4, B]and verify that Tr([4, B]) = 0.

(b) Find the eigenvalues and the normalized eigenvectors of A. Verify that the sum of the
eigenvalues of 4 is equal to the value of Tr(4) calculated in (a) and that the three eigenvectors
form a basis.

(c) Verify that U T AU is diagonal and that U~! = U T, where U is the matrix formed by the
normalized eigenvectors of A4.

(d) Calculate the inverse of 4’ = U t AU and verify that 4’ “lisa diagonal matrix whose
eigenvalues are the inverse of those of 4.

Solution
(a) Taking the Hermitian adjoints of the matrices 4 and B (see (2.188))

70 0 10 —i
al={o1 =), Bi={0 -2 0o}, (2.407)
0 i -1 30 5

we see that 4 is Hermitian and B is not. Using the products

7 0 21 7 3 -3
AB=| 1 2i =5, BA=| o0 2i 2 |, (2.408)
—i =2 5i 705 50
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we can obtain the commutator

0 —-3i 24
[4,B] = 1 0o -7 1. (2.409)
-8 =7 0
From (2.408) we see that
Tr(AB) =742+ 5i =7+ 7i = Tr(BA). (2.410)

That is, the cyclic permutation of matrices leaves the trace unchanged; see (2.206). On the other
hand, (2.409) shows that the trace of the commutator [4, B]is zero: Tr([4, B]) =0+0+0 =
0.

(b) The eigenvalues and eigenvectors of 4 were calculated in Example 2.19 (see (2.266),
(2.268), (2.272), (2.274)). We have a; = 7, a» = +/2, and a3 = —/2:

| 0 0
1 N S
lany =1 0 |, la)=]| Vee=v2) |, la3)= 202++v2) . (2.411)
0 i(v2-1) __i(14+V2)
22—2) 2(24++/2)

One can easily verify that the eigenvectors | a1), | a2), and | a3) are mutually orthogonal:
(a; | a;) = d;; where i, j = 1,2,3. Since the set of | a1), | a2), and | a3) satisfy the
completeness condition

3 1 0 0
DllajMajl=( 0 1 0], (2.412)
0 0 1

and since they are orthonormal, they form a complete and orthonormal basis.
(c) The columns of the matrix U are given by the eigenvectors (2.411):

1 0 0
0 1 1
U= V20-v2) A 20+V2) ) (2.413)
i2-1)  __i(1+V/2)

V20-v2) V2042

We can show that the product U TAU is diagonal where the diagonal elements are the eigenval-
ues of the matrix 4; U TAU is given by

1 0 0 1 0 0
1 (/2= 7.0 0 0 1 1
V20-v2) V202 0 1 —i V20-V2)  N20+V2)
1 i(1+v2) 0 i -1 0 —62-h  __i(+V2)
V202 V2012 V20V V2242
7 0 0
= V20 . (2.414)

0
0 0 —2
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We can also show that U JrU =1:

1 0 0 1 0 0
1 _ i(ﬁ—l) 0 1 1 1 0 O
20—v2) 202 V202 N2+ |=( 0 1 0
1 i(1+v2) 0 —62-h  __i(+v2) 0 0 1
V20+V2)  N20+V2) A202-v2) V202+2)

(2.415)
This implies that the matrix U is unitary: U T = U~1. Note that, from (2.413), we have
| det(U) |=| —i | = 1.
(d) Using (2.414) we can verify that the inverse of A’ = U TaU isa diagonal matrix whose
elements are given by the inverse of the diagonal elements of A”:

7 0 0 : 0 0
A=[0 V2 0 — 47'=[0 5 0 | (2.416)
_ _1
0 0 -2 0 0 -
Problem 2.10
2 i 0
Consider a particle whose Hamiltonian matrix is H = | —i 1
0 0
i
(@)Is| i) = 7i an eigenstate of H? Is H Hermitian?

-2
(b) Find the energy eigenvalues, aj, a2, and a3, and the normalized energy eigenvectors,
| a1), | a2), and | a3), of H.
(¢) Find the matrix corresponding to the operator obtained from the ket-bra product of the
first eigenvector P =| aj){(a; |. Is P a projection operator? Calculate the commutator [P, H]
firstly by using commutator algebra and then by using matrix products.

Solution
(a) The ket | 1) is an eigenstate of H only if the action of the Hamiltonian on | 4) is of the
form H | A) = b | 1), where b is constant. This is not the case here:

2 0 0 i —7+2i
Hiy= - 11 7 = -1+7 |. (2.417)
0 1 0 -2 7i

Using the definition of the Hermitian adjoint of matrices (2.188), it is easy to ascertain that H
is Hermitian:
2 i 0
= - 1 1 |=H (2.418)
0 1 0

(b) The energy eigenvalues can be obtained by solving the secular equation

2—a i 0
0 = | = 1-a 1 |[=C-a)[l-a)(-a)—1]—i(=i)(~a)
0 1 —a

= —(@—Da-1-v3)a—-1++3), (2.419)
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which leads to
a=1, aa=1=+3, a3=1+3. (2.420)

To find the eigenvector corresponding to the first eigenvalue, a; = 1, we need to solve the
matrix equation

2 i 0 X x x+iy = 0
—i 1 1 y]l=ly |= —-ix+z = 0 (2.421)
0 1 0 z z y—z =0
which yields x = 1, y = z = i. So the eigenvector corresponding to a; = 1 is
1
lay=1| i |. (2.422)

i
This eigenvector is not normalized since (a; | a1) = 1+ (i*)(#) 4+ (i*)(Z) = 3. The normalized
| a1) is therefore
1 1
lay=—4=1 i |]. 2.423
g (2.423)
Solving (2.421) for the other two energy eigenvalues, ao = 1 — /3, a3 = 1 4+ /3, and
normalizing, we end up with

. i2-+3) : i2+3)
| a2) = ——=—= 1-v3 |, | a3) = ——=—= 1+4/3
V62 =+/3) 1 V62 ++/3) 1
(2.424)
(c) The operator P is given by
1 1 | 1 —i —i
P =|a){a; |:§ i) (1 i i ):3 i1 1 ). (2.425)
i i
Since this matrix is Hermitian and since the square of P is equal to P,
1 1 =i —i 1 =i —i 1 1 =i —i
PP=—|i 1 1 i1 1 |= i 1 1 |=pr, (2.426)

o\ 11 P11 3\
so P is a projection operator. Using the relations H | a1) =| a1) and (a; | H = (a; | (because

H is Hermitian), and since P =| a1){(a; |, we can evaluate algebraically the commutator
[P, H] as follows:

[P, Hl=PH — HP =|ai){a1 | H—H | ai){a1 |=|ai){ar | — | ar){ar |=0. (2.427)
We can reach the same result by using the matrices of A and P:
1 —i —i 2 i 0 2 i

[P, H] i

Il
W | —
S O O - ~
—_
ol
—_—
O -
I
|
ol
S = O
—_—

S OO

0
0. (2.428)
0
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Problem 2.11

0 0 i 2 i 0
Consider the matrices 4 = 0 1 0 JandB=| 3 1 5
—i 0 0 0 —i =2

(a) Check if 4 and B are Hermitian and find the eigenvalues and eigenvectors of 4. Any
degeneracies?

(b) Verify that Tr(4B) = Tr(B A), det(4B) = det(4)det(B), and det(BT) = (det(B))*.

(c) Calculate the commutator [ 4, B] and the anticommutator {4, B}.

(d) Calculate the inverses 4~!, B! and (4B)~!. Verify that (4B)~! = B~14~!.

(e) Calculate 42 and infer the expressions of 42" and A2*+1. Use these results to calculate
the matrix of ¢4,

Solution
(a) The matrix A4 is Hermitian but B is not. The eigenvalues of 4 are a; = —1 and ap =
a3 = 1 and its normalized eigenvectors are

| 1 1 1 0
ay=——=1{ 0 |, a)) = — 0 , az) = 1 ]. 2.429
| ar) Al | a2) Al L | a3) : ( )

Note that the eigenvalue 1 is doubly degenerate, since the two eigenvectors | ay) and | a3)
correspond to the same eigenvalue ap = a3 = 1.

(b) A calculation of the products (4 B) and (B A) reveals that the traces Tr(4 B) and Tr(B 4)
are equal:

0 1 -2i
Tr(4B) = Tr| 3 1 5 |=1,
-2 1 0
0 i 2
Te(BA) = Tr| —5i 1 3i | =1=Tr(4B). (2.430)
2% —i 0

From the matrices 4 and B, we have det(4) = i(i) = —1, det(B) = —4 + 16i. We can thus
write

0 1 -2
det(AB) =det| 3 1 5 | =4-16i = (—1)(—4+ 16i) = det(4)det(B). (2.431)
-2 1 0

On the other hand, since det(B) = —4 + 16/ and det(BT) = —4 — 16i, we see that det(BT) =
—4 — 16i = (—4 + 16i)* = (det(B))"*.
(c) The commutator [4, B]is given by

0 1 =2 0 i 2 0 1—i -4
AB — B4 = 31 5 - -5 1 3i |=| 345 0 5—3i
-2i 1 0 2i -1 0 —4i 1+ 0

(2.432)
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and the anticommutator {4, B} by

0 1 -2 0 i 2i 0 14+i 0
AB+BA=| 3 1 5 |+| =si 1 3 |=(3-5 2 5+3i
—2i 1 0 2% —i 0 0 1—i 0

(2.433)

(d) A calculation similar to (2.200) leads to the inverses of 4, B, and A B:

0 0 i ] 2243 8—2 20-—5i
A= 0 1 0}, B_1=§ —6—24i 4+16i 104+40i |, (2.434)
—i 0 0 —1243i 8—2 —14-5i

|/ 5200 8-2i —3422i
T = — — 10i + 16§ — 61 . .
(4B)~! 40—10i 4+16i 24—6i (2.435)
8\ _54+14i 8—2i —3—12

From (2.434) it is now easy to verify that the product B~' 4~ ! is equal to (4B)~!:
1 —5—-20i 8-—-2i 3422

Bla7'=— | 40-10i 4+16i 24—6i |=(4B)"". (2.436)
8\ _sy14i 8—20 -3-12i
(e) Since
0 0 i 0 0 i 1 00
A= 0 1 0 0 1 0 |= 1 0 |=1, (2.437)
—i 0 0 —i 0 0 0 0 1

we can write 43 = 4, A* = I, A5 = A, and so on. We can generalize these relations to any
value of n: A%" = [ and 42" = 4:

1 0 0 0 0 i
A= 01 0 |=1, A2+l
00 1 —i 0 0

S
—
S
Il

ANy

(2.438)

Since 4" = I and 4?"t! = A4, we can write

00 X A" 00 xZnAZn 00 x2n+1A2n+l 00 x2n 00 x2n+1
eXA = _— + = I + A P .
r; n! r;) 2n)! r; @2n+1)! nzo(bz)! ;(271-1-1)!
(2.439)
The relations
i x2n N i x2n+l N (
= coshx, ———— =ginhx, 2.440)
= 2n)! o Q2n + 1)!
lead to
1 0 0 0 0 i
&1 = JTcoshx+ Asinhx=[ 0 1 0 |coshx+ 0 1 O |sinhx
0 0 1 - 0 0
cosh x 0 i sinhx
= 0 coshx + sinhx 0 . (2.441)

—i sinhx 0 cosh x
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Problem 2.12

0 i 2 2 i 0
Consider two matrices: 4 = 0 1 0 JandB={[ 3 1 5 . Calculate 4~' B
—i 0 0 0 —i =2
and B A~!. Are they equal?
Solution
As mentioned above, a calculation similar to (2.200) leads to the inverse of A4:
0 0 i
A" =1{ o0 1 0 ). (2.442)
1/2 —i/2 0
The products 4~! B and B A~! are given by
0 0 i 2 i 0 0 1 =2
A7'B = 0 1 0 31 5 = 3 1 5 , (2.443)
/2 —-i/2 0 0 —i =2 1-3i/2 0 -=5i/2
2 i 0 0 0 i 0 i 2i
BA' = 3 1 5 0 1 0 )= 5/2 1-5i/2 3i |. (2444
0 —i =2 /2 —-i/2 0 —1 0 0

We see that 4~! B and B A~! are not equal.

Remark

We should note that the quotient B/ A of two matrices 4 and B is equal to the product BA~!
and not 4~! B; that is:

2 i 0
31 5 , ,
B . 0 —i -2 0 i
A : = 52 1-5i2 3 |. (2.445)
A 0o i 2
-1 0 0
0 1 0
—i 0 0

Problem 2.13
0

010 1 0
Consider the matrices 4 =| 1 0 1 JandB=| 0 0 O
010 0 0 -1
(a) Find the eigenvalues and normalized eigenvectors of 4 and B. Denote the eigenvectors
of Aby | ai), | az), | az) and those of B by | b1), | b2), | b3). Are there any degenerate

eigenvalues?
(b) Show that each of the sets | ai), | a2), | a3) and | b1), | b2), | b3) forms an orthonormal
and complete basis, i.e., show that (a; | ax) = J;; and Z‘j':l | a;){a; |= I, where I is the

3 x 3 unit matrix; then show that the same holds for | b1), | b2), | b3).
(c) Find the matrix U of the transformation from the basis {| @)} to {| b)}. Show that

Ul = U T. Verify that U TU = J. Calculate how the matrix A transforms under U, i.e.,
calculate 4’ = UAUT,
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Solution
(a) It is easy to verify that the eigenvalues of 4 are a; = 0, ay = +/2, a3 = —+/2 and their
corresponding normalized eigenvectors are

—1 1 1

1 1 1
=—1 0 |, == 2], == —v2 |. 2.446
= — 1 |a2) = 3 { |a3) = 5 If (2.446)
The eigenvalues of B are by = 1, b, = 0, b3 = —1 and their corresponding normalized
eigenvectors are
1 0 0
[b1)=1{( 0 |, by =11}, | b3y =1 0 |. (2.447)
0 0 1

None of the eigenvalues of 4 and B are degenerate.
(b) The set | ay), | az), | a3) is indeed complete because the sum of | a;){a; |, | a2){a2 |,
and | az)({a3 | as given by

s /10 =1
laja | = S| 0 (-1 0 I)ZE 0 0 0 |, (2.448)
1 -1 0 1
{ 1 { 1 V2 1
la)a | = 5 V2 (1 V2 1)22 V22 V2], (2449
1 1 V2 1
1 : 1 =2 1
|as)as |= 5 V2 | (1 =2 1)22 V2 2 =2 |, (2450
1 1 =2 1
is equal to unity:
3 L[ 10 -1 e V2 o1
Z|a,><a,| = S| 0 0 0 )+g V22 2
= -1 0 1 1 V2 1
1 V2 1
+- V2 2 V2
1 —=V2 1
1 00
— 1 0 (2.451)
0 0 1

The states | ay), | a2), | a3) are orthonormal, since (aj | a2) = (a1 | a3) = (a3 | a2) = 0 and
(a1 | a1) = (a2 | @) = (a3 | a3) = 1. Following the same procedure, we can ascertain that

(2.452)

—_ o O

1 0
[ b1) by | 4+ | ba)(ba | + | b3)b3 = O 1
0 0
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We can verify that the states | b1), | b2), | b3) are orthonormal, since (b; | by) = (b1 | b3) =
(b3 | by) = 0and (by | b1) = (b2 | b2) = (b3 | b3) = 1.

(¢) The elements of the matrix U, corresponding to the transformation from the basis {| a)}
to {| b)}, are given by U;; = (b, | ar) where j, k=1,2,3:

(br lar) (b1 |az) (b1]|as3)
U=\ (bala) (balay) (ba]a3z) |, (2.453)
(b3 la1) (b3 |az) (b3]az)

where the elements (b; | ax) can be calculated from (2.446) and (2.447):

—1

Un :(b1|al>=%(1 0 0)( 0 ) =—g, (2.454)
1
! 1

Un =(bila)=5(1 0 0)[ 2 =3 (2.455)
1
! 1

Uz =(ila)=5(1 0 0)| —v2 =3 (2.456)
1
—1

U =(bala)=—7(0 1 0)f 0 =0, (2.457)
1
1 V2

Un =(la)=5(0 1 0)[ 2 == (2.458)
1

| 1 %!

Uy =(balay=5(0 1 0)| =2 === (2.459)

1
1 FARRE

Usi =(b3|al>=7§(0 0 1) (1) =5 (2.460)
1 1

Up =(la)=3(0 0 1) V2 =3 (2.461)
1
! 1

Us =(bslas)=3(0 0 1)| —v2 | =5 (2.462)
1

i -2 1 1
U=- ( 0 V2 =2 ) . (2.463)
1 1
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Calculating the inverse of U as we did in (2.200), we see that it is equal to its Hermitian adjoint:

-2 0 V2
-1 1 '|-
U =3 1 V21 =Ul. (2.464)
1 =v2 1
This implies that the matrix U is unitary. The matrix 4 transforms as follows:
L[ V2L 010 -2 0 V2
4 = vavt=2 o V2 V2 |[1 01 IV I
V2.1 010 1 V2 1
AR 7
= 3 -1 -2 1 . (2.465)
1 1 1+42

Problem 2.14
Calculate the following expressions involving Dirac’s delta function:

(a) [°5cos(3x)d(x — 7 /3) dx

®) 3 [T + 4] 6(x + 3) dx
(c) [2 cos?(3x) — sin(x/2)] 5(x + )
(d) [i7 cos(30)5" (0 — = /2) db
(@) f5 (x = 5x +2) o[2(x — 4)]dx.

Solution
(a) Since x = 7 /3 lies within the interval (-5, 5), equation (2.281) yields

5
/ cos(3x)3(x — 7/3) dx = cos (35) - 1. (2.466)
s 3

(b) Since x = —3 lies outside the interval (0, 10), Eq (2.281) yields at once

10
T4 4|0(x +3)dx =0. (2.467)
/0 [2 7 ]

(c) Using the relation f(x)d(x —a) = f(a)d(x — a) which is listed in Appendix A, we
have

[2 cos?(3x) — sin(x/2)] S(x+m) = [2 cos?(3(=1)) — sin((=1) /2)] S(x + 1)
— 36(x + 7). (2.468)

(d) Inserting n = 3 into Eq (2.282) and since cos”’ (30) = 27 sin(36), we obtain

/ i c0s(30)5" (0 —7/2)d0 = (=1)}cos” (37 /2) = (—1)327sin(37/2)
0
= 27. (2.469)
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(e) Since J[2(x —4)] = (1/2)0(x — 4), we have

’ x2—=5x +2)02(x —4)],dx = ’ x2 —5x +2)6(x —4)dx
2 2

N = N =

(42—5x4+2)=—1. (2.470)

Problem 2.15
Consider a system whose Hamiltonian is given by H=a (| d1){d2 | + | P2) {1 |), where a is
a real number having the dimensions of energy and | ¢1), | ¢2) are normalized eigenstates of a
Hermitian operator A that has no degenerate eigenvalues.

(@Is Ha projection operator? What about a"2A%

(b) Show that | ¢1) and | ¢») are not eigenstates of A.

(c) Calculate the commutators [I:I , | é1){(¢1 |] and []:I , | @2)(¢2 |] then find the relation
that may exist between them.

(d) Find the normalized eigenstates of H and their corresponding energy eigenvalues.

(e) Assuming that | ¢1) and | ¢;) form a complete and orthonormal basis, find the matrix
representing H in the basis. Find the eigenvalues and eigenvectors of the matrix and compare
the results with those derived in (d).

Solution

(a) Since | ¢1) and | ¢») are eigenstates of A and since A is Hermitian, they must be
orthogonal, (¢ | ¢2) = 0 (instance of Theorem 2;1)' Now, since | ¢1) and | ¢») are both
normalized and since (¢ | ¢») = 0, we can reduce H> to

A

B = (102 [ +1 (b1 D) d1)ig |+ d2) (2 )
= o) |+ 12 D), (2.471)
which is different from H; hence H is not a projection operator. The operator a2l is a

projection operator since it is both Hermitian and equal to its own square. Using (2.471) we
can write

@Z2HD = (Ig)iga |+ 1201 ) )2 | + | 2)igi ])
= g1 |+ ¢2)(ga |= a2 H. (2472)
(b) Since | ¢1) and | ¢) are both normalized, and since (¢ | ¢2) = 0, we have
H¢gr)=ald)d2| 1) +ala)igi | d1)=al| b, (2.473)
H | ¢y) =a | $1); (2.474)

hence | ¢1) and | ¢,) are not eigenstates of H. In addition, we have

(11 H | 1) = (g | H| ) =0. (2.475)

(c) Using the relations derived above, H | ¢1) = a | ¢o) and H | $2) = a | ¢1), we can
write

(A, | o)1 I=a(¢2)id1 | = | p1) (g 1), (2.476)
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[, $2) i D= (1 1) | = | $2) (b1 D) (2.477)

hence

[, 1) (1 1= —[H,] $2) (¢ II. (2.478)
(d) Consider a general state | ) = 11 | ¢1) + 42 | ¢2). Applying H to this state, we get

Hly) = a(¢i){gn|+1d20{b1 ) (A1 ] d1)+ 12| ¢2))
= a(la| o) +4i11¢2). (2.479)

Now, since | ) is normalized, we have
wly)=l PP+ P=1 (2.480)

The previous two equations show that | 41 |=| 4> | = 1/+/2 and that A; = %1,. Hence the
eigenstates of the system are:

| ys) = J% (I d1)E | b)) (2.481)

The corresponding eigenvalues are +a:
H|ys)=a | y). (2.482)

(e) Since (¢1 | ¢2) = (2 | ¢1) = O and ($1 | 1) = (¢2 | ¢2) = 1, we can verify
that Hy1 = (¢1 | 1) =0,Hn = (| H|¢)=0 Ho= (| H|P)=a,
Hy = (p2 | H| 1)

[ j—
Q

. The matrix of H is thus given by
0 1
H—oc(1 0). (2.483)
The eigenvalues of this matrix are equal to o and the corresponding eigenvectors are % ( :tl 1

These results are indeed similar to those derived in (d).

Problem 2.16

1 0 0 0 —i 3i
Consider the matrices A =| 0 7 —3i | and B = - 0 i
0 3i 5 3i i 0

(a) Check the hermiticity of 4 and B.

(b) Find the eigenvalues of 4 and B; denote the eigenvalues of 4 by aj, a;, and a3. Explain
why the eigenvalues of 4 are real and those of B are imaginary.

(c) Calculate Tr(A) and det(A). Verify Tr(4) = a1 + a2 + a3z, det(4) = ajazas.

Solution
(a) Matrix A is Hermitian but B is anti-Hermitian:

1o 0 0 i =3
Al=(o0o 7 -3 )=4, BI= i 0o -i |=-8 (2.484)
0 3 5 3 —i 0
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(b) The eigenvalues of 4 are a; = 6 — V10, a; = 1, and a3 = 6 + +/10 and those of B
are by = —i (3 + \/ﬁ) /2,by = 3i,and by =i (—3 + \/ﬁ) /2. The eigenvalues of A4 are
real and those of B are imaginary. This is expected since, as shown in (2.74) and (2.75), the
expectation values of Hermitian operators are real and those of anti-Hermitian operators are
imaginary.

(c) A direct calculation of the trace and the determinant of 4 yields Tr(4) = 1+7+5 =13
and det(A4) = (7)(5) — (3i)(—3i) = 26. Adding and multiplying the eigenvalues a; = 6—+/10,
a = 1,a3 = 6+ 10, wehave a; + a2 +a3 = 6 — V10 + 1 + 6 + /10 = 13 and
arazaz = (6 — +/10)(1)(6 + +~/10) = 26. This confirms the results (2.260) and (2.261):

Tr(A) = a; + a + a3 = 13, det(4) = ayaraz = 26. (2.485)

Problem 2.17
Consider a one-dimensional particle which moves along the x-axis and whose Hamiltonian is
H = —Ed?/dx® + 16E X2, where £ is a real constant having the dimensions of energy.

(@) Is wkx) = Ae‘zxz, where A is a normalization constant that needs to be found, an
eigenfunction of H? If yes, find the energy eigenvalue.

(b) Calculate the probability of finding the particle anywhere along the negative x-axis.

(c) Find the energy eigenvalue corresponding to the wave function ¢ (x) = 2x w (x).

(d) Specify the parities of ¢ (x) and y (x). Are ¢(x) and w (x) orthogonal?

Solution
(a) The integral fjof e~ dx = /7 /2 allows us to find the normalization constant:

+oo +o0
1= / ly (x)I* dx = 47 / ey = 42T (2.486)
—00 —00 2

this leads to 4 = /2/./7 and hence y(x) = ,/2/ﬁe‘2x2. Since the first and second

derivatives of y (x) are given by

d?y (x)
dx?

_dy(x)

= (16x% = 4y (x), (2.487)
dx

y'(x) = —dxy (x), p"(x) =

we see that iy (x) is an eigenfunction of H with an energy eigenvalue equal to 4&:

d?y (x)

Hy(x) =& -

+16Ex2y (x) = —£(16x2—4)y (x)+16Ex2y (x) = 4Ew (x). (2.488)

(b) Since fi) o e dx = /7 /4, the probability of finding the particle anywhere along the
negative x-axis is equal to %:

/0 Ly (0)2 d 2 /0 gy = (2.489)
X X = —— e X = —. .
o N 2

This is expected, since this probability is half the total probability, which in turn is equal to one.



154 CHAPTER 2. MATHEMATICAL TOOLS OF QUANTUM MECHANICS

(c) Since the second derivative of ¢(x) = 2xy(x) is ¢"(x) = 4y'(x) + 2xy"(x) =
8x (=3 4+ 4x2)y(x) = 4(=3 + 4x?)p(x), we see that ¢ (x) is an eigenfunction of H with an
energy eigenvalue equal to 12&:

2
Hep(x) = —5d j(zx) + 16Ex%p(x) = —4E(=3 + 4xD)p (x) + 16Ex%p (x) = 12Ep (x).
* (2.490)
(d) The wave functions  (x) and ¢ (x) are even and odd, respectively, since y (—x) = w(x)
and ¢(—x) = —¢(x); hence their product is an odd function. Therefore, they are orthogonal,
since the symmetric integration of an odd function is zero:
“+00 —+00 —00
@ly) = P* () (x)dx = Py (x)dx = ¢(=x)y (=x)(—=dx)
—00 —00 +o0o
“+o0
= — ¢x)p(x)dx =0. (2.491)
—00

Problem 2.18

(a) Find the eigenvalues and the eigenfunctions of the operator A =—d? /dx?; restrict the
search for the eigenfunctions to those complex functions that vanish everywhere except in the
region0 < x < a.

(b) Normalize the eigenfunction and find the probability in the region 0 < x < a/2.

Solution
(a) The eigenvalue problem for —d? /dx? consists of solving the differential equation
d2
— l//(x) = OC!//()C) (2492)
dx?

and finding the eigenvalues a and the eigenfunction w (x). The most general solution to this
equation is

w(x) = Ade'™ 4+ Be ™Y, (2.493)

with a = b?. Using the boundary conditions of y (x) at x = 0 and x = a, we have
w0)=A+B=0 = B=—A4, w(a) = 4e'"® + Be™4 =0, (2.494)
A substitution of B = —4 into the second equation leads to A4 (e'? — e71%9) = 0 or €/** =

e~b4 which leads to €224 = 1. Thus, we have sin 2ba = 0 and cos 2ba = 1,s0 ba = nr. The
eigenvalues are then given by a,, = n’z2/a? and the corresponding eigenvectors by y, (x) =
A (eimrx/a _ e—innx/a); that is,

2.2

t="2—,  yu(x) = Cysin (@) (2.495)
a a
So the eigenvalue spectrum of the operator A=—-d? /dx? is discrete, because the eigenvalues

and eigenfunctions depend on a discrete number 7.
(b) The normalization of , (x),

a 2 a 2
e .9 (NTTX G _ 2nmx G
1= C”/o sin (—a ) ax==| [1 cos( - )}dx =, (2.496)
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yields C,, = 4/2/a and hence v, (x) = +/2/a sin (nwx /a). The probability in the region
0 < x < a/2is given by

2 [9? 1 (o2 2 1
—/ sin’ (ﬂ) dx = —/ |:l — cos( nnx)j| dx = 