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Preface

This book is a successor to the book written by the first author (with the help of Dr Klaus
Kelkel, now at ZF Friedrichshafen), Technische Schwingungslehre: Lineare Schwingungen
kontinuierlicher mechanischer Systeme, published in 1989 in German. The German book,
which has been out of print for many years now, was developed from a course on the
vibrations of continuous systems delivered regularly by the first author at the Technische
Universität Darmstadt over the last 30 years to fourth and fifth year students of Applied
Mechanics, Mechanical Engineering, and other engineering curricula. This course deals
exclusively with linear continuous systems and structures, including wave propagation in
different media, in particular acoustic waves. The students come from a course on the
vibrations of discrete systems, or at least with rudimentary knowledge of discrete vibrations.
Over the years, the course content has changed more and more. The plan for a new
text came up in 2004 when the second author was spending a year in Darmstadt as an
Alexander von Humboldt Research Fellow. It was then that we started to work on the present
book. Later, we had a chance to get together again for some time in the Mathematisches
Forschungsinstitut Oberwolfach, in the Black Forest, in Germany. In this stimulating and
pleasant environment we worked out many details that have found their place in the present
book.

From the beginning, in the Darmstadt vibration course we aimed at presenting both
the modal solutions and the traveling wave solutions, showing the relations between the
two types of representations of solutions. We have found time and again in different
engineering problems involving the vibrations of elastic structures, that one and the same
problem can be handled in both ways, and this dual approach gives new insights. This is
particularly useful whenever the spectra are rather dense, as for example in the vortex-
excited vibrations of overhead transmission lines. We believe that stressing the duality
between modal representation and a wave-type solution often leads to better understanding
of the system’s dynamics.

In a time when most of the structural vibrations problems in industry are dealt with by
commercial finite-element and/or multi-body codes, often used as black boxes, it may seem
that analytical solutions to vibration problems have become superfluous. True, in general it is
hopeless to search for analytical solutions for vibrations problems in systems with complex
geometry, for example. On the other hand, it can also be extremely dangerous to solve
vibration problems using finite-element codes as black boxes without properly checking
the applicability and convergence for the problem at hand. Often, for example, gyroscopic
terms, non-classical damping and other effects may not be properly handled by the codes if



xii Preface

these are used naively. There are worked problems in this book that clearly demonstrate this
point. It is therefore important to have benchmark solutions for a large number of vibration
problems. Such benchmark results are precisely given by the analytical solutions. Moreover,
certain qualitative aspects, such as dependence on parameters, asymptotic behavior, or the
basic physics of the problem can be easily recognized from the analytical solutions, and are
difficult to find by purely numerical methods. In certain cases, a theoretical/analytical handle
can also help in extracting the numerical solution accurately and efficiently. The authors
therefore believe that analytical solutions for linear vibrations of continuous systems even
today are of great relevance to engineering curricula.

This book deals mainly with the derivation of the linear equations of motion of continuous
mechanical systems such as strings, rods, beams, plates and membranes as well as with
their solution, both via modal decomposition, and by the wave approach. The equations
are derived using the elementary Newton–Euler approach, as well as using variational
techniques. Both the free vibrations and forced damped and undamped vibrations are studied.
The eigenvalue problems are solved analytically wherever possible, and orthogonality
conditions are derived. Problems with non-homogeneous boundary conditions and systems
involving simultaneously distributed and lumped parameters are discussed in detail.
Eigenvalue problems for systems in which the eigenvalue appears explicitly in the boundary
conditions are examined, and the orthogonality of eigenfunctions is also derived for such
systems. The forced vibrations are also studied through different solution techniques.
Important discretization methods are discussed in a systematic fashion, including the
Rayleigh–Ritz and the Galerkin methods. Scattering of waves, and energetics of wave
propagation in continuous media are examined in detail. The wave approach is used to
explain certain phenomena, such as dispersion, wave propagation during impact and radiation
damping.

The dynamics of the aforementioned elastic structural elements are dealt with in the first
five chapters. In each of these chapters, a number of free and forced vibration problems are
solved, using both exact and also approximate techniques, modal and wave representation.
Almost no attention is given to the numerical solution of matrix eigenvalue problems
resulting from the discretization of continuous systems, since tools such as MATLAB or
Mathematica are readily available for their solution. Among some topics less commonly
found in vibration books are dynamics of systems involving continuous and lumped
parameters, dynamics and wave propagation in traveling continua, wave propagation during
impacts, and the phenomenon of radiation damping.

In Chapter 6, the self-adjoint boundary value problems of continuous elastic systems are
dealt with in a somewhat more abstract manner, and general results, such as the expansion
theorem and Rayleigh’s quotient, are stated and discussed in general form. A formulation
for the eigenvalue problem in terms of integral equations using Green’s functions is also
given. The same chapter also deals with the class of discretization methods in which the
solution is written as a series of products of chosen shape-functions with unknown time
functions (generalized coordinates). The different ways of minimizing the error then lead
to the different methods such as the Rayleigh–Ritz method, the Galerkin method and the
collocation method. This also includes finite-element methods, which can be regarded as a
particular case of the Rayleigh–Ritz methods.

Chapter 7 is in two parts. The first part is devoted to waves in fluids, including acoustic
media, propagation in wave guides and also in slightly viscous fluids. Radiation from
membranes and plates is also examined. The second part deals with surface waves in
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incompressible liquids, sloshing of liquids in partially filled tanks, and surface waves
in channels. Chapter 8 deals with elements of wave motion in three-dimensional elastic
continua, and includes a short introduction to Rayleigh surface waves.

Three appendices complement the text. The first one is on Hamilton’s principle and the
variational formulation of dynamics, the second one on harmonic waves, Fourier
representation of waves and dispersion, and the third one is on the variational formulation
of plate dynamics.

Each chapter comes with a number of problems of different degrees of difficulty, most of
which have been used as homework problems in the course. There are many others which
are new. Some of the exercise problems are intended to motivate the reader to explore some
of the more advanced topics that are available in scientific journals or more advanced texts.

The authors believe that this book will fill a void as a textbook for a course on the linear
vibrations of continuous systems. The sections of the book are carefully planned so that they
may be used selectively in an undergraduate course, or a post-graduate course. It is hoped
that the presence of some of the advanced topics (all of which may not be possible to cover
in one course) will inspire the students to explore beyond the limits of a formal course.
This book also should be of use to engineers working in the field of structural vibrations
and dynamics.

The authors thank the staff of the Dynamics and Vibrations group in Darmstadt, in
particular Dr Daniel Hochlenert and Dr Gottfried Spelsberg-Korspeter. They not only
participated in the Oberwolfach project and gave important inputs, but also spent some
time at IIT Kharagpur with the second author, where they helped in setting up the Latex
environment for producing the book. The second author thanks Professor Sandipan Ghosh
Moulic for providing useful comments on Chapter 7, and Mr Miska Venu Babu for his
help in preparing the figures. The authors also thank the Alexander von Humboldt
Foundation, the DAAD (German Academic Exchange Service), which made possible
the visit of Darmstadt staff to IIT Kharagpur, the Mathematisches Forschungsinstitut
Oberwolfach, as well as Wiley staff, who were extremely helpful in producing this book.

March 2007 Peter Hagedorn
Darmstadt

Anirvan DasGupta
Kharagpur





1
Vibrations of strings and bars

A one-dimensional continuous system, whose configuration at any time requires only one
space dimension for description, is the simplest model of a class of continua with boundaries.
Strings in transverse vibration, and bars of certain geometries in axial and torsional vibrations
may be adequately described by one-dimensional continuous models. In this chapter, we
will consider such models that are not only simple to study, but also are useful in developing
the basic framework for analysis of continuous systems of one or more dimensions.

1.1 DYNAMICS OF STRINGS AND BARS: THE NEWTONIAN
FORMULATION

1.1.1 Transverse dynamics of strings

A string is a one-dimensional elastic continuum that does not transmit or resist bending
moment. Such an idealization may be justified even for cable-like components when the
ratio of the thickness of the cable to its length (or wavelength of waves in the cable) is
small compared to unity. In deriving the elementary equation of motion, it is assumed that
the motion of the string is planar, and transverse to its length, i.e., longitudinal motion
is neglected. Further, the amplitude of motion is assumed to be small enough so that the
change in tension is negligible.

Consider a string, stretched along the x-axis to a length l by a tension T , as shown in
Figure 1.1. Arbitrary distributed forces are assumed to act over the length of the string.
The transverse motion of any point on the string at the coordinate position x is represented
by the field variable w(x, t) where t is the time. Consider the free body diagram of a
small element of the string between two closely spaced points x and x + �x, as shown in
Figure 1.2. Let the element have a mass �m(x), and a deformed length �s. The tensions
at the two ends are T (x, t) and T (x + �x, t), respectively, and the external force densities
(force per unit length) are p(x, t) in the transverse direction, and n(x, t) in the longitudinal
direction, as shown in the figure. Neglecting the inertia force in the longitudinal direction of
the string, we can write the force balance equation for the small element in the longitudinal
direction as

0 = T (x + �x, t) cos[α(x + �x, t)] − T (x, t) cos[α(x, t)] + n(x, t)�s, (1.1)

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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l

x

z

w(x, t)

ρ,A, T

Figure 1.1 Schematic representation of a taut string

x x + �x

�s
T (x, t)

α(x, t)

T (x + �x, t)

α(x + �x, t)
p(x, t)�s

n(x, t)�s

Figure 1.2 Free body diagram of a string element

where α(x, t) represents the angle between the tangent to the string at x and the x-axis,
as shown in Figure 1.2. Dividing both sides of (1.1) by �x and taking the limit �x → 0
yields

[T (x, t) cosα(x, t)],x = −n(x, t)
ds

dx
, (1.2)

where [·],x represents partial derivative with respect to x. From geometry, one can write

cosα = 1√
1 + tan2 α

= 1√
1 + w2

,x

, and
ds

dx
=
√

1 + w2
,x . (1.3)

Substituting (1.3) in (1.2), and assuming w,x � 1, yields on simplification

[T (x, t)],x = −n(x, t). (1.4)

Therefore, when n(x, t) ≡ 0, (1.4) implies that the tension T (x, t) is a constant. On the
other hand, for a hanging string, shown in Figure 1.3, one has n(x, t) = ρA(x)g, where ρ

is the density, A is the area of cross-section, and g is the acceleration due to gravity. Then,
using the boundary condition of zero tension at the free end, i.e., T (l, t) ≡ 0 (for constant
ρA), (1.4) yields T (x, t) = ρAg(l − x). In general, the tension in a string may also depend
on time. However, in the following discussions, it will be assumed to depend at most on x.
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x

z

w(x, t)

ρ,A, l

g

Figure 1.3 Schematic representation of a hanging string

Now, consider the transverse dynamics of the string element shown in Figure 1.1. The
equation of motion of the small element in the transverse direction can be written from
Newton’s second law of motion as

�mw,tt (x + θ�x, t) = T (x + �x) sin[α(x + �x, t)]

−T (x) sin[α(x, t)] + p(x, t)�s, (1.5)

where �m is the mass of the element, θ ∈ [0, 1], and (·),tt indicates double partial differen-
tiation with respect to time. Again assuming w,x � 1, one can write sin α ≈ tan α = w,x .
Further, �m = ρA(x)�s. Using these expressions in (1.5) and dividing by �x on both
sides, one can write after taking the limit �x → 0

ρA(x)w,tt − [T (x)w,x],x = p(x, t), (1.6)

where, based on the previous considerations, we have assumed ds/dx ≈ 1. The linear partial
differential equation (1.6), along with (1.4), represents the dynamics of a taut string. When
the external force is not distributed but a concentrated force acting at, say x = a, the forcing
function on the right hand side of (1.6) can be written using the Dirac delta function as

p(x, t) = f (t)δ(x − a), (1.7)

where f (t) is the time-varying force, and δ(·) represents the Dirac delta function.
Let us consider the hanging string shown in Figure 1.3 once again. The expression of

tension derived earlier was T (x) = ρAg(l − x). Substituting this expression in (1.6) and
assuming p(x, t) ≡ 0, one obtains on simplification

w,tt − g[(l − x)w,x],x = 0. (1.8)

This case will be considered again later.
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An important particular form of (1.6) is obtained for p(x, t) ≡ 0, and T and ρA not
depending on x. We can rewrite (1.6) as

w,tt − c2w,xx = 0, (1.9)

where c = √
T /ρA is a constant having the dimension of speed. This represents the unforced

transverse dynamics of a uniformly tensioned string. The hyperbolic partial differential
equation (1.9) is known as the linear one-dimensional wave equation, and c is known as the
wave speed. In the case of a taut string, c is the speed of transverse waves on the string, as we
shall see later. This implies that a disturbance created at any point on the string propagates
with a speed c. It should be clear that the wave speed c is distinct from the transverse
material velocity (i.e., the velocity of the particles of the string) which is given by w,t (x, t).
The solution and properties of the wave equation will be discussed in detail in Chapter 2.

The complete solution of the second-order partial differential equation (1.6) (or (1.9))
requires specification of two boundary conditions, and two initial conditions. For example,
for a taut string shown in Figure 1.1, the appropriate boundary conditions are w(0, t) ≡ 0
and w(l, t) ≡ 0. For the case of a hanging string, the boundary conditions are w(0, t) ≡ 0
and w(l, t) is finite. The initial conditions are usually specified in terms of the initial shape
of the string, and initial velocity of the string, i.e., in the forms w(x, 0) = w0(x), and
w,t (x, 0) = v0(x), respectively. These will be discussed further later in this chapter.

Boundary conditions are classified into two types, namely geometric (or essential) bound-
ary conditions, and dynamic (or natural) boundary conditions. A geometric boundary condi-
tion is one that imposes a kinematic constraint on the system at the boundary. The forces at
such a boundary adjust themselves to maintain the constraint. On the other hand, a dynamic
boundary condition imposes a condition on the forces, and the geometry adjusts itself to
maintain the force condition. For example, in Figure 1.4, the right-end boundary condition is
obtained from the consideration that the component of the tension in the transverse direction
is zero, the roller being assumed massless. This implies T w,x(l, t) ≡ 0, which is a natural
boundary condition. As a consequence of this force condition, the slope of the string remains
zero. At the left-end boundary, the condition w(0, t) ≡ 0 is a geometric boundary condition,
and the transverse force from the support point (which can be computed as T w,x(0, t)) will
adjust itself appropriately to prevent any transverse motion of the right end of the string.
Classification of boundary conditions based on their mathematical structure is discussed in
Section 6.1.1.

When a string, in addition to the distributed mass, carries lumped masses (i.e., parti-
cles of finite mass) and is subjected to concentrated elastic restoring forces, these can be

l

x

z,w

ρ,A, T
w(0, t) ≡ 0

T w,x(l, t) ≡ 0

Figure 1.4 A taut string with geometric and natural boundary conditions
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m

ρ, A, T

z, w

a

l

Figure 1.5 A taut string with lumped elements

x

k

m

P (t)

P (t)

z, w

Figure 1.6 The interaction force diagram

easily incorporated into the equation of motion as follows. Consider the system shown in
Figure 1.5, and the interaction force diagram shown in Figure 1.6. The force P (t) at the
interface between the string and the particle of mass m can be written from Newton’s sec-
ond law for the mass–spring system as P (t) = mw,tt (a, t) + kw(a, t), where x = a is the
location of the lumped system. Using the Dirac delta function, one can represent P (t) as a
distributed force

p(x, t) = mw,tt (x, t)δ(x − a) + kw(x, t)δ(x − a). (1.10)

Therefore, the equation of motion of the combined system can be written as

ρA(x)w,tt − [T (x)w,x],x = −p(x, t),

or

[ρA(x) + mδ(x − a)]w,tt − [T (x)w,x],x + kδ(x − a)w = 0. (1.11)
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ρ,A,Eu(x, t)

x

l

Figure 1.7 Schematic representation of a bar

1.1.2 Longitudinal dynamics of bars

Let us consider the longitudinal dynamics of a bar of arbitrary cross-section, as shown
in Figure 1.7. We assume that the centroid of each cross-section lies on a straight line
which is perpendicular to the cross-section. Under such assumptions, we can study the pure
longitudinal motion of the bar. Such cases include bars which are solids of revolution (for
example, cylinders and cones), and other standard structural elements.

Consider the free body diagram of an element of length �x of the bar, as shown in
Figure 1.8. We assume the displacement of any point of the bar to be along the x-axis, so
that it can be represented by a single field variable u(x, t). Using Newton’s second law,
one can write the equation of longitudinal motion of the element as

ρA(x)�xu,tt (x + θ�x, t) = σx(x + �x, t)A(x + �x) − σx(x, t)A(x), (1.12)

where ρ is the density, A(x) is the cross-sectional area at x, θ ∈ [0, 1], and σx(x, t) is the
normal stress over the cross-section. Dividing (1.12) by �x, and taking the limit �x → 0,
yields

ρA(x)u,tt (x, t) = [σx(x, t)A(x)],x . (1.13)

From elementary theory of elasticity (see [1]), we can relate the longitudinal strain εx(x, t)

and the displacement field as εx(x, t) = u,x(x, t). Using this strain–displacement relation
and Hooke’s law, one can write

σx(x, t) = Eεx(x, t) = Eu,x(x, t), (1.14)

A(x) A(x + �x)

σ(x, t) σ (x + �x, t)

�x

Figure 1.8 Free body diagram of a bar element
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where E is the material’s Young’s modulus. Using (1.14) in (1.13) yields on rearrangement

ρA(x)u,tt − [EA(x)u,x],x = 0. (1.15)

If the bar is homogeneous and has a uniform cross-section, then (1.15) simplifies to

u,tt − c2u,xx = 0, (1.16)

where c = √
E/ρ is the speed of the longitudinal waves in a uniform bar.

The boundary conditions for the bar can be written by inspection. For example, in
Figure 1.7, the left-end boundary condition is u(0, t) ≡ 0, which is a geometric boundary
condition. The right end of the bar is force-free, i.e., EAu,x(l, t) ≡ 0. Hence, the right end
of the bar has a dynamic boundary condition.

1.1.3 Torsional dynamics of bars

In this section, we make the same assumptions regarding the centroidal axis as made for
the longitudinal dynamics of bars. The torsional dynamics of a bar depends on the shape
of its cross-section. Complications arise due to warping of the cross-section during torsion
in bars with non-circular cross-section (see [1]). In general, the torsional vibration of a
bar is also coupled with its flexural vibration. Therefore, to keep the discussion simple,
we will consider only torsional dynamics of bars with circular cross-section. As is known
from the theory of elasticity, for bars with circular cross-section, planar sections remain
planar for small torsional deformation. Further, an imaginary radial line on the undeformed
cross-section can be assumed to remain straight even after deformation.

Consider a circular bar, as shown in Figure 1.9. A small sectional element of the bar
between the centroidal coordinates x and x + �x is shown in Figure 1.10. Let φ(x, t) be the
angle of twist at coordinate x, and φ + �φ(x, t) be the twist at x + �x. From Figure 1.10,
one can write, at any radius r , the kinematic relation

r�φ(x, t) = �xψ(r, t), (1.17)

where ψ(r, t) is the angular deformation of a longitudinal line at r , as shown in the figure.
This angular deformation is the shear angle, as shown in Figure 1.11. Then, the shear stress
τxφ(r, t) is obtained from Hooke’s law as

τxφ(r, t) = Gψ(r, t), (1.18)

ρ,A,Gφ(x, t)

x

l

Figure 1.9 Schematic representation of a circular bar
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r

ψ(r, t)

�φ(x, t)

M(x, t) M(x + �x, t)

�x

Figure 1.10 Deformation of a bar element under torsion

ψ

τxφ

τφx

�x

Figure 1.11 State of stress on a bar element under torsion

where G is the shear modulus. Substituting the expression of ψ(r, t) from (1.17) in (1.18),
one can write in the limit �x → 0

τxφ(r, t) = Grφ,x. (1.19)

Now, the torque at any cross-section x can be computed as

M(x, t) =
∫

A(x)

rτxφ(r, t) dA = Gφ,x

∫
A(x)

r2dA = GIp(x)φ,x, (1.20)

where A(x) represents the cross-sectional area, and Ip(x) is the polar moment of the area.
Writing the moment of momentum equation for the element yields

[∫
A(x+θ�x)

ρr2�x dA

]
φ,tt (x, t) = GIp(x + �x)φ,x(x + �x, t)

−GIp(x)φ,x(x, t) + nE(x, t)�x, (1.21)
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a

φ(x, t)

x

ID

ρ,A,G

Figure 1.12 A circular bar with a disc

where nE(x, t) is an externally applied torque distribution. Dividing both sides in (1.21) by
�x and taking the limit �x → 0, we obtain

ρIpφ,tt − (GIpφ,x),x = nE(x, t). (1.22)

The partial differential equation (1.22) represents the torsional dynamics of a circular bar.
For a bar with uniform cross-section (i.e., Ip independent of x), and nE(x, t) ≡ 0, we obtain
the wave equation

φ,tt − c2φ,xx = 0, (1.23)

where c = √
G/ρ is the speed of torsional waves in the bar.

The boundary conditions for the fixed–free bar shown in Figure 1.9 can be written
as φ(0, t) ≡ 0, and M(l, t) = GIpφ,x(l, t) ≡ 0. We can easily identify the first boundary
condition as geometric, while the second is a natural boundary condition.

As an example, consider the torsional dynamics of a uniform circular bar with a massive
disc at x = a, as shown in Figure 1.12. The disc can be considered as having a lumped
rotational inertia. Therefore, the bar experiences an external torque due to the rotational
inertia of the disc given by nE(x, t) = −IDφ,tt (x, t)δ(x − a), where ID is the rotational
inertia of the disc. Substituting this expression of external moment in (1.22), the complete
equation of torsional dynamics of the bar can then be written as

[ρIp + IDδ(x − a)]φ,tt − GIpφ,xx = 0. (1.24)

1.2 DYNAMICS OF STRINGS AND BARS: THE VARIATIONAL
FORMULATION

The variational formulation presents an elegant and powerful method of deriving the
equations of motion of a dynamical system. Through this formulation, all the boundary
conditions of a system are revealed. This is clearly an advantage especially for continuous
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mechanical systems. As will be discussed later, this approach also yields very useful meth-
ods of obtaining approximate solutions of vibration problems. The fundamentals of the
variational approach for continuous systems is presented in Appendix A. In the following,
we directly use the procedure discussed in Appendix A in deriving the equation of motion
for strings and bars.

1.2.1 Transverse dynamics of strings

Consider a string of length l, as shown in Figure 1.1. The kinetic energy T of the string is

T = 1

2

∫ l

0
ρAw2

,t dx. (1.25)

The potential energy can be written from the consideration that the unstretched length �x is

stretched to �s =
√

1 + w2
,x�x under a constant tension T . Therefore, the potential energy

V stored in the string is given by

V =
∫ l

0
T (ds − dx) ≈

∫ l

0
T

[(
1 + 1

2
w2

,x

)
− 1

]
dx

= 1

2

∫ l

0
T w2

,x dx. (1.26)

Defining the Lagrangian L = T − V , Hamilton’s principle can be written as

δ

∫ t2

t1

L dt = 0 (1.27)

or

δ

∫ t2

t1

1

2

∫ l

0

[
ρAw2

,t − T w2
,x

]
dx. (1.28)

As detailed in Appendix A, one obtains from (1.28)

∫ l

0
ρAw,t δw

∣∣t2
t1

dx −
∫ t2

t1

T w,xδw
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρAw,tt − (T w,x),x] δw dx dt = 0. (1.29)

The first term in (1.29) is always zero since the variations of the field variable at the initial
and final times are zero, i.e., δw(x, t0) ≡ 0, and δw(x, t1) ≡ 0. Following the arguments in
Appendix A, the integrand of the third term in (1.29) has to be zero, i.e.,

ρAw,tt − (T w,x),x = 0, (1.30)
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which yields the equation of transverse dynamics of the string. The second term in (1.29)
is zero if, for example,

T w,x(0, t) ≡ 0 or w(0, t) ≡ 0 (1.31)

and

T w,x(l, t) ≡ 0 or w(l, t) ≡ 0, (1.32)

which represent possible boundary conditions. For a fixed–fixed string, the conditions
w(0, t) ≡ 0 and w(l, t) ≡ 0 hold, while for a fixed–sliding string (see Figure 1.4), w(0, t) ≡
0 and T w,x(l, t) ≡ 0.

In the case of a string with discrete elements shown in Figure 1.5, the kinetic and potential
energies can be written as, respectively,

T = 1

2

∫ l

0
ρAw2

,t (x, t) dx + 1

2
mw2

,t t (a, t)

= 1

2

∫ l

0
[ρA + mδ(x − a)]w2

,t t (x, t) dx, (1.33)

V = 1

2

∫ l

0
T w2

,x(x, t) dx + 1

2
kw2(a, t)

= 1

2

∫ l

0
[T w2

,x(x, t) + kδ(x − a)w2(x, t)] dx. (1.34)

Substituting L = T − V in the variational form (1.27) and taking the variation yields on
simplification

∫ l

0
[ρA + mδ(x − a)]w,t δw

∣∣t2
t1

dx −
∫ t2

t1

T w,xδw
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[(ρA + mδ(x − a))w,tt − (T w,x),x + kδ(x − a)w] δw dx dt = 0.

The equation of motion is obtained from the third term above which is the same as (1.11).
The boundary conditions remain the same as in (1.31)–(1.32). When external forces are
present, one can use the extended Hamilton’s principle discussed in Appendix A to obtain
the equations of motion.

1.2.2 Longitudinal dynamics of bars

In the case of longitudinal vibration of a bar, the kinetic energy is given by

T = 1

2

∫ l

0
ρAu2

,t dx. (1.35)
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Defining σx and εx as the longitudinal stress and strain, respectively, the potential energy
can be computed from the theory of elasticity as

V = 1

2

∫ l

0
σxεxA dx = 1

2

∫ l

0
EAε2

x dx

= 1

2

∫ l

0
EAu2

,x dx. (1.36)

Writing the Lagrangian L = T − V , Hamilton’s principle assumes the form

δ

∫ t2

t1

L dt = 0,

or

δ

∫ t2

t1

1

2

∫ l

0

(
ρAu2

,t − EAu2
,x

)
dx dt = 0,

⇒
∫ l

0
ρAδu

∣∣t2
t1
dx −

∫ t2

t1

EAu,xδu
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρAu,tt − (EAu,x),x] δu dx dt = 0. (1.37)

Since by definition δu(x, t0) = δu(x, t1) ≡ 0, the first term in (1.37) vanishes identically.
The third term in (1.37) yields the equation of motion

ρAu,tt − (EAu,x),x = 0, (1.38)

and the boundary conditions are obtained from the second term. For example, the boundary
conditions can be written as

EAu,x(0, t) ≡ 0 or u(0, t) ≡ 0, (1.39)

and

EAu,x(l, t) ≡ 0 or u(l, t) ≡ 0. (1.40)

It can be seen that the first condition in both (1.39) and (1.40) is the longitudinal force
condition (natural boundary condition) at the two ends of the bar, while the second condition
is the displacement condition (geometric boundary condition). Thus, for a fixed–fixed bar,
u(0, t) ≡ 0, and u(l, t) ≡ 0, while for a fixed–free bar, u(0, t) ≡ 0 and EAu,x(l, t) ≡ 0. In the
case of a free–free bar, the boundary conditions are EAu,x(0, t) ≡ 0, and EAu,x(l, t) ≡ 0.
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1.2.3 Torsional dynamics of bars

The kinetic energy of a circular bar undergoing torsional oscillations can be written in the
notations used previously in Section 1.1.3 as

T = 1

2

∫ l

0

∫ R

0

∫ 2π

0
ρφ2

,t r
3 dφ dr dx

= 1

2

∫ l

0
ρIpφ

2
,t dx. (1.41)

The potential energy can be written from elasticity theory as

V = 1

2

∫ l

0

∫ R

0

∫ 2π

0
τxφψr dφ drdx. (1.42)

Using the definitions of τrφ and ψ(x, t) from (1.17) and (1.18), respectively, in (1.42), we
have

V = 1

2

∫ l

0

∫ R

0

∫ 2π

0
Gφ2

,xr
3 dφ dr dx

= 1

2

∫ l

0
GIpφ

2
,x dx. (1.43)

Hamilton’s principle can then be written as

δ

∫ t2

t1

1

2

∫ l

0

[
ρIpφ

2
,t − GIpφ

2
,x

]
dx = 0

⇒
∫ l

0
ρIpφ,t δφ

∣∣t2
t1

dx −
∫ t2

t1

GIpφ,xδφ
∣∣l
0 dt

−
∫ t2

t1

∫ l

0
[ρIpφ,tt − (GIpφ,x),x] δφ dx = 0. (1.44)

The first term in (1.44) is zero by definition of the variational formulation. The third term
in (1.44) yields the equation of motion

ρIpφ,tt − (GIpφ,x),x = 0, (1.45)

while the second term provides information on the boundary conditions. For example, the
possible boundary conditions could be

GIpφ,x(0, t) ≡ 0 or φ(0, t) ≡ 0, (1.46)
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and

GIpφ,x(l, t) ≡ 0 or φ(l, t) ≡ 0. (1.47)

The first condition in (1.46) and (1.47) can be easily identified to be the torque condition
(natural boundary condition) at the ends of the bar, while the second condition is on the
angular displacement (geometric boundary condition).

1.3 FREE VIBRATION PROBLEM: BERNOULLI’S SOLUTION

Vibration analysis of a system almost always starts with the free or natural vibration analysis.
This leads us to the important concepts of natural frequency and mode of vibration of the
system. These two concepts form the starting point of any quantitative and qualitative
analysis and understanding of a vibratory system.

It was observed in the above discussions that, under certain assumptions of uniformity,
the one-dimensional wave equation represents the transverse dynamics of a string, and
longitudinal and torsional dynamics of a bar. The wave equation is one of the most important
equations that appear in the study of vibrations of continuous systems. The solution and
properties of the wave equation are fundamental in understanding vibration and propagation
of vibration in continuous media, and will be taken up in detail in later chapters. In this
section, we will discuss a simple solution procedure for the one-dimensional wave equation
and study some of the solution properties.

Consider the wave equation

w,tt − c2w,xx = 0, x ∈ [0, l], (1.48)

with the boundary conditions

w(0, t) ≡ 0, and w(l, t) ≡ 0. (1.49)

Such a problem corresponds to, for example, a fixed-fixed string or bar.
Let us first look for separable solutions of (1.48) in the form

w(x, t) = p(t)W(x). (1.50)

Substituting (1.50) in (1.48) yields on rearrangement

p̈

p
− c2 W ′′

W
= 0. (1.51)

It is easily observed that the first term in (1.51) is solely a function of t , while the second
term is solely a function of x. Therefore, (1.51) will hold identically if and only if both the
terms are constant, i.e.,

p̈

p
= −ω2 and c2 W ′′

W
= −ω2 (1.52)

⇒ p̈ + ω2p = 0 (1.53)
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and

W ′′ + ω2

c2
W = 0, (1.54)

where ω is an arbitrary constant. It may be noted that the constant in (1.52) is chosen as
−ω2, so that ω later will have the meaning of a circular frequency.

The general solutions of (1.53) and (1.54) can be written as, respectively,

p(t) = C cosωt + S sin ωt (1.55)

and

W(x) = D cos
ωx

c
+ H sin

ωx

c
, (1.56)

where C, S, D, and H are arbitrary constants of integration. The constants C and S are
usually determined from the initial position and velocity conditions of the string/bar, while
the determination of D and H requires the conditions at the two boundaries of the string/bar.
Since the solution (1.50) must satisfy the boundary conditions (1.49), we must have

W(0) = 0 and W(l) = 0, (1.57)

which can be written using (1.56) as

D + 0 · H = 0,

and (
cos

ωl

c

)
D +

(
sin

ωl

c

)
H = 0

⇒




1 0

cos
ωl

c
sin

ωl

c


{ D

H

}
= 0. (1.58)

Therefore, for a non-trivial solution of D and H , the determinant of (1.58) must vanish,
i.e.,

sin
ωl

c
= 0. (1.59)

This equation is referred to as the characteristic equation of the system (1.48)–(1.49). The
characteristic equation (1.59) is satisfied when ω takes any of the discrete values

ωk = kπc

l
, k = 0, 1, . . . , ∞ (1.60)

where ωk is termed as the kth circular natural frequency of the system. Thus, there are
countably infinitely many natural frequencies of the continuous system (1.48)–(1.49). It
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may be noted that the negative solutions of ω have been dropped, as they do not yield any
new solution to the vibration problem.

To every circular frequency ωk , there corresponds a solution of (Dk, Hk). On substituting
(1.60) in (1.58), one can conclude that Dk = 0 for all k, and Hk can be arbitrary. Thus, the
solution of (Dk, Hk) can be determined up to an arbitrary (multiplicative) constant. Finally,
from (1.56), we have

Wk(x) = Hk sin
ωkx

c
= Hk sin

kπx

l
, k = 1, 2, . . . , ∞, (1.61)

corresponding to the circular natural frequencies ωk , k = 1, 2, . . . , ∞. It may be observed
that k = 0 has been dropped since W0(x) ≡ 0, which is the trivial solution. We have therefore
found infinitely many solutions of the form (1.50), which may be written as

wk(x, t) = pk(t)Wk(x)

= (Ck cosωkt + Sk sin ωkt) sin
kπx

l
, k = 1, 2, . . . , ∞, (1.62)

where we have set all Hk = 1 without loss of generality, and Ck and Sk are arbitrary
constants.

Let us assume that the system is oscillating according to any one of the infinite solutions
given by (1.62). Corresponding to this solution, it is clear from (1.62) that all points of
the string or bar oscillate with the same circular frequency ωk. The system is then said to
oscillate in the kth mode, and the solution wk(x, t) is known as the modal solution of the
kth mode. The function Wk(x) is known as the kth eigenfunction or mode-shape-function.
The circular natural frequency ωk is also referred to as the kth circular modal frequency
of the system. It may be observed for any modal solution that, whenever pk(t) = 0, the
displacement w(x, t) of all points of the string/bar is equal to zero. Thus, when the system
is oscillating in a particular mode, all points pass through their equilibrium positions at the
same time. Further, any two points on the string/bar have a phase difference of either 0 or
π between their motion, i.e., either they move in phase, or in opposite phase. The modal
solution has these characteristics only because it is separable.

Since the wave equation is a linear equation and the boundary conditions are assumed
homogeneous, linear superposition of the individual modes also gives a solution. Therefore,
the general solution of the free vibration problem is of the form

w(x, t) =
∞∑

k=1

pk(t)Wk(x) =
∞∑

k=1

(Ck cos ωkt + Sk sin ωkt) sin
kπx

l
. (1.63)

To obtain a unique solution, one has to determine the constants Ck and Sk . In practice, a
system can vibrate freely when it is released from some non-equilibrium configuration, or
started with some non-zero velocity, or both. These initial conditions determine the constants
Ck and Sk . This problem of determining the free vibration solution uniquely is known as the
initial value problem. The solution of the initial value problem relies on a very important
property of the eigenfunctions, as discussed below.
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From the theory of Fourier series (see [2]), (1.63) can be easily identified as the Fourier
sine series with time-varying coefficients. It can be easily checked that the eigenfunctions
of the string under consideration satisfy the orthogonality property

〈Wj(x), Wk(x)〉 :=
∫ l

0
Wj(x)Wk(x) dx (1.64)

=
∫ l

0
sin

jπx

l
sin

kπx

l
dx = l

2
δjk, (1.65)

where 〈Wj(x), Wk(x)〉 is defined as an inner product (or scalar product) of the two functions
Wj(x) and Wk(x), and δjk is the Kronecker delta symbol, i.e.,

δjk =
{

0, j �= k

1, j = k
.

Using the orthogonality property, one can filter the j th coefficient in (1.63) as

〈w(x, t), Wj(x)〉 =
∫ l

0
w(x, t) sin

jπx

l
dx

= l

2
(Cj cosωj t + Sj sin ωj t). (1.66)

The coefficients Cj and Sj can now be computed easily to match any initial shape and
velocity of the string/bar. Let the initial shape and velocity be given by respectively,

w(x, 0) = w0(x), and w,t (x, 0) = v0(x). (1.67)

Then, from (1.66), one can obtain

Cj = 2

l
〈w0(x), Wj(x)〉, j = 1, 2, . . . , ∞, (1.68)

and

Sj = 2

lωj

〈v0(x), Wj (x)〉, j = 1, 2, . . . , ∞, (1.69)

where (1.68) is obtained by setting t = 0 in (1.66), and (1.69) is obtained by differentiating
(1.66) once with respect to t and then setting t = 0. This completes the solution (1.63) of
the initial value problem of a string/bar defined by (1.48), with the boundary conditions
(1.49), and the initial conditions (1.67).
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1.4 MODAL ANALYSIS

As observed in the previous section, the solution of the initial value problem requires the
mode-shape-functions and the associated circular modal frequencies. In this section, the
problem of determination of the mode-shape-functions and the modal frequencies, usually
termed modal analysis, is formulated as an eigenvalue problem. For convenience, we first
introduce the complex notation for representing the general solution of the free vibration
problem.

The general solution (1.63) can be compactly represented using the complex notation in
the form

w(x, t) =
∞∑

k=1

[
Ck

2
(eiωkt + e−iωkt ) + Sk

2i
(eiωkt − e−iωkt )

]
Wk(x)

=
∞∑

k=1

[
Fk

2
eiωkt + F ∗

k

2
e−iωkt

]
Wk(x)

=
∞∑

k=1

Fk

2
eiωktWk(x) + c.c.

=
∞∑

k=1

R
[
Fke

iωktWk(x)
]
, (1.70)

where R[·] denotes real part of a complex number, Fk = Ck − iSk , and the asterisk in the
superscript denotes complex conjugate (c.c.). For notational convenience while obtaining
the solution, we may write the solution as simply w(x, t) = W(x)eiωt , where the unknown
mode-shape-function W(x) may be complex in general. It is to be noted that the complex
conjugate part can be dropped since the equations considered here are linear. In some cases,
such as in the expression of kinetic energy ρAw2

t (x, t)/2, the complex conjugate part must
be written explicitly. One further point to note is that we may also take the imaginary part
of FkeiωktWk(x) in (1.70) as the kth modal solution. The complex representation also allows
us to treat problems with non-separable solution, and will be used for studying vibrations
in translating strings later in this chapter.

1.4.1 The eigenvalue problem

The equation of motion for the systems discussed above can be represented in the general
form

µ(x)w,tt + K[w] = 0, (1.71)

where K[·] is a linear differential operator. For example, for a taut string

µ(x) = 1 and K[·] = −c2 ∂2

∂x2
. (1.72)
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Consider a modal solution for the free vibration problem of (1.71) in the form

w(x, t) = W(x)eiωt , (1.73)

where W(x) is the mode-shape-function and ω is the modal frequency. Substituting (1.73)
in (1.71) yields

−ω2µ(x)W + K[W ] = 0. (1.74)

Only for certain special values of ω, can (1.74) be solved for non-trivial solutions of W(x)

satisfying the boundary conditions of the problem. Hence, the differential equation (1.74)
along with the boundary conditions on W(x) is known as the eigenvalue problem for the
system. For a taut string, it can be easily checked that the eigenvalue problem is defined by

W ′′ + ω2

c2
W = 0,

W(0) = 0 and W(l) = 0.

This problem is solved in detail in Section 1.3, and the eigenvalues and eigenfunctions are
given by

ωk = kπc

l
and Wk(x) = sin

kπx

l
, k = 1, 2, . . . , ∞. (1.75)

Thus, the solution of the eigenvalue problem yields the circular modal frequencies, and the
corresponding mode-shape-functions, which are also known as the circular eigenfrequencies
and eigenfunctions, respectively. In the following, we consider two slightly more complex
eigenvalue problems.

1.4.1.1 The hanging string

Let us consider the unforced dynamics of a hanging string which is described by (1.8). The
equation of motion can be represented in the form (1.71) where

µ(x) = 1 and K[·] = −g
∂

∂x

[
(l − x)

∂

∂x

]
. (1.76)

At the free end of the string, the transverse force is zero, i.e., T (l)w,x(l, t) ≡ 0. However,
since the tension at the free end T (l) = 0, it implies that w,x(l, t) can be arbitrary. As we
will see shortly, a finiteness condition on the solution is required for the free end. The only
boundary condition that can be specified is for the fixed end of the string which is given by

w(0, t) ≡ 0. (1.77)
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Now, the eigenvalue problem for the hanging string can be easily written from (1.74) as

ω2W + g[(l − x)W ′]′ = 0, (1.78)

with the associated boundary condition obtained from (1.77) as

W(0) = 0. (1.79)

In the following, the eigenvalue problem (1.78)–(1.79) is now solved to determine the
circular eigenfrequencies ω and the corresponding eigenfunctions W(x).

Consider the function

s(x) = 2ω

√
l − x

g
. (1.80)

Then, defining W̃ (s) such that W̃ (s(x)) = W(x), one obtains using the chain rule of differ-
entiation

dW

dx
= dW̃

ds

ds

dx
= −W̃ ′ ω√

g(l − x)
(1.81)

d2W

dx2
= d2W̃

ds2

(
ds

dx

)2

+ dW̃

ds

d2s

dx2

= W̃ ′′ ω2

g(l − x)
− W̃ ′ ω

2
√

g(l − x)3
, (1.82)

where the prime in W̃ ′ denotes differentiation with respect to s. Using (1.81) and (1.82) in
(1.78) yields on simplification

W̃ ′′ + 1

s
W̃ ′ + W̃ = 0, s ∈ [0, 2ω

√
l/g] (1.83)

W̃ (2ω
√

l/g) = 0. (1.84)

The differential equation (1.83) is a special case of the Bessel equation (see [2])

y ′′(x) + 1

x
y ′(x) +

(
1 − n2

x2

)
y(x) = 0

with n = 0. Therefore, the general solution of (1.83) can be written as

W̃ (s) = DJ0(s) + EY0(s), (1.85)

where D and E are arbitrary constants, and J0(s) and Y0(s) are known as, respectively,
zeroth-order Bessel functions of the first and second kind (or Neumann functions). The
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Figure 1.13 Bessel functions J0(s), and Y0(s)

functions J0(s) and Y0(s) are plotted in Figure 1.13. Since Y0(s) → −∞ as s → 0 (i.e.,
x → l), the condition of finiteness of the solution at the free end must imply E = 0.
Therefore, the solution of (1.83) takes the form W̃ (s) = DJ0(s). The boundary condition
of the fixed end, W(s(0)) = 0, then implies, for non-triviality of W̃ (s),

J0(2ω
√

l/g) = 0, (1.86)

which is the characteristic equation for the problem. The roots of J0(γk) = 0, yield the
eigenfrequencies

ωk = γk

2

√
g

l
, k = 1, 2, . . . , ∞, (1.87)

where γ1 ≈ 2.4048, γ2 ≈ 5.5201, γ3 ≈ 8.6537, . . . . It is interesting to note that the first
eigenfrequency or fundamental frequency of a hanging string, ω1 = 1.2024

√
g/l, is about

1.2 times the small-amplitude oscillation frequency of a mathematical pendulum of length
l. The kth eigenfunction can now be written as

Wk(x) = J0

(
2ωk

√
l − x

g

)
. (1.88)

The first three mode-shapes of the hanging string are shown in Figure 1.14. From (1.70),
we obtain the general solution of the initial value problem for the hanging string as

w(x, t) =
∞∑

k=1

R
[
Fke

iωktWk(x)
]

=
∞∑

k=1

[
(Ck cosωkt + Sk sinωkt)J0

(
2ωk

√
l − x

g

)]
. (1.89)
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Figure 1.14 First three mode-shapes of a hanging string

The orthogonality property of the eigenfunctions Wk(x) of the hanging string can be obtained
from the theory of Bessel functions (see [2]) as

∫ l

0
Wj(x)Wk(x) dx = lJ 2

1 (2ωj

√
l/g)δjk, (1.90)

where J1(·) is the Bessel function of order one, and δjk is the Kronecker delta symbol.
Later, in Section 1.4.2, we shall see that the eigenfunctions of a large class of eigenvalue
problems are always orthogonal in an appropriate sense.

1.4.1.2 Bar with varying cross-section

Consider the longitudinal dynamics of a fixed–free bar with varying cross-section described
by (1.15). The equation of motion can be represented by (1.71) where

µ(x) = ρA(x) and K[·] = − ∂

∂x

(
EA(x)

∂

∂x

)
.

The boundary conditions are given by

u(0, t) ≡ 0 and EA(l)u,x(l, t) ≡ 0. (1.91)

The eigenvalue problem in this case can be easily written as

A(x)ω2U + c2[A(x)U ′]′ = 0, (1.92)



1.4 Modal analysis 23

where c2 = E/ρ, along with the boundary conditions

U(0) = 0 and U ′(l) = 0. (1.93)

It is not possible to obtain an analytical solution of (1.92) for a general variation of the
cross-sectional area A(x). However, for a class of functions A(x), one can solve (1.92) as
follows.

Consider the transformation

W(x) = h(x)U(x), (1.94)

where h(x) is an unknown function. One can then write

[h2U ′]′ = hW ′′ − h′′W. (1.95)

Let us choose h2(x) = A(x). With this choice, one can rewrite (1.92) as

h2ω2U + c2[h2U ′]′ = 0,

or

ω2W + c2
(

W ′′ + h′′

h
W

)
= 0 (using (1.94) and (1.95)). (1.96)

If the variation of the cross-section is such that h′′/h = α, where α is a constant, one can
rewrite (1.96) as

W ′′ +
(

ω2

c2
+ α

)
W = 0.

This differential equation can be easily solved.
As a simple example, let

A(x) = A0

(
1 − x

2l

)2
.

Then, h(x) = √
A0(1 − x/2l), and h′′(x) = 0. Therefore, (1.96) simplifies to

W ′′ + ω2

c2
W = 0, (1.97)

and the boundary conditions are given by

W(0) = 0 and W ′(l) = h′(l)
h(l)

W(l). (1.98)
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It is not difficult to show that the solutions of (1.97) satisfying the boundary conditions
(1.98) can be written as

Wk(x) = D sin
ωkx

c
, k = 1, 2, . . . , ∞,

where ωk are the eigenvalues obtained from the characteristic equation

tan
ωl

c
+ ωl

c
= 0.

The first three eigenfrequencies are obtained as ω1 = 2.029c/l, ω2 = 4.913c/l, and ω3 =
7.979c/l. Finally, the eigenfunctions Uk(x) are obtained from (1.94) as

Uk(x) =
D sin

ωkx

c√
A0

(
1 − x

2l

) .

However, the orthogonality of the eigenfunctions may not be very obvious. Therefore, we
need to have a general procedure to determine the orthogonality relations, which is discussed
next.

1.4.2 Orthogonality of eigenfunctions

Consider a general eigenvalue problem formed by a differential equation of the type

−λµ(x)W + K[W ] = 0, x ∈ [0, l], (1.99)

where λ = ω2, along with certain boundary conditions. If Wj and Wk (j �= k) are solutions
of (1.99) corresponding to λj and λk, respectively, one can write

−λjµ(x)Wj + K[Wj ] = 0, (1.100)

and

−λkµ(x)Wk + K[Wk] = 0. (1.101)

Multiplying (1.100) with Wk , and (1.101) with Wj , and integrating the difference of the two
equations over the length of the string, one can write

−(λj − λk)〈µ(x)Wj , Wk〉 + 〈Wk,K[Wj ]〉 − 〈Wj,K[Wk]〉 = 0. (1.102)

If the operator K[·] is such that

〈W,K[W̃ ]〉 = 〈W̃ ,K[W ]〉, (1.103)
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for any two functions W(x) and W̃ (x) satisfying the boundary conditions, the operator
K[·] is called a self-adjoint operator. Since the eigenfunctions Wj(x) and Wk(x) satisfy the
boundary conditions of the problem, one can write for a self-adjoint operator

〈Wk,K[Wj ]〉 = 〈Wj,K[Wk]〉, (1.104)

and (1.102) yields

−(λj − λk)〈µ(x)Wj , Wk〉 = 0. (1.105)

If λj �= λk (which is usually satisfied), we obtain the orthogonality relation

〈µ(x)Wj , Wk〉 = 0 ⇒
∫ l

0
µ(x)WjWk dx = 0. (1.106)

It is always possible to normalize the eigenfunctions such that they are orthonormal, i.e,

∫ l

0
µ(x)WjWk dx = δjk, (1.107)

where δjk is the Kronecker delta symbol. A consequence of orthonormality of the eigen-
functions can be obtained from (1.100) as

∫ l

0
WkK[Wj ] dx = λjδjk.

It can be concluded from the above that the eigenfunctions of a self-adjoint operator are
orthogonal with respect to a suitably defined inner product, which may be determined using
the above procedure.

1.4.3 The expansion theorem

Let us rework the solution procedure for the free vibration of a taut string presented in
Section 1.4.1 in a slightly different manner. Based on our experience thus far, let us assume
the solution of (1.71) as an expansion in terms of the eigenfunctions in the form

w(x, t) =
k=∞∑
k=1

pk(t)Wk(x), (1.108)

where Wk(x) is the kth eigenfunction given by (1.75) and pk(t) is the corresponding
unknown modal coordinate. Substituting the expansion (1.108) in (1.71) yields

k=∞∑
k=1

p̈k(t)Wk(x) + K
[

k=∞∑
k=1

pk(t)Wk(x)

]
= 0. (1.109)
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Using the linearity property of the operator K[·], one can rewrite (1.109) as

k=∞∑
k=1

µ(x)p̈k(t)Wk(x) +
k=∞∑
k=1

pk(t)K[Wk(x)] = 0,

or

k=∞∑
k=1

µ(x)p̈k(t)Wk(x) +
k=∞∑
k=1

µ(x)ω2
kpk(t)Wk(x) = 0 (using (1.74)),

or

k=∞∑
k=1

[
p̈k(t) + ω2

kpk(t)
]
µ(x)Wk(x) = 0. (1.110)

Taking the inner product on both sides with Wj , j = 1, 2, . . . , ∞, and using the orthog-
onality relations (1.106), one obtains the decoupled differential equations for the modal
coordinates as

p̈j (t) + ω2
jpj (t) = 0, j = 1, 2, . . . , ∞. (1.111)

It may be mentioned here that we have exchanged an integral and an infinite sum to arrive
at the decoupled equations (1.111). The general solution of the j th modal coordinate is,
therefore, obtained as

pj (t) = Cj cosωj t + Sj sin ωj t,

and the general solution of the free vibration problem can be written in the form

w(x, t) =
∞∑

k=1

(Ck cosωkt + Sk sin ωkt)Wk(x),

which is the same as (1.63) obtained by Bernoulli’s method. Thus, we have reconstructed
back the solution of the free vibration problem using the eigenfunction expansion (1.108)
and the orthogonality relations (1.106).

The fundamental requirement for the expansion method to work is that any physically
possible shape of the system, say a string, should be expandable as a linear combination of
the eigenfunctions Wk(x) in the form (1.108). In other words, Wk(x) should form a basis
of the space of all physically possible shapes of the string. The set of all eigenfunctions of
the string is indeed a basis of the function space under consideration, and this follows from
the self-adjointness of the differential operator K[·] in the eigenvalue problem (1.71). This
statement is referred to as the expansion theorem. The expansion theorem also provides a
convenient method for solving forced vibration problems as discussed later.
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1.4.4 Systems with discrete elements

A continuous system may interact with discrete elements as discussed in previous sections.
For such hybrid systems, the modal analysis can be performed by analyzing the system
in parts along with appropriate matching conditions and boundary conditions for each of
the parts. Often in these systems, the boundary conditions themselves involve ordinary
differential equations, as will be evident in this section.

Let us consider the modal analysis of longitudinal vibrations of a bar with a mass–spring
system at the right boundary, as shown in Figure 1.15. This system can be described by
one field variable u(x, t) and one discrete variable y(t). The equations of motion are

u,tt − c2u,xx = 0 (1.112)

and

Mÿ + Ky = Ku(l, t), (1.113)

and the boundary conditions are given by

u(0, t) ≡ 0 and EAu,x(l, t) ≡ K(y − u(l, t)). (1.114)

As is evident, the second boundary condition in (1.114) involves the ordinary differential
equation (1.113).

Assume a modal solution of the form

{
u(x, t)

y(t)

}
=
{

U(x)

Y

}
eiωt . (1.115)

It may be noted that the modal vector for this problem is given by (U(x), Y )T . Substituting
this solution in the equations of motion (1.112)–(1.113) and simplifying, we obtain the
eigenvalue problem

U ′′ + ω2

c2
U = 0 (1.116)

x

u(x, t)
y(t)

M

K

l

ρ,A,E

Figure 1.15 A hybrid system formed by a continuous sub-system and lumped elements
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and

(−Mω2 + K)Y = KU(l), (1.117)

with the associated boundary conditions given by (1.114) as

U(0) = 0 (1.118)

and

EAU′(l) = K[Y − U(l)] = KMω2

K − Mω2
U(l) (using (1.117)). (1.119)

Note here that the boundary condition (1.119) also involves the circular frequency ω. Assum-
ing a solution of (1.116) in the form

U(x) = C cos
ωx

c
+ S sin

ωx

c
(1.120)

we have from the boundary conditions (1.118)–(1.119)




1 0

(
KMω2

K − Mω2
cos

ωl

c
+EAω

c
sin

ωl

c

) (
KMω2

K − Mω2
sin

ωl

c
−EAω

c
cos

ωl

c

)


{

C

S

}
= 0.

(1.121)

The non-triviality of the solution of (C, S) implies that the determinant of the matrix in
(1.121) must vanish, which yields the characteristic equation

tan
ωl

c
− EA(K − Mω2)

cωMK
= 0.

This transcendental equation yields infinitely many circular eigenfrequencies ωk , k =
1, 2, . . . , ∞. Substituting these eigenfrequencies in (1.121), one obtains (Ck, Sk) = (0, 1),
and correspondingly

Uk(x) = sin
ωkx

c
,

so that, using (1.117), the eigenvectors are obtained as




Uk(x)

Yk


 =




sin
ωkx

c

K sin(ωkl/c)

−Mω2
k + K




, k = 1, 2, . . . , ∞.
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It is to be noted that these vectors are formed by the displacement field Uk(x) in the rod,
and the discrete coordinate Yk . They are not vectors in two-dimensional Euclidean space,
but rather in an (∞ + 1)-dimensional space. Since these infinitely many eigenvectors are
all linearly independent, one can conveniently express the solution of (1.112)–(1.113) using
the expansion theorem as

{
u(x, t)

y(t)

}
=

∞∑
k=1

pk(t)

{
Uk(x)

Yk

}
,

where pk(t) is the modal coordinate corresponding to mode k.
The orthogonality relation for the above eigenvectors are obtained from the procedure dis-

cussed in Section 1.4.2 as follows. Consider the modes j and k which satisfy the following
equations

U ′′
j + ω2

j

c2
Uj = 0, Yj = KUj(l)

−Mω2
j + K

, (1.122)

U ′′
k + ω2

k

c2
Uk = 0, Yk = KUk(l)

−Mω2
k + K

, (1.123)

along with appropriate boundary and matching conditions. Multiply the first equation in
(1.122) by Uk and the first equation in (1.123) by Uj , and subtract the second product from
the first and integrate over the length of the beam to obtain

∫ l

0

(
UkU

′′
j + ω2

j

c2
UkUj

)
dx

−
∫ l

0

(
UjU

′′
k + ω2

k

c2
UjUk

)
dx = 0

⇒
∫ l

0

(
UkU

′′
j − UjU

′′
k + ω2

j − ω2
k

c2
UjUk

)
dx = 0. (1.124)

Integrating by parts the first term in (1.124) twice, and using the boundary and matching
conditions from (1.118)–(1.119) yields on simplification

(ω2
j − ω2

k)

[
M

EA

(
KUj(l)

K − Mω2
j

)(
KUk(l)

K − Mω2
k

)
+ 1

c2

∫ l

0
UjUk dx

]
= 0

⇒ MYjYk + ρA

∫ l

0
UjUk dx = 0, for j �= k,

where we have used (1.122) and (1.123). These are the orthogonality relations for the system.
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1.5 THE INITIAL VALUE PROBLEM: SOLUTION USING
LAPLACE TRANSFORM

The Laplace transform method is one of the standard methods of solving initial value
problems. Consider the wave equation

w,tt − c2w,xx = 0, (1.125)

with homogeneous boundary conditions w(0, t) ≡ 0 and w(l, t) ≡ 0, and initial conditions
w(x, 0) = w0(x) and w,t (x, 0) = v0(x). Taking the Laplace transform (see [2]) of both sides
of (1.125) and the boundary conditions with respect to the variable t yields

w̃′′ − s2

c2
w̃ = − 1

c2
[sw0(x) + v0(x)] , (1.126)

w̃(0, s) ≡ 0 and w̃(l, s) ≡ 0, (1.127)

where w̃(x, s) represents the Laplace transform of w(x, t), and is defined as

w̃(x, s) =
∫ ∞

0
w(x, t)e−st dt. (1.128)

The homogeneous solution of (1.126) is obtained as

w̃(x, s) = aesx/c + be−sx/c. (1.129)

Using the boundary conditions (1.127) yields

[
1 1

esl/c e−sl/c

]{
a

b

}
= 0.

For non-trivial solutions of (a, b), we must have

e2sl/c − 1 = 0 ⇒ s = inπc

l
, n = 1, 2, . . . , ∞.

For these values of s, one can easily obtain (a, b) = (1, −1), and therefore, the general
solution of (1.126)–(1.127) can be written using (1.129) as

w̃ =
∞∑

n=1

An(s) sin
nπx

l
, (1.130)
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where An(s) are arbitrary constants. Using this solution expansion in (1.126), and taking
inner product with sinmπx/l yields on simplification

Am(s) = s

s2 + α2
m

∫ l

0
w0(x) sin

mπx

l
dx + 1

s2 + α2
m

∫ l

0
v0(x) sin

mπx

l
dx,

where αm = mπc2/l. Substituting this expression in (1.130) and taking the inverse Laplace
transform yields

w(x, t) =
∞∑

n=1

(Cn cosαnt + Sn sin αnt) sin
nπx

l
, (1.131)

where

Cn =
∫ l

0
w0(x) sin

nπcx

l
dx and Sn = 1

αn

∫ l

0
v0(x) sin

nπcx

l
dx.

The solution (1.131) is the same as obtained in (1.63) before.

1.6 FORCED VIBRATION ANALYSIS

The dynamics of one-dimensional continuous systems discussed above, subjected to an
arbitrary distributed forcing q(x, t), can be represented in a general form

µ(x)w,tt + K[w] = q(x, t). (1.132)

When a system is forced at a boundary, one can still convert the problem to the form (1.132),
leaving the corresponding boundary condition homogeneous. For example, consider the bar
shown in Figure 1.16, forced axially at the boundary. The equation of motion and boundary
conditions are given by

ρAu,t t − [EAu,x],x = 0,

− EAu,x(0, t) = F(t), and u(l, t) ≡ 0. (1.133)

F(t)

x

u(x, t)

l

ρ,A(x), E

Figure 1.16 A bar forced axially at the boundary



32 Vibrations of strings and bars

It may be noted that the standard convention of taking compressive stress as negative has
been used in (1.133). The dynamics of the bar can also be recast in the form (1.132) as

ρAu,t t − [EAu,x],x = F(t)δ(x),

EAu,x(0, t) = 0, and u(l, t) ≡ 0.

Let the eigenvalue problem corresponding to the unforced dynamics in (1.132) be given
by

−ω2µ(x)W(x) + K[W(x)] = 0, (1.134)

along with appropriate boundary conditions. We will represent the solutions of (1.134)
as (ωk, Wk(x)), k = 1, 2, . . . , ∞, where ωk are the eigenvalues and Wk(x) are the corre-
sponding eigenfunctions. The pair (ωk, Wk) is sometimes also called an eigenpair. In the
following, we will discuss the solution of (1.132) for different forcing conditions.

1.6.1 Harmonic forcing

Consider a forcing q(x, t) in (1.132) that is separable in space and time, and has a harmonic
time function. In particular, consider q(x, t) = Q(x) cos�t , and let us represent the forced
dynamics as

µ(x)w,tt + K[w] = R[Q(x)ei�t ], (1.135)

where � is the circular forcing frequency, Q(x) specifies the force distribution, and R[·]
represents the real part. Let us consider a solution of (1.135) in the form

w(x, t) = wH(x, t) + wP(x, t)

=
∞∑

k=1

[Ck cosωkt + Sk sin ωkt]Wk(x) + R[X(x)ei�t ], (1.136)

where the first term wH(x, t) represents the general solution of the homogeneous problem,
also simply called the homogeneous solution, and the second term wP(x, t) is a solution
of the inhomogeneous problem, also simply called the particular solution. The amplitude
function X(x) in (1.136) is an unknown (real or complex), yet to be determined. It may
be noted that we have assumed, based on the discussion in the previous sections, that the
homogeneous solution is completely known except for the constants Ck and Sk , which will
be determined from the initial conditions. Now, substituting the solution (1.136) in (1.135)
yields on simplification

−�2µ(x)X(x) + K[X(x)] = Q(x). (1.137)

This equation along with the boundary conditions forms a boundary value problem. In the
following, we discuss two methods of solving (1.137), namely the eigenfunction expansion
method and Green’s function method.
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1.6.1.1 Eigenfunction expansion method

Assume the solution of (1.137) as the eigenfunction expansion

X(x) =
∞∑

k=1

αkWk(x), (1.138)

where αk are unknown coefficients. Substituting (1.138) in (1.137) yields

−�2µ(x)

∞∑
k=1

αkWk(x) + K
[ ∞∑

k=1

αkWk(x)

]
= Q(x)

⇒ −�2µ(x)

∞∑
k=1

αkWk(x) +
∞∑

k=1

αkK[Wk(x)] = Q(x)

⇒
∞∑

k=1

(ω2
k − �2)αkµ(x)Wk(x) = Q(x), (using (1.134)). (1.139)

Taking the inner product on both sides of (1.139) with Wj(x), j = 1, 2, . . . , ∞, and using
the orthogonality property, we get

(ω2
j − �2)αj 〈µ(x)Wj(x), Wj (x)〉 = 〈Q(x), Wj (x)〉, j = 1, 2, . . . , ∞

⇒ αj =
∫ l

0 Q(x)Wj(x) dx

(ω2
j − �2)

∫ l

0 µ(x)W 2
j (x) dx

, j = 1, 2, . . . , ∞, (1.140)

where it has been assumed that the forcing is non-resonant, i.e., � �= ωj for all j . This
completes the solution (1.138) of (1.137) for a non-resonant harmonic forcing.

In case � = ωj for some j , we have resonance, which is characterized by a very high
response amplitude for the j th mode (infinite as far as the linear theory is concerned).
To determine the response of the system at resonance, we use the method of variation of
parameters in which the particular solution is assumed in the form

wP(x, t) = R




αj (t)Wj (x) +

∞∑
k=1
k �=j

αkWk(x)


 eiωj t


 . (1.141)

It may be noted that the j th modal coordinate αj (t) has been taken as a function of time.
Substituting this solution form in (1.135) and proceeding as discussed above, one can easily
obtain the equation of modal dynamics of the j th mode as

α̈j + 2iωj α̇j =
∫ l

0 Q(x)Wj(x) dx∫ l

0 µ(x)W 2
j (x) dx

.



34 Vibrations of strings and bars

Solving this and substituting in (1.141), the particular solution is finally obtained as

wP(x, t) = t

2ωj

∫ l

0 Q(x)Wj(x) dx∫ l

0 µ(x)W 2
j (x) dx

Wj(x) sinωj t +
∞∑
k=1
k �=j

αkWk(x) cosωj t,

where the constants αk are obtained from (1.140).
An interesting situation occurs for a resonant forcing with � = ωj if Q(x) is such that

∫ l

0
Q(x)Wj(x) dx = 0,

i.e., the forcing amplitude distribution Q(x) is orthogonal to Wj(x). In such a case, the
solution is still finite since the j th mode cannot be excited by the force. This situation is
referred to as apparent resonance.

1.6.1.2 Green’s function method

Boundary value problems may be conveniently solved using Green’s function method (see
[3]). In this method, the solution of (1.137) is obtained in an integral form as discussed in
the following.

Let G(x, x, �) be the solution of (1.137) excited by a concentrated unit force at x =
x ∈ [0, l], i.e.,

−�2µ(x)G(x, x, �) + K[G(x, x, �)] = δ(x − x), (1.142)

with all the boundary conditions of (1.137), which are assumed homogeneous. In case the
boundary conditions of (1.137) are not homogeneous, one can make them homogeneous by
following the procedure discussed in Section 1.9.

Consider the function

X(x) =
∫ l

0
Q(x)G(x, x, �) dx. (1.143)

Substituting (1.143) in the left-hand side of (1.137), one obtains

−�2µ(x)

∫ l

0
Q(x)G(x, x, �) dx + K

[∫ l

0
Q(x)G(x, x, �) dx

]

= −�2µ(x)

∫ l

0
Q(x)G(x, x, �) dx +

∫ l

0
Q(x)K[G(x, x, �)] dx

=
∫ l

0
Q(x)

(− �2µ(x)G(x, x, �) + K[G(x, x, �)]
)
dx

=
∫ l

0
Q(x)δ(x − x) dx (using (1.142))

= Q(x).
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Thus, (1.143) is indeed the solution of (1.137) for a general Q(x). It is to be noted that, if
� �= ωk for all k, the solution of (1.142) (and also (1.137)) is unique since the homogeneous
problem (i.e., with zero right-hand side) has only the trivial solution. The function G(x, x, �)

is known as Green’s function for the boundary value problem (1.137). The complete solution
of (1.132) can, therefore, be written as

w(x, t) =
∞∑

k=1

[Ck cosωkt + Sk sinωkt] Wk(x)

+ R

[
ei�t

∫ l

0
Q(x)G(x, x, �) dx

]
. (1.144)

We now compute Green’s function for the forced vibration of a taut string for which
µ(x) = 1, and K[w] = −c2w,xx . In (1.142), we can consider two regions of the string as
follows:

−�2G − c2G,xx = 0, 0 ≤ x < x, (1.145)

and

−�2G − c2G,xx = 0, x < x ≤ l, (1.146)

with appropriate matching conditions at x = x, as discussed below. The solutions of (1.145)
and (1.146) can be written as

(1.147)

G(x, x, �) =




AL sin
�x

c
+ BL cos

�x

c
, 0 ≤ x < x,

AR sin
�x

c
+ BR cos

�x

c
, x < x ≤ l, (1.148)

where AL, BL, AR, and BR are arbitrary constants. From the requirement of continuity of the
solution at x = x, and satisfaction of all the boundary conditions of the problem, we have

G(x −, x, �) = G(x +, x, �), (1.149)

G(0, x, �) = 0, and G(l, x, �) = 0. (1.150)

Further, integrating (1.142) over the domain of the string yields

−
∫ l

0
[�2G + c2G,xx] dx = 1

⇒ lim
ε→0

∫ x+ε

x−ε

[�2G + c2G,xx] dx = −1 (using (1.145)–(1.146))

⇒ lim
ε→0

[
�2G(x + θε, x, �) 2ε + c2G,x

∣∣x+ε

x−ε

]
= −1 (1.151)

⇒ c2G,x(x
+, x, �) − c2G,x(x

−, x, �) = −1, (1.152)
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where, the first term in (1.151) is obtained from the mean value theorem. It can be easily
observed that (1.152) provides the force equilibrium condition. Now, (1.149), (1.150), and
(1.152) provide four conditions for finding the four constants in (1.148) and (1.148). Finally,
after some algebra, Green’s function for a taut string is obtained as

(1.153)

G(x, x, �) =




sin �
c (l−x) sin �x

c

�c sin �l
c

, 0 ≤ x < x,

sin �
c (l−x) sin �x

c

�c sin �l
c

, x < x ≤ l. (1.154)

Green’s function can also be obtained from (1.142) using the eigenfunction expansion

G(x, x, �) =
∞∑

k=1

αk(x, �)Wk(x),

where αk(x, �) are unknown functions. Following the procedure discussed in Section 1.6.1.1,
it can be easily checked that

G(x, x, �) =
∞∑

k=1

Wk(x)Wk(x)

(ω2
k − �2)

∫ l

0 µ(x)W 2
k (x) dx

. (1.155)

A collection of Green’s functions for various kinds of differential equations can be found
in [4].

1.6.2 General forcing

For a general distributed forcing q(x, t) which no longer needs to be separable, let us assume
a solution of (1.132) in the form

w(x, t) =
∞∑

k=1

pk(t)Wk(x), (1.156)

where Wk(x) are the known eigenfunctions and pk(t) are the unknown modal coordinates.
Substituting this solution form in (1.132) yields

µ(x)

k=∞∑
k=1

p̈k(t)Wk(x) + K
[

k=∞∑
k=1

pk(t)Wk(x)

]
= q(x, t). (1.157)

Using the linearity property of K[·] and (1.134), one can simplify (1.157) as

k=∞∑
k=1

[
p̈k(t) + ω2

kpk(t)
]
µ(x)Wk(x) = q(x, t). (1.158)



1.6 Forced vibration analysis 37

Now, taking the inner product with Wj(x), on both sides of (1.158), and using the orthog-
onality property yields

p̈j (t) + ω2
jpj (t) = fj (t), j = 1, 2, . . . , ∞, (1.159)

where

fj (t) = 〈Wj(x), q(x, t)〉
〈µ(x)Wj(x), Wj (x, t)〉 =

∫ l

0 Wj(x)q(x, t) dx∫ l

0 µ(x)W 2
j (x) dx

, j = 1, 2, . . . , ∞. (1.160)

The second-order ordinary differential equation (1.159) with specified initial conditions
pj (0) = pj0 and ṗj (0) = vj0 represents an initial value problem. It can be easily solved
using, for example, the method of Laplace transforms or the Duhamel convolution integral.

Consider the example of a constant point force F traveling with a speed v on a stretched
string, as shown in Figure 1.17. The equation of motion is given by

ρAw,tt − T w,xx = −Fδ(x − vt).

We assume the solution form (1.156), where, as we already know, Wk(x) = sin kπx/l.
Following the steps as discussed above, we obtain the modal dynamics from (1.159)–(1.160)
as

p̈j (t) + ω2
jpj (t) = − 2F

ρAl
sin

jπvt

l
, j = 1, 2, . . . , ∞, (1.161)

where ωj = jπc/l. When the forcing in (1.161) is non-resonant, i.e., v �= c, the solution
of the above differential equation can be written as

pj (t) = Cj cosωj t + Sj sinωj t − 2F l

ρAj2π2(c2 − v2)
sin

jπvt

l
, (1.162)

where Cj and Sj are arbitrary constants of integration. Therefore, the solution for the string
is obtained from (1.156) as

w(x, t) =
∞∑

j=1

[
Cj cosωj t + Sj sin ωj t − 2F l

ρAj2π2(c2 − v2)
sin

jπvt

l

]
sin

jπx

l
. (1.163)

x

z, w

vt

l

vF
ρ,A, T

Figure 1.17 Traveling point force on a stretched string
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Using the initial conditions of an undeformed string at rest, i.e., w(x, 0) = 0 and w,t (x, 0) =
0, we get

Cj = 0 and Sj = 2F lv

ρAcj2π2(c2 − v2)
, j = 1, 2, . . . , ∞. (1.164)

Finally, we can write the complete solution of the string as

w(x, t) = − 2F l

ρAπ2(c2 − v2)

∞∑
j=1

1

j2

[
sin

jπvt

l
− v

c
sin

jπct

l

]
sin

jπx

l
. (1.165)

The above solution is valid as long as the force moves on the string, i.e., 0 ≤ t ≤ l/v.
Once the force leaves the string, the string undergoes free vibrations. The shape of the string
and its velocity at the onset of the free vibrations can be obtained from (1.165) at tf = l/v.
Thus,

w(x, t+f ) = w(x, t−f ) and w,t (x, t+f ) = w,t (x, t−f )

⇒ pj (t
+
f ) = pj (t

−
f ) and ṗj (t

+
f ) = ṗj (t

−
f ), j = 1, 2, . . . , ∞, (1.166)

where, for t ≥ tf , pj (t) = C ′
j cosωj t + S ′

j sinωj t with C ′
j and S ′

j as arbitrary constants.
Using the matching conditions (1.166) at t = tf , we obtain the free vibration solution as

w(x, t) = − 2F lv

ρAcπ2(c2 − v2)

∞∑
j=1

(−1)j

j2

[(
cos

jπc

v
− (−1)j

)
sinωj t

− sin
jπc

v
cosωj t

]
sin

jπx

l
, (1.167)

where t ≥ tf . In Figure 1.18, the shape of the string is represented graphically at selected
times for a point force traveling at v = 0.25c.

Now, we consider the case when the force travels with the resonance speed, i.e., v = c

in (1.161). One can obtain the solution of (1.161) as

pj (t) = − 2F

ρAlω2
j

[
sinωj t − tωj cosωj t

]
. (1.168)

Therefore, the response of the string is obtained from (1.156) as

w(x, t) = − F l

T π2

∞∑
j=1

1

j2

[
sinωj t − tωj cosωj t

]
sin

jπx

l
. (1.169)



1.6 Forced vibration analysis 39

1

�2

�1

1

1

�2

�1

1

1

�2

�1

1

1

�2

�1

1

1

�2

�1

1

1

�2

�1

1

t = 0.2l/v

t = 0.4l/v

t = 0.6l/v

t = 0.8l/v

t = 1.0l/v

t = 1.2l/v

T π2w/F l

T π2w/F l

T π2w/F l

T π2w/F l

T π2w/F l

T π2w/F l

x/l

x/l

x/ l

x/ l

x/ l

x/ l

Figure 1.18 Shape of a string at selected times with a traveling point force: v/c = 0.25

For t ≥ tf , we get, following the procedure discussed above, the free response of the string
as

w(x, t) = F l

T π

∞∑
j=1

1

j
cosωj t sin

jπx

l
. (1.170)

The shape of the string at selected times with the force traveling at resonance speed is
shown graphically in Figure 1.19.
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Figure 1.19 Shape of a string at selected times with a point force traveling at resonance speed

1.7 APPROXIMATE METHODS FOR CONTINUOUS SYSTEMS

In many problems of analysis of continuous systems, exact solutions are either not possible
to obtain or become too cumbersome to use when a good estimate is all that is required.
In certain cases, a given system may be close to an exactly solvable system, or a system
with known solutions. In such situations, approximate methods provide sufficiently accurate
results to serve the purpose. In the following, we discuss three approximate methods for
analyzing continuous systems. Other approximate methods can be found in [5], [7], and [6]
(see also Chapter 6).
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1.7.1 Rayleigh method

The determination of the natural frequencies of vibration is of foremost importance in the
analysis of vibratory systems. Rayleigh’s method can be used to calculate or estimate the
lowest (or fundamental) frequency of a self-adjoint (conservative) continuous system.

Consider the example of a bar of length l having a uniform cross-section of area A

undergoing longitudinal vibrations. The total mechanical energy of the system comprising
the kinetic and potential energies is given by

E = T + V = 1

2

∫ l

0
ρAu2

,t (x, t) dx + 1

2

∫ l

0
EAu2

,x(x, t) dx, (1.171)

where ρ is the density of the material and E is Young’s modulus. Since there is no dissi-
pation, the total energy of the system is a constant. Assuming that the system is vibrating
in one of its eigenmodes, we can write the solution as

u(x, t) = U(x) cosωt, (1.172)

where U(x) is an eigenfunction of the system and ω the corresponding natural frequency.
Substituting (1.172) in (1.171) yields on simplification

E =
[
1

2
ω2
∫ l

0
ρAU2 dx

]
sin2 ωkt +

[
1

2

∫ l

0
EAU ′2 dx

]
cos2 ωkt. (1.173)

Now, E given by (1.173) is a constant (i.e., independent of time) for a non-trivial solution
if and only if the amplitudes of the kinetic and potential energy terms are equal, i.e.,

1

2
ω2
∫ l

0
ρAU2 dx = 1

2

∫ l

0
EAU ′2 dx

⇒ ω2 =
∫ l

0 EAU ′2(x) dx∫ l

0 ρAU2(x) dx
:= R[U(x)]. (1.174)

The ratio R[U(x)] defined in (1.174) is known as the Rayleigh quotient. If the eigen-
function Uk(x) is known exactly, one can obtain the exact circular eigenfrequency from
(1.174). However, if the eigenfunction is unknown, one can still use (1.174) to determine
the fundamental circular frequency through the minimization problem

ω2
1 = min

Ũ (x)∈U
R[Ũ(x)] = min

Ũ (x)∈U

∫ l

0 EAŨ ′2(x) dx∫ l

0 ρAŨ 2(x) dx
, (1.175)

where the minimization is performed over the set U of all functions Ũ(x) that satisfy all
the geometric boundary conditions of the problem, and are differentiable at least up to the
highest order of space-derivative present in the energy integral. Such functions are known as
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u(x, t) ρ,E

Figure 1.20 A tapered circular bar

admissible functions, and can be easily constructed using polynomials, trigonometric func-
tions, or other elementary functions. The idea of using (1.174) (or (1.175)) for determining
the fundamental frequency is due to Rayleigh, and is known as Rayleigh’s method. The
validity of (1.175) will be proved later in Section 1.7.2 in a more general context.

Assume the approximated fundamental mode-shape of longitudinal vibration of a fixed–
free bar, as shown in Figure 1.20, in the form

F(x) =
(x

l

)α

, (1.176)

where α is a constant, and will be determined later. Computation of the numerator of the
Rayleigh quotient in (1.174) yields

∫ l

0
EAF ′2(x) dx = EA0

∫ l

0

(
1 − x

2l

)2 (α

l

)2 (x

l

)2α−2
dx

= EA0

l
α24

(2α − 1)2α + 4(2α + 1)

(2α − 1)2α(2α + 1)
, (1.177)

where it is required that α > 1/2 for the definite integral in the above to exist. Further, if
α < 1, then as x → 0, F ′(x) → ∞. The denominator of the Rayleigh quotient yields

∫ l

0
ρAF 2(x) dx = ρA0

∫ l

0

(
1 − x

2l

)2 (x

l

)2α

dx

= ρA0l
(2α + 1)(2α + 2) + 4(2α + 3)

4(2α + 1)(2α + 2)(2α + 3)
. (1.178)

Therefore, the Rayleigh quotient is obtained as

R[F(x), α] = E

ρl

α(2α2 + 3α + 2)(2α2 + 5α + 3)

(2α2 + 7α + 7)(2α − 1)
. (1.179)

We can now minimize R[F(x), α] with respect to α, which yields α ≈ 0.93, and the
fundamental circular frequency as ω1 ≈ 2.08303c/l. The exact solution was obtained in
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Section 1.4.1.2 as ωexact
1 = 2.029c/l. It may be noted that the obtained shape-function F(x)

after minimization cannot be used to determine the strain at the fixed end since F ′(0) = ∞.
However, it gives the frequency estimate within 3% of the exact value.

1.7.2 Rayleigh–Ritz method

Though Rayleigh’s method can be used in principle to determine all the natural frequencies
of a vibratory system (see Section 6.1.3), it is most convenient for determining the funda-
mental frequency. In the following, we discuss an extension of Rayleigh’s idea using an
expansion technique due to Ritz. This method, usually known as the Rayleigh–Ritz method,
can be used to determine the natural frequencies of a continuous system.

We consider the expansion of the mode-shape in terms of N linearly independent admis-
sible functions Ui(x), i = 1, 2, . . . , N in the form

U(x) =
N∑

i=1

αiUi(x), (1.180)

where αi are unknown constants which are to be chosen suitably to minimize the Rayleigh
quotient. Substituting (1.180) in the Rayleigh quotient (1.174) leads to

ω2 =
∑N

i,j=1 αiαjmij∑N
i,j=1 αiαjkij

= αTMα

αTKα
, (1.181)

where

mij =
∫ l

0
EAU′

iU
′
j dx and kij =

∫ l

0
ρAUiUj dx, (1.182)

α is the vector of the αi , and T in the superscript indicates transposition. Now the mini-
mization condition of the Rayleigh quotient can be written as

∂

∂αp

(
αTMα

αTKα

)
= 0, p = 1, 2, . . . , N,

⇒ αTMα

(
∂αTKα

∂α

)
− αT Kα

(
∂αTMα

∂α

)
= 0,

⇒ 2Kα − 2

(
αTKα

αTMα

)
Mα = 0,

⇒ (K − ω2M)α = 0 (using (1.181)). (1.183)

Thus, it is observed that the extremization condition for Rayleigh’s quotient (formed using
a finite expansion) for a continuous system leads to the eigenvalue problem of a finite-
dimensional system. It will be shown in Section 1.7.3 that this finite-dimensional system is



44 Vibrations of strings and bars

actually the discretized version of the original continuous system. The eigenvalue problem
(1.183) can now be solved to determine the first N approximate eigenvalues and eigen-
functions (from (1.180)) of the system. It must be mentioned, however, that the error is
not uniform over all the eigenvalues. Convergence of the desired eigenvalues needs to be
checked by increasing the number of terms in the expansion (1.180).

1.7.3 Ritz method

In this method, Ritz’s idea of solution expansion is used in the variational formulation of
system dynamics to obtain the discretized equations of motion of a continuous system.

Let us consider the example of a bar of varying cross-section in longitudinal vibration.
The variational formulation of the problem can be stated in the form of Hamilton’s principle
as

δ

∫ t2

t1

1

2

∫ l

0

(
ρAu2

,t − EAu2
,x

)
dx dt = 0. (1.184)

Consider an approximate solution of this system in the form

u(x, t) =
N∑

k=1

pk(t)Hk(x) = HTp, (1.185)

where H = [H1(x), . . . , HN(x)]T is a vector of N linearly independent admissible functions
and p = [p1(t), . . . , pN(t)]T is a vector of the corresponding unknown coordinate functions.
Substituting (1.185) in (1.184), we get

δ

∫ t2

t1

1

2

∫ l

0

[
ρAṗTHHTṗ − EApTH′H ′Tp

]
dx dt = 0,

⇒ δ

∫ t2

t1

1

2

[
ṗTMṗ − pTKp

]
dt = 0, (1.186)

where

M =
∫ l

0
ρAHHT dx, and K =

∫ l

0
EAH′H ′T dx. (1.187)

One can easily observe that (1.186) represents the variational formulation of dynamics of a
discrete system with p as the vector of generalized coordinates. Therefore, one can directly
use Lagrange’s equations to obtain the discrete equations of motion

Mp̈ + Kp = 0. (1.188)
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It may be observed from (1.187) that both M and K are symmetric. They are also positive
definite since ρA and EA are positive functions, and the admissible functions chosen in the
expansion (1.185) are linearly independent.

Consider the example of longitudinal vibration of the fixed–free tapered bar shown in
Figure 1.20. We can choose the admissible functions as

Hj(x) = x

l

(
1 − x

2l

)j−1
, j = 1, 2, . . . , N, (1.189)

since the geometric boundary conditions, Hj(0) = 0, are exactly satisfied. However, as can
be checked, the natural boundary conditions, H ′

j (l) = 0, are not satisfied. Considering only
two admissible functions in the expansion (1.185), and following the steps discussed above,
(1.188) takes the form

ρA0l




2

15

7

80

7

80

33

560



{

p̈1

p̈2

}
+ EA0

l




7

12

17

48

17

48

31

120



{

p1

p2

}
= 0. (1.190)

Assuming a modal solution p(t) = keiωt , (1.190) yields the eigenvalue problem

[−ω2M + K]k = 0, (1.191)

from which the characteristic equation is obtained as

81

7
ω4 − 394

c2

l2
ω2 + 1455

c2

l2
= 0. (1.192)

The first two approximate circular natural frequencies of longitudinal vibration are obtained
from (1.192) as ωR

1 = 2.053c/l and ωR
2 = 5.462c/l. The exact circular eigenfrequencies

were obtained in Section 1.4.1.2 as ωexact
1 = 2.029c/l, and ωexact

2 = 4.913c/l. The eigen-
vectors are obtained from (1.191) as

k1 =
{

1.0
1.475

}
and k2 =

{
1.0

−1.505

}
. (1.193)

Using these eigenvectors, along with (1.189), in (1.185), we get the approximate eigenfunc-
tions as

U1(x) = HTk1 = x

l
+ 1.457

x

l

(
1 − x

2l

)
(1.194)

and

U2(x) = HTk2 = x

l
− 1.505

x

l

(
1 − x

2l

)
. (1.195)
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Figure 1.21 Comparison of first two mode-shapes from Ritz method and exact solution (mode-shapes
normalized such that

∫ l

0 ρAU2
i dx = ∫ l

0 ρA dx)

The exact and approximate eigenfunctions are compared in Figure 1.21. It may be observed
from the figure that the first mode-shape is determined reasonably accurately. However,
the second mode-shape is in considerable error. For a better approximation of the sec-
ond mode-shape, one must take more terms in the expansion (1.185). In general, the
error in determination of the eigenfrequencies is less than that in the determination of the
eigenfunctions. Further, the eigenfrequencies are always overestimated. In other words, we
obtain an upper bound on the eigenfrequencies. This is expected since we are approx-
imating an infinite degrees of freedom system by a finite degrees of freedom system,
thereby increasing the stiffness of the system. The greatest advantage of the Ritz method
is that only admissible functions are required to be constructed for the solution expan-
sion.

When there are external forces, the variational principle (1.184) is modified to (see
Appendix A)

∫ t2

t1

∫ l

0

[
δ

(
1

2
ρAu2

,t − 1

2
EAu2

,x

)
+ q(x, t)δu

]
dx dt = 0, (1.196)

where q(x, t) is the generalized force. Substituting the solution form (1.185) in (1.196)
and following the procedure presented in this section, we obtain the discretized equation of
motion with forcing as

Mp̈ + Kp = f(t),

where

f(t) =
∫ l

0
q(x, t)H(x)dx.
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1.7.4 Galerkin method

Consider the dynamics of a continuous system governed by the equation of motion

µ(x)u,tt + K[u] = 0. (1.197)

Let us construct an approximate solution of u(x, t) in the form

u(x, t) =
N∑

k=1

pk(t)Pk(x) = PTp, (1.198)

where p = [p1(t), . . . , pN(t)]T, P = [P1(x), . . . , PN(x)]T, and Pk(x) satisfy all the geomet-
ric and natural boundary conditions of the problem, and are differentiable at least up to the
highest order of space-derivative in the differential equation of motion. Such functions are
known as comparison functions. It is clear that the approximate solution (1.198) will also
satisfy all the boundary conditions, but in general will not satisfy (1.197) identically. Thus,
there remains a residue defined by

e(x, t) := µ(x)PTp̈ + K[PT]p, (1.199)

where K[PT] = (K[P1(x)], . . . ,K[PN(x)]). Since we are now searching for an approximate
solution in a finite N -dimensional space, we can force the residue to have a zero projection
on the chosen basis functions Pj (x), j = 1, 2, . . . , N , of this space. Therefore, we put

〈e(x, t), Pj (x)〉 :=
∫ l

0
e(x, t)Pj (x) dx = 0, j = 1, 2, . . . , N. (1.200)

Substituting the expression of the residue from (1.199) in (1.200), and writing in a compact
form, we have

Mp̈ + Kp = 0, (1.201)

where the elements of the matrices M and K are obtained as

M =
∫ l

0
µ(x)PPT dx and K =

∫ l

0
PK[PT] dx. (1.202)

It is evident that M is a symmetric matrix. If K[·] is self-adjoint, K is also a symmetric
matrix, as can be easily checked. The equations (1.188) (obtained from the Ritz method)
and (1.201) look similar. However, they differ in the computation of the matrix K.

Galerkin’s method can also be understood from the variational principle as follows.
Consider once again the example of longitudinal vibration of a bar. The variational statement
can be simplified and rewritten from (1.37) as

−
∫ t2

t1

EAu,xδu
∣∣l
0 dt −

∫ t2

t1

∫ l

0
[ρAu,tt − (EAu,x),x] δu dx dt = 0. (1.203)
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Let us assume the solution of u(x, t) in the form (1.198). Since P satisfies all the boundary
conditions, the assumed solution makes the boundary terms in (1.203) identically zero. The
quantity in square brackets in the second term in (1.203) yields the residue in the form
(1.199). Writing the variation of u(x, t) from (1.198) as

δu(x, t) = PTδp = δpTP, (1.204)

one can rewrite (1.203) in the form

∫ t2

t1

∫ l

0
δpTPe(x, t) dx dt = 0

or

∫ t2

t1

δpT

[∫ l

0
Pe(x, t) dx

]
dt = 0. (1.205)

Thus, the term in the square brackets in (1.205) must vanish identically for the above
condition to hold for an arbitrary variation δp. This again yields the condition (1.200),
and the discretized equations (1.201). Since Galerkin’s method works directly with the
differential equation of motion, it offers certain advantages over the Ritz method. It is evident
that one can in principle handle any kind of non-conservative and non-potential forces (non-
self-adjoint problems) with Galerkin’s method. However, generation of the comparison
functions as required in Galerkin’s method may be quite tedious for certain problems.
Discretization of certain non-self-adjoint problems has been discussed in [6].

We consider the example of longitudinal vibration of the fixed–free tapered bar shown
in Figure 1.20 once again. Two comparison functions are chosen as

Pk(x) =
(
1 − x

l

)k+1 − 1, k = 1, 2. (1.206)

It can be easily checked that these functions satisfy both the geometric and the natural
boundary conditions of the problem. Following the steps discussed in this section, (1.201)
takes the form

ρA0l




33

140

297

1120

297

1120

1517

5040



{

p̈1

p̈2

}
+ EA0

l




31

40

49

40

49

40

213

140



{

p1

p2

}
= 0. (1.207)

Assuming the solution in the form p = keiωt the eigenvalue problem is solved, and the
circular eigenfrequencies are obtained as ωG

1 = 2.2029c/l, and ωG
2 = 5.258c/l. As com-

pared to the eigenfrequencies obtained from the Ritz method, these are closer to the exact
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eigenfrequencies (see Section 1.4.1.2). This is because, in the case of Galerkin’s method,
the eigenfunctions satisfy all the boundary conditions of the problem. The eigenvectors are
obtained as

k1 =
{

1.0
−0.472

}
and k2 =

{
1.0

−0.898

}
, (1.208)

and we get the approximate eigenfunctions as

U1(x) = x

l

(x

l
− 2
)

+ 0.472
x

l

(
x2

l2
− 3

x

l
+ 3

)
(1.209)

and

U2(x) = x

l

(x

l
− 2
)

+ 0.898
x

l

(
x2

l2
− 3

x

l
+ 3

)
. (1.210)

A comparison of the exact and the approximate eigenfunctions obtained in (1.209)–(1.210)
is shown in Figure 1.22. On comparing the results in Figure 1.21 and Figure 1.22 it can
be observed that Galerkin’s method yields better results than the Ritz method. However, it
must be remembered that the eigenfunctions satisfy different conditions in the two methods.
As mentioned before, the difficulty of Galerkin’s method lies in the construction of the
comparison functions.

In the presence of an external forcing q(x, t) in (1.197), Galerkin’s method yields

Mp̈ + Kp = f(t),

where M and K are defined by (1.202), and

f(t) =
∫ l

0
q(x, t)P(x)dx.
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Figure 1.22 Comparison of first two mode-shapes from Galerkin method and exact solution (mode-
shapes normalized such that

∫ l

0 ρAU2
i dx = ∫ l

0 ρA dx)



50 Vibrations of strings and bars

1.8 CONTINUOUS SYSTEMS WITH DAMPING

All vibratory systems experience energy dissipation, a phenomenon commonly known as
damping. Damping forces may arise from external interactions of the system (external damp-
ing), or from within the system (internal damping). Damping from aerodynamic drag due to
viscosity is the most common example of external damping, while internal damping occurs
due to internal friction between the molecular layers as a result of differential straining. In
these damping mechanisms, mechanical energy is converted irreversibly into thermal energy
which flows out of the system. In Chapter 2, we will consider a damping mechanism in
which energy is lost by a system through radiation.

Three damping models, namely viscous damping, Coulomb damping (or dry friction),
and structural damping (or hysteretic damping) are usually used for engineering purposes.
The viscous damping model, which is the most commonly used model, relates the damping
forces with the time rate of change of the field variable, or its spatial derivatives. We will
use only this model in our discussions below.

1.8.1 Systems with distributed damping

Consider the longitudinal oscillations of a uniform fixed–free bar. We assume that the
internal damping in the material is such that the stresses are a linear function of both the
strain and the strain rate. Thus, (1.14) is modified to

σx(x, t) = Eεx(x, t) + dIεx,t (x, t) = Eu,x(x, t) + dIu,xt (x, t), (1.211)

where dI > 0 is the coefficient of internal damping in the material. We also assume a
distributed external damping force of the usual form −dEu,t (x, t), where dE > 0 is the coef-
ficient of external damping. Then, proceeding similarly to what was done in Section 1.1.2,
one obtains the equation of motion of the longitudinal dynamics of a bar with internal and
external damping as

ρAu,t t − EAu,xx − dIAu,xxt + dEu,t = 0, (1.212)

instead of (1.15). The boundary conditions are not affected by these damping terms. One
can define a damping operator

D[·] =
(

−dIA
d2

dx2
+ dE

)
[·], (1.213)

and represent (1.212) in a compact form as

ρAu,t t + D[u,t ] + K[u] = 0, (1.214)

where K[·] = −EA[·],xx .
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Multiplying both sides of (1.212) by u,t and integrating over the domain of the bar yields

∫ l

0
(ρAu,tu,tt − u,tEAu,xx − u,tdIAu,xxt + dEu2

,t ) dx = 0

⇒ [
u,tEAu,x + u,tdIAu,xt

]l
0

+
∫ l

0

[(
1

2
ρAu2

,t

)
,t

+ u,xtEAu,x + dIAu2
,xt + dEu2

,t

]
dx = 0. (1.215)

Using the fixed–free boundary conditions, one can rewrite (1.215) as

d

dt

∫ l

0

(
1

2
ρAu2

,t + 1

2
EAu2

,x

)
dx = −

∫ l

0
(dIAu2

,xt + dEu2
,t ) dx. (1.216)

The integral on the left-hand side in (1.216) can be easily recognized to be the total mechan-
ical energy of the bar. Since the right-hand side is always negative, (1.216) implies that the
time rate of change of mechanical energy of the bar is always negative, i.e., mechanical
energy monotonically decreases with time.

Consider now a system represented by

µ(x)u,tt + D[u,t ] + K[u] = 0. (1.217)

We explore the possibility of a solution of (1.217) in the form

u(x, t) =
∞∑

k=1

pk(t)Uk(x), (1.218)

where the shape-functions Uk(x) are chosen to be the same as the eigenfunctions for the
undamped case, i.e., they are solutions of the self-adjoint eigenvalue problem

−λµ(x)U + K[U ] = 0, (1.219)

with appropriate boundary conditions. We will assume that these eigenfunctions are orthonor-
mal with respect to µ(x), i.e., 〈µ(x)Uj , Uk〉 = δjk . Substituting (1.218) in (1.217) and taking
the inner product with Uj(x) yields

p̈j +
∞∑

k=1

djkṗk + λjpj = 0, j = 1, 2, . . . , ∞ (1.220)

where

djk = 〈µ(x)(−dIAUk,xx + dEUk), Uj 〉. (1.221)
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It is evident that, in general, the damping matrix D = [djk] will not be diagonal. Therefore,
all the coordinates pj of the system are coupled through D.

Consider the special situation when

D[Uk(x)] = dkµ(x)Uk(x), (1.222)

where dk are constants. Then, it can be easily checked that the resulting damping matrix
D is diagonal. It can be observed that (1.222) represents an eigenvalue problem for the
damping operator similar to (1.219). It then follows that if the operators D[·] and K[·] have
the same eigenfunctions, the resulting damping matrix D is diagonal. We can determine the
condition for the two operators to have the same eigenfunctions as follows. From (1.222),
one can write

K[µ−1(x)D[Uk(x)]] = K[dkUk(x)]

= dkλkUk(x) (using (1.219)). (1.223)

Similarly, from (1.219), it follows that

D[µ−1(x)K[Uk(x)]] = D[λkUk(x)]

= λkdkUk(x) (using (1.222)). (1.224)

From (1.223) and (1.224), we can conclude that when K[·] and D[·] have the same eigen-
functions they satisfy

K[µ−1(x)D[Uk]] − D[µ−1(x)K[Uk]] = 0, k = 1, 2, . . . , ∞
⇒ (K[µ−1(x)D] − D[µ−1(x)K])[·] = 0, (1.225)

i.e., the two operators commute with respect to µ−1(x). The converse of this result can also
be easily established. Let the two operators commute, i.e., (1.225) is satisfied. From (1.219),
one can easily obtain

−λD[U ] + D[µ−1(x)K[U ]] = 0

⇒ −λD[U ] + K[µ−1(x)D[U ]] = 0 (using (1.225),

or

−λµ(x)V + K[V ] = 0, (1.226)

where

V = µ−1(x)D[U ]. (1.227)
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It is evident that if V satisfies (1.226), in view of (1.219) it must be true that V = βU for
some constant factor β. Hence, from (1.227) we have

D[U ] = βµ(x)U,

i.e., U must also be an eigenfunction of the damping operator D[·]. Therefore, (1.225) is the
necessary and sufficient condition for K[·] and D[·] to have the same eigenfunctions, and
hence for the damping matrix D to be diagonal. It is not difficult to show that the condition
(1.225) implies that the operator K[µ−1(x)D[·]] is self-adjoint.

One clear advantage obtained if D[·] satisfies (1.225) is that the discretized equations of
motion are completely decoupled when the solution of the damped system is expanded in
terms of the eigenfunctions of the undamped system. This decoupling allows us to solve
the discretized equations in an easy manner. One special choice of the damping operator
for which the commutation holds is

D[·] = βµ(x) + γK[·], (1.228)

where β and γ are arbitrary constants. Such a damping is usually known as classical damping
or proportional damping. The condition (1.228) is satisfied in the case of the damped bar
described by (1.212). Therefore, the differential equation for the j th modal coordinate of
the bar is given by

p̈j + dj ṗj + λjpj = 0. (1.229)

which can be easily solved for pj (t). Finally, the complete solution of the longitudinal
vibration of the bar is obtained from (1.218).

1.8.2 Systems with discrete damping

In many practical situations, a continuous system may interact with discrete damping ele-
ments. For example, certain support points of a structure may provide substantially higher
damping to the structure than its internal damping. In that case, the damping can be
considered to be due to discrete dampers at such support points. Discrete damper elements
are also routinely attached to structures for vibration control. Here we consider two specific
cases, and discuss the effects of discrete damping.

Consider a uniform bar fixed at one end, and having an external damper at the other end,
as shown in Figure 1.23. The equation of motion can be written as

u,tt − c2u,xx = 0, (1.230)

while the boundary conditions are

u(0, t) = 0, and EAu,x(l, t) = −du,t (l, t). (1.231)
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Figure 1.23 A uniform bar with boundary damping

Assuming a solution form

u(x, t) = U(x)est , (1.232)

we obtain the eigenvalue problem

U ′′ − s2

c2
U = 0, (1.233)

with

U(0) = 0 and U ′(l) = − sd

EA
U(l). (1.234)

Consider the general solution of (1.233) in the form

U(x) = Besx/c + Ce−sx/c, (1.235)

where B and C are constants of integration. Substituting this solution in the boundary
conditions (1.234) yields on simplification


 1 1

eγ (1 + a) −e−γ (1 − a)


{ B

C

}
= 0, (1.236)

where γ = sl/c, and a = cd/EA. The condition of non-triviality of the solution of (1.236)
yields the characteristic equation as

e2γ = a − 1

a + 1
, (1.237)

which can be solved for γ , and hence, the eigenvalues s of the system for a �= 1. When
a = 1, which occurs for the special value of boundary damping d = EA/c, it is observed
from (1.237) that no eigenvalue exists. In this case, there is no solution of the assumed form
(1.232). This will be discussed further in Chapter 2.
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When a �= 1, one can rewrite (1.237) using the definition γ := α + iβ as

e2(α+iβ) = a − 1

a + 1
,

⇒ α = 1

2
ln

∣∣∣∣a − 1

a + 1

∣∣∣∣
and

βk =
{

(2k − 1)π/2, 0 ≤ a < 1
kπ, a > 1

k = 1, 2, . . . , ∞.

It can be easily checked that, when d = 0, this gives the eigenvalues of a fixed–free bar,
while d → ∞ yields the eigenvalues of a fixed–fixed bar. It is surprising to note that all the
modes have the same decay rate, since α does not depend on k. Further, the transition in the
imaginary part of the eigenvalues is discrete as a crosses unity. The locus of an eigenvalue
with a as the parameter is depicted in Figure 1.24.

Consider next the case of a taut string with a discrete external damper, as shown in
Figure 1.25. The equation of motion of the system can be written as

ρAw,tt + dw,t δ(x − xd) − T w,xx = 0, (1.238)

where xd is the location of the damper. Let us expand the solution in terms of the eigen-
functions of an undamped string as

w(x, t) =
∞∑

k=1

pk(t) sin
kπx

l
. (1.239)

Substituting this solution in (1.238) and taking the inner product with sin jπx/l yields the
j th modal coordinate equation as

p̈j +
∞∑

k=1

(
d

ρA
sin

kπxd

l
sin

jπxd

l

)
ṗk + T

ρA
pj = 0. (1.240)

a = 0

a = 1

a → ∞
kπ

(2k − 1)π/2

α

β

Figure 1.24 Locus of an eigenvalue with a as a parameter for a bar with boundary damping
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Figure 1.25 A string with discrete damping

It may be observed here that the damping matrix is positive semi-definite with rank one.
Further, it couples all the modes of the undamped system. When xd is chosen such that
jxd/ l is never an integer for any j , it can be shown that all the modes are damped. In
other words, the total mechanical energy of the string decreases monotonically in time. In
this case, the damping is called pervasive. Such a damper location is most desirable when
we want to damp any arbitrary string motion. In the case where jxd/ l is an integer for
some j , the damping is not pervasive, and certain modes remain undamped since one of
the nodes of such modes is at xd . For example, if xd = l/3, the 3rd, 6th, . . . modes will
remain undamped.

1.9 NON-HOMOGENEOUS BOUNDARY CONDITIONS

In all the preceding discussions, the boundary conditions were assumed to be homogeneous.
However, there are situations where they are not. Non-homogeneity in boundary conditions
occurs when either a motion or a force is prescribed at a boundary.

Consider a sliding–fixed string with a specified motion at the left boundary, as shown in
Figure 1.26. The equation of motion and boundary conditions can be represented as

w,tt − c2w,xx = 0, (1.241)

w(0, t) = h(t), and w(l, t) ≡ 0, (1.242)

l

xh(t)

z, w
ρ,A, T

Figure 1.26 A string with a specified boundary motion
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where h(t) is an arbitrary function of time. For such non-homogeneous boundary conditions,
the solution cannot be directly expanded in a series of eigenfunctions of a problem with
homogeneous boundary conditions. However, the methods of integral transforms (such as
Laplace transforms) may still be applicable. Alternatively, one may also convert a problem
with non-homogeneous boundary conditions to an equivalent problem with homogeneous
boundary conditions and an appropriate forcing in the equation of motion to take care of
the boundary non-homogeneity. Once this is done, the modal expansion method becomes
applicable. In the following, we shall pursue this method.

For the problem (1.241)–(1.242), let

w(x, t) = u(x, t) + h(t)η(x), (1.243)

where u(x, t) and η(x) are unknown functions. Substituting this form in the boundary
conditions (1.242), we have

w(0, t) = u(0, t) + h(t)η(0) = h(t) and w(l, t) = u(l, t) + h(t)η(l) = 0.

If we let

u(0, t) ≡ 0 and u(l, t) ≡ 0, (1.244)

then η(x) must be chosen such that η(0) = 1 and η(l) = 0. The simplest choice is then
η(x) = 1 − x/l. Therefore, from (1.243),

w(x, t) = u(x, t) + h(t)
(
1 − x

l

)
.

Substituting this in (1.241), one can write the equation of motion of the string using the
field variable u(x, t) as

u,tt − c2u,xx = −
(
1 − x

l

)
ḧ(t),

along with the homogeneous boundary conditions (1.244). This transformed problem can
be easily identified as a fixed–fixed string with distributed forcing, and can be solved using
the modal expansion method.

1.10 DYNAMICS OF AXIALLY TRANSLATING STRINGS

Axially translating elastic continua are found in many situations of practical interest such
as traveling threadlines in looms, rolling of rods in rolling mills, and traveling ropes in
rope-ways. They exhibit very interesting dynamic characteristics which are not observed
in non-translating continua. In this section, we will discuss the dynamics of a taut string
translating along its length.
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Figure 1.27 A translating string

1.10.1 Equation of motion

Consider a string under a tension T between two fixed supports, and translating along
its length at a constant speed v, as shown in Figure 1.27. Let w(x, t) denote the string
displacement field variable which will be assumed to be small such that w,x(x, t) � 1.
Then, the Lagrangian of the system can be written as

L = 1

2

∫ l

0

[
ρA[(w,t + vw,x)

2 + v2] − T w2
,x

]
dx,

where ρ is the density and A is the area of cross-section of the string. Following the
procedure discussed in Appendix A, the equation of motion is obtained as

ρA[w,tt + 2vw,xt + v2w,xx] − T w,xx = 0

or

w,tt + 2vw,xt − (c2 − v2)w,xx = 0 (1.245)

where c2 = T /ρA, along with the boundary conditions

w(0, t) ≡ 0 and w(l, t) ≡ 0. (1.246)

It may be mentioned here that the term 2vw,xt in (1.245) is a result of Coriolis acceleration
experienced by a string element moving at a speed v in a frame at the current location of
the element and rotating at an angular speed w,xt . This term is also known as the gyroscopic
term for a reason that will become clear later. On the other hand, the term v2w,xx is due to
the centripetal acceleration experienced by the element in the same rotating frame due to
the tangential velocity v on a path of approximate curvature w,xx .

1.10.2 Modal analysis and discretization

The next step is to study the free vibrations of a translating string. It can be easily verified
that Bernoulli’s solution procedure discussed in Section 1.3 cannot be applied in this case
since the solution of (1.245) is non-separable. Let us assume a modal solution of the form

w(x, t) = R[W(x)eiωt ], (1.247)
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where W(x) is the eigenfunction, ω is the circular frequency, and R[·] denotes the real part.
Substituting this solution form in (1.245) yields on rearrangement, the eigenvalue problem
for the traveling string as

−(c2 − v2)W ′′ + 2iωvW ′ − ω2W = 0, (1.248)

W(0) = 0, and W(l) = 0. (1.249)

It may be noted that the differential operator in the eigenvalue problem is not self-adjoint.
Further, it is evident from (1.248) that the eigenfunction W(x) is complex. Substituting the
solution form W(x) = Beikx in (1.248), one obtains

(c2 − v2)k2 − 2ωvk − ω2 = 0

⇒ k = − ω

c + v
or k = ω

c − v
. (1.250)

Using (1.250), the general solution of (1.248) can be written as

W(x) = De−iωx/(c+v) + Eeiωx/(c−v) (1.251)

where D and E are arbitrary constants. Using the boundary conditions (1.249), one obtains


 1 1

e−iωl/(c+v) eiωl/(c−v)


{ D

E

}
= 0. (1.252)

For non-trivial solution of (D, E)T, we must have

eiωl[2c/(c2−v2)] − 1 = 0, (1.253)

which is the characteristic equation for the traveling string. Thus, the eigenvalues are
obtained as

ωn = nπ

cl
(c2 − v2), n = 1, 2, . . . , ∞. (1.254)

The variation of the first three eigenvalues with speed of travel is shown in Figure 1.28. It
is interesting to note that all the eigenvalues are zero when v = c, i.e., when the translation
speed equals the wave speed in the string. Thus, when v = c, the string loses its stiffness
completely and becomes neutrally (or marginally) stable. Hence, this speed is known as
the critical speed of translation of the string. Next, the eigenfunctions are obtained using
(1.251) and (1.252) as

Wn(x) = Dne
inπvx/cl sin

nπx

l
, (1.255)
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Figure 1.28 Variation of eigenvalues with speed of a translating string

where Dn is an arbitrary complex constant. Finally, the general solution of the string is
obtained using (1.247) as

w(x, t) =
∞∑

n=1

(
Bn cos

[nπ

cl

(
vx + (c2 − v2)t

)]

+Cn sin
[nπ

cl

(
vx + (c2 − v2)t

)])
sin

nπx

l
, (1.256)

where we have put Dn = Bn − iCn, and Bn and Cn are arbitrary real constants which
can be determined from the initial conditions. It may be noted that the solution (1.256) is
non-separable in time and space. Since the eigenvalue problem of a traveling string is not
self-adjoint, the determination of orthogonality relations (more appropriately biorthogonality
relations) among the eigenfunctions is more involved (see [8]), and will not be pursued here.
More discussions on non-self-adjoint eigenvalue problems can also be found in [7]. In certain
problems of traveling strings, it may be convenient to use the method of Laplace transforms
(see Exercise 1.15).

Consider a one-term complex solution of the string in terms of the eigenfunction (1.255)
as

w(x, t) = zn(t)Wn(x), (1.257)

where zn(t) = zn1(t) + izn2(t) is the nth complex modal coordinate. Substituting (1.257) in
the equation of motion (1.245), multiplying by W ∗

n (x) (the complex conjugate of Wn(x)),
and integrating over the domain of the string yields

z̈n + i
2nπv2

cl
żn − (c4 − v4)

n2π2

c2l2
zn = 0

⇒ z̈ + Gż + Kz = 0, (1.258)
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where z = (zn1, zn2)
T,

G =
[

0 −2v2nπ/cl

2v2nπ/cl 0

]
,

and

K =
[

(c4 − v4)n2π2/c2l2 0
0 (c4 − v4)n2π2/c2l2

]
.

It is to be noted that G is skew-symmetric, i.e., GT = −G. The pair of ordinary differential
equations in (1.258) represents a discrete gyroscopic system corresponding to the nth mode.
It may be observed that the gyroscopic effect is due to the presence of the term 2vw,xt

in the equation of motion (1.245). An analysis of such discrete gyroscopic systems can be
found in [9] (also see [7], and [10]).

1.10.3 Interaction with discrete elements

An ideal string, interacting with a discrete element or excited by a point force, can have a
slope discontinuity at the interaction point due to its inability to transmit or resist moment.
In the case of a traveling string, such a slope discontinuity at the interaction point brings
in additional force terms due to abrupt change of momentum of the string in the transverse
direction. As is well known in dynamics of mass flow systems (see [11]), a force term of
the form

Ff = ṁv, (1.259)

where ṁ is the mass flow rate and v is the absolute velocity vector of the flow, appears in
the equation of motion of such systems. In the following, we consider such a situation for
a traveling string.

Let us consider a traveling string of length l interacting frictionlessly with a discrete
spring at a location x = a, as shown in Figure 1.29. One can then write the equation of
motion of the strings for the two regions separately as

ρAw,tt + 2ρAvw,xt − (T − ρAv2)w,xx = 0, 0 ≤ x < a, (1.260)

and

ρAw,tt + 2ρAvw,xt − (T − ρAv2)w,xx = 0, a < x ≤ l, (1.261)

where T is the tension in the string, which is the same in both the regions due to the
assumption of no friction at the string–spring interface. The fixed end boundary conditions
are

w(0, t) ≡ 0 and w(l, t) ≡ 0. (1.262)
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Figure 1.29 Traveling string interacting with a spring

At the point of attachment of the spring, we have the displacement condition

w(a−, t) = w(a+, t). (1.263)

The transverse force condition at the string–spring interface consists of terms due to
the tension in the two parts of the string, the extension of the spring, and the force
due to mass flow. To determine the latter expression, we consider an infinitesimal con-
trol volume fixed to the spring at the interface point, and write down the net transverse
force due to momentum flowing in from the region x < a (ṁ positive), and momen-
tum flowing out into the region x > a (ṁ negative). With the help of (1.259), one can
write

Ff = ρAv(w,t + vw,x)
∣∣
x=a− − ρAv(w,t + vw,x)

∣∣
x=a+

⇒ Ff = ρAv2[w,x(a
−, t) − w,x(a

+, t)] (using (1.263)), (1.264)

where Ff is the net transverse force on the spring due to momentum flow. It may be
mentioned that the force −Ff is responsible for changing the momentum of the string in
the transverse direction. Now, one can write the force condition at the interaction point
as

kw(a, t) = (ρAv2 − T )[w,x(a
−, t) − w,x(a

+, t)], (1.265)

where k is the stiffness of the spring. The partial differential equations (1.260)–(1.261)
along with the fixed–fixed boundary conditions, and matching conditions (1.263) and (1.265)
completes the formulation of the problem of a traveling string interacting with a spring.

EXERCISES

1.1 Determine the eigenfrequencies and mode-shapes of transverse vibration of a taut string with a
discrete mass, as shown in Figure 1.30. Discuss the cases when m/ρAl → ∞, and m/ρAl → 0.
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Figure 1.30 Exercise 1.1

1.2 A homogeneous bar is fixed at the left end, and sprung at the right end with a spring constant k,
as shown in Figure 1.31.

(a) Using the variational principle, derive the equation of motion, and the boundary conditions of
the system.

(b) For k = EA/l, determine the first two eigenfrequencies and the corresponding mode-shape-
functions.

(c) Take l = 2m, k = 5000 N/m, m = 5 kg, and solve for two values of m/ρAl = 0.5 and 2.

l
x

u(x, t)

k

ρ,A,E

Figure 1.31 Exercise 1.2

1.3 Determine the eigenfrequencies and eigenfunctions for longitudinal vibrations of the system shown
in Figure 1.32.

l l
x

u(x, t)

k

ρ,A,E ρ,A,E

Figure 1.32 Exercise 1.3

1.4 A homogeneous uniform bar is kept under tension T with a string, as shown in Figure 1.33. If
the string suddenly snaps, determine the response of the bar.

l

u(x, t)

x

T
ρ,A,E

Figure 1.33 Exercise 1.4
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1.5 The tapered bar shown in Figure 1.34 has a cross-sectional area that varies as A(x) = A0(1 −
x/2l)2. The bar is excited at the center by a concentrated harmonic force F(t) = F0 cos �t , as shown
in the figure.

(a) Determine the exact solution of forced vibration of the bar.
(b) Determine the location of maximum normal stress in the bar.

x

u(x, t)

l/2l/2

A(x)
A0

F(t)

ρ,E

Figure 1.34 Exercise 1.5

1.6 For the systems shown in Figure 1.35, how should the parameters k and d be chosen so that the
vibration of the mass m subsides the fastest? Discuss the result when m → 0.

l
x

u(x, t)

m k

d

ρ,A,E

Figure 1.35 Exercise 1.6

1.7 A uniform string with an end-mass m is suspended, as shown in Figure 1.36.
(a) Determine the equation of small-amplitude motion of the string.
(b) Derive the exact characteristic equation, and determine the first three circular eigenfrequencies

and the corresponding mode-shapes.

1.8 Using Galerkin’s method, discretize the equation of motion of a hanging string. Use the compar-
ison functions as Pi(x) = xi , i = 1, 2, . . . , N . For N = 2 determine the eigenfrequencies from the
discretized system and compare with the exact solutions.

1.9 A homogeneous bar of circular cross-section with linearly varying radius is shown in Figure 1.37.
Using Rayleigh’s quotient, estimate the fundamental circular frequency of the bar in longitudinal
vibration for the following choices of admissible functions:

(a) First eigenfunction for longitudinal vibration of a bar with constant cross-section.
(b) Admissible functions of the form Hk(x) = (x/l)k , where k is an integer. What value of k yields

the lowest value of the fundamental frequency?
(c) Using the static deflection function of a vertically hanging bar.
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Figure 1.37 Exercise 1.9

1.10 Show that the initial value problem

µ(x)w,tt + K[w] = 0, w(x, 0) = w0(x), and w,t (x, 0) = v0(x),

can be converted to the forced problem

µ(x)w,tt + K[w] = µ(x)w0(x)δ̇(t) + µ(x)v0(x)δ(t), w(x, 0) = 0, and w,t (x, 0) = 0.

1.11 A sliding–fixed string of length l is excited by a uniformly force q(x, t) = Q0 cos �t , as shown
in Figure 1.38. Determine the steady-state response of the string using: (a) Eigenfunction expansion
method, and (b) Green’s function method.

1.12 A bar of length l and varying cross-sectional area given by A(x) = A0(1 − x/2l)2 is fixed and
x = 0 and free at x = l. The bar is harmonically forced by F(t) = F0 sin �t at x = l/2. Using the
admissible functions Hk(x) = (x/l)(1 − x/2l)k , k = 1, 2, . . . , N , obtain the discretized equations of
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motion of the bar. With N = 4, determine the location and magnitude of the maximum response
amplitude.

l

x

z, w q(x, t)

ρ,A, T

Figure 1.38 Exercise 1.11

1.13 Determine the response of the system shown in Figure 1.39 to a harmonic force F(t) = B0 cos �t .

l
x

u(x, t)

F (t)

y(t)

m

k

ρ,A,E

Figure 1.39 Exercise 1.13

1.14 A fixed–fixed string of length l carries a bead of mass m moving at a constant speed v. Determine
the response of the string (a) during the transit of the bead, and (b) after the bead has left the span of
the string. (One may refer to [12] for an alternative approach using methods described in Chapter 2.)

1.15 An axially translating string with an impulsive transverse point force at x = x is described by
the equation of motion

ρA[w,tt + 2vw,xt + v2w,xx] − T w,xx = δ(t − τ )δ(x − x).

Show that the response (Green’s function) of the string is given by

w(x, x, t, τ ) = H(t − τ )

∞∑
n=1

2

nπρAc
sin
[nπ

cl

{
(c2 − v2)(t − τ ) + v(x − x)

}]
sin

nπx

l
sin

nπx

l
,

where H(·) is the Heaviside step function and c = √
T/ρA. (Hint: Use Laplace transform, followed

by a variable transformation w(x, s) = eαxu(x, s), where α = vs/(c2 − v2), and s is the Laplace
variable.)

1.16 A cable-car on a translating cable may be approximated by a constant point force W fixed to an
axially translating string, where W is the weight of the car (see [8]). Using Green’s function obtained
in Exercise 1.15, determine the response of the string.

1.17 A traveling string is supported frictionlessly at the middle, as shown in Figure 1.40. If the middle
support suddenly snaps leaving the string free, determine the subsequent motion of the string and plot
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its configurations. Assume the initial displacement a of the middle point in Figure 1.40 to be small
so that the tension in the string does not change. (Hint: Use the idea of Exercise 1.10, and Green’s
function for the traveling string.)

z,w

v

x

l/2 l/2

a
ρ,A, T

Figure 1.40 Exercise 1.17
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2
One-dimensional wave equation:
d’Alembert’s solution

The equation of motion of a taut string in transverse vibration or a uniform bar in longitudinal
or torsional vibration is represented by the wave equation in one dimension. It is one of the
fundamental equations appearing in vibrations of continuous systems. The general solution
of the wave equation can be expressed in a special form, known as d’Alembert’s solution, or
the traveling wave solution. Such a solution is particularly suitable to represent the transient
dynamics of the system, and has many applications in the study of continuous systems.
Therefore, in this chapter, we will discuss the traveling wave solution of the wave equation
and some of its applications.

2.1 D’ALEMBERT’S SOLUTION OF THE WAVE EQUATION

In the following, we will consider the wave equation for one-dimensional continua which
may or may not be bounded. Thus, we may not have any boundary conditions. It may
be recalled from the discussions in Chapter 1 that the concept of natural frequencies and
modes of vibration is intimately related to the boundary conditions. On the other hand, in
an infinite continuous system, we have only traveling waves which can be of any frequency.
In a finite continuous medium, as long as a traveling wave does not encounter a boundary,
the medium may be considered to be infinite. This consideration not only simplifies the
situation but also provides important insights into the nature and properties of the system.

Consider the wave equation

w,tt − c2w,xx = 0, (2.1)

where w(x, t) is the displacement field variable (for example, the transverse displacement
of a string) and c is the wave speed in the medium (say, a string). It is to be recognized
that c is the speed with which the displacement field propagates through the medium, and is
different from the velocity of the individual particles of the system. To make this distinction
clear, one can think of a taut string in which the string particles oscillate transversely to the
string with speed w,t (x, t), while the waves propagate along the string with speed c.

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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One can rewrite the wave equation (2.1) as

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
w =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
w = 0. (2.2)

It is clear from (2.2) that we have a solution of the wave equation (2.1) whenever

(
∂

∂t
+ c

∂

∂x

)
w = 0 (2.3)

or (
∂

∂t
− c

∂

∂x

)
w = 0. (2.4)

Consider a function

w+(x, t) = f (z)
∣∣
z=x−ct

= f (x − ct), (2.5)

where f (z) is any function of z, as shown in Figure 2.1. Using the chain rule, we differ-
entiate (2.5) with respect to the time coordinate t , and the space coordinate x, to obtain,
respectively,

w+,t = −cf ′(x − ct) (2.6)

and

w+,x = f ′(x − ct). (2.7)

From (2.3), (2.6), and (2.7), we can easily conclude that w+(x, t) = f (x − ct) is a solution
of (2.3). It can be easily shown that f (x − ct) represents a waveform f (z) traveling in the
direction of the positive x-axis, as indicated in Figure 2.2, and will be referred to as the
positive-traveling wave. Next, consider the function

w−(x, t) = g(z)
∣∣
z=x+ct

= g(x + ct). (2.8)

z

f (x)

Figure 2.1 Representation of a pulse
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c(t1 − t0)

z, w

Figure 2.2 A traveling pulse in the x-t-plane

Following similar steps as in (2.6) and (2.7), one can easily observe that w−(x, t) =
g(x + ct) is a solution of (2.4), and represents a waveform g(z) traveling in the direction
of the negative x-axis. This will be referred to as the negative-traveling wave. Therefore,
the complete solution of the wave equation (2.1) is given by

w(x, t) = f (x − ct) + g(x + ct). (2.9)

This solution is referred to as d’Alembert’s solution (or the traveling wave solution) of
the wave equation. It can be shown that any solution of (2.1) can be decomposed as in
(2.9), i.e., into two waves traveling in opposite directions. Therefore, (2.9) represents the
general solution of (2.1). As an example, consider the vibration of a fixed–fixed string
vibrating in its kth mode with a frequency ωk = kπc/l. The motion of the string can be
represented as

w(x, t) = S sin
kπct

l
sin

kπx

l

= S

2
cos

[
kπ

l
(x − ct)

]
− S

2
cos

[
kπ

l
(x + ct)

]
,

i.e., the standing wave can be represented by a superposition of two traveling waves.
It may be observed from Figure 2.2 that, on any line x − ct − ξ+ = 0 on the x-t-plane,

where ξ+ = x0 is an arbitrary point, the value of w+(x, t) = f (x − ct) is constant. These
lines are known as the characteristics of the wave equation (see, for example, [1]). It
is also easy to infer that the family of lines x + ct − ξ− = 0, for arbitrary ξ−, are also
the characteristics of the wave equation since the solution w−(x, t) = g(x + ct) remains
constant on them. Therefore, it follows that, at a point (x, t), given by intersection of the lines
x − ct − ξ+ = 0 and x + ct − ξ− = 0, the solution is given by w(x, t) = f (ξ+) + g(ξ−),
as illustrated in Figure 2.3. The functions f (·) and g(·) can be determined from the initial
conditions specified over the interval [ξ+, ξ−] as discussed in the following section.
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t

t

x xξ−ξ+

x + ct − ξ− = 0

x − ct − ξ+ = 0

Figure 2.3 Solution of the wave equation from characteristics

2.1.1 The initial value problem

Let us now consider the solution of the initial value problem of (2.1) in terms of the
decomposition (2.9). The task is to determine the functions f (·) and g(·). Let the initial
conditions of (2.1) in an unbounded medium be specified as

w(x, 0) = w0(x) and w,t (x, 0) = v0(x), −∞ < x < ∞. (2.10)

Using (2.9) in (2.10) yields

f (x) + g(x) = w0(x), −∞ < x < ∞, (2.11)

and

−cf ′(x) + cg′(x) = v0(x), −∞ < x < ∞. (2.12)

Integrating (2.12) with respect to x yields

∫ x

x0

[f (ξ) − g(ξ)]′ dξ = [f (ξ) − g(ξ)]
∣∣x
x0

= −1

c

∫ x

x0

v0(ξ) dξ

⇒ f (x) − g(x) = −1

c

∫ x

x0

v0(ξ) dξ + f (x0) − g(x0), (2.13)

where x0 is any arbitrary point. From (2.11) and (2.13) one can solve for f (x) and g(x) as

f (x) = 1

2

[
−1

c

∫ x

x0

v0(ξ) dξ + f (x0) − g(x0) + w0(x)

]
(2.14)

and

g(x) = 1

2

[
1

c

∫ x

x0

v0(ξ) dξ − f (x0) + g(x0) + w0(x)

]
. (2.15)
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Using (2.14) and (2.15) in (2.9) yields on simplification

w(x, t) = f (x − ct) + g(x − ct)

= 1

2

[
w0(x − ct) + w0(x + ct) − 1

c

∫ x−ct

x0

v0(ξ) dξ + 1

c

∫ x+ct

x0

v0(ξ) dξ

]

= 1

2

[
w0(x − ct) + w0(x + ct) + 1

c

∫ x+ct

x−ct

v0(ξ) dξ

]
. (2.16)

This is d’Alembert’s solution for the initial value problem of the wave equation. It may
be noted that (2.16) is the exact solution of the initial value problem for a wave equation.
The eigenfunction expansion method of solution discussed in Section 1.4.3 would require
all the infinitely many terms in the expansion (1.108) to be summed up, in order to yield
the solution (2.16).

It is evident from (2.16) that, in general, the solution at any point (x, t) in the x-t-plane
depends upon the initial conditions specified over the interval (x − ct, x + ct), as shown
in Figure 2.4. This interval is known as the domain of dependence (see, for example, [1])
for the solution at (x, t). Conversely, the solution at any (x, t) in the region B shown in
Figure 2.5 is influenced by the initial condition at x0. Hence, region B is known as the
range of influence of the point x0.

t

t

x x

Domain of
dependence

x = x − c(t − t)

x = x + c(t − t)

Figure 2.4 Domain of dependence for solution at (x, t)

t

x0 x

B

x = x0 − ct x = x0 + ct

Figure 2.5 Range of influence of the point x0
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A particularly simple form of the solution (2.16) is obtained when the initial velocity
of the system is identically zero, i.e., v0(x) ≡ 0. Then, (2.14) and (2.15) reduce to f (x) =
g(x) = 1/2w0(x), and the solution (2.16) simplifies to

w(x, t) = 1

2
[w0(x − ct) + w0(x + ct)]

= 1

2
w0(z)

∣∣
z=x−ct

+ 1

2
w0(z)

∣∣
z=x+ct

. (2.17)

For a taut string, this solution is visualized in Figure 2.6. The initial shape of the string w0(z)

is decomposed into two equal waveforms, as shown in the figure. One of the waveforms
travels in the direction of the positive x-axis with a speed c, while the other travels in the
opposite direction with the same speed, as illustrated in Figure 2.6.

Consider another initial condition for a taut string with w0(x) ≡ 0 and v0(x) = v0 (con-
stant) for x0 < x < x0 + a, as shown in Figure 2.7. Then, from (2.14)–(2.15), we have

−f (x) = g(x) = 1

2c
V0(x), (2.18)

w

w

w

c c

w0(x)1
2 w0(x)

1
2 w0(x + ct1)

1
2 w0(x − ct1)

1
2 w0(x + ct2)

1
2 w0(x − ct2)

t = 0

t = t1

t = t2

x

x

x
ct2 ct2

ct1 ct1

Figure 2.6 Traveling waves in an infinite string due to an initial displacement
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x0 x0 + a

v0(x)

x

v0

Figure 2.7 Initial velocity condition for an infinite string

where

V0(x) =
∫ x

x0

v0(ξ) dξ.

The solution can now be written from (2.9) as

w(x, t) = 1

2c
[V0(x + ct) − V0(x − ct)]. (2.19)

The shape of the string at a certain time instant t = a/c is shown in Figure 2.8. It is
interesting to note that as t → ∞, w(x, t) → v0a/2c for all values of x, i.e., the string gets
displaced by an amount v0a/2c.

w

c

c

1

2c
V0(x)

− 1

2c
V0(x)

v0a

2c

w

x

x

1

2c
V0(x + ct)

v0a

2c

t = a/c

t = 0

− 1

2c
V0(x − ct)

Figure 2.8 Traveling waves in an infinite string due to an initial velocity condition
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2.1.2 The initial value problem: solution using Fourier transform

Consider the wave equation

w,tt − c2w,xx = 0, x ∈ (−∞, ∞). (2.20)

Taking the Fourier transform over x of (2.20) yields (see, for example, [2])

¨̃w + c2k2w̃ = 0, (2.21)

where

w̃(k, t) =
∫ ∞

−∞
w(x, t)e−ikxdx.

The general solution of (2.21) is given by

w̃(k, t) = aeikct + be−ikct , (2.22)

where a and b are arbitrary constants. Using the initial conditions yields

a + b = w̃0(k) and a − b = ṽ0

ick
,

⇒ a = 1

2

(
w̃0 + ṽ0

ick

)
and b = 1

2

(
w̃0 − ṽ0

ick

)
. (2.23)

Thus, (2.22) yields

w̃(k, t) = w̃0 cos ckt + ṽ0

ck
sin ckt. (2.24)

Taking the inverse Fourier transform of (2.24), one obtains

w(x, t) = 1

2π

∫ ∞

−∞
w(k, t)eikxdk

= 1

2π

∫ ∞

−∞

[
w̃0 cos ckt + ṽ0

ck
sin ckt

]
eikxdk

= 1

2π

∫ ∞

−∞

w̃0

2

(
eik(x+ct) + eik(x−ct)

)
dk

+ 1

2π

1

2c

∫ ∞

−∞
ṽ0

(∫ x+ct

x−ct

eikξdξ

)
dk

= 1

2

[
w̃0(x + ct) + w0(x − ct)

]+ 1

2c

∫ x+ct

x−ct

v0(ξ)dξ. (2.25)

This is the same solution as given by (2.17).
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2.2 HARMONIC WAVES AND WAVE IMPEDANCE

A special case of a traveling wave, known as a harmonic wave, can be expressed in complex
notation as

w(x, t) = Bei(kx−ωt), (2.26)

where B is a constant, k = 2π/λ is the wave number, λ is the wavelength, and ω is the
circular frequency of the wave. The actual wave is obtained by taking the real or imaginary
part of (2.26). A discussion on harmonic waves is presented in detail in Appendix B. As
noted in the Appendix, a harmonic traveling wave can be considered to be a Fourier compo-
nent of a general traveling waveform, i.e., a general traveling waveform can be constructed
from its harmonic traveling wave components. So it suffices to study the propagation of only
harmonic waves in linear continuous systems. As can be easily checked, a positive-traveling
harmonic wave (2.26) satisfies the wave equation (2.1) when

k = ω

c
. (2.27)

Consider a semi-infinite taut string of density ρ under a tension T , as shown in Figure 2.9.
If we want to set up a positive-traveling harmonic wave of the form (2.26), the end of the
string has to be excited by a force

F(t) = −T w,x(0, t) = −iT kBe−iωt . (2.28)

The corresponding velocity v(t) of the end is given by

v(t) = w,t (0, t) = −iωBe−iωt . (2.29)

Analogous to the concept of impedance in electrical circuits, one can define wave impedance
of the semi-infinite string as the ratio between the complex amplitudes of the complex
harmonic force and the corresponding complex harmonic velocity. Thus, using (2.28) and
(2.29), one can write

Z := A [F(t)]

A [v(t)]
= −iT kB

−iωB
= T k

ω
= ρAc, (using (2.27))

z, w

F(t)

x

∞

ρ,A, T

Figure 2.9 Harmonically forced semi-infinite string
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F(t)

x
∞

ρ, A,Eu(x, t)

Figure 2.10 Harmonically forced semi-infinite bar

where A [·] represents the complex amplitude, Z is the wave impedance, and c = √
T /ρA

is the speed of transverse waves in the string.
Consider next the case of a semi-infinite bar carrying a positive-traveling longitudinal

harmonic wave u(x, t) = Bei(kx−ωt), as shown in Figure 2.10. For such a motion, the force at
the left boundary is given by F(t) = −EAu,x(0, t) = −iEAkBei(kx−ωt), while the velocity
is expressed as v(t) = u,t (0, t) = iωBei(kx−ωt). One can then express the impedance of the
bar as

Z = A [F(t)]

A [v(t)]
= EAk

ω
= ρAc, (2.30)

where c = √
E/ρ is the speed of longitudinal waves in the bar. In the case of a bar, one

can also define a specific impedance ZS = ρc. It is to be noted that the specific impedance
is defined as the ratio between the stress at the end of the bar and the corresponding end
velocity.

The wave impedance (or the specific impedance) of a medium (for example, a string
or bar) relates the velocity of the particles of the medium and the corresponding force (or
stress, or pressure) required to produce that velocity. In other words, it provides a connection
between the kinematics and the kinetics of the medium. This concept is very important in
the study of various aspects of wave propagation, and will be discussed further in this
chapter. It must be mentioned here that the concept of wave impedance is only defined
in the context of complex harmonic waves in the medium. In a more general setting, the
impedance is defined as the ratio of the Fourier transforms of the force to the corresponding
velocity signals, i.e.,

Z(ω) := F (ω)

V (ω)
, (2.31)

where F (ω) and V (ω) are, respectively, the Fourier transforms of the force and velocity
signals. The definition (2.31), however, results in the same expression of impedance as
obtained using the complex harmonic signals/waves, since the Fourier integral is a super-
position of complex harmonic signals/waves (see Appendix B). Thus, in general, the wave
impedance is a complex function of the frequency of the harmonic wave. For problems
in which Z is real and independent of ω (as in the case of a string or a bar discussed
above), one may use the concept of wave impedance even for general traveling waveforms.
For example, for a general traveling longitudinal wave u(x, t) = f (x − ct) in a bar (as
discussed above),

Z = −EAu,x(0, t)

u,t (0, t)
= EAf ′(−ct)

cf ′(−ct)
= ρAc.
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Table 2.1 Wave speeds and specific wave impedances of some
common materials

Material Wave speed, c (m/s) Specific wave impedance,
(Longitudinal waves) ZS = ρc (Ns/m3)

Steel 5000 39 × 106

Aluminum 5100 13 × 106

Glass 5200 13.8 × 106

Concrete 4000 8 × 106

Water 1450 1.45 × 106

Cork 500 0.1 × 106

Rubber 40–150 0.04–0.3 × 106

Air 340 410

It is evident that the difference in the transverse wave propagation in a taut uniform string,
and longitudinal or torsional wave propagation of a uniform bar occurs in the definition of the
wave speed c of the corresponding waves. In the case of a string, the wave speed depends
on the tension T , which is an adjustable parameter. On the other hand, the longitudinal
and torsional wave speeds

√
E/ρ and

√
G/ρ, respectively, are material constants. For most

engineering materials E ≈ 3G, implying that the longitudinal wave speed is about
√

3 times
the torsional wave speed. The longitudinal waves can be associated with normal stress or
pressure (or dialatoric stress) waves, while the torsional waves are like shear (or deviatoric
stress) waves in an elastic medium. Table 2.1 lists the longitudinal wave speed of some
common materials along with their specific impedance ZS. The wave impedances of the
semi-infinite or infinite media discussed in this section are all observed to be real. However,
in general, the wave impedance can be complex. Such cases, and the implications of a
complex wave impedance of a medium, will be discussed in the following sections.

2.3 ENERGETICS OF WAVE MOTION

Consider an infinite string of density ρ, area of cross-section A, and under tension T . The
total mechanical energy density (energy per unit length), Ê , can be written in terms of the
kinetic energy density T̂ , and the potential energy density V̂ as

Ê = T̂ + V̂ = 1

2
ρAw2

,t + 1

2
T w2

,x . (2.32)

Considering a positive-traveling wave w(x, t) = f (x − ct) on the string, one obtains from
(2.32)

Ê = 1

2
ρAc2f ′2(x − ct) + 1

2
T f ′2(x − ct)

= 1

2
ρAc2f ′2(x − ct) + 1

2
ρAc2f ′2(x − ct) (using c2 = T /ρA)

= ρAc2f ′2(x − ct) = ρAw2
,t (2.33)

= 2T̂ . (2.34)
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Using this in (2.32), one can easily obtain T̂ = V̂ . Thus, the total mechanical energy due to
a positive-traveling wave is equally distributed in the form of kinetic and potential energy. It
is evident that the same will hold for a negative-traveling wave as well. When both positive
and negative-traveling waves exist simultaneously, i.e., w(x, t) = f (x − ct) + g(x + ct),
we have

T̂ = 1

2
ρAc2(f ′2 + g′2 − 2f ′g′)

and

V̂ = 1

2
T (f ′2 + g′2 + 2f ′g′).

Therefore, in this case, the energy distribution in the form of kinetic and potential energy
is unequal. The total energy density is obtained as

Ê = ρAc2[f ′2(x − ct) + g′2(x + ct)],

which is the sum of the energy densities due to the individual traveling waves.
Consider the forced semi-infinite string discussed in Section 2.2 once again. It may be

noted from (2.28) and (2.29) that the force F(t) applied at the end of a semi-infinite string,
and the corresponding velocity v(t) of the end are in phase. This implies that energy is
continuously fed into the string by the force. This energy is carried forward by the positive-
traveling harmonic wave in the string. However, the energy is transported through the string
at a certain rate which depends on the impedance of the string and the frequency of the
harmonic wave. In general, it is of considerable theoretical and practical interest to study
the rate at which energy is transported through a continuous medium. In the following, we
discuss a general procedure to study this energy propagation in any conservative continuous
system with particular reference to a taut string.

Consider a section of the string between the coordinates [x1, x2]. The total mechanical
energy for this section can be written as

E = 1

2

∫ x2

x1

(
ρAw2

,t + T w2
,x

)
dx.

Differentiating this expression with respect to time, one can write

dE
dt

=
∫ x2

x1

(
ρAw,tw,tt + T w,xw,xt

)
dx

= T w,xw,t

∣∣x2
x1

+
∫ x2

x1

(
ρAw,tt − T w,xx

)
w,t dx

= P(x1, t) − P(x2, t), (2.35)

where we have used the equation of motion of the string, and introduced the definition

P(x, t) := −T w,xw,t , (2.36)
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which represents the instantaneous energy transport per unit time, or the instantaneous
power transported past the coordinate location x. For example, for a positive-traveling wave
w(x, t) = f (x − ct), the energy flux crossing a location x at time t is given by T cf ′2(x −
ct), while for a negative-traveling wave w(x, t) = g(x + ct) it is −T cg′2(x + ct). Thus,
the direction of power flow is associated with the expression (2.36), and hence P(x, t) is a
signed scalar. Further, for a positive-traveling wave, one can write

P(x, t) = T cf ′2(x − ct) = ρAc3f ′2(x − ct) = cÊ(x, t) (using (2.33)).

Thus, it can be easily inferred that the energy is transported at the same speed as the prop-
agation of transverse waves in the string. It is evident that the expression (2.35) represents
the energy balance equation for the section [x1, x2] of the string. Similarly, in the case of
longitudinal waves (such as in a bar in longitudinal vibration), one can easily obtain the
instantaneous power crossing a location x as P(x, t) = −EAw,xw,t . In this case, one can
also define the instantaneous intensity I(x, t) of the longitudinal wave as the instantaneous
power of the wave per unit area, i.e.,

I(x, t) = P(x, t)

A
= ρc2w,xw,t ,

where c = √
E/ρ is the speed of longitudinal waves in a bar.

All the above expressions of power evaluate the instantaneous power. However, the
physically more relevant quantity is the average power over a cycle, which can be calculated
for harmonic waves as follows. It may be recalled from the theory of vibrations of discrete
systems that when a system is forced by F(t) = F0 cosωt , the corresponding velocity is
obtained, in general, as v(t) = v0 cos(ωt − φ), where φ is an appropriate phase difference.
The average power per cycle is then calculated as

〈P〉 = ω

2π

∫ 2π/ω

0
F(t)v(t) dt,

= 1

2
F0v0 cosφ. (2.37)

In the complex notation, representing F(t) = F0eiωt and v(t) = v0ei(ωt−φ), one can rewrite
(2.37) as

〈P〉 = 1

2
R[F ∗(t)v(t)], (2.38)

where F ∗(t) is the complex conjugate of F(t), and R[·] denotes the real part. It may be
noted that, in this section, the quantities which are in general complex have been under-
lined to distinguish them from real quantities. The expression (2.38) is very convenient for
calculating average power, and will be used here throughout.

Using the impedance relation F =Zv, where Z=Z0eiφ is a general complex impedance,
one can rewrite (2.38) as

〈P〉 = 1

2
R[F ∗(t)v(t)] = 1

2
R

[
F ∗F
Z

]
= 1

2
R

[
F 2

0

Z0
e−iφ

]

= 1

2

F 2
0

Z0
cosφ. (2.39)
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Hence, it is clear that when the impedance Z is real (i.e., φ = nπ ), power is either absorbed
by or extracted from the medium (depending on the sign of 〈P〉) over a cycle. On the other
hand, when Z is purely imaginary (i.e., φ = (2n + 1)π/2), no power can be absorbed over a
cycle by the medium. In such a case, power absorbed by the medium over one part of a cycle
is extracted back by the source over the remaining part of the cycle. As was observed in
Section 2.2, the impedance of a uniform semi-infinite or infinite medium is always positive
real. Therefore, power is always absorbed by the medium over a cycle. One can also rewrite
(2.39) as

〈P〉 = 1

2
R[F ∗(t)v(t)] = 1

2
R
[
Z∗v∗v

] = 1

2
R
[
Z0v

2
0e

−iφ
]

= 1

2
Z0v

2
0 cosφ. (2.40)

While the form (2.39) is useful for studying the average power absorbed by a medium from
a source, the form (2.40) is convenient for determining the average power carried by a
traveling wave.

Consider a mass–spring system connected to a semi-infinite string, as shown in Fig-
ure 2.11(a). Since the impedance of a semi-infinite string Z = ρc is purely real, energy
is always absorbed by the string from the oscillator. Therefore, the oscillator loses energy
through radiation into an infinite medium, and hence, the motion of the oscillator is damped.
This example serves to illustrate an important phenomenon known as radiation damping. An
example of such a process is the energy lost by a body (say, a vibrating machine body, or a
bouncing ball) through acoustic radiation. Using the concept of impedance and calculating
the force applied by the string on the mass, one can show that the string can be replaced
by an equivalent damper of damping coefficient ρc, as shown in Figure 2.11(b). It can be
easily checked that the energy lost by the oscillator through radiation and through viscous
dissipation are the same. However, it is to be noted that the physical mechanisms of damping
due to the semi-infinite string and the damper are completely different.

In the case of a general complex impedance Z = ZR + iZI, the imaginary part contributes
to an added mass, or an added stiffness depending on its sign. For example, one may write
the impedance due to a mass m as Zm = iωm, and due to a stiffness k as Zk = −ik/ω.
Therefore, one can have either an added mass m = ZI/ω or an added stiffness k = ZIω.

(a) (b)

m
m

k d = ρc

ρ,A, T

k

≡∞

Figure 2.11 Equivalent damping due to a semi-infinite string
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2.4 SCATTERING OF WAVES

The interaction of waves with a boundary or obstacles in a medium is generally termed
scattering. In one dimension, scattering may result in wave reflection, transmission, or both.
In this section, we will discuss the reflection and transmission of waves under various
conditions.

2.4.1 Reflection at a boundary

In strings and bars, we usually have either a fixed boundary or a free boundary. These two
cases are discussed below. Other cases of boundary conditions are discussed separately.

2.4.1.1 Fixed boundary

Consider a semi-infinite string, as shown in Figure 2.12, with a fixed boundary at x = 0.
Let a positive-traveling harmonic wave of the form BIei(kx−ωt) be incident on the boundary,
where BI is the amplitude of the wave and k = ω/c. This results in a reflected negative-
traveling harmonic wave of the form BRei(−k′x−ω′t), where BR is the amplitude, and k′ and
ω′ are, respectively, the wave number and frequency of the reflected wave which satisfy the
relation k′ = ω′/c. Then, one can write the net motion of the string in the form

w(x, t) = BIe
i(kx−ωt) + BRei(−k′x−ω′t)

= BIe
i(kx−ωt) + CRBIe

i(−k′x−ω′t), (2.41)

where we write the amplitude of the reflected wave as a constant scaling of the incident
wave amplitude by a factor CR which is the coefficient of reflection of the boundary. It may
be noted that CR can be complex in general, implying that BR can also be complex. On the
other hand, BI can be assumed to be real, since the phase of the incident wave can be taken
as zero without loss of generality. Using (2.41) in the boundary condition w(0, t) ≡ 0, we
obtain

BIe
iωt + CRBIe

iω′t = 0. (2.42)

Since the coefficients in the above equation are independent of time, it can be identically
satisfied if and only if ω = ω′. The wave number of the reflected wave is then given by
k′ = ω′/c = ω/c = k. Therefore, (2.42) can be written as

(1 + CR)BIe
iωt = 0

⇒ CR = −1 = eiπ . (2.43)

∞ x

ρ,A, T
z,w

Figure 2.12 Semi-infinite string with a fixed boundary
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Thus, the incident harmonic wave undergoes a phase change of π after reflection from a
fixed boundary.

Let us now consider the energetics of the reflection process. The average power carried
by the positive-traveling incident harmonic wave can be written using (2.40) as

〈PI〉 = 1

2
R[Z∗v∗

I vI]. (2.44)

Using vI = −iωBIei(kx−ωt), and Z = ρAc in (2.44), we obtain

〈PI〉 = 1

2
R[ρAcω2B2

I ] = 1

2
ρAcω2B2

I . (2.45)

Similarly, the wave energy carried by the reflected wave is given by

〈PR〉 = 1

2
ρAcω2|BR|2 = 1

2
ρAcω2|CR|2B2

I = 1

2
ρAcω2B2

I (using (2.43)).

Therefore, the incident power is completely reflected without loss by a fixed boundary.
Let us now consider an arbitrarily shaped positive-traveling waveform f (z)|z=x−ct on a

string, as shown in Figure 2.13(a). Let us denote the reflected waveform by g(z)|x+ct . The
motion of the string is then represented by

w(x, t) = f (x − ct) + g(x + ct). (2.46)

Then applying the boundary condition w(0, t) ≡ 0 yields

f (−ct) + g(ct) = 0

⇒ g(z) = −f (−z)

⇒ g(x + ct) = −f (−x − ct). (2.47)

The function g(z) is shown in Figure 2.13(b). The reflection process is depicted at cer-
tain time instants in Figure 2.14. As depicted in the figure, the reflection process may be

f (z)

(a) Incident pulse (b) Reflected pulse

g(z) = −f (−z)

z z

Figure 2.13 Incident and reflected pulse shapes
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c

c

c

c

g(x + ct)

f (x − ct)

Boundary

Figure 2.14 Reflection of a wave pulse at a fixed boundary

visualized as the superposition of the positive-traveling wave f (x − ct) and the negative-
traveling wave g(x + ct) = −f (−x − ct).

2.4.1.2 Free boundary

Consider a semi-infinite bar with a free end, as shown in Figure 2.15. Let a positive-
traveling harmonic wave be incident on the boundary, which results in a reflected negative-
traveling harmonic wave. The complete wave field in the bar can be represented in complex
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∞

ρ,A,E
u(x, t)

x

Figure 2.15 Reflection at the free boundary of a semi-infinite bar

notation as
u(x, t) = BIe

i(kx−ωt) + BRei(−kx−ωt)

= BIe
i(kx−ωt) + CRBIe

i(−kx−ωt). (2.48)

It may be noted here that we have assumed k and ω of the incident and reflected waves to
be the same. They can be easily proved to be the same, as was done for the fixed boundary
case in Section 2.4.1.1. The free end condition EAu,x(0, t) ≡ 0 yields

ikBIe
−iωt − ikCRBIe

−iωt = 0

⇒ CR = 1 = e0 i . (2.49)

Thus, there is no phase change in the harmonic wave after reflection from the free end.
One can easily show that the power of the incident wave is completely reflected without
loss from a free boundary. For an arbitrary positive waveform given by f (x − ct), it can
be checked that the reflected pulse is given by g(x + ct) = f (−x − ct).

Consider a fixed–fixed taut string on which a waveform travels towards the negative
x-axis, as shown in Figure 2.16. The motion of the waveform after subsequent reflection
from the boundaries is also shown. It is observed that after a time T = 2l/c, the waveform
repeats the motion again. Therefore, the motion is 2l/c -periodic, and the circular frequency
is 2π/T = πc/l. This is exactly the fundamental circular frequency of a fixed–fixed string
as determined in Section 1.3. Similarly, the motion of a left-traveling wave in a sliding–fixed
string is shown in Figure 2.17. It is observed from this figure that the motion repeats after
a period T = 4l/c. Thus, the fundamental circular frequency of a sliding–fixed string is
given by πc/2l.

t

t + l/c

t + 2l/c

Figure 2.16 Reflection of waves in a taut string with fixed boundaries
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t

t + l/c

t + 2l/c

t + 3l/c

t + 4l/c

Figure 2.17 Reflection of waves in a taut string with a sliding boundary

2.4.2 Scattering at a finite impedance

From the concept of impedance discussed in Section 2.2, it can be easily shown that a fixed
boundary has infinite impedance, while a free boundary has zero impedance. In this section,
we consider scattering from boundaries or obstacles of finite impedance.

Consider two semi-infinite bars of two different materials connected at x = 0, as shown
in Figure 2.18. The left and right bars have densities ρ1 and ρ2, respectively, and the
corresponding Young’s moduli are E1 and E2. Let a positive-traveling longitudinal wave
from the left impinge on the boundary. This causes a partial transmission and a partial
reflection of the wave as indicated in Figure 2.18. Using complex notation, one can write
the motion of the bar on the left and right, respectively, as

u1(x, t) = BIe
i(k1x−ωt) + CRBIe

i(−k1x−ωt) (2.50)

∞ ∞x

ρ1, A,E1 ρ2, A,E2

Figure 2.18 Scattering at the boundary between two semi-infinite bars of different materials
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and

u2(x, t) = BTei(k2x−ωt) = CTBIe
i(k2x−ωt), (2.51)

where CT is known as the coefficient of transmission, k1 = ω/c1 and k2 = ω/c2 are the wave
numbers of the harmonic waves in the left and right bars, respectively, and c1 = √

E1/ρ1

and c2 = √
E2/ρ2 are the corresponding wave speeds. It may be noted that we have taken

the same frequency ω for the waves in the left and right bars from considerations discussed
in Section 2.4.1.1. However, since the wave speeds may be different in the two bars, the
corresponding wave numbers are different. At x = 0, we have two matching conditions
which ensure the continuity of motion, and the continuity of force at the junction. The
condition of continuity of motion at x = 0 implies

u1(0, t) = u2(0, t). (2.52)

The continuity of force condition at x = 0 yields

E1Au1,x(0, t) = −E2Au2,x(0, t) = −Z2u2,t (0, t), (2.53)

where Z2 = ρ2Ac2 is the impedance of the semi-infinite right bar. Using (2.50)–(2.51) in
(2.52), we obtain

BIe
−iωt + CRBIe

−iωt = CTBIe
−iωt

⇒ 1 + CR = CT. (2.54)

Similarly, from (2.53), we have

E1A(ik1BIe
−iωt − ik1CRBIe

−iωt ) = iωρ2c2ACTBIe
−iωt

⇒ −1 + CR = − ω

k1E1
ρ2c2CT = −ρ2c2

ρ1c1
CT. (2.55)

From (2.54) and (2.55), we can solve for the transmission and reflection coefficients, respec-
tively, as

CT = 2ρ1c1

ρ1c1 + ρ2c2
= 2

√
E1ρ1√

E1ρ1 + √
E1ρ2

(2.56)

and

CR = ρ1c1 − ρ2c2

ρ1c1 + ρ2c2
=

√
E1ρ1 − √

E2ρ2√
E1ρ1 + √

E2ρ2
. (2.57)
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Let us now look at the energetics of this scattering process. The average power carried
by the incident, reflected, and transmitted harmonic waves are given by, respectively,

〈PI〉 = 1

2
ρ1Ac1ω

2B2
I ,

〈PR〉 = 1

2
ρ1Ac1ω

2|CR|2B2
I ,

and

〈PT〉 = 1

2
ρ2Ac2ω

2|CT|2B2
I .

The coefficients of power reflection CPR, and power transmission CPT can be defined as,
respectively,

CPR := 〈PR〉
〈PI〉 = |CR|2 and CPT := 〈PT〉

〈PI〉 = ρ2c2

ρ1c1
|CT|2.

One can easily check that

〈PR〉 + 〈PT〉 = (|CR|2 + ρ2c2

ρ1c1
|CT|2)〈PI〉 = 〈PI〉 (using (2.56) and (2.57)).

Thus, the incident average power is partially reflected and partially transmitted at the junction
of the bars, and the sum of the scattered average power equals the incident average power.

The scattering process in the above example of two bars is also phenomenologically
similar to the process of radiation damping discussed previously in Section 2.3. The left
bar (the radiating body) loses the energy it transmits to the right bar. In certain situations,
radiation damping may be a desirable mode of energy dissipation. From the above calcula-
tions, it is clear that a fraction of the energy is reflected back into the left bar. One way to
cut down this reflection (and hence maximize the energy radiation), is to introduce a film of
appropriate thickness of a third material between the two bars (see Exercise 2.5). Also, in
certain other applications such as ultrasonic testing, a fluid medium is used for maximizing
the transmission of ultrasonic waves from the ultrasonic generator into the specimen.

Next, consider the example of a semi-infinite bar with a damper, as shown in Figure 2.19.
Let a positive-traveling harmonic wave in the bar be incident on the boundary at x = 0.
The incident and reflected waves in the bar can be represented in complex notation as

u(x, t) = BIe
i(kx−ωt) + CRBIe

i(−kx−ωt). (2.58)

ρ,A,E

d

x∞

Figure 2.19 Reflection at the boundary of a semi-infinite bar with a damper
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Here, we have only a dynamic boundary condition of the form EAu,x(0, t) = −du,t (0, t).
Substituting the solution form (2.58) in the boundary condition yields

kEA(1 − CR) = dω(1 + CR) ⇒ CR = ρAc − d

ρAc + d
, (2.59)

where we have used k = ω/c, and c = √
E/ρ.

An interesting situation occurs when

d = ρAc (2.60)

in (2.59), implying CR = 0. Thus, there is no reflected wave, and the total incident energy
is lost. The reason for this phenomenon becomes clear if we compare the special value
of the damper impedance d in (2.60) with the impedance of a semi-infinite bar given in
(2.30). Thus, when the damper impedance d equals the impedance of a semi-infinite bar,
to a positive-traveling wave, the damper ‘appears’ like a semi-infinite bar. Hence, there
is no reflection from the common boundary of the bar and the damper. While solving
the eigenvalue problem of a fixed–damped bar in Section 1.8.2, it was observed that no
eigenfrequency exists for the special choice of boundary damping d. It is now clear that
this occurs because of the absence of any reflected wave from the damper–bar interface.

2.4.2.1 Equivalent impedance

Consider a finite bar with a general complex boundary impedance ZB, as shown in Figure
2.20. In many cases, it is convenient to replace the complex system by a single equivalent
impedance ZE as shown in the figure. In the following, we will determine the equivalent
impedance of the bar, and study its scattering properties.

Consider a harmonic force F(t) = F0e−i�t at the left end of the bar. One can then write
the motion of the bar as

u(x, t) = B1e
i(kx−�t) + B2e

i(−kx−�t), (2.61)

where B1 and B2 represent the amplitudes of the corresponding harmonic waves, and k =
�/c is the wave number. The force condition at the left end can be written as

F(t) = −EAu,x(0, t) ⇒ F0 = −ikEA[B1 − B2]. (2.62)

ρ,A,E

F(t)
x

u(x, t)

ZB ZE

≡
F(t)

Figure 2.20 Concept of equivalent impedance of a finite bar with a boundary impedance
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Defining an equivalent impedance of the bar as ZE, we can also write

F(t) = ZEu,t ⇒ F0 = −i�ZE[B1 + B2]. (2.63)

At the right end of the bar, we have the dynamic boundary condition

EAu,x(l, t) = −ZBu,t (l, t)

or

ikEA(B1e
ikl − B2e

−ikl) = i�ZB(B1e
ikl + B2e

−ikl)

⇒ B2 = re2iklB1, (2.64)

where

r = kEA − �ZB

kEA + �ZB
= ρAc − ZB

ρAc + ZB
(2.65)

is a complex scalar. Eliminating F0 from (2.62) and (2.63), and subsequently using (2.64),
we obtain the equivalent impedance as

ZE = ρAc
1 − re2ikl

1 + re2ikl
. (2.66)

Solving for B1 and B2 from (2.62) and (2.64), we obtain

B1 = − F0

i�ρAc(1 − re2ikl)
(2.67)

and

B2 = − F0re2ikl

i�ρAc(1 − re2ikl)
. (2.68)

Let us now consider some special cases of the impedance ZB. In the case of a free right
end of the bar, ZB = 0 (i.e., r = 1), and we have from (2.67)

B1 = − F0e−ikl

2�ρAc sin kl
. (2.69)

When knl = �nl/c = nπ , n = 1, 2, . . . , ∞, the denominator of (2.69) vanishes. This is then
the resonance condition, and �n are the circular eigenfrequencies of the free–free bar. For
a fixed-end, ZB = ∞ (i.e., r = −1), and we obtain from (2.67)

B1 = − F0e−ikl

2i�ρAc cos kl
. (2.70)

In this case, we can obtain the eigenfrequencies of a free–fixed bar from the resonance
condition knl = �nl/c = (2n − 1)π/2, n = 1, 2, . . . , ∞. For ZB = ρAc, we have r = 0,
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and (2.68) yields B2 = 0. This implies that there is no reflection from the right end, i.e.,
the right end behaves like a perfect absorber.

Next, we study the scattering properties of the bar with boundary impedance. Using
(2.64) in (2.61), and representing the complex scalar r = |r|eiγ , we can write the motion
of the bar as

u(x, t) = (1 + |r|ei[2k(l−x)+γ ])B1e
i(kx−�t) = p(x)B1e

i(kx−�t), (2.71)

where p(x) = 1 + |r|ei[2k(l−x)+γ ]. It is evident from (2.71) that the amplitude of motion
of the bar is decided by the amplitude factor p(x), which is geometrically visualized in
Figure 2.21. One can conclude from the figure that the magnitude of the amplitude factor
lies between 1 + |r| and 1 − |r|, and is nowhere zero if |r| �= 1. Thus, nodes can form only
when |r| = 1, which implies from (2.65) that R[ZB] = 0, i.e., ZB is purely imaginary. As
discussed in Section 2.3, when an impedance is purely imaginary, it cannot absorb energy
over a cycle. The coordinate of a node xN can be obtained easily from the condition

p(x) = 1 + ei[2k(l−xN)+γ ] = 0

⇒ 2k(l − xN) + γ = (2n − 1)π,

where n is an integer. It is to be noted, however, that a node can form within the length of
the bar only for a range of values of γ and n. In particular, a node is formed at the right
end of the bar when γ = (2n − 1)π .

The normal stress in the bar can be evaluated from the expression

σ(x, t) = Eu,x(x, t) = ikE
(
1 − |r|ei[2k(l−x)+γ ])B1e

i(kx−�t). (2.72)

From (2.71) and (2.72), it can be easily observed that the points of minimum amplitude
correspond to maximum stress, and vice versa. The velocity at any point of the bar can be
obtained as

v(x, t) = u,t (x, t) = −i�
(
1 − |r|ei[2k(l−x)+γ ])B1e

i(kx−�t). (2.73)

Using (2.72) and (2.73), one can determine the equivalent impedance at any location x as

ZL(x) := −Aσ(x, t)

u,t (x, t)
= Z 1 − |r|ei[2k(l−x)+γ ]

1 + |r|ei[2k(l−x)+γ ]
, (2.74)

I [p]

pmin

p

2k(l − x) + γ

R[p]

pmax

1

Figure 2.21 Graphical representation of the amplitude factor p(x)
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where Z = EA/c = ρAc is the impedance of a semi-infinite bar. It can be easily checked
that ZL(0) = ZE (as defined in (2.66)), and ZL(l) = ZB, the complex boundary impedance.

2.5 APPLICATIONS OF THE WAVE SOLUTION

In this section, we consider the application of the traveling wave solution in studying the
transient dynamics of some physical systems.

2.5.1 Impulsive start of a bar

Consider a free–free bar of length l set into motion by an impulsive force F(x, t) =
F0δ(t)δ(x), as shown in Figure 2.22. The subsequent motion of the bar can be determined
as follows. Using the impulse–momentum equation, one can write

∫ 0+

0
ρAu,tt dt =

∫ 0+

0
F0δ(t)δ(x) dt

⇒ u,t (x, 0+) = v0(x) = F0

ρA
δ(x). (2.75)

Thus, at t = 0+, the left end of the bar is imparted a velocity F0/ρA, while the rest of the
bar is at rest. One may, alternatively, start with the boundary condition

−EAu,x(0, t) = F0δ(t). (2.76)

Approaching the problem with the boundary condition (2.76) is left as an exercise (see
Exercise 2.11).

Assuming a displacement field u(x, t) = f1(x − ct) in (2.75), one can write

u,t (x, 0) = −cf ′
1(x) = v0 = F0

ρA
δ(x)

⇒ f1(x) = F0

ρAc
[1 − H(x)]

⇒ u(x, t) = f1(x − ct) = F0

ρAc
[1 − H(x − ct)], 0 < t < l/c, (2.77)

F0δ(t)

x

u(x, t) ρ,A,E

Figure 2.22 A free–free bar started with an impulse
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where the constant of integration has been found from the initial zero displacement condition,
and H(·) is the Heaviside step function defined as

H(x) =
{

0, x < 0
1, x ≥ 0

.

When the wave reaches the right end at t = l/c, a reflected wave, denoted by g1(x + ct),
is created. The motion of the bar can be represented as

u(x, t) = F0

ρAc
[1 − H(x − ct)] + g1(x + ct), l/c ≤ t < 2l/c. (2.78)

Applying the right-end boundary condition EAu,x(l, t) ≡ 0 yields

− F0

ρAc
δ(l − ct) + g′

1(l + ct) = 0

⇒ g′
1(l + ct) = F0

ρAc
δ(l − ct).

Defining z = l + ct , and writing l − ct = 2l − z in the above, we have

g′
1(z) = F0

ρAc
δ(2l − z)]

⇒ g1(z) = − F0

ρAc
H(2l − z) + CI

⇒ g1(x + ct) = − F0

ρAc
H(2l − x − ct) + CI,

where CI is a constant of integration. From the condition g1(x + ct)|t=l/c ≡ 0, we have
CI = F0/ρAc. Therefore, the complete solution after one reflection is given by

u(x, t) = F0

ρAc
[2 − H(x − ct) − H(2l − x − ct)], l/c ≤ t < 2l/c. (2.79)

At t = 2l/c, the wave reaches the left end of the bar, and reflects again to produce a reflected
wave denoted by, say f2(x − ct). Writing the motion of the bar as

u(x, t) = F0

ρAc
[2 − H(x − ct) − H(2l − x − ct)] + f2(x − ct), t > 2l/c, (2.80)

and using the force–free boundary condition EAu,x(0, t) ≡ 0 for t ≥ 2l/c yields

F0

ρAc
[−δ(−ct) + δ(2l − ct)] + f ′

2(−ct) = 0

⇒ f ′
2(−ct) = − F0

ρAc
δ(2l − ct).
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Defining z = −ct , we have

f ′
2(z) = − F0

ρAc
δ(2l + z)

⇒ f2(z) = − F0

ρAc
H(2l + z) + CI,

⇒ f2(x − ct) = − F0

ρAc
H(2l + x − ct) + CI. (2.81)

Using the condition f2(x − ct)|t=2l/c ≡ 0 yields CI = F0/ρAc. Therefore, the complete
solution after the second reflection is given by

u(x, t) = F0

ρAc
[3 − H(x − ct) − H(2l − x − ct) − H(2l + x − ct)], 2l/c ≤ t < 3l/c.

This solution procedure can be continued indefinitely. It may be observed that the bar
continuously moves to the right. However, the ends of the bar do not move simultaneously.
The propagation of the displacement wave in the bar is shown in Figure 2.23. The motions

of the left end and right end are shown in Figure 2.24 It is seen that the whole bar shifts a
distance F0/ρAc in time l/c. The average velocity of the bar is, therefore, F0/ρAl = F0/m,
where m is the mass of the bar. This is also the velocity acquired by a rigid bar of mass
m when acted upon by an impulsive force of strength F0. Thus, the average motion of an
elastic bar is identical to that of a rigid bar.

2.5.2 Step-forcing of a bar with boundary damping

Consider a finite bar with a damper on one end, and free at the other, as shown in Figure 2.25.
At time t = 0, a constant force of magnitude F0 is suddenly applied at the free end. The
problem is to determine the subsequent motion of the bar.

uρc/F0

0 < t < l/c

x

x

l/c < t < 2l/c

2l/c < t < 3l/3

x

xl

3l/c < t < 4l/c

Figure 2.23 Propagation of displacement wave in a free–free bar started with an impulsive force



96 One-dimensional wave equation: d’Alembert’s solution

1 2 3

1

2

3
uρc/F0

ct/ l

left end

mean

right end

Figure 2.24 Motion of the ends of a free–free bar started with an impulse

F(t)

x

d

l

u(x, t) ρ,A,E

Figure 2.25 A finite bar with a discrete boundary damping

Let the displacement of the bar be represented as u(x, t) = f1(x − ct), 0 ≤ t < l/c,
which is a positive-traveling wave. The boundary condition at the left end can be written as

−EAu,x(0, t) = F0H(t)

⇒ f ′
1(−ct) = − F0

EA
H(t) (2.82)

Using the definition z := −ct in (2.82) yields

f ′
1(z) = − F0

EA
H(−z/c) (2.83)

⇒ f ′
1(x − ct) = − F0

EA
H(−x/c + t), 0 ≤ t < l/c, (2.84)

where H(·) is the Heaviside step function. The velocity of the bar can be represented as

u,t (x, t) = −cf ′
1(x − ct) = F0c

EA
H(−x/c + t). (2.85)

When the wave reaches the right end, it is reflected at the boundary to create a negative-
traveling wave. Let the motion of the bar for l/c ≤ t < 2l/c be represented by

u(x, t) = f1(x − ct) + g1(x + ct). (2.86)
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The boundary condition at the right end can be written as

EAu,x(l, t) = −du,t (l, t), (2.87)

where d is the impedance of the damper. Using the solution form (2.86) in the boundary
condition yields

EA[f ′
1(l − ct) + g′

1(l + ct)] = −d[−cf ′
1(l − ct) + cg′

1(l + ct)] (2.88)

or

g′
1(l + ct) = −

(
EA − dc

EA + dc

)
f ′

1(l − ct)

⇒ g′
1(z) = −rH(z/c − 2l/c) (using (2.83)) (2.89)

⇒ g′
1(x + ct) = r

F0

EA
H(x/c + t − 2l/c), (2.90)

where

r = EA − dc

EA + dc
= ρAc − d

ρAc + d
. (2.91)

The velocity of the bar can then be represented as

u,t (x, t) = F0

ρAc
[H(−x/c + t) + rH(x/c + t − 2l/c)]

= F0

ρAc
[1 + rH(x/c + t − 2l/c)], l/c ≤ t < 2l/c. (2.92)

For t ≥ 2l/c, the wave reflects from the left boundary, and the solution can be written as

u(x, t) = f1(x − ct) + g1(x + ct) + f2(x − ct). (2.93)

Applying the boundary condition of the left end again yields

−EA[f ′
1(−ct) + g′

1(ct) + f ′
2(−ct)] = F0H(t)

⇒ g′
1(ct) + f ′

2(−ct) = 0 (using (2.82))

⇒ f ′
2(z) = −g′

1(−z) (2.94)

⇒ f ′
2(x − ct) = −g′

1(−x + ct). (2.95)

It can be easily inferred from (2.94) that, at the left boundary, all subsequent reflections can
be computed using the recursive relation

f ′
n+1(z) = −g′

n(−z), (2.96)
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where g′
1(z) is given by (2.89). Considering the reflection from the right boundary for

t ≥ 4l/c, we can write the solution as

u(x, t) = f1(x − ct) + g1(x + ct) + f2(x − ct) + g2(x + ct). (2.97)

Again using the boundary condition for the right end yields

EA[f ′
1(l − ct) + g′

1(l + ct) + f ′
2(l − ct) + g′

2(l + ct)] =
−d[−cf ′

1(l − ct) + cg′
1(l + ct) − cf ′

2(l − ct) + cg2(l + ct)]

⇒ g′
2(l + ct) = −rf ′

2(l − ct) (using (2.88) and (2.91)),

⇒ g′
2(z) = −rf ′

2(−z + 2l)

⇒ g′
2(x + ct) = −rf ′

2(−x − ct + 2l). (2.98)

It follows from (2.98) that all subsequent reflections from the right boundary can be com-
puted from the recursion

g′
n(z) = rf ′

n(−z + 2l), (2.99)

where f ′
1(z) is given by (2.83). Therefore, as t → ∞, one can write the stress in the bar as

σ∞ = lim
t→∞ Eu,x = lim

n→∞ E[f ′
1 + g′

1 + f ′
2 + g′

2 + f ′
3 + g′

3 + . . . + f ′
n + g′

n]

= lim
n→∞ E[f ′

1 − rf ′
1 + rf ′

1 − r2f ′
1 + r2f ′

1 + r3f ′
1 + . . .

+r(n−1)f ′
1 − rnf ′

1]

= lim
n→∞ E[f ′

1 − rnf ′
1]

= Ef ′
1 (if |r| < 1)

= −F0

A
. (2.100)

Similarly, in the limit t → ∞, the velocity can be determined as

v∞ = lim
n→∞[−cf ′

1 + cg′
1 − cf ′

2 + cg′
2 − cf ′

3 + cg′
3 + . . .

−cf ′
n + cg′

n]

= lim
n→∞ c[−f ′

1 − rf ′
1 − rf ′

1 − r2f ′
1 − r2f ′

1 − r3f ′
1 − . . .

−r(n−1)f ′
1 − rnf ′

1]

= lim
n→∞ −cf ′

1[1 + 2r + 2r2 + 2r3 + . . . + 2r(n−1) + rn]

= lim
n→∞

F0c

EA

(
2
1 − r(n+1)

1 − r
− 1 − rn

)
(2.101)

= F0c

EA

(
1 + r

1 − r

)
(if |r| < 1)

= F0

d
(using (2.91)). (2.102)
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Figure 2.26 Velocity of the left end of a step-forced bar for two values of boundary damping

The velocity profiles are shown in Figure 2.26 for two values of r . It is observed that
for r > 0, the convergence is monotonous, while for r < 0, the convergence is oscillatory.
To show this, we rewrite (2.101) as

vn = F0

d
(1 − rn),

= F0

d
(1 − en ln r ). (2.103)

For r ∈ (0, 1), the exponent is always negative, indicating v∞ → F0/d. For r ∈ (−1, 0),
one can rewrite (2.103) as

vn = F0

d
(1 − en ln |r|einπ ) = F0

d
[1 − (−1)nen ln |r|].

This solution is clearly oscillatory, and converges in the limit n → ∞ to v∞ = F0/d. A
special case occurs for dc = EA (i.e., r = 0), as already seen in Section 1.8.2. In this case
the final velocity v = F0/d = F0/A

√
Eρ is reached after time t = l/c.

2.5.3 Axial collision of bars

Consider a homogeneous uniform bar of length l, moving axially with a velocity v0, colliding
at t = 0 with a semi-infinite bar at rest, as shown in Figure 2.27. Let the density, Young’s
modulus, and area of cross-section of the moving bar be, respectively, ρ, E, and A, while
the (real) impedance of the semi-infinite bar is denoted by Z . The motion of the bar just
after collision can be written as

u(x, t) = v0t + g(x + ct), (2.104)
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x
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x
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∞

Zρ,A,E
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v′

Figure 2.27 Collision of a bar of finite length with a semi-infinite bar

where g(x + ct) is a left-traveling wave created as a result of the collision. The boundary
condition at the right end can be represented as

EAu,x(0, t) = −Zu,t (0, t).

Using the solution (2.104) in the boundary condition yields

EAg′(ct) = −Z[v0 + cg′(ct)]

⇒ g′(ct) = −Zv0

EA + Zc

⇒ g′(z) = −Zv0

EA + Zc
H(z)

⇒ g′(x + ct) = −Zv0

EA + Zc
H(x + ct), (2.105)

where the Heaviside step function H(·) is introduced to enforce the causality condition
g′(z) ≡ 0 for z ≤ 0. At t = l/c, the left-traveling wave reflects from the left boundary, and
the subsequent motion can be represented by

u(x, t) = v0t + g(x + ct) + f (x − ct). (2.106)

The force–free boundary condition at the left boundary can be represented as

EAu,x(−l, t) = 0.

Using the solution form (2.106) in this boundary condition yields

g′(−l + ct) + f ′(−l − ct) = 0

⇒ f ′(z) = −g′(−z − 2l)
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⇒ f ′(x − ct) = −g′(−x + ct − 2l)

⇒ f ′(x − ct) = Zv0

EA + Zc
H(−x + ct − 2l). (2.107)

The velocity of the bar after the reflection from the left end can be written as

u,t (x, t) = v0 + cg′(x + ct) − cf ′(x − ct)

= v0 − Zv0c

EA + Zc
H(x + ct) − Zv0c

EA + Zc
H(−x + ct − 2l). (2.108)

Thus, at t = 2l/c the velocity is given by

u,t (x, 2l/c) = v = v0 − Zv0c

EA + Zc
− Zv0c

EA + Zc

= EA − Zc

EA + Zc
v0 = ρAc − Z

ρAc + Z v0 = rv0, (2.109)

where r = (ρAc − Z)/(ρAc + Z). The stress in the bar at t = 2l/c can be calculated as

σ(x, 2l/c) = Eu,x(x, 2l/c) = E[g′(x + ct) + f ′(x − ct)]
∣∣
t=2l/c

≡ 0. (2.110)

Thus, the finite bar is completely stress-free at t = 2l/c.
Since the contact between the two bars is unilateral, there can be various interesting

situations just after t = 2l/c, depending on the value of Z . When Z = ∞, i.e. the boundary
is rigid, the final velocity of the finite bar after collision is obtained from (2.109) as vc = −v0.
Thus, the bar rebounds elastically, and there is no loss of energy. In the case of Z being a
finite real impedance, there can be three cases, namely, Z > ρAc, Z = ρAc, and Z < ρAc.
In the first case (i.e., Z > ρAc), there is a rebound of the bar, although with a velocity
magnitude less than v0, which can be computed from (2.109). The fraction of the energy
lost by the bar can be computed as

�E
E =

1
2ρl(rv0)

2 − 1
2ρlv2

0
1
2ρlv2

0

= r2 − 1. (2.111)

Since |r| < 1 for a finite Z > ρAc, energy is always lost by the colliding bar. In the second
case r = 0, and the finite bar comes to a complete stop. Thus, it loses its energy completely
to the semi-infinite bar. Since the contact force at the interface vanishes, the end of the
semi-infinite bar also stops. However, the two bars remain in contact. In the case Z < ρAc,
there is a velocity discontinuity at t = 2l/c. At this time, the colliding bar has a velocity
vc = rv0 > 0, while the semi-infinite bar end is moving with vs = EAv0/(EA + Zc), as can
be easily obtained from (2.108). As soon as the velocity discontinuity occurs, the interface
force vanishes, and the end of the semi-infinite bar also stops. However, the finite bar is
still moving in the positive direction with vc. Thus, the problem now reduces to that of a
finite bar traveling with an initial velocity vc, and colliding with a stationary semi-infinite
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bar. It is not difficult to conclude that, at the second collision at t = 4l/c, the velocity of
the finite bar is obtained as v(2)

c = r2v0. Generalizing, we have at t = 2nl/c,

v(n)
c = rnv0 = en ln rv0

⇒ vc(t) = e
tc
2l

ln rv0. (2.112)

Since 0 < r < 1, the velocity of the colliding bar decays exponentially, and as t → ∞, it
loses its energy completely.

2.5.4 String on a compliant foundation

Let us consider next an example of wave propagation in a dispersive medium. Con-
sider a stretched infinite string on a compliant foundation which is modeled as a dis-
tributed stiffness, as shown in Figure 2.28. The equations of motion can be easily writ-
ten as

ρAw,tt − T w,xx + κw = 0, (2.113)

where κ is the stiffness per unit length of the foundation. Assuming a traveling wave solution
w(x, t) = Bei(kx−ωt) for (2.113), we obtain the dispersion relation

−ω2ρA + k2T + κ = 0, (2.114)

as shown in Figure 2.29. The phase velocity of the wave is then obtained as (see Appendix B)

cP = ω

k
=
√

c2 + κ

ρAk2
, (2.115)

where c = √
T /ρA is the wave speed in a normal taut string. The group velocity is

given by

cG = dω

dk
= T k

ρAω
= c2

cP
. (2.116)

Thus, cP and cG are both functions of the wave number k, and are shown in Figure 2.30. It
may be noted from (2.116) that cPcG = c2. This relation also holds for the wave equation.

∞ ∞

κ

ρ,A,E

Figure 2.28 An infinite stretched string on a compliant foundation
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Figure 2.29 Dispersion relation of an infinite stretched string on a compliant foundation
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Figure 2.30 Variation of phase velocity (cP) and group velocity (cG) with wave number for a string
on a compliant foundation

Further, as k → ∞, both cP and cG tend to the taut string wave speed c. For a given
frequency ω, the solution of k is obtained from (2.114) as

k = ±ω

c

√
1 − κ

ρAω2
.

It is interesting to observe that, for values of ω < ωc := √
κ/ρA, where ωc is known as the

cut-off frequency, the wave number becomes complex, say k = ±i k̃. The wave solution is
then of the form

w(x, t) = B+e−k̃x−iωt + B−ek̃x−iωt , (2.117)

where the first term comes from the positive-traveling wave component, and the second
term corresponds to the negative-traveling wave component. It is evident from (2.117) that
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the solution amplitude decays exponentially with distance in any direction. Such solutions
are known as evanescent waves or near-fields, and they do not carry energy (see, for example,
[3]). Thus, a harmonic motion of a point of the medium with a frequency below the cut-off
frequency will not setup any traveling waves in the medium.

2.5.5 Axially translating string

2.5.5.1 D’Alembert’s solution

Consider an axially traveling string as discussed in Section 1.10. The equation of motion is
given by

w,tt + 2vw,xt − (c2 − v2)w,xx = 0, (2.118)

where v is the constant travel speed of the string. Assuming the string to be of infinite
length, we do not have any boundary conditions. Consider a coordinate transformation of
the form

ξ = t, η = x − βt, (2.119)

where β is a constant. Then, using the chain rule of differentiation, one can rewrite (2.118)
in the new coordinates as

w̃,ξξ + 2(v − β)w̃,ηξ + [β2 − 2vβ − (c2 − v2)]w̃,ηη = 0. (2.120)

Now, choosing β = v, we immediately obtain from (2.120)

w̃,ξξ − c2w̃,ηη = 0. (2.121)

Thus, in the new coordinates defined by (2.119) with β = v, the equation of motion of a
traveling string transforms to a wave equation. Now, one can write the general solution of
(2.121) as

w̃(ξ, η) = f (η − cξ) + g(η + cξ)

⇒ w(x, t) = f [x − (c + v)t] + g[x + (c − v)t]. (2.122)

The solution (2.122) is a superposition of two traveling waves, one with speed c + v in the
direction of travel of the string (the forward traveling wave), and the other in the opposite
direction with speed c − v (the backward traveling wave). It may be observed that when
v = c, the backward traveling wave becomes stationary in the fixed frame. Thus, there are
no backward propagating waves for travel speeds beyond the critical speed of the string.

Now consider the initial value problem for a traveling string with initial configuration
w(x, 0) = w0(x) and initial velocity w,t (x, 0) = v0(x). Then, using (2.122), one can write

f (x) + g(x) = w0(x)

and

−(c + v)f ′(x) + (c − v)g′(x) = v0(x).
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Proceeding similarly to what was done in Section 2.1.1, one can obtain the final solution of
the initial value problem for a traveling string as

w(x, t) = 1

2c

[
(c − v)w0(x − (c + v)t) + (c + v)w0(x + (c − v)t)

+
∫ x+(c−v)t

x−(c+v)t

v0(ξ) dξ

]
. (2.123)

As an example, consider a string translating with speed v in the positive x-axis direction.
Assume an initial velocity distribution v0(x) = V0δ(x) for the initially undisturbed string.
Then, the subsequent motion of the string is obtained from (2.123) as

w(x, t) = V0

2c
[H(x + (c − v)t) − H(x − (c + v)t)],

where H(·) is the Heaviside step function. This solution is shown is Figure 2.31 for three
possible velocity regimes, namely v < c, v = c, and v > c. These three velocity regimes
show distinctive behavior. For v < c, the disturbance spreads in the whole string, while for
v = c, only the downstream side of x = 0 is disturbed. On the other hand, for v > c, the
disturbance is completely convected away downstream.

2.5.5.2 Energetics of waves

Consider the total mechanical energy of a section of a traveling string between the coordi-
nates [x1, x2] given by

E = 1

2

∫ x2

x1

[ρA(w,t + vw,x)
2 + T w2

,x] dx. (2.124)

t = t3
x x x

t = t2
x x x

t = t1
x x

w w w

x

(a) v < c (b) v = c (c) v > c

Figure 2.31 Solution of the initial value problem for an axially translating string for three travel
speed regimes
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Recalling that d(·)/dt = ∂(·)/∂t + v∂(·)/∂x, one can write

dE
dt

=
∫ x2

x1

[ρA(w,t + vw,x)(w,tt + 2vw,xt + v2w,xx)

+T w,x(w,xt + vw,xx)] dx

= T w,x(w,t + vw,x)
∣∣x2
x1

(using (2.118)). (2.125)

Similarly as in Section 2.3, one can define the instantaneous power flowing past a coordinate
location x as

P(x, t) := −T w,x(w,t + vw,x). (2.126)

Using this expression, one can now calculate the energy flux of traveling waves on a
translating string. It may be recalled from the discussion in Section 2.3 that the sign of
P(x, t) gives the direction of flow of power.

2.5.5.3 Reflection of waves

Consider a traveling string passing through a rigid support point at x = 0, as shown in
Figure 2.32. Let us take a positive-traveling harmonic wave on the string to the left of
x = 0, and study the reflection process at the support point. The total wave field in the
region x < 0 is given by

w(x, t) = Aeik[x−(c+v)t] + Beik′[−x−(c−v)t], (2.127)

where k and k′ are, respectively, the wave numbers of the incident and reflected waves. The
support condition w(0, t) ≡ 0 leads to

Ae−ik(c+v)t + Be−ik′(c−v)t = 0

⇒ k′ =
(

c + v

c − v

)
k, and B = −A. (2.128)

It is interesting to observe that the wave number changes after reflection, a phenomenon
not observed in non-translating systems. For v < c, the wave number of the backward

∞ ∞

z, w

x

ρ,A, T

Figure 2.32 Reflection of waves in a traveling string from a fixed support
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wave increases. Travel speeds v ≥ c lead to a complex phenomenon due to accumulation
of the backward wave. Such a situation will require non-linear analysis, and will not be
discussed here.

Next, we analyze the energetics of the reflection process. Taking the real (or imaginary)
part of the incident and reflected waves, one can use (2.126) to calculate the instanta-
neous power of the individual waves. The average incident and reflected power can then be
obtained as, respectively,

〈PI〉 = 1

2
k2T cA2 and 〈PR〉 = −1

2

(
c + v

c − v

)2

k2T cA2. (2.129)

It is evident that the magnitude of the reflected power is higher than the incident power. This
observation leads to the conclusion that the wave reflection process in traveling strings from
a fixed support is a non-conservative process. The reflected wave draws the extra energy
from the axial motion of the string.

The above conclusions can be used to understand the dynamics of a translating string
between two supports (see Figure 1.27). When a small disturbance reflects from the right
support, the reflected (backward) wave gains some extra energy. For v < c, the backward
wave can travel up to the left support and lose the extra energy on reflection at the left
support (see Exercise 2.15). Hence, for sub-critical travel speeds, the energy balance of the
string between the supports is maintained. However, for v ≥ c, the reflected (backward)
wave cannot propagate, and hence, the extra energy cannot be shed. This may result in a
continuous build-up of energy in the string, leading to instability.

EXERCISES

2.1 Show by differentiations that the solution

w(x, t) = 1

2

[
w0(x − ct) + w0(x + ct) + 1

c

∫ x+ct

x−ct

v0(ξ)dξ

]

satisfies the wave equation w,tt − c2w,xx = 0, and the initial conditions w(x, 0) = w0(x) and
w,t (x, 0) = v0(x).

2.2 A semi-infinite taut string of density ρ, and cross-sectional area A, and under a tension T , as
shown in Figure 2.9, is harmonically forced by an actuator at the sliding end x = 0. If the actuator
can deliver an average power of P , determine the amplitude of harmonic waves that can be produced
in the string in terms of the properties of the string and the frequency.

2.3 A semi-infinite string is connected at the boundary x = 0 to a spring–mass system as shown in
Figure 2.33. At t = 0, a waveform given by

f (ξ) =
{

A
(
1 − cos 2πξ

l

)
, ξ ∈ [0, l]

0, ξ ≥ l

is incident on the boundary. Taking the mass m and stiffness k, determine the reflected wave in the
case of no resonance, and when there is resonance. How is the resonance condition identified?
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z, w
c

ρ,A, T

m

k

x

l

∞

Figure 2.33 Exercise 2.3

2.4 A mass–spring system is connected to a string of length l, density ρ, and tension T , as shown in
Figure 2.34. The other end of the string is attached to a damper of damping coefficient d .

(a) Determine the impedance of the string–damper system as seen by the mass-spring system.
(b) If the mass is excited by a given harmonic force, determine the added mass and damping on

the mass–spring system due to the string–damper arrangement. For values of d/ρc = 0.5, 1.0
and 1.5, plot the added mass and damping as a function of the circular frequency �. Explain
the high value of added damping at certain excitation frequencies when d/ρc � 1.

m

d

ρ,A, T , l

k

Figure 2.34 Exercise 2.4

2.5 Two semi-infinite bars of the same diameter but different materials are joined by a film of a third
material as shown in Figure 2.35. A positive-traveling harmonic wave of circular frequency ω in the
left bar is incident at the junction x = 0. Determine the thickness of the film required to ensure that
no wave is reflected back into the left bar from the junction. Physically interpret the no-reflection
condition. Show that, if this condition is achieved, the incident energy is completely transmitted to
the right bar. For a particular film thickness, plot the fraction of the incident energy reflected into the
left bar as a function of the frequency of the incident harmonic wave.

ρ1, A,E1 ρ3, A,E3 ρ2, A,E2

∞ ∞

Figure 2.35 Exercise 2.5

2.6 Two semi-infinite bars of different materials and diameters are joined as shown in Figure 2.36. A
positive-traveling longitudinal wave fI(x − c1t) in the left bar is incident on the junction at x = 0,
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ρ1, A1, E1
ρ2, A2, E2

∞ ∞

Figure 2.36 Exercise 2.6

and is partially reflected in the form fR(x + c1t) and partially transmitted to the right bar in the form
fT(x − c2t). Determine the waveforms fR(ξ) and fT(ξ) in terms of fI(ξ).

2.7 Two identically tensioned cables (modeled as strings) are connected by a spacer–damper as shown
in Figure 2.37.

(a) In the first case, consider that positive-traveling harmonic waves of the same phase are incident
from the left of the spacer–damper in both cables. Determine the values of m, k, and d so that
maximum vibration energy is dissipated through the dampers.

(b) In the second case, consider that positive-traveling harmonic waves of opposite phase are incident
from the left of the spacer–damper in both cables. Solve for the values of m, k, and d for
maximum dissipation of vibration energy.

k

k d

d

m

ρ,A, T

ρ,A, T

Figure 2.37 Exercise 2.7

2.8 A Stockbridge damper, used for damping the vibrations of high-voltage conductors (modeled as
strings), is attached as shown in two cases (a) and (b) in Figure 2.38. For both cases shown in the
figure, determine the optimal impedance Z of the Stockbridge damper as a function of the point of
attachment l of the damper, and the string parameters so that a negative-traveling harmonic wave
from the right is not reflected back.

l l

z, w z, w
ρ,A, T ρ,A, T

x x

(a) (b)

∞ ∞

Figure 2.38 Exercise 2.8
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2.9 Consider the sliding–fixed string with a damper of damping coefficient d as shown in Figure 2.39.
The free end of the string is excited by a harmonic force of the form F(t) = F0e−i�t .

(a) First, take d = 0 and determine the impedance Z of the string. Interpret the frequencies � for
which Z = 0, and Z = ∞.

(b) When d �= 0, determine Z. Also determine the average power absorbed by the damper.

F(t)

x

z, w

l

ρ,A, T

d

a

Figure 2.39 Exercise 2.9

2.10 A homogeneous uniform bar is kept under tension by a string as shown in Figure 2.40. If the
string suddenly snaps, determine the transient motion and stress in the bar in terms of the propagating
waves.

l
x

ρ,A,Eu(x, t)
T

Figure 2.40 Exercise 2.10

2.11 Rework the motion of a free–free bar forced by an impulse F(t) = F0δ(t) at one end starting
with the boundary condition (2.76).

2.12 A homogeneous uniform bar of length l1, moving axially with a velocity v0 to the right, hits a
similar stationary bar of length l2 > l1 as shown in Figure 2.41.

(a) At the time instants tk = kl1/2c, where k = 0, 1, 2, 3, 4, determine the velocity and normal stress
in both the bars.

(b) Show that for time t > 2l1/c, the bar of length l1 becomes stationary. What is the velocity of
the center of mass of both the bars taken together.

(c) What is the coefficient of restitution e between the two bars?

ρ,A,Eρ,A,E

l2
x

v

l1

Figure 2.41 Exercise 2.12
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2.13 A uniform homogeneous bar of length l, density ρ, and section-modulus EA is acted upon by an
axial force of the form F(t) = F0[H(t) − H(t − τ )], where τ is a constant, as shown in Figure 2.42.
Determine the motion of the bar.

ρ,A,E

l

F (t)

τ

F (t)

t

F0

Figure 2.42 Exercise 2.13

2.14 Using d’Alembert’s solution (2.122), determine the traveling wave solution of the initial value
problem for a traveling string with w(x, 0) ≡ 0, and w,t (x, 0) = V0[H(x) − H(x − a)], where H(·)
is the Heaviside step function, and a is a positive constant.

2.15 Consider a string traveling between two supports at a speed v, as shown in Figure 1.27. A
triangular waveform

y =
{

ax, 0 ≤ x ≤ a

0, a < x < 0

is incident from the left on the right support. Determine the reflected (backward-traveling) waveform.
Assuming v < c, where c is the wave speed, determine the reflected wave when the backward-traveling
wave is reflected at the left boundary.

2.16 A traveling string of infinite extent is supported frictionlessly by a spring of stiffness k, as shown
in Figure 2.43. A positive-traveling harmonic wave is incident from the left. Determine the transmitted
and reflected waves in the string. Also determine the power carried by the transmitted and reflected
waves.

∞ x ∞
k

ρ,A, T
z,w

v

Figure 2.43 Exercise 2.16

2.17 Using the expression (2.126), show that the rate of change of total mechanical energy of a traveling
string between two fixed supports at x = 0 and x = l is given by dE/dt = T v[w2

,x(l, t) − w2
,x(0, t)].

Using the solution for the nth mode from (1.256), determine dE/dt for the nth mode.



112 One-dimensional wave equation: d’Alembert’s solution

2.18 For an axially translating string with a sliding boundary at x = l, show that the rate of change of
total mechanical energy is given by dE/dt = T v[w2

,x(l, t) − w2
,x(0, t)] + T w,x(l, t)ḣ(t), where h(t) is

the prescribed motion of the sliding end. Investigate how one can choose an appropriate h(t) so as to
dissipate energy of the string, and hence control its vibrations (see [4]).
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3
Vibrations of beams

In the previous chapters, we have modeled a string as a one-dimensional elastic continuum
that does not transmit or resist bending moment. However, such an assumption is seldom
satisfied by any elastic continuum. In this chapter, we will consider planar transverse vibra-
tions of one-dimensional elastic continua known as beams, which transmit or resist not only
bending moment but also shear. Some simple beam models will be discussed, and their
solutions under various conditions will be studied.

3.1 EQUATION OF MOTION

In this section, we discuss a beam theory which considers only the effect of bending moment
on the dynamics of the beam. Thus, it is required that the shear forces be small so that the
shear deformation of the beam is negligible. Another way of stating this assumption is to
say that the beam is almost infinitely stiff in shear. The effect of shear deformation on the
transverse dynamics of a beam will be considered separately later in this chapter.

3.1.1 The Newtonian formulation

Consider a straight beam undergoing a planar deflection in uni-axial bending as represented
schematically in Figure 3.1. The simplest of all beam theories starts with the assumption that
planar cross-sections of the undeformed beam remain planar even after the beam undergoes
a deformation, as illustrated in the figure. From elementary theory of elasticity (see, for
example, [1]), it is known that when the beam is deflected, certain hypothetical longitudinal
lines or fibers are elongated, while others are compressed. There, however, exist fibers which
are neither elongated nor compressed, but are merely deflected. Such a fiber is called the
neutral fiber, and is shown in Figure 3.1. It is assumed that cross-sections orthogonal to the
neutral fiber before deformation are also orthogonal to the neutral fiber in the deformed beam.
These assumptions are referred to as the Euler–Bernoulli hypotheses. The Euler–Bernoulli
hypotheses hold good as long as the ratio of the height of the beam h to the radius of
curvature ρ(x, t) of the neutral fiber after deformation is much smaller than unity. In terms of
the forces, the assumptions remain meaningful for small bending moment gradient (i.e., for
small shear) along the length of the beam. With this assumption, and referring to Figure 3.2,

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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h

ρ(x, t)

Neutral
fiber

Figure 3.1 Schematic representation of a beam under planar deflection

w(x, t)

M

V

z

ψ

dψ

M + dM

V + dV

Undeformed neutral fibre

Figure 3.2 Infinitesimal element of a deflected beam

the strain–displacement relation at any height z measured from the plane of the neutral
fibers, can be written from the theory of elasticity as

εx(x, z, t) = (ρ(x, t) − z) dψ − ρ(x, t) dψ

ρ(x, t) dψ
= − z

ρ(x, t)

= − zw,xx(x, t)

[1 + w2
,x(x, t)]3/2

≈ −zw,xx(x, t) (assuming w,x � 1), (3.1)
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where w(x, t) is the transverse deflection field. Next, the constitutive relation for a linearly
elastic material can be written from Hooke’s law as

σx(x, z, t) = Eεx(x, z, t) = −Ezw,xx(x, t), (3.2)

where E is Young’s modulus. The bending moment at any section can then be written as

M(x, t) = −
∫ h/2

−h/2
zσx(x, z, t) dA

=
∫ h/2

−h/2
Ew,xx(x, t)z2 dA

= EI (x)w,xx(x, t), (3.3)

where I (x) is the second moment of area of cross-section of the beam about the neutral
axis. The neutral axis is the line of intersection of the plane of the neutral fibers, and the
plane of the cross-section of the beam. Now, the equation of translational dynamics of an
infinitesimal element can be written as

(ρA(x) dx)w,tt = p(x, t)dx + (V + dV ) cos(ψ + dψ) − V cosψ

or

ρAw,tt = p(x, t) + V,x, (3.4)

where p(x, t) is the external transverse force density, V is the shear force at any cross-
section, and it is assumed that cosψ ≈ 1. The rotational dynamics of the infinitesimal
element is represented by

(ρI (x) dx)ψ,tt = (M + dM) − M + (V + dV )
dx

2
+ V

dx

2

or

ρI (x)ψ,tt = M,x + V. (3.5)

Using the relation tan ψ = w,x , one can write

ψ,t = w,xt

(1 + w2
,x)

≈ w,xt (3.6)

and

ψ,tt = w,xtt

(1 + w2
,x)

− 2w,xw
2
,xt

(1 + w2
,x)

2
≈ w,xtt , (3.7)
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where all non-linear terms have been dropped. Using (3.3) and (3.7) in (3.5), and subse-
quently eliminating V between (3.5) and (3.4) yields on simplification

ρAw,tt + [EIw,xx],xx − [ρIw,xtt ],x = p(x, t). (3.8)

This equation of motion is known as the Rayleigh beam model. The term (EIw,xx),xx

is usually referred to as the flexure term, where EI is called the flexural stiffness, and
(ρIw,xtt ),x is known as the rotary inertia term. When the rotary inertia term is neglected,
we obtain

ρAw,tt + [EIw,xx],xx = p(x, t), (3.9)

which is referred to as the Euler–Bernoulli beam model. It is observed that the equations
of motion (3.8) or (3.9) are fourth-order partial differential equations in space, and second-
order in time. Thus, we require four boundary conditions and two initial conditions. The
boundary conditions are discussed in a later section.

3.1.2 The variational formulation

The variational principle (see Appendix A) provides an alternative convenient approach for
obtaining the equation of motion and the boundary conditions for beams. The total kinetic
energy T due to translation and rotation of an infinitesimal beam element can be written as

T = 1

2

∫ l

0

[
ρAw2

,t + ρIψ2
,t

]
dx

= 1

2

∫ l

0

[
ρAw2

,t + ρIw2
,xt

]
dx (using (3.6)). (3.10)

The potential energy V can be written from the theory of elasticity as

V = 1

2

∫ l

0

∫
A

σxεx dA dx

= 1

2

∫ l

0

∫
A

Ew2
,xxz

2 dA dx (using (3.1) and (3.2))

= 1

2

∫ l

0
EIw2

,xx dx. (3.11)

The Lagrangian is given by L = T − V , and the variational formulation yields

δ

∫ t2

t1

L dt = 0
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or

δ

∫ t2

t1

1

2

∫ l

0

[
ρAw2

,t + ρIw2
,xt − EIw2

,xx

]
dxdt = 0. (3.12)

Following the procedure discussed in Appendix A, we have from (3.12)

∫ t2

t1

∫ l

0
[ρAw,t δw,t + ρIw,xt δw,xt − EIw,xx δw,xx] dxdt = 0

or

−
∫ t2

t1

EIw,xx δw,x

∣∣l
0 dt −

∫ t2

t1

[(EIw,xx),x − ρIw,xtt ] δw
∣∣l
0 dt

+
∫ t2

t1

∫ l

0
[−ρAw,tt + (ρIw,xtt ),x − (EIw,xx),xx] δw dxdt = 0, (3.13)

where we have used the fact that the variation of the field variable and its spatial derivatives
at the initial and final times is zero, i.e., δw|ti = δw,x |ti ≡ 0 for i = 0, 1. The condition
(3.13) must hold for arbitrary variations δw. This yields, from the last integral in (3.13),
the equation of motion

ρAw,tt + [EIw,xx],xx − [ρIw,xtt ],x = 0. (3.14)

Similarly, boundary conditions are obtained from the first and second integrals in (3.13).
For example, one possible set of boundary conditions is given by

EIw,xx(0, t) ≡ 0 or w,x(0, t) ≡ 0, (3.15)

EIw,xx(l, t) ≡ 0 or w,x(l, t) ≡ 0, (3.16)

[(EIw,xx),x − ρIw,xtt ](0, t) ≡ 0 or w(0, t) ≡ 0, (3.17)

and

[(EIw,xx),x − ρIw,xtt ](l, t) ≡ 0 or w(l, t) ≡ 0. (3.18)

The first condition in (3.15) and (3.16) implies zero moment at the ends, while the first
condition in (3.17) and (3.18) implies zero shear force. The second equation in each of the
above conditions is a geometric boundary condition which implies either a zero displacement
or a zero slope.

In other kinds of boundary conditions, linear combinations of the boundary terms in
(3.13) may be set equal to zero. For example, for the beam shown in Figure 3.3(a), the geo-
metric boundary conditions are given by w(0, t) ≡ 0, w(l, t) ≡ 0, and w,x(0, t) = w,x(l, t).
In this case, the difference of the boundary term evaluated at x = l and x = 0 under the
first integral in (3.13) must vanish. This leads to the fourth (natural) boundary condition
EIw,xx(0, t) = EIw,xx(l, t) (since δw,x(0, t) = δw,x(l, t)). In Figure 3.3(b), the boundary
conditions are w(0, t) ≡ 0, EIw,xx(l, t) ≡ 0, and aw,x(0, t) = w(l, t). The natural bound-
ary condition in this case also can be obtained easily from the boundary terms in (3.13).
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(a)

z,w

x

l

Rigid link

(b)

a

z,w

x

l

Inextensible string

Figure 3.3 Special boundary conditions for beams

3.1.3 Various boundary conditions for a beam

Some of the above boundary conditions are realized in various combinations in beams
depending on the support, as illustrated in Figure 3.4. The simplest support conditions can
be any combination of pinned, clamped, free, and sliding, as illustrated in Figure 3.4. When

(a) Simply-supported beam

(b) Cantilever beam

(c) Beam with a sliding boundary

Figure 3.4 Various boundary conditions for a beam
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the end is pinned without friction, there is zero transverse displacement (geometric boundary
condition) and zero moment (dynamic boundary condition) at that end. Thus, we have in
Figure 3.4(a)

w(0, t) ≡ 0, w(l, t) ≡ 0, EIw,xx(0, t) ≡ 0, and EIw,xx(l, t) ≡ 0. (3.19)

At a clamped end, as shown in Figure 3.4(b), the displacement and slope of the beam are
zero (both are geometric boundary conditions). Therefore, we have

w(0, t) ≡ 0 and w,x(0, t) ≡ 0. (3.20)

At a free boundary, it is evident that the moment and the shear force vanish (both dynamic
boundary conditions). Hence, one can write

EIw,xx(l, t) ≡ 0 and ρIw,xtt (l, t) − [EIw,xx],x(l, t) ≡ 0. (3.21)

A sliding boundary is characterized by zero slope and zero shear. Thus, the mathematical
conditions for the right boundary of the beam shown in Figure 3.4(c) are

w,x(l, t) ≡ 0 and EIw,xxx(l, t) ≡ 0. (3.22)

When there are external forces over the beam, or at the boundaries, appropriate forcing
terms can be added, respectively, to (3.14), or in the moment and shear boundary conditions.

For example, consider a uniform cantilever beam with discrete damping and a stiffened
free-end, as shown in Figure 3.5. The equation of motion and the boundary conditions can
be written as

ρAw,tt + [EIw,xx],xx − [ρIw,xtt ],x + d δ(x − a)w,t = 0,

w(0, t) = 0, w,x(0, t) = 0, EIw,xx(l, t) = −kMw,x(l, t),

and

EIw,xxx(l, t) − ρIw,xtt (l, t) = −kSw(l, t).

z,w

x

ρ,A,EI

d kS

kM

a

l

Figure 3.5 Cantilever beam with discrete damping and stiffened free-end
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3.1.4 Taut string and tensioned beam

Before proceeding further, let us compare a taut string and a tensioned beam. Consider a
uniform beam under axial tension. One can easily show that the equation of motion of this
beam is obtained as

ρAw,tt − T w,xx + EIw,xxxx − ρIw,ttxx = 0, (3.23)

where T is the tension in the beam. Consider a non-dimensionalization scheme

w = w

rg
, x = x

l
, and t = tc

l
= t

l

√
T

ρA
,

where rg := √
I/A is the radius of gyration of the cross-section about the neutral axis of

the beam. Using these non-dimensionalized variables, (3.23) can be written as

w,t t − w,x x + EI

T l2
w,x x x x − I

Al2
w,t t x x = 0. (3.24)

Thus, the non-dimensional quantity EI/T l2 decides the relative importance of the flexure
term w,xxxx , while I/Al2 reflects the relative importance of the rotary inertia term w,ttxx .
One can also write these non-dimensional numbers as

EI

T l2
= EI/ρA

T l2/ρA
= 1

T /EA

1

l2A/I
= 1

εx

1

s2
r

and
I

Al2
= 1

s2
r
, (3.25)

where εx is the longitudinal strain in the x-axis direction due to pre-tension, and sr := l/rg

is defined as the slenderness ratio. Then, one can rewrite (3.24) as

w,t t − w,x x + 1

εx

1

s2
r
w,x xx x − 1

s2
r
w,t tx x = 0. (3.26)

It is clear from (3.25) that when the beam is very slender (i.e., sr � 1), the third and fourth
terms in (3.26) become insignificant. In that case, the beam can be treated as a string with
no flexural stiffness and no rotary inertia. Further, since εx � 1, it follows that the rotary
inertia term is relatively less significant compared to the flexure term. However, as we shall
see later, the rotary inertia term gains in importance with increasing curvature of the beam.
In the case of a moderate slenderness ratio, due to the fact that εx � 1 (i.e., T � EA), we
have 1/εxs

2
r � 1, and the flexure term becomes the most important term in the dynamics.

In that case, we may drop the second term in (3.26), and consider the simple beam equation
(3.8), or (3.9). It may be further noticed that the third term in (3.26) becomes important
for large curvatures of the continuum, which typically occurs at the support points. In such
cases, one may use a mixed string–beam model in which the bulk of the continuum is
modeled as a string, while near the support points, a beam model is used. Such analysis can
be found in [2].
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3.2 FREE VIBRATION PROBLEM

The free vibration problem is essentially the determination of the eigenfrequencies and the
corresponding eigenfunctions of the system. Hence, we begin here with the modal analysis of
the beam models derived above. The solution of the initial value problem can be formulated
using the eigenfunctions obtained from the modal analysis.

3.2.1 Modal analysis

3.2.1.1 The eigenvalue problem

Consider a Rayleigh beam described by the equation of motion

ρAw,tt + (EIw,xx),xx − (ρIw,xtt ),x = 0. (3.27)

Assume a modal solution of (3.27) in the form

w(x, t) = W(x)eiωt , (3.28)

where ω is the circular eigenfrequency and W(x) is the eigenfunction. The actual real
solution is obtained by taking the real part (though we could equally well take the imagi-
nary part) of the complex expression in (3.28). Substituting the modal solution in the field
equation (3.27) yields on rearrangement

−ω2[ρAW − (ρIW ′)′] + (EIW ′′)′′ = 0, (3.29)

which together with the boundary conditions represents the eigenvalue problem for a
Rayleigh beam. One may consider (3.29) as a general eigenvalue problem of the form

−ω2M[W ] + K[W ] = 0, (3.30)

where

M[·] =
[
ρA − d

dx

(
ρI

d

dx

)]
[·] and K[·] = d2

dx2

(
EI

d2

dx2

)
[·]. (3.31)

In the case of an Euler–Bernoulli beam described by

ρAw,tt + (EIw,xx),xx = 0, (3.32)

substituting the solution form (3.28) leads to

−ω2ρAW + (EIW ′′)′′ = 0. (3.33)

It is evident that (3.33) is a special case of (3.30) with

M[·] = ρA[·] and K[·] = d2

dx

(
EI

d2

dx2

)
[·].
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The general solution of (3.30) (and hence (3.33)) cannot be obtained in closed form for
arbitrary EI (x) and/or ρA(x). Therefore, we will solve the eigenvalue problem for uniform
beams only. Before proceeding further to solve the eigenvalue problem, let us first discuss
the orthogonality property of eigenfunctions of (3.30).

3.2.1.2 Orthogonality relations

Consider the eigenvalue problem of the Rayleigh beam described by (3.30) together with
the boundary conditions, as discussed in Section 3.1.3. For two different modes j and k,
one can write (3.30) as

−ω2
jM[Wj ] + K[Wj ] = 0 (3.34)

and

−ω2
kM[Wk] + K[Wk] = 0, (3.35)

where M[·] and K[·] are given by (3.31). Multiplying (3.34) by Wk , (3.34) by Wj , sub-
tracting one equation from the other, and integrating the result over the length of the beam
gives

[((EIW ′′
j )′ − ω2

jρIW ′
j )Wk − ((EIW ′′

k )′ − ω2
jρIW ′

k)Wj ]
∣∣l
0

+ [EIW ′′
k W ′

j − EIW ′′
j W ′

k]
∣∣l
0 + (ω2

j − ω2
k)

∫ l

0
[ρAWk − (ρIW ′

k)
′]Wj dx = 0. (3.36)

Using the boundary conditions defined by (3.15)–(3.18), it can be easily checked that the
boundary terms in (3.36) disappear. Hence, we immediately obtain the orthogonality relation
from (3.36) as

∫ l

0
[ρAWk − (ρIW ′

k)
′]Wj dx = 0, j �= k, (3.37)

or ∫ l

0
M[Wk]Wj dx = 0, j �= k. (3.38)

In the case of an Euler–Bernoulli beam, (3.37) simplifies further to

∫ l

0
ρAWkWj dx = 0, j �= k. (3.39)

One may normalize the eigenfunctions with respect to an inner product such that

∫ l

0
M[Wk]Wj dx = δjk, (3.40)
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where δjk represents the Kronecker delta function. The eigenfunctions so normalized form
an orthonormal basis. As a consequence of this orthonormality, from (3.30) and (3.38), one
can easily write

∫ l

0
K[Wk]Wjdx = ω2

kδjk.

3.2.1.3 Modal analysis of uniform beams

Consider the eigenvalue problem of a uniform Rayleigh beam described by

−ω2[ρAW − ρIW ′′] + EIW ′′′′ = 0, (3.41)

along with the corresponding boundary conditions. Substituting in (3.41) a solution of the
form

W(x) = Beβ̃x , (3.42)

where B and β̃ are constants, one can write

EIβ̃4 − ω2ρI β̃2 − ω2ρA = 0

⇒ β̃2 = 1

2EI

[
ω2ρI ±

√
ω4ρ2I 2 + 4ω2EIρA

]
. (3.43)

It is easily observed that the bracketed term in (3.43) will take both a positive and a negative
value. Therefore, β̃ has four solutions given as β̃ = ±β1, ±iβ2, where

β1 = 1√
2EI

[
ω2ρI +

√
ω4ρ2I 2 + 4ω2EIρA

]1/2

(3.44)

and

β2 = 1√
2EI

[
− ω2ρI +

√
ω4ρ2I 2 + 4ω2EIρA

]1/2

. (3.45)

Thus, the general (complex) solution of (3.29) is obtained as

W(x) = A1e
β1x + A2e

−β1x + A3e
iβ2x + A4e

−iβ2x, (3.46)

where Ai , i = 1, . . . , 4, are (complex) constants. Alternatively, the solution may also be
expressed in the real form as

W(x) = B1 coshβ1x + B2 sinh β1x + B3 cosβ2x + B4 sinβ2x, (3.47)

where Bi , i = 1, . . . , 4 are real constants to be obtained from the boundary conditions.
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Next, we consider the case of a uniform Euler–Bernoulli beam. Substituting the solution
(3.42) in (3.32) yields

−ω2ρAW + EIW ′′′′ = 0, (3.48)

where ρA and EI are constants, we obtain

−ρAω2 + EIβ̃4 = 0

⇒ β̃2 =
√

ω2ρA

EI
. (3.49)

Therefore, we have the four solutions β̃ = ±β, ±iβ, where

β = (ω2ρA/EI)1/4. (3.50)

Now, one can write the general (complex) solution (for ω �= 0) of (3.33) as

W(x) = A1e
βx + A2e

−βx + A3e
iβx + A4e

−iβx, (3.51)

where Ai , i = 1, . . . , 4 are (complex) constants, or in the real form as

W(x) = B1 coshβx + B2 sinhβx + B3 cosβx + B4 sinβx, (3.52)

where Bi , i = 1, . . . , 4, are real constants of integration which are determined by the bound-
ary conditions of the problem.

In the following, we consider beams with some typical support conditions, and determine
their eigenfrequencies and eigenfunctions.

(a) Uniform simply-supported beam

Consider a simply-supported (pinned–pinned) uniform Rayleigh beam. The boundary con-
ditions for the corresponding eigenvalue problem (3.30) are

W(0) = 0, W ′′(0) = 0, W(l) = 0, and W ′′(l) = 0. (3.53)

Using the first two conditions from (3.53) in (3.47) yields B1 = B3 = 0. The last two
boundary conditions in (3.53) yield

B2 sinhβ1l + B4 sin β2l = 0 (3.54)

and

B2 sinhβ1l − B4 sin β2l = 0. (3.55)
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For non-trivial solutions of (B2, B4) from (3.54)–(3.55), one must have

sinh β1l sinβ2l = 0

⇒ sin β2l = 0 (since sinhβ1l �= 0 for any β1l �= 0), (3.56)

which is the characteristic equation for the problem. The solutions of the characteristic
equation are obtained as

β2 = nπ

l
, n = 1, 2, . . . , ∞. (3.57)

Substituting this expression of β2 in (3.45) and solving for ω yields the circular natural
frequencies of a simply-supported uniform Rayleigh beam as

ωR
n = n2π2

l2

1[
1 + n2π2

I

l2A

]1/2

√
EI

ρA
, n = 1, 2, . . . , ∞. (3.58)

Taking n � 1 such that 1 + n2π2I/ l2A ≈ n2π2I/ l2A, one obtains from (3.58) the approxi-
mation ωR

n ≈ (nπ/l)
√

E/ρ. As can be easily checked, these are the circular eigenfrequencies
of longitudinal vibrations of a fixed–fixed bar.

The final step of modal analysis is to determine the eigenfunctions. From (3.54) and
(3.55), and the characteristic equation (3.56), one can easily conclude that B2 = 0. Substi-
tuting this in (3.47), along with B1 = B3 = 0 and (3.57), the eigenfunctions of a simply-
supported uniform Rayleigh beam can be written as

Wn(x) = B sin
nπx

l
, n = 1, 2, . . . , ∞, (3.59)

where B is an arbitrary constant. These eigenfunctions are clearly orthogonal, and can be
normalized to make them orthonormal.

In the case of a simply-supported uniform Euler–Bernoulli beam, we have the same
expression for βn given by (3.57), as one can easily check. Therefore, the circular natural
frequencies of an Euler–Bernoulli beam are obtained by substituting the expression of β

from (3.57) in (3.50), and solving for ωn. This yields

ωEB
n = n2π2

l2

√
EI

ρA
, n = 1, 2, . . . , ∞. (3.60)

It may be observed by comparing (3.58) and (3.60) that, in the case of a very slender beam
(i.e., sr = l2A/I � 1), the natural frequencies of the lower modes given by the Rayleigh
beam model tend to be the same as those obtained from the Euler–Bernoulli beam model
(since 1 + n2π2I/ l2A ≈ 1). Thus, for lower modes of very slender beams, the effect of
rotary inertia is insignificant. It can be checked that the eigenfunctions for the simply-
supported uniform Rayleigh and Euler–Bernoulli beams are the same.
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Figure 3.6 Comparison of natural frequencies of a simply-supported Rayleigh beam and an
Euler–Bernoulli beam for a fixed slenderness ratio sr = 10
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Figure 3.7 Variation of ωR
n /ωEB

n with slenderness ratio sr for the first three natural frequencies

The two non-dimensional natural frequencies ωR
n l/cL and ωEB

n l/cL, where cL = √
E/ρ,

are compared for first few modes in Figure 3.6. It is observed that for lower modes, the
two frequencies tend to match. However, divergence is observed at higher modes. This is
primarily due to the effect of rotary inertia in the Rayleigh beam. It is easy to conclude
from the eigenfunctions (3.59) that, for higher modes, the curvature of the beam increases,
thereby increasing the influence of rotary inertia on the dynamics of the beam.

The ratio ωR
n /ωEB

n as a function of the slenderness ratio sr is plotted in Figure 3.7 for
the first three modes. At low slenderness ratios, the frequency ratio is widely different for
different modes. However, as the beam gets slender, the two frequencies tend to agree, as
can be observed from the figure. Further, for the higher modes, the effect of rotary inertia
becomes more pronounced at low slenderness ratios.

(b) Uniform cantilever beam

Here we consider a uniform Euler–Bernoulli cantilever beam for which the boundary con-
ditions are given by

W(0) = 0, W ′(0) = 0, W ′′(l) = 0, and W ′′′(l) = 0. (3.61)
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Substituting the solution form (3.52) in these boundary conditions yields

B1 + B3 = 0, (3.62)

B2 + B4 = 0, (3.63)

B1 coshβl + B2 sinhβl − B3 cosβl − B4 sin βl = 0, (3.64)

and

B1 sinh βl + B2 coshβl + B3 sin βl − B4 cosβl = 0. (3.65)

For a non-trivial solution of the (B1, . . . , B4), we must have

1 0 1 0
0 1 0 1

coshβl sinh βl − cosβl − sinβl

sinh βl cosh βl sinβl − cosβl

= 0

⇒ cosβl coshβl + 1 = 0, (3.66)

which is the characteristic equation of a cantilever Euler–Bernoulli beam. The solutions
of the characteristic equation (3.66) are visualized graphically by circles in Figure 3.8. It
can be observed that the function 1/ cosh z converges to zero rapidly, and the characteristic
equation (3.66) essentially reduces to cosβl = 0 for higher modes. The analytical solution
can be expressed in the form

βn =
(

ωn

√
ρA

EI

)1/2

=
(

2n − 1

2
π + en

)
1

l
(3.67)

⇒ ωn =
(

2n − 1

2
π + en

)2 1

l2

√
EI

ρA
, n = 1, 2, . . . , ∞, (3.68)

where en are small correction terms, and obtained as e1 = 0.3042, e2 = −0.018, e3 =
0.001, . . . . The corrections in the higher modes tend to zero rapidly, and can be neglected.
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Figure 3.8 Graphical representation of the solutions of the characteristic equation of a cantilever
beam



128 Vibrations of beams

For values of β given by (3.67), a non-trivial solution of (B1, . . . , B4) can be determined
from (3.62)–(3.65) by considering any three of the four equations. For example, using (3.62)
and (3.63) we can eliminate B3 and B4 from (3.64) to obtain

B1 = − sinhβnl + sin βnl

coshβnl + cosβnl
B2 := αnB2. (3.69)

Therefore, taking B2 = 1, one possible solution is given by

B1 = αn, B2 = 1, B3 = −αn, and B4 = −1, (3.70)

which yields the nth eigenfunctions as

Wn(x) = sinhβnx − sinβnx −
[

sinh βnl + sin βnl

coshβnl + cosβnl

]
(coshβnx − cosβnx). (3.71)

The first three eigenfunctions are shown in Figure 3.9. These eigenfunctions satisfy the
orthogonality condition (3.39) as can be checked.

(c) Uniform free–free beam

Consider a free–free Euler–Bernoulli beam. The boundary conditions in this case are zero
moment and shear force at both ends of the beam. This implies

W ′′(0) = 0, W ′′′(0) = 0, W ′′(l) = 0, and W ′′′(l) = 0. (3.72)
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W1(x)

W2(x)

W3(x)

Figure 3.9 First three eigenfunctions of a cantilever beam
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Using these boundary conditions in the shape-function (3.52), we have

B1 − B3 = 0, (3.73)

B2 − B4 = 0, (3.74)

B1 coshβl + B2 sinhβl − B3 cosβl − B4 sin βl = 0, (3.75)

and

B1 sinh βl + B2 coshβl + B3 sin βl − B4 cosβl = 0. (3.76)

A non-trivial solution of the Bis is obtained if and only if

1 0 −1 0
0 1 0 −1

coshβl sinh βl − cosβl − sinβl

sinh βl cosh βl sinβl − cosβl

= 0

⇒ cosβl coshβl − 1 = 0. (3.77)

The geometric visualization of the solution of the characteristic equation (3.77) is done
by circles in Figure 3.10. It can be observed that βl = 0 is a solution to (3.77). However,
for β = 0, (3.51) is no longer the form of solution to the differential equation. This case,
therefore, has to be considered separately. For higher modes, since cosh z is an exponentially
divergent function, the characteristic equation can be approximated by cosβl = 0. The
solution of (3.77) can be represented in the form

βn = ωn

√
ρA

EI
=
(

2n + 1

2
π + en

)
1

l
(3.78)

⇒ ωn =
(

2n + 1

2
π + en

)2 1

l2

√
EI

ρA
, n = 1, 2, . . . , ∞, (3.79)
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Figure 3.10 Graphical representation of the solutions of the characteristic equation of a free–free
beam
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where en are small correction terms. For example, e1 = 0.01766, e2 = −0.00078, . . . . The
corrections for higher modes are negligibly small, and can be dropped for all practical
purposes.

The eigenfunctions for the non-zero eigenfrequencies can be determined from (3.73)–
(3.76). It can be easily checked that solving for B1 from (3.73)–(3.75) yields

B1 = − sinhβnl + sin βnl

coshβnl − cosβnl
B2 := αnB2. (3.80)

Therefore, taking B2 = 1, a possible solution is given by

B1 = αn, B2 = 1, B3 = αn, and B4 = 1, (3.81)

which yields the nth eigenfunctions as

Wn(x) = sinhβnx + sinβnx +
[− sinhβnl + sinβnl

coshβnl − cosβnl

]
(coshβnx + cosβnx). (3.82)

The first three eigenfunctions of the free–free beam are shown in Figure 3.11. Once again
it can be checked that these eigenfunctions are orthogonal.

For the case β = 0 (i.e., ωn = 0), (3.33) implies that

W ′′′′ = 0

⇒ W(x) = B1 + B2x + B3x
2 + B4x

3. (3.83)

1

�1

1

1

�1

1

1

�1

1

x/l

x/l

x/ l

W1(x)

W2(x)

W3(x)

Figure 3.11 First three eigenfunctions of a free–free beam
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This solution corresponds to the rigid-body motion, and consists of translation and rotation
of the beam. Using (3.72), we can easily obtain B3 = 0 and B4 = 0. Then, the solution for
the rigid-body motion for small time can be written as

w0(x, t) = (K + Lt) +
[
x

l
− 1

2

]
(G + Ht), (3.84)

where K , L, G, and H are appropriate constants to be determined from the initial conditions.
The complete solution of the free–free beam can now be written as

w(x, t) = (K + Lt) +
[
x

l
− 1

2

]
(G + Ht) +

∞∑
n=1

(Cn cosωnt + Sn sin ωnt)Wn(x), (3.85)

where Wn(x) are given by (3.82).

3.2.1.4 Approximate methods

In the case of an arbitrary geometry of the beam, or in the presence of discrete elements,
the exact modal analysis becomes at least difficult, and usually even impossible. In such
situations, the approximate methods such as the Ritz and the Galerkin methods are useful.
These methods have already been discussed in Chapter 1, and will be studied in some more
detail in Chapter 6.

In both methods, we approximate the solutions of the variational problem (3.12) in the
form

w(x, t) =
N∑

j=1

pj (t)ψj (x) = �Tp, (3.86)

where pj (t) are time functions to be determined, and the ψj (x) are suitably chosen shape-
functions. In the Ritz method, for convergence, the shape-functions must satisfy all the
geometric boundary conditions of the problem and be differentiable at least up to the highest
order of the space-derivative in the Lagrangian (admissible functions). Substituting (3.86)
in (3.12), and following the procedure detailed in Section 1.7.3, we obtain the discretized
equations of motion as

Mp̈ + Kp = 0, (3.87)

where

M =
∫ l

0
[ρA��T + ρI� ′(� ′)T] dx and K =

∫ l

0
EI� ′′(� ′′)T dx. (3.88)

The approximate eigenfrequencies and eigenfunctions can now be obtained as discussed in
Section 1.7.3.
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In the case of the Galerkin method, for convergence, ψj(x) must satisfy all the boundary
conditions of the problem, and must be differentiable at least up to the highest derivative in
the equation of motion (comparison functions). Substituting the solution form in the equation
of motion, and using the procedure of Section 1.7.4, we obtain the discretized equations of
motion (3.87). However, the definitions in this case are

M =
∫ l

0
[ρA��T − �(ρI (� ′)T)′] dx and K =

∫ l

0
�[(EI� ′′)T]′′ dx. (3.89)

3.2.2 The initial value problem

The initial value problem for a beam is specified in terms of the initial position and velocity
conditions as w(x, 0) = w0(x) and w,t (x, 0) = v0(x). The solution of this problem can be
conveniently represented as

w(x, t) =
∞∑

j=1

(Cj cosωj t + Sj sin ωj t)Wj (x), (3.90)

where Wj(x) are the eigenfunctions of the beam, and Cj and Sj are unknown constants
which are to be determined from the initial conditions. Here we have assumed that there are
no rigid body motions of the type (3.84); they could of course easily be taken into account.

Consider a simply-supported beam of uniform cross-section with a concentrated force at
the center, as shown in Figure 3.12. If the force is suddenly removed, we have an initial
value problem with an initial deflected shape w0(x) and zero initial velocity. The initial
value problem can then be defined as

EIw,xxxx(x, t) + ρAw,tt = 0, w(0, t) ≡ 0, and w(l, t) ≡ 0, (3.91)

with the initial conditions w(x, 0) = w0(x) and w,t (x, 0) = v0(x) ≡ 0. The initial deflected
shape can be determined from the statics boundary value problem

EIw,xxxx(x, 0) = −Fδ(x − l/2), w(0, 0) = 0, and w(l, 0) = 0. (3.92)

l/2l/2

x

F
ρ,A,EI

z, w

Figure 3.12 Beam with an initial constant point force
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From the solution of the eigenvalue problem of a simply-supported beam, it is already
known that the eigenfunctions are given by Wn(x) = sin nπx/l. Therefore, the solution of
the initial value problem (3.91) can be sought using the expansion

w(x, t) =
∞∑

n=1

(Cn cosωnt + Sn sin ωnt) sin
nπx

l
, (3.93)

where Cn and Sn are unknown constants to be determined from the initial conditions

w(x, 0) = w0(x) =
∞∑

n=1

Cn sin
nπx

l
and w,t (x, 0) = v0(x) ≡ 0. (3.94)

The initial shape w0(x) should satisfy (3.92). Therefore, substituting the first condition
from (3.94) in (3.92), and taking the inner product of both sides with sin mπx/l yields on
simplification

Cm =




2F l3

m4π4EI
(−1)(m−1)/2, m = 1, 3, 5, . . . , ∞,

0, m = 2, 4, 6, . . . , ∞.

Using the initial condition on the velocity w,t (x, 0) ≡ 0 one can easily obtain

Sm = 0, m = 1, 2, . . . , ∞.

Thus, the solution of the initial value problem is of the form

w(x, t) =
∞∑

n=1,3,5...

2F l3

n4π4EI
(−1)(n−1)/2 cosωnt sin

nπx

l
.

3.3 FORCED VIBRATION ANALYSIS

The general forced vibration problem for an Euler–Bernoulli beam can be represented as

ρAw,tt + (EIw,xx),xx = q(x, t), (3.95)

along with the corresponding boundary conditions, where q(x, t) is a general forcing func-
tion. In the following, we will discuss some solution methods for (3.95).
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3.3.1 Eigenfunction expansion method

The solution of (3.95) can be written as

w(x, t) = wH(x, t) + wP(x, t), (3.96)

where wH(x, t) and wP(x, t) are, respectively, the general solution to the homogeneous
problem (i.e., q(x, t) = 0) and a particular solution to the inhomogeneous problem. The
homogeneous solution has already been discussed in the previous section, and is of the
form (3.90). Consider a particular solution in the form of the eigenfunction expansion

wP(x, t) =
∞∑

j=1

pj (t)Wj (x), (3.97)

where Wj(x) are the eigenfunctions and pj (t) are the corresponding modal coordinates. This
expression will then automatically fulfill the boundary conditions. Using (3.97) in (3.96),
and substituting (3.96) in (3.95) yields

∞∑
j=1

ρAp̈jWj + (EIW ′′
j )′′pj = q(x, t)

or ∞∑
j=1

ρA[p̈j + ω2
jpj ]Wj = q(x, t), (using (3.48)). (3.98)

Taking the inner product with Wk(x) on both sides, and using the orthonormality condition
(3.40), we get

p̈k + ω2
kpk = fk(t), k = 1, 2, . . . , ∞. (3.99)

where

fk(t) =
∫ l

0
q(x, t)Wk(x) dx.

Thus, (3.99) represents the modal dynamics of the forced Euler–Bernoulli beam. These
equations can be solved using standard techniques such as Green’s function method or the
Laplace transform method. The complete solution is then obtained from (3.96) as

w(x, t) =
∞∑

j=1

(Cj cosωj t + Sj sinωj t)Wj (x) +
∞∑

j=1

pj (t)Wj (x), (3.100)

where Cj and Sj are the constants of integration to be determined from the initial conditions.
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l

vt

x

F v ρ,A,EI

z, w

Figure 3.13 Beam with a traveling constant point force

Consider the case of a traveling force on a uniform Euler–Bernoulli beam, as shown
in Figure 3.13. In this case, q(x, t) = Fδ(x − vt), where v is the speed of travel of the
constant force of magnitude F . Therefore, from (3.99), we have the equations of modal
dynamics as

p̈k + ω2
kpk = F

ρA
sin

kπvt

l
, 0 ≤ t ≤ l/c, k = 1, 2, . . . , ∞. (3.101)

A particular solution of (3.101) is given by

pk(t) = 2F l3

π4EI

sin(kπvt/ l)

k2(k2 − ρAl2v2/π2EI)
, k = 1, 2, . . . , ∞. (3.102)

Using the initial conditions w(x, 0) ≡ 0 and w,t (x, 0) ≡ 0 one obtains the complete solution
for 0 ≤ t ≤ l/c as

w(x, t) = 2F l3

π4EI

∞∑
j=1

1

j2(j2 − ρAl2v2/π2EI)
(sin

jπvt

l
− jπv

lωj

sinωj t) sin
jπx

l
. (3.103)

The shapes of the beam at certain selected time instants are shown in Figure 3.14 for
v/l = ω1/4π , and in Figure 3.15 for v/l = ω1π/4.

3.3.2 Approximate methods

The approximate methods of Ritz and Galerkin can also be used for studying the forced
motion of beams. Expressing the solution of (3.95) as (3.86), the discretized equations of
motion are obtained in the form

Mp̈ + Kp = f(t),
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Figure 3.14 Response of a beam with constant force with with v/l = ω1/4π

1

 1

1

�1

1

�1

1

�1

t = 0.2l/v

t = 0.4l/v

t = 0.6l/v

t = 0.8l/v

x/l

x/ l

x/ l

x/ l

EIπ4

2F l3
w

Figure 3.15 Response of a beam with constant force with with v/l = ω1π/4
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where M and K are as defined in (3.88) (for the Ritz method) or (3.89) (for Galerkin’s
method), and

f(t) =
∫ l

0
�(x)q(x, t) dx, (3.104)

where �(x) is the vector of admissible functions (for the Ritz method), or comparison
functions (for the Galerkin method).

3.4 NON-HOMOGENEOUS BOUNDARY CONDITIONS

As discussed before in Chapter 1, in the presence of non-homogeneous boundary conditions,
we cannot use the expansion theorem for studying the dynamics of a continuous system.
Moreover, generating the comparison functions for the Galerkin method also becomes dif-
ficult. Here, we use the approach discussed in Section 1.9 to convert a non-homogeneous
boundary condition to a homogeneous one, along with an appropriate forcing in the equation
of motion.

Consider a simply-supported Euler–Bernoulli beam with a specified time-varying moment
M(t) at one end, as shown in Figure 3.16. The equation of motion and the boundary
conditions are given by

ρAw,tt + EIw,xxxx = 0, (3.105)

w(0, t) ≡ 0, w,xx(0, t) = M(t)

EI
, w(l, t) ≡ 0, and w,xx(l, t) ≡ 0. (3.106)

Let us rewrite the field variable w(x, t) as

w(x, t) = u(x, t) + η(x)
M(t)

EI
, (3.107)

where u(x, t) is a new field variable and η(x) is an unknown function. Substituting (3.107)
in the equation of motion (3.105) yields

ρAu,tt + EIu,xxxx = −η(x)
M̈(t)

EI
− η′′′′(x)

M(t)

EI
. (3.108)

l
x

M(t)

ρ,A,EI
z, w

Figure 3.16 Beam with non-homogeneous boundary condition
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Next, substituting (3.107) in the boundary conditions (3.106), one obtains

u(0, t) + η(0)
M(t)

EI
= 0, u,xx(0, t) + η′′(0)

M(t)

EI
= M(t)

EI
,

u(l, t) + η(l)
M(t)

EI
= 0, u,xx(0, t) + η′′(l)

M(t)

EI
= 0.

We assume homogeneous boundary conditions for (3.108), i.e., u(0, t) ≡ 0, u,xx(0, t) ≡ 0,
u(l, t) ≡ 0, and u,xx(l, t) ≡ 0. Then, it is evident from the above that the function η(x)

must satisfy the conditions

η(0) = 0, η′′(0) = 1, η(l) = 0, and η′′(l) = 0. (3.109)

Let us assume η(x) = a0 + a1x + a2x + a3x
3. Substituting this form of η(x) in (3.109),

one can easily obtain

η(x) = lx

6

(
−x2

l2
+ 3

x

l
− 2

)
.

This determines the right-hand side of the transformed equation of motion (3.108), which
now represents a simply-supported beam with forcing, and has homogeneous boundary
conditions. The transformed problem can be solved easily for u(x, t), and the solution of
the original problem (3.105)–(3.106) is then obtained from (3.107). It must be mentioned
that η(x) is not a unique function. However, the solution of the original problem can be
correctly determined by the above procedure.

3.5 DISPERSION RELATION AND FLEXURAL WAVES IN A
UNIFORM BEAM

Consider a harmonic traveling wave solution for the Rayleigh beam (3.14) in the complex
notation

w(x, t) = Dei(kx−ωt), (3.110)

where D is an arbitrary constant, k = 2π/λ is the wave number, λ is the wavelength, and
ω is the circular frequency of the harmonic wave. The actual real harmonic wave solution
of (3.14) is obtained by taking the real or imaginary part of (3.110). Substituting (3.110) in
(3.14) yields the dispersion relation

EIk4 − ρIω2k2 − ρAω2 = 0. (3.111)
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As discussed in Section 3.2.1, the four solutions of k are obtained as k1 = ±iβ1, and k2 =
±β2, where β1 and β2 are defined by (3.44) and (3.45), respectively. The complete wave
solution is then obtained as

w(x, t) = B1e
β1x−iωt + B2e

−β1x−iωt + B3e
i(β2x−ωt) + B4e

i(−β2x−ωt). (3.112)

The first two terms correspond to spatially decaying waves in the negative and positive direc-
tions, respectively, and are known as evanescent waves or near-fields. The last two terms
in (3.112) are the harmonic traveling waves in the positive and negative directions, respec-
tively. The harmonic traveling waves can propagate without distortion, and carry energy. The
evanescent waves fall off exponentially with distance, and hence cannot transport energy.

The speed of propagation of a harmonic wave is given by its phase velocity (see
Appendix B). Using the definition in Appendix B, the phase velocity of a harmonic wave
in a Rayleigh beam can be obtained from (3.111) as

cR
P = ω

k
=
[

EIk2

ρIk2 + ρA

]1/2

= cLk̃

(k̃2 + 1)1/2
, (3.113)

where cL = √
E/ρ is the wave speed of longitudinal waves in a bar and k̃ = k

√
I/A is the

non-dimensional wave number. For an Euler–Bernoulli beam (i.e., with no rotary inertia
term), the phase velocity is obtained as

cEB
P =

[
EIk2

ρA

]1/2

= cLk̃. (3.114)

The variation of the non-dimensional phase velocities cR
P /cL and cEB

P /cL with the non-
dimensional wave number k̃ are compared in Figure 3.17. It is observed from the figure
that these phase velocities match for low wave numbers. However, the phase velocity of
the Euler–Bernoulli beam increases indefinitely with increasing wave numbers. This is
unrealistic, and a drawback of the Euler–Bernoulli beam theory. It can be easily concluded

1 2 3 4

1

2

Rayleigh

Euler–Bernoulli

k̃

cP/cL

Figure 3.17 Variation of non-dimensional phase velocities with non-dimensional wave number for
Euler–Bernoulli and Rayleigh beams
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that the presence of rotary inertia in the Rayleigh beam is responsible for limiting the phase
velocity at high wave numbers (i.e., small wavelengths).

When a wave pulse consisting of harmonic waves of different wave numbers travels in
a beam, the speed of the pulse is determined by the group velocity of waves in the medium
(see Appendix B). Following the definition in Appendix B, one can easily compute the
group velocity of a wave group in a Rayleigh beam from the dispersion relation (3.111) as

cG = cP

[
1 + 1

k̃2 + 1

]
. (3.115)

It can be observed from (3.115) that cG > cP. For small wave numbers (large wave-
lengths), i.e., k̃ → 0, we have cG ≈ 2cP, while k̃ → ∞ yields cG ≈ cP. In the case of
the Euler–Bernoulli beam it can be easily checked that cG = 2cP for all values of k̃. The
variations of the ratio of group and phase velocities with the wave number for Rayleigh and
Euler–Bernoulli beams are compared in Figure 3.18.

3.5.1 Energy transport

The total mechanical energy contained in a finite interval [x1, x2] of the beam is given by

E = T + V =
∫ x2

x1

(
1

2
ρAw2

,t + 1

2
EIw2

,xx + 1

2
ρIw2

,xt

)
dx,

=
∫ x2

x1

Ê dx, (3.116)

where Ê is the mechanical energy density. This leads to

dE
dt

=
∫ x2

x1

[ρAw,tw,tt + EIw,xxw,xxt + ρIw,xtw,xtt ] dx. (3.117)

10 20 30 40

1

2

Rayleigh

Euler–Bernoulli

k̃

cG/cP

Figure 3.18 Variation of ratio of group and phase velocities with non-dimensional wave number for
Euler–Bernoulli and Rayleigh beams
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Integrating by parts, one can rewrite the above expression as

dE
dt

= [EIw,xxw,xt − EIw,xxxw,t + ρIw,xttw,t ]
∣∣x2
x1

+
∫ x2

x1

[ρAw,tt + EIw,xxxx − ρIw,xxtt ]w,t dx

= [EIw,xxw,xt − EIw,xxxw,t + ρIw,xttw,t ]
∣∣x2
x1

= P(x1, t) − P(x2, t),

where we have used the equation of motion of the Rayleigh beam, and defined

P(x, t) := −EIw,xxw,xt + EIw,xxxw,t − ρIw,xttw,t , (3.118)

representing the instantaneous power flowing in the positive x-axis direction past a coor-
dinate location x. For a harmonic wave of frequency ω traveling through the beam, the
average power flowing past any point of the beam can be represented by

〈P〉 = ω

2π

∫ 2π/ω

0
[−EIw,xxw,xt + EIw,xxxw,t − ρIw,xttw,t ] dt. (3.119)

Consider a positive-traveling harmonic wave in the beam represented by

w(x, t) = sin(kx − ωt). (3.120)

Substituting (3.120) in (3.119), the average power flowing across any point is obtained as

〈P〉 = ω

2π

∫ 2π/ω

0
[EIωk3 − ρIω3k cos2(kx − ωt)] dt

= ω

2π

∫ 2π/ω

0

[
ω3

k
(ρIk2 + ρA) + ρIω3k cos2(kx − ωt)

]
dt (using (3.111))

= ρAω3

k

[
1 + 1

2
r2
gk2
]

. (3.121)

The mechanical energy density Ê of a Rayleigh beam was defined through (3.116). When
a harmonic wave (3.120) travels through the beam, one can define an average mechanical
energy density as

〈Ê〉 = ω

2π

∫ 2π/ω

0
Ê dt

= ρAω2 ω

2π

∫ 2π/ω

0

[
1

2
+ r2

gk2 sin2(kx − ωt)

]
dt (using (3.111))

= ρAω2
[
1

2
+ 1

2
r2
gk2
]

. (3.122)
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Comparing (3.121) and (3.122), one can write

〈P〉 = ω

k

[
1 + 1

r2
gk2 + 1

]
〈Ê〉

= cG〈Ê〉 (using (3.115)). (3.123)

This shows that energy propagates at the group velocity of harmonic flexural waves in a
Rayleigh beam. It is not difficult to show that the same holds for an Euler–Bernoulli beam.

3.5.2 Scattering of flexural waves

Consider a positive-traveling harmonic wave incident on the boundary of a semi-infinite
Euler–Bernoulli beam, as shown in Figure 3.19. As discussed at the beginning of Sec-
tion 3.5, there can exist two kinds of waves in a beam, namely the harmonic traveling
waves and the evanescent waves (or near-fields). Therefore, the reflected wave can consist
of both a negative-traveling harmonic wave and an evanescent wave. The complete wave
field in the beam can be written as

w(x, t) = Aei(k1x−ωt) + Bei(−k1x−ωt) + Cek2x−iωt , (3.124)

where k1 is the wave number of the harmonic waves, which may be different from the wave
number k2 of the evanescent wave. For a given frequency ω, the values of k1 and k2 are
computed from the dispersion relation (3.111). It is to be noted that the positive solution of
k2 is to be taken to ensure that the solution is finite (and hence realistic) as x → −∞. The
boundary conditions at x = 0 are given by

w,xx(0, t) ≡ −αMw,x(0, t) and w,xxx(0, t) ≡ αLw(0, t), (3.125)

where αM = kM/EI , kM is the angular stiffness, αL = kL/EI , and kL is the linear stiffness.
Substituting (3.124) in the boundary conditions above yields, respectively,

(ikαM − k2
1)A − (ikαM + k2

1)B + (αMk2 + k2
2)C = 0

z,w

∞

ρ, A,EI

kL

kM

x

Figure 3.19 Boundary scattering in a semi-infinite beam
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and

−(αL + ik3)A − (−αL + ik3)B + (−αL + k3
2)C = 0.

One can now define the reflection coefficients CRH and CRE for the harmonic wave and the
evanescent wave, respectively, as

CRH := B

A
= (−αL + k3

2)(ikαM − k2) + (αMk2 + k2
2)(αL + ik3

1)

(−αL + k3
2)(ikαM + k2

1) + (αMk2 + k2
2)(−αL + ik3

1)
(3.126)

and

CRE := C

A
= 1

αL − k3
2

[
−αL

(
B

A
+ 1

)
+ ik3

(
B

A
− 1

)]
. (3.127)

Various special cases can now be considered as follows:

1. Pinned end: When αM = 0 and αL = ∞, we have a pinned boundary. The reflection
coefficients can be obtained from (3.126) and (3.127) as

CRH = −1 and CRE = 0.

2. Clamped end: A clamped boundary condition is realized when αM = ∞ and αL = ∞.
In this case, the reflection coefficients are obtained as

CRH = −k2 + ik1

k2 + ik1
and CRE = − 2ik1

ik1 + k2
.

3. Sliding end: When αM = ∞ and αL = 0, we obtain the reflection coefficients for a
sliding boundary, as shown in Figure 3.4. The reflection coefficients are given by

CRH = 1 and CRE = 0.

4. Free end: The values αM = 0 and αL = 0 correspond to a free boundary for which we
have

CRH = −k2 + ik1

k2 + ik1
and CRE = k2

1

k2
2

2ik1

k2 + ik1
.

It is interesting to observe that there is no reflected evanescent wave for either a pinned or
a sliding boundary.
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3.6 THE TIMOSHENKO BEAM

In the previous sections, we have neglected the effect of shear deformation on the dynamics
of a beam. However, just like rotary inertia, shearing of a beam cross-section has significant
effects at high wave numbers (i.e., for large curvatures). A beam model taking into consid-
eration the shear deformation effect is usually known as the Timoshenko beam model.1 In
this section, we will discuss the modeling, and some elementary aspects of the Timoshenko
(or Bresse) beam.

3.6.1 Equations of motion

3.6.1.1 The Newtonian formulation

Consider the beam element subjected to bending and shear deformations, as shown in
Figure 3.20. Let the angular deformation field variable due to pure moment be denoted by
ψ(x, t), and the deformation field variable due to shear be denoted by θ(x, t). Thus, it is
evident that the Timoshenko beam requires two field variables for complete description of
its configuration. From Figure 3.20, one can easily write

w,x(x, t) = ψ(x, t) + θ(x, t). (3.128)

ψ

ψ

ψ

w,x

θ

Pure bending

Simple shear

Figure 3.20 Deformation components of a Timoshenko beam element

1 Such a beam model was proposed earlier by J.A. Bresse in 1859 in his book Cours de mécanique Applique (see
[3]), which was largely unknown when Timoshenko proposed his model in 1922.
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where w(x, t) represents the displacement field of a neutral fiber of the beam. The relation
(3.128) allows us to choose w(x, t) as one of the field variables. In the following, we will
take w(x, t) and ψ(x, t) as the two field variables.

Since the longitudinal strain εx in the beam is produced only from bending, one can
write

εx = (R − z) dψ − R dψ

dx
= −zψ,x. (3.129)

Using Hooke’s law, the longitudinal stress is obtained as σx = −Ezψx , and the bending
moment can be expressed as

M = −
∫ h/2

−h/2
σxz dA = EIψx. (3.130)

Similarly, the net shear force acting at a section can be written as

V = GAsθ = GAs(w,x − ψ),

where As = A/κ , A is the area of cross-section of the beam, and κ is known as the shear
correction factor. The shear correction is introduced to take care of the non-uniformity
in the shear force across the section. For a rectangular section κ ≈ 1.20, for a circular
section κ ≈ 1.11, while for an I-section κ ≈ 2–2.4. Writing the Newton’s second law for
the transverse motion yields

(ρA dx)w,tt = V (x + dx) − V (x)

⇒ ρAw,tt = V,x

or

ρAw,tt = [GAs(w,x − ψ)],x . (3.131)

The equation of rotational dynamics can be written as

(ρI dx)ψ,tt = V
dx

2
+ (V + dV )

dx

2
+ (M + dM) − M

⇒ ρIψ,tt = V + dM

dx

or

ρIψ,tt = GAs(w,x − ψ) + [EIψ,x],x . (3.132)

The two differential equations (3.131) and (3.132) in w(x, t) and ψ(x, t) represent the
dynamics of a Timoshenko beam. The boundary conditions of a Timoshenko beam are
derived in the next section.
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In the case of a uniform beam, we have the simplification

ρAw,tt = GAs(w,xx − ψ,x) (3.133)

and

ρIψ,tt = GAs(w,x − ψ) + EIψ,xx. (3.134)

Differentiating (3.134) once with respect to x we have

ρIψ,xtt = GAs(w,xx − ψ,x) + EIψ,xxx. (3.135)

Solving for ψ,x from (3.133) and substituting in (3.135) yields on simplification

ρI

GAs
w,tttt + w,tt −

(
I

A
+ EI

GAs

)
w,ttxx + EI

ρA
w,xxxx = 0. (3.136)

This is a fourth-order differential equation in space and time, and represents the transverse
dynamics of a uniform Timoshenko beam.

3.6.1.2 The variational formulation

The total kinetic energy density of a beam element consists of the translational and rotational
kinetic energy densities, and is given by

T̂ = 1

2
ρAw2

,t + 1

2
ρIψ2

,t . (3.137)

From theory of elasticity, the potential energy density can be written as

V̂ = 1

2
EIψ2

,x + 1

2
GAsθ

2

= 1

2
EIψ2

,x + 1

2
GAs(w,x − ψ)2. (3.138)

Hamilton’s variational principle for the dynamics of the beam yields

δ

∫ t2

t1

∫ l

0
(T̂ − V̂) dx dt = 0

⇒
∫ t2

t1

∫ l

0

[
ρAw,t δw,t + ρIψ,t δψ,t

−EIψ,x δψ,x − GAs(w,x − ψ)(δw,x − δψ)

]
dx dt = 0. (3.139)
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Integrating by parts and rearranging, we have

∫ l

0

[
ρAw,t δw + ρIψ,t δψ

]∣∣∣∣
t2

t1

dx

+
∫ t2

t1

[
− EIψ,x δψ − GAs(w,x − ψ) δw

]∣∣∣∣
l

0
dt

+
∫ t2

t1

∫ l

0

[
(−ρAw,tt + [GAs(w,x − ψ)],x) δw

+(−ρIψ,tt + (EIψ,x),x + GAs(w,x − ψ)) δψ

]
dx dt = 0. (3.140)

The first integral above vanishes from the statement of the variational principle. The inte-
grand in the double integral yields the two equations of motion (3.131) and (3.132). The
boundary conditions are obtained from the integrand of the second integral in (3.140), for
example, as

[EIψ,x](0, t) ≡ 0 or ψ(0, t) ≡ 0,

[EIψ,x](l, t) ≡ 0 or ψ(l, t) ≡ 0,

[GAs(w,x − ψ)](0, t) ≡ 0 or w(0, t) ≡ 0,

and

[GAs(w,x − ψ)](l, t) ≡ 0 or w(l, t) ≡ 0.

3.6.2 Harmonic waves and dispersion relation

Consider an infinite uniform Timoshenko beam as described by (3.136). It can be easily
checked that one can rewrite (3.136) as

(
c2
L

∂2

∂x2
− ∂2

∂t2

)(
c2
S

κ

∂2

∂x2
− ∂2

∂t2

)
w + c2

S

κr2
g

∂2w

∂t2
= 0, (3.141)

where cL = √
E/ρ is the longitudinal wave speed, cS = √

G/ρ is the shear wave speed,
and rg = √

I/A is the radius of gyration. Assume a harmonic traveling wave solution of
the form

w(x, t) = Dei(kx−ωt).

Substituting this solution in (3.141) yields, on rearrangement, the dispersion relation

(−c2
Lk2 + ω2)(−c2

S

κ
k2 + ω2

)
− c2

S

κr2
g
ω2 = 0 (3.142)
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or

(ω̃2 − k̃2)(ω̃2 − γ 2k̃2) − γ 2ω̃2 = 0, (3.143)

where ω̃ = ωrg/cL and k̃ = rgk are non-dimensional frequency and wave number, respec-
tively, and γ 2 = c2

S/κc2
L is a non-dimensional parameter.

Solving for ω̃ from (3.143), we obtain

ω̃1(k̃) = ± 1√
2

[
γ 2 + (1 + γ 2)k̃2

+
√

[(1 − γ )2k̃2 + γ 2][(1 + γ )2k̃2 + γ 2]

]1/2

, (3.144)

and

ω̃2(k̃) = ± 1√
2

[
γ 2 + (1 + γ 2)k̃2

−
√

[(1 − γ )2k̃2 + γ 2][(1 + γ )2k̃2 + γ 2]

]1/2

. (3.145)

Thus, there are two branches of the dispersion relation of a Timoshenko beam, which are
discussed further later on. The variations of ω̃1(k̃) and ω̃2(k̃) with k̃ for γ 2 = 1/3 are shown
in Figure 3.21. It is observed from the figure that, below a certain cut-off frequency given
by ω̃c = γ , there is only one real value of k̃, implying that there is only one propagating
mode. The non-dimensional phase velocity cP/cL = ω̃/k̃, and the non-dimensional group
velocity cG/cL = dω̃/dk̃ can be easily obtained from (3.144)–(3.145), and are plotted in
Figure 3.22 for γ 2 = 1/3.

A comparison of the Euler–Bernoulli, Rayleigh and Timoshenko beam theories in terms
of the non-dimensional phase speeds is shown in Figure 3.23. Some significant obser-
vations can be made in this figure. For k̃ → 0, the non-dimensional phase speed for
the Euler–Bernoulli and the Rayleigh beam theories match with the lower branch of the
Timoshenko beam. It can be shown that, for small wave numbers, the lower branch cor-
responds essentially to flexural mode of vibration of the beam, while the upper branch

1 2 3 4

1

2

3

4
ω̃1

ω̃2

k̃

γ

ω̃

Figure 3.21 Non-dimensional dispersion relation of a Timoshenko beam
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1 2 3 4
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cP/cL cG/cL

x/l x/l

γ γ

Figure 3.22 Non-dimensional phase velocity (cP/cL), and non-dimensional group velocity (cG/cL)
of the two wave modes in a Timoshenko beam

1 2 3 4

1

2 T (shear)

T (flexure)

R

EB

T (shear)T (flexure)

k̃

cP /cL

Figure 3.23 Comparison of non-dimensional phase speeds of Euler–Bernoulli (EB), Rayleigh (R)
and Timoshenko (T) beams

corresponds essentially to the shear mode of vibration (see [4]). As k̃ → ∞, the branch of
the Rayleigh beam and the upper branch of the Timoshenko beam tend to match. Both these
branches correspond essentially to flexural mode of vibration of the beam at high values
of k̃ as observed in Figure 3.23. Another interesting observation in Figure 3.23 is that, for
k̃ → 0, the non-dimensional phase speed of the shear mode tends to infinity. This implies
that the beam tends to become infinitely stiff in shear. Hence, for small wave numbers, the
shearing of the beam can be neglected, and the Euler–Bernoulli or Rayleigh beam models
are adequate for analysis.

3.7 DAMPED VIBRATION OF BEAMS

The motion of a beam can be damped by either external or internal damping. The external
damping can be distributed or discrete, while the internal damping is usually a distributed
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damping. Let us consider a uniform Euler–Bernoulli beam with uniformly distributed exter-
nal damping. The equation of motion can be represented as

ρAw,tt + EIw,xxxx + dEw,t = 0, (3.146)

where dE is the coefficient of external damping. Assuming simply-supported boundary con-
ditions, we can represent the nth-mode solution as

wn(x, t) = pn(t) sin
nπx

l
. (3.147)

Substituting this solution form in (3.146), one can write on simplification

p̈n + 2ζnωnṗn + ω2
npn = 0, (3.148)

where ωn is the natural frequency of the undamped beam, and ζn is the damping factor,
which are given by, respectively,

ω2
n = n4π4

l4

EI

ρA
and ζn = l2

n2π2

dE

2
√

EIρA
. (3.149)

It can be concluded from the expression of ζn in (3.149) that, with external damping, the
damping factor diminishes at higher modes. In other words, higher modes cannot be damped
effectively by external damping.

The effect of internal damping on the dynamics of a beam may be incorporated by
including a viscous term in the expression of stress. The modified Hooke’s law is then
written as

σ = Eε + Eηε̇, (3.150)

where η is known as the loss factor. Using this expression, and following the steps discussed
in Section 3.1.1, one can easily obtain the equation of motion of an internally damped
Euler–Bernoulli beam as

ρAw,tt + (ηEIw,txx),xx + (EIw,xx),xx = 0. (3.151)

In the case of a uniform beam with simply-supported boundary conditions, substitution of
the solution form (3.147) into the equation of motion yields on simplification the temporal
dynamics in the form (3.148). However, the expression of ζ in this case is

ζn = n2π2

l2

η

2

√
EI

ρA
.

It is interesting to observe here that the damping factor increases quadratically with the
mode number. Thus, the suppression of higher modes of vibration in a beam is primarily
due to internal damping, if a material law of the type (3.150) is assumed.
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3.8 SPECIAL PROBLEMS IN VIBRATIONS OF BEAMS

In this section, we will discuss a few special problems to illustrate some interesting phe-
nomena associated with vibrations of beams.

3.8.1 Influence of axial force on dynamic stability

The presence of axial force can greatly influence the dynamics of a beam. In this section,
we consider two types of axial forces resulting in two distinctly different types of dynamic
behavior.

3.8.1.1 Simply-supported beam with constant axial force

Consider a simply-supported uniform Euler–Bernoulli beam with a constant compressive
axial force F applied at the end, as shown in Figure 3.24. The equation of motion is

ρAw,tt + Fw,xx + EIw,xxxx = 0. (3.152)

Consider a modal solution

w(x, t) =
∞∑

j=1

pj (t) sin
jπx

l
.

Substituting this solution in (3.152) and taking the inner product with the kth-mode-shape
yields on simplification

ρAp̈k + k2π2

l2

(
EI

k2π2

l2
− F

)
pk = 0. (3.153)

Setting pk(t) = Cest , it is straightforward to show that s = ±iωk, where

ωk =
√

k2π2(EIk2π2/l2 − F)/l2

ρA
(3.154)

l

x

F

ρ,A,EIz, w

Figure 3.24 A simply-supported beam with a constant axial force
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is the kth circular eigenfrequency. One can rewrite (3.154) in non-dimensional form as

ω̃k =
√

k2π2(k2π2 − S),

where ω̃k = ωk

√
ρAl4/EI and S = F l2/EI . For k = 1, the variation of the first eigenfre-

quency with axial force can be visualized from Figure 3.25. It is clear from (3.154) that if
the axial force F crosses the critical value F c

1 = π2EI/l2, the first eigenfrequency becomes
imaginary (i.e., s in the solution pk(t) = Cest is real), implying the existence of a divergent
solution of (3.153). This critical value of axial force F c

1 can be easily recognized to be the
first Euler buckling load of a simply-supported uniform Euler–Bernoulli beam. Thus, the
undeformed equilibrium configuration of the beam becomes linearly unstable, and the beam
suffers a divergence instability. This kind of instability is characterized by the eigenvalues
s going through zero before becoming real as shown in Figure 3.26.

3.8.1.2 Cantilever beam with follower force

Consider a constant tip-force on a cantilever Euler–Bernoulli beam always acting along the
neutral fiber, as shown in Figure 3.27. Such a force is usually named a follower force. It it

2 4 6 8 10 12

4

8

12

S = SC

S

ω̃

Figure 3.25 Variation of the first non-dimensional circular eigenfrequency ω̃ of a simply-supported
beam with non-dimensional axial force S

I [s]

R[s]

S = SC ω̃(S < SC)

ω̃(S < SC)

Figure 3.26 Loci of eigenfrequencies of a simply-supported beam with variation of axial force
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l
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ρ,A,EI
F

z, w

Figure 3.27 A cantilever beam with a follower force

important to observe here that the force has a component in the transverse direction given
by −Fw,x(l, t), for w,x(l, t) � 1. This transverse force component, which now has to be
introduced in the dynamics, cannot be derived from a potential energy function. Hence,
the work integral depends on the path of integration, implying thereby that the force is
non-conservative.

The equation of motion in this case may be obtained using the extended Hamilton’s
principle (see Appendix A)

∫ t2

t1

(δL + δW) dt = 0, (3.155)

where

L = 1

2

∫ l

0
(ρAw2

,t − EIw2
,xx + Fw2

,x) dx (3.156)

and

δW = −Fw,x(l, t)δw(l, t). (3.157)

Substituting (3.156) and (3.157) in (3.155), and following the steps discussed in Appendix A,
one obtains

∫ t2

t1

[(− EIw,xxδw,x + (EIw,xxx + Fw,x)δw
)∣∣l

0 − Fw,x(l, t)δw(l, t)
]
dt

−
∫ t2

t1

∫ l

0
(ρAw,tt + EIw,xxxx + Fw,xx) δw dx dt. (3.158)

Thus, the equation of motion and boundary conditions for the problem are given by

ρAw,tt + EIw,xxxx + Fw,xx = 0, (3.159)

w(0, t) ≡ 0, w,x(0, t) ≡ 0, w,xx(l, t) ≡ 0, and w,xxx(l, t) ≡ 0. (3.160)
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Substituting a modal solution of the form w(x, t) = W(x)est in the equation of motion
(3.159), we obtain

W ′′′′ + F

EI
W ′′ + ρAs2

EI
W = 0. (3.161)

Writing the solution of (3.161) in the form W(x) = eβx , we get

β4 + F

EI
β2 + ρAs2

EI
= 0. (3.162)

Using the definitions

S := F l2

EI
and ω̃2 := −ρAs2l4

EI
, (3.163)

one can rewrite (3.162) as

l4β4 + Sl2β2 − ω̃2 = 0. (3.164)

Therefore, the general solution of W(x) can be represented as

W(x) = B1 coshβ1x + B2 sinhβ1x + B3 cosβ2x + B4 sin β2x, (3.165)

where β1 and β2 are obtained from (3.164) as

β1 = 1√
2 l

[−S +
√

S2 + 4ω̃2]1/2

and

β2 = 1√
2 l

[S +
√

S2 + 4ω̃2]1/2.

Substituting the solution form (3.165) in the boundary conditions (3.160) yields

B1 + B3 = 0, (3.166)

B2 + B4 = 0, (3.167)

B1 coshβ1l + B2 sinhβ1l − B3 cosβ2l − B4 sinβ2l = 0, (3.168)

and

B1 sinh β1l + B2 coshβ1l + B3 sinβ2l − B4 cosβ2l = 0. (3.169)
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Figure 3.28 Variation of the first two non-dimensional eigenfrequencies of a cantilever beam with
the non-dimensional follower force S

The above set of linear homogeneous equations can be compactly represented as [A(ω̃, S)]
b = 0, where b = (B1, B2, B3, B4)

T. The condition of non-triviality of a solution of b yields
the characteristic equation det[A(ω̃, S)] = 0, which can be solved for the non-dimensional
eigenfrequencies ω̃ of the beam as a function of the non-dimensional axial force S.

Solving the characteristic equation numerically, the first two non-dimensional eigenfre-
quencies of the beam as a function of the non-dimensional axial force are obtained, as shown
in Figure 3.28. It may be mentioned here that, for small values of S, the eigenfrequencies ω̃

are purely real (i.e., s calculated from (3.163) is purely imaginary), implying a harmonically
oscillating solution. As the axial force is increased, the two eigenfrequencies come close, and
they coalesce at a critical value of axial force given by SC

1 ≈ 20.05, i.e., F c ≈ 20.05EI/l2.
Beyond this value of the axial force, we obtain two pairs of complex conjugate roots of ω̃

that are opposite in sign. This implies that s calculated from (3.163) also occur as two pairs
of complex conjugate roots with opposite signs (i.e., s, s∗, −s, and −s∗). The locus of s as
a function of the axial force S is depicted in Figure 3.29. When an eigenvalue s becomes
complex with a positive real part, the solution form w(x, t) = W(x)est implies that the
beam oscillates with the amplitude increasing exponentially with time. This phenomenon is
known as flutter instability. Therefore, the critical value of the follower force is obtained
when the two frequencies coalesce.

3.8.2 Beam with eccentric mass distribution

Consider a uniform beam of circular cross-section of radius r with an eccentric mass m,
as shown in Figure 3.30. It is evident that if the beam vibrates transversely in the z-axis
direction, the eccentric mass will excite the torsional mode of the beam, and vice versa. This
important phenomenon, known as flexure–torsion coupling, is observed in beams having
cross-sections with less than two axes of symmetry (for example, in channel sections, and
L-beams). In addition, cross-sections of such beams also warp due to torsion. However, we
have taken a beam of circular cross-section to keep the complexity due to torsional warping
of the section out of our analysis.

Let the density of the beam be ρ, area of cross-section A, length l, and flexural rigidity
EI . Considering flexural and torsional vibrations, the field variables are taken as w(x, t)
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Figure 3.29 Loci of natural frequencies of a beam with a follower force
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Figure 3.30 Beam of circular cross-section with eccentric mass

for flexural vibrations along the z-axis, and φ(x, t) for torsional vibrations about the x-axis.
The Lagrangian of the system can be written as

L = 1

2

∫ l

0

[
µ(x)(w,t + eφ,t )

2 + ρIpφ
2
,t

+ρAw2
,t − EIw2

,xx − GIpφ
2
,x

]
dx, (3.170)

where µ(x) = mδ(x − a) represents the eccentric mass distribution. It may be noted that
if the line joining the center of the beam and the eccentric mass makes a non-zero angle
with the y-axis, we must also consider the coupling of transverse vibration along the y-axis
direction. Using the variational principle (see Appendix A), the equations of motion can be
easily obtained as

(ρA + µ(x))w,tt + µ(x)eφ,tt + EIw,xxxx = 0 (3.171)
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and

µ(x)ew,tt + (ρIp + µ(x)e2)φ,tt − GIpφ,xx = 0. (3.172)

The boundary conditions are obtained, for example, as

[EIw,xx](0, t) ≡ 0, or w,x(0, t) ≡ 0,

[EIw,xx](l, t) ≡ 0, or w,x(l, t) ≡ 0,

[EIw,xxx ](0, t) ≡ 0, or w(0, t) ≡ 0,

[EIw,xxx](l, t) ≡ 0, or w(l, t) ≡ 0,

[GIpφ,x](0, t) ≡ 0, or φ(0, t) ≡ 0,

and

[GIpφ,x](l, t) ≡ 0, or φ(l, t) ≡ 0.

Let us now consider for simplicity, a uniform eccentric mass distribution, i.e., µ(x) = µ

is a constant. One can non-dimensionalize (3.171)–(3.172) as

(1 + mr)w̃,t̃ t̃ + mrerφ,t̃ t̃ + 1

s2
r
w̃,x̃x̃x̃x̃ = 0 (3.173)

and

mrerw̃,t̃ t̃ +
(

1

2
+ mre

2
r

)
φ,t̃ t̃ − γ 2

2
φ,x̃x̃ = 0, (3.174)

where x̃ = x/l, t̃ = cLt/ l, w̃ = w/r , cL = √
E/ρ is the speed of longitudinal waves,

mr = µ/ρA is the mass ratio, er = e/r is the eccentricity ratio, sr = l/
√

I/A is the slen-
derness ratio, and γ 2 = G/E. The boundary conditions for the beam are assumed to be
pinned–pinned which do not allow torsional motion, as shown in Figure 3.30. Consider an
approximate solution of (3.171)–(3.172) in the form

w̃(x̃, t̃) =
∑

j

a1j (t̃) sin jπx̃ and φ(x̃, t̃) =
∑

j

a2j (t̃) sin jπx̃, (3.175)

where we have used the eigenfunctions of transverse vibration of a pinned–pinned beam
and torsional vibration of a fixed–fixed circular bar, and a1j (t̃ ) and a2j (t̃) are the modal
coordinates. Substituting the solution forms given by (3.175) in (3.173)–(3.174), and taking
the inner product of the resulting equations with the respective eigenfunctions leads to
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decoupled sets of differential equations (on account of orthogonality) for each of the modal
coordinate vector aj = (a1j , a2j )

T. These are of the form

M äj + Kjaj = 0, (3.176)

where

M =




(1 + mr) mrer

mrer

(
1

2
+ mre

2
r

)

 and Kj =




j4π4

s2
r

0

0
γ 2

2
j2π2


 .

It is evident from the structure of M in (3.176) that when mrer = 0, the flexural and torsional
modes decouple, and we obtain the corresponding natural frequencies.

In order to see the effect of variation of mr on the two frequencies, we consider a
numerical example with sr = 5, er = 0.05, and γ 2 = 1/3. For the first mode (i.e., j = 1 in
(3.176)), substituting the solution form

a1(t̃) =



C1

D1


 eiω1 t̃

in (3.176), we obtain a pair of non-dimensional eigenfrequencies ωU
1 and ωL

1 as functions
of mr, as shown in Figure 3.31. The two frequency branches correspond to the flexural and
torsional modes. In order to identify the corresponding modes, we must look at the corre-
sponding eigenvector (C1, D1)

T. The components of the normalized eigenvector (CU
1 , DU

1 )T

corresponding to ωU
1 (see Figure 3.31) is shown in Figure 3.32. It is observed from the eigen-

vector components that, as mr → 0, CU
1 → 1, and DU

1 → 0. Hence, the mode consists of
primarily flexural vibration of the beam. However, as mr → ∞, the mode is primarily tor-
sional vibration of the beam. Around mr ≈ 0.17, the flexural and torsional vibration modes
get mixed. A similar observation can be drawn from the eigenvector corresponding to the
lower branch in Figure 3.31.

0.1 0.2 0.3 0.4 0.5
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3.5

4

mr
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1
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T
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F

Figure 3.31 Variation of flexural (F) and torsional (T) mode eigenfrequencies with mass ratio
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Figure 3.32 Variation of the eigenvector components corresponding to ωU
11 with mass ratio

3.8.3 Problems involving the motion of material points
of a vibrating beam

In all preceding discussions on beams, we have considered only the motion of the neutral
fiber of the beam represented by the field variable w(x, t). It was assumed that the points on
the neutral fiber move only in the transverse direction. However, material points elsewhere
in the beam execute a combination of transverse and axial motion, due to rotation of the
cross-section. This has interesting consequences as discussed in this section.

Consider a section of a uniform beam of rectangular cross-section having a thickness h,
as shown in Figure 3.33. We assume the Euler–Bernoulli hypothesis to be valid, and take
w,x(x, t) � 1. As the beam deforms, the position of any point on the top surface of the
beam can be written in the inertial frame as (see figure)

p = px î + pzk̂ =
[
x − h

2
w,x(x, t)

]
î +
[
h

2
+ w(x, t)

]
k̂, (3.177)

z,w

x

p

h/2

h/2 Q

P

Q

P

w,x

w,x

w,xh/2
w

Figure 3.33 Displacement of a material point due to deformation of a beam
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where î and k̂ are the unit vectors along x-and z-axes, respectively. The velocity of any
point can then be obtained as

v = vx î + vzk̂ = −h

2
w,xt î + w,t (x, t)k̂. (3.178)

Let us first consider the motion of a material point on the top surface of the beam due
to a harmonic traveling wave

w(x, t) = B sin(kx − ωt),

where B is the amplitude, k is the wave number, and ω is the circular frequency of the
wave. Substituting this wave solution in (3.177) and (3.178) yields

px = x − h

2
Bk cos(kx − ωt), pz = h

2
+ B sin(kx − ωt)

and

vx = −h

2
Bkω sin(kx − ωt), vz = −Bω cos(kx − ωt).

Thus, the particles move on an elliptical path given by

(px − x)2

(Bkh/2)2
+ (pz − h/2)2

B2
= 1.

Similarly, one can also determine the displacement and velocity fields of material points on
the lower surface of the beam. The velocity fields at the top and bottom surfaces are shown
in Figure 3.34.

Consider the points at the top of the crests on the upper surface. The phase corresponding
to these points is given by kx − ωt = (2n − 1)π/2, n = 1, 2, . . . . Therefore, the velocity
of these points is given by (vx, vy) = (−Bkωh/2, 0). Consider a rigid block lying on top

Direction of wave propagation

Figure 3.34 Velocity field of material points on top and bottom surfaces of a beam for a harmonic
traveling wave
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N

vb

Direction of wave propagation

Figure 3.35 Generation of linear motion using traveling waves in a beam

of the beam, as shown in Figure 3.35. Assume, for simplicity, that the block contacts the
points only at the top of the crests as shown, and the frictional force between the block
and the beam is large enough to prevent slip at the contact points. Then it follows that the
block will move at a horizontal speed vb = −Bkωh/2î. The negative sign of vb indicates
that the block will move in the direction opposite to that of the wave propagation. Since vb

is frequency dependent, the higher the frequency, the higher is the travel speed of the block.
The maximum force that the block can generate (i.e., when it starts slipping) is given by
µN , where µ is the coefficient of friction and N is the total normal force between the block
and the beam. The above principle is used practically in ultrasonic linear actuators which
operate at very high frequencies. One of the key requirements in this case is the generation
of traveling waves in finite systems. This can be achieved by using an array of actuators
along the beam which are harmonically driven with appropriate phase difference. Another
way to achieve this is by impedance matching, as can be found in Exercise 3.17.

Now consider a modal solution for a simply-supported beam of length l of the form
w(x, t) = Bn sinωnt sinnπx/l. Substituting this standing wave solution in (3.177) and
(3.178) yields

px = −h

2

nπ

l
Bn sin ωnt cos

nπx

l
pz = Bn sin ωnt sin

nπx

l
,

and

vx = −h

2

nπ

l
ωnBn cosωnt cos

nπx

l
, vz = ωnBn cosωnt sin

nπx

l
.

It is evident in this case that a particle on the top of the beam at a location x moves in a
straight line of slope pz/px = (2l/nπh) tan nπx/l.

The small axial motion of material points on the top and bottom surfaces can also give rise
to interesting effects. Let us consider a simply-supported uniform beam with two massless
pressure pads held against the beam by a constant force N , as shown in Figure 3.36. We
will assume for simplicity that there is no sticking between the pads and the beam at any
time. When the motion of the beam is such that w,xt (a, t) > 0, it is evident that the friction
forces on the top and bottom surfaces will produce a net opposing moment about the neutral
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Figure 3.36 Beam with friction pads

axis point at x = a. This moment can be expressed as

Mf(t) = −µNh sgn[w,xt (a, t)], (3.179)

where µ is the coefficient of friction and sgn(·) is the signum function. With this moment,
the equation of motion can be written as

ρAw,tt + EIw,xxxx = −Mf(t)δ
′(x − a) = µNhδ′(x − a) sgn[w,xt (a, t)]. (3.180)

Multiplying both sides by w,t (x, t) and integrating over the length of the beam, one can
write

∫ l

0

[
d

dt

(
1

2
ρAw2

,t

)
+ EIw,xxxxw,t

]
dx =

∫ l

0
µNhw,tδ

′(x − a) sgn[w,xt (a, t)] dx.

Integrating by parts twice the second term on the left-hand side, and using the boundary
conditions, we obtain

d

dt

∫ l

0

[
1

2
ρAw2

,t + 1

2
EIw2

,xx

]
dx = −µNhw,xt (a, t) sgn[w,xt (a, t)]

⇒ dE
dt

= −µNh
∣∣w,xt (a, t)

∣∣. (3.181)

Since the right-hand side in (3.181) is always negative, the total mechanical energy of the
beam always decreases. Thus, a stationary load in friction contact with a beam can damp
the vibrations of the beam.
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3.8.4 Dynamics of rotating shafts

Rotating shafts or rotors are very commonly found in machines. The dynamics of rotors
is very complex, and depends on their construction, support conditions and speed. In the
following, we discuss a simple model of a rotor assumed to be a torsionally stiff beam
rotating about its axis. Shear deformation and rotational inertia effects are neglected.

Consider a simply-supported uniform asymmetric rotor of rectangular cross-section rotat-
ing about its axis at a constant angular speed �, as shown in Figure 3.37. Consider an inertial
frame x–y, a body fixed frame ξ ′–η′, and a frame ξ –η rotating with the shaft but located
at the undeformed axis of the rotor, as depicted in Figure 3.38. We represent the dynam-
ics of the shaft using the rotating frame field variables [u1(x, t), u2(x, t)], as indicated in
Figure 3.38. One can easily express the position vector [w1(x, t), w2(x, t)] in the inertial
frame x–y as

{
w1

w2

}
=
[

cos�t − sin�t

sin�t cos�t

]{
u1

u2

}
. (3.182)

The absolute kinetic energy of the shaft is

T = 1

2

∫ l

0

[
ρA(w2

1,t + w2
2,t ) + J�2] dx

= 1

2

∫ l

0

[
ρA[u2

1,t + u2
2,t + 2�(u2,tu1 − u1,tu2)

+�2(u2
1 + u2

2)] + J�2] dx, (3.183)

ρ,A,EI, J

� l

x

z,w

Figure 3.37 A simply-supported flexible rotor

ξ ′

�t

x
zw1

ξu1u2

η′

η
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Figure 3.38 Coordinate frames for a rotor
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where J is the polar moment of inertia of the cross-sectional area, l is the length, ρ is the
density, and A is the area of cross-section of the rotor. The potential energy is

V = 1

2

∫ l

0
[EI1u

2
1,xx + EI2u

2
2,xx] dx, (3.184)

where E is Young’s modulus and I1 and I2 are the second moments of the area about the
η′- and ξ ′-axes, respectively. Using the variational formulation

δ

∫ t2

t1

(T − V) dt = 0,

one obtains the equations of motion of the rotor as

ρAu1,t t − 2ρA�u2,t + EI1u1,xxxx − ρA�2u1 = 0 (3.185)

and

ρAu2,t t + 2ρA�u1,t + EI2u2,xxxx − ρA�2u2 = 0, (3.186)

along with the boundary conditions for the simply-supported ends as

uj (0, t) ≡ 0, uj,xx(0, t) ≡ 0, uj (l, t) ≡ 0, and uj,xx(l, t) ≡ 0, (3.187)

where j = 1, 2.
Using the eigenfunctions of a simply-supported beam, consider a solution expansion for

(3.185)–(3.186) of the form

u1(x, t) =
∑

n

a1n(t) sinnπx/l and u2(x, t) =
∑

n

a2n(t) sinnπx/l, (3.188)

where a1n(t) and a2n(t) are the modal coordinates. Substituting (3.188) in (3.185)–(3.186),
taking the inner product with the modal functions, and using the orthogonality relations,
one can easily obtain the set of differential equations for the nth modal coordinate vector as

Män + Gȧn + Knan = 0, (3.189)

where an = (a1n, a2n)
T, M = I (the identity matrix),

G =
[

0 −2�

2� 0

]
, and Kn =

[
(ω2

1n − �2) 0
0 (ω2

2n − �2)

]
, (3.190)
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with

ωjn = n2π2

l2

√
EIj

ρA
, j = 1, 2.

The stability of the discrete gyroscopic system (3.189) can be easily analyzed by taking a
modal solution an(t) = Aest and obtaining the characteristic equation

s4 + (ω2
1n + ω2

2n + 2�2)s2 + (ω2
1n − �2)(ω2

2n − �2) = 0. (3.191)

The eigenvalues are then obtained as

s = ± 1√
2

[
− (ω2

1n + ω2
2n + 2�2)

±
√

(ω2
1n + ω2

2n + 2�2)2 − 4(ω2
1n − �2)(ω2

2n − �2)

]1/2

.

It can be easily checked that the system has purely imaginary eigenvalues whenever (ω2
1n −

�2)(ω2
2n − �2) > 0. When this condition is not satisfied, the system has a pair of real roots

of equal magnitude but opposite signs signifying clearly a divergence instability. A repeated
root occurs when either

(ω2
1n − �2)(ω2

2n − �2) = 0 (3.192)

or

(ω2
1n + ω2

2n + 2�2)2 − 4(ω2
1n − �2)(ω2

2n − �2) = 0. (3.193)

The condition (3.192) yields the divergence speed boundaries of the rotor. If � is such
that the left-hand side of (3.193) is negative, we have two pairs of complex conjugate roots
which are opposite in signs (i.e., s, s∗, −s, −s∗). This indicates flutter instability, and hence,
condition (3.193) yields the flutter speed boundaries. In the case of a symmetric rotor, we
have I1 = I2, and hence ωn1 = ωn2. Then, as can be easily verified, the eigenvalues are
given by s = ±i(ωn ± �). Thus, the system is neutrally stable whenever the rotation speed
� = ωn, and oscillatory otherwise.

3.8.5 Dynamics of axially translating beams

Axially translating beams form an important class of problems with many applications.
Dynamics of band saws, belt drives, and rolling of beams and rods may all be modeled
as translating beams with different boundary conditions. In the following, we consider an
elementary model of a translating beam passing through two frictionless guides.

Consider a beam translating axially along its length at a constant speed v, as shown in
Figure 3.39. The kinetic energy of the system is

T = 1

2

∫ l

0
ρA(w,t + vw,x)

2 dx, (3.194)
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Figure 3.39 A beam translating along its axis

where ρ is the density, A the cross-sectional area, and w(x, t) is the transverse deflection
field variable. The potential energy of the beam is

V = 1

2

∫ l

0
EIw2

,xx dx, (3.195)

where EI is the flexural stiffness of the beam. Using the variational formulation, one can
write

δ

∫ t2

t1

(T − V) dt = 0

⇒ ρA(w,tt + 2vw,xt + v2w,xx) + EIw,xxxx = 0, (3.196)

with the boundary conditions

w(0, t) ≡ 0, w,x(0, t) ≡ 0, w(l, t) ≡ 0, and w,x(l, t) ≡ 0, (3.197)

for the guided ends, as shown in Figure 3.39.
Before proceeding further, we non-dimensionalize the equation of motion (3.196) using

the definitions

x̃ = x/l, w̃ = w/l, t̃ = t
π2

l2

√
EI

ρA
, and ṽ = v

l

π2

√
ρA

EI
,

to obtain the non-dimensional equation of motion as

w̃,t̃ t̃ + 2ṽw̃,x̃t̃ + ṽ2w̃,x̃x̃ + 1

π4
w̃,x̃x̃x̃x̃ = 0. (3.198)

For notational convenience, we will drop the tilde symbols from (3.198) in the following
analysis.

Let us construct a solution of (3.198) in the form

w(x, t) =
∑

k

pk(t)φk(x), (3.199)
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where pk(t) are the modal coordinates, and φk(x) are the eigenfunctions of the non-
translating beam (i.e., for v = 0) with clamped–clamped boundary conditions (i.e., φk(0) =
0, φ′

k(0) = 0, φk(l) = 0, and φ′
k(l) = 0). Substituting (3.199) in (3.196) and using the orthog-

onality property, one can write the discretized equations of motion of the traveling beam as

Mp̈ + Gṗ + Kp = 0, (3.200)

where p = (p1, p2, . . . , pn)
T,

Mjk =
∫ 1

0
ρAφjφk dx, Gjk =

∫ 1

0
2vφjφ

′
k dx,

and

Kjk =
∫ 1

0

[
v2φjφ

′′
k + 1

π4
φjφ

′′′′
k

]
dx.

It can be easily verified through integration by parts and using the clamped–clamped bound-
ary conditions that one can rewrite

Gjk =
∫ 1

0
v(φjφ

′
k − φkφ

′
j ) dx

and

Kjk =
∫ 1

0

[
−v2φ′

j φ
′
k + 1

π4
φ′′

j φ′′
k

]
dx.

Thus, G is a skew-symmetric matrix and K is a symmetric matrix.
The eigenfunctions of the clamped–clamped static beam are obtained as

φj (x) = coshβjx − cosβjx −
[
coshβj − cosβj

sinhβj − sinβj

]
(sinhβjx − sin βjx), (3.201)

where βj are obtained by solving the characteristic equation of a clamped–clamped beam
given by coshβ cosβ = 1. It may be easily verified that the eigenfunctions (3.201) satisfy
the orthogonality property

∫ 1

0
φj (x)φk(x) dx = 0, j �= k.

Substituting the solution form (3.199) with the first two eigenfunctions of the form (3.201),
one obtains, using the orthogonality property, the discretized equations of motion (3.200),
where M = I (identity matrix),

G =
[

0 −γ v

γ v 0

]
, K =

[
ω2

1 − µ1v
2 0

0 ω2
2 − µ2v

2

]
,
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Figure 3.40 Variation of the real and imaginary parts of the eigenvalues s of a translating beam
with travel speed v

γ = 3.342, ω1 = 5.139, ω2 = 39.047, µ1 = 12.303, and µ2 = 46.050. Using the modal
solution z = Zest in (3.200), one obtains the characteristic equation

s4 + [ω2
1 + ω2

2 − v2(µ1 + µ2 − γ 2)]s2 + (ω2
1 − µ1v

2)(ω2
2 − µ2v

2) = 0, (3.202)

from which the eigenvalues of the discretized system can be calculated. As expected, the
eigenvalues are functions of the speed of travel v. The variations of the real and imagi-
nary parts of the eigenvalues shown as functions of v are shown in Figure 3.40. It may
be observed that for values of v such that ω1/

√
µ1 = 0.646 < v < ω2/

√
µ2 = 0.921, there

is a pair of real eigenvalues with opposite signs. The presence of a positive real eigen-
value indicates a divergence instability. For values of v such that [ω2

1 + ω2
2 − v2(µ1 + µ2 −

γ 2)]2 − 4(ω2
1 − µ1v

2)(ω2
2 − µ2v

2) < 0 (which occurs for v > 1.115), there are two pairs
of complex conjugate eigenvalues which are of opposite signs (i.e., s, s∗, −s, −s∗). This is
characteristic of flutter instability. Outside these two velocity regions discussed above, the
system has purely imaginary eigenvalues, implying oscillatory solutions.

3.8.6 Dynamics of fluid-conveying pipes

A fluid conveying pipe exhibits very interesting and varied dynamical behavior depending
on the support conditions of the pipe, and variation of the flow velocity of the fluid (see
[5]). In the following discussion, we consider two cases of boundary conditions. The fluid is
assumed to be inviscid and incompressible, and the pipe is assumed to retain its geometrical
properties under small transverse deflections.

3.8.6.1 Simply-supported pipe

First, we consider the simplest case, that of a pinned–pinned uniform pipe conveying an
incompressible inviscid fluid, as shown in Figure 3.41. We treat the pipe as a (hollow)
beam of density ρ, area of the annular cross-section A, flexural stiffness EI , and length l.
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Figure 3.41 A uniform pipe conveying a fluid

Let the constant velocity of the fluid be v, the density of the fluid be ρf, and the area of
cross-section of the fluid inside the pipe be Af. The kinetic energy of the pipe and the fluid
can be written as

T = 1

2

∫ l

0

[
ρAw2

,t + ρfAf(w,t + vw,x)
2] dx. (3.203)

The potential energy, which is only due to the pipe, is

V = 1

2

∫ l

0
EIw2

,xx dx. (3.204)

The equation of motion is then obtained from Hamilton’s principle

δ

∫ t2

t1

(T − V) dt = 0

⇒ (ρfAf + ρA)w,tt + 2ρfAfvw,xt + ρfAfv
2w,xx + EIw,xxxx = 0, (3.205)

where we have used the boundary conditions

w(0, t) ≡ 0, EIw,xx(0, t) ≡ 0, w(l, t) ≡ 0, and EIw,xx(l, t) ≡ 0. (3.206)

Consider a solution of the form

w(x, t) =
∑

j

bj (t) sin
jπx

l
,

where we take the eigenfunctions of a pinned–pinned beam as comparison functions for the
problem. Using Galerkin’s method, one easily obtains the decoupled differential equation
for the j th modal coordinate as

(ρfAf + ρA)b̈j + j2π2

l2

(
EI

j2π2

l2
− ρfAfv

2
)

bj = 0. (3.207)
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Writing the solution of (3.207) as bj (t) = Bjeiωj t , one obtains the characteristic equation
for the j th mode as

−(ρfAf + ρA)ω2
j + j2π2

l2

(
EI

j2π2

l2
− ρfAfv

2
)

= 0

⇒ ωj = jπ

l

√
EIj2π2/l2 − ρfAfv2

ρfAf + ρA
.

This clearly shows that ωj = 0 for a critical flow velocity of the fluid given by

vc
j = jπ

l

√
EI

ρfAf
.

For flow velocities above this critical value, ωj will become imaginary, and the system will
exhibit divergence instability for the j th mode. Thus, a pinned–pinned pipe conveying an
incompressible fluid will become unstable at flow speeds v > vc

1 = π/l
√

EI/ρfAf.

3.8.6.2 Cantilever pipe

Next, consider a cantilever pipe conveying fluid, as shown in Figure 3.42. In this case,
it is important to realize that the fluid absolute velocity vector at the exit may not be
tangential to the axis of the pipe at the free end. Considering the pipe to be the control
volume, and based on the discussions in Section 1.10.3, one can then write (up to first
order) the force experienced by the pipe at the free end due to momentum efflux as Ff =
ṁv = −ρfAfv[vî + (w,t + vw,x)k̂]|x=l , where î and k̂ are the unit vectors along the x- and
z-axes, respectively. Thus, the force in the direction transverse to the pipe is given by

Fz = −ρfAfv(w,t + vw,x)
∣∣
x=l

. (3.208)

With the external force (3.208), the extended Hamilton’s principle now reads

∫ t2

t1

[
δL + Fzδw

∣∣
x=l

]
dt = 0,

z, w

x

ρ,A, ρf, Af, EI

l

v

Figure 3.42 A cantilever pipe conveying fluid
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where L = T − V is defined using (3.203)–(3.204). Carrying out the variation again leads
to the equation of motion (3.205), along with the boundary conditions

w(0, t) ≡ 0, w,x(0, t) ≡ 0, EIw,xx(l, t) ≡ 0, and EIw,xxx(l, t) ≡ 0.

Using the eigenfunctions of a cantilever beam, one can expand the solution of (3.205) in
the form

w(x, t) =
∑

j

pj (t)Wj (x),

and obtain the discretized equations for the system, which are now of the form

Mp̈ + (D + G)ṗ + (K + N)p = 0,

where M, D and K are symmetric matrices, and G and N are skew-symmetric matrices.
Here, the matrix elements are given by

Mjk = (ρfAf + ρA)

∫ l

0
WjWk dx, Djk = ρfAfvWjWk

∣∣
l
,

Gjk = ρfAfv

∫ l

0
(WjW

′
k − WkW

′
j ) dx,

Kjk = ρfAfv
2
[
1

2
(WjW

′
k + WkW

′
j )
∣∣
l
−
∫ l

0
W ′

jW
′
k dx

]
+ EI

∫ l

0
W ′′

j W ′′
k dx,

Njk = 1

2
ρfAfv

2[WjW
′
k − WkW

′
j ]
∣∣
l
.

EXERCISES

3.1 Determine the eigenfrequencies and eigenfunctions of the uniform Euler–Bernoulli beams shown
in Figure 3.43.

ρ,A,EI, l ρ,A,EI, l

(a) (b)

Figure 3.43 Exercise 3.1

3.2 A uniform Euler–Bernoulli beam of length a + b, flexural stiffness EI and linear density ρA is
supported, as shown in Figure 3.44. Determine the characteristic equation, and calculate the eigenfre-
quencies for the special values of b = 0 and b = a. Plot the variation of the first few eigenvalues for
variation of b in the range (0, a). Using Rayleigh’s method, determine the upper bounds on the lowest
eigenfrequency in each case. Use the simplest possible polynomial shape-functions for the purpose.
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ρ,A,EI

a b

Figure 3.44 Exercise 3.2

3.3 The frame shown in Figure 3.45 is made by welding two homogeneous Euler–Bernoulli beams
infinitely stiff in tension. Write down the boundary conditions, and the matching conditions at the weld
for the system. Derive the characteristic equation for the frame, and determine the eigenfrequencies
and mode-shapes of free vibration.

z, w1

x

l

ρ,A,EI

x

z, w2

l

Figure 3.45 Exercise 3.3

3.4 A uniform homogeneous beam is clamped on one end, and carries a body of mass m and moment
of inertia Icm on the other end, as shown in Figure 3.46. Determine the characteristic equation, and
the eigenfrequencies and the mode-shapes of the free vibrations.

z,w

a

m, Icm

l
x

ρ,A,EI

Figure 3.46 Exercise 3.4

3.5 A simply-supported uniform beam is loaded by a constant distributed force q(x, t) = Q0, as shown
in Figure 3.47. Determine the motion of the beam when, at t = 0, the force is removed suddenly.
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z,w

ρ,A,EI

l

x

Q0

Figure 3.47 Exercise 3.5

3.6 Determine the steady-state response of a uniform cantilever beam with end-mass when excited by
a force F(t) = F0 cos �t , as shown in Figure 3.48.

ρ, A,EI

F (t)

m

l
x

z,w

Figure 3.48 Exercise 3.6

3.7 A uniform homogeneous Timoshenko beam of length l having flexural rigidity EI , shear rigidity
GAs, linear density ρA, and rotary inertia ρI is simply-supported. Determine the eigenfrequencies
and eigenfunctions for flexural vibrations of the beam.

3.8 A frame shown in Figure 3.49 is made of three uniform beams each having flexural rigidity EI

and mass per unit length ρA, and is assumed to be infinitely stiff in tension. A constant force P

acts at the center of the horizontal beam as shown. Determine the first eigenfrequency of the frame
ω1(P ) as a function of the force P . Re-calculate the first eigenfrequency if the frame is pinned at the
support B.

P

ρ,A,EI

l/2 l/2

l

A B

Figure 3.49 Exercise 3.8
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3.9 An automobile of mass m moves with uniform acceleration a over a uniform beam on a flexible
foundation, as shown in Figure 3.50. The beam has flexural rigidity EI and mass per unit length ρA,
and the flexible foundation has a distributed stiffness κ . At t = 0, the automobile passes over the left
support point with a speed v0, with the beam at rest. Determine the response of the beam, treating the
automobile as a point mass.

l

v0

ρ,A,EI

κ

Figure 3.50 Exercise 3.9

3.10 A particle of mass m falls from height h on the center of a simply-supported uniform beam,
as shown in Figure 3.51. Determine the reaction forces at the supports as a function of time. When
does the particle leave the beam? How do the results vary if the beam has a constant modal damping
D = 0.04?

m

ρ,A,EI

l/2 l/2

a

Figure 3.51 Exercise 3.10

3.11 A uniform beam, pinned at one end, is released from rest from a horizontal position, as shown in
Figure 3.52. When the beam reaches a vertical position, the free end A hits a rigid edge. Determine
the reaction forces at the ends A and B as functions of time.

B

A

g

ρ,A,EI, l

Figure 3.52 Exercise 3.11
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3.12 A uniform cantilever beam is forced at the free end by a force F(t) = F̂ + F0 cos �t and a
moment M(t) = M̂ + M0 cos �t . Determine the steady-state response of the beam.

3.13 A beam of rectangular cross-section has a constant width b, while the height varies from h/2 to
h over its length l. The material has density ρ and Young’s modulus E. Determine the approximate
modal frequencies and mode-shape-functions when the beam is simply-supported.

3.14 Determine the approximate modal frequencies and mode-shape-functions of a simply-supported
beam of length l having a circular cross-section of radius r(x) = R[1 + (x/l)2].

3.15 A uniform Euler–Bernoulli beam is fixed to a small hub rotating at a constant angular speed �

in the vertical plane, as shown in Figure 3.53.
(a) Neglecting air resistance, gravity and axial motion of the beam, show that the Lagrangian of the

beam is given by

L = 1

2

∫ l

0

[
ρA[(�x + w,t )

2 + �2w2] − T w2
,x − EIw2

,xx

]
dx,

where dT/dx = ρA�2x. Derive the equation of motion for transverse vibrations of the beam.
(b) Using the Ritz and the Galerkin methods, determine the approximate eigenfrequencies of the

beam, and plot their variation with �.

Hub
z, w

ρ,A,EI

l

�

x

Figure 3.53 Exercise 3.15

3.16 A simply-supported uniform beam of length l is damped by a damper at a = l/4, and excited
at the mid-span by a harmonic force F(t) = F0 cos �t , as shown in Figure 3.54. What should the
damping constant d be so that for � = ω1 (where ω1 is the fundamental frequency of an undamped
simply-supported beam), the strain fluctuation is as small as possible? Determine the values of d and
a to minimize the strain fluctuation when � can be any frequency in the interval [0, ω4], and a is
restricted to the interval [0, l/3].

F(t)
ρ,A,EI

l/2 l/2

a

d

Figure 3.54 Exercise 3.16
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3.17 A uniform Euler–Bernoulli beam of length l is supported, as shown in Figure 3.55. The left end
of the beam is excited by a harmonic moment M(t) = M0 sin �t .

(a) Determine the value of the rotational damping coefficient d so that only a positive-traveling
harmonic wave is set up in the beam.

(b) If the actuator at the left end can deliver an average power P , determine the amplitude of the
traveling waves.

z, w

ρ,A,EI

l

M(t)

x

d

Figure 3.55 Exercise 3.17

3.18 A Timoshenko beam of infinite length is equipped with a linear and a rotational damping element,
as shown in Figure 3.56. What should be the values of dL and dT so that maximum possible energy
is dissipated by the dampers?

dT
ρ,A,EI

dL

Figure 3.56 Exercise 3.18

3.19 A flexibly supported uniform beam is excited by a harmonic force F(t) = F0 cos �t at the
mid-span, as shown in Figure 3.57. The excitation frequency � = ω1, where ω1 is the (non-trivial)
fundamental frequency of the free–free beam. Determine the constants k and c so that the strain
fluctuation is as small as possible.

F(t) ρ,A,EI

l/2 l/2

d k d k

Figure 3.57 Exercise 3.19
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3.20 A uniform cylindrical tube of height L has helical stairs of helix diameter 2R and helix angle
α = tan−1 l/2πR welded around it, as shown in Figure 3.58. Model the tube as a fixed–free uniform
hollow beam, the stairs as eccentric mass distribution of linear density µ at a radius R from the axis
of the tube, and neglect gravity.

(a) Derive the equations of motion of the beam for the two transverse and one torsional modes of
vibration.

(b) Determine the approximate natural frequencies of the system.

ρ,A,EI

µ

l

x

2R

Figure 3.58 Exercise 3.20

3.21 A uniform belt under constant tension T passes at a constant speed v between two roller-
stands separated by a distance l, as shown in Figure 3.59. Modeling the belt as an Euler–Bernoulli
beam, derive the equation of motion. Assuming clamped boundary condition at the rollers, determine
approximately the first critical speed of the belt.

ρ,A,EI, T

v

l

∞ ∞

Figure 3.59 Exercise 3.21

3.22 For an axially translating Euler–Bernoulli beam of length l, subject to a constant tension T , and
translating at a constant speed v, show that the rate of change of total mechanical energy of the beam
is given by

dE
dt

= [EIw,xx(w,xt + vw,xx) − (EIw,xxx − T w,x)(w,t + vw,x)
]∣∣l

0.
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3.23 A cantilever uniform cylindrical rotor of length l and flexural stiffness EI rotates at a constant
angular speed �. Write down the equations of motion and the boundary conditions. Discretize the
system using the eigenfunctions of a non-rotating cantilever beam. Determine the critical speeds of
the rotor and comment on its stability.

3.24 In Problem 3.23, consider in addition a constant follower force F at the end of the cantilever
rotor. Derive the equations of motion and determine the boundary conditions. On the F –� parameter
plane determine the regions of stability/instability and identify their types.

3.25 A simply-supported uniform cylindrical rotor of length l and flexural stiffness EI rotates at
a constant angular speed �. The rotor is internally damped having a loss factor η, and externally
isotropically damped with damping coefficient ρAr .

(a) Write down the equations of motion of the rotor in the rotating coordinates (see Figure 3.38).
(Hint: The external damping has to be transformed appropriately.)

(b) Transform the coordinates and write down the equations of motion in the fixed frame.
(c) Determine the conditions for stability, and comment on the types of instability that occur.

3.26 A clamped–clamped uniform flexible pipe is conveying an incompressible inviscid fluid at a
constant speed v. Expand the solution in terms of the first two eigenfunctions of a clamped–clamped
beam, and discretize the equation of motion. Define µ2 = ρfAf/ρA, and V = µv (see Section 3.8.6),
and study the stability of the system in the µ–V parameter plane. Determine the regions of stabil-
ity/instability and identify their types.

3.27 A uniform flexible pipe conveying an incompressible inviscid fluid at a constant speed v is
clamped at one end and free at the other, as shown in Figure 3.42. Discretize the equation of motion
using the eigenfunctions of a cantilever beam. Using the definitions of µ and V as in Exercise 3.26,
investigate the stability of the system in the µ–V parameter plane. Determine the regions of stabil-
ity/instability and identify their types.

3.28 A uniform flexible cantilever pipe is conveying an incompressible fluid with slight viscosity at
a constant speed v. Assuming that the viscous drag produces a uniform axial force density f v (force
per unit length) throughout the pipe, write down the equation of motion of the system. Repeat the
analysis as in Exercise 3.27.
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4
Vibrations of membranes

A membrane is a planar two-dimensional pre-tensioned elastic continuum that does not
transmit or resist bending moment. In practice, any two-dimensional elastic continuum
resists bending moment. However, if the tension is large, and the curvatures are small,
the effect of bending moment can be neglected. Thus, the membrane can be imagined
as an extension of the string to two dimensions, however, with certain differences which
will be pointed out in the course of our discussions. Membranes are found in condenser
microphones, ear drums, drum heads, and in various other applications. The objective of
this chapter is to study the transverse vibrations and propagation of waves in membranes.

4.1 DYNAMICS OF A MEMBRANE

Since the membrane is two-dimensional, we require two space coordinates to represent the
points of the membrane. With two space dimensions, comes the question of choice of a
coordinate system in which to represent the space variables. The most common choices are
the Cartesian and the polar coordinate systems. Theoretically, the choice can be arbitrary.
However, in most practical cases, the boundary of the membrane guides the choice, since
it may be easier to represent the boundary conditions and solve the dynamics of a certain
membrane shape in a particular coordinate system. For example, the dynamics of a circular
membrane can be most conveniently worked out in the polar coordinate system.

Let us begin with the Cartesian coordinate system. Consider the coordinate system shown
in Figure 4.1, where the x-y-plane represents the undeformed configuration of the mem-
brane. The configuration of the membrane at any time t will be represented by the field
variable w(x, y, t). We will assume in all our analyses that the displacements of all points
of the membrane are small and always perpendicular to the x-y-plane, and the thickness h

of the membrane remains constant. The principal stresses σx(x, y, t) and σy(x, y, t) will be
assumed to be equal and constant throughout the membrane.

4.1.1 Newtonian formulation

Consider an infinitesimal element, as shown in Figure 4.1. Define T = σxh = σyh as the
tension per unit length of the membrane, and µ = ρh as the mass per unit area, where ρ

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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z,w
T (x, y, t)

T (x, y + dy, t)

T (x + dx, y, t)

T (x, y, t)

dx

dy

x

y

Figure 4.1 An infinitesimal element of a membrane in a Cartesian coordinate system

is the density of the material. Applying Newton’s second law to the infinitesimal element
yields

(µ�x�y)w,tt = T �y

(
∂w

∂x

∣∣∣
x+�x,y

− ∂w

∂x

∣∣∣
x,y

)

+ T �x

(
∂w

∂y

∣∣∣
x,y+�y

− ∂w

∂y

∣∣∣
x,y

)
. (4.1)

Dividing (4.1) by �x�y and taking the limit �x → 0 and �y → 0, we have on rearrange-
ment

µw,tt − T (w,xx + w,yy) = 0 (4.2)

or

w,tt − c2∇2w = 0, (4.3)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
(4.4)

is the Laplacian operator, and

c =
√

T /µ (4.5)

is the speed of transverse waves in the membrane. It is evident that (4.3) is a hyperbolic
partial differential equation, and represents the wave equation in two-dimensional Cartesian
space.
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For a unique solution of (4.2), it is evident that we require certain boundary conditions
for space, and initial conditions for time. For simplicity, consider a rectangular membrane
stretched between x ∈ [0, a] and y ∈ [0, b]. If the membrane is fixed on all four edges, the
appropriate boundary conditions are

w(0, y, t) ≡ 0, w(a, y, t) ≡ 0, w(x, 0, t) ≡ 0, and w(x, b, t) ≡ 0.

All these four boundary conditions are geometric conditions. When an edge, say at x = a,
is sliding, the boundary condition is obtained from the dynamic condition of zero transverse
force at the edge, and can be mathematically written as

T w,x(a, y, t) ≡ 0. (4.6)

To obtain the equation of motion of a membrane in polar coordinates (r, φ), we use the
coordinate transformation

r =
√

x2 + y2 and φ = tan−1 y

x
.

Then, the operator transformations from the Cartesian to polar coordinate system are given
by

∂

∂x
= cosφ

∂

∂r
− sin φ

∂

r∂φ
, (4.7)

∂

∂y
= sin φ

∂

∂r
+ cosφ

∂

r∂φ
, (4.8)

and the equation of motion of the membrane in polar coordinates is obtained as

µw,tt − T

(
w,rr + 1

r
w,r + 1

r2
w,φφ

)
= 0. (4.9)

This also has a compact representation of the form (4.3), where the Laplacian in the polar
coordinate system can be written from (4.9) as

∇2 = ∂

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
.

The boundary condition for a fixed circular membrane can be written as w(a, φ, t) ≡ 0,
where a is the radius of the membrane. At the center of the circular membrane, the condition
of finiteness of displacement has to be imposed to solve the boundary value problem. This
will be discussed further in detail later.

Even though the membrane seems to be similar to a string in two dimensions, there are
certain differences that set them apart. The first distinction is observed when one attempts
to solve the static deflection of a string and a membrane under a point force. For simplicity,
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String

z, w

x

F
ρ,A, T

l

Membrane

z, w

r

F
µ, T

a

Figure 4.2 Comparison of equilibrium solutions of a string and a circular membrane under a point
load

consider a string loaded by a point force at the middle, and a circular membrane loaded at
its center. The equilibrium solution of the string is obtained as

w(x) = F

T

[(
l

2
− x

)
H
(

x − l

2

)
+ 1

2
x

]
,

where F is the magnitude of the force, T is the string tension, and H(·) is the Heaviside step
function. The solution of the string is a bounded function, as shown in Figure 4.2. On the
other hand, the solution for the membrane is obtained as w(r) = (F/2πT ) ln(a/r), where
T is the tensile force per unit length of the membrane, and a is the radius of the membrane.
The solution indicates a logarithmic singularity at r = 0, where the solution is unbounded.
Thus, mathematically, a membrane cannot support a point force without getting punctured!
This behavior can also be understood physically as follows. Consider the equilibrium of a
small circular element around the point force. As the radius of the circular element tends to
zero, the force available to equilibrate the externally applied point force also tends to zero,
since the tensile force per unit length of the membrane is assumed constant. This causes the
displacement of the membrane to be unbounded at the point of application of the force. The
available distributed force also tends to align itself opposite to the direction of the applied
force, making the slope of the membrane w,r(r) → ∞ as r → 0.

4.1.2 Variational formulation

The kinetic energy of a vibrating membrane can be expressed as

T = 1

2

∫
A

µw2
,t dA, (4.10)
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where dA represents the area element in the domain of integration A. From the theory
of elasticity (see, for example, [1]), the potential energy can be written, for example, in
Cartesian coordinates as

V =
∫

A

∫ h/2

−h/2
(σxεx + σyεy) dξ dA, (4.11)

where εx and εy are the strains in the x and y directions, respectively, σx = σy = T /h are the
stresses, and ξ is measured along the thickness. Note that the potential energy expression
(4.11) is obtained with the assumption that stresses remain unchanged ( i.e., strains are
small). Similarly to the case of a string, one can write εx ≈ w2

,x/2 and εy ≈ w2
,y/2. Using

these expressions in (4.11), and assuming that all quantities are uniform over the thickness,
yields

V = 1

2

∫
A

T (w2
,x + w2

,y) dA = 1

2

∫
A

T ∇w · ∇w dA, (4.12)

where

∇w := w,x î + w,y ĵ,

is the gradient of w, and î and ĵ are the unit vectors along the x- and y-axes, respectively. It
may be mentioned that the form of the potential energy in (4.12) using the gradient operator
∇(·) is valid in any coordinate system, provided the gradient operator is expressed in that
coordinate system. Now, the Lagrangian can be written as

L = T − V = 1

2

∫
A

[
µw2

,t − T ∇w · ∇w
]
dA. (4.13)

Using Hamilton’s principle yields

δ

∫ t2

t1

Ldt = 0

⇒
∫

A
µw,t δw

∣∣t2
t1

dA

+
∫ t2

t1

∫
A

[−µw,tt δw − T ∇w · ∇δw
]
dA dt = 0. (4.14)

Using the condition that δw = 0 at t = t0 and t = t1, the first integral in (4.14) vanishes.
The identity

∇w · ∇δw = ∇ · (δw∇w) − (∇2w) δw, (4.15)
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can be used to rewrite (4.14) as

∫ t2

t1

∫
A

[−µw,tt δw − T ∇ · (δw∇w) + T (∇2w)δw
]
dA dt = 0. (4.16)

Now, we use the Gauss divergence theorem∫
A

∇ · v dA =
∮

B
v · n̂ ds,

where B is the boundary enclosing the domain A, n̂ is the unit outward normal to the
boundary, and ds is a boundary element of infinitesimal length, as shown in Figure 4.3.
Using this theorem for the second integrand in (4.16), we obtain

−
∫ t2

t1

∮
B

T w,n δw ds dt +
∫ t2

t1

∫
A

[−µw,tt + T ∇2w
]
δw dA dt = 0, (4.17)

where we have used the definition w,n := ∇w · n̂, which is the directional derivative of w

along n̂. The vanishing of the second integral in (4.17) yields the equation of motion of the
membrane, which is identical to (4.2). The first integral gives the boundary conditions

T w,n

∣∣
B = 0 or w

∣∣
B = 0.

For example, for a rectangular membrane shown in Figure 4.4, the boundary conditions
may be written in four parts as

T w,x

∣∣
x=a

≡ 0 or w
∣∣
x=a

≡ 0,

T w,y

∣∣
y=b

≡ 0 or w
∣∣
y=b

≡ 0,

−T w,x

∣∣
x=0 ≡ 0 or w

∣∣
x=0 ≡ 0,

B

A

y

x

n̂ = (cosα, sin α)T

α

ds

s

Figure 4.3 A membrane of arbitrary shape in Cartesian coordinates
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(0,−1)T

a

b

Figure 4.4 A rectangular membrane with boundary normals in Cartesian coordinates

and

−T w,y

∣∣
y=0 ≡ 0 or w

∣∣
y=0 ≡ 0.

The variational formulation for a circular membrane can be easily obtained using the
operator transformations (4.7)–(4.8) in (4.13).

4.2 MODAL ANALYSIS

We consider here the modal analysis of rectangular and circular membranes, and obtain
the corresponding eigenfrequencies and eigenfunctions. The eigenfunctions are then used to
construct the solution of the initial value problem using the expansion theorem.

4.2.1 The rectangular membrane

Consider a rectangular membrane with all edges fixed, as shown in Figure 4.4. We first find
a solution of the unforced dynamics (4.2) of the membrane of the form

w(x, y, t) = W(x, y)eiωt , (4.18)

where W(x, y) is the eigenfunction and ω is the corresponding circular eigenfrequency. It
is to be remembered that the actual solution is the real part of the solution form (4.18).
Substituting (4.18) in (4.2) yields the Helmholtz equation

W,xx + W,yy + ω2

c2
W = 0
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or

∇2W + ω2

c2
W = 0 (4.19)

along with the boundary conditions

W(0, y) ≡ 0, W(a, y) ≡ 0, W(x, 0) ≡ 0, and W(x, b) ≡ 0. (4.20)

The differential equation and boundary conditions above suggest that a separable solution
for the eigenvalue problem (4.19)–(4.20) is possible. Taking a cue from the solution of the
string eigenvalue problem, let us assume a solution of (4.19) of the form

W(x, y) = Bei(kxx+kyy), (4.21)

where B is a complex constant. Substituting (4.21) in (4.19) yields the dispersion relation
of the membrane as

−k2
x − k2

y + ω2

c2
= 0. (4.22)

It is clear from (4.22) that the solutions will be of the form kx = ±α and ky = ±β such
that α2 + β2 = ω2/c2. Therefore, the general solution of (4.19) can be written as

W(x, y) = (B1e
iαx + B2e

−iαx)(B3e
iβy + B4e

−iβy), (4.23)

or in the form

W(x, y) = A1 cosαx cosβy + A2 cosαx sinβy

+ A3 sinαx cosβy + A4 sinαx sin βy. (4.24)

One can also represent the solution as

W(x, y) = B1e
i(αx+βy) + B2e

i(−αx+βy) + B3e
i(αx−βy) + B4e

i(−αx−βy). (4.25)

The solution form (4.25) will be interpreted and used later. It is to be noted here that, in
the solution form (4.23) and (4.25), the coefficients Bi are in general complex, while the
coefficients Ai in (4.24) are real for the solution to be real. At present, we will use the form
(4.24) so that the boundary conditions can be put in a convenient form. Using the first and
third boundary conditions in (4.20) with the solution form (4.24), one obtains

A1 cosβy + A2 sin βy = 0, (4.26)

A1 cosαx + A3 sinαx = 0. (4.27)
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It is easy to see that, for satisfaction of (4.26) for all y ∈ [0, b], and for (4.27) for all x ∈
[0, a], we must have A1 = 0, A2 = 0, and A3 = 0. Therefore, the solution (4.24) simplifies
to

W(x, y) = A4 sin αx sinβy. (4.28)

Using this solution in the second and fourth boundary conditions in (4.20) leads to

sinαa sinβy = 0 and sin αx sinβb = 0. (4.29)

Satisfaction of (4.29) for all x ∈ [0, a] and y ∈ [0, b] requires

α = mπ

a
and β = nπ

b
, m, n = 1, 2, . . . , ∞. (4.30)

The eigenfunctions are then obtained from (4.28) as

W(m,n) = sin
mπx

a
sin

nπx

b
, m, n = 1, 2, . . . , ∞, (4.31)

where W(m,n) represents the eigenfunction of the (m, n) mode. It can be easily checked
from (4.31) that these eigenfunctions satisfy the orthogonality condition

〈W(m,n)(x, y), W(r,s)(x, y)〉 =
∫ a

0

∫ b

0
W(m,n)(x, y)W(r,s)(x, y) dx dy

= ab

4
δmrδns . (4.32)

The first few mode-shapes of the membrane are depicted in Figure 4.5. Using (4.30) in the
condition α2 + β2 = ω2/c2 yields the frequency equation

ω(m,n) = πc

√
m2

a2
+ n2

b2
, (4.33)

where ω(m,n) represents the circular eigenfrequency of the (m, n) mode. It may be noted
that, unlike for the string, the eigenfrequencies of the membrane are not, in general, integral
multiples of the fundamental frequency. Further, if lr := a/b is rational, then there can exist
orthogonal modes (m, n) and (r, s) such that m2 + l2r n

2 = r2 + l2r s
2, and hence ω(m,n) =

ω(r,s). For example, with lr = 4/3, we have ω(3,5) = ω(5,4), ω(8,3) = ω(4,6), and so on, and the
eigenfunctions are all orthogonal, as can be easily verified. Such independent eigenfunctions
corresponding to a single eigenfrequency are known as degenerate modes. On the other
hand, it can also be concluded from (4.19) that any arbitrary linear combination of these
degenerate eigenfunctions, say W(m,n) and W(r,s), is also an eigenfunction corresponding to
the eigenvalue ω(m,n). In other words, the function

W(x, y) = W(m,n) cos δ + W(r,s) sin δ, (4.34)
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m = 1, n = 1 m = 1, n = 2

m = 2, n = 1 m = 2, n = 2

m = 3, n = 1 m = 3, n = 2

Figure 4.5 First few mode-shapes of a rectangular membrane with fixed boundaries

where δ is arbitrary, is a valid eigenfunction corresponding to ω(m,n). Thus, there is an
isotropy in the dynamics in the sub-space of the degenerate modes. In the special case when
the membrane is square, i.e., a/b = 1, we have ω(m,n) = ω(n,m) for all (m, n), m �= n, and
hence, all such modes are degenerate. In Figure 4.6, the nodal lines of the eigenfunction
(4.34) of the degenerate modes (3,1) and (1,3) of a square membrane are shown for specific
values of δ. It is evident that such modal degeneracy does not exist in one-dimensional con-
tinua such as strings. This is another distinguishing feature of a membrane when compared
to a string. Some interesting phenomena occurring in systems with degenerate modes will be
discussed later in this chapter. This isotropy has to do with some kind of physical symmetry
of the system. For example, a rectangular membrane is symmetric under a rotation by π .

The general solution of the free vibration problem (or the initial value problem) can now
be written using (4.18), (4.31) and (4.33) as
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δ = 0 δ = π/25

δ = π/10 δ = π/4

Figure 4.6 Nodal lines of linear combinations of the degenerate modes (3,1) and (1,3) of a square
membrane

w(x, y, t) = R

[ ∞∑
m=1

∞∑
n=1

A(m,n) sin
mπx

a
sin

nπy

b
eiω(m,n)t

]

or

w(x, y, t) =
∞∑

m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b

[
C(m,n) cosω(m,n)t

+ S(m,n) sinω(m,n)t
]
, (4.35)

where R[·] represents the real part of the argument, A(m,n) = C(m,n) − iS(m,n) is a complex
constant representing the constants of integration for the initial value problem, and ω(m,n)

is given by (4.33).
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As an example, consider a square membrane subject to the initial displacement condition
w(x, y, 0) ≡ 0, and initial velocity condition

w,t (x, y, 0) =




v0

(
1 − 1

εa

∣∣∣∣x − a

2

∣∣∣∣
)

, for

∣∣∣∣y − a

2

∣∣∣∣ ≤
∣∣∣∣x − a

2

∣∣∣∣ ≤ εa,

v0

(
1 − 1

εa

∣∣∣∣y − a

2

∣∣∣∣
)

, for

∣∣∣∣x − a

2

∣∣∣∣ ≤
∣∣∣∣y − a

2

∣∣∣∣ ≤ εa,

0, for max

[ ∣∣∣∣x − a

2

∣∣∣∣,
∣∣∣∣y − a

2

∣∣∣∣
]

> εa,

(4.36)

where ε < 1. The above initial condition specifies a pyramidal initial velocity over a centrally
placed square region of side 2εa on an initially undeformed membrane. The solution of this
initial value problem is expressed using (4.35), where the unknown coefficients are obtained
using the orthogonality of the eigenfunctions as

C(m,n) = 0,

S(m,n) =




16v0

ω(m,n)επ3

(−1)(m+n)/2

m2 − n2

[
cosnπε sin mπε

m

−cosmπε sinmπε

n

]
,

for m, n odd,
and m �= n

− 4v0

ω(m,n)επ3m3
[sin 2mπε − 2mπε] ,

for m, n odd,
and m = n

0, for m, n even.

Using ε = 0.15, the successive configurations of the membrane at specific times are shown
in Figure 4.7.

4.2.2 The circular membrane

Consider a uniformly stretched circular membrane having a radius r = a, as shown in
Figure 4.8. Using the field variable w(r, φ, t) to represent the configuration of the system,
the equation of motion and the boundary conditions can be written as

µw,tt − T

(
w,rr + 1

r
w,r + 1

r2
w,φφ

)
= 0, (4.37)

w(a, φ, t) ≡ 0. (4.38)

It may be noticed that, while we require two boundary conditions for a unique solution,
only the outer boundary condition (4.38) can be specified. This point will be resolved using
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t = 0.005a/c t = 0.05a/c

t = 0.1a/c t = 0.2a/c

t = 0.4a/c t = 0.6a/c

t = 0.8a/c t = a/c

Figure 4.7 Successive configurations of a square membrane subject to initial conditions given by
(4.36)

a finiteness condition on the displacement field during the solution of the boundary value
problem. Substituting the modal solution

w = W(r, φ)eiωt (4.39)
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a r

φ

Figure 4.8 A circular membrane fixed at the outer boundary

in the above, we obtain the eigenvalue problem

(
∂2W

∂r2
+ ∂W

r∂r
+ ∂2W

r2∂φ2

)
+ ω2

c2
W = 0, (4.40)

W(a, φ) ≡ 0. (4.41)

Let us search for a separable solution of the form

W(r, φ) = R(r)�(φ), (4.42)

where R(r) and �(φ) are unknown functions. Substituting (4.42) in (4.40) yields on rear-
rangement

R′′

R
+ 1

r

R′

R
+ 1

r2

�′′

�
+ ω2

c2
= 0. (4.43)

It is evident that a solution of (4.43) is possible if and only if �′′/� is a constant, i.e.,

�′′ + ν2� = 0,

⇒ � = Aeiνφ + Be−iνφ,

where ν is the separation constant and A and B are constants of integration. In the case of
a complete circular membrane ν must take integer values since the solution must have a 2π
periodicity in φ, i.e., �(φ + 2π) = �(φ). Therefore, we will take the solution of (4.40) in
the form

W(r, φ) = R(r)eimφ, (4.44)

where m = 0, ±1, ±2, . . . , ±∞. Once again, the actual solution is obtained by taking either
the real part or the imaginary part of W(r, φ) in (4.44). Substituting this solution form in



4.2 Modal analysis 193

(4.40)–(4.41), we have on simplification

R′′ + 1

r
R′ +

(
γ 2 − m2

r2

)
R = 0, (4.45)

R(a) = 0, (4.46)

where

γ = ω/c. (4.47)

The differential equation (4.45) is the Bessel differential equation, and its solution can be
written directly as

R(r) = DJm(γ r) + EYm(γ r), (4.48)

where Jm(·) and Ym(·) are, respectively, the Bessel functions of the first and second kinds
of order m, and D and E are the constants of integration, possibly complex. It is to be noted
that Jm(·) = J−m(·) and Ym(·) = Y−m(·). Hence, we need to take only the positive integer
values for m, including zero. The Bessel function Jm(z) is finite for all values of z, whereas
Ym(z) has a logarithmic singularity at z = 0. Since the displacement of the membrane at
z = 0 is required to be finite, we must have E = 0 in (4.48),i.e., R(r) = DJm(γ r). Using
the boundary condition (4.46) yields DJm(γ a) = 0, which yields the characteristic equation

Jm(γ a) = 0. (4.49)

Denoting the roots of (4.49) as aγ(m,n), the first few values are obtained as

γ(0,1)a = 2.405, γ(1,1)a = 3.832,

γ(0,2)a = 5.520, γ(1,2)a = 7.016,

γ(0,3)a = 8.654, γ(1,3)a = 10.173,

where the index m indicates the order of the Bessel function and n denotes the nth root.
The circular eigenfrequencies ω(m,n), are then obtained using (4.47).

From the theory of Bessel functions (see [2]), it is known that

Jm(x) ≈
√

2

πx
cos
(
x − (2m + 1)

π

4

)
for x � 1. (4.50)

A comparison of the exact and approximate representations are shown in Figure 4.13. Thus,
for large n (i.e., large number of nodal circles), the roots of (4.49) can be obtained using
the approximation (4.50) as

cos
(
aγ(m,n) − (2m + 1)

π

4

)
= 0

⇒ ω(m,n) = (2m + 4n − 1)
πc

4a
(using (4.47)).
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The above formula works reasonably well even for lower values of n, as can be checked.
It may also be concluded that, for a fixed value of m, the difference between any two
consecutive exact frequencies is about πc/a.

Now, the radial part of the shape-function can be expressed as

R(m,n)(r) = D(m,n)Jm(ω(m,n)r/c),

where D(m,n) is an unknown constant, possibly complex. Substituting this expression in
(4.44) yields the eigenfunction corresponding to the (m, n) mode as

W(m,n)(r, φ) = D(m,n)Jm(ω(m,n)r/c)e
imφ. (4.51)

Writing D(m,n) = G(m,n) − iH(m,n), and taking the real part of (4.51) as the solution of the
eigenvalue problem, we have the real eigenfunction of the (m, n) mode as

W(m,n)(r, φ) = Jm(ω(m,n)r/c)[G(m,n) cosmφ + H(m,n) sinmφ]. (4.52)

It is to be noticed in (4.52) that when m �= 0, W(m,n) is a linear combination of the form

W(m,n)(r, φ) = G(m,n)W
(m,n)
C + H(m,n)W

(m,n)
S , (4.53)

where

W
(m,n)
C := Jm(ω(m,n)r/c) cosmφ and W

(m,n)
S := Jm(ω(m,n)r/c) sinmφ (4.54)

are two independent eigenfunctions, and referred as the cosine and the sine modes, respec-
tively. Using the properties of Bessel functions (see, for example, [3]), it is not difficult to
show the orthogonality property

∫ a

0

∫ 2π

0
W

(m,n)
I W

(p,q)
J r dφ dr = π

a2

2
J 2

m+1(ω(m,n)a/c)δIJ δmpδnq (4.55)

for any two eigenfunctions W
(m,n)
I and W

(p,q)
J , where I, J =C or S, δCC = δSS = 1, and

δCS = δSC = 0. Since W
(m,n)
C and W

(m,n)
S are independent (in fact, orthogonal), and corre-

spond to the same circular eigenfrequency ω(m,n), they form a pair of degenerate modes. It
is evident that every mode with m �= 0 of the circular membrane is degenerate. Therefore,
any function of the form (4.53) is an eigenfunction corresponding to a circular eigenfre-
quency ω(m,n). The first few mode-shapes of a circular membrane are shown in Figure 4.9.
It may be noted from the figure that a mode-shape (m, n) has m nodal diameters and n − 1
nodal circles. The modes with m = 0 have axial symmetry, and are known as the symmetric
modes, while those with m �= 0 are known as the asymmetric modes.
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m = 0, n = 1 m = 0, n = 2

m = 1, n = 1 m = 1, n = 2

m = 2, n = 1 m = 2, n = 2

Figure 4.9 First few mode-shapes of a circular membrane with fixed outer boundary

The general solution of the free vibration problem can thus be written using (4.54) as

w(r, φ, t) = R

[ ∞∑
m=0

∞∑
n=1

(
D(m,n)W

(m,n)
C + E(m,n)W

(m,n)
S

)
eiω(m,n)t

]

⇒w(r, φ, t) =
∞∑

m=0

∞∑
n=1

[(
A(m,n) cosω(m,n)t + B(m,n) sinω(m,n)t

)
W

(m,n)
C

+ (G(m,n) cosω(m,n)t + H(m,n) sin ω(m,n)t
)
W

(m,n)
S

]
, (4.56)

where we have taken D(m,n) = A(m,n) − iB(m,n), and E(m,n) = G(m,n) − iH(m,n).
An interesting consequence of modal degeneracy is the phenomenon of frequency splitting

(sometimes also referred to as mode splitting), which can occur when there is a localized
interaction of the membrane with another system. It is particularly prominent when the
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µ, T

k

r0

a

Figure 4.10 Circular membrane with an off-centered discrete spring

membrane interacts with, say, an off-centered discrete system such as a spring, as shown
in Figure 4.10. It should be pointed out here that the spring produces a point force which
introduces a logarithmic singularity in the system, as discussed in Section 4.1.1. However,
in this case, one can do an approximate analysis which is consistent with the physics of the
problem. The equation of motion of the system can be written as

µw,tt − S∇2w + kwδ(r − r0)δ(φ) = 0, (4.57)

where r = r0 and φ = 0 (chosen arbitrarily without loss of generality) are the coordinates
of the location of the spring. We will attempt to solve this system approximately by writing
the solution as an expansion using, for the sake of simplicity, only a pair of degenerate
modes as

w(r, φ, t) = g(m,n)(t)W
(m,n)
C (r, φ) + h(m,n)(t)W

(m,n)
S (r, φ), (4.58)

where g(m,n)(t) and h(m,n)(t) are the modal coordinates corresponding to the cosine and
sine modes, respectively, and m �= 0 so that the modes are degenerate. Substituting this
solution form in the equation of motion (4.57), taking the inner products with the individual
eigenfunctions, and using (4.55), yields on simplification

g̈(m,n) +
[

T γ 2
(m,n)

πµ
+ 2kJ 2

m(γ(m,n)r0)

πµb2J 2
m+1(bγ(m,n))

]
g(m,n) = 0, (4.59)

ḧ(m,n) +
[
T γ(m,n)

πµ

]
h(m,n) = 0. (4.60)

From the above two differential equations for the modal coordinates, it is clear that the
eigenfrequency corresponding to the degenerate cosine and sine modes is no longer the
same. It is interesting to note that, in the case of a single spring, the frequency of all
degenerate modes {(m, n)|m �= 0, n = 1, 2, . . . , ∞} are now split, and as a consequence,
there are no longer degenerate modes.

In a continuous system with degenerate modes, the phenomenon of frequency splitting
can occur, in general, due to any interaction destroying the isotropy of the degenerate
modes. Such a loss of isotropy can occur, for example, due to an attached discrete system



4.4 Applications: kettledrum and condenser microphone 197

as demonstrated above. In special situations, certain degenerate modes split while the others
do not. It is obvious that in one-dimensional continua such as strings, the phenomenon of
frequency splitting cannot occur since there is no modal degeneracy.

4.3 FORCED VIBRATION ANALYSIS

In the presence of external transverse forcing on a membrane, the equation of motion of the
membrane takes the form

µw,tt − T ∇2w = q(x, y, t), (4.61)

where q(x, y, t) is a given distributed force. The eigenfunctions of the unforced membrane
form a basis of the space of functions satisfying the geometric boundary conditions, and
the solution of (4.61) for a rectangular membrane of dimension a × b can be conveniently
expressed using the expansion theorem as

w(x, y, t) =
∑
m

∑
n

p(m,n)(t) sin
mπx

a
sin

nπy

b
, (4.62)

where p(m,n)(t) is the modal coordinate corresponding to mode (m, n). Substituting (4.62)
in (4.61), and using the orthogonality relations (4.32), one can discretize (4.61) to obtain
the differential equations for the individual modal coordinates. In the case of a circular
membrane, the solution expansion is of the form

w(r, φ, t) =
∑
m

∑
n

[
p(m,n)(t)W

(m,n)
C (r, φ) + q(m,n)(t)W

(m,n)
S (r, φ)

]
,

where p(m,n)(t) and q(m,n)(t) are, respectively, the modal coordinates corresponding to the
cosine and sine components of the mode (m, n).

4.4 APPLICATIONS: KETTLEDRUM AND CONDENSER
MICROPHONE

4.4.1 Modal analysis

As an application of the above analysis, consider the modal analysis of a kettledrum. The
kettledrum, as shown in Figure 4.11, consists of a hemispherical cavity of radius a that is

Membrane

Vessel

a

Figure 4.11 A kettledrum
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closed by a stretched circular membrane such that the air inside is confined. Certain types of
condenser microphones resemble the kettledrum in construction, and hence can be analyzed
similarly, as discussed below.

Since the air inside the vessel is confined, the transverse displacement of the membrane
will in general change the volume of the air, and hence change the pressure of the confined
air. The difference in pressure on either side of the membrane then produces a force on the
membrane. In order to estimate this force, consider the change in volume �V given by

�V (t) =
∫ a

0

∫ 2π

0
w(r, φ, t)r dφ dr, (4.63)

where w(r, φ, t) is the transverse deflection of the membrane. In order to relate this volume
change to the change in pressure, we use the adiabatic condition

pV γ = p0V
γ
0 , (4.64)

where p is the pressure at any time instant, p0 is the initial pressure, V0 is the initial volume,
and γ = Cp/Cv is the ratio of molar specific heats of air at constant pressure and constant
volume. Assuming the process to be adiabatic is reasonable since the rate at which the
volume changes is much faster than the thermal diffusion rate in air. From (4.64), one can
write

(p0 + �p)(V0 + �V )γ = p0V
γ
0

⇒ �p

p0
+ γ

�V

V0
≈ 0 (expanding and retaining terms up to first order)

⇒ �p ≈ −γp0

V0

∫ a

0

∫ 2π

0
w(r, φ, t)r dφ dr (using (4.63)). (4.65)

This differential pressure acts as an external force on the membrane. It may be observed
that this force depends on the displacement field of the membrane. The dynamics of the
membrane can now be written as

µw,tt − T ∇2w = −γp0

V0

∫ a

0

∫ 2π

0
w(r, φ, t)r dφ dr, (4.66)

which is an integro-differential equation. The corresponding boundary condition is

w(a, φ, t) ≡ 0, (4.67)

and the solution is required to be finite at r = 0. It is to be noted here that the pressure has
been assumed to be uniform over the whole membrane. This assumption is reasonable, if
the kettledrum’s vibration frequencies are much lower than the first resonance frequency of
the air in the cavity. The coupled vibration problem consisting of the air in the cavity, the
membrane, and the air outside of the kettle, is more complex.
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Consider a modal solution of (4.66) in the form

w(r, φ, t) = W(r, φ)eiωt . (4.68)

Substitution of (4.68) in (4.66) yields on rearrangement,

∇2W + β2W = γp0

T V0

∫ a

0

∫ 2π

0
Wr dφ dr, (4.69)

where β = ω/c and c2 = T /µ. Taking our cue from the solution of the circular membrane,
consider the solution of (4.69) as an expansion of the form

W(r, φ) =
∞∑

m=0

BmWm
C (r, φ) + CmWm

S (r, φ), (4.70)

where

Wm
C (r, φ) = Rm(r) cosmφ, Wm

S (r, φ) = Rm(r) sinmφ, (4.71)

and Rm(r) are arbitrary functions of r . It can be easily verified that, for all terms with
m �= 0 in the assumed solution form (4.70), the right-hand side of (4.69) is identically zero.
Thus, all asymmetric modes leave the volume unchanged.

Let us first consider the terms with m �= 0. For all such terms, (4.69) yields

R′′
m + 1

r
R′

m +
(

β2 − m2

r2

)
Rm = 0, m = 1, 2, . . . , ∞, (4.72)

which is the familiar Bessel differential equation. The solution of (4.72) satisfying the
finiteness condition at r = 0 can be written as

Rm(r) = AmJm(βr), m = 1, 2, . . . , ∞, (4.73)

where Am is an arbitrary constant. Satisfaction of the outer boundary condition requires
that Jm(βa) = 0 for m = 1, 2, . . . , ∞, which yields the eigenfrequencies of the asymmetric
modes. It is evident that the eigenfrequencies of the asymmetric modes of the kettledrum
are the same as those of a normal circular membrane given in Section 4.2.2.

Next, for the term with m = 0 in (4.70) (i.e., B0W
0
C(r, φ) = B0R0(r)), (4.69) yields

R′′
0 + 1

r
R′

0 + β2R0 = 2πγp0

T V0

∫ a

0
R0r dr. (4.74)

In view of the boundary condition (4.67), let us consider a solution of (4.74) as

R0(r) = J0(βr) − J0(βa), (4.75)
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which clearly satisfies (4.67). Substituting this solution form in (4.74) yields on simplification

J ′′
0 (βr) + 1

r
J ′

0(βr) + β2[J0(βr) − J0(βa)] = χ

a2

[
2

βa
J1(βa) − J0(βa)

]
, (4.76)

where χ := γπa4p0/T V0, and we have used the property (see, for example, [3])

∫ z

0
ζJ0(ζ ) dζ = zJ1(z).

Since

J ′′
0 (βr) + 1

r
J ′

0(βr) + β2J0(βr) = 0, (4.77)

we have from (4.76) the characteristic equation

J0(βa) = χ

a2

[
2

βa
J1(βa) − J0(βa)

]

or

J0(βa) + χ

β2a2
J2(βa) = 0, (4.78)

where we have used the property Jm−1(z) + Jm+1(z) = (2m/z)Jm(z). For different values
of χ , the first few solutions of the above characteristic equation are obtained as

χ = 0 : β(0,1)a = 2.4048, β(0,2)a = 5.5200, β(0,3)a = 8.6537,

χ = 1 : β(0,1)a = 2.5437, β(0,2)a = 5.5323, β(0,3)a = 8.6568,

χ = 10 : β(0,1)a = 3.4874, β(0,2)a = 5.6753, β(0,3)a = 8.6888.

The circular eigenfrequencies are obtained from ω(m,n) = cβ(m,n). It may be noted from
(4.78) that χ = 0 yields the characteristic equation for symmetric modes of a circular mem-
brane. It is observed that the presence of the vessel increases the eigenfrequencies of the
symmetric modes. However, the increment in the frequencies decreases as we go to the
higher modes. This is due to the fact that the change in volume of the air inside the kettle-
drum is more for the lower modes than the higher ones for the same peak amplitude (at the
center). Finally, the eigenfunctions are obtained from (4.71) and (4.75) as

W(0,n) = J0(βnr) − J0(βna), n = 1, 2, . . . , ∞, (4.79)

W
(m,n)
C = Jm(βnr) cosmφ, m, n = 1, 2, . . . , ∞, (4.80)

W
(m,n)
S = Jm(βnr) sinmφ, m, n = 1, 2, . . . , ∞. (4.81)

These eigenfunctions are all orthogonal, as can be easily checked.



4.4 Applications: kettledrum and condenser microphone 201

4.4.2 Forced vibration analysis

Now we consider the forced vibration response of a condenser microphone, which we
assume has a similar construction to a kettledrum. The equation of motion is obtained from
(4.66) as

µw,tt − T ∇2w + γp0

V0

∫ a

0

∫ 2π

0
w(r, φ, t)r dφ dr = P ei�t , (4.82)

where P is the pressure amplitude (assumed uniform over the membrane) and � is the
forcing frequency. Such a form of excitation is reasonable since the size of the membrane
in a microphone is usually small compared to the wavelengths of the normal human voice.

The homogeneous solution of (4.82) has already been discussed in the previous section.
The particular solution of (4.82) can be represented in terms of the eigenfunctions
(4.79)–(4.81) as

wP(r, φ, t) =
( ∞∑

n=1

αnW
(0,n) +

∞∑
m=1

∞∑
n=1

[δC
(m,n)W

(m,n)
C + δS

(m,n)W
(m,n)
S ]

)
ei�t , (4.83)

where αn, δC
(m,n) and δS

(m,n) are unknown constants. Substituting this solution form in (4.82),
and using (4.69) and the orthogonality of the eigenfunctions, yields

αn = 〈P, W(0,n)〉
(c2β2

(0,n) − �2)〈µW(0,n), W(0,n)〉 , for n = 1, 2, . . . , ∞,

δC
(m,n) = 0, and δS

(m,n) = 0, for all (m, n), m �= 0,

where

〈W1, W2〉 =
∫ a

0

∫ 2π

0
W1W2r dφ dr,

denotes the inner product of two functions W1(r, φ) and W2(r, φ). Using the properties of
the Bessel functions (see, for example, [3])

∫
xJ0(x) dx = xJ1(x) and

∫
xJ 2

0 (x) dx = x2

2
[J 2

0 (x) + J 2
1 (x)],

one can easily write

〈P, W(0,n)〉 = 2π

∫ a

0
Pr[J0(β(0,n)r) − J0(β(0,n)a)] dr

= 2πP

[
a

β(0,n)

J1(β(0,n)a) − a2

2
J0(β(0,n)a)

]
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and

〈W(0,n), W(0,n)〉 = 2π

∫ a

0
r[J0(β(0,n)r) − J0(β(0,n)a)]2dr

= 2π

[
a2J 2

0 (β(0,n)a) − 2a

β(0,n)

J0(β(0,n)a)J1(β(0,n)a)

+ a2

2
J 2

1 (β(0,n)a)

]
.

This completes the solution of (4.83).

4.5 WAVES IN MEMBRANES

4.5.1 Waves in Cartesian coordinates

Consider the dynamics of an infinite membrane described by the two-dimensional wave
equation

w,tt − c2(w,xx + w,yy) = 0. (4.84)

For simplicity, consider first a harmonic traveling plane wave solution for the wave equation
(4.84). A harmonic plane wave, traveling in the direction n̂ = cos θ î + sin θ ĵ, as shown in
Figure 4.12, can be represented as

w(x, y, t) = Dei(kξ−ωt)

= Dei(kn̂·r−ωt) = Dei(k·r−ωt) (4.85)

= Dei(kx cos θ+ky sin θ−ωt), (4.86)

î

ĵ

x

y

r

n̂ = (cos θ, sin θ)T

θ

Figure 4.12 Traveling waves in a two-dimensional plane



4.5 Waves in membranes 203

where D is a complex constant, k is the wave number, k = kn̂ is defined as the wave vector,
and r = x î + y ĵ. Substituting (4.86) in (4.84) yields the dispersion relation

ω2 − c2k2 = 0 ⇒ ω = ±kc, (4.87)

where the two signs correspond to the two possible directions of travel, namely n̂ and −n̂.
Therefore, a general harmonic plane wave solution along n̂ may be represented as

wθ(x, y, t) = A(k, θ)eik(x cos θ+y sin θ−ct),

where A(k, θ) is a complex function of k and θ . Using the theory of Fourier transforms, it
is not difficult to conclude that a general wave pulse along n̂ may then be represented by

wθ(x, y, t) = f (θ, x cos θ + y sin θ − ct),

and a general wave solution can be obtained by superposing fθ (·) over all values of θ as

w(x, y, t) =
∫ 2π

0
f (θ, x cos θ + y sin θ − ct) dθ.

Some other solution forms that also satisfy the wave equation are

w(x, y, t) = (ay + b)f (x − ct), and w(x, y, t) = (ax + b)f (y − ct),

as can be easily checked.
Next, we define the impedance of a membrane to harmonic plane waves. The impedance

per unit length of a membrane (with respect to harmonic waves) can be represented as

Z = A [F ]

A [v]
, (4.88)

where A [·] represents the complex amplitude, F is the applied transverse (complex) har-
monic force per unit length, and v is the resulting transverse (complex) harmonic velocity
of the membrane at the location of the force. Consider a harmonic plane wave represented
by (4.86). The transverse force per unit length is given by

F = −T w,n = −T (w,x cos θ + w,y sin θ)

= −T ikAeik(x cos θ+y sin θ−ct). (4.89)

The transverse velocity of the membrane is given by

v = w,t = −iωAeik(x cos θ+y sin θ−ct). (4.90)

Using (4.89) and (4.90), the impedance per unit length is obtained from (4.88) as

Z = T k

ω
= µc (using (4.5) and (4.87)). (4.91)
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4.5.2 Waves in polar coordinates

Consider next the equation of motion of an infinite membrane in polar coordinates as

w,tt − c2(w,rr + 1

r
w,r + 1

r2
w,φφ) = 0. (4.92)

Substituting the solution form

w(r, φ, t) = R(r)eimφeiωt (4.93)

yields on rearrangement

R′′ + 1

r
R′ +

(
γ 2 − m2

r2

)
R = 0, (4.94)

where γ = ω/c. The solution of the Bessel differential equation (4.94) can be written as
(see, for example, [3])

R(r) = AJm(γ r) + BYm(γ r), (4.95)

where A and B are arbitrary real constants. However, for reasons clarified below, we will
represent the solution as

R(r) = DH(1)
m (γ r) + EH(2)

m (γ r), (4.96)

where D and E are arbitrary complex constants, and

H(1)
m (γ r) = Jm(γ r) + iYm(γ r),

H (2)
m (γ r) = Jm(γ r) − iYm(γ r),

are known as the Hankel functions (see, for example, [3]) of first and second kind, respec-
tively. Therefore, the solution (4.93) can be written as

w(r, φ, t) = (DH(1)
m (γ r) + EH(2)

m (γ r))eimφeiωt . (4.97)

It is known from the theory of Bessel functions (see [2]) that, when x � 1,

Jm(x) ≈
√

2

πx
cos
(
x − (2m + 1)

π

4

)
, (4.98)

Ym(x) ≈
√

2

πx
sin
(
x − (2m + 1)

π

4

)
. (4.99)
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A comparison of the exact and approximate representations of Jm(x) and Ym(x) is shown
in Figure 4.13. Using these approximate representations, it can be easily checked that, for
x � 1,

H(1)
m (x) ≈

√
2

πx
ei(x−(2m+1)π/4),

H (2)
m (x) ≈

√
2

πx
e−i(x−(2m+1)π/4),
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Figure 4.13 Comparison of exact and approximate representations of Bessel functions of first and
second kinds
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and (4.97) may be approximated for large values of r as

w(r, φ, t) =
√

2

πr

[
Dei(r+ωt−(2m+1)π/4) + Eei(−r+ωt+(2m+1)π/4)

]
eimφ.

It is evident that the coefficient of D represents an incoming harmonic wave from infinity,
while the coefficient of E corresponds to a harmonic wave traveling outwards to infinity.
Now, if we consider that all the waves are propagating outwards to infinity (i.e., there is no
other source of disturbance, or wave reflection), we must have

w(r, φ, t) = EH(2)
m (γ r)eimφeiωt , (4.100)

since this form has an approximation of an outward-going wave when r � 1. This is known
as the Sommerfeld radiation condition (see [4]).

As an application of the solution form (4.100), consider an infinite membrane fixed to
an axially oscillating cylinder of radius a, as shown in Figure 4.14. Since the problem has
axial symmetry, the solution (4.100) will be independent of φ, i.e., m = 0. Let the motion
of the cylinder be described by B cos�t , where B is the amplitude of the motion. Then,
following (4.100), the actual solution for the membrane can be represented as

w(r, t) = R[EH
(2)
0 (γ r)ei�t ]

= [ERJ0(γ r) + EIY0(γ r)] cos�t

+[ERY0(γ r) − EIJ0(γ r)] sin�t, (4.101)

where E = ER + iEI, and γ = �/c. This solution must satisfy the boundary condition
w(a, t) = B cos�t , which yields

ERJ0(γ a) + EIY0(γ a) = B,

ERY0(γ a) − EIJ0(γ a) = 0

⇒ ER = J0(γ a)

J 2
0 (γ a) + Y 2

0 (γ a)
B and EI = Y0(γ a)

J 2
0 (γ a) + Y 2

0 (γ a)
B.

Substituting these expressions in (4.101) completes the solution.

a

Oscillating cylinder

Infinite membrane

Figure 4.14 An infinite membrane excited by an axially oscillating cylinder
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4.5.3 Energetics of membrane waves

The mechanical energy density (energy per unit area) of a membrane can be written using
(4.10) and (4.12) as

Ê = T̂ + V̂

= 1

2
µw2

,t + 1

2
T (w2

,x + w2
,y). (4.102)

The time rate of change of Ê is obtained as

∂Ê
∂t

= µw,tw,tt + T (w,xw,xt + w,yw,yt )

= µw,tw,tt + (T w,xw,t ),x − T w,xxw,t + (T w,yw,t ),y − T w,yyw,t

= [µw,tt − T (w,xx + w,yy)]w,t + (T w,xw,t ),x + (T w,yw,t ),y

= (T w,xw,t ),x + (T w,yw,t ),y (using (4.2)). (4.103)

Let us define a vector

I := −(T w,xw,t )î − (T w,yw,t )ĵ, (4.104)

representing the rate of energy per unit length crossing a line in the membrane. Thus, I · n̂dl

represents the power flow through a line element of length dl having a unit normal n̂. One
may also refer to I as the intensity vector for membrane waves. Using the definition (4.104),
one can rewrite (4.103) as

∂Ê
∂t

+ ∇ · I = 0,

where

∇ = î
∂

∂x
+ ĵ

∂

∂y
, (4.105)

and ∇ · I is the divergence of I .
Consider a harmonic plane wave on the membrane represented by

w(x, y, t) = A cos(kxx + kyy − ωt), (4.106)

where k2
x + k2

y = k2. The energy density is obtained as

Ê =
[
1

2
µω2 + 1

2
T k2
]

A2 sin2(kxx + kyy − ωt)

= µω2A2 sin2(kxx + kyy − ωt) (using (4.5) and (4.87)),
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and the average energy density is

〈Ê〉 = 1

2
µω2A2.

The intensity vector can be computed from (4.104) as

I = T ωA2 sin2(kxx + kyy − ωt)[kx î + ky ĵ],

= c2µωA2 sin2(kxx + kyy − ωt)[kx î + ky ĵ],

and the net power flow per unit length is obtained as

I = |I | = c2µωkA2 sin2(kxx + kyy − ωt) = µcω2A2 sin2(kxx + kyy − ωt).

The average power flow per unit length is given by

〈I〉 = ω

2π

∫ 2π/ω

0
P dt = 1

2
µcω2A2 = c〈Ê〉.

Thus, energy in a membrane propagates at the transverse wave speed c. The average power
flow per unit length of a planar harmonic wave can also be directly obtained from (see
Section 2.3)

〈I〉 = 1

2
Z|w,t |2 = 1

2
µcω2A2.

4.5.4 Initial value problem for infinite membranes

The discrete spectrum known from finite membranes is replaced by a continuous spectrum
in the case of an infinite membrane, and the expansion theorem (with discrete sums) can no
longer be used for representing the solution. In such cases, we have to use the Fourier or
Hankel transforms to obtain the motion generated from initial conditions. The field equation
of the membrane is the wave equation itself without any boundary conditions. Let us assume
that the initial conditions are specified as

w(x, y, 0) = w0(x, y) and w,t (x, y, 0) = v0(x, y), (4.107)

where w0(x, y) and v0(x, y) are the initial configuration and initial velocity profile of the
membrane, respectively. Then, the solution of the wave equation is given by (see [5])

w(x, y, t) = 1

2πc

[
∂

∂t

∫ ct

r=0

∫ 2π

φ=0

w0(x − r cosφ, y − r sinφ)rdφdr√
c2t2 − r2

+
∫ ct

r=0

∫ 2π

φ=0

v0(x − r cosφ, y − r sin φ)rdφdr√
c2t2 − r2

]
,
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x

y

x

y

r

φ
ct

Figure 4.15 Area of dependence for the solution w(x, y, t)

where r and φ are the polar coordinates of any point, as shown in Figure 4.15. This form
of solution is known as Poisson’s or Parseval’s formula. The solution indicates that the
displacement w(x, y, t) at any point (x, y) at time t depends on the functions w0(x, y) and
v0(x, y) within the circle of radius ct centered at (x, y), as shown in Figure 4.15.

Now we compare the wave propagation in a membrane with that in a string, considering
two special cases. In the first comparison, we consider the propagation of a cylindrical
initial shape of the membrane and the propagation of a rectangular initial shape of the
string, as shown in Figure 4.16. In Figure 4.17, we compare the displacement profiles of
the membrane and the string resulting from an initial constant velocity distribution over
a circle on the undisturbed membrane, and a line segment of the undisturbed string. As
observed from these figures, the wave propagation is qualitatively different. The string
wave front, unlike the membrane wave front, maintains its shape and size as it travels.
This is to be expected, since in the membrane, the wave fronts are circular, and hence
the wave energy gets distributed over circles of ever-increasing radius as the wave front
propagates.

4.5.5 Reflection of plane waves

Consider a semi-infinite membrane with a fixed boundary on the line x = 0, as shown
in Figure 4.18. Let a harmonic traveling wave with wave number k be incident on the
boundary, and a reflected wave with wave number k′ be generated. Then the complete wave
field in the membrane can be represented as

w(x, y, t) = Aeik(x cos α+y sin α−ct) + Beik′(−x cos α′−y sin α′−ct), (4.108)

where c is the propagation speed of waves in the membrane. Applying the boundary con-
dition w(0, y, t) ≡ 0, we obtain

Aeik(y sin α−ct) + Beik′(y sin α′−ct) ≡ 0. (4.109)
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Membrane String

r0 + ct

r0

r0 + ct

r0

t = 0

t = 4
r0

c

t = 8
r0

c

t = 12
r0

c

Figure 4.16 Infinite membrane and string with initial displacement condition

Satisfaction of (4.109) identically requires

k sin α = k′ sinα′ and ck = ck′

⇒ α = α′ and k = k′.
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Membrane String

r0 + ct
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r0 + ct

r0

t = 0.5
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c

t = 4
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t = 8
r0

c

t = 12
r0

c

Figure 4.17 Infinite membrane and string with initial velocity condition

It is to be noted that α = α′ is the only meaningful implication of sinα = sin α′. Thus, we
obtain the law of reflection for plane waves.

Let us now consider the reflection process in a finite rectangular membrane shown in
Figure 4.19. Since there is reflection from all the four edges, one can write the complete
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k̂′

k̂

α2
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Figure 4.18 Reflection of plane waves at a fixed boundary of a semi-infinite membrane

x
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a

b

B1ei(αx+βy−ωt)
B2ei(αx−βy−ωt)

B3ei(−αx−βy−ωt)

B4ei(−αx+βy−ωt)

Figure 4.19 Reflection of plane waves in a finite membrane

wave field as

w(x, y, t) = B1e
i(αx+βy−ωt) + B2e

i(αx−βy−ωt)

+ B3e
i(−αx+βy−ωt) + B4e

i(−αx−βy−ωt), (4.110)

where α = k cos θ , β = k sin θ , and ω = kc. The boundary conditions are given by

w(0, y, t) = w(a, y, t) = w(x, 0, t) = w(x, b, t) ≡ 0. (4.111)

Using the first and the third boundary conditions from (4.111) yields B1 = −B2 = −B3 =
B4 = B (say), and the solution then reduces to

w(x, y, t) = B
[
ei(αx+βy) − ei(αx−βy) − ei(−αx+βy) + ei(−αx−βy)

]
e−iωt

= (B̃ sinαx sin βy)eiωt . (4.112)
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Applying the second and the fourth boundary conditions from (4.111) provides the two
conditions sinαa = 0 and sin βb = 0, respectively. These conditions were also obtained
earlier from (4.29), and hence, the frequencies are obtained from (4.33).

EXERCISES

4.1 Determine the eigenfrequencies and eigenfunctions of a rectangular membrane that is fixed at the
boundaries x = 0 and x = a, and sliding at the boundaries y = 0 and y = b.

4.2 Determine the eigenfrequencies and eigenfunctions of an annular membrane that is fixed at the
boundaries r = a and r = a/2.

4.3 A rectangular membrane of width a and length 2a is made of two materials of mass densities µ1

and µ2 which are joined together, as shown in Figure 4.20. Determine the characteristic equation for
the membrane. Also determine the approximate eigenfrequencies and eigenfunctions.

x

y

a a

a

Figure 4.20 Exercise 4.3

4.4 A circular membrane of radius a with fixed boundary has a small particle of mass m attached at
the center. Determine the approximate eigenfrequencies of the membrane.

4.5 Determine the approximate fundamental eigenfrequency of the membrane shown in Figure 4.21.
Assume that the membrane is fixed at all the boundaries.

a

a

a a

Figure 4.21 Exercise 4.5

4.6 A circular membrane of radius a with fixed boundary has three identical springs of stiffness k

attached equidistant from the center at b = a/2, as shown in Figure 4.22. Using the eigenfunctions
of a normal circular membrane, determine the first six approximate natural frequencies for different
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120◦

120◦
a

b

Figure 4.22 Exercise 4.6

values of k starting from k = 0, and plot the result. Note the frequencies that do not split. Can you
identify the frequencies that do not split if there are N identical springs on the vertices of a regular
N-gon?

4.7 A composite circular membrane consists of a central circular region of radius a having a mass
density µ1 and an annular region with outer radius b having a mass density µ2. Using the eigenfunc-
tions of a normal circular membrane, determine the first six approximate natural frequencies of the
composite membrane.

4.8 A membrane with distributed external damping may be represented by

µw,tt + bw,t − T ∇2w = 0,

where b is the damping coefficient. Discretize the equation of motion for a rectangular membrane
using the eigenfunctions of the undamped membrane.

4.9 Determine the response of a kettledrum when excited by a unit impulsive force at r = r and
φ = φ given by δ(t − τ )δ(r − r)δ(φ − φ).

4.10 A circular membrane of radius a carries a rotating transverse force q(r, φ, t) = Qδ(r − r0)δ(φ −
�t), where Q is a constant, r0 is the radial location of the force, and � is the circular frequency of
rotation. Determine the response of the membrane. Also determine the critical rotation speeds of the
force at which the membrane resonates.

4.11 Show that the intensity vector of membrane waves in polar coordinates takes the form

I = −T w,tw,r êr − T

r
w,tw,φ êφ.

where êr and êφ are, respectively, the unit vectors. Using this expression, show that for symmetric
outward radiating waves represented by w(r, t) = AH

(2)
0 (kr)ei�t , the intensity falls as 1/r .
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5
Vibrations of plates

Plates are two-dimensional elastic continua with finite bending stiffness. Thus, in a way, they
are akin to beams in two dimensions. Any planar elastic continuum of a certain thickness
can be treated as a plate if the thickness is much smaller than its width. Plates are commonly
found in mechanical and civil engineering structures. In this chapter, small-amplitude trans-
verse vibrations of unstretched plates in pure bending are discussed. The effect of transverse
shear is neglected, or in other words, the plate is considered to be infinitely stiff in transverse
shear. Some attention is also devoted to wave propagation in plates.

5.1 DYNAMICS OF PLATES

Similarly to what we did for beams, we assume that the plates have a neutral plane, which
lies in the middle of the thickness of the plate, and remains unstrained. Since no shear
distortion is considered, we also assume that material points of the plate situated on a
normal to the neutral plane in the undeformed state, also remains on a line normal to the
neutral surface in the deformed state. This is known as the Kirchhoff hypothesis for plates,
and is analogous to the Euler–Bernoulli hypothesis for beams discussed in Chapter 3. The
deformation of the neutral plane will essentially represent the transverse deformation of
the plate. It will be assumed that the spatial derivatives of the deformation field are much
smaller than unity.

5.1.1 Newtonian formulation

Consider a plate of constant thickness h with the undeformed neutral plane coinciding with
the x-y-plane. An infinitesimal element of such a plate is shown in Figure 5.1. Since the
normal stress σzz on the top and bottom surfaces is zero (except for the external loading,
which is considered to be small), we will assume that it is also negligible inside the plate.
Then, we are left with only the normal stress components σxx and σyy , and the shear stress
components σxy , σxz and σyz.

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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In order to work in two dimensions, it is convenient to integrate the stresses over the
thickness of the plate to yield what are known as the stress resultants. These are defined as

Nx =
∫ h/2

−h/2
σxxdz, Ny =

∫ h/2

−h/2
σyydz, Nxy =

∫ h/2

−h/2
σxydz, (5.1)

Qx =
∫ h/2

−h/2
σxzdz, Qy =

∫ h/2

−h/2
σyzdz, (5.2)

Mx =
∫ h/2

−h/2
zσxxdz, My =

∫ h/2

−h/2
zσyydz, Mxy =

∫ h/2

−h/2
zσxydz, (5.3)

where (5.1) gives the normal stress resultants, (5.2) represents the shear stress resultants,
and the moment resultants are given in (5.3). These force and moment resultants are shown
in Figures 5.1 and 5.2. In these figures, the stress resultants on the invisible surfaces have
been omitted for clarity. Thus, the force and moment resultants have, respectively, units of
force per unit length and moment per unit length of the plate. When there are no in-plane
forces on the plate, we have Nx = Ny = Nxy = 0. This does not, however, mean that cor-
responding stresses are zero. The stresses (bending stresses) can be obtained in terms of the
strains using Hooke’s law as

σxx = E

1 − ν2
[εxx + νεyy ], σyy = E

1 − ν2
[νεxx + εyy], and σxy = E

1 + ν
εxy. (5.4)

Here, an important point needs to be mentioned. Since we have assumed that the plate is
infinitely stiff in transverse shear, we must have εxz = εyz = 0. This implies that Qx and
Qy cannot be determined from the theory of elasticity. However, they can be determined

x

y

z

h/2

h/2

dx

dy

Nx + Nx,xdx Qx + Qx,xdx

Nxy + Nxy,xdx

q(x, y, t) dx dy

Ny + Ny,ydy

Qy + Qy,ydy

Nyx + Nyx,ydy

Figure 5.1 Free-body diagram of an infinitesimal plate element
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Figure 5.2 Moment resultants on an infinitesimal plate element

from the moment balance equations discussed later, in a way analogous to that occurring
in a beam.

Next, we relate the strains to the displacement field of the plate. Let the transverse
displacement field of the neutral plane of the plate be denoted by w(x, y, t). Due to this
transverse displacement and according to the previously mentioned kinematic relations, the
material displacements along x-axis and y-axis directions can be obtained, as shown in
Figure 5.3 as, respectively,

u(x, y, z, t) = −zw,x(x, y, t) and v(x, y, z, t) = −zw,y(x, y, t). (5.5)

The strain field is then obtained as

εxx = u,x = −zw,xx(x, y, t), (5.6)

εyy = v,y = −zw,yy(x, y, t), (5.7)

εxy = 1

2
(u,x + v,y) = −zw,xy(x, y, t). (5.8)

x

z

w,x

u = −zw,x

Figure 5.3 Visualization of the in-plane displacement along the x-axis



220 Vibrations of plates

As was expected, the displacement field (5.5) yields εxz = 0 and εyz = 0. Substituting
(5.6)–(5.8) in (5.4), and using the resultant expressions in (5.3) yields

Mx = −D[w,xx + νw,yy ], (5.9)

My = −D[w,yy + νw,xx ], (5.10)

Mxy = −D(1 − ν)w,xy, (5.11)

where

D = Eh3

12(1 − ν2)
.

Writing Newton’s second law for transverse motion of the infinitesimal element (see
Figure 5.1), one obtains

ρhw,tt = Qx,x + Qy,y + q(x, y, t), (5.12)

where q(x, y, t) is the external force distribution. The moment equations for the infinitesimal
element about the x-axis and y-axis directions yield

Iw,xtt = −Mx,x − Mxy,y + Qx, (5.13)

Iw,ytt = −My,y − Mxy,x + Qy, (5.14)

where w,xtt and w,ytt represent, respectively, the angular accelerations about the y- and
x-axis, and

I =
∫ h/2

−h/2
ρz2 dz = ρh3

12

is the moment of inertia per unit area of the plate. Solving for Qx and Qy from the respective
equations (5.13) and (5.14), and substituting in (5.12), leads to

ρhw,tt − I (w,xxtt + w,yytt ) − (Mx,xx + 2Mxy,xy + My,yy) = q(x, y, t). (5.15)

Finally, using the moment–displacement relations from (5.9)–(5.11) in (5.15), and assuming
the thickness h to be constant (so that D is a constant), one obtains the equation of motion
of the plate in the form

ρhw,tt − I∇2w,tt + D∇4w = q(x, y, t), (5.16)

where

∇4 = ∇2∇2 =
(

∂2

∂x2
+ ∂2

∂y2

)2

= ∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4
.
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Dynamics of plates with non-constant thickness is discussed briefly in Section 5.5. The
partial differential equation (5.16) is known as the Kirchhoff–Rayleigh plate equation. If the
rotary inertia term I∇2w,tt is neglected, we obtain the normal Kirchhoff plate equation

ρhw,tt + D∇4w = q(x, y, t). (5.17)

The next task is to formulate the boundary conditions for plates. Let us first consider a
rectangular plate with boundaries at x = 0, a and y = 0, b. If a boundary, say at x = a, is
clamped, then the appropriate boundary conditions are

w
∣∣
x=a

≡ 0 and w,y

∣∣
x=a

≡ 0,

both of which are geometric conditions. On the other hand, if the edge x = a is simply-
supported, we have one geometric and one natural boundary condition given by, respectively,

w
∣∣
x=a

≡ 0 and Mx

∣∣
x=a

= −D[w,xx + νw,yy]x=a ≡ 0,

where the moment Mx is given by (5.9). Since for the simply-supported edge w,yy |x=a ≡ 0,
the moment condition above reduces to w,xx |x=a ≡ 0.

Next, consider the straight edge x = a as a free boundary. In this case, we intuitively
expect the boundary conditions to be Qx |x=a ≡ 0, Mx |x=a ≡ 0, and Mxy |x=a ≡ 0. However,
as shown by Kirchhoff, the fourth-order differential equation of the plate eigenvalue problem
will not have, in general, a solution satisfying these three conditions at the free edge x = a.
The correct boundary conditions for a free edge were given by Kirchhoff as

Mx

∣∣
x=a

≡ 0 and Vx := (Qx + Mxy,y)
∣∣
x=a

≡ 0,

where Vx is known as the edge force (see [1]). The edge force can be understood physi-
cally through Figure 5.4. Apart from the shear force Qx (not shown in the figure) at the
edge, the edge force contribution due to the moment Mxy can be calculated at the point
A (see figure) as [(Mxy + εMxy,y)/ε − Mxy/ε]x=a = Mxy,y |x=a . These conditions can be
more conveniently arrived at using the variational formulation, as discussed in Appendix C
in detail. Expressed in terms of derivatives of the transverse displacement, the moment and
edge force boundary conditions for the free edge x = a are obtained as (see Appendix C),
respectively,

M
∣∣
x=a

= D[w,xx + νw,yy]x=a = 0

V
∣∣
x=a

= D[(∇2w),x + (1 − ν)w,xyy ]x=a = 0.

In the case of circular plates, polar coordinates are more suitable than Cartesian coordinates.
The equation of motion in (r, φ) coordinates is given by (5.16) or (5.17) where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂φ2
.
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x y

z

ε

ε

Mxy/ε

Mxy/ε

A

Mxy + εMxy,y

(Mxy + εMxy,y )/ε

(Mxy + εMxy,y )/ε

Mxy

Figure 5.4 Calculation of edge force on a plate due to moment Mxy

The boundary conditions for circular plates are derived again in Appendix C. For example,
for a free boundary at r = R, the boundary conditions are obtained as, respectively,

Mr

∣∣
r=R

=
[
∇2w − (1 − ν)

1

r

(
w,r + 1

r
w,φφ

)]
r=R

= 0, (5.18)

Vr

∣∣
r=R

=
[
(∇2w),r + (1 − ν)

1

r

(
1

r
w,φφ

)
,r

]
r=R

= 0. (5.19)

5.2 VIBRATIONS OF RECTANGULAR PLATES

5.2.1 Free vibrations

Consider an unforced rectangular Kirchhoff plate governed by the equation of motion

ρhw,tt + D∇4w = 0. (5.20)

We will search for a modal solution of the form

w(x, y, t) = W(x, y)eiωt , (5.21)

where W(x, y) is an unknown function and ω is the circular frequency. Substituting (5.21)
in the equation of motion (5.20), we obtain

(∇4 − γ 4)W = 0, (5.22)
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where

γ 4 := ω2ρh/D. (5.23)

One can factorize the operator in (5.22) as

(∇2 + γ 2)(∇2 − γ 2)W = 0. (5.24)

Define two functions W1(x, y) and W2(x, y) such that

(∇2 + γ 2)W1 = 0, (5.25)

(∇2 − γ 2)W2 = 0. (5.26)

Since the operators (∇2 + γ 2) and (∇2 − γ 2) commute, it is not difficult to show that

W(x, y) = W1(x, y) + W2(x, y) (5.27)

is always a solution of (5.22). However, the converse is not true. There are solutions of
(5.22) that cannot be written in the form (5.27).

First, consider the partial differential equation (5.25). This can be easily recognized to be
the Helmholtz equation, which also appeared in the study of the dynamics of membranes.
The solution of (5.25) can be written as (see (4.24))

W1(x, y) = A1 sin αx sinβy + A2 sin αx cosβy

+A3 cosαx sinβy + A4 cosαx cosβy, (5.28)

where Ai are the arbitrary constants of integration, and α and β are such that

α2 + β2 = γ 2. (5.29)

Assume a separable solution of (5.26) in the form

W2(x, y) = X(x)Y (y). (5.30)

Substituting this expression in (5.26) yields on rearrangement

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
− γ 2 = 0. (5.31)
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It is evident that a non-trivial solution of (5.31) exists if and only if

1

X

d2X

dx2
= α2 ⇒ d2X

dx2
− α2X = 0, (5.32)

1

Y

d2Y

dy2
= β

2 ⇒ d2Y

dy2
− β

2
R = 0, (5.33)

where α and β are constants such that

α2 + β
2 = γ 2. (5.34)

The general solutions of (5.32) and (5.33) are obtained as, respectively,

X(x) = C1 sinhαx + C2 coshαx,

Y (y) = C3 sinhβy + C4 coshβy,

where Ci are the arbitrary constants of integration. Therefore, a solution W(x, y) of the
type (5.27) can be written as

W(x, y) = A1 sinαx sinβy + A2 sinαx cosβy

+A3 cosαx sinβy + A4 cosαx cosβy

+A5 sinh αx sinhβy + A6 sinhαx coshβy

+A7 coshαx sinh βy + A8 cosh αx coshβy, (5.35)

where A5–A8 are defined from the product of X(x) and Y(y) in (5.30). This, however, is
not the most general solution of (5.22). The actual eigenfunction does of course also depend
on the boundary conditions.

5.2.1.1 Simply-supported plate

To begin with, let us consider the elementary case of a plate with simply-supported edges.
The boundary conditions in this case are

w
∣∣
x=0,a

≡ 0, w,xx

∣∣
x=0,a

≡ 0, w
∣∣
y=0,b

≡ 0, and w,yy

∣∣
y=0,b

≡ 0.

The boundary conditions for the function W(x, y) are then obtained as

W
∣∣
x=0,a

≡ 0, W,xx

∣∣
x=0,a

≡ 0, W
∣∣
y=0,b

≡ 0, and W,yy

∣∣
y=0,b

≡ 0. (5.36)
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It can be easily verified that these boundary conditions can be identically satisfied by (5.35)
if and only if Ai , i = 2, . . . , 8, vanish. Therefore, we have

W(x, y) = A1 sinαx sinβy, (5.37)

where, according to the boundary conditions (5.36), α and β must be such that sinαa = 0
and sin βb = 0. This yields

αma = mπ and βnb = nπ.

The circular eigenfrequencies are then obtained using (5.29) in (5.23) as

ω(m,n) = π2
(

m2

a2
+ n2

b2

)√
D

ρh
, m = 1, 2, . . . , ∞. (5.38)

It may be recalled that the eigenfunctions of a fixed rectangular membrane are also of the
form (5.37), though the eigenfrequencies are of course different. Finally, the general solution
of the free vibration problem of a simply-supported plate is obtained as

w(x, y, t) =
∞∑

m,n=1

A(m,n) sin
mπx

a
sin

nπy

b
sin

[
tπ2
(

m2

a2
+ n2

b2

)√
D

ρh
+ ψ(m,n)

]
,

where A(m,n) and ψ(m,n) are arbitrary constants which are determined from the initial con-
ditions. It is easy to check that the eigenfunctions satisfy the orthogonality relation

〈W(m,n)W(r,s)〉 =
∫ a

0

∫ b

0
W(m,n)W(r,s) dx dy = ab

4
δmrδns.

The orthogonality relations for plates of arbitrary shapes are discussed later.
Let us now consider a rectangular plate simply-supported at the edges x = 0 and x = a,

and clamped at the edges y = 0 and y = b. The boundary conditions in this case are given
by

w
∣∣
x=0,a

≡ 0, w,xx

∣∣
x=0,a

≡ 0, w
∣∣
y=0,b

≡ 0, and w,yy

∣∣
y=0,b

≡ 0.

The corresponding boundary conditions for the function W(x, y) are, therefore, obtained as

W
∣∣
x=0,a

= 0, W,xx

∣∣
x=0,a

= 0, (5.39)

W
∣∣
y=0,b

= 0, W,y

∣∣
y=0,b

= 0. (5.40)
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It may be checked that only the trivial solution is of the form (5.35) for the above boundary
conditions. Taking our cue from the simply-supported plate case discussed above, let us
search for a separable solution of (5.22) with the given boundary conditions as

W(x, y) = sin
mπx

a
Y(y), (5.41)

where Y(y) is an unknown function of y. Substituting (5.41) in (5.22) yields

Y ′′′′ − 2
m2π2

a2
Y ′′ +

(
m4π4

a4
− γ 4

)
Y = 0

or (
d2

dy2
− m2π2

a2
− γ 2

)(
d2

dy2
− m2π2

a2
+ γ 2

)
Y = 0.

This has a solution of the form

Y(y) = C1 coshαy + C2 sinhαy + C3 cosβy + C4 sinβy, (5.42)

where

α =
√

γ 2 + m2π2

a2
and β =

√
γ 2 − m2π2

a2
. (5.43)

Hence, the solution (5.41) can be written as

W(x, y) = (C1 cosh αy + C2 sinh αy + C3 cosβy + C4 sin βy) sin
mπx

a
. (5.44)

It is evident that the solution form (5.44) already satisfies the boundary conditions (5.39).
Using (5.44) in the boundary conditions in (5.40) yields the set of homogeneous linear
equations 


1 0 1 0
0 α 0 β

coshαb sinh αb cosβb sinβb

α sinhαb α coshαb −β sin βb β cosβb






C1

C2

C3

C4


 = 0. (5.45)

Non-trivial solutions of (C1, C2, C3, C4)
T are obtained if and only if the determinant of the

matrix in (5.45) vanishes, i.e.,

2αβ(cosβb coshαb − 1) + (β2 − α2) sinβb sinhαb = 0. (5.46)

This is the characteristic equation for the rectangular plate with two simply-supported and
two clamped edges. Using the definitions (5.43) in (5.46), one obtains the roots of (5.46) of
the form γ(m,n) for the mode (m, n). The eigenfrequencies are then obtained using (5.23).
For, example, for a square plate of side of length a, we obtain the first three roots as
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x

y

m = 1, n = 1

m = 2, n = 1

m = 1, n = 2

Figure 5.5 Mode-shapes of a square plate simply-supported at x = 0, a, and clamped at y = 0, a

γ 2
(1,1) = 28.946/a2, γ(2,1) = 54.743/a2, and γ(1,2) = 69.327/a2. Substituting these roots in

(5.45), one can solve for (C1, C2, C3, C4)
T. Finally, the eigenfunctions are obtained from

(5.44). The first three mode-shapes of the square plate are shown in Figure 5.5.
Alternatively, one can also solve the free vibration problem (5.20) approximately using

either the Ritz or the Galerkin method discussed in previous chapters. In these methods, we
expand the solution as

w(x, y, t) =
∞∑

m,n=1

p(m,n)(t)ψ(m,n)(x, y),

where ψ(x, y) are shape-functions that have to satisfy at least the geometric boundary
conditions of the problem in the case of the Ritz method, or all the boundary conditions in
the case of the Galerkin method. A convenient approach to generate shape-functions is to
use the product of beam eigenfunctions, i.e.,

ψ(m,n)(x, y) = Wm(x)Wn(y),

where Wm(x) and Wn(y) are the eigenfunctions of beams with the same boundary condi-
tions as of the plate in the x- and y-axis directions, respectively. More discussions on the
generation of shape-functions for rectangular plates can be found in [2].

5.2.1.2 Plate on a flexible foundation

Next, consider an elastic plate on a flexible foundation having a stiffness per unit area of
K . The equation of motion of the plate can be easily obtained as

ρhw,tt + Kw + D∇4w = 0. (5.47)
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Substituting (5.21) yields on rearrangement

∇4W − γ 4W = 0,

where γ 4 = (ω2ρh − K)/D. With this modified expression of γ 4, further analysis follows
as discussed above.

5.2.1.3 Effect of rotary inertia

Finally, let us briefly consider the effect of rotary inertia on the eigenfrequencies of a plate
described by the Kirchhoff–Rayleigh equation (5.16). Substituting (5.21) in (5.16) yields
on simplification

[∇4 + 2δ2∇2 − µ4]W = 0

or
(∇2 + γ 2

1 )(∇2 − γ 2
2 )W = 0. (5.48)

where 2δ2 := ω2I/D, µ4 := ω2ρh/D, γ 2
1 =

√
δ4 + µ4 + δ2, and γ 2

2 =
√

δ4 + µ4 − δ2.
The similarity between (5.48) and (5.24) is evident. For a simply-supported rectangular
plate, one can easily obtain the eigenfunctions as

W(m,n) = sinαmx sinβny,

where αm = mπ/a, βn = nπ/b. The condition (5.29) now reads

α2
m + β2

n = γ 2
1

⇒ I

2D
ω2 +

(√
I

2D
+ ρh

D

)
ω −

(
m2π2

a2
+ n2π2

b2

)
= 0,

where ω is the circular eigenfrequency of the Kirchhoff–Rayleigh plate.

5.2.2 Orthogonality of plate eigenfunctions

Consider the differential equation (5.22) for a plate for two eigenfunctions as

D∇4W(j,k) − ω2
(j,k)ρhW(j,k) = 0, (5.49)

D∇4W(r,s) − ω2
(r,s)ρhW(r,s) = 0. (5.50)

Multiplying (5.49) by W(r,s) and (5.50) by W(j,k), and integrating the difference of the two
equations over the domain of the plate yields

∫
A
[DWk∇4W(j,k) − DW(j,k)∇4W(r,s) − (ω2

(j,k) − ω2
(r,s))ρhW(j,k)W(r,s)] dA = 0. (5.51)
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Writing ∇4W = ∇ · [∇(∇ · ∇W)], and using the Gauss divergence theorem, one can rewrite
(5.51) as

D

∮
B

[
W(j,k)n̂ · ∇(∇2W(r,s)) − W(r,s)n̂ · ∇(∇2W(j,k))

+ ∇2W(j,k)n̂ · ∇W(r,s) − ∇2W(r,s)n̂ · ∇W(j,k)

]
ds

− (ω2
(j,k) − ω2

(r,s))

∫
A

ρhW(j,k)W(r,s) dA = 0, (5.52)

where B is the boundary of the area A, and n̂ is the unit normal vector at the boundary.
Therefore, for ω(j,k) �= ω(r,s) the condition for orthogonality of the eigenfunctions of a plate
is

∮ [
W(j,k)n̂ · ∇(∇2W(r,s)) − W(r,s)n̂ · ∇(∇2W(j,k))

−∇2W(r,s)n̂ · ∇W(j,k) + ∇2W(j,k)n̂ · ∇W(r,s)

]
ds = 0. (5.53)

Finally, the orthogonality relation for plates or arbitrary shapes is given by

∫
A

ρhW(j,k)W(r,s) dA = 0.

One can check explicitly that for standard boundary conditions such as for simply-supported,
clamped, and free boundaries, the condition (5.53) is satisfied. It may noted that (5.53)
represents the condition of self-adjointness of the boundary value problem.

5.2.3 Forced vibrations

The undamped forced dynamics of a Kirchhoff plate can be represented by

ρhw,tt + D∇4w = q(x, y, t), (5.54)

where q(x, y, t) represents the external force distribution on the plate. Using the expansion
theorem, the solution of (5.54) can be expressed in terms of the eigenfunctions determined
from the modal analysis as

w(x, y, t) =
∞∑

m,n=1

p(m,n)(t)W(m,n)(x, y), (5.55)

where p(m,n)(t) are the unknown time-varying modal coordinates. In practice, one can
truncate the series (5.55) to finite terms for an approximate solution. Substituting (5.55)
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in (5.54), and taking the inner product on both sides with W(r,s) yields, on account of
orthogonality of the eigenfunctions, the modal dynamics of the mode (r, s) as

p̈(r,s) + ω2
(r,s)p(r,s) = Q(r,s)(t), (5.56)

where

Q(r,s) = 〈q(x, y, t), W(r,s)〉 =
∫ a

0

∫ b

0
q(x, y, t)W(r,s)(x, y) dy dx.

One can easily obtain the solution for the modal coordinates from (5.56) using, for example,
the Laplace transform or Green’s function. Finally, the complete solution is obtained from
(5.55).

In many practical situations, the forcing term in (5.54) is harmonic and separable in
the form Q(x, y, t) = f (x, y) cos�t = R[f (x, y)ei�t ]. To determine the corresponding
stationary solution, first consider the forced dynamics

D∇4w + ρhw,tt = δ(x − x, y − y)ei�t , (5.57)

where δ(x − x, y − y) := δ(x − x)δ(y − y), and (x, y) are the coordinates of any arbitrary
point on the plate. Searching for a solution in the form w(x, y, t) = W(x, y)ei�t , (5.57)
yields

D∇4W − ρh�2W = δ(x − x, y − y). (5.58)

It may be easily recognized that the solution of (5.58) with the corresponding boundary
conditions is Green’s function for the vibration problem of a plate excited by a concentrated
time-harmonic unit force, which may be determined using the eigenfunction expansion

W(x, y, x, y) =
∞∑

m,n=1

a(m,n)(x, y)W(m,n)(x, y), (5.59)

where a(m,n)(x, y) are unknown functions. It is not difficult to show that

W(x, y, x, y) =
∞∑

m,n=1

W(m,n)(x, y)

(ω2
(m,n) − �2)〈ρhW(m,n), W(m,n)〉

W(m,n)(x, y).

The stationary solution for w(x, y, t) can then be written as

w(x, y, t) = R

[(∫ a

0

∫ b

0
f (x, y)W(x, y, x, y)dxdy

)
ei�t

]
.
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5.3 VIBRATIONS OF CIRCULAR PLATES

5.3.1 Free vibrations

In the case of circular Kirchhoff plates, the equation of motion in the polar coordinate
system can be written as

ρhw,tt + D∇4w = 0, (5.60)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
.

Substituting a time-harmonic solution of the form

w(r, φ, t) = W(r, φ)eiωt (5.61)

in (5.60) yields

∇4W − γ 4W = 0

or

(∇2 + γ 2)(∇2 − γ 2)W = 0, (5.62)

where

γ 4 = ρhω2

D
. (5.63)

Assuming that the plate boundary conditions allow a separable solution for W(r, φ), one
can write

W(r, φ) = R(r)eimφ, (5.64)

where we have used the condition of periodicity of the solution in φ. Using this in (5.62)
yields

[
d2

dr2
+ 1

r

d

dr
+
(

γ 2 − m2

r2

)][
d2

dr2
+ 1

r

d

dr
−
(

γ 2 + m2

r2

)]
Rm = 0. (5.65)
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One can find solutions of Rm(r) as

Rm(r) = Am(r) + Bm(r), (5.66)

where

d2Am

dr2
+ 1

r

dAm

dr
+
(

γ 2 − m2

r2

)
Am = 0, (5.67)

d2Bm

dr2
+ 1

r

dBm

dr
−
(

γ 2 + m2

r2

)
Bm = 0. (5.68)

The general solution of the Bessel differential equation (5.67) can be written as

Am(r) = C1Jm(γ r) + C2Ym(γ r), (5.69)

where C1 and C2 are arbitrary constants, and Jm(·) and Ym(·) are, respectively, the Bessel
functions of first and second kinds of order m. The differential equation (5.68) is known as
the modified Bessel differential equation, and the solution can be written as

Bm(r) = C3Im(γ r) + C4Km(γ r), (5.70)

where C3 and C4 are arbitrary constants, and Im(·) and Km(·) are known as, respectively,
the modified Bessel functions of first and second kinds of order m. Therefore, the solution
Rm(r) according to (5.66) is

Rm(r) = C1Jm(γ r) + C2Ym(γ r) + C3Im(γ r) + C4Km(γ r). (5.71)

The value of γ , and the arbitrary constants in (5.71) are to be determined from the boundary
conditions. It may be mentioned that, depending on the boundary conditions, it may not
be always possible to construct solutions in the manner discussed above for the boundary
value problem described by (5.65) and the corresponding boundary conditions.

Let us consider a circular plate of radius a with a clamped boundary. The boundary
conditions can be expressed as

w(a, φ, t) ≡ 0 ⇒ Rm(a) = 0, (5.72)

w,r(a, φ, t) ≡ 0 ⇒ R′
m(a) = 0. (5.73)

It is known that Ym(x) and Km(x) are unbounded at x = 0. Therefore, the requirement of
finiteness of the solution at r = 0 imposes the conditions C2 = C4 = 0. Substituting these
conditions in (5.71), we finally obtain from the boundary conditions (5.72)–(5.73) the set
of homogeneous equations

[
Jm(γ a) Im(γ a)

J ′
m(γ a) I ′

m(γ a)

]{
C1

C3

}
= 0. (5.74)
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For non-trivial solutions of C1 and C3, we must have

Jm(γ a)I ′
m(γ a) − J ′

m(γ a)Im(γ a) = 0. (5.75)

This is the characteristic equation which yields countably infinitely many solutions of γ a.
Denoting the modes by (m, n), the first few values of γ(m,n)a are obtained as

γ(0,1)a = 3.196, γ(0,2)a = 6.306,

γ(1,1)a = 4.611, γ(1,2)a = 7.799,

γ(2,1)a = 5.905, γ(1,2)a = 9.197.

The circular eigenfrequencies are then obtained from (5.63) as

ω(m,n) = γ 2
(m,n)

√
D

ρh
.

Finally, the radial factors of the eigenfunctions are obtained by solving for (C1, C3)
T from

(5.74) and substituting in (5.71) as

R(m,n)(r) = C[Im(γ(m,n)a)Jm(γ(m,n)r) − Jm(γ(m,n)a)Im(γ(m,n)r)], (5.76)

and the eigenfunctions of the circular plate are obtained from the real and imaginary parts of
(5.64). The first few mode-shapes of the plate are shown in Figure 5.6. The general solution
of the initial value problem of a circular plate can now be written as

w(r, φ, t) =
∞∑

m,n=0

[D(m,n) cosmφ + E(m,n) sinmφ]R(m,n)(r)e
iω(m,n)t .

It may be observed that, corresponding to each circular eigenfrequency ω(m,n) with m �= 0,
there are two eigenmodes, namely the cosine and the sine modes given by, respectively,

W
(m,n)
C (r, φ) = R(m,n)(r) cosmφ and W

(m,n)
S (r, φ) = R(m,n)(r) sinmφ.

Thus, for m �= 0, the plate has modal degeneracy, the consequences of which have been
discussed previously in Chapter 4.

For γ a � 1, one can approximate the characteristic equation (5.75) as

Jm(γ a) − J ′
m(γ a) = 0. (5.77)

Using (4.98), one can further approximate (5.77) as tan[γ a − (2m + 1)π/4] = −1. This
leads to the approximate solution

γ(m,n)a ≈ (m + 2n)
π

2
, for n � 1,
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Figure 5.6 Mode-shapes of a circular plate clamped at r = a

which yields

ω(m,n) ≈ (m + 2n)2
π2

4a2

√
D

ρh
.

We have considered here only a simple boundary condition for circular plates. There are
many other kinds of boundary condition of practical interest, and the corresponding results
can be found in, for example, [1].

5.3.2 Forced vibrations

The method of eigenfunction expansion discussed in Section 5.2.3 can be extended to solve
the forced vibration problem for circular plates. The general solution is of the form

w(r, φ, t) =
∞∑

m,n=0

[p(m,n)(t) cosmφ + q(m,n)(t) sinmφ]R(m,n)(r),
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f = f̂ sin �t
w(r, φ, t)

Figure 5.7 Annular plate with a harmonic force on the collar

where p(m,n)(t) and q(m,n)(t) are the modal coordinates. Substituting this expression in the
equation of motion and using the orthogonality of the eigenfunctions, one can easily obtain
the differential equations for the modal coordinates. This will not be elaborated further.
Here, we will only discuss certain special cases of boundary excitation of annular plates.

Consider an annular plate of inner radius a and outer radius b, and mounted on a rigid
massless collar, as shown in Figure 5.7. The outer edge of the plate is assumed to be free.
The collar is excited by a force f = f̂ sin �t . Since this is a case of boundary excitation,
the problem is defined by the governing equation of motion

ρhw,tt + D∇4w = 0, (5.78)

along with the boundary conditions

w,r(r, φ, t)
∣∣
r=a

≡ 0, (5.79)

Vr(a, φ, t) = − f̂

2πa
sin�t, (5.80)

Mr(b, φ, t) ≡ 0, (5.81)

Vr(b, φ, t) ≡ 0, (5.82)

where the expressions of moment Mr and edge force Vr are obtained in terms of w(r, φ, t)

from (5.18) and (5.19), respectively.
The solution of the forced problem can be written in the form

w(r, φ, t) =
∞∑

m=0

[AmJm(βr) + BmYm(βr)

+ CmIm(βr) + DmKm(βr)] cos(mφ + γm) sin�t.

However, from the symmetry of the forcing, it is not difficult to conclude that the solution
will be independent of φ, i.e., m = 0. Therefore, the solution takes the form

w(r, φ, t) = [A0J0(βr) + B0Y0(βr) + C0I0(βr) + D0K0(βr)] sin�t. (5.83)

Substituting (5.83) in (5.79)–(5.82), we obtain four linear equations which can be solved
easily for the four unknowns A0, B0, C0, and D0.
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Figure 5.8 Annular plate with a harmonic moment on the collar

Another case of boundary forcing is shown in Figure 5.8 where the collar is given a small
harmonic moment m = m̂ sin�t perpendicular to the plane of the paper. Let us represent the
corresponding small angular motion of the collar by θ = θ̂ sin�t , where θ̂ is an unknown.
It is to be noted that since there is no damping, the angular motion of the collar will be in
phase (or in phase opposition) with the force. The equation of motion in this case is given
by (5.78), while the boundary conditions at the inner boundary can be written as

w,r(r, φ, t)
∣∣
r=a

= θ̂ cosφ, (5.84)

[w − aw,r ]r=a = 0, (5.85)

where we have assumed that sin θ ≈ θ and cos θ = 1. The boundary conditions at r = b

remain the same as given by (5.81) and (5.82).
Observing the boundary condition (5.84) in this case, it can be easily concluded that the

solution must be of the form

w(r, φ, t) = [A1J1(βr) + B1Y1(βr) + C1I1(βr) + D1K1(βr)] cosφ sin�t. (5.86)

Substituting (5.86) in the boundary conditions again yields four linear equations in the four
unknowns A1, B1, C1, and D1. Solving these equations, we obtain the solution in terms of
the unknown θ̂ . Finally, θ̂ can be determined from the moment balance equation

m̂ sin �t =
∫ 2π

0
[Mr(a, φ, t) − aVr(a, φ, t)] cosφ dφ,

where the expressions of Mr and Vr are obtained from (5.18) and (5.19), respectively.

5.4 WAVES IN PLATES

Consider the equation of motion of an infinite Kirchhoff plate described by

ρhw,tt + D(w,xxxx + 2w,xxyy + w,yyyy) = 0. (5.87)
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Assume a harmonic traveling plane wave solution of the form

w(x, y, t) = Aei(kxx+kyy−ωt). (5.88)

Substitution of this solution into (5.87) yields the dispersion relation

ρhω2 − Dk4 = 0,

where k2 := k2
x + k2

y . The phase velocity of harmonic waves in a Kirchhoff plate is then
obtained as

cK
P = ω

k
=
√

Dk2

ρh
.

It is clear from the phase velocity expression that the plate is a dispersive medium. More-
over, the phase velocity increases without bound with the wave number. This is obviously
unrealistic. Similar to what we saw in beams, the consideration of rotational inertia in the
equation of motion limits the phase speed as follows.

Consider the Kirchhoff–Rayleigh plate described by

ρhw,tt − I (w,xxt + w,yyt ) + D(w,xxxx + 2w,xxyy + w,yyyy) = 0, (5.89)

where I = ρh3/12. Substituting the harmonic wave solution in (5.89) yields the dispersion
relation

ρhω2 + ρ
h3

12
k2ω2 − Dk4 = 0, (5.90)

and the phase velocity of harmonic waves in a Kirchhoff–Rayleigh plate is obtained as

cKR
P =

√
Dk2

ρh + ρh3k2/12
=
√

E

ρ(1 − ν2)

h2k2

(12 + h2k2)
(5.91)

In the small wave number limit, when k � 1, one can neglect ρh3k2/12 in comparison to
ρh in (5.91), and observe that cKR

P → cK
P . On the other hand, for large wave numbers (i.e.,

k → ∞), we obtain

cKR
P → c :=

√
E

ρ(1 − ν2)
.

As in the case of beams, one can also consider the effect of shear deformation on the
dynamics of plates as done independently by Mindlin (see [3]) and Reissner (see [4]). This
leads to higher-order plate equations, which will not be pursued here. However, consider
the dispersion relation for a Mindlin plate, which is given by

(
1 − c2

P

κ2c2
S

)(
c2

c2
P

− 1

)
= 12

h2k2
, (5.92)
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Figure 5.9 Phase velocities for different plate models as a function of the wave number

where

cS =
√

E

2ρ(1 + ν)
,

is known as the shear wave speed (see Chapter 8), and κ 2 is the shear correction factor,
which is of the order of κ2 ∼ 5/6. It may be noted that (5.92) is quadratic in c2

P. Therefore,
we obtain two phase speeds cP1 and cP2 (cP1 < cP2). These two phase speeds have similarity
to the two phase speeds obtained for a Timoshenko beam in Chapter 3. If we intend to
neglect the shear deformation, we make the plate infinitely stiff in shear, i.e., cS → ∞.
Taking this limit in (5.92) yields the dispersion relation (5.90), as can be easily checked.
Thus, we can conclude that the branch of the dispersion relation (or phase speed) of the
Mindlin plate matching with the Kirchhoff–Rayleigh plate must correspond to the pure
bending mode. In the limit k → ∞, the phase speeds of shear and bending waves are
obtained from (5.92) as, respectively,

cP1 → κ2cS and cP2 → c.

Thus, in the large wave number limit, the lower branch cP1 corresponds to the shear mode.
The variation of phase velocities with the wave number for the different plate models
discussed above are shown in Figure 5.9. In the figure, only the lower branch cP1 of the
two branches contained in (5.92) is shown.

5.5 PLATES WITH VARYING THICKNESS

So far we have only considered plates of constant thickness h. However, when the thickness
of the plate varies as h(x, y), the section modulus also depends on the space coordinates x

and y, i.e., D = D(x, y). In this case, the equation of motion of a Kirchhoff plate becomes
(see [5])

ρhw,tt + ∇2[D∇2w] − (1 − ν)[D,xxw,yy − 2D,xyw,xy + D,yyw,xx] = q(x, y, t).
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In the case of circular plates, if the thickness varies radially as h = h(r), the equation of
motion takes the form

ρhw,tt + ∇2[D∇2w] − (1 − ν)

[
D,rr

(
1

r
w,r + 1

r2
w,φφ

)
+ 1

r
D,rw,rr

]
= q(r, φ, t).

These equations can be easily obtained following the derivation procedure discussed in
Section 5.1. However, for obtaining the correct boundary conditions, the variational formu-
lation discussed in Appendix C is preferable.

For free vibration analysis of a circular plate of radially varying thickness, consider the
modal solution

w(r, φ, t) = R(r)eimφeiωt .

Substituting in the equation of motion yields

R′′′′(r) + f3(r)R
′′′(r) + f2(r)R

′′(r) + f1(r)R
′(r) + [f0(r) − ω2ρh]R(r) = 0,

where the functions fi(r) can be easily obtained from the given thickness variation h(r).
This differential equation with appropriate boundary conditions may be solved, for example,
using Galerkin’s method to obtain the eigenfrequencies and the eigenfunctions.

EXERCISES

5.1 A square plate of side length a is simply-supported at the four edges, and carries a particle of mass
m at the center. The particle is connected to a spring of stiffness k. Determine the eigenfrequencies
and eigenfunctions of the plate.

5.2 A square plate of side length a is supported by an elastic foundation of stiffness density b (stiffness
per unit area). The plate is simply-supported at the four edges. Determine the eigenfrequencies and
eigenfunctions of the plate.

5.3 A circular plate of radius a is simply-supported at the boundary. Determine the reaction forces at
the boundary for different modes of vibration of the plate.

5.4 A square plate of side a is supported at the boundary of a flexible foundation of stiffness density
b (stiffness per unit length). Determine the approximate eigenfrequencies of the plate for finite values
of b.

5.5 Determine the eigenfrequencies and eigenfunctions of an annular plate of inner radius a and outer
radius b. Take both inner and outer boundaries to be clamped.

5.6 A rectangular plate of length 2a and width a is simply-supported at the four edges, and on
the line AB (i.e., transverse displacement on AB is zero), as shown in Figure 5.10. Determine the
eigenfrequencies and eigenfunctions of the plate.
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Figure 5.10 Exercise 5.6

5.7 A circular plate of radius a is simply-supported on a circle of radius b, as shown in Figure 5.11.
Determine the optimum ratio b/a for which the plate is most firmly supported in the mode (0, 1) (i.e.,
the corresponding frequency is maximized).

Free

Simply-supported

b
a

Figure 5.11 Exercise 5.7

5.8 A drumhead of a kettledrum is made of an unstretched circular plate of radius a clamped at the
boundaries. Determine the eigenfrequencies and eigenfunctions of the (0, n) modes of the kettledrum.

5.9 A circular plate of radius a is clamped at the boundary r = a and is connected to a spring of spring
constant k at r = 0. Determine the two values of k that will match the first two eigenfrequencies of
(0, n) modes of the kettledrum obtained in Exercise 5.8.

5.10 A circular plate of radius a is clamped at the boundary r = a. A particle of mass m is dropped
from a height h exactly on the center of the plate. Determine the contact force between the particle
and the plate as a function of time. When will the particle lose contact with the plate?

5.11 An annular plate of inner radius a and outer radius b is clamped at the boundary r = b, and
clamped to a massless collar (at r = a) sliding without friction on a guide, as shown in Figure 5.12.

(a) Determine the eigenfrequencies and eigenfunctions of the system.
(b) If the collar is excited by a harmonic force Q(t) = A cos �t , determine the response of the plate.

5.12 Two square plates of side a are simply-supported in a horizontal position, with one vertically
above the other. The centers of the two plates are connected by a spring of stiffness k. Determine the
first two eigenfrequencies and eigenfunctions of the system.

5.13 Repeat Exercise 4.6 for a circular plate of radius a which is free at the boundary.
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Massless collar
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b

Figure 5.12 Exercise 5.11

5.14 A rectangular plate of length a and width b is simply-supported at the four edges. The plate
is excited by a constant traveling point force q(x, y, t) = Q0δ(x − vt)δ(y − b/2), where Q0 is the
constant magnitude of the force and v is the speed of travel.

(a) Determine the response of the plate.
(b) At which values of v will the plate resonate?

5.15 A circular plate of radius a is clamped at the boundary. A constant point force is circulating
on the plate, i.e., q(r, φ, t) = Q0δ(r − r0)δ(φ − �t), where Q0 is the constant magnitude, r0 is the
radius of the circular path of the force, and � is the angular speed of circulation.

(a) Determine the response of the plate.
(b) At what values of � will the plate resonate?

5.16 A square plate of side a is simply-supported at the edges on a rigid frame. The frame is made
to oscillate harmonically with a circular frequency � in the transverse direction along the normal to
the plate. Determine the response of the plate.

5.17 For the system described in Exercise 5.16, determine the response if the frame is given harmonic
angular oscillations about a center line parallel to an edge.

5.18 A circular plate of radius a is clamped at the boundary on a rigid circular frame. The frame is
made to oscillate harmonically with a circular frequency � along the normal to the plate. Determine
the response of the plate.
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6
Boundary value and eigenvalue
problems in vibrations

This chapter summarizes the ideas related to the boundary value and eigenvalue problems
presented in the previous chapters, and puts them in a general abstract framework. Such a
framework is useful in unifying the concepts associated with the matrix eigenvalue problem
for discrete systems and the operator eigenvalue problem for continuous systems. This
naturally leads to the expansion theorem and its associated convergence properties. These
ideas are then used to formulate some of the important approximate methods for discretizing
continuous systems.

6.1 SELF-ADJOINT OPERATORS AND EIGENVALUE PROBLEMS
FOR UNDAMPED FREE VIBRATIONS

6.1.1 General properties and expansion theorem

It is known from the elementary theory of vibrations that undamped free vibrations of a
linear discrete system with n degrees of freedom are, in general, described by a system of
n ordinary differential equations of the type

Mq̈ + Kq = 0, (6.1)

where q(t) = (q1, q2, . . . , qn)
T is the vector of the generalized coordinates, and M and K

are, respectively, the mass and stiffness matrices, both of which are positive definite. On
the other hand, the dependence of the configuration of continuous systems on spatial coor-
dinates and time brings in the concept of field variables. For example, in three-dimensional
Cartesian coordinates, one usually represents the field variables as u(x, y, z, t), v(x, y, z, t),
and w(x, y, z, t) for displacements along the directions x, y, and z, respectively. It is then
natural that the dynamics of continuous systems is governed by a set of partial differential
equations.

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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In the following, for simplicity of exposition, we first consider a continuum in which
the displacements are only in one direction, say in the z-axis direction, and represented by
w(x, y, z, t). The equation of motion of such a continuum can be written in the form

M[w,tt (x, y, z, t)] + K[w(x, y, z, t)] = 0, (x, y, z) ∈ G , (6.2)

where the domain G represents the (finite) spatial extent of the system, and M[·] and K[·]
are now linear partial differential operators involving derivatives up to order 2q and 2p,
respectively, with respect to x, y, and z only (and not time). It is usually the case that
p > q. In addition to the equation of motion (6.2) defined in the domain G , we consider
boundary conditions given by linear homogeneous partial differential equations

Li[w(x, y, z, t)] = 0, (x, y, z) ∈ ∂G , i = 1, 2, . . . , 2m, (6.3)

where ∂G represents the boundary of the domain G and Li[·] are partial differential operators
involving spatial derivatives of order up to 2p − 1. The boundary conditions involving
spatial derivatives up to order p − 1 are referred to as geometric or essential boundary
conditions, while the others are known as dynamic or natural boundary conditions.

The boundary value problem defined by (6.2) and (6.3) in the case of continuous systems,
replaces (6.1) for discrete systems. Almost all of the boundary value problems considered
in the preceding chapters are of the type (6.2)–(6.3). In the present chapter, we summarize
the essential features of this type of boundary value problems, and discuss some of the
important numerical methods for solving them.

Consider a solution of (6.2) of the form

w(x, y, z, t) = W(x, y, z)eiωt , (6.4)

where ω is a constant. Substituting (6.4) in (6.2) and (6.3) yields

K[W(x, y, z)] = ω2M[W(x, y, z)], (x, y, z) ∈ G , (6.5)

Li[W(x, y, z)] = 0, (x, y, z) ∈ ∂G , i = 1, 2, . . . , 2m. (6.6)

The set of equations (6.5)–(6.6) defines the eigenvalue problem for the system described
by (6.2)–(6.3). For special values of ω, known as the eigenvalues, there exist non-trivial
W(x, y, z), known as eigenfunctions, that satisfy (6.5)–(6.6).

Functions of (x, y, z) defined in G , which are sufficiently smooth (differentiable at least
2p times) so that they belong to the domain of definition of the operators M[·] and K[·], and
which in addition satisfy all the boundary conditions (6.6), are called comparison functions.
If, for any two comparison functions W1(x, y, z) and W2(x, y, z),

∫
G
M[W1]W2 dG =

∫
G
M[W2]W1 dG , (6.7)

then the operator M[·] is termed symmetric or self-adjoint. If both the operators M[·] and
K[·] are self-adjoint, then (6.5)–(6.6) is called a self-adjoint eigenvalue problem.
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The equations of motion considered in the preceding chapters for free undamped vibra-
tions almost always lead to self-adjoint eigenvalue problems (exceptions being the traveling
string and beam, rotating shaft, and cantilever pipe conveying a fluid). For example, in the
case of the transverse vibrations of the string

M[·] := ρA(x)[·] and K[·] := − d

dx

[
T (x)

d

dx

]
[·].

For two comparison functions W1(x) and W2(x) defined over G = [0, l], one has

∫ l

0
K[W1]W2 dx = −

∫ l

0
W2

d

dx

[
T (x)

dW1

dx

]
dx

= −
[
W2T (x)

dW1

dx

]l

0
+
∫ l

0
T (x)

dW1

dx

dW2

dx
dx. (6.8)

For a string with one fixed and one sliding end, the boundary conditions are W(0) = 0 and
T (l)W ′(l) = 0. This reduces to zero the boundary terms on the right-hand side of (6.8), so
that only the integral, which is symmetric in W1 and W2, remains. Thus, the operator K[·] is
symmetric or self-adjoint. In this case, the operator M[·] is also symmetric, independently
of the boundary conditions, since

∫ l

0
M[W1]W2 dx =

∫ l

0
ρA(x)W1W2dx =

∫ l

0
M[W2]W1 dx.

Hence, the problem of the free vibrations of the string with the boundary conditions under
consideration leads to a self-adjoint eigenvalue problem. In a similar way, self-adjointness
can be defined and verified for the problems of beam and plate vibrations. Intuitively, self-
adjointness of the operators M[·] and K[·] is similar to symmetry of the matrices M and
K in (6.1). This, therefore, may be understood as related to the conservation of energy and
the absence of gyroscopic terms.

In the case of one-dimensional continua, the differential operators M[·] and K[·] are of
the type

M[W(x)] =
2q∑

j=0

aj (x)W [j ](x),

K[W(x)] =
2p∑

j=0

cj (x)W [j ](x), p > q,

where the superscript [j ] indicates spatial differentiation of order j . A necessary and
sufficient condition for self-adjointness of these operators is that they should be of the
form

M[W(x)] =
q∑

j=0

(−1)j
[
fj (x)W [j ](x)

][j ]
, (6.9)
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K[W(x)] =
p∑

j=0

(−1)j
[
gj (x)W [j ](x)

][j ]
, (6.10)

with appropriate boundary conditions.
A self-adjoint differential operator M[·] is called positive definite if, for all comparison

functions W(x, y, z), there exists a constant γ > 0 such that the inequality

∫
G
M[W ]W dG ≥ γ ‖W‖2

holds, where ‖W‖ is a suitable norm. For example, a commonly used norm is defined by

‖W‖2 :=
∫

G
W 2 dG . (6.11)

The norm (6.11) is induced by the scalar product (or inner product) of comparison functions
defined by

〈W1, W2〉 :=
∫

G
W1W2 dG ,

where W1 and W2 are any two comparison functions. With this scalar product, the infinite-
dimensional linear vector space of the comparison functions is a Hilbert space. If both M[·]
and K[·] are strictly positive definite, then the eigenvalue problem is also termed positive
definite. Using positive definite operators M[·] or K[·], one may also define scalar products
of the form (6.7), giving rise to different Hilbert spaces. For example, using the scalar
products

〈W1, W2〉M :=
∫

G
M[W1]W2 dG and 〈W1, W2〉K :=

∫
G
K[W1]W2 dG , (6.12)

one can define the respective energy norms as

‖W‖2
M =

∫
G
M[W ]W dG and ‖W‖2

K =
∫

G
K[W ]W dG . (6.13)

All positive definite eigenvalue problems of the type (6.5)–(6.6) share the following
important properties, stated in the following theorem:

(a) All eigenvalues of the problem (6.5)–(6.6) are positive, and they form an infinite
sequence 0 < ω2

1 ≤ ω2
2 ≤ ω3

3 ≤ . . . .

(b) Any two eigenfunctions Wi(x, y, z) and Wj(x, y, z), associated with two different
eigenvalues, are orthogonal with respect to M[·], and also with respect to K[·], i.e.,
for ω2

i �= ω2
j , ∫

G
M[Wi]Wj dG = 0 and

∫
G
K[Wi]Wj dG = 0. (6.14)
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(c) The eigenfunctions W1(x, y, z), W2(x, y, z), W3(x, y, z), . . . form a basis of the func-
tion space of the comparison functions (a Hilbert space), i.e., any comparison function
W(x, y, z) has a unique representation of the type

W(x, y, z) =
∞∑

j=1

αiWi(x, y, z), (6.15)

where αi are appropriate constants. This statement, which appears to generalize Fourier
series, is known as the expansion theorem.

The properties stated above are completely analogous to those known for matrix eigen-
value problems with symmetric positive definite matrices (such as for (6.1)). The expansion
theorem, therefore, assures that the free vibrations for any set of initial conditions can always
be represented as a superposition of the eigensolutions. The convergence of expansion (6.15)
always holds with respect to the energy norms in (6.13), which correspond, respectively, to
the scalar products in (6.12). However, in many cases there may also be uniform pointwise
convergence. The types of convergence holding in any specific case will depend on the par-
ticular properties of the operators M[·] and K[·], and also on the dimension of the domain
G . Relatively strong convergence properties can, for example, be stated for one-dimensional
continua. Details on the types of convergence and proof of the expansion theorem are given
in the mathematical literature (see, for example, [1], [2], and [3]).

Up to now we have considered displacement fields comprising displacements in a sin-
gle direction only, where the displacements were represented by a single displacement
component w(x, y, z, t). In the general case, the material points of a continuous system can
experience displacements in an arbitrary direction, which may be described by the three field
variables u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), where (x, y, z) ∈ G . In this case, vector-
valued expressions (u, v, w) and (u,tt , v,tt , w,tt ), replace the scalar differential expressions
M[w,tt ], K[w], and L[w] in (6.5)–(6.6). Sometimes, the displacement components u, v

and w are also expressed through other variables. For example, in the Timoshenko beam,
by w and ψ . In all of these cases, properties analogous to those given for the expan-
sion theorem hold. The orthogonality of the eigenfunctions has to be defined accordingly
in each case. There are problems in which, because of the presence of time derivatives
in the boundary conditions, eigenvalues also appear in the boundary conditions. For such
problems, the orthogonality conditions can be formulated if the scalar products are now
defined with boundary terms, in addition to the integral expressions (see, for example,
Section 1.4.4).

We re-examine these concepts using the example of coupled axial-transverse vibrations of
a beam. In studying beam vibrations, we considered only transverse displacements w(x, t)

of the points on the beam’s axis, while for bar vibrations, only axial displacements u(x, t)

were considered. The differential equations for the linear axial and transverse vibrations,
so far, were always uncoupled. Using the example shown in Figure 6.1, we will show
that, strictly speaking, the uncoupling of the axial from the transverse vibrations also
depends on the boundary conditions (a similar case also occurs in the vibrations of frames).
Here, obviously bending and axial vibrations are coupled for α �= kπ/2, k = 0, 1, . . . . In
what follows, we will apply the previously introduced concept of self-adjointness to this
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l

αx

z,w u(x, t)

ρ,A, T

Figure 6.1 Coupling between axial and transverse vibrations of a beam through the boundary con-
ditions

example, slightly generalizing the definition in the process. The equations of motion are

ρAw,tt + EIw,xxxx = 0, (6.16)

ρAu,tt − EAu,xx = 0, (6.17)

with the (geometric) boundary conditions at the left end as

w(0, t) ≡ 0, w,x(0, t) ≡ 0, and u(0, t) ≡ 0. (6.18)

At the right-hand end, one obviously has

w,xx(l, t) ≡ 0. (6.19)

The other boundary conditions at the right-hand end will soon be discussed.
Separation of variables according to

w(x, t) = W(x)eiωt and u(x, t) = U(x)eiωt ,

leads to the eigenvalue problem

EIW ′′′′ − ω2ρAW = 0, (6.20)

−EAU ′′ − ω2ρAU = 0, (6.21)

along with the so far defined boundary conditions

W(0) = 0, W ′(0) = 0, W ′′(l) = 0, and U(0) = 0. (6.22)

With the definition

e(x) :=



W(x)

U(x)


 , (6.23)
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one can write (6.20)–(6.21) as

K[e] − ω2M[e] = 0, (6.24)

where the operators K[·] and M[·] are defined as

K :=




EI
d4

dx4
0

0 −EA
d2

dx2


 and M :=

[
ρA 0
0 ρA

]
. (6.25)

The operator K[·] is self-adjoint if and only if

∫
G

eT
1K[e2] dG =

∫
G

eT
2K[e1] dG ,

for arbitrary e1(x) and e2(x) satisfying all the boundary conditions. We have

∫
G

eT
2K[e1] dG =

∫ l

0
EI W ′′′′

1 W2 dx −
∫ l

0
EA U ′′

1 U2 dx

= EI W ′′′
1 W2

∣∣l
0 − EI W ′′

1 W ′
2

∣∣l
0 − EA U ′

1U2
∣∣l
0

+
∫ l

0
EI W ′′

1 W ′′
2 dx +

∫ l

0
EA U ′

1U
′
2dx. (6.26)

The integrals in the last line of (6.26) are obviously symmetric in e1 and e2. Therefore, the
self-adjointness of K[·] is assured, provided the sum of all the boundary terms in (6.26)
vanishes. Using the boundary conditions (6.22) in the boundary terms in (6.26) leads to the
condition

EIW ′′′
1 (l)W2(l) − EAU ′

1(l)U2(l) = 0

⇒ EAU ′
1(l)

EIW ′′′
1 (l)

= W2(l)

U2(l)
. (6.27)

Thus, (6.27) must hold for K[·] to be self-adjoint. Since the left-hand side of (6.27) depends
only on e1, and the right-hand side depends only on e2, equality of the two sides for all
comparison functions of the problem implies that both quotients must be constant. At the
right end of the beam in Figure 6.1, one can easily relate the displacements in the transverse
and axial directions as

tanα = W2(l)

U2(l)

⇒ W(l) − tanαU2(l) = 0. (6.28)
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Using (6.28) in (6.27) and rearranging, one obtains

EAU ′
1(l) − EIW ′′′

1 (l) = 0. (6.29)

It it thus evident that the boundary conditions (6.28)–(6.29) must also hold for self-
adjointness of the operator K[·]. The boundary condition (6.28) obviously is a geometric
one. On the other hand, the boundary condition (6.29) is a natural one, and is equivalent to
saying that the reaction of the support at the right end is orthogonal to the inclined plane
supporting the right end. It is easily observed that the components of the reaction from the
right support correspond to the shear force Q = EIW ′′′(l) in the transverse direction and
the normal force N = EAU ′(l) in the axial direction of the beam.

Let us briefly also consider the case of the beam in Figure 6.1 being pinned instead of
clamped at the left end. Then, the immediately recognizable boundary conditions are

W(0) = 0, W ′′(0) = 0, U(0) = 0, and W ′′(l) = 0. (6.30)

Also, with these boundary conditions (6.30), it follows from (6.26) and (6.27) that the two
boundary conditions (6.28)–(6.29) must also hold.

We have so far discussed the self-adjointness of the operator K[·] exclusively. The self-
adjointness of M[·] being obvious, the eigenvalue problem is self-adjoint. In the following,
we study the eigenvalue problem for the second of the cases discussed above (i.e., with
pinned support at the left boundary).

The general solution of (6.20)–(6.21) is given by

W(x) = C1 sin βx + C2 cosβx + C3 sinh βx + C4 coshβx, (6.31)

U(x) = D1 sin γ x + D2 cos γ x, (6.32)

where β4 := ω2ρA/EI and γ 2 := ω2ρ/E. The boundary conditions W(0) = 0, W ′′(0) = 0,
and W ′′(l) = 0 yield C2 = 0, C4 = 0, and C3 = sin βl/ sinhβl (for sinh βl �= 0), so that

W(x) = C1

[
sinβx + sinβl

sinhβl
sinh βx

]
. (6.33)

Further, U(0) = 0 gives D2 = 0, i.e.,

U(x) = D1 sin γ x. (6.34)

Using the remaining boundary conditions (6.28)–(6.29) leads to

(2 sinβl)C1 + (tan α sin γ l)D1 = 0,

−EIβ3 tan α

[
− cosβl + sin βl

sinhβl
coshβl

]
C1 − (γEA cos γ l)D1 = 0.
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Finally, the condition for non-triviality of solutions of (C1, D1)
T gives the characteristic

equation

−2γEA cos γ l + EIβ3 tan2 α sin γ l(− cotβl + coth βl) = 0. (6.35)

With the definition r2
g := I/A, one can write γ = rgβ

2, so that (6.35) for β �= 0, can be
written as

2 + βl

sr
tan2 α tan

β2l2

sr
[cotβl − coth βl] = 0, (6.36)

where sr := l/rg is the slenderness ratio.
The bending vibrations and the axial vibrations are naturally completely decoupled for

α = 0 and α = π/2, and the eigenvalues and eigenfunctions can easily be derived for these
two particular cases. For values of α in between these two bounds, the normal modes will be
such that the beam will oscillate simultaneously in transverse and axial directions, and the
eigenvalues have to be obtained numerically from (6.36). The first few eigenvalues (in terms
of βl) as functions of α are shown in Figure 6.2 for a beam with sr = 30. It can be observed
that the eigenfrequency corresponding to the first bending mode B1 at α = 0 (i.e., uncoupled
from the axial vibrations) goes over to zero when α = π/2. This zero eigenfrequency at
α = π/2 corresponds to the rigid-body rotational motion of the beam. The eigenfrequency
corresponding to the first longitudinal mode of vibration L1 at α = 0, on the other hand,
goes over to the eigenfrequency corresponding to the third bending mode B3 (if the rigid
body mode is counted) at α = π/2, and so on. The eigenfunctions are, of course, easy to
determine once the eigenvalues have been found from (6.36). The eigenfunctions satisfy
orthogonality conditions of the form

∫ l

0
EIW ′′

j W ′′
k dx +

∫ l

0
EAU ′

jU
′
k dx = 0, for ω2

j �= ω2
k .

βl

B4
L2

B3

L1
B2

B1

π/2

0 π/8 π/4 3π/8 π/2

α

B5

B4

L1

B3

B2

B1

Figure 6.2 Eigenvalues for the system of Figure 6.1 with simply-supported left boundary
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6.1.2 Green’s functions and integral formulation of eigenvalue
problems

Under external excitation, the equation of motion (6.2), together with an inhomogeneity
term q(x, y, z, t), takes the form

M[w,tt (x, y, z, t)] + K[w(x, y, z, t)] = q(x, y, z, t), (x, y, z) ∈ G , (6.37)

along with the corresponding boundary conditions, where q(x, y, z, t) represents the dis-
tributed excitation force. In the particular case of statics, the functions w(·) and q(·) do not
depend on time, so that (6.37) is reduced to

K[w(x, y, z)] = q(x, y, z), (x, y, z) ∈ G . (6.38)

The influence function, or Green’s function, g(x, y, z; x, y, z) for the static problem is
defined as the solution of the boundary value problem (6.38) with

q(x, y, z) := δ(x − x, y − y, z − z).

Green’s function represents the deflection of the continuum at a location (x, y, z) due to a
concentrated unit force at a location (x, y, z), and has the well-known symmetry properties.

The statics problem (6.38) for an arbitrary q(x, y, z, t) can now be solved using Green’s
function g(·; ·) for the statics problem. Due to linearity of the problem, the displacement
field w(x, y, z), caused by an arbitrary distributed load q(x, y, z), is given by an integral
(superposition of infinitely many solutions)

w(x, y, z) =
∫

G
g(x, y, z; x, y, z)q(x, y, z) dx dy dz. (6.39)

Green’s function for the statics problem not only permits the calculation of the displacements
due to an arbitrary distributed load, but also can be used to obtain an interesting reformu-
lation of the eigenvalue problem for the free vibrations of the system. Using d’Alembert’s
formulation, one may treat the inertia force −M[w,tt (x, y, z, t)] as a distributed external
force, i.e.,

q(x, y, z, t) = −M[w,tt (x, y, z, t)]. (6.40)

Using the expression (6.40) in (6.39) leads to

w(x, y, z, t) = −
∫

G
g(x, y, z; x, y, z)M[w,tt (x, y, z, t)] dx dy dz. (6.41)

In particular, all the eigensolutions of (6.2) also satisfy (6.41). Separating the time and space
coordinates, and representing the modal solution as

w(x, y, z, t) = W(x, y, z)eiωt ,
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one obtains from (6.41) the integral equation for the eigenfunctions W(x, y, z) as

W(x, y, z) = ω2
∫

G
g(x, y, z; x, y, z)M[W(x, y, z)] dx dy dz, (6.42)

which contains ω2 as a parameter.
Frequently, the operator M[·] simply consists of the identity operator with a coefficient

µ(·). In such cases, (6.42) simplifies to

W(x, y, z) = ω2
∫

G
µ(x, y, z)g(x, y, z; x, y, z)W(x, y, z) dx dy dz. (6.43)

The formulation of the eigenvalue problem of the free undamped vibrations based on the
integral equation (6.43) is completely equivalent to the previous formulation through the
partial differential equations (6.5), and the corresponding boundary conditions (6.6). It is
easier to prove the expansion theorem and the related properties given in Section 6.1.1 using
the integral equation formulation rather than the partial differential equation formulation. An
exposition on eigenvalue theory for symmetric integral equations can be found, for example,
in [4].

The integral equation (6.43) is, however, not only of interest in the theory of boundary
value/eigenvalue problems, but also is of immediate use in obtaining bounds for the eigen-
values. Similarly to the matrix iteration method for matrix eigenvalue problems (see, for
example, [5]), here also an iterative scheme using the definition

W(n+1)(P ) :=
∫

G
µ(P )g(P ; P)W(n)(P ) dP (6.44)

can be formulated to approximate the eigenfunctions and eigenvalues. In (6.44) one has P =
(x, y, z) and P = (x, y, z). As in the discrete case, here also it is convenient to normalize
the functions, for example, by replacing (6.44) by

W(n+1)(P ) :=
∫

G µ(P )g(P ; P)W(n)(P ) dP

‖ ∫G µ(P )g(P ; P)W(n)(P ) dP ‖ (6.45)

It is, however, not necessary to carry out this normalization in each iteration step. Often it
suffices to rescale the functions after, say, every third or fourth iteration step.

As n → ∞ in (6.44), the function W(n) converges to the first eigenfunction W1 under
very mild conditions, and ω2

1 is then given by

ω2
1 = lim

n→∞
‖W(n)‖

‖W(n+1)‖ = lim
n→∞

W(n)

W(n+1)
, (6.46)

where the quotient W(n)/W(n+1) no longer depends on (x, y, z) as n → ∞. Not only the
first eigenpair, but also higher-order eigenpairs can be found using this type of iteration, if
use is made of the orthogonality conditions, in complete analogy to the discrete eigenvalue
problems (see, for example, [5]).
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As an example, consider the eigenvalue problem of a fixed–fixed string, which was
solved in Chapter 1 using the partial differential equation formulation. Green’s function for
the static problem in this case is the solution of

T W ′′(x) = −δ(x − x), W(0) = 0, and W(l) = 0. (6.47)

Green’s function therefore is

g(x, x) =




x(l − x)

T l
, 0 ≤ x < x ≤ l,

x(l − x)

T l
, 0 ≤ x < x ≤ l,

(6.48)

as can easily be checked. Choosing the starting function for the iteration (6.44) as

W(1)(x) = x

l
,

one obtains from (6.44)

W(2)(x) = µ

T l2

{∫ x

0
ξ [l − x]ξ dξ +

∫ l

x

x[l − ξ ]ξ dξ

}
= µl2

6T

[
x

l
− x3

l3

]
, (6.49)

W(3)(x) = µ

∫ l

0
g(x; ξ) W(2)(ξ) dξ = µl2

6T

7µl2

60T

[
x

l
− 10

7

x3

l3
+ 3

7

x5

l5

]
, (6.50)

and so on. It is interesting to note that while W(1)(x) satisfies only one of the boundary
conditions, W(2) satisfies both boundary conditions. Not only does the integration (6.44)
smooth the function, but also, through the kernel g(x; x), assures that the functions W (n)

for n > 1 satisfy all the boundary conditions of the problem. We have omitted here the
normalization indicated in (6.45).

The quotient ‖W(2)‖/‖W(3)‖ formed using (6.49) and (6.50) can easily be computed in
the present case using the norm definition (6.11) as

‖W(j)‖ =
√∫ l

0

[
W(j)(x)

]2
dx, j = 2, 3.

Thus, one obtains the approximation

ω2
1 ≈ ‖W(2)‖

‖W(3)‖ = (3.1543)2
T

µl2
,

which agrees very well with the exact value ω2
1 = π2T /(µl2).

While it is possible to give a closed-form expression of Green’s function for the wave
equation with different boundary conditions, or for a beam with constant cross-section, this
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is usually no longer the case for more complex problems. The integrals then have to be
computed numerically, or a representation of Green’s function has to be sought in the form
of function series. In that case, the utility of the above-discussed iterative method for the
determination of eigenfunctions is greatly reduced.

6.1.3 Bounds for eigenvalues: Rayleigh’s quotient and other methods

The most important methods for bracketing the eigenvalues of self-adjoint eigenvalue prob-
lems are related to Rayleigh’s quotient and to the Ritz method, both of which have already
been dealt with in the previous chapters. The essential relations will be summarized here
once more.

The equations of motion (6.2) with the self-adjoint operators M[·] and K[·], and the
corresponding boundary conditions can always be derived from Hamilton’s principle

δ

∫ t2

t1

(
T [w,t ] − V[w]

)
dt = 0, (6.51)

where T and V are, respectively, the kinetic and potential energy expressions for the system.
In the integrand in (6.51), the kinetic energy T [w,t ] is a quadratic functional of the function
w,t (x, y, z, t) and the potential energy V[w] is a quadratic functional of w(x, y, z, t). Both
these energy functionals contain derivatives with respect to the space coordinates only, and
not with respect to time. For comparison functions (i.e., functions which are differentiable
a sufficient number of times, and satisfy all the boundary conditions of the problem) the
relations

T [w,t ] = 1

2

∫
G
M[w,t ]w,t dG and V[w] = 1

2

∫
G
K[w]w dG (6.52)

hold between the energy functionals and the differential operators M[·] and V[·]. While the
operators M[·] and K[·], respectively, contain spatial derivatives of the order 2q and 2p,
the energy functionals T [·] and V[·] are defined for functions which are, respectively, at
least q- and p-times differentiable (with respect to the space coordinates). For example, in
the longitudinal vibrations of a bar, the energy expressions are given by

T [u,t ] = 1

2

∫ l

0
ρAu2

,t dx and V[u] = 1

2

∫ l

0
EAu2

,x dx, (6.53)

while the differential operators in the equation of motion are given by

M[u,tt ] = ρAu,tt and K[u] = [EAu,x],x .

The energy expressions can, therefore, be computed even using functions for which the
operators M[·] and K[·] are not defined. In other words, there exists a larger class of
functions for which the energy functionals T [·] and V[·] can be computed.
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Consider the eigenvalue problem

−ω2M[W ] + K[W ] = 0, (x, y, z) ∈ G , (6.54)

Lj [W ] = 0, j = 1, 2, . . . , 2m, (x, y, z) ∈ ∂G . (6.55)

Rayleigh’s quotient for this problem can now be defined using the energy expressions as

R[W ] := V[W ]

T [W ]
, (6.56)

where W(x) is any admissible function, i.e., a function which is at least p-times differ-
entiable and satisfies all the geometric boundary conditions of the problem. The energy
expressions in (6.56) can also be calculated through the scalar products (6.52), however,
using only comparison functions.

Analogous to the discrete case, Rayleigh’s principle for continuous positive definite
eigenvalue problems is expressed as

ω2
1 = min

W, ‖W‖=1
R[W ]. (6.57)

Due to the orthogonality relations, the kth eigenvalue can also be characterized recursively
as

ω2
k = min

W

〈M[W ], W1〉 = 0,

〈M[W ], W2〉 = 0,

.

.

.

〈M[W ], Wk−1〉 = 0,

R[W ], (6.58)

where Wj , j = 1, . . . , (k − 1) are the first (k − 1) eigenfunctions. The minimization in
(6.58) is carried out over all admissible functions. Similarly as in the discrete case, the max-
imum–minimum characterization also holds for the eigenvalues. For example, the second
eigenvalue is of the type

ω2
2 = max

F

{
min
W

〈M[W ], F 〉 = 0

R[W ]

}
, (6.59)

where F(·) and W(·) are admissible functions. For the kth eigenvalue, one has correspond-
ingly

ω2
k = max

F1,F2,...,Fk−1

{
min
W

〈M[W ], F1〉 = 0,

〈M[W ], F2〉 = 0,

.

.

.

〈M[W ], Fk−1〉 = 0.

R[W ].

}
(6.60)



6.1 Self-adjoint operators and eigenvalue problems for undamped free vibrations 257

The proofs are analogous to those for the case of matrix eigenvalue problems (see, for
example, [5]).

Finding an upper bound for the first eigenvalue from (6.57) is particularly simple. It
suffices to compute Rayleigh’s quotient for any admissible function, and this always gives
an upper bound. A rather crude guess for the first eigenfunction in this manner often leads
to a relatively close bound for ω2

1. Examples illustrating this point were given in previous
chapters (see, for example, Section 1.7.1).

In general, it is far more difficult to find lower bounds on the first eigenvalue, and
Rayleigh’s quotient can also be useful in solving this problem. This can be done in the
following way. Let an eigenvalue problem be defined by the energy functionals T [W ] and
V[W ], and the geometric boundary conditions Lj [W ] = 0, j = 1, 2, . . . , s. Let a different
(but related) eigenvalue problem be given by T [W ], V[W ], and Lj [W ] = 0, j = 1, 2, . . . , s,
with s ≤ s. This second problem should be defined such that the class Z of the admissible
functions for the original problem is contained in Z , the class of admissible functions for
the second problem (the orders of spatial derivatives in T and T and V and V should be
equal). If in addition

T [W ] ≥ T [W ] and V[W ] ≤ V[W ]

holds for all W ∈ Z , then one has

ω2
1 = min

W∈Z
R[W ] ≤ min

W∈Z
R[W ] ≤ min

W∈Z
R[W ] = ω2

1. (6.61)

If for a given eigenvalue problem one succeeds in finding a related problem with the
properties defined above, and for which the exact solution is known, then, according to
(6.61), a known ω2

1 gives a lower bound for ω2
1. In addition, in a similar way, it is also

possible to find bounds according to (6.61) for the higher-order eigenvalues. This procedure
is not explained in detail here, and the reader is referred to the specialized literature (see,
for example, [6] and [7]). Finally, we point out that, in this manner, Weinstein solved the
eigenvalue problem of a completely clamped vibrating rectangular plate, using not just a
single auxiliary problem, but a whole sequence of intermediate problems. By taking the
limits for this sequence of intermediate problems he was able to construct a converging
infinite sequence of upper and lower bounds for the original problem. This method is
known as Weinstein’s method of intermediate problems.

A different possibility of finding bounds for the eigenvalues is given by the inclusion
theorem, which is known from matrix eigenvalue problems in the vibrations of discrete
systems (see, for example, [5]). A simple inclusion theorem can also be formulated for the
vibrations of continuous systems described by self-adjoint operators of the type (6.9)–(6.10).
In (6.9) with q = 0, we assume that the operator M[·] is of the type

M[W(·)] = µ(·)W(·), (6.62)

where µ(·) > 0. This is naturally an important case for most practical applications where
µ(·) has the meaning of a mass density. The condition (6.62) on the operator M[·] corre-
sponds to a diagonal mass matrix in the matrix eigenvalue problem. The inclusion theorem
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for this type of problems can be stated in the following form. Let W(x, y, z) be any com-
parison function with the property that the function

f (x, y, z) := K[W ]

M[W ]
(6.63)

assumes values which are within finite bounds for all functions in its domain of definition
G , and that it does not change sign. Then the interval [minG f (x, y, z), maxG f (x, y, z)]
contains at least one eigenvalue, i.e.,

min
G

f (x, y, z) ≤ ω2
s ≤ max

G
f (x, y, z). (6.64)

Normally the bounds given by (6.64) for ω2
s are particularly narrow if the comparison

function is chosen such that the function

W̃ (·) := K[W ]

µ(·)
satisfies as many of the boundary conditions as possible. This inclusion theorem proved by
Collatz (see [1]) can be generalized further in several different ways.

Using the inclusion theorem in conjunction with the iteration procedure (6.44) can be
particularly convenient. This is because Green’s function in the integral automatically assures
that W(n+1) satisfies all the boundary conditions as long as W(n) is sufficiently smooth. One
can therefore compute W(n+1) from an arbitrarily chosen W(n) according to (6.44), and then
replace the right-hand side of (6.63) simply by the ratio W(n)/W(n+1), i.e.,

f (x, y, z) := W(n)

W(n+1)
(6.65)

Note that in this case the normalization as in (6.45) cannot be carried out, since then the
extreme values of f (·) no longer furnish the correct bounds for the eigenvalues. Similarly
as is known from matrix iteration, in the present case also, one could normally iterate
repeatedly according to (6.44), and only normalize once in a few steps whenever required
for numerical accuracy.

The formal relation between (6.63) and (6.65) can be easily recognized. The integration
of a comparison function W(·) with Green’s function g(·; ·) as a kernel can be understood
as the inversion of the differential operator K[·]. Thus, the inverse operator K−1[·] can be
defined as

K−1[W(P )] :=
∫

G
g(P ; P)W(P ) dP ,

such that (6.44) can be written as W(n+1) = K−1[µW(n)]. With W = W(n+1), the definition
(6.63) for the function f (·) leads to

f (x, y, z) = K[W(n+1)]

µW(n+1)
= K[K−1[µW(n)]]

µW(n+1)
= W(n)

W(n+1)
,

which coincides with (6.65).
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The methods of Southwell and Dunkerley (see, for example, [5]) can also be generalized
in an obvious way for the case of elastic continua.

6.2 FORCED VIBRATIONS

6.2.1 Equations of motion

Forced vibrations of a damped linear discrete system with n degrees of freedom are, in
general, described by a system of ordinary differential equations of the type

Mq̈ + Dq̇ + Gq̇ + Kq + Nq = f(t) (6.66)

(see, for example, [5]). Here, as in (6.1), q(t) = (q1, q2, . . . , qn)
T is the vector of the gener-

alized coordinates. The matrix M, which is associated with the kinetic energy, is symmetric
and positive definite, i.e., M = MT > 0. Further, the matrix K, which corresponds to the
linear restoring forces and is generated by a potential, will be assumed to be positive def-
inite, i.e., K = KT > 0. In addition, in (6.66), there are forces linear in q̇, which can be
grouped in two types. The matrix D = DT corresponds to damping (if D ≥ 0) and G = −GT

to gyroscopic forces. In some engineering systems negative damping occurs, which is then
referred to as self-excitation. In that case the matrix D is no longer positive semi-definite,
and the quadratic form q̇TDq̇ then assumes negative values, at least for some q̇. A simple
example can be given from rotor dynamics, where the forces acting on the shaft due to
hydrodynamic bearings can generate such terms. The gyroscopic terms in (6.66) are also
present in rotor systems, in particular when the vibrations are described with respect to
non-inertial, rotating coordinate systems (see, for example, Section 3.8.4).

In addition to the restoring forces Kq, which correspond to the potential energy expression
(1/2)qTKq, sometimes there are also forces which in the first approximation are linear in
q but non-conservative. This type of force, for example, is observed in cantilever pipes
conveying fluids (see Section 3.8.6), and can also be present in hydrodynamic bearings. In
this case the forces linear in q can be split up into two parts. One part corresponds to the
symmetric matrix K, and the other part is given by the skew-symmetric matrix N = −NT,
which also may give rise to self-excitation. The non-conservative forces given by the matrix
N are also termed circulatory forces. Finally, the inhomogeneity f(t) on the right-hand side
of (6.66) corresponds to the given excitation forces.

In the case of continuous systems where the displacements are only in one direction, a
single field variable w(·) replaces the finite-dimensional vectors q. Further, instead of the
matrices multiplying the vectors q, q̇, and q̈, there now are partial differential operators
operating on w, w,t , and w,tt . The equation of motion now takes the form

M[w,tt ] + D[w,t ] + G[w,t ] + K[w] + N [w] = f (x, y, z, t), (x, y, z) ∈ G . (6.67)

Here, all the differential operators contain only spatial derivatives of w(x, y, z, t), w,t (x, y,

z, t), or w,tt (x, y, z, t). The differential operators may, however, contain coefficients depend-
ing on the spatial coordinates. In addition, we assume that the boundary conditions associated
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with (6.67) on the boundary ∂G are such that the simplified homogeneous problem con-
taining only the operators M[·] and K[·] is positive definite. The operators G [·] and N [·]
have the properties

∫
G
G[wi,t ]wj,t dG = −

∫
G
G[wj,t ]wi,t dG , (6.68)

∫
G
N [wi ]wj dG = −

∫
G
N [wj ]wi dG , (6.69)

where wi(x, y, z, t) and wj(x, y, z, t) are arbitrary, but sufficiently often differentiable func-
tions satisfying all the boundary conditions. It is obvious that when i = j , the expressions
in (6.68)–(6.69) are identically zero.

Different methods are available for the solution of the partial differential equations (6.67).
They are usually based on discretization of the continuous system, and some of the most
important methods will be described briefly later in Section 6.3. In the following section,
we briefly describe a solution method based on Green’s function.

6.2.2 Green’s function for inhomogeneous vibration problems

Consider the boundary value problem described by (6.67) with the corresponding boundary
conditions. Let the excitation force (in complex notation) be of the form

f (P, t) = δ(P − P )ei�t (6.70)

i.e., the excitation is a concentrated time-harmonic force acting at a point P . In this section,
complex quantities will be distinguished by an underline. Under the action of the harmonic
force (6.70), the response (except for the resonant case) is of the form

w(P, t) = g(P ; P ; �)ei�t , (6.71)

where Green’s function g(P ; P ; �) for the inhomogeneous vibration problem satisfies

−�2M[g] + i�D[g] + i�G[g] + K[g] + N [g] = δ(P − P ), (6.72)

along with the corresponding boundary conditions. In the differential operators contained
in (6.72), g(P ; P ; �) is differentiated with respect to the coordinates of the point P . If
Green’s function for the inhomogeneous problem (6.72) is known, then the solution to the
problem of forced vibrations with an arbitrary time-varying concentrated force f (P, t) in
(6.67) can be found by means of a simple integration.

Using the Fourier transform F (P, �) of the time function f (P, t) in (6.67), one can
obtain the Fourier transform of the solution of (6.67) in the form

W (P, �) =
∫

G
g(P ; P ; �)F dP . (6.73)
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Finally, one obtains the solution in the time domain using the inverse Fourier transformation

w(P, t) = 1

2π

∫ ∞

−∞
W (P, �)ei�t d�. (6.74)

Only in very few cases is it possible to give a closed-form analytical expression for the
function g(P ; P ; �). Usually it will have to be formulated as a series expansion or will have
to be approximated by means of discretization. On the other hand, the complex function
g(P ; P ; �) corresponds to the dynamic mobility, and as such is amenable to a direct
measurement in real physical structures.

6.3 SOME DISCRETIZATION METHODS FOR FREE AND
FORCED VIBRATIONS

6.3.1 Expansion in function series

In what follows, we discuss methods in which the free or forced vibration solution of a
continuous system is represented as a function series of the form

w(x, y, z, t) =
∞∑

j=1

Fj (x, y, z)qj (t). (6.75)

Here, Fj (x, y, z), j = 1, 2, . . . , ∞, are functions of the space coordinates (shape-functions),
which satisfy at least a part of the boundary conditions. The time functions qj (t) are
unknown, and have to be determined. Replacing the infinite series (6.75) by a finite sum
reduces the infinite-dimensional problem (6.67) to a finite-dimensional problem of the type
(6.66). The infinite-dimensional system is thus mapped to a finite-dimensional one. Both the
Ritz and Galerkin methods, which have already been introduced in the preceding chapters, as
well as the finite element method are part of a class of methods that use this representation.

The approximate solution

w̃(x, y, z, t) =
n∑

j=1

Fj (x, y, z)qj (t) (6.76)

is associated with the instantaneous error distribution defined through

ẽ(x, y, z, t) := M[w̃,tt ] + D[w̃,t ] + G[w̃,t ] + K[w̃] + N [w̃] − f (x, y, z, t), (6.77)

which is a function of the spatial coordinates and time. The functions qj (t) are now to
be determined in such a manner that the error ẽ(x, y, z, t) (or an average value thereof) is
minimized in some sense. The different methods to do that differ in the sense in which this
error is minimized.

Next, consider equations of the type∫
G

ẽ(P , t)Hi(P ) dP = 0, i = 1, 2, . . . , m, (6.78)
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where Hi(P ), i = 1, 2, . . . , m, are arbitrary functions. One may interpret (6.78) as forcing to
zero the projection of the error ẽ(P , t) on the functions Hi(P ). Imposing conditions (6.78)
for different chosen functions Hi(P ), i = 1, 2, . . . , m, sets all the m projections equal to
zero. If m goes to infinity, and if the sequence of functions Hi(P ), i = 1, 2, . . . , ∞, is
complete in some sense, then with qj (t), j = 1, 2, . . . , ∞, determined from the infinitely
many projections (6.78), the error ẽ(P , t) will vanish identically. All the methods discussed
below are of this type, and they only differ in the choice of the functions Fj (P ), j =
1, 2, . . . , n and Hi(P ), i = 1, 2, . . . , m.

According to (6.76)–(6.77) the error ẽ(P , t) depends linearly on qj (t), j = 1, 2, . . . , n,
and their time derivatives. Due to linearity, (6.76) implies

M[w̃,tt ] = M


 n∑

j=1

Fj (P ) q̈j (t)


 =

n∑
j=1

M[Fj (P )]q̈j (t), (6.79)

D[w̃,t ] =
n∑

j=1

D[Fj (P )]q̇j (t), (6.80)

and so on. Thus, for each function Hi(P ), the condition (6.78) gives one linear differential
equation in qj (t), q̇j (t), and q̈j (t), j = 1, 2, . . . , n. With m = n, we obtain a discrete system
of the type (6.66), and therefore, in general, we have a sufficient (and necessary) number of
differential equations for the determination of the functions qj (t), j = 1, 2, . . . , n. In this
case, the elements of the matrices M and D are given by

mij =
∫

G
M[Fj (P )]Hi(P ) dP and dij =

∫
G
D[Fj (P )]Hi(P ) dP. (6.81)

The functions Hj(P ) are, to a large extent, arbitrary. They do not have to satisfy any
differentiability or boundary conditions, since only the integrations indicated in (6.78) have
to be carried out.

In what follows, we discuss different possibilities for choice of functions Hk(P ). All
the different resulting approaches have the following in common: introducing an additional
shape-function in (6.76) (and, correspondingly, an additional function Hk(P )) increases the
number of degrees of freedom of the discretized system from n to n + 1, resulting only
in an additional row and column in the matrices M, D, G, K, and N. The n × n matrix
elements calculated previously remain unaffected.

6.3.2 The collocation method

The collocation method is the simplest discretization method mapping the continuous prob-
lem (6.67) to a discrete one using the expansion (6.76) together with (6.78). Here, the points
Pi , i = 1, 2, . . . , n, are chosen in G , and the functions Hi(P ) in (6.78) are chosen as

Hi(P ) = δ(P − Pi), k = 1, 2, . . . , n. (6.82)
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This choice leads to, for example, matrices M and D according to (6.81) as

mij = M[Fj (Pi)] and dij = D[Fj (Pi)]. (6.83)

This choice of the functions Hi(P ) according to (6.82) causes the approximate solution
(6.76) to satisfy the partial differential equation of the problem exactly at the points Pi ,
i = 1, 2, . . . , n. This of course does not say anything about the deviations of the approximate
solution from the exact one (in particular also at the collocation points, where the errors
may be quite large). No exact error bounds for the approximate solution can be given
in the collocation method, and this is a considerable disadvantage of this approach. The
usefulness of this approximation depends strongly on the choice of the shape-functions
Fj (P ), j = 1, 2, . . . , n. On the other hand, if one has a good intuitive feeling about the
eigenfunctions (for example, as in free vibration problems), it is possible to choose shape-
functions giving useful approximations at least for the first eigenvalue and eigenfunction. It
should, however, be observed that the matrix M obtained with the collocation method may
not be symmetric, and similarly, the symmetry properties of the other matrices may also be
lost.

It is also possible to choose m points m > n, where n is the number of shape-functions
Fj (·) in (6.76). If the error is set equal to zero at the location Pk , then

n∑
j=1

[
mij q̈j + dij q̇j + gij q̇j + cij qj + nij qj

] = fi(t), i = 1, 2, . . . , m. (6.84)

It is of course not possible to find functions qj (t) simultaneously satisfying these m equations
exactly. In matrix form, (6.84) can be written as

Mq̈ + Dq̇ + Gq̇ + Kq + Nq = f(t), (6.85)

where the matrices M, D, G, K, and N, are now of the order m × n, and q is of the type
n × 1, and f of the type m × 1. The system can, however, be satisfied in an average sense.
For example, multiplying (6.85) from the left with MT gives a system with the structure
(6.66) where all matrices are now square. While the new matrix M̃ = MTM is symmetric,
the matrix D̃ = MTD may not be symmetric. It can of course always be decomposed into
a symmetric and a skew-symmetric part. The reduction of a system of m equations in
n (< m) unknowns to a system of n equations (in the n unknowns) corresponds to the
Gauss least-square minimization.

The disadvantages of the collocation method, mentioned above, need to be weighed
against the computational simplicity of the method. The coefficients of the system matrices
of the discretized system are found simply by differentiation and substitution, for example,
as given by (6.83). No additional integrations or other operations are necessary.

In what follows, we consider a benchmark eigenvalue problem which will be used to com-
pare the different discretization procedures presented in this chapter. To this end, we consider
the problem of the axial vibrations of a bar with non-constant cross-section, which is fixed
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A0

A(x)

l

x

u(x, t) ρ,E

Figure 6.3 A fixed–free circular bar of varying cross-section

at the left end and free at the right end, as shown in Figure 6.3. We assume that the
cross-sectional area is of the form

A(x) = A0

[
1 −
( x

2l

)k
]m

, (6.86)

where k and m are integer constants. We further assume Young’s modulus E and the density
ρ to be constant, so that the free longitudinal vibrations are described by

ρA(x)u,tt (x, t) − [EA(x)u,x],x = 0, (6.87)

along with the boundary conditions

u(0, t) ≡ 0 and u,x(l, t) ≡ 0. (6.88)

First, we derive an exact solution of the problem, which will be used for comparison. Using
the separation of variables and writing the solution as

u(x, t) = U(x)p(t), (6.89)

one obtains the ordinary differential equations

p̈(t) + ω2p(t) = 0,

U ′′(x) − mk

2l

1

1 −
[ x

2l

]k [ x

2l

]k−1
U ′(x) + ω2

c2
U(x) = 0,

where c2 = E/ρ.
In what follows, we restrict our attention to the special case m = k = 1, for which the
substitutions

s := (−x + 2l)
ω

c
and U(s) := U(x(s))
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lead to the boundary value problem

s2U
′′
(s) + sU

′
(s) + s2U(s) = 0, (6.90)

U(s) = 0, and U
′
(lω/c) = 0. (6.91)

The general solution of Bessel’s differential equation (6.90) is given by

U(s) = AJ0(s) + BY0(s), (6.92)

and using the boundary conditions in (6.91) leads to the characteristic equation

J0(2lω/c)Y1(lω/c) − J1(lω/c)Y0(2lω/c) = 0.

The numerically exact solutions for the first three circular eigenfrequencies are obtained as

ω1 = 1.794011
c

l
, ω2 = 4.802061

c

l
, and ω3 = 7.908962

c

l
. (6.93)

Using these results, the corresponding eigenfunctions can be easily derived. For example,
for the first eigenfunction, the values of the constants in (6.92) are A1 = 0.640457 and
B1 = 1.638424.

We now compare the exact values with the approximate results obtained using the col-
location method. As shape-functions, we use the polynomials

Fj (x) =
(
1 − x

l

)j+1
, j = 1, 2, . . . , n, (6.94)

which satisfy both the boundary conditions in (6.91). We define the collocation points
through the coordinates

xj = jl/n, j = 1, 2, . . . , n.

This leads to matrices M and K of the discretized system with coefficients

mij = ρA(xi) Fj (xi) = ρA0

(
1 − i

2n

)[(
1 − i

n

)j+1

− 1

]
,

kij = − ∂

∂x

[
EA0

(
1 − x

2l

) −j − 1

l

(
1 − x

l

)j
]

x=xi

= −EA0

2l2
(j + 1)

[(
1 − i

n

)j

+ 2j

(
1 − i

2n

)(
1 − i

n

)j−1
]

.
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If three shape-functions are used (i.e., n = 3), the (asymmetric) matrices M and K give the
circular eigenfrequencies

ω1 = 1.796683
c

l
, ω2 = 4.448599

c

l
, and ω3 = 7.553602

c

l
. (6.95)

A comparison with the exact values in (6.93) shows that the error is very small in the
first eigenfrequency, and even the third eigenfrequency is found within 5% of the correct
value. If the first three eigenfrequencies are to be approximated with a better accuracy, in
general one has to choose n > 3. As a common practice, n is taken as twice the num-
ber of accurately desired eigenfrequencies (i.e., n = 6 is expected to yield the first three
eigenfrequency with ‘reasonable’ accuracy). The approximated eigenfunctions can now be
easily determined. The first two approximate eigenfunctions thus obtained are compared
with the exact eigenfunctions in Figure 6.4. The first approximated eigenfunction cannot be
distinguished from the corresponding exact eigenfunction within the graphical accuracy of
the plot.

6.3.3 The method of subdomains

It is a disadvantage of the collocation method that the local errors may become very large
in some regions when the error ẽ(P , t) is forced to zero at the chosen collocation points. It
is often more convenient to minimize an average error, in the sense of the projections given
by (6.78), using Hk(P ) as ‘classical’ functions instead of the generalized functions (Dirac
delta functions) used in the collocation method. In this alternative approach, the domain G
is divided into subdomains Gi , i = 1, 2, . . . , n, such that

G = ∪i Gi . (6.96)

0.5 1

�1

�0.5

0.5

1

0.5 1

�1

�0.5

0.5

1

U1(x) U2(x)

x/l x/ l

Collocation method

Exact solution

Figure 6.4 Comparison of the first two approximate eigenfunctions obtained from the collocation
method with the exact eigenfunctions
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The functions Hj(P ) are then defined such that they vanish outside of the domain Gj .
Within Gj , Hj(P ) can, for example, be set identically equal to unity. The shape-functions
Fj (P ) are not affected by this, and can assume values different from zero in the whole
domain G .

This now leads to matrices M and D with coefficients

mij =
∫

Gi

M[Fj (P )] dP and dij =
∫

Gi

D[Fj (P )] dP (6.97)

instead of those given by (6.81). The finer the subdivision of the domain (i.e., the smaller
the subdomains Gi), the larger will their number be, and the more the discretization for-
mulas given by (6.97) will be equivalent to (6.83), if the points Pj , j = 1, 2, . . . , n, in the
collocation method are, respectively, chosen from the domains Gj .

On increasing the number of shape-functions and the number of subdomains in (6.96), in
this method, in general, all the functions Hj(P ) get changed. This implies that all elements
of the matrices M, D, G, K, and N need to be recomputed. The only exception is the case in
which only certain subdomains Gj are, respectively, divided further into new subdomains,
the others being maintained as before.

6.3.4 Galerkin’s method

A frequent choice of the functions Hj(P ), j = 1, 2, . . . , n, on which the error ẽ(P , t) is to
be projected according to (6.78), is the shape-functions themselves, i.e.,

Hj(P ) = Fj (P ), j = 1, 2, . . . , n. (6.98)

With this choice, the functions Hj(P ), j = 1, 2, . . . , n, now automatically satisfy much
stronger differentiability conditions than needed in general in (6.78), since all Fj (P ) must
be sufficiently often differentiable, so that the spatial derivatives contained in M[·], D[·],
G [·], K[·], and N [·] can be carried out.

The matrices of the discretized system (6.66) are now given by, for example,

mij =
∫

G
M[Fj (P )]Fi(P ) dP and dij =

∫
G
D[Fj (P )]Fi(P ) dP,

and so on, and

fi =
∫

G
f (P, t)Fi(P ) dP.

In general, the matrices M and K did not turn out to be symmetric in the methods so far
explained in Section 6.3. In the present case, however, they will often be symmetric. This
is certainly the case if the homogeneous boundary value problem, defined by M[·] and K[·]
and the corresponding boundary conditions, is self-adjoint, and the shape-functions Fj (P ),
j = 1, 2, . . . , n, are chosen from the set of comparison functions (i.e., they are at least
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2p-times differentiable, and satisfy all the boundary conditions), resulting in MT = M and
KT = K. Further, if the system is proportionally damped, i.e.,

D[·] = αM[·] + βK[·]

(see Section 1.8.1), then the matrix D will also be symmetric. On the other hand, non-
proportional damping will lead to a non-symmetric matrix D̃, which can always be split
into a symmetric matrix D, and a skew-symmetric matrix G. In many engineering problems,
the operator N [·], and hence the matrix N, does not arise. The convergence of Galerkin’s
method can be proved for the case when comparison functions are used as shape-functions
in self-adjoint boundary value problems (see [2] and [3]). The method in this case converges
in the sense of the L 2-norm.

Galerkin’s method is frequently very useful for the solution of continuous systems. In
many continuous systems with spatially varying parameters, this variation is usually slow,
and the eigenfunctions are similar to that of a simplified related problem with equations
of motion having constant coefficients. In these cases the eigenfunctions of the simplified
problem may be used as shape-functions for the original problem. It may then be possible
to obtain very good results with a relatively small number of shape-functions chosen in this
manner. Often the results are so simple that the dependence of the first few eigenfrequencies
and other system properties on the system parameters can be studied analytically.

We now compare the exact solutions obtained for the example (6.87)–(6.88) with the
results from a discretization carried out with Galerkin’s method. The functions (6.94) are
again used as shape-functions, since they are comparison functions for the problem. This
leads to the matrices M and K with the coefficients

mij =
∫ l

0
ρA0

[
1 − x

2l

]{[
1 − x

l

]i+1
− 1

}{[
1 − x

l

]j+1
− 1

}
dx

= ρA0 l

{
1

i + j + 3
− 1

i + 2
− 1

j + 2
+ 1

− 1

2[i + j + 3][i + j + 4]
+ 1

2[i + 3][i + 2]
+ 1

2[j + 3][j + 2]
− 1

4

}
,

and

kij = −
∫ l

0
EA0

[
1 − x

2l

]{[
1 − x

l

]j+1 − 1

}′′{[
1 − x

l

]i+1 − 1

}
dx

= EA0

l

[j + 1][i + 1][2i + 2j + 3]

2[i + j + 1][i + j + 2]
.

Note that M and K now are symmetric. With n = 3 shape-functions, the approximate solu-
tions for the first three circular eigenfrequencies turn out to be

ω1 = 1.794013
c

l
, ω1 = 4.813378

c

l
, and ω1 = 8.569588

c

l
. (6.99)
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Figure 6.5 Comparison of the first two approximate eigenfunctions obtained from Galerkin’s method
(n = 3) with the exact eigenfunctions

While the first two of these values agree well with the exact results in (6.93), the deviation
in ω3 is about 8.35%. Here the error is even larger than obtained using the collocation
method (compare with (6.95)), notwithstanding the fact that the collocation method is com-
putationally much cheaper. This is, however, an accident, and depends on the choice of the
shape-functions and the collocation points. For all the methods discussed here, as a rule of
thumb, it can be said that only the first n/2 eigenvalues of the discretized problem give
useful approximations (n being the number of shape-functions used in the expansion). The
approximate shape-functions can be easily calculated using the approximate eigenvalues.
The first two approximate eigenfunctions with the corresponding exact solutions are com-
pared in Figure 6.5. With the present example also, the exact and the approximate solution
of the first eigenfunction cannot be graphically distinguished within the given precision of
the plot.

6.3.5 The Rayleigh–Ritz method

In the approaches discussed till now under Section 6.3, the approximation

w̃(x, y, z, t) =
n∑

j=1

Fj (x, y, z)qj (t) (6.100)

was substituted directly in the partial differential equation, and the projections of the error
ẽ(x, y, z, t) (given by (6.77)) on the functions Hk(x, y, z), k = 1, 2, . . . , n, were then set
equal to zero. The shape-functions Fj (x, y, z), therefore, have to be at least 2p-times dif-
ferentiable, where 2p is the maximal order of spatial differentiation appearing in K[·]. The
order of spatial differentiation in M[·] has been defined as 2q in Section 6.1, and it has
been assumed that q < p. Nothing has been said so far about the orders of the operators
D[·], G[·], and N [·]. They are, however, in general, not larger than 2p. In addition, it is



270 Boundary value and eigenvalue problems in vibrations

advantageous if the shape-functions satisfy as many of the boundary conditions as pos-
sible (the shape-functions have to satisfy all the boundary conditions for convergence of
Galerkin’s method, i.e., comparison functions have to be used there).

As discussed in Appendix A, the equations of motion of a mechanical systems can be
obtained from Hamilton’s principle

∫ t2

t1

(δL + δW) dt = 0, (6.101)

where, L[·] := T [·] − V[·] is the Lagrangian, T [·] is the kinetic energy of the system, V[·]
is the potential energy of the system, and δW is the virtual work done on the system by
(non-potential) external forces. For the class of linear systems under consideration,

L[w, w,t ] = T [w,t ] − V[w], (6.102)

where T [w,t ] and V[w] are, respectively, positive definite quadratic forms in w,t and w,
and are obtained by integrating over the whole domain G the kinetic and potential energy
densities (see, for example, (6.53)). In general δW is a function of w, w,t , and t .

In the Rayleigh–Ritz method, the expansion (6.76) is substituted directly into (6.101).
The expression of the Lagrangian in (6.102) is then replaced by

L[w̃, w̃,t ] = T [w̃,t ] − V[w̃], (6.103)

where

T [w̃,t ] = 1

2

n∑
i,j=1

mij q̇i q̇j and V[w̃] = 1

2

n∑
i,j=1

kij qiqj .

The coefficients mij and kij are then functionals of the shape-functions Fi(x, y, z), i =
1, 2, . . . , n. Further, replacing w and w,t in δW , respectively, by the expressions for w̃ and
w̃,t obtained from (6.76), gives

δW =
n∑

i=1

Qiδqi .

Here, obviously the generalized forces Qi , i = 1, 2, . . . , n, also depend on the shape-
functions. The generalized force terms can be grouped in two parts which are, respectively,
of order one and zero in the variables qi(t) and q̇i (t), i = 1, 2, . . . , n.

A given continuous system is thus discretized without the equations of motion so far hav-
ing been given explicitly. The discretized equations of motion now follow from Hamilton’s
principle. For example, using Lagrange’s equations

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi

= Qi, i = 1, 2, . . . , n, (6.104)
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one obtains the matrix differential equations. The elements mij of matrix M and the elements
kij of K may also be obtained directly by substituting (6.76) into the energy expressions.
When L is of the form (6.103) we always obtain MT = M, and KT = K.

In equation (6.104), all the forces represented by D, G, N, and f are contained in Qi ,
i = 1, 2, . . . , n. The gyroscopic terms corresponding to the skew-symmetric matrix G are,
however, conservative, and can, therefore, always be derived from suitable terms in the
Lagrangian. The kinetic energy in that case is a sum of a quadratic form in w,t and a
bilinear form in w and w,t (see Section 3.8.4 for an example, or [5]). A Rayleigh dissipation
function can be formulated for the linear damping terms, and the damping forces can be
directly obtained from its derivatives, as is known from the discrete systems.

Obviously, in the Rayleigh–Ritz method, the differentiability requirements for the shape-
functions are much lower than in the case of Galerkin’s method. In the latter method, the
functions Fi(P ), i = 1, 2, . . . , n, have to be at least 2p-times differentiable, since w̃ is
substituted into the operator K[·]. However, in the case of the Rayleigh–Ritz method, it
is sufficient that the functions be p-times differentiable. This is due to the fact that the
energy functional V[w̃], which is a quadratic form, only contains differentiations of order
at most p.

With respect to satisfaction of the boundary conditions, the requirements placed on the
shape-functions in the Rayleigh–Ritz method are fewer compared to Galerkin’s method.
As already known from Rayleigh’s principle, it suffices that the shape-functions satisfy
the essential (i.e., the geometric) boundary conditions. In Galerkin’s method, on the other
hand, the shape-functions have to be comparison functions. If in the Rayleigh–Ritz method
comparison functions are used instead of admissible functions, then both approaches will
give exactly the same results for the discretized equations of motion. This implies that,
in the Rayleigh–Ritz method, one has more freedom in the choice of the shape-functions
than in Galerkin’s method, which is particularly important in planar problems (for example,
plates), and in three-dimensional systems. This will become more obvious in Section 6.3.6.

We now reconsider the example (6.87)–(6.88) using the Rayleigh–Ritz method. We delib-
erately use shape-functions that satisfy only the geometric boundary conditions. Choosing
the monomials

Fj (x) =
(x

l

)j

,

the kinetic and the potential energy expressions are obtained as

T = 1

2

n∑
i,j=1

∫ l

0
ρA0

[
1 − x

2l

] [x
l

]i [x
l

]j
ṗi(t) ṗj (t) dx,

V = 1

2

n∑
i,j=1

∫ l

0
EA0

[
1 − x

2l

] i

l

[x
l

]i−1 j

l

[x
l

]j−1
pi(t) pj (t) dx.

A short calculation immediately gives the elements of the matrices M and K as

mij = ρA0 l
i + j + 3

2[i + j + 1][i + j + 2]
and kij = EA0

l

ij (i + j + 1)

2[i + j − 1][i + j ]
.
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Figure 6.6 Comparison of first two mode-shapes from the Rayleigh–Ritz method (n = 3) and exact
solution

The circular eigenfrequencies of the discrete system obtained in this manner with n = 3
shape-functions are

ω1 = 1.79402
c

l
, ω2 = 4.981290

c

l
, and ω3 = 10.041803

c

l
. (6.105)

The first eigenfrequency is practically identical to the exact solutions, the second one is a
coarse approximation with an error within 4% of the exact value, while the third one is in
error exceeding 20% of the exact value. The exact and the approximate solution for first
and second eigenfunctions obtained with n = 3 are compared in Figure 6.6. In this case
also, the quality of the approximation can be easily improved by increasing the number of
shape-functions. Using shape-functions fulfilling additional boundary conditions also can
considerably improve the results.

6.3.6 The finite-element method

For systems with complicated geometry, it is often futile to search for admissible functions
for the Rayleigh–Ritz method defined over the whole domain G . Even if it is possible to find
such functions, they may still be computationally impractical due to their complexity. The
finite-element method described below makes it possible to treat problems of very complex
geometry, at the same time offering a very simple and systematic approach.

The basic idea of the method is related to the method of subdomains. As in the latter
method, the domain G is divided into subdomains Gi , i = 1, 2, . . . , n, satisfying (6.96). The
shape-functions Fi(P ), i = 1, 2, . . . , n, in the expansion (6.76) are now chosen in such a
way that Fj (P ) assumes values different from zero in the subdomain Gj only, vanishing
elsewhere. These functions Fj (P ), j = 1, 2, . . . , n, defined over the respective subdomains
Gj , j = 1, 2, . . . , n, are called finite elements. Even complex geometries and complex bound-
aries can be dealt with in this manner with very simple shape-functions. Polynomials of low
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order can be used as finite elements in general, leading to simple calculations for the energy
expressions, and often rendering superfluous the numerical integration with respect to P .

As a consequence of the convenient form of the finite-element method, the classical
Rayleigh–Ritz method has fallen into oblivion with many engineers. Due to this, the finite-
element method is frequently being used today even for problems for which the classical
Rayleigh–Ritz method would permit a very easy solution. It should be kept in mind that
sometimes for simple geometries excellent results may be obtained with very few shape-
functions, which may even show the relevant parametric functional dependencies in closed
form. In the same problems, possibly large numbers of finite elements may be needed to
obtain a similar accuracy, with the danger that simple qualitative relations may be completely
missed. The essential basic ideas of the finite-element method will be explained in what
follows. For simplicity of exposition, we focus on one-dimensional continua only.

We first deal with boundary value problems described by second-order partial differential
equations, as known for the transverse vibrations of taut strings and longitudinal vibrations
of bars. For the string, the kinetic and potential energies are given by

T [u,t ] = 1

2

∫ l

0
ρA(x)u2

,t dx and V[u] = 1

2

∫ l

0
T (x)u2

,x dx, (6.106)

and for the bar by

T [u,t ] = 1

2

∫ l

0
ρA(x)u2

,t dx and V[u] = 1

2

∫ l

0
EA(x)u2

,x dx. (6.107)

In what follows, we first deal with a string of length l with boundary conditions w(0, t) ≡ 0
and w,x(l, t) ≡ 0.

We divide the interval [0, l] into n elements of equal length h = l/n. The boundary
points of these elements are termed nodes. It may be convenient in some cases to choose
elements of unequal length. A finer division may be appropriate at those locations where
the system parameters undergo strong variations.

Each shape-function Fi(x), i = 1, 2, . . . , (n − 1), is now defined such that it is equal
to zero outside the interval [(i − 1)h, (i + 1)h]. The shape-functions have to be chosen in
such way that their first derivatives are piecewise continuous. The simplest shape-functions
are, therefore, piecewise linear, and we define them as

Fi(x) = 1 + x − ih

h
, (i − 1)h ≤ x ≤ ih,

Fi(x) = 1 − x − (i + 1)h

h
, ih ≤ x ≤ (i + 1)h, (6.108)

for i = 1, 2, . . . , n. One such shape-function is shown in Figure 6.7. The last function Fn(x)

is defined differently, in the form

Fn(x) = 1 + x − nh

h
[n − 1]h ≤ x ≤ 1, (6.109)
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x
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Fi(x)

Figure 6.7 Visualization of the finite-element method (linear elements)

in order to permit non-vanishing displacements at the sliding end of the string. It is to be
understood from the definitions (6.108)–(6.109) that the functions Fi(x), i = 1, 2, . . . , n,

vanish outside the intervals specified in (6.108)–(6.109).
The shape-functions thus defined have a number of interesting properties. At the nodal

points x = jh, j = 1, 2, . . . , (n − 1), for example, the approximate solution

w̃(x, t) =
n∑

i=1

Fi(x)qi(t) (6.110)

assumes the values

w̃(jh, t) = qj (t). (6.111)

The generalized coordinate qj (t) is, therefore, exactly equal to the displacement at the
j th node. Though the functions Fi(x), i = 1, 2, . . . , n, are not orthogonal, they satisfy the
relations

∫ 1

0
Fi(x)Fj (x) dx = 0, |i − j | > 1, (6.112)

and even

∫ 1

0
f0(x)Fi(x)Fj (x) dx = 0, |i − j | > 1, (6.113)

for arbitrary f0(x). The condition (6.113) obviously is similar to an orthogonality condition.
In case (6.113) holds for all i �= j , then the functions Fi(x), i = 1, 2, . . . , n, would be
orthogonal to each other with respect to f0(x). Unfortunately, equation (6.113) does not
hold for all shape-functions, but it holds exactly for those with |i − j | > 1 independently
of the particular function f0(x). This property is reflected in the structure of the system
matrices in that the resulting matrices are almost diagonal, or more precisely have a banded
structure.

Since the shape-functions (6.108)–(6.109) are piecewise linear, (6.110) and (6.111) imply
that w̃(x, t) at each time instant t is a piecewise linear function of x, with the values at
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Figure 6.8 Node-point coordinates of finite elements

the points of discontinuity of slope being equal to qj (t), as shown in Figure 6.8. Within an
interval [(j − 1)h, jh], the function w̃(x, t) is thus given by

w̃(x, t) = jh − x

h
qj−1 + x − (j − 1)h

h
qj (6.114)

It is convenient to introduce a local coordinate defined by

ξ := jh − x

h
, (j − 1)h ≤ x ≤ jh, (6.115)

in each of these intervals. Thus, ξ assumes the value one at the left boundary and zero at
the right boundary. Equation (6.114) can then be written as

w̃(x, t) = L1(ξ) qj−1(t) + L2(ξ) qj (t) (6.116)

with the linear interpolation functions

L1(ξ) := ξ and L2(ξ) := 1 − ξ. (6.117)

The energy expressions in (6.106) (or (6.107)) can now be obtained from the contributions
of the single elements. For example, for the string, one obtains

T =
n∑

j=1

1

2

∫ jh

(j−1)h

µ(x) w̃2
,t (x, t) dx and V =

n∑
j=1

1

2

∫ jh

(j−1)h

T (x) w̃2
,x(x, t) dx.

(6.118)

Obviously, the kinetic and potential energy terms in (6.118) are, respectively, quadratic
forms in q̇j and qj , so that instead of (6.118), one can also write

T =
n∑

j=1

1

2
(q̇j−1, q̇j )Mj (q̇j−1, q̇j )

T and V =
n∑

j=1

1

2
(qj−1, qj )Cj (qj−1, qj )

T,
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where one substitutes q0 ≡ 0, and q̇0 ≡ 0. The matrix Mj is of order 2 × 2, and its elements
can easily be calculated in local coordinates as

mj(1,1) =
∫ jh

(j−1)h

ρA(x) L2
1 (ξ(x)) dx = −

∫ 0

1
ρAj (ξ) ξ 2h dξ

= h

∫ 1

0
ρAj (ξ) ξ 2 dξ, (6.119)

mj(1,2) = mj(2,1) =
∫ jh

(j−1)h

ρA(x) L1 (ξ(x)) L2 (ξ(x)) dx

= h

∫ 1

0
ρAj (ξ) ξ(1 − ξ) dξ, (6.120)

mj(2,2) = h

∫ 1

0
ρAj (ξ) ξ(1 − ξ)2 dξ, (6.121)

where

ρAj (ξ) := ρA (x(ξ)) , (j − 1)h ≤ x ≤ jh.

Similarly, the elements of the 2 × 2 matrix Kj are given by

kj (1,1) =
∫ jh

(j−1)h

T (x)

[
dL1 (ξ(x))

dx

]2

dx =
∫ 1

0
T j (ξ)

1

h2

[
dL1

dξ

]2

h dξ

= 1

h

∫ 1

0
T j (ξ) dξ, (6.122)

kj (1,2) = kj (2,1) =
∫ jh

(j−1)h

T (x)
dL1 (ξ(x))

dx

dL2 (ξ(x))

dx
dx

= − 1

h

∫ 1

0
T j (ξ) dξ, (6.123)

kj (2,2) =
∫ jh

(j−1)h

T (x)

[
L2 (ξ(x))

dx

]2

dx = 1

h

∫ 1

0
T j (ξ) dξ, (6.124)

where

T j (ξ) := T (x(ξ)) , (j − 1)h ≤ x ≤ jh.

In (6.118), the terms quadratic in q̇j (respectively, qj ) occur in two terms, while the mixed
products q̇j−1q̇j (respectively, qj−1qj ) appear only in one term.
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Let us write the kinetic energy in matrix form as

T = 1

2
q̇TMq̇,

where q̇ := (q̇1, . . . , q̇n)
T. This leads to the global mass matrix formed by superposition of

the elemental mass matrices Mj in such a way that two consecutive matrices Mj−1 and Mj

are aligned along the diagonal, i.e., M has a structure given by

M = .

M1 M2

M3

Mn

Mn − 1

(6.125)

In (6.125), the hatched parts of the boxes stand for the superposition of parts of two
elemental matrices. Due to the boundary condition w(0, t) ≡ 0 at the left end, the element
m1(2,2) of the sub-matrix M1 contributes to the superposition with m2(1,1) of M2. On the
other hand, no superposition is carried out at the last element of the diagonal due to the
boundary condition w,x(l, t) ≡ 0 at the right end. The global stiffness matrix K is formed
from the elemental matrices Kj , j = 1, 2, . . . , n, in an analogous way. In the present case,
the matrices K and M have a banded structure. Only the elements on the diagonal, the
first sub-diagonal, and the first super-diagonal have elements different from zero, i.e., the
‘bandwidth’ is three.

The integrals (6.119)–(6.124) can be easily computed. For example, in the case when
both T (x) and ρA(x) are constants, we obtain

Kj = T

h

[
1 −1

−1 1

]
and Mj = 1

6
hρA

[
2 1
1 2

]
. (6.126)

This leads to the global mass and stiffness matrices as, respectively,

M = hρA

6




4 1 0 . . . 0
1 4 1
0 1 4

. . .

... 0
4 1

0 0 1 2




(6.127)
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and

K = T

h




2 −1 0 . . . 0
−1 2 −1

0 −1 2
. . .

... 0
2 −1

0 0 −1 1




. (6.128)

Even if T (x) and ρA(x) vary with x, they can often be assumed to be constant over each
interval of length h. In that case, the elemental matrices in (6.126) will depend on the
index j , so that the elemental matrices now differ from element to element. Hence, in
(6.127)–(6.128), the blocks along the diagonal are no longer identical. The structure and
the bandwidth, however, remain unchanged. On the other hand, it is also often not difficult
to include the dependence of the normal force and the mass distribution on the spatial
coordinate x in the calculations.

We now treat the example (6.87)–(6.88) with the finite-element method. In the local
coordinates ξ , the kinetic energy of an element is given by

Ti = h

2

∫ 1

0
ρA(ξi)

[
(1 − ξi) q̇i−1 + ξi q̇i

]2
dξi,

where

ρA(ξi) = ρA0

[
1 − h

ξi + i − 1

2l

]
= ρA0

[
1 − ξi + i − 1

2n

]
.

This leads to the elemental mass matrix

Mi = ρA0l

24n2

[
3 + 8n − 4i 1 + 4n − 2i

1 + 4n − 2i 1 + 8n − 4i

]
. (6.129)

The potential energy of an element is given by

Vi = 1

2

∫ hi

h(i−1)

EA u2
i,x dx = h

2

∫ 1

0
EA

[
− 1

h
qi−1 + 1

h
qi

]2

dξ,

which leads to the elemental stiffness matrix

Ki = EA0

l

(
n + 1

4
− i

2

)[
1 −1

−1 1

]
.
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For n = 6 elements, for example, the global matrices are obtained as

M = ρA0 l

864




45 + 43 21 0 0 0 0
21 41 + 39 19 0 0 0
0 19 37 + 35 17 0 0
0 0 17 33 + 31 15 0
0 0 0 15 29 + 27 13
0 0 0 0 13 25




= ρA0 l

864




88 21 0 0 0 0
21 80 19 0 0 0
0 19 72 17 0 0
0 0 17 64 15 0
0 0 0 15 56 13
0 0 0 0 13 25




(6.130)

and

K = EA0

4 l




23 + 21 −21 0 0 0 0
−21 21 + 19 −19 0 0 0
0 −19 19 + 17 −17 0 0
0 0 −17 17 + 15 −15 0
0 0 0 −15 15 + 13 −13
0 0 0 0 −13 13




= EA0

864 l




9504 −4536 0 0 0 0
−4536 8640 −4104 0 0 0

0 −4104 7776 −3672 0 0
0 0 −3672 6912 −3240 0
0 0 0 −3240 6048 −2808
0 0 0 0 −2808 2808




. (6.131)

The solution of the eigenvalue problem defined by the matrices (6.130)–(6.131) gives the
following approximations for the first three circular eigenfrequencies:

ω1 = 1.79800
c

l
, ω2 = 4.92199

c

l
, and ω3 = 8.46764

c

l
. (6.132)

A comparison with the exact solution given in (6.93) shows that the first eigenvalue is
practically exact, the second one is obtained with an error of about 2%, while the error
for the third one is about 7%. The first two approximate eigenfunctions obtained in this
manner are compared with the exact eigenfunctions in Figure 6.9. Increasing the number of
elements from n = 6 to n = 10 gives ω3 = 8.11092c/l. This estimate (with n = 10), which
is off from the exact value by about 2.6%, is not much better than the one obtained with the
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Figure 6.9 Comparison of first two mode-shapes from finite-element method and exact solution

much simpler collocation method with three shape-functions only. On the other hand, while
almost nothing is known about convergence in the collocation method, in the finite-element
method all the convergence results known for the Ritz method are carried over. Thus, one
knows for example that in all generality the approximate eigenfrequencies are always larger
than or equal to the exact values.

As already mentioned above, one may take the mass distribution ρA(x) and the stiffness
EA(x) to be constant within an element. It may often be assumed that with a sufficiently
large number of elements the error caused by this simplification goes to zero. Strictly
speaking, however, the finite-element method with this simplification no longer is a particular
case of the Ritz method applied to the original problem. Hence, the convergence properties
mentioned before can no longer be assured.

In the numerical example considered above, let us take the cross-section in an element
to be constant, and equal to the value at the center of the respective element, i.e.,

Ai = A0

[
1 − i − 1/2

2n

]
.

This leads to the elemental mass matrix

Mi = ρA0 l

24 n2

[
2 + 8n − 4i 1 + 4n − 2i

1 + 4n − 2i 2 + 8n − 4i

]
(6.133)

instead of (6.129). The elemental stiffness matrix is not affected by this simplification in the
present example. This is because the integral in (6.129) is carried out for functions linear
in ξ only (the cross-sectional area A is linear in ξ ), and the integral of a linear function
is equal to its mean value multiplied by the length of the domain of integration. Thus, for
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n = 6 elements, the global mass matrix given by

M = ρA0 l

864




46 + 42 21 0 0 0 0
21 42 + 38 19 0 0 0
0 19 38 + 34 17 0 0
0 0 17 34 + 30 15 0
0 0 0 15 30 + 26 13
0 0 0 0 13 26




= ρA0 l

864




88 21 0 0 0 0
21 80 19 0 0 0
0 19 72 17 0 0
0 0 17 64 15 0
0 0 0 15 56 13
0 0 0 0 13 26




, (6.134)

now replaces (6.130). The approximate values for the first three circular eigenfrequencies
are now

ω1 = 1.79455
c

l
, ω2 = 4.90979

c

l
, and ω3 = 8.44198

c

l
. (6.135)

These values are almost identical to the ones obtained in (6.132) by the exact integration over
the intervals. It is important to note that the circular eigenfrequencies in (6.135) are lower
than those obtained in (6.132) (and hence closer to the exact values in (6.93)). However,
it should not be concluded that taking the properties constant over the elements leads to a
better result. The reason for this decrease in the circular eigenfrequencies is that, by taking
constant properties over the elements, we have unknowingly added some extra mass to the
system (since the stiffness matrix remains the same).

Up to now, only linear interpolation polynomials (6.117) have been used. They were
chosen such that L1(0) = 0, L1(1) = 1, L2(0) = 1, and L2(1) = 0. Frequently it is conve-
nient to use higher-order polynomials instead of the linear ones. For example, one may use
quadratic polynomials

L(ξ) = c1 + c2ξ + c3ξ
2 (6.136)

or cubic polynomials

L(ξ) = c1 + c2ξ + c3ξ
2 + c4ξ

3. (6.137)

Since the quadratic polynomials (6.136) contain three additional coefficients, it is natural
to introduce an internal node at ξ = 1/2 in addition to the two external nodes ξ = 0 and
ξ = 1.
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The displacement is then represented by

w̃(x, t) = L1(ξ) qj−1(t) + L2(ξ) qj−1/2 + L3(ξ) qj (t)

= lT(ξ) qj (t), (j − 1)h ≤ x ≤ jh, (6.138)

where

l(ξ) := (L1(ξ), L2(ξ), L3(ξ))T,

qj (t) := (qj−1(t), qj−1/2(t), qj (t))
T.

If the coefficients of the quadratic polynomial (6.136) are determined from the conditions

L1(0) = 0, L1(1/2) = 0, L1(1) = 1,

L2(0) = 0, L2(1/2) = 1, L2(1) = 0,

L3(0) = 1, L3(1/2) = 0, L3(1) = 0, (6.139)

or more compactly from

[l(1), l(1/2), l(0)] = E3×3, (6.140)

where E3×3 is the 3 × 3 identity matrix, then the components of q(t) in (6.138) obviously
correspond to the displacements at the three nodes. The conditions (6.140) lead to the three
polynomials

L1(ξ) = ξ(2ξ − 1), L2(ξ) = 4ξ(1 − ξ), L3(ξ) = 1 − 3ξ + 2ξ 2.

One can then evaluate the integrals in the sums given in (6.118) to obtain

∫ jh

(j−1)h

ρA(x) w̃2
,t (x, t) dx = q̇

T
Mj q̇,

∫ jh

(j−1)h

T (x) w̃2
,x(x, t) dx = qTKjq,

where

Mj = h

∫ 1

0
ρAj (ξ)l(ξ)lT(ξ) dξ, (6.141)

Kj = 1

h

∫ 1

0
T j (ξ)l′(ξ)l′T(ξ) dξ, (6.142)
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and the prime in l′(ξ) stands for the derivative with respect to the local variable ξ . The
global mass matrix is obtained from (6.141) (in analogy to (6.125)) as

M = .

M1

M2

M3

Mn

Mn − 1

(6.143)

The first row and the first column were again omitted from the matrix resulting from the
superposition, due to the boundary condition w(0, t) ≡ 0. The superposition and addition
of the elemental matrices is now restricted to the external nodes only. The inner nodes are
not affected, since they belong to the respective elements only. It can be seen that the mass
matrix (6.143) now has a ‘bandwidth’ of five. The global stiffness matrix has a structure
analogous to (6.143). For the case where T (x) and EA(x) are constants, a simple calculation
gives

Mj = hρA

30


 4 2 −1

2 16 2
−1 2 4


 and Kj = T

3h


 7 −8 1

−8 16 −8
1 −8 7


 .

The procedure described above is completely analogous also for the case of cubic polyno-
mials. In the cubic polynomial case, two internal nodes have to be introduced (instead of
one, as in the quadratic case), and the free coefficients in the shape-functions (6.137) can
be found by choosing

[l(1), l(2/3), l(1/3), l(0)] = E4×4. (6.144)

Here, naturally one has

l(ξ) := [L1(ξ), L2(ξ), L3(ξ), L4(ξ)]T,

and all Lk(ξ) are of the type (6.137). The vector q(t) is now four-dimensional, and w̃(x, t)

can again be written as

w̃(x, t) = lT(ξ)qj (t).
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The matrix equation (6.144) now results in four cubic polynomials

L1(ξ) = 1

2
ξ(2 − 9ξ + 9ξ 2), L2(ξ) = −9

2
ξ(1 − 4ξ + 3ξ 2),

L3(ξ) = 9

2
ξ(2 − 5ξ + 3ξ 2), L4(ξ) = 1 − 11

2
ξ + 9ξ 2 − 9

2
ξ 3.

If the same number of elements is used with different orders of interpolating polynomials,
it is natural that the higher-order polynomials, as a rule, will give higher precision than
the lower-order ones. The number of degrees of freedom with higher-order polynomials is
also larger, since now the displacements of the inner nodes are also generalized coordinates
of the discretized problem. For a given number of degrees of freedom in the discretized
problem, the number of elements will depend on the type of element chosen. It cannot be
stated which discretization is the more convenient one, in the general case. It is obvious
that discontinuities in w,x(x, t), which are possible in the wave equation, are better modeled
with a large number of linear elements than with a smaller number of quadratic or cubic
elements.

After this short introduction to the finite-element method for the string and bar vibrations,
let us briefly consider the case of a vibrating beam. The kinetic energy for the beam is defined
in exactly the same way as for the string. Of course, there are differences when it comes to
the potential energy. The potential energy for a beam subjected to an axial force distribution
is given by

V = 1

2

∫ l

0

[
EI (x)w2

,xx(x, t) − N(x)w2
,x

]
dx,

i.e., there are now second-order derivatives with respect to x (in a string, only first-order
derivatives were present). In the Ritz method, of which the finite-element method is a
special case, the assumed shape-functions for a beam should be twice differentiable. This
condition, therefore, excludes linear elements, since their first derivatives are discontinuous
at the nodes. In order to assure the continuity of w and w,x at the nodes, four adjustable
constants are required in the interpolating polynomials. This means that the polynomials to
be used as shape-functions should be of at least third order.

For a beam, it is convenient to choose as the generalized coordinates, the displacements
wj−1 and wj , and the rotations of the cross-section θj−1 and θj , at the two nodes of the j th
element. In order to have identical dimensions for all generalized coordinates, we multiply
the rotations by h, i.e., the vector of generalized coordinates for the j th element is now
given by

qj (t) := [wj−1(t), h θj−1(t), wj (t), h θj (t)
]T

, (6.145)

as shown in Figure 6.10. With

l(ξ) = [L1(ξ), L2(ξ), L3(ξ), L4(ξ)]T , (6.146)
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ξ

x

w̃

(j − 1)h jh

θj−1

θj

wj−1

wj

Figure 6.10 Node-point coordinates of finite elements for a beam

one obtains

w̃(x, t) = lT(ξ) qj (t), (j − 1)h ≤ x ≤ jh. (6.147)

The polynomials Lk(ξ) in (6.146) are again of the type (6.137), where, however, the con-
stants are determined from the conditions

[
l(1), −l′(1), l(0), −l′(0)

] = E4×4. (6.148)

The negative signs in the second and fourth columns on the left-hand side of (6.148) stem
from the fact that the local coordinate ξ is measured from right to left, while the global
coordinate x goes from left to right (see Figure 6.10). Using (6.146) in the conditions
(6.148), one obtains the Hermite polynomials

L1(ξ) = 3ξ 2 − 2ξ 3, L2(ξ) = ξ 2 − ξ 3,

L3(ξ) = 1 − 3ξ 2 + 2ξ 3, L4(ξ) = −ξ + 2ξ 2 − ξ 3.

For the potential energy of a beam under an axial force distribution, one therefore has

V = 1

2

∫ l

0

[
EIw2

,xx(x, t) − Nw2
,x

]
dx = 1

2

n∑
j=1

qT
j Kqj , (6.149)

with the local stiffness matrices

Kj = h

∫ 1

0

[
EI

h4
l′′ l′′T − N

h2
l′ l′T
]

dξ, j = 1, 2, . . . , n, (6.150)

where the primes in (6.150) denote derivative with respect to ξ . In a similar way, the kinetic
energy can be written as

T = 1

2

∫ l

0
ρA(x) w2

,t (x, t) dx = 1

2

n∑
j=1

q̇
T
j Mj q̇j .
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For the special case in which EI and ρA are constant over each element, and N = 0, the
elemental stiffness and mass matrices are obtained as

Kj = EIj

h3




12 6 −12 6
6 4 −6 2

−12 −6 12 −6
6 2 −6 4


 , (6.151)

Mj = ρAj h

420




156 22 54 −13
22 4 13 −3
54 13 156 −22

−13 −3 −22 4


 . (6.152)

Different expressions are, however, obtained if the parameters ρA and EI depend on x.
The global stiffness and mass matrices are again obtained by assembling the elemental

matrices according to the scheme (6.125). However, now the marked regions of the boxes
stand for sub-matrices of order 2 × 2. The ‘bandwidth’ of the matrices is now four. The
first two rows and columns are to be eliminated from the global matrices if the boundary
conditions at the left end are w(0, t) ≡ 0 and w,x(0, t) ≡ 0. Nothing needs to be done at the
lower end of the global matrices if the boundary at the right end is free (natural boundary
conditions).

Additional aspects need to be considered for applying the finite-element method to spatial
and higher-dimensional continua. While in a one-dimensional continuum such as a string,
the boundary consists of only two points, in a membrane, the boundary is in general a curve,
which often cannot be represented correctly by finite elements. In the example shown in
Figure 6.11, the domain G is divided into triangular subdomains Gj . The functions Fj (x, y)

are defined in such a way that they assume values different from zero only at points within
the triangles.

Local variables ξ1, ξ2, and ξ3, for example, can be chosen as shown in Figure 6.12. The
local coordinates of a point P = (ξ1, ξ2, ξ3) within the triangle with nodes marked 1, 2, and
3, are defined in the following way. Let Aj be the area of the marked region in Figure 6.12,
which is cut-off by the line parallel to the j th side of the triangle passing through the point
P . If A is the total area of the triangle, the j th coordinate of the point P is then defined by
ξj = Aj/A. The three sides of the triangle then obviously correspond to the lines defined
by ξ1 = 0, ξ2 = 0, and ξ3 = 0. On the other hand, for the corners, one of the coordinates is
equal to unity, and the other two are equal to zero.

x

y

Figure 6.11 Meshing of a plane region with finite elements
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ξ1 = c

x

ξ3 = 0

y

ξ2 = 0

1

(1, 0, 0)

ξ1 = 0

(0, 1, 0)

2

(0, 0, 1)3

P

Figure 6.12 A triangular finite element with definition of local coordinates

For a membrane, it is sufficient to guarantee the continuity of the function w(x, y, t).
This is easily achieved by choosing linear interpolation polynomials of first order of the
type

Li(ξ1, ξ2, ξ3) = ξi, i = 1, 2, 3,

and defining

w(x, y, t) =
3∑

i=1

Li(P )qi(t)

over each element. The conversion from local to global coordinates of course also has to be
done here (see, for example, [8]), and the generalized coordinates qj (t) correspond exactly
to the nodal displacements, as shown in Figure 6.13. It may be mentioned here that the
ordering (numbering) of the elements, which was trivial in the linear continua, will now
influence the bandwidth of the global matrices.

In planar continua also higher-order interpolating polynomials can naturally be used
with the triangular elements. In that case, internal nodes are introduced. Further, not only
triangular elements, but also other shapes may be used. For more details, the reader is
referred to the specialized literature on the subject.

x

z,w

y

1

2

3

q1

q2

q3

Figure 6.13 Linear triangular finite element (for example, for a membrane)
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7
Waves in fluids

In this chapter, two kinds of waves in fluids are discussed, namely acoustic waves in
compressible fluids (liquids and gases) and surface waves in incompressible liquids. In both
cases, it is assumed that the fluid is homogeneous, isotropic and inviscid, unless otherwise
specified. While the study of acoustic waves finds applications in building acoustics, sonar
and underwater communication among others, the study of surface waves is important in
understanding, for example, sloshing of liquids in partially filled containers.

7.1 ACOUSTIC WAVES IN FLUIDS

7.1.1 The acoustic wave equation

In this section, we will derive the equations of motion of acoustic waves in fluids from the
elementary fluid-mechanical equations and also from Hamilton’s principle.

Consider an inviscid fluid under a pressure field p(x, y, z, t). The motion of the fluid is
governed by the Euler equation (see, for example, [1])

ρ
Dv
Dt

= −∇p, (7.1)

where v(x, y, z, t) = [vx, vy, vz]T is the velocity field of the fluid, ρ(x, y, z, t) is the density
field, ∇p := [p,x, p,y, p,z]T is the gradient of the scalar function p(x, y, z, t), and Dv/Dt

is the material or substantial derivative of v, which is defined as

Dv
Dt

= v,t + (v · ∇)v

= ∂v
∂t

+ vx

∂v
∂x

+ vy

∂v
∂y

+ vz

∂v
∂z

. (7.2)

Note that we have not considered the effect of gravity or any other given force fields in (7.1)
which stratify the fluid (in terms of its density). Usually, the effects of such stratification on
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acoustic waves is negligible (unless one studies wave propagation over large length scales,
such as in oceans). The second governing equation for the fluid is the mass conservation or
continuity equation

ρ,t = −∇ · (ρv), (7.3)

where ∇ · (ρv) := (ρvx),x + (ρvy),y + (ρvz),z is the divergence of the vector ρv.
Consider small oscillations of the fluid particles in an otherwise stationary fluid. Assuming

the velocities to be small, one can linearize (7.2) as

Dv
Dt

≈ v,t . (7.4)

Let

p(x, y, z, t) = p0 + p(x, y, z, t), (7.5)

ρ(x, y, z, t) = ρ0 + ρ(x, y, z, t), (7.6)

where p0 and ρ0 are, respectively, the ambient pressure and density (both assumed constant)
of the fluid when it is static, and p(x, y, z, t) and ρ(x, y, z, t) are small variations on the
respective ambient values, due to small oscillations of the fluid. Substituting (7.4)–(7.6) in
(7.1) and (7.3), and dropping all higher order terms, we obtain the linearized governing
equations for the fluid motion as

ρ0v,t = −∇p (from (7.1)), (7.7)

ρ,t = −ρ0∇ · v (from (7.3)). (7.8)

Thus, we have one vector equation (7.7), and one scalar equation (7.8) in three unknowns,
namely v(x, y, z, t), p(x, y, z, t), and ρ(x, y, z, t). Therefore, we require another scalar
equation to be able to solve the system uniquely. This scalar equation is provided by a rela-
tion between the pressure and density fields. Such a relation follows from the thermodynamic
properties of the fluid under consideration.

Since the compressibility of liquids is low and the thermal conductivity is high, one
may assume that the compression process is isothermal. On the other hand, in the case of
gases, high compressibility and poor thermal conductivity makes the compression process
adiabatic. To have a common description for liquids and gases, therefore, we assume a
general relation between pressure and density as

p = p(ρ), (7.9)

such that, around the nominal density of ρ0, one can write

p0 + p = p(ρ0 + ρ)

⇒ p0 + p ≈ p(ρ0) + dp

dρ

∣∣∣
ρ0

ρ

⇒ p = c2ρ, (7.10)
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where

c2 := dp

dρ

∣∣∣∣
ρ=ρ0

(7.11)

is a constant. Substituting the expression of ρ from (7.10) in (7.8), and differentiating the
resulting equation with respect to time yields the linearized equation

p,tt = −c2ρ0∇ · v,t

⇒ p,tt = c2∇ · (∇p) (using (7.7))

or

p,tt − c2∇2p = 0. (7.12)

This is the acoustic wave equation, where c, as defined by (7.11), is the acoustic wave speed
in the medium under consideration.

Assuming that the motion of the fluid is irrotational, i.e., ∇ × v ≡ 0, one can express v
as

v = ∇ψ, (7.13)

where ψ(x, y, z, t) is a scalar field and known as the velocity potential. In terms of the
velocity potential, one may rewrite (7.7) as

ρ0(∇ψ),t = −∇p

⇒ ρ0ψ,t = −p (7.14)

or

ρ0ψ,t = −c2ρ (using (7.10)). (7.15)

Note that in (7.14), any integration constant (which will be purely a function of t) can be
absorbed in ψ,t . Differentiating (7.15) with respect to time and using (7.8) yields

ψ,tt = c2∇ · v = c2∇ · (∇ψ) (using (7.13)),

or

ψ,tt − c2∇2ψ = 0, (7.16)

which is the wave equation for the velocity potential. Taking the gradient of (7.16), one can
easily show that each of the velocity vector components also satisfies the wave equation.
However, it should be remembered that this observation is true only when the motion of
the fluid is irrotational.
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Now, we consider (7.10), and discuss the specific relations for liquids and gases. In
the case of liquids, the change in pressure and the corresponding volume strain are related
through the bulk modulus B of the liquid as (see, for example, [1])

p = −B
V

V0
, (7.17)

where V is the small change in the volume and V0 is the original volume. The relation
(7.17) is based on the assumption of isothermal compression of a liquid. For a fixed mass
of liquid occupying a volume V0, one can write

ρ0V0 = (ρ0 + ρ)(V0 + V )

⇒ V

V0
≈ − ρ

ρ0
, (7.18)

where we have retained only terms up to first order. Therefore, from (7.17) and (7.18), we
have

p = B

ρ0
ρ. (7.19)

Comparing (7.19) with (7.10), we obtain the velocity of sound in liquids as

c =
√

B

ρ0
.

For example, for water with B = 2.2 × 109 N/m2, and ρ0 = 1000 kg/m3, the speed of sound,
is obtained as c = 1483.2 m/s.

In the case of gases, the process of compression and rarefaction during the propagation of
sound is so fast compared to thermal diffusion, that the process can be considered adiabatic.
For an adiabatic process, it is known that

p

ργ
= p0

ρ
γ
0

, (7.20)

where γ := Cp/Cv and Cp and Cv are, respectively, the molar specific heats of the gas at
constant pressure and constant volume. Now, using (7.20) in the definition (7.11), we obtain
the expression of speed of sound in gases as

c =
√

γp0

ρ0
. (7.21)
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One can also express the sound speed in terms of the gas temperature using the ideal gas
equation of state

p = ρ
R

M
T, (7.22)

where R=8.3143 kJ/(K·mole) is the universal gas constant, M is the molar mass of the gas,
and T is the absolute temperature of the gas. Then, using the relation p0/ρ0 = RT0/M from
(7.22), one can rewrite (7.21) as

c =
√

γRT0

M
, (7.23)

where T0 is the ambient temperature of the undisturbed medium. As an example, consider
air, which has γ = 1.4, and is composed of approximately 4/5 parts of nitrogen (molecular
mass 28 × 10−3 kg/mole) and approximately 1/5 part of oxygen (molecular mass 32 × 10−3

kg/mole). Then the average molecular mass of air is given as

Mair = 4

5
28 × 10−3 + 1

5
32 × 10−3 = 28.8 × 10−3 kg/mole.

Then, at 293 K (i.e., 20◦C), the speed of sound in air is obtained from (7.23) as c = 343.8
m/s.

7.1.1.1 The variational formulation

The kinetic and potential energy densities of a fluid are, respectively, (see [2])

T̂ = 1

2
ρ0∇ψ · ∇ψ (7.24)

V̂ = 1

2

ρ0

c2
(ψ,t )

2. (7.25)

The Lagrangian density is then given by

L̂ = T̂ − V̂ = 1

2
ρ0∇ψ · ∇ψ − 1

2

ρ0

c2
(ψ,t )

2. (7.26)

From Hamilton’s principle, we have

δ

∫ t2

t1

∫
V
L̂ dV dt = 0
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or

∫ t2

t1

∫
V

[
ρ0∇ψ · ∇(δψ) − ρ0

c2
ψ,t (δψ),t

]
dV dt = 0

⇒
∫ t2

t1

∫
V

[
∇ · (δψ∇ψ) − (∇2ψ)δψ − 1

c2
ψ,t (δψ),t

]
dV dt = 0. (7.27)

Now, the Gauss divergence theorem states that (see, for example, [3])

∫
V

∇ · v dV =
∫

S
v · n̂ dA, (7.28)

where S is the surface bounding the volume V, and n̂ is the unit surface normal. Using
(7.28), one can rewrite (7.27) as

∫ t2

t1

∫
S
δψ∇ψ · n̂ dA dt −

∫
V

(
1

c2
ψ,tδψ

) ∣∣∣∣
t2

t1

dV

+
∫ t2

t1

∫
V

(
−∇2ψ + 1

c2
ψ,tt

)
δψ dV dt = 0

⇒
∫ t2

t1

∫
S
ψ,n δψ dA dt +

∫ t2

t1

∫
V

(
−∇2ψ + 1

c2
ψ,tt

)
δψ dV dt = 0, (7.29)

where ψ,n := (∇ψ) · n̂ represents the normal velocity at the surface S. The boundary con-
ditions are obtained from the first integral in (7.29), while the second integral yields the
acoustic wave equation (7.16). When a fluid is in contact with a rigid surface S, the boundary
condition is given by ψ,n|S = 0. We will come across other types of boundary conditions
later in this chapter.

7.1.2 Planar acoustic waves

Following the discussions in Section 4.5.1, it can be easily checked that traveling planar
waves in three-dimensional Cartesian space can be represented using the velocity potential

ψ(x, y, z, t) = f (n̂ · r − ct),

where f (z) is a scalar function, n̂ is a unit vector representing the direction of wave
propagation, r = (x, y, z)T is the position vector, and c is the wave speed. For harmonic
plane waves, the velocity potential is

ψ(x, y, z, t) = Aei(k·r−ωt) = Aeik(n̂·r−ct), (7.30)
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where A is the complex amplitude, k = kn̂ is the wave vector, and k is the wave number.
The velocity and pressure fields are obtained as, respectively,

v = ∇ψ = Aikn̂eik(n̂·r−ct), (7.31)

p = −ρ0ψ,t = ρ0Aikceik(n̂·r−ct). (7.32)

The real parts of the complex quantities in (7.30), (7.31) and (7.32) represents the actual
quantities.

Substituting the velocity potential (7.30) in (7.16) yields the dispersion relation

ω2 − c2k2 = 0. (7.33)

The phase and group velocities are obtained as cP = cG = c. Thus, a fluid medium is
non-dispersive to acoustic waves.

The specific mechanical impedance of a fluid medium to acoustic harmonic waves is
defined as

Z = A [p]

A [vn]
, (7.34)

where A [·] represents the complex amplitude, p is obtained from (7.14), and vn is defined
as

vn = ψ,n = n̂ · ∇ψ = ikAeik(n̂·r−ct).

Using the expressions of p and v in (7.34), the specific impedance is obtained as

Z = ρ0c. (7.35)

7.1.3 Energetics of planar acoustic waves

The total mechanical energy density (energy per unit volume) of a fluid medium subject to
a small-amplitude disturbance velocity potential ψ can be written as

Ê = T̂ + V̂ = 1

2
ρ0

[
∇ψ · ∇ψ + 1

c2
(ψ,t )

2
]

. (7.36)

Differentiating (7.36) with respect to time yields

∂Ê
∂t

= ρ0

[
∇ψ · ∇ψ,t + 1

c2
ψ,tψ,tt

]

= ρ0

[
∇ · (ψ,t∇ψ) +

(
−∇2ψ + 1

c2
ψ,tt

)
ψ,t

]
= ∇ · (ρ0ψ,t∇ψ) = ∇ · (−pv). (7.37)
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Note here that the time derivative D(·)/Dt = ∂(·)/∂t , since there is no ambient velocity of
the fluid. Defining the acoustic intensity vector for acoustic waves as

I := pv, (7.38)

one can rewrite (7.37) as

∂Ê
∂t

+ ∇ · I = 0. (7.39)

The acoustic intensity vector represents the acoustic power per unit area flowing in the
direction represented by the vector.

Consider a harmonic planar wave represented by the velocity potential

ψ = A cos[k(n̂ · r − ct)].

The corresponding mechanical energy density can be written as

Ê = ρ0k
2A2 sin2[k(n̂ · r − ct)],

and the average energy density is then obtained as

〈Ê〉 = 1

2
ρ0k

2A2. (7.40)

The acoustic intensity vector for the plane harmonic wave is given by

I = −ρ0ψ,t∇ψ = (ρ0ck
2A2 sin2[k(n̂ · r − ct)]

)
n̂. (7.41)

The magnitude of the intensity vector (termed the intensity) represents the incident power
per unit area, and is given by

I = |I| = ρ0ck
2A2 sin2[k(n̂ · r − ct)].

The average intensity is then obtained as

〈I〉 = ω

2π

∫ 2π/ω

0
Idt = 1

2
ρ0ck

2A2 = c〈Ê〉. (7.42)

Thus, the acoustic energy propagates at the acoustic wave speed c in a fluid.
If we represent p and v in complex notation as in (7.32) and (7.31), then 〈I〉 can also

be directly obtained using

〈I〉 = 1

2
R[p∗v], (7.43)
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where p∗ represents the complex conjugate of p. Using the concept of specific impedance
from (7.34), one can also write the average intensity as

〈I〉 = 1

2
R[Z∗v∗ · v] = 1

2
ρ0ck

2A2. (7.44)

Apart from the intensity, one can also quantitatively characterize the strength of a sound
field by the root mean square value (or effective value) of the pressure field, which is defined
as

prms =
(

1

2
R[p∗p]

)1/2

. (7.45)

In the case of plane acoustic waves, prms = ρ0Ak. It can be easily shown that

〈I〉 = p2
rms/ρ0c. (7.46)

In many practical situations concerned with sound measurement and detection it is conve-
nient to non-dimensionalize the pressure level of sound with a standard pressure level. This
is expressed as the sound pressure level (SPL), which is defined as

Lp := 20 log10
prms

pref
rms

dB, (7.47)

where pref
rms = 20 µPa is known as the reference effective pressure, and dB stands for decibel,

which is a dimensionless scale. This reference effective pressure is the minimum effective
pressure at 2 kHz detectable by a normal human ear. Using (7.46), the reference intensity
level is obtained as 〈I〉ref ≈ 10−12 W/m2.

7.1.4 Reflection and refraction of planar acoustic waves

We now study the process of reflection and refraction of planar acoustic waves. Consider for
simplicity, a plane wave in the x-y-plane incident on the y-z-plane, as shown in Figure 7.1.
In the figure, k̂ = (cosα, sinα)T and k̂′ = (− cosα′, sinα′)T, where α and α′ are, respec-
tively, the angles of incidence and reflection. The velocity potential of the incident wave
can be written as

ψ1(x, y, t) = Aeik(cos αx+sin αy−ct), (7.48)

where k is the wave number and c is the acoustic wave speed in the medium. Let the
velocity potential corresponding to the reflected wave be represented by

ψ2(x, y, t) = Beik′(− cos α′x+sin α′y−ct), (7.49)
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Wall

k̂

k̂′

α

α′

x

y

Figure 7.1 Reflection of a plane wave from a rigid wall

where k′ is the wave number of the reflected wave. Thus, the total wave field is governed
by the velocity potential

ψ(x, y, t) = ψ1(x, y, t) + ψ2(x, y, t). (7.50)

At the y-z-plane, the velocity of the fluid along the normal to the plane must be zero, i.e.,

vx

∣∣
x=0 = ψ,x

∣∣
x=0 ≡ 0. (7.51)

Using (7.48)–(7.50) in (7.51) yields

k cosαAeik(sin αy−ct) − k′ cosα′Beik′(sin α′y−ct) ≡ 0. (7.52)

This condition can be identically satisfied if and only if

k sin α = k′ sinα′ and kc = k′c

⇒ k = k′ and α′ = α, (7.53)

which gives the law of reflection. It may be noted that sin α = sinα′ has another solution,
which is α′ = π − α. However, this has to be discarded since it is physically impossible.
Using the conditions from (7.53) in (7.52), we obtain A = B. Thus, the amplitude of the
wave after reflection at the rigid wall is the same as that of the incident wave.

Next, we consider the process of refraction occurring when a wave travels from one
medium to another, as shown in Figure 7.2. The properties of the second medium are
considered to be different from those of the first medium. In such a situation, we also have
a partial reflection back into the first medium. Let the velocity potential for the wave field
in the first medium be represented by

ψ1(x, y, t) = Aeik1(cos α1x+sin α1y−c1t) + Beik′
1(− cos α′

1x+sin α′
1y−c1t), (7.54)
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Medium I Medium II

Figure 7.2 Reflection and refraction of a plane wave at an interface of two media

where the first term is for the incident wave, the second term represents the partially reflected
wave, and c1 is the velocity of sound in the first medium. The refracted wave in the second
medium can be represented by the velocity potential

ψ2(x, y, t) = Ceik2(cos α2x+sin α2y−c2t), (7.55)

where c2 is the speed of sound in the second medium. Now, the conditions at the boundary
of the two media are given by

vI
x(0, y, t) = vII

x (0, y, t) ⇒ ψ1,x

∣∣
x=0 = ψ2,x

∣∣
x=0, (7.56)

pI(0, y, t) = pII(0, y, t) ⇒ ψ1,t

∣∣
x=0 = ψ2,t

∣∣
x=0, (7.57)

where the superscripts I and II indicate the first and the second medium, respectively,
and the pressure has been expressed in terms of the velocity potential using (7.14). Using
(7.48)–(7.50) and (7.55) in (7.56) yields

k1 cosα1 Aeik1(sin α1y−c1t) + k′
1 cosα2 Beik′

1(sin α′
1y−c1t)

= k2 cosα2 Ceik2(sin α2y−c2t). (7.58)

This condition can be identically satisfied if and only if

k1 sinα1 = k′
1 sin α′

1 = k2 sin α2 and k1c1 = k′
1c1 = k2c2,

⇒ k1 = k′
1, α1 = α2 and

sin α2

sin α1
= k1

k2
= c2

c1
. (7.59)

Thus, we obtain the familiar Snell’s law of refraction in (7.59). Using the conditions from
(7.59) in (7.58), we obtain

k1 cosα1(A − B) = k2C cosα2. (7.60)



300 Waves in fluids

From the pressure condition (7.57) at the interface, we have

ρ1ψ1,t

∣∣
x=0 = ρ2ψ2,t

∣∣
x=0

⇒ ρ1(A + B) = ρ2C. (7.61)

Using (7.60) and (7.61) one can easily obtain

B = c2ρ2 cosα1 − c1ρ1 cosα2

c2ρ2 cosα1 + c1ρ1 cosα2
A, (7.62)

C = 2c2ρ2 cosα1

c2ρ2 cosα1 + c1ρ1 cosα2

ρ1

ρ2
A. (7.63)

The reflected and the refracted waves are now completely determined.
Let us now consider the case when sin α2 = (c2/c1) sinα1 > 1. As is obvious, this can

happen only when c2 > c1. Then, we have

cosα2 =
√

1 − sin2 α2 = i

√
sin2 α2 − 1 := iβ. (7.64)

Using this expression and (7.59) in the velocity potential of the refracted wave, we have

ψ2(x, y, t) = Ce−k2βxeik1(y sin α1−c1t). (7.65)

It may be noted here that the wave in the second medium is evanescent along the x-axis
direction, and travels along the y-axis direction with the speed c1. Such a wave is known
as an inhomogeneous wave. Since evanescent waves do not carry energy, there is no energy
transport in the x-axis direction. Hence, in this case, the incident energy is completely
reflected back into the first medium (total reflection).

7.1.5 Spherical waves

Any disturbance in a three-dimensional medium causes, in general, a spatial wave. The
simplest of such spatial waves is the spherical wave. Consider the three-dimensional wave
equation in spherical coordinates (r, θ, φ) given by

ψ,tt − c2
(

ψ,rr + 2

r
ψ,r + 1

r2 sin2 θ
ψ,φφ + 1

r2
ψ,θθ + 1

r2
cot θψ,θ

)
= 0, (7.66)

where ψ(r, θ, φ, t) is the velocity potential. For symmetrical spherical waves, the velocity
potential should depend on r only, i.e., ψ = ψ(r, t). In that case, (7.66) simplifies to

ψ,tt − c2
(

ψ,rr + 2

r
ψr

)
= 0

⇒ (rψ),tt − c2(rψ),rr = 0. (7.67)
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This is clearly the one-dimensional wave equation for rψ . Therefore, a general solution of
(7.67) can be written as

rψ(r, t) = f (r − ct) + g(r + ct)

⇒ ψ(r, t) = 1

r
[f (r − ct) + g(r + ct)],

where f (z) and g(z) are arbitrary functions.
As mentioned previously, any wave pulse can be represented by superposition of har-

monic waves. Consider an outgoing harmonic spherical wave solution of (7.67) in the
form

ψ(r, t) = A

r
ei(kr−ωt) (7.68)

where A is the amplitude of the harmonic wave. The velocity and pressure fields can be
calculated as, respectively,

v(r, t) = ∇ψ = A

[
− 1

r2
+ ik

r

]
ei(kr−ωt)êr

p(r, t) = −ρ0ψ,t = Aρ0
iω

r
ei(kr−ωt),

where êr is the unit vector in the outward radial direction.
The specific mechanical impedance of a medium for spherical harmonic waves can be

obtained as

Z = A [p]

A [v]
= ρ0c

(
k2r2

1 + k2r2
− i

kr

1 + k2r2

)
. (7.69)

It is interesting to note that, as kr → ∞, one obtains Z → ρ0c, which is the specific
impedance of the medium for a plane wave. The average intensity of the spherical wave at
any radius r can be determined using (7.69) in the definition (7.44) as

〈I〉 = 1

2
R[Z∗v∗ · v] = 1

2
ρ0c

k2

r2
A2.

Thus, the average intensity of spherical harmonic waves falls as 1/r2. The average power
flow can be obtained as

〈P〉 = 4πr2〈I〉 = 2πρ0ck
2A2.

It is evident from the above that the real part of Z is associated with the power flow. A
physical interpretation of the real and imaginary parts of Z is discussed with the following
example.

Let us consider the spherical harmonic waves generated from a harmonically breathing
sphere of radius R, as shown in Figure 7.3, and determine the associated acoustic field.
Assume that the surface of the sphere oscillates radially with a velocity

vS = v̂eiωt êr, (7.70)
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R

Figure 7.3 A uniformly radially oscillating (breathing) sphere

where v̂ is the amplitude of vibration. Let the corresponding velocity potential for the fluid
be given by

ψ(r, t) = ψ̂

r
ei(−kr+ωt), (7.71)

where ψ̂ is an unknown amplitude. The velocity potential (7.71) has been chosen with
the consideration that the waves are all outgoing (see Sommerfeld radiation condition in
Section 4.5.2), and having the same frequency as that of the surface of the sphere. The
velocity field in the fluid is then obtained as

vF =
(

ψ̂

[
1

r2
+ ik

r

]
ei(−kr+ωt)

)
êr.

Matching the velocity of the fluid on the surface of the sphere vF|r=R , and the velocity of
the surface vS yields

v̂eiωt = ψ̂

[
1

R2
+ ik

R

]
e−ikR

⇒ ψ̂ = v̂
R2

1 + ikR
eikR. (7.72)

Using this, the velocity and pressure fields in the fluid can be expressed as, respectively,

v(r, t) = R2

r2

1 + ikr

1 + ikR
v̂eikRei(−kr+ωt)êr, (7.73)

p(r, t) = ρ0iω

r

R2

1 + ikR
v̂eikRei(−kr+ωt). (7.74)

The actual solution is obtained by taking the real part of the above expressions.
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The specific impedance of the medium, as seen by the sphere, can be easily obtained
from (7.73)–(7.74) as

Z = A [p]
∣∣
r=R

A [v]
∣∣
r=R

=
(

ρ0ck
2R2

1 + k2R2

)
+ i

(
ρ0ckR

1 + k2R2

)
= ZR + iZI. (7.75)

In general, the real part ZR is known as radiation resistance, while the imaginary part ZI is
known as radiation reactance. As can be easily checked, the pressure on the sphere surface
due to a harmonic radial velocity of the form (7.70) can be written as

p(t) = ZRv + ZI

ω

dv

dt
= drv + mr

dv

dt
, (7.76)

where we have assumed ZI > 0. This equation provides a physical interpretation of the
real and imaginary parts of the specific impedance Z . It is evident that dr := ZR can be
interpreted as the damping coefficient, and is known as the radiation damping coefficient.
It was observed before that ZR is associated with the power flow through the medium. In
this case, the power flow through the medium will be equal to the power lost by the sphere
through radiation damping. On the other hand mr := ZI/ω = ZI/ck behaves like a mass,
and hence represents an added mass (or virtual mass) per unit area of the sphere surface. For
the breathing sphere, the variations of the real and imaginary parts of the specific impedance
with the non-dimensional wave number kR are shown in Figure 7.4. The variations of the
radiation damping and added mass coefficients (both non-dimensionalized) with the non-
dimensional wave number kR for a sphere of radius R are shown in Figure 7.5. It is observed
that for small wave numbers (i.e., large wavelengths), the fluid behaves more like an added
mass. On the other hand, for large wave numbers, the behavior of the fluid is more like that
of a damper. Alternatively, it may be said that the sphere radiates more effectively at large
wave numbers. For ZI < 0, the expression of p(t) in (7.76) should be modified to

p(t) = ZRv − ωZI

∫ t

0
v(τ ) dτ. (7.77)

1 2 3 4 5

0.5

1

ZI/ρc

ZR/ρc

kR

Figure 7.4 Non-dimensional specific radiation resistance ZR/ρc and reactance ZI/ρc for a breathing
sphere
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mr/ρR

dr/ρc

kR

Figure 7.5 Non-dimensional added mass coefficient mr/ρR, and non-dimensional radiation damping
coefficient dr/ρc for a breathing sphere

Then −ωZI has the interpretation of a stiffness. It may be reiterated that the above inter-
pretations of mass, stiffness and damping are valid only for harmonic breathing motion of
the sphere. One more point of importance is the distinction between ordinary damping and
radiation damping. While in ordinary damping mechanical energy is irreversibly converted
to thermal energy, in radiation damping mechanical energy just flows out into an infinite
medium, and is therefore lost.

Let us consider the pressure field around a breathing sphere. The root mean square value
(or effective value) of the pressure at any radius r is obtained using the definition (7.45) as

prms = ρ0ω√
2

R2

√
1 + k2R2

v̂

r
. (7.78)

It is interesting to consider the influence of the wave number k (specifically kR) on the
pressure amplitude. For kR � 1 (i.e., R � λ), we have

prms ≈ ρ0ω

k
√

2
R

v̂

r
= ρ0cR√

2

v̂

r
. (7.79)

Thus, the pressure amplitude is independent of the frequency in this case. On the other
hand, when kR � 1 (i.e., R � λ), (7.78) yields

prms ≈ ρ0ωR2

√
2

v̂

r
, (7.80)

which implies that the pressure amplitude in this case is proportional to the frequency.
Hence, to make the effective pressure independent of the frequency, one has to vary the
velocity amplitude inversely to the frequency.

Next, we determine the power carried by a spherical wave. Using (7.73) and (7.74), one
can compute the average acoustic intensity from (7.43) as

〈I〉 = 〈|I|〉 = 1

2
ρ0ωk

R4

1 + k2R2

v̂2

r2
. (7.81)
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Since the intensity of a wave is the power per unit area, one can compute the average power
carried by the spherical wave as

〈P〉 = 4πr2〈I〉 = 2πρ0ωkv̂2 R4

1 + k2R2
. (7.82)

For kR � 1, we have from (7.82)

〈P〉 ≈ 2πρ0cv̂
2R4. (7.83)

On the other hand, when kR � 1, (7.82) yields

〈P〉 ≈ 2πρ0ωkv̂2R4 = 2π
ρ0

c
ω2v̂2R4. (7.84)

For kR � 1, the acoustic power is independent of the frequency. Hence, to deliver uniform
acoustic power over a frequency band, we need to ensure that R � c/ωmin, where ωmin is
the minimum circular frequency of the band.

A breathing sphere constitutes what is defined as a simple source of sound, or an acoustic
monopole. An acoustic monopole may be considered to be a spherical source with R → 0,
but with finite volume flow rate amplitude of the fluid. The volume flow rate amplitude,
which is also referred to as the source strength of the monopole, can be computed as

Q̂ :=
∣∣∣∣
∫

S
v · n̂dS

∣∣∣∣ = 4πR2v̂.

Using this definition and the condition R → 0, the velocity potential obtained from (7.71)
and (7.72) takes the form

ψ(r, t) = Q̂

4πr
ei(−kr+ωt).

A complex sound source may be modeled, in the first approximation, as a distribution of
such acoustic monopoles.

7.1.6 Cylindrical waves

There are many problems of interest where the sound waves can be approximated by spher-
ical waves. There are, however, also situations where the waves are generated from an
extended surface. To the first approximation, they can be considered to be generated from
a cylindrical surface with the radius of the cylinder oscillating uniformly throughout its
length.

Consider the wave equation in cylindrical polar coordinates (r, φ, z) as

ψ,tt − c2
[
1

r
(rψ,r ),r + 1

r2
ψ,φφ + ψ,zz

]
= 0. (7.85)
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Assuming uniformity in the φ and z coordinate directions, we have ψ = ψ(r, t). The wave
equation (7.85) then simplifies to

ψ,tt − c2
[
1

r
(rψ,r),r

]
= 0. (7.86)

Substituting

ψ(r, t) = F(r)eiωt (7.87)

in (7.86) yields on simplification

F ′′(r) + 1

r
F ′(r) + ω2

c2
F(r) = 0, (7.88)

which is Bessel’s differential equation. Defining k = ω/c, the general solution of (7.88) can
be written as (see, for example, [3])

F(r) = BJ0(kr) + CY0(kr), (7.89)

where J0(kr) and Y0(kr) are, respectively, the zeroth-order Bessel functions of first and
second kinds.

Let us assume that there are no other sources of disturbance in the medium. Then, as
discussed in Section 4.5.2, the solution of (7.86) must satisfy the Sommerfeld radiation
condition. This is ensured by first expressing the solution (7.89) in terms of the Hankel
functions (see Section 4.5.2) as F(r) = DH

(1)
0 (kr) + EH

(2)
0 (kr), and then taking D = 0.

Here, H
(1)
0 (·) and H

(2)
0 (·) are the Hankel functions of first and second kinds, respectively.

Thus, the solution (7.87) is of the form

ψ(r, t) = EH
(2)
0 (kr)eiωt , (7.90)

where

H
(2)
0 (kr) = J0(kr) − iY0(kr).

For kr � 1, we can approximate H
(2)
0 (kr) as

H
(2)
0 (kr) ≈

√
2

πkr
ei(−kr+π/4), (7.91)

so that (7.90) can be written as

ψ(r, t) ≈ E

√
2

πkr
ei(−kr+ωt+π/4) for kr � 1, (7.92)

which is an outgoing harmonic wave radiated from a cylindrical surface. The calculations of
wave impedance and energetics of cylindrical waves can be performed similarly as discussed
for the case of spherical waves in Section 7.1.5.
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7.1.7 Acoustic radiation from membranes and plates

The problem of sound emission from machines or other vibrating flexible surfaces is an
important and complex engineering problem. This problem requires a detailed study of the
interplay between the dynamics of the surface and the dynamics of the surrounding fluid.
The dynamics of vibrating flexible surfaces in the simplest cases can be modeled as either a
membrane or a plate. In most of these cases, no analytical solutions are possible, and only
numerical solutions are sought. Here, we consider only a simplified problem consisting of
radiation of sound in air from a vibrating flexible surface. To keep the analysis simple, we
disregard the effect of the forces generated by the air on the surface. This implies that the
surface provides only a kinematic boundary condition for the motion of the air above it.
The effect of fluid loading on the vibrating surface will be discussed briefly at the end of
this section.

Consider a membrane or a plate of infinite extent in the horizontal x-y-plane of the
Cartesian coordinate system, as shown in Figure 7.6. The motion of the flexible surface,
assumed to be independent of the dynamics of the air, is taken as

w(x, y, t) = A sin kxx sin kyy ei�t , (7.93)

where the real part of w(x, y, t) represents the actual motion. It may be mentioned that
such a motion of an infinite surface can be considered to be the superposition of two
counter-propagating harmonic waves. The normal velocity of the surface is given by

w,t = v̂ sin kxx sin kyy ei�t , (7.94)

where v̂ = i�A.
Let us study the sound generated above the surface, i.e., in the region z > 0. The acoustic

wave equation governing the motion of the air above the surface may be written as

ψ,tt − c2(ψ,xx + ψ,yy + ψ,zz) = 0, (7.95)

where ψ(x, y, z, t) represents the velocity potential and c is the speed of sound in air. Since
the velocity of the air normal to the surface must satisfy the boundary condition (7.94), let
us consider a velocity potential of the form

ψ = Z(z) sin kxx sin kyy ei�t , (7.96)

x

z,w

∞ ∞

ρp, h,D

Figure 7.6 Coordinate system for an infinite surface radiating sound
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where Z(z) is an unknown function of z. The velocity boundary condition on the surface
can now be represented as

vz

∣∣
z=0 = ψ,z

∣∣
z=0 = w,t ,

⇒ Z′(0) = v̂ (using (7.94) and (7.96)). (7.97)

Substituting (7.96) in (7.95) yields

Z′′ +
(

�2

c2
− k2

x − k2
y

)
Z = 0

or

Z′′ + (k2 − k2
T)Z = 0, (7.98)

where k2 := �2/c2 and k2
T := k2

x + k2
y . Now, there can be two possibilities:

k2 − k2
T > 0 and k2 − k2

T < 0.

Corresponding to these two possibilities, let us represent (7.98) as, respectively,

Z′′ + k2
zZ = 0, where k2

z = k2 − k2
T, (7.99)

or

Z′′ − k2
zZ = 0, where k2

z = k2
T − k2. (7.100)

The solution of (7.99) can be represented as

Z(z) = aeikzz + be−ikzz, (7.101)

where a and b are the arbitrary constants of integration. Now, if we consider an infinite air
medium with no sound source other than the surface, then all acoustic waves must propagate
along the positive z-axis direction above the surface. Hence, we must have a = 0. Therefore,
the velocity potential (7.96) can be written as

ψ = b sin kxx sin kyy ei(−kzz+�t). (7.102)

From the boundary condition (7.97), we obtain

b = i
v̂

kz

= −�A

kz

.
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Therefore, the actual velocity and pressure fields are given by, respectively,

v(x, y, z, t) =




−�A
kx

kz

cos kxx sin kyy cos(−kzz + �t)

−�A
ky

kz

sin kxx cos kyy cos(−kzz + �t)

�A sin kxx sin kyy sin(−kzz + �t)




,

p(x, y, z, t) = ρ0
�A

kz

sin kxx sin kyy sin(−kzz + �t).

Consider next the case represented by (7.100) for which the solution is obtained as

Z(z) = aekzz + ae−kzz.

In the region z > 0, if the solution is to be finite, we must have a = 0. Using this condition,
the velocity potential satisfying the boundary condition (7.97) is easily obtained as

ψ = − iωA

kz

sin kxx sin kyy e−kzzei�t . (7.103)

In this case, the actual velocity and pressure fields are given by

v(x, y, z, t) =




�A
kx

kz

cos kxx sin kyy e−kzz sin�t

�A
ky

kz

sin kxx cos kyy e−kzz sin�t

−�A sin kxx sin kyy e−kzz sin �t




,

p(x, y, z, t) = −ρ0
�A

kz

sin kxx sin kyy e−kzz cos�t.

Let us now compute the average intensity of the acoustic waves on a plane parallel to the
x-y-plane for the two cases discussed above. This calculation can be easily performed as

〈I(x, y)〉 = 1

2
R[p∗vz] = −1

2
R[ρ0ψ

∗
,tψ,z].

For the second case (i.e., k2 − k2
T < 0) 〈I(x, y)〉 = 0, while for the first case

〈I(x, y)〉 = ρ0�

2kz

v̂2 sin2 kxx sin2 kyy. (7.104)
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One can also write (7.104) as

〈I(x, y)〉 = ρ0c
k

kz

v̂

2
sin2 kxx sin2 kyy = ρ0c

k

kz

v2
rms,

where v2
rms = R[v∗ · v]/2. The average intensity of a plane wave generated by an oscillating

rigid surface is given by

〈Iw〉 = prmsvrms = ρ0cv
2
rms.

Comparing 〈I〉 with 〈Iw〉, one can define the radiation efficiency σ of a membrane or a
plate as

σ := 〈I〉
〈Iw〉 = k

kz

.

When k < kT, σ = 0, while in the case k > kT, we have

σ = k√
k2 − k2

T

.

The dependence of the radiation efficiency on the non-dimensional factor k/kT is shown in
Figure 7.7. For a finite membrane or plate, the figure is somewhat modified since there is
some radiation even for k < kT.
Let us now examine the situation k < kT in which case the acoustic wave becomes evanes-
cent. Consider the x − z-plane kyy = π/2 on which the velocity field is given by

v(x, y, z, t) =




�A
kx

kz

cos kxx e−kzz sin�t

0

−�A sin kxx e−kzz sin �t




. (7.105)

1 2 3 4

1

2

3

4

5
σ

k/kT

Figure 7.7 Radiation efficiency of a vibrating flexible surface as a function of the wave number
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In order to determine the path of the air particles during motion, we compute the streamlines,
which are the curves tangential to the velocity vector at every point.

In the two-dimensional x-z-plane kyy = π/2, the tangent to the streamlines at any point
can be determined as

dz

dx
= vz

vx

= − kz

kx

tan kxx. (7.106)

The solution of (7.106) yields the streamlines as

z = kz

kx

ln[cos kxx] + a,

where a is the constant of integration. The streamlines over a vibrating flexible surface
are shown in Figure 7.8. The surface velocity profile on the corresponding x − z-plane is
indicated by the dashed line. It is clear from (7.105) that the magnitude of the velocity
vector falls off exponentially with increasing z. Therefore, the motion of the air is limited
to the neighborhood of the oscillating surface. This is sometimes referred to as acoustic
or hydrodynamic short-circuit. Since the velocity field is harmonic in time, the direction of
the velocity vector reverses harmonically along the streamlines. It is to be noted that the
individual air particles do not travel along the complete streamline, but only oscillate along
a very small part of it.

In the above analysis, we assumed a motion of the surface of the form (7.93) in which
kx , ky and � seem unrelated. However, they are related by the dynamics of the surface,
which may be modeled, for example, as a membrane or a plate. The membrane equation of
motion is given by

µw,tt − T ∇2w = 0,

where µ is the mass of the membrane per unit area and T is the tension per unit length. It
must be pointed out here that we have made an approximation in this model by excluding
the fluid reaction pressure on the membrane. Substituting (7.93) in the membrane equation
of motion yields

k2
T = µ

T
�2. (7.107)

Figure 7.8 Fluid streamlines over a vibrating flexible surface
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Now, for the case of acoustic radiation, we have

k2
T < �2/c2. (7.108)

Therefore, using (7.107) in (7.108) yields

µ

T
�2 <

�2

c2
⇒ T > T c := µc2, (7.109)

where T c is the critical value of tension per unit length for acoustic radiation from a
membrane. It can be easily concluded from (7.109) that the wave speed in the membrane
cM = √

T /µ must be greater than the sound speed c in the fluid for the membrane to radiate
sound.

In the case of a uniform plate, the equation of motion is given by

ρPhw,tt + D∇4w = 0,

where ρP is the density of the plate material, h is the thickness, and D = Eh3/[12(1 − ν2)].
Substituting (7.93) in the plate equation of motion, we obtain

k4
T = ρPh

D
�2. (7.110)

Using (7.110) in (7.108) yields the radiation condition for a plate as

� > �c := c2

√
ρPh

D
, (7.111)

where �c is known as the coincidence frequency. The expression of phase velocity of bend-
ing waves in a plate can be obtained from (7.110) as cP = �/kT = kT

√
D/ρPh. Using

this expression and the dispersion relation �/kT = cP, one can easily rewrite the radi-
ation condition (7.111) as cP > c. Thus, if the phase velocity of bending waves in the
plate is higher than the speed of the acoustic waves in the fluid, the plate will radiate
sound. It should be remembered that the above analysis was performed for a flexible
surface of infinite extent. In the case of a finite surface, there is acoustic radiation even
below the cut-off condition, because the acoustic short-circuit cannot occur near the bound-
aries.

When acoustic radiation takes place, vibration energy of the surface propagates into the
infinite fluid medium surrounding the surface in the form of sound. The surface obviously
loses energy continuously, and as a result, its motion is damped. This is known as radiation
damping, as discussed previously. If the surface is to maintain its motion, it has to be forced.
In the analysis presented above in this section, the radiation damping effect was not observed,
because we excluded the effect of the surrounding fluid on the motion of the surface. A
metallic plate vibrating in air may be hardly affected by the motion of the surrounding air.
Hence, the dynamics of the plate is practically uncoupled from the dynamics of the air. In
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such a case, the effect of radiation damping can be observed only over large time scales.
However, for the case of a plate vibrating in water, for example, one cannot neglect the
effect of the dynamics of the water on the plate. The effect of the fluid pressure has to be
included in the equation of motion of the plate as an external pressure term (see [4]).

In order to include the effect of radiation damping for harmonic motion of a surface, say
a membrane, we introduce a radiation reaction pressure term in the equation of motion as

µw,tt − T ∇2w = −p.

The radiation pressure can be conveniently related to the membrane kinematics through the
impedance of the fluid. The impedance of the fluid, as seen by the membrane, is given by

Z = A [p]

A [vz]
= −ρ0

A [ψ,t ]

A [ψ,z]

∣∣∣∣
z=0

,

where ψ is in complex time-harmonic form and A [·] denotes the complex amplitude. In
the case of radiation from the membrane, using (7.102), we obtain

Z = ρ0�

kz

.

Now, we make the approximation that the transverse wave speed in the membrane remains
unaffected by the surrounding fluid. Hence, using (7.107) in the definition of kz in (7.99),
one obtains

kz = �

cMc

√
c2
M − c2.

Since cM > c for radiation, Z is real (i.e., resistive), and we can express the pressure at the
surface as p = Zw,t . Therefore, taking into account the radiation damping of a harmonically
vibrating membrane, one obtains the equation of motion of the membrane as

µw,tt + dw,t − T ∇2w = 0.

where

d = 2ρ0cMc√
c2
M − c2

.

Note that a factor of two has been taken in the expression of d to include the effect of
fluid loading from both sides of the membrane. When cM � c, it is easily observed that
d ≈ 2ρ0c. When cM < c, Z is reactive (imaginary), and hence there is no radiation. In that
case, one obtains an added inertia in the membrane due to the fluid. A similar analysis can
be performed for a plate.
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7.1.8 Waves in wave guides

Wave guides are structured media that can guide a traveling wave (or wave energy) from
one point to another. For example, a stethoscope uses a wave guide for transmitting acoustic
signals, picked up by the chestpiece, to the ear. Here we consider two simple geometries of
wave guides and study the propagation of acoustic waves through them.

7.1.8.1 Wave guide with a rectangular cross-section

Consider an infinitely long linear wave guide with a rectangular cross-section, as shown in
Figure 7.9. The reference frame is fixed, with the x-axis directed along the wave guide, as
shown in the figure. We study the propagation of acoustic waves through the fluid inside
the guide.

Consider the velocity potential corresponding to a wave traveling in the positive x-axis
direction of the form

ψ(x, y, z, t) = (Ae−ikyy + Beikyy)(Ce−ikzz + Deikzz)ei(−kxx+ωt). (7.112)

The condition of zero normal velocity at the walls of the guide yields the corresponding
boundary conditions as

vy(x, 0, z, t) ≡ 0, vy(x, a, z, t) ≡ 0, (7.113)

vz(x, y, 0, t) ≡ 0, vz(x, y, b, t) ≡ 0. (7.114)

Then, using the definition

vy = ψ,y = iky(−Ae−ikyy + Beikyy)(Ce−ikzz + Deikzz)ei(−kxx+ωt), (7.115)

a

b

z

y

x

Figure 7.9 A rectangular wave guide
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and substituting in the conditions in (7.113) yields

A = B and sin kya = 0. (7.116)

Similarly, from the conditions on vz in (7.114), we get

C = D and sin kzb = 0. (7.117)

From the second equalities in (7.113) and (7.114), we have

ky = mπ

a
and kz = nπ

b
. (7.118)

Hence, for the mode (m, n),

ψ(m,n)(x, y, z, t) =
[
ψ̂(m,n) cos

mπy

a
cos

nπz

b

]
ei(−kxx+ωt). (7.119)

Substituting this in the wave equation yields the dispersion relation

k2
x + m2π2

a2
+ n2π2

b2
− ω2

c2
= 0. (7.120)

It is evident that only the mode (m, n) = (0, 0) is non-dispersive, while all other modes are
dispersive. The dispersion relation for a square wave guide is shown in Figure 7.10. The
phase velocity of waves in the wave guide is then given by

cP = ω

kx

= c

kx

√
k2
x + m2π2

a2
+ n2π2

b2
. (7.121)

The group velocity is obtained as

cG = dω

dkx

= ckx√
k2
x + m2π2

a2
+ n2π2

b2

. (7.122)

Therefore, one can easily shown that cP cG = c2.
Consider the propagation of an acoustic wave of frequency ω through the wave guide.

If ω < ωc, where

ωc
(m,n) := c

√
m2π2

a2
+ n2π2

b2
, (7.123)

the wave number kx of the acoustic wave calculated from (7.120) becomes imaginary. Hence,
the wave solution (7.119) for mode (m, n) becomes evanescent, and cannot propagate.
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Figure 7.10 Dispersion relation of a square wave guide

However, higher modes may still propagate. The frequency ωc
(m,n) is hence known as the cut-

off frequency for the mode (m, n) of the wave guide. The cut-off frequencies are indicated
in Figure 7.10 for the modes shown. There is no cut-off frequency for the mode (0, 0).

If an acoustic signal consisting of a band of frequencies is to be transmitted through a
wave guide, dispersion is to be avoided, so that the signal is not distorted. The frequency
band of interest must then be made to fall within the non-dispersive frequency range shown
in Figure 7.10. Therefore, the highest frequency of the band, ωmax, must satisfy

ωmax < min[ωc
(1,0), ωc

(0,1)]

⇒ ωmax

c
< min

[π
a

,
π

b

]
(using (7.123)). (7.124)

In the non-dispersive range, ωmax/c = kmax = 2π/λmin. Hence, in terms of the wavelength,
the condition for no dispersion can be written from (7.124) as

max[a, b] < λmin/2.

In other words, one must choose a wave guide with dimensions a and b smaller than half
the shortest wavelength to be transmitted.

7.1.8.2 Wave guide with a circular cross-section

Next consider the more important case of a circular wave guide of radius R, as shown in
Figure 7.11. Let the velocity potential in this case be

ψ(r, φ, z, t) = F(r)eimφei(−kzz+ωt), (7.125)

where m is an integer. Substituting (7.125) in the wave equation in the cylindrical polar
coordinates (7.85) yields

F ′′(r) + 1

r
F ′(r) +

(
α2 − m2

r2

)
F(r) = 0, (7.126)
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R

r

φ

z

Figure 7.11 A circular wave guide

where

α2 := ω2

c2
− k2

z . (7.127)

The solution of the Bessel differential equation (7.126) can be written in the form (see, for
example, [3])

F(r) = AJm(αr) + BYm(αr). (7.128)

From the finiteness condition at r = 0, we must have B = 0 in (7.128). Therefore, the
velocity potential (7.125) can now be written as

ψ(r, φ, z, t) = ψ̂Jm(αr)eimφei(−kzz+ωt). (7.129)

Using (7.129) in the boundary condition vr(R) = ψ,r |r=R ≡ 0 yields

J ′
m(αR) = 0. (7.130)

The first few roots of (7.130) are obtained as α(0,1)R = 0.0, α(0,2)R = 3.8317, α(1,1)R =
1.8412, α(1,2)R = 5.3314, and so on. Using the approximate representation

Jm(x) ≈
√

2

πx
cos
(
x − (2m + 1)

π

4

)
, for x � 1 (7.131)

in (7.130), one can obtain approximate values of α(m,n)R as

α(m,n)R ≈ [2m + 4n − 3]
π

4
.
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This approximation yields, for example, α(0,2)R = 3.927. The solution for the velocity poten-
tial can now be written as

ψ(m,n)(r, φ, z, t) = C(m,n)Jm(α(m,n)r)e
imφei(−kzz+ωt), (7.132)

where C(m,n) is an arbitrary complex constant.
Finally, the dispersion relation is obtained from (7.127) as

k2
z = ω2

c2
− α2

(m,n). (7.133)

It is evident from (7.133) that kz will be real only for

ω > ωc
(m,n) := cα(m,n), (7.134)

where ωc
(m,n) is the cut-off frequency for the mode (m, n). Below the frequency ωc

(m,n),
there will be no transmission in the mode (m, n). Since α(0,1) = 0, the circular wave guide
is non-dispersive for the mode (0, 1) and dispersive for all higher modes. If one wants to
avoid dispersion in a frequency band of interest, one must select the dimensions of the
wave guide such that the first cut-off frequency ωc

(1,1) lies above the maximum frequency
of the considered frequency band, as was demonstrated for rectangular wave guides in
Section 7.1.8.1.

7.1.9 Acoustic waves in a slightly viscous fluid

In the previous sections, we considered acoustic waves in inviscid fluid media. In this section
we study the propagation (or attenuation) of waves when the medium has slight viscosity.
To keep the analysis simple, the most important assumption we make is that the entropy
generation due to the slight internal dissipation is negligible. Further, as before, we also
neglect thermal diffusion. More detailed analysis (including thermal diffusion) can be found
in [5].

To study the effect of viscosity, we begin with the linearized Navier–Stokes equation

∂v
∂t

= − 1

ρ0
∇p + ν∇2v + ν

3
∇(∇ · v), (7.135)

where ν := µ/ρ0 is the kinematic viscosity, µ is the viscosity, and we assume µ to be small.
The conditions used for linearization remain the same as in Section 7.1.1. The linearized
equation of continuity and the equation of state are given by, respectively,

∂ρ

∂t
+ ρ0∇ · v = 0, (7.136)

p = c2ρ. (7.137)
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Substituting the expression of ρ from (7.137) in (7.136) yields

∂p

∂t
+ c2ρ0∇ · v = 0, (7.138)

and differentiating this with respect to time gives

∂2p

∂t2
+ c2ρ0∇ · ∂v

∂t
= 0. (7.139)

Substituting for the local acceleration ∂v/∂t from (7.135) in (7.139), one obtains

∂2p

∂t2
+ c2ρ0

[
− 1

ρ0
∇2p + ν∇2(∇ · v) + ν

3
∇2(∇ · v)

]
= 0

or

∂2p

∂t2
+ c2ρ0

[
− 1

ρ0
∇2p + 4ν

3
∇2(∇ · v)

]
= 0

or

∂2p

∂t2
+ c2ρ0

[
− 1

ρ0
∇2p − 4ν

3ρ0c2
∇2 ∂p

∂t

]
= 0 (using (7.138))

or

∂2p

∂t2
− c2∇2p − 4ν

3
∇2 ∂p

∂t
= 0. (7.140)

This is the governing differential equation for acoustic pressure waves in a slightly viscous
medium. As can be easily recognized in (7.140), we have the wave equation with an addi-
tional viscosity term which is responsible for attenuation, as will be shown below. It may be
mentioned that no velocity potential can be defined here, since the fluid motion is rotational
in general. However, for plane waves, and purely spherical and cylindrical waves one can
easily show that ∇ × v ≡ 0. In these cases, therefore, one can write v = ∇ψ , and the wave
equation with viscosity is obtained as

∂2ψ

∂t2
− c2∇2ψ − 4ν

3
∇2 ∂ψ

∂t
= 0.

Consider a propagating plane harmonic pressure wave represented by

p = p0e
i(kn̂·r−ωt). (7.141)
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Substituting this in (7.140) yields the dispersion relation

ω2 − c2k2 + i
4ν

3
ωk2 = 0, (7.142)

from where the k is obtained in terms of the frequency as

k2 = ω2

c2 − i
4ν

3
ω

⇒ k ≈ ±ω

c

[
1 + i

2ν

3c2
ω

]
. (7.143)

It is evident from (7.143) that viscosity makes the medium dispersive.
Consider a plane harmonic pressure wave traveling along the direction of the positive x-

axis. Substituting the expression of k for the positive-traveling wave in (7.141), and writing
n̂ · r = x, we obtain

p = p0e
− 2νω2

3c3
x
ei ω

c (x−ct).

Thus, the pressure amplitude falls exponentially as the wave propagates. Further, the higher
the frequency, the higher is the attenuation of the wave.

7.2 SURFACE WAVES IN INCOMPRESSIBLE LIQUIDS

The remaining part of this chapter deals with the dynamics of waves on the surface of
incompressible liquids. It is known from the study of fluid mechanics that liquid surfaces
are subject to surface tension forces. However, in the following analysis, we assume that
the surface wave amplitude is much smaller than the wavelength. The surface tension forces
due to the small surface curvature may then be neglected in comparison to the gravity force,
which is much larger on the earth.

7.2.1 Dynamics of surface waves

Consider an inviscid incompressible homogeneous body of liquid with a free surface, as
shown in Figure 7.12. Assume a coordinate system such that the x-y-plane coincides with
the undisturbed (reference) surface of the liquid, as shown in the figure. Euler’s equation of
motion and the continuity equation can be written as, respectively, (see, for example, [1])

ρv,t + ρ(v · ∇)v = −ρgk̂ − ∇p = −∇p, (7.144)

∇ · v = 0, (7.145)



7.2 Surface waves in incompressible liquids 321

Undisturbed level

(reference surface) z = f (x, y, t)z

x

h
g

Figure 7.12 Surface waves on a liquid surface

where g is the acceleration due to gravity, k̂ is the unit vector along the z-axis direction,
and

p := ρgz + p. (7.146)

Since we consider linear dynamics only, the non-linear second term on the left-hand side
of (7.144) will be dropped. Assuming that the motion of the fluid is irrotational, one can
express the velocity vector v as

v = ∇ψ, (7.147)

where ψ is a space–time-dependent scalar velocity potential function. Then, using (7.147)
in (7.145), we obtain the Laplace equation

∇ · ∇ψ = 0

or

∇2ψ = 0. (7.148)

Using (7.147) in (7.144) yields

(∇ψ),t + 1

ρ
∇p = 0

or

∇
(

ψ,t + p

ρ

)
= 0

⇒ ψ,t + gz + p

ρ
= 0, (7.149)
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where any arbitrary pure time function arising from the spatial integration step in (7.149)
is assumed to be absorbed in ψ,t . The equation (7.149) is the linearized unsteady Bernoulli
equation. The dynamics of the medium is thus represented by (7.148) and (7.149), which
must be solved to determine the two unknown fields, namely ψ and p. In order to solve
the two partial differential equations, we require certain boundary conditions, which are
discussed next.

Consider a time-varying surface η(x, y, z, t) = 0 as a boundary of the medium. Since
this is going to remain the boundary for all times, we must have

Dη

Dt
= 0

or

η,t + v · ∇η = 0

or

η,t + ∇ψ · ∇η = 0. (7.150)

We will now consider two special types of boundaries, as follows:

1. Rigid boundary
In this case, the condition (7.150) reduces to

[∇ψ · ∇η
]
η=0 = 0.

As an example, consider the bottom surface of a liquid body, as shown in Figure 7.12.
The bottom surface is represented by η(x, y, z, t) = z + h = 0. Therefore, the boundary
condition is given by

[∇ψ · k̂
]
z=−h

= 0

⇒ ψ,z

∣∣
z=−h

= 0.

2. Free surface
For a free surface given by z = f (x, y, t), we have η(x, y, z, t) = z − f (x, y, t). There-
fore, (7.150) yields

−f,t +
[(

ψ,x î + ψ,y ĵ + ψ,zk̂
)

·
(
−f,x î − f,y ĵ + k̂

)]
η=0

= 0

⇒ −f,t + [− ψ,xf,x − ψ,yf,y + ψ,z

]
η=0 = 0.

Dropping all non-linear terms in the above condition, yields the linearized kinematic
boundary condition at the free surface as

ψ,z

∣∣
η=0 − f,t = 0.
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In the presence of surface waves, pressure variations are created on the reference surface
of the liquid. Note that, to keep the analysis linear, we must specify the pressure boundary
condition on the reference surface, rather than the (deformed) liquid surface (on which the
pressure is actually constant). This pressure variation is specified as a pressure (or dynamic)
boundary condition on the (reference) surface z = 0. Taking the equation of the free surface
as z = f (x, y, t), the pressure on the surface z = 0 can be expressed as

p
∣∣
z=0 = ρgf

⇒ −ρψ,t

∣∣
z=0 = ρgf (using (7.149))

or

ψ,t

∣∣
z=0 + gf = 0. (7.151)

To summarize, the dynamics of surface waves is governed by the Laplace equation (7.148)
along with the kinematic boundary condition (7.150) and the free-surface dynamic boundary
condition (7.151). The pressure field is determined from the linearized unsteady Bernoulli
equation (7.149).

7.2.2 Sloshing of liquids in tanks

As an application of the formulation presented in the previous section, let us consider the
problem of sloshing of liquids in partially filled tanks. This is an important issue in many
situations, such as in overhead tanks on buildings or structures, and tankers transporting
liquids. We consider here only some of the elementary aspects of the problem in the Cartesian
and cylindrical coordinate systems. A more sophisticated analysis must also include the
effects of structural flexibility and of the motion of the container on the dynamics of sloshing,
as well as large-amplitude motion of the liquid (see [6]).

7.2.2.1 Sloshing in cuboidal tanks

Consider a cuboidal tank of length a and width b, filled with liquid up to a height h,
as shown in Figure 7.13. The coordinate system is shown in the figure. It is easy to see
that the boundary conditions here are the zero normal-velocity conditions on the walls and
the bottom, and the kinematic and dynamic conditions on the free surface. Therefore, the
equations governing the dynamics of the liquid can be written as

ψ,xx + ψ,yy + ψ,zz = 0, (7.152)

p = −ρgz − ρψ,t , (7.153)
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Figure 7.13 Sloshing in a partially filled cuboidal tank

along with the boundary and free-surface conditions:

ψ,x

∣∣
x=0,a

= 0, (7.154)

ψ,y

∣∣
y=0,b

= 0, (7.155)

ψ,z

∣∣
z=−h

= 0, (7.156)

ψ,z

∣∣
z=0 − f,t = 0, (7.157)

ψ,t

∣∣
z=0 + gf = 0, (7.158)

where (7.154) and (7.155) represent the zero normal-velocity condition on the walls, (7.156)
is the zero normal-velocity condition at the bottom, and (7.157) and (7.158) are, respectively,
the kinematic and dynamic conditions on the free surface z = f (x, y, t). Differentiating
(7.158) with respect to time, and substituting for ∂f/∂t from (7.157) yields

[
ψ,tt + gψ,z

]
z=0 = 0. (7.159)

Assume a separable solution of (7.152) in the form

ψ(x, y, z, t) = X(x)Y (y)Z(z)eiωt . (7.160)

Substituting this solution form in (7.152), and dividing by X(x)Y (y)Z(z), yields

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
= 0. (7.161)
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It is evident that (7.161) can be satisfied if and only if each of the three terms is a constant,
i.e.,

X,xx

X
= −α2,

Y,yy

Y
= −β2, and

Z,zz

Z
= γ 2. (7.162)

such that

γ 2 = α2 + β2. (7.163)

Note that we have taken the first two separation constants (associated with x and y) with
negative sign, and the third separation constant (associated with z) with positive sign. This
choice will simplify matching all the boundary conditions. We have from (7.162)

X(x) = A1e
iαx + A2e

−iαx,

Y (y) = B1e
iβy + B2e

−iβy,

Z(z) = C1e
γ z + C2e

−iγ z,

and the solution of the velocity potential ψ(x, y, z, t) is obtained as

ψ(x, y, z, t) = (A1e
iαx + A2e

−iαx)(B1e
iβy + B2e

−iβy)(C1e
γ z + C2e

−iγ z)eiωt . (7.164)

Substituting this solution of the velocity potential in (7.154) yields the conditions at x = 0
and x = a as

A1iα − A2iα = 0,

A1iαeiαa − A2iαe−iαa = 0

⇒
[

1 −1
eiαa −e−iαa

]{
A1

A2

}
= 0. (7.165)

For non-trivial solutions in A1 and A2, we must have

eiαa − e−iαa = 0

or

sin αa = 0,

⇒ αm = mπ

a
, m = 1, 2, . . . , ∞. (7.166)

For these values of α, (7.165) yields A1 = A2. Similarly, using (7.164) in (7.155), one can
obtain

βn = nπ

b
, n = 1, 2, . . . , ∞, (7.167)
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and B1 = B2. Using these conditions in (7.164) yields

ψ(x, y, z, t) = A cos
mπx

a
cos

nπy

b
(C1e

γ(m,n)z + C2e
−γ(m,n)z)eiωt , (7.168)

where

γ(m,n) =
√

m2π2

a2
+ n2π2

b2
(from (7.163)). (7.169)

Substituting (7.168) in (7.156), we have

C1γ(m,n)e
−γ(m,n)h − C2γ(m,n)e

γ(m,n)h = 0. (7.170)

Using (7.168) in (7.159) yields on rearrangement

(gγ(m,n) − ω2)C1 − (gγ(m,n) + ω2)C2 = 0. (7.171)

One can combine (7.170) and (7.171) as

[
e−γ(m,n)h −eγ(m,n)h

gγ(m,n) − ω2 gγ(m,n) + ω2

]{
C1

C2

}
= 0. (7.172)

Now, for non-trivial solutions in C1 and C2, we must have from (7.172)

−e−γ(m,n)h(gγ(m,n) + ω2) + eγ(m,n)h(gγ(m,n) − ω2) = 0

⇒ ω2
(m,n) = gγ(m,n) tanh γ(m,n)h. (7.173)

This gives the sloshing frequency for the sloshing mode (m, n). For γ(m,n)h � 1, one can
use the approximation tanh γ(m,n)h ≈ 1 to obtain the approximate sloshing frequencies as

ω(m,n) ≈ √
gγ(m,n) = √

g

[
m2π2

a2
+ n2π2

b2

]1/4

.

From (7.170), one can write

C2 = e−2γhC1,

and then the velocity potential for the sloshing mode (m, n) can be written as

ψ(m,n)(x, y, z, t) = A(m,n) cos
mπx

a
cos

nπy

b
cosh[γ(m,n)(z + h)]eiωt , (7.174)

where a constant factor e−γ(m,n)h has been absorbed in A(m,n).
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One can now compute the free surface of the liquid by taking the real part of (7.158) as

z = f (x, y, t) = −R

[
iω

g
A cos

mπx

a
cos

nπy

b
cosh[γ(m,n)h]eiωt

]
,

= ω

g
A cos

mπx

a
cos

nπy

b
cosh[γ(m,n)h] sin ωt,

and the pressure from (7.153) as

p = R
[
−ρgz − iωρA cos

mπx

a
cos

nπy

b
cosh[γ(m,n)(z + h)]eiωt

]
= −ρgz + ωρA cos

mπx

a
cos

nπy

b
cosh[γ(m,n)(z + h)] sin ωt.

The first few sloshing modes of the free surface are shown in Figure 7.14.

7.2.2.2 Sloshing in cylindrical tanks

In order to study the case of sloshing in a cylindrical tank, as shown in Figure 7.15, we
represent the governing equations and boundary conditions, in cylindrical polar coordinates.
They can be written as

ψ,rr + 1

r
ψ,r + 1

r2
ψ,θθ + ψ,zz = 0, (7.175)

p = −ρgz − ρψ,t , (7.176)

ψ,r

∣∣
r=a

= 0, (7.177)

ψ,z

∣∣
z=−h

= 0, (7.178)

ψ,z

∣∣
z=0 − f,t = 0, (7.179)

ψ,t

∣∣
z=0 + gf = 0, (7.180)

where a is the radius of the tank and h is the height of the liquid in the tank; (7.177)
and (7.178) represent, respectively, the zero normal-velocities on the wall and the bottom,
and (7.179) and (7.180) are, respectively, the kinematic and dynamic conditions on the
free surface. Differentiating (7.180) once with respect to time, and eliminating ∂f/∂t from
(7.179), yields

[
ψ,tt + gψ,z

]
z=0 = 0. (7.181)

Substituting a separable function of the form

ψ(r, θ, z, t) = R(r)�(θ)Z(z)eiωt , (7.182)
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m = 1, n = 0 m = 0, n = 1

m = 2, n = 0 m = 1, n = 1

m = 2, n = 1 m = 1, n = 2

Figure 7.14 Sloshing modes of the free surface in a partially filled cuboidal tank

in (7.175), one obtains on rearrangement

1

R

(
d2R

dr2
+ 1

r

dR

dr

)
+ 1

r2

(
1

�

d2�

dθ2

)
+ 1

Z

d2Z

dz2
= 0. (7.183)
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Figure 7.15 Sloshing in a partially filled cylindrical tank

It is evident that (7.183) can be satisfied if and only if

d2R

dr2
+ 1

r

dR

dr
+
(

α2 − ν2

r2

)
R = 0, (7.184)

d2�

dθ2
+ ν2� = 0, (7.185)

Z,zz − α2Z = 0, (7.186)

where α and ν are the separation constants. For a cylindrical tank, periodicity of the solution
in θ implies ν = m = 0, ±1, . . . , ±∞. The solution of the Bessel differential equation
(7.184) then is of the form R(r) = A1Jm(αr) + A2Ym(αr). For finiteness of the solution
at r = 0, we must have A2 = 0. Next, solving (7.186) along with the boundary condition
(7.178) gives

Z(z) = Be−αh cosh[α(z + h)].

Using these expressions in (7.182), one can rewrite the velocity potential in the form

ψ(r, θ, z, t) = AJm(αr)e−αh cosh[α(z + h)]eimθeiωt . (7.187)

Substituting (7.187) in the boundary condition (7.177), we have the characteristic equation

J ′
m(αa) = 0. (7.188)
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The first few roots α(m,n)a are obtained as

α(0,1)a = 0.0, α(0,2)a = 3.8317, α(0,3)a = 7.0156,

α(1,1)a = 1.8412, α(1,2)a = 5.3314, α(1,3)a = 8.5363,

α(2,1)a = 3.0542, α(2,2)a = 6.7061, α(2,3)a = 9.9695.

Note that in the mode (0, 1), the free surface remains flat and stationary (a trivial solution).
Substituting the velocity potential (7.187) in (7.181) yields on simplification the frequency
equation

ω2
(m,n) = gα(m,n) tanh α(m,n)h, (7.189)

which gives the sloshing frequencies.
We can calculate the approximate sloshing frequencies as follows. Using (7.131), we

approximate α(m,n)a as

α(m,n)a ≈ [2m + 4n − 3]
π

4
.

For α(m,n)h � 1, we also approximate the frequency equation (7.189) as ω2
(m,n) ≈ gα(m,n) .

Therefore, we have the approximate sloshing frequencies as

ω(m,n) ≈
√

[2m + 4n − 3]
π

4

g

a
.

For every eigenfrequency ω(m,n) with m �= 0, there are two independent eigenfunctions
given by

W
(m,n)
C = Jm(α(m,n)r) cosh[α(m,n)(z + h)] cosmθ,

W
(m,n)
S = Jm(α(m,n)r) cosh[α(m,n)(z + h)] sin mθ.

Thus, there are two degenerate modes corresponding to each eigenfrequency ω(m,n), m �= 0.
The first few sloshing mode-shapes of the free surface are shown in Figure 7.16.

7.2.3 Surface waves in a channel

Consider a channel formed by two boundaries at y = 0 and y = b, as shown in Figure 7.17.
The governing equations for the surface waves in the channel are given by

ψ,xx + ψ,yy + ψ,zz = 0, (7.190)

p = −ρgz − ρψ,t , (7.191)

ψ,y

∣∣
y=0,b

= 0, (7.192)

ψ,z

∣∣
z=−h

= 0, (7.193)

ψ,z

∣∣
z=0 − f,t = 0, (7.194)

ψ,t

∣∣
z=0 + gf = 0. (7.195)
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m = 0, n = 2 m = 0, n = 3

m = 1, n = 1 m = 1, n = 2

m = 2, n = 1 m = 2, n = 2

Figure 7.16 Sloshing modes of the free surface in a partially filled cylindrical tank
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Figure 7.17 Surface waves in an infinite channel

Note that the problem here is three-dimensional, due to the presence of the channel walls.
Differentiating the boundary conditions (7.195) with respect to time, and using (7.194) to
eliminate ∂f/∂t , we obtain

[
ψ,tt + gψ,z

]
z=0 = 0. (7.196)

We want to determine a solution of (7.190)–(7.195) in the form of a traveling harmonic
wave along the positive x-axis direction. With this objective in view, consider a separable
solution of (7.190) in the form

ψ(x, y, z, t) = Y(y)Z(z)ei(kx−ωt). (7.197)

Substituting (7.197) in (7.190) yields on rearrangement

1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2
− k2 = 0. (7.198)

It is evident that (7.198) has a solution if and only if the first two terms are constants. As
will be clear in the following, matching of the boundary conditions at both the walls of the
channel requires

d2Y

dy2
+ β2Y = 0 and

d2Z

dz2
− γ 2Z = 0, (7.199)

where β is the separation constant, and

γ 2 = β2 + k2. (7.200)
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The solutions of Y(y) and Z(z) may be written as

Y(y) = A cosβy + B sinβy and Z(z) = Ceγ z + De−γ z,

and hence, (7.197) is of the form

ψ(x, y, z) = (A cosβy + B sinβy)(Ceγ z + De−γ z)ei(kx−ωt). (7.201)

Applying the boundary condition (7.192) yields

B = 0, (7.202)

sinβb = 0 ⇒ βn = nπ

b
, n = 0, 1, . . . , ∞. (7.203)

Using the boundary conditions in (7.193), one obtains

D = Ce−2γnh, (7.204)

where

γn =
√

n2π2

b2
+ k2. (7.205)

Using (7.202)–(7.204) in (7.201), we obtain the velocity potential

ψ(x, y, z, t) = An cos
nπy

b
cosh γn(z + h)ei(kx−ωt). (7.206)

Finally, substituting (7.206) in (7.196) yields on simplification the dispersion relation

ω2 − gγn tanh γnh = 0, (7.207)

where ωn represents the circular frequency of the nth mode. The dispersion relation is shown
in Figure 7.18 for different modes. It is observed that all modes are dispersive. Further, the
lowest mode (n = 0) is always propagating, while the higher modes (n ≥ 1) have a cut-
off frequency below which they become evanescent. The nth cut-off frequency ωc

n can be
obtained by substituting (7.205) in (7.207), and setting k = 0 as

ωc
n =

√
g

nπ

b
tanh

nπh

b
, n ≥ 1.
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Figure 7.18 Dispersion relation for surface waves in a channel

EXERCISES

7.1 Determine the acoustic eigenfrequencies of a rectangular room with acoustically hard walls of
length a, width b, and height h.

7.2 Determine the acoustic eigenfrequencies inside a half-cylindrical warehouse with acoustically hard
walls of radius a and length l, as shown in Figure 7.19.

a

l

Figure 7.19 Exercise 7.2

7.3 Plane acoustic waves are incident at an angle on a stretched membrane of infinite extent. Determine
the intensity of the wave transmitted across the membrane. Take the mass per unit area of the membrane
µ, tension T , density of air ρ0, and sound speed in air c.

7.4 A cylinder of radius R oscillates harmonically with a radial velocity v = Aeiωt in a fluid of density
ρ and sound speed c.

(a) Determine the impedance of the medium as seen by the cylinder, and plot the variation of the
radiation damping and radiation reactance coefficients with wave number.

(b) Calculate the intensity of the cylindrical waves generated at any radius r > R.

7.5 Determine the dispersion relation for a wave guide of semi-circular cross-section of radius a.

7.6 The chestpiece of an acoustic stethoscope is intended to pick up low-intensity sound waves in
the frequency range 20 Hz to 20 kHz, and transmit them to the ear through a circular wave guide.
Determine the upper bound on the radius R of the circular wave guide required to transmit the acoustic
signals without dispersion. Assume c = 340 m/s.
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7.7 Two circular wave guides of radii a and b are connected, as shown in Figure 7.20. A plane
harmonic acoustic wave corresponding to the velocity potential ψI = Bei(kx−ωt) is incident on the
junction from the left as shown. Determine the intensity of the wave transmitted across the junction.

A1

A2

ψI

ψR

ψT

Figure 7.20 Exercise 7.7

7.8 A large stretched circular membrane lies in the x-y-plane with the origin at its center, and is
surrounded by a compressible fluid.

(a) Assuming that the membrane is vibrating in one of its eigenmodes without being loaded by the
fluid, determine the acoustic waves set up above the membrane surface.

(b) Also determine the radiation condition and the radiation damping coefficient for the membrane.

7.9 Let the phase velocity of transverse waves on an infinite surface be cT. Assuming that cT > c,
where c is the velocity of sound in air, determine the amplitude and wavelength of plane waves
radiated into the air above the surface when a traveling wave of amplitude AT and wave number kT

propagates on the surface.

7.10 Determine the coincidence frequency of a steel plate of thickness 2 mm vibrating in air. Take
the sound speed in air as c = 340 m/s.

7.11 A stretched circular membrane completely covers one end of a semi-infinite circular wave guide
of radius a.

(a) Assuming that the membrane is vibrating in one of its eigenmodes without being loaded by the
fluid, determine the acoustic waves set up inside the wave guide.

(b) Determine the condition for no acoustic radiation through the wave guide.
(c) At what average rate must energy be supplied to the membrane to maintain its motion in a

particular mode when there is acoustic radiation?

7.12 Determine the damping coefficient for a large rectangular plate vibrating harmonically and radi-
ating sound of circular frequency �.

7.13 A cylinder of radius R oscillates radially uniformly along its length with circular frequency ω

in a fluid of density ρ, sound speed c. Determine the added mass and damping coefficients for the
cylinder.

7.14 A rigid cylinder of radius a, surrounded by a fluid, oscillates harmonically with a small amplitude
A in a direction perpendicular to its axis, and uniformly along its length with circular frequency ω.
Take ρ as the density of the fluid and c as the sound speed.

(a) Show that the velocity boundary condition for the fluid, on the surface of the cylinder is given
by ψ,r (R, φ, t) = A cos φ eiωt , where ψ(r, φ, t) is the velocity potential for the fluid, and φ is
the angle measured from the line of motion of the cylinder.
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(b) Determine the waves set up in the surrounding fluid. (Hint: Assume ψ(r, φ, t) = R(r) cos φ eiωt .)
(c) Determine the impedance of the fluid per unit length of the cylinder, and identify the radiation

damping and added mass coefficients (per unit length).

7.15 A plane harmonic acoustic wave of circular frequency ω propagates through a fluid of density
ρ, sound speed c, and viscosity η. Determine how the intensity of the wave varies as a function of
the distance traveled by the wave.

7.16 A source is emitting spherical acoustic waves of frequency 5 kHz in air. Determine the sound
pressure level as a function of distance from the source in the following two cases: (a) the air is
considered inviscid, and (b) taking viscosity of air to be η = 1.81 × 10−5 Ns/m. For the above cases,
also calculate the required average power output of the source so that it can be heard at a sound
pressure level of 50 dB at a radius of 100 m. Assume the velocity of sound in air c = 340 m/s and
the density of air ρ0 = 1.2 kg/m3.

7.17 A rectangular tank filled with water to a height h has a layer of oil of thickness d on top.
Determine the sloshing frequencies of the system.

7.18 Determine the eigenfrequencies of sloshing of a liquid in the tank of constant depth whose top
view is as shown in Figure 7.21.

a

a

a a

Figure 7.21 Exercise 7.18

7.19 Determine the sloshing eigenfrequencies and eigenfunctions in an annular tank of inner radius a

and outer radius b.

7.20 Investigate the propagation of interface waves between two half-spaces of liquids, as shown in
Figure 7.22. (Hint: Velocity potential far from the interface (i.e., z → ±∞) is zero.)

z

x

Figure 7.22 Exercise 7.20
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7.21 In Exercise 7.20, if the upper layer of liquid is of thickness d , investigate the propagation of
surface waves and determine the dispersion relation.
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8
Waves in elastic continua

In this chapter, we consider vibrations and waves in three-dimensional homogeneous and
isotropic elastic continua. This study is important primarily for two reasons. First, any elastic
body is essentially an elastic continuum with boundaries. Therefore, the accurate dynamics
of elastic bodies and their exact solutions can be obtained only if we treat them as bounded
elastic continua. The second reason lies in our interest in knowing the internal structure of
materials and in evaluating material properties. An important technical application of such
a study is in non-destructive testing and evaluation of materials. Other applications are in
geophysics and seismology. However, this chapter is intended to give only an elementary
introduction to the topic of waves in elastic continua.

8.1 EQUATIONS OF MOTION

Consider the free-body diagram of an infinitesimal element of a homogeneous and isotropic
elastic continuum, as shown in Figure 8.1. In this figure, the stresses on the invisible surfaces
have been omitted for clarity. Further, we have followed the convention of representing the x,
y, and z in the subscripts by 1, 2, and 3, respectively, as shown in the figure. The coordinate
axis x, y, and z are represented by x1, x2, and x3, respectively, and σij represents the stress
component in the direction of the j -axis on a surface with normal along the i-axis. As will
be evident in the following, this convention is very convenient for compact representations,
and will be followed throughout this chapter.

Let the displacement of an infinitesimal element be denoted by u1(x1, x2, x3, t), u2(x1, x2,

x3, t), and u3(x1, x2, x3, t) along the coordinate directions x1, x2, and x3, respectively. Then,
applying Newton’s second law to the infinitesimal element, the equations of motion can be
written as

ρ
∂2u1

∂t2
−
(

∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3

)
= 0, (8.1)

ρ
∂2u2

∂t2
−
(

∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3

)
= 0, (8.2)

ρ
∂2u3

∂t2
−
(

∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3

)
= 0, (8.3)

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
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x1

σ13 + σ13,1dx1

dx2

σ11 + σ11,1dx1

σ12 + σ12,1dx1

σ21 + σ21,2dx2

σ22 + σ22,2dx2

x2

dx3

dx1

σ23 + σ23,2dx2

σ32 + σ32,3dx3

σ33 + σ33,3dx3

x3

σ31 + σ31,3dx3

Figure 8.1 Stresses on an infinitesimal element of an elastic continuum

where we have neglected body forces. For simplicity, let us represent (8.1)–(8.3) in a
compact form as

ρui,tt −
3∑

j=1

σij,j = 0, i = 1, 2, 3, (8.4)

where σij,j := ∂σij /∂xj . The equations of motion (8.4) can also be derived easily using the
variational formulation ∫ t2

t1

[δT + δW] dt = 0, (8.5)

where T is the kinetic energy and δW is the infinitesimal virtual work done by the elastic
forces. These are expressed as

T = 1

2

∫
V

ρ

3∑
i=1

u̇i
2 dV and δW =

∫
S

3∑
i=1

( 3∑
j=1

σij n̂j

)
δui dS, (8.6)

where n̂ is the unit normal to the infinitesimal surface element dS. Substituting the expres-
sions from (8.6) in (8.5), taking the variation, and using the Gauss divergence theorem (see,
for example, [1]), leads to

∫ t2

t1

[ ∫
V

ρ

3∑
i=1

u̇iδu̇i dV +
∫

S

∑( 3∑
j=1

σij n̂j

)
δuidS

]
dt = 0
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⇒
∫ t2

t1

∫
V

[ 3∑
i=1

(
− ρüi +

3∑
j=1

σij,j

)
δui

]
dV dt = 0,

which again yields the equations of motion (8.4).
The task now is to express the stress tensor components σij in terms of the displacement

field components ui . From elementary theory of elasticity, it is known that Hooke’s law can
be written as (see, for example, [2])

σij = λ

(
3∑

k=1

εkk

)
δij + 2µεij , (8.7)

where λ and µ are known as Lamé parameters. In terms of Young modulus E and Poisson
ratio ν, the Lamé parameters are given by

λ = Eν

(1 − 2ν)(1 + ν)
and µ = E

2(1 + ν)
. (8.8)

The strain–displacement relations can be written as

εij = 1

2

(
ui,j + uj,i

)
. (8.9)

Then, using (8.9) in (8.7), one obtains the stress–displacement relations as

σij = λ

(
3∑

k=1

uk,k

)
δij + µ

(
ui,j + uj,i

)
⇒ σij = λ(∇ · u)δij + µ

(
ui,j + uj,i

)
. (8.10)

With (8.10), one can write

3∑
j=1

σij,j = λ

3∑
j=1

[
(∇ · u),j δij

]+ µ

3∑
j=1

[
ui,jj + uj,ij

]

⇒
3∑

j=1

σij,j = λ(∇ · u),iδij + µ
[∇2ui + (∇ · u),i

]
. (8.11)

Using (8.11) in (8.4) yields the equations of motion

ρu,t t − (λ + µ)∇(∇ · u) − µ∇2u = 0, (8.12)
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where u = (u1, u2, u3)
T. This equation is known as Navier’s equation for an elastic contin-

uum.
Using a theorem due to Helmholtz (see, for example, [3]), one can decompose the

displacement vector field u as

u(x1, x2, x3, t) = uL(x1, x2, x3, t) + uS(x1, x2, x3, t), (8.13)

such that

∇ × uL = 0 and ∇ · uS = 0. (8.14)

The vector field uL is irrotational, and represents longitudinal displacement (or dilatoric
deformations) of the continuum. On the other hand, uS is a divergence-free vector field,
and hence preserves volume. This is characteristic of shear deformations (or deviatoric
deformations). Therefore, the displacement field uS represents the shearing motion of the
continuum. A traveling wave in an elastic continuum with displacements of the type uL

is known as a Primary or P-wave. On the other hand, a traveling wave consisting of
displacements of the type uS, is termed a Secondary or S-wave. Physically, P- and S-waves
correspond, respectively, to pressure and shear waves in an elastic continuum.

Using (8.13) in (8.12), one can write

ρ(uL,t t + uS,t t ) − (λ + µ)∇[∇ · (uL + uS)] − µ∇2(uL + uS) = 0

⇒ ρ(uL,t t + uS,t t ) − (λ + µ)∇(∇ · uL) − µ∇2(uL + uS) = 0. (8.15)

Taking the divergence of (8.15), and simplifying using the properties

∇ · v,t t = (∇ · v),tt , ∇ · ∇2v = ∇2(∇ · v),

and (8.14), we get

ρ(∇ · uL,t t ) − (λ + 2µ)∇2(∇ · uL) = 0

⇒ ∇ · [ρuL,t t − (λ + 2µ)∇2uL] = 0. (8.16)

Further, using (8.16) in (8.15), one can also write

∇ · [ρuS,t t − µ∇2uS] = 0. (8.17)

Next, taking the curl of (8.15), and simplifying using the properties

∇ × v,t t = (∇ × v),tt , ∇ × ∇2v = ∇2(∇ × v),
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and (8.14), one obtains

ρ(∇ × uS,t t ) − µ∇2(∇ × uS) = 0

⇒ ∇ × [ρuS,t t − µ∇2uS] = 0. (8.18)

Further, we can also write

∇ × [ρuL,t t − (λ + 2µ)∇2uL] = 0. (8.19)

Now, from (8.16) and (8.19) it is observed that the divergence and curl of the same vector
quantity is zero. A similar observation is also made from (8.17) and (8.18). Therefore, it
may be said that the individual vector quantities must be zero, i.e.,

ρuL,t t − (λ + 2µ)∇2uL = 0, (8.20)

ρuS,t t − µ∇2uS = 0. (8.21)

One can also rewrite (8.20) and (8.21) in the form of the standard wave equation as,
respectively,

uL,t t − c2
L∇2uL = 0, (8.22)

uS,t t − c2
S∇2uS = 0, (8.23)

where

cL =
√

λ + 2µ

ρ
and cS =

√
µ

ρ
, (8.24)

are, respectively, the longitudinal and the shear wave speeds. Using (8.8), the two wave
speeds can also be represented as

cL =
√

E

ρ(1 + ν)

(
1 − ν

1 − 2ν

)
and cS =

√
E

2ρ(1 + ν)
.

The ratio of the two wave speeds κ := cL/cS is obtained as

κ =
√

2(1 − ν)

1 − 2ν
. (8.25)

It may be observed that κ > 1, i.e., the longitudinal wave speed is higher than the shear
wave speed. For example, for ν = 1/3, we have cL = √

3cS.
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8.2 PLANE ELASTIC WAVES IN UNBOUNDED CONTINUA

Let us first consider elastic waves in one dimension, say along the x1-axis. The displacement
fields uL(x1, t) and uS(x1, t) must satisfy the curl and divergence conditions (8.14). From
the curl condition, we have

uL2,1 = 0 and uL3,1 = 0

⇒ uL = (uL1, 0, 0)T.

On the other hand, the divergence condition yields

uS1,1 = 0 ⇒ uS = (0, uS2, uS3)
T.

Thus, the longitudinal wave or P-wave has particle motion only along the direction of
propagation, while the shear wave or S-wave consists of particle motion along the two
directions perpendicular to the direction of propagation. The shear waves can therefore be
a vertically polarized SV-wave with particle motion along the x2-axis or a horizontally
polarized SH-wave with particle motion along the x3-axis. Of course, any other direction of
polarization orthogonal to the x1-axis is also possible, and will be a combination of an SV
and an SH wave. The P-wave and the SV-wave are visualized in Figure 8.2. The x1-x2-plane
(containing the P- and SV-waves) is known as the plane of incidence.

Now, consider an arbitrary direction of wave propagation in a two-dimensional plane, as
shown in Figure 8.3. Let us represent this direction by the unit vector n̂ = (cos θ, sin θ, 0)T.
Then, any plane longitudinal harmonic wave solution of (8.22) can be written as

uL(x1, x2, t) = ALn̂ ei(kLn̂·r−ωt) = ALn̂ eikL(x1 cos θ+x2 sin θ−cLt), (8.26)

where AL is the (complex) amplitude, kL is the wave number, r = (x1, x2, x3)
T, ω is the

frequency, and cL = ω/kL is the phase speed of the wave. The product kL := kLn̂ is known

x1

x2

x3

x1

x2

x3

P-wave SV-wave

Figure 8.2 Motion of a section of a continuum due to P- and SV-waves traveling in the x1-axis
direction
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x1

x2

x3

â × n̂

â
θ

n̂

Figure 8.3 Representation of plane waves in a two-dimensional plane

as the wave vector. It can be easily checked that this displacement field satisfies the curl
condition in (8.14), and is therefore irrotational.

The shear waves SV and SH can be represented as follows. Consider the unit vector â =
(0, 0, 1)T along the x3-axis, as shown in Figure 8.3. Then â and â × n̂ = (− sin θ, cos θ, 0)T

represent the two directions perpendicular to the direction of propagation, as shown in
Figure 8.3. Now, one can represent harmonic shear waves as

uS(x1, x2, t) = AVâ × n̂ eikS(x1 cos θ+x2 sin θ−cSt)

+ AHâ eikS(x1 cos θ+x2 sin θ−cSt), (8.27)

where AV and AH are the (complex) wave amplitudes, and cS = ω/kS. The first term in
(8.27) is the SV-wave, while the second term is the SH-wave. It can be easily checked from
(8.27) that both SV- and SH-waves satisfy the divergence condition in (8.14), and hence
are volume-preserving.

Consider the simultaneous existence of the longitudinal and transverse plane waves in
an elastic space. Then, the total displacement field can be written using (8.26) and (8.27) as

u(x1, x2, t) = uL + uS

= ALn̂ eikL(x1 cos θ+x2 sin θ−cLt)

+ AVâ × n̂ eikS(x1 cos θ+x2 sin θ−cSt)

+ AHâ eikS(x cos θ+y sin θ−cSt). (8.28)

The components of the displacement vector field u can be written from (8.28) as

u1 = AL cos θ eikL(x1 sin θ+x2 cos θ−cLt)

− AV sin θ eikS(x1 sin θ+x2 cos θ−cSt),

u2 = AL sin θ eikL(x1 sin θ+x2 cos θ−cLt)

+ AV cos θ eikS(x1 sin θ+x2 cos θ−cSt),

u3 = AHeikS(x1 sin θ+x2 cos θ−cSt).
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It may be observed from the above that u3 consists of only the SH-wave and is completely
decoupled from the P- and SV-waves. For a homogeneous and isotropic elastic continuum,
this has the important implication that the P- and SV-waves cannot be excited by an SH-
wave, and vice versa.

8.3 ENERGETICS OF ELASTIC WAVES

Let us now discuss the energy propagation in plane harmonic elastic waves. Consider a
harmonic P-wave traveling in the direction n̂ = (cos θ, sin θ, 0)T, and represented by

uL = R[An̂ eik(n̂·r−cL t)]

= An̂ cos[k(n̂ · r − cLt)]. (8.29)

The kinetic energy density can be written as

T̂ = 1

2
ρuL,t · uL,t

= 1

2
ρA2k2

Lc2
L sin2[kL(n̂ · r − cLt)]

= 1

2
ρA2ω2 sin2[kL(n̂ · r − cLt)].

The average kinetic energy density (kinetic energy per unit wavelength) is then computed as

〈T̂ 〉 = kL

2π

∫ 2π/kL

0
T̂ dξ = 1

4
ρA2ω2, (8.30)

where ξ is measured along the direction of propagation.
The potential energy density, which is the elastic strain energy per unit volume, is

obtained from theory of elasticity as (see, for example, [3])

V̂ = 1

2
(σ11ε11 + σ22ε22 + σ33ε33) + σ12ε12 + σ23ε23 + σ13ε13

= 1

2
λ


 3∑

j=1

εjj




2

+ µ


 3∑

j=1

ε2
jj


+ 2µ(ε2

12 + ε2
23 + ε2

13), (8.31)

where we have used the strain–displacement relation (8.9). Using (8.29) in (8.9) yields

ε11 = −AkL cos2 θ sin[kL(n̂ · r − cLt)],

ε12 = ε21 = −AkL cos θ sin θ sin[kL(n̂ · r − cLt)],

ε22 = −AkL sin2 θ sin[kL(n̂ · r − cLt)],

ε13 = 0, ε23 = 0, and ε33 = 0.
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Using these expressions in (8.31), one obtains on simplification

V̂ = 1

2
(λ + 2µ)A2k2

L sin2[kL(n̂ · r − cLt)]

= 1

2
ρA2ω2 sin2[kL(n̂ · r − cLt)],

where we have used the relation

k2
L = ω2

c2
L

= ρω2

λ + 2µ
.

The average potential energy density (potential energy per unit wavelength) is then obtained
as

〈V̂〉 = kL

2π

∫ 2π/kL

0
V̂ dξ = 1

4
ρA2ω2, (8.32)

where, as before, ξ is measured along the direction of propagation. Now, using (8.30)
and (8.32), the average total energy density of longitudinal harmonic plane waves can be
written as

〈Ê〉 = 〈T̂ 〉 + 〈V̂〉 = 1

2
ρA2ω2. (8.33)

Next, we compute the energy flux (or power) crossing unit area of the continuum. Let the
stress tensor at any point in the continuum be represented by the symmetric matrix

[σ ] =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ,

Define the vector of power flow per unit area, or the intensity vector as

I := −[σ ]uL,t ,

where the negative sign follows from the convention that compressive stresses are nega-
tive. Then, the power flow per unit area across a surface perpendicular to the direction of
propagation of the wave is obtained as

In = −n̂T[σ ]uL,t . (8.34)

The velocity vector is obtained from (8.29) as

uL,t = AkLn̂ sin[kL(n̂ · r − cLt)], (8.35)
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and the stresses can be computed using (8.10) as

σ11 = −(λ + 2µ cos2 θ)AkL sin[kL(n̂ · r − cLt)],

σ12 = −2µ cos θ sin θ AkL sin[kL(n̂ · r − cLt)],

σ22 = −(λ + 2µ sin2 θ)AkL sin[kL(n̂ · r − cLt)],

σ13 = 0, σ23 = 0, and σ33 = 0.

Finally, the energy flux per unit area in the direction of propagation of the wave is obtained
from (8.34) and (8.35) as

In = (λ + 2µ)A2k2
LcL sin2[kL(n̂ · r − cLt)]

= ρA2ω2cL sin2[kL(n̂ · r − cLt)],

from where the average power flow per unit area can be computed as

〈In〉 = 1

2
ρA2ω2cL. (8.36)

Comparing (8.36) and (8.33), we obtain

〈In〉 = cL〈Ê〉.

Thus, energy of longitudinal waves propagates at the wave speed cL. The energetics of shear
waves can be studied similarly.

The specific impedance of an elastic medium can be defined as follows. It is known from
theory of elasticity that the stresses on any surface with a unit surface normal n̂ is given
by [σ ]n̂, and the normal stress on the surface is obtained as n̂T[σ ]n̂. Then, for a harmonic
P-wave, the specific impedance of the medium in the normal direction is defined by

ZL := −A [n̂T[σ ]n̂]

A [n̂TuL,t ]
, (8.37)

where uL,t is the velocity vector field of the harmonic wave, A [·] denotes the complex
amplitude, and the negative sign follows from the convention that compressive stresses are
negative. It may be mentioned that all calculations in (8.37) are required to be carried out
using the complex harmonic wave representation. It may be checked that the impedance ZL

calculated for the harmonic wave field uL = An̂ eik(n̂·r−cLt) is given by Zn = ρcL. One can
similarly define the impedance of the medium to shear waves.

8.4 REFLECTION OF ELASTIC WAVES

Let us now consider the interaction of elastic plane waves with plane boundaries. Assuming
that a boundary B lies in the x1-x3-plane, some of the possible boundary conditions that
occur are as follows:
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1. Free boundary
In this case all the stresses on the surface must be zero. Therefore, we have σ12|B =
σ22|B = 0.

2. Fixed boundary with a rigid body
When the continuum boundary is rigidly fixed, the displacements are zero on the bound-
ary, i.e., u|B = 0.

3. Boundary fixed with another elastic half-space
In this case, the displacements, and the normal and shear stresses at the boundary of both
spaces must match. Hence, we must have uI

∣∣
B = uII

∣∣
B and σ I

2i

∣∣
B = σ II

2i

∣∣
B, i = 1, 2, 3,

where the superscripts I and II distinguish the two half-spaces.

To keep the discussion simple, in the following, we only consider reflection of harmonic
plane waves from a free surface.

8.4.1 Reflection from a free boundary

We consider the following three cases of reflection from a free boundary. The first is the
reflection of an incident P-wave, the second considers an incident SV-wave, and finally, the
case of an incident SH-wave is discussed.

8.4.1.1 Incident P-wave

Consider a plane P-wave incident at an angle θL0 with the normal to the free boundary x2 =
0, as shown in Figure 8.4. The reflected waves can consist of, in general, both longitudinal
and shear waves in different directions. Hence, the total wave field may be represented as

u(x1, x2, t) = AL0n̂L0e
ikL0(x1 sin θL0+x2 cos θL0−cLt)

+ ALn̂LeikL(x1 sin θL−x2 cos θL−cLt)

+ AVâ × n̂V eikS(x1 sin θV−x2 cos θV−cSt)

+ AHâeikS(x1 sin θH−x2 cos θH−cSt), (8.38)

Free surface

P-wave P-wave

SV-wave

θL0

θV

θL

x1

x2

Figure 8.4 Reflection of a P-wave from a free boundary
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where AL0 is the amplitude of the incident P-wave, AL, AV and AH are, respectively, the
amplitudes of the reflected P-, SV- and SH-waves, and

n̂L0 = (sin θL0, cos θL0, 0)T, n̂L = (sin θL, − cos θL, 0)T,

nV = (sin θV, − cos θV, 0)T, nH = (sin θH, − cos θH, 0)T,

are, respectively, the directions of propagation of the incident P-wave and the reflected
P-, SV- and SH-waves. It may be observed immediately from the u3 component in (8.38)
that AH = 0. Thus, as mentioned before, the SH-wave cannot be excited by reflection of a
P-wave from a free surface.

The boundary conditions for the free surface are

σ12
∣∣
x2=0 = 0 ⇒ [u1,2 + u2,1]

∣∣
x2=0 = 0. (8.39)

σ22
∣∣
x2=0 = 0 ⇒ [(λ + 2µ)(u1,1 + u2,2) − 2µu1,1]

∣∣
x2=0 = 0. (8.40)

It can be immediately concluded that these boundary conditions are identically satisfied if
and only if

kL0 sin θL0 = kL sin θL = kS sin θV and cLkL0 = cLkL = cSkS

⇒ kL0 = kL, θL0 = θL and
sin θL

sin θV

= kS

kL
= cL

cS
= κ. (8.41)

For a given angle of incidence θL0 = θL, one can calculate the angle of the reflected SV-wave
θV from the last equation in (8.41).

Substituting (8.38) in (8.39) and using (8.41) yields on simplification

AL0 sin 2θL − AL sin 2θL − κAV cos 2θV = 0. (8.42)

Similarly, from the condition (8.40), one obtains

AL0κ cos 2θV + ALκ cos 2θV − AV sin 2θV = 0. (8.43)

Solving for AL and AV in terms of AL0 from (8.42) and (8.43) yields

AL

AL0
= sin 2θL sin 2θV − κ2 cos2 2θV

κ2 cos2 2θV + sin 2θL sin 2θV
,

AV

AL0
= 2κ sin 2θL cos 2θV

κ2 cos2 2θV + sin 2θL sin 2θV
.

The variations of the amplitude ratios AL/AL0 and AV/AL0 with angle of incidence θL are
shown in Figure 8.5 for two values of ν.

Let us consider some special cases of reflection. For normal incidence, i.e., θL = 0, we
obtain AL/AL0 = −1 and AV/AL0 = 0. Thus, the incident P-wave is totally reflected, and
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Figure 8.5 Amplitude ratios of reflection of a P-wave incident at θL on a free boundary for two
values of Poisson ration ν

no SV-wave is generated. It may be checked that there is no phase change in this reflection.
On the other hand, if θL is such that

sin 2θL sin 2θV − κ2 cos2 2θV = 0, (8.44)

then AL/AL0 = 0 and AV/AL0 = κ cot 2θV. In this case, therefore, the P-wave is completely
converted to a SV-wave. This phenomenon is termed mode conversion. It may be observed
from Figure 8.5 that, for ν = 0.25, there are two such incident angles, namely θL = 60◦

and θL = 77.2◦ at which mode conversion takes place. There is no mode conversion for
ν = 0.33.

8.4.1.2 Incident SV-wave

Next consider an SV-wave incident on a free surface at an angle θS0, as shown in Figure 8.6.
In general, both longitudinal and transverse waves are generated. Hence, the total wave field
can be represented by

u(x1, x2, t) = AV0n̂S0e
ikS0(x1 sin θV0+x2 cos θV0−cSt)

+ ALn̂LeikL(x1 sin θL−x2 cos θL−cLt)

+ AVâ × n̂Se
ikS(x1 sin θV−x2 cos θV−cSt)

+ AHâeikS(x1 sin θH−x2 cos θH−cSt). (8.45)

Writing out the u3 component immediately yields AH = 0.
The boundary conditions are given by (8.39)–(8.40). As in the previous case, it can be

easily concluded that the boundary conditions are identically satisfied if and only if

kS0 sin θV0 = kL sin θL = kS sin θV and cSkS0 = cLkL = cSkS

⇒ kS0 = kS, θV0 = θV and
sin θL

sin θV
= kS

kL
= cL

cS
= κ. (8.46)
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Figure 8.6 Reflection of an SV-wave from a free boundary

The last equation in (8.46) yields the angle of the reflected P-wave θL for a given incident
angle θV0 = θV. However, since cL > cS, there exists a critical incident angle θC

V such that
κ sin θC

V = 1, and hence, from (8.46), θL = 90◦. For angles of incidence greater than this
critical value of θV, we have a reflected P-wave traveling along the x-axis whose amplitude
decreases exponentially along the negative y-axis. Such waves are known as inhomogeneous
waves.

Substituting (8.45) in (8.39) and using (8.46) yields on simplification

AV0κ cos 2θV + AL sin 2θL + κAV cos 2θV = 0. (8.47)

Similarly, the condition (8.40) yields

AV0 cos 2θV + ALκ cos 2θV − AV sin 2θV = 0. (8.48)

Solving for AL and AV in terms of AV0 from (8.47) and (8.48) yields

AL

AV0
= −2κ sin 2θV cos 2θV

κ2 cos2 2θV + sin 2θL sin 2θV
,

AV

AV0
= sin 2θL sin 2θV − κ2 cos2 2θV

κ2 cos2 2θV + sin 2θL sin 2θV
.

If the SV-wave is incident normally, we have AL/AV0 = 0, and AV/AV0 = −1, implying
a total reflection with no phase change. When the condition (8.44) holds, AV/AV0 = 0 and
AL/AV0 = −(1/κ) tan 2θV. Thus, we have the phenomenon of mode conversion from the
incident SV-wave to a P-wave. However, the mode conversion will be observed only if it
occurs at an incidence angle less than the critical angle of incidence θC

V discussed above in
this section.
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8.4.1.3 Incident SH-wave

Consider an incident SH-wave on a free surface. As observed in the above discussions,
the SH-wave cannot excite the P- and SV-waves in a homogeneous and isotropic medium.
Therefore, the reflected wave will comprise only a reflected SH-wave. Let us represent the
complete wave field by

u(x1, x2, t) = AH0âeikS(n̂H0·r−cSt) + AHâeikS(n̂H·r−cSt), (8.49)

where n̂H0 = (sin θH0 cos θH0, 0)T and n̂H = (sin θH, − cos θH, 0)T are, respectively, the
directions of the incident and reflected SH-waves.

The boundary conditions for the free surface are given by (8.39)–(8.40). It is immediately
evident that (8.40) is identically satisfied by (8.49). Substituting (8.49) in (8.39) yields

u3,2
∣∣
x2=0 = 0

⇒AH0 cos θH0e
ikS(x1 sin θH0−cSt) − AH cos θHeikS(x1 sin θH−cSt) = 0. (8.50)

The condition (8.50) is identically satisfied if and only if

sin θH0 = sin θH ⇒ θH0 = θH. (8.51)

Then, we obtain from (8.50)

AH0 = AH. (8.52)

8.5 RAYLEIGH SURFACE WAVES

Under certain conditions, traveling waves can exist within a small depth from a free surface
of an elastic continuum, while the bulk of the continuum remains almost undisturbed.
Such waves are known as Rayleigh waves, and are useful in determining the surface and
sub-surface characteristics of materials.

Consider an elastic half-space, as shown in Figure 8.7. Consider a general harmonic
traveling wave directed along the positive x1-axis, and composed of both longitudinal and
vertical shear wave components of the form

u(x1, x2, t) = uL(x1, x2, t) + uS(x1, x2, t)

= YL(x2)e
i(kx1−ωt) + YS(x2)e

i(kx1−ωt), (8.53)

where YL(x2) and YS(x2) are two vector functions, and k and ω are, respectively, the wave
number and frequency of the wave. Substituting the expressions of uL and uS from (8.53)
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Free surface

x1

x2

Figure 8.7 Motion of a section of a continuum due to Rayleigh surface waves

in the respective governing wave equations (8.22) and (8.23), we have

Y′′
L +
(

ω2

c2
L

− k2
)

YL = 0, (8.54)

Y′′
S +
(

ω2

c2
S

− k2
)

YS = 0, (8.55)

where prime denotes differentiation with respect to x2. Now, we consider the case

ω2

c2
L

− k2 := −k2
L < 0 and

ω2

c2
S

− k2 := −k2
S < 0. (8.56)

Using these two definitions, the solutions of (8.54) or (8.55) can be represented in the
general form as

YJ (x2) = AJ ekJ x2 + BJ e−kJ x2 ,

where J = L or S. From the consideration of finiteness of the solution as x2 → −∞, we
must have BJ = 0. Therefore, the waveform (8.53) can be written as

u(x1, x2, t) = (ALekLx2 + ASe
kSx2)ei(kx1−ωt). (8.57)

Such a solution, if it exists, will clearly imply that u → 0 as x2 → −∞. Thus, the wave
motion will be prominent only on, and close to the surface x2 = 0. Next, we must investigate
the existence of a solution of the form (8.57).

The longitudinal and shear wave components in the solution (8.57) must satisfy the curl
and divergence conditions (8.14). The curl condition yields

∇ × [ALekLx2ei(kx1−ωt)] = 0

⇒ AL3kL = 0, ikAL3 = 0, and ik1AL2 − kLAL1 = 0. (8.58)
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Thus, we must have

AL3 = 0 and AL2 = kL

ik
AL1. (8.59)

Similarly, the divergence condition in (8.14) yields

∇ · [ASe
kSx2ei(kx1−ωt)] = 0

⇒ AS2 = − ik

kS
AS1. (8.60)

Using (8.59) and (8.60) in (8.57) yields on rearrangement

u1 = (AL1e
kLx2 + AS1e

kSx2)ei(kx1−ωt), (8.61)

u2 =
(

kL

ik
AL1e

kLx2 − ik

kSAS1
ekSx2

)
ei(kx1−ωt), (8.62)

u3 = 0. (8.63)

The free boundary conditions can be written as

σ12
∣∣
x2=0 = 0 ⇒ (u1,2 + u2,1)|x2=0 = 0, (8.64)

σ22
∣∣
x2=0 = 0 ⇒ [(λ + 2µ)(u1,1 + u2,2) − 2µu1,1]|x2=0 = 0. (8.65)

Substituting (8.61)–(8.62) in (8.64), we obtain

2kLkSAL1 + (k2
S + k2)AS1 = 0. (8.66)

Similarly, from (8.65), and using (8.24), we have

[(k2 − k2
L)κ2 − 2k2]AL1 − 2k2AS1 = 0, (8.67)

where κ = cL/cS. Eliminating ω2 from the two definitions in (8.56) yields

(k2 − k2
L)κ2 = k2 − k2

S. (8.68)

Using (8.68) in (8.67), one obtains

(k2 + k2
S)AL1 + 2k2AS1 = 0. (8.69)
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The two homogeneous equation (8.67) and (8.69) have non-trivial solution for AL1 and AS1

if and only if

4kLkSk
2 − (k2 + k2

S)2 = 0

⇒
(

2k2 − ω2

c2
S

)4

− 16

(
k2 − ω2

c2
L

)(
k2 − ω2

c2
S

)
k4 = 0 (using (8.56))

or

(2 − ξ 2)4 − 16

(
1 − ξ 2

κ2

)(
1 − ξ 2) = 0

⇒ ξ 6 − 8ξ 4 + 8

(
3 − 2

κ2

)
ξ 2 − 16

(
1 − 1

κ2

)
= 0, (8.70)

where κ = cL/cS and

ξ = ω

cSk
. (8.71)

Since ω/k is the phase speed of the harmonic Rayleigh wave (8.57), ξ has the interpretation
of a wave speed ratio.

For a given material, κ (given by (8.25)) is a constant, and roots of the polynomial (8.70)
yield the possible values of ξ . However, not all such values are admissible for the dispersion
relation (8.71) since they have to satisfy both the conditions in (8.56), i.e.,

ξ

κ
− 1 < 0 and ξ − 1 < 0. (8.72)

Since cL > cS (i.e., κ > 1), the admissible values are those which satisfy the second con-
dition in (8.72), i.e., ξ < 1. It can be shown that there is only one root of (8.70) which
satisfies this condition. The variation of this root with ν is shown in Figure 8.8. The phase
velocity of Rayleigh waves can be obtained from (8.71) as

cR = ω

k
= cSξ. (8.73)

Since ξ < 1, the speed of Rayleigh waves is less than the speed of shear waves (and hence
also less than the speed of longitudinal waves).

For a Rayleigh wave, the locus of motion of any point of the continuum can be obtained
by writing the real parts of (8.61) and (8.62) as

u1 = a cos(kx1 − ωt), (8.74)

u2 = b sin(kx1 − ωt), (8.75)
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Figure 8.8 Variation of the admissible values of wave speed ratio ξ with Poisson ratio ν for Rayleigh
waves

where a and b are constants for any point at a depth x2. These are given by

a = AL1e
kLx2 + AS1e

kSx2,

b = kL

k
AL1e

kLx2 + k

kS
AS1e

kSx2 .

From (8.74) and (8.75), one can easily write

u2
1

a2
+ u2

2

b2
= 1. (8.76)

It may be noted that as x2 → −∞, a → 0, and b → 0. Thus, all points of the continuum
move on elliptic paths, and the ellipses shrink in size with increasing depth from the surface.

8.6 REFLECTION AND REFRACTION OF PLANAR ACOUSTIC
WAVES

In this section, we consider an elastic half-space in contact with an inviscid compressible
fluid, and study the waves generated in the elastic half-space by planar acoustic waves
incident from the fluid on the interface. Situations similar to this occur in ultrasonic testing
of materials and underwater acoustic sensing, and also in room acoustics.

Let a plane acoustic wave in the fluid be incident on the fluid–solid interface x2 = 0 at
an angle φ, as shown in Figure 8.9. This causes a reflected wave in the fluid, and in general,
longitudinal and shear acoustic waves in the elastic half-space. Let the velocity potential
for the fluid wave be represented by

ψ(x, y, t) = ψIe
ik(x1 sin φ−x2 cos φ−ct) + ψReik(x1 sin φ+x2 cos φ−ct), (8.77)
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Fluid half-space

Elastic half-space

n̂S

n̂L

P-wave

SV-wave

φ φ

θS

θL

x1

x2

Figure 8.9 Reflection and refraction of sound at the boundary between fluid and elastic half-spaces

where ψI and ψR are constant amplitudes associated with the incident and reflected waves,
respectively, c is the speed of acoustic waves in the fluid, and k is the wave number. The
waves in the elastic half-space can be represented as

u(x1, x2, t) = ALn̂LeikL(x1 sin θL−x2 cos θL−cLt)

+ ASâ × n̂Se
ikS(x1 sin θS−x2 cos θS−cSt), (8.78)

where n̂L = (sin θL, − cos θL, 0)T and n̂S = (sin θS, − cos θS, 0)T. At the boundary, we have
conditions on the velocity along the normal, the pressure (or the normal stress), and the
shear stress. Since the fluid is assumed to be inviscid, there is no surface shear stress at the
boundary of the elastic half-space. The velocity, pressure, and shear boundary conditions
can be written as, respectively,

ψ,2
∣∣
x2=0 = u2,t

∣∣
x2=0, (8.79)

p = −ρψ,t

∣∣
x2=0 = −σ22

∣∣
x2=0, (8.80)

σ12
∣∣
x2=0 = 0. (8.81)

Substituting (8.77) and (8.78) in (8.79) yields

(−ψI + ψR)ik cosφeik(x1 sin φ−ct) = AL cos θLikLcLeikL(x1 sin θL−cLt)

− AS sin θSikScSe
ikS(x1 sin θS−cSt). (8.82)

If (8.82) is to be satisfied identically, we must have

k sin φ = kL sin θL = kS sin θS and kc = kLcL = kScS

⇒ kL = k
c

cL
, kS = k

c

cS
, sin θL = cL

c
sinφ, sin θS = cS

c
sinφ. (8.83)
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These conditions then yield the wave numbers kL and kS, and the directions of the longitu-
dinal and shear waves, θL and θS, respectively. Using (8.83) in (8.82), one can write

−c cos θL

cosφ
AL + c sin θS

cosφ
AS + ψR = ψI. (8.84)

Similarly, from (8.80) and (8.81), we obtain, respectively,

−cL cos 2θSAL + cS sin 2θSAS − ψR = ψI, (8.85)

cS sin 2θLAL + cL cos 2θSAS = 0. (8.86)

One can now easily solve for AL, AS, and ψR from the inhomogeneous linear equations
(8.84)–(8.86).

There are some interesting observations here. When the angle of incidence of the acoustic
wave in the fluid satisfies the condition sinφ < c/cL, we have a reflected wave in the fluid,
and P- and SV-waves in the elastic continuum. Thus, a fraction of the energy of the incident
wave goes into the elastic half-space. For sin φ = c/cL, we have from (8.83) θL = π/2,
implying that the P-wave travels parallel to the surface. It can be further observed from (8.86)
that AS = 0, i.e., the shear wave disappears. Thus, in this case we have only a P-wave in the
elastic half-space. For sinφ > c/cL, we observe from (8.83) that sin θL > 1. This implies that
the P-wave becomes an inhomogeneous wave, and is restricted to being close to the surface.
In the situation sinφ > c/cS, both the P- and SV-waves become inhomogeneous, and hence
we have only inhomogeneous waves in the elastic half-space. Since inhomogeneous waves
cannot carry energy into the elastic half-space, in this case the incident wave is completely
reflected back into the fluid without any loss of energy.

EXERCISES

8.1 An elastic half-space occupies the region x2 ∈ (−∞, 0], as shown in Figure 8.10. The surface
x2 = 0 is rigidly fixed so as to prevent any motion of the points on the surface. Determine the
reflected waves when (a) a plane harmonic P-wave is incident, and (b) a plane harmonic SV-wave is
incident on the boundary. Determine the reflection coefficients as a function of the angle of incidence
of the incident waves.

Fixed surface

P/SV-wave

P-wave

SV-wave

θL0/θV 0

θV

θL

x1

x2

Figure 8.10 Exercise 8.1
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8.2 Investigate the propagation of SH-waves through a wave guide, as shown in Figure 8.11. Determine
the dispersion relation and cut-off frequencies for such waves.

∞ ∞

SH-wave
Free surface

Free surface

Figure 8.11 Exercise 8.2

8.3 Two elastic half-spaces are connected firmly with each other so as to prevent any slip between
them. Investigate the existence and propagation of waves (combination of P- and SV-waves) that are
restricted to a thin layer around the interface of the two half-spaces.

8.4 An elastic half-space is in contact with an ideal fluid. Investigate the propagation of interface
waves that may exist within a thin layer of the interface of the fluid and the half-space. Such interface
waves are known as Stoneley waves (see, for example, [4]).

8.5 An elastic half-space is connected firmly with a layer of another material with specific normal
impedance ZL, and specific shear impedance ZS. Investigate the reflection of (a) an incident SH-wave,
and (b) an incident P-wave from the surface. Determine the power lost in the reflection process as a
function of the angle of incidence.

8.6 Two elastic half-spaces are connected firmly with each other so as to prevent any slip between
them. A plane harmonic SH-wave is incident on the interface. Determine the transmitted and reflected
waves as a function of the angle of incidence of the incident wave. Also determine the shear stress at
the interface as a function of the angle of incidence.

8.7 An elastic half-space is firmly connected to a layer of another material of thickness d , as shown
in Figure 8.12. Investigate the existence of surface SH-waves at the interface of the two materials.
Such surface SH-waves are observed only in layered continua, and are known as Love waves (see, for
example, [4]). Also determine the shear stress at the interface.

Elastic layer

Elastic half-space

Free surface

No-slip interface

x1

x2

Figure 8.12 Exercise 8.7
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8.8 An elastic half-space made of steel is in contact with water. A plane harmonic wave in the water
is incident on the water–steel interface, as discussed in Section 8.6. Calculate and plot the amplitude
ratios of the wave reflected back into the water, and the waves transmitted into the steel. How do the
results change when water is replaced by air? Take cL = √

3cS = 5000 m/s for steel, c = 1500 m/s
for water and c = 340 m/s for air.
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Appendix A

The variational formulation
of dynamics

This appendix gives a brief introduction to the variational formulation of dynamics of
continuous systems. More detailed discussions on the variational formulation of mechanics
can be found in, for example, [1], and [2].

Consider for simplicity a one-dimensional continuous system with the field variable
w(x, t) which uniquely represents the configuration of the system at any time t . In the
course of temporal evolution of the system, let the configurations at two time instants t = t1
and t = t2 be recorded as, respectively, w(x, t1) and w(x, t2). Assume that no information
about the intermediate configurations is available. Now, the question is: Can we determine
the intermediate configurations through which the system passed while going from w(x, t1)

to w(x, t2)? The answer to this question is provided by Hamilton’s principle which states:
Of all the infinite paths available to a system between any two observed configurations, the
system follows that path which extremizes the action A defined by

A =
∫ t2

t1

L dt, (A.1)

where L = T − V is known as the Lagrangian, and T and V are, respectively, the kinetic
energy and potential energy expressions of the system at an arbitrary configuration. Extrem-
ization in mechanical systems can be construed as minimization. Thus, we will be searching
over all possible paths, and the test that we have found the actual path is that any infinitesimal
variation over that path should leave the value of A unchanged. This can be mathematically
written as

δA = δ

∫ t2

t1

L dt =
∫ t2

t1

δL dt = 0, (A.2)

where δ(·) is the infinitesimal variation operator which behaves very much like the total
derivative operator, with the difference that δ(·) does not vary the time. This difference
should be obvious, since we are interested only in the infinitesimal variation of a path,
and not time. Another important property of δ(·) is that it commutes with any differential
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operator, i.e.,

δ

[
∂

∂x
(·)
]

= ∂

∂x
[δ(·)] . (A.3)

The Lagrangian is, in general, a function of the field variable, its time and space-derivatives,
and time. Consider now a one-dimensional continuous system with a Lagrangian

L =
∫ l

0
L̂(w, w,t , w,x, w,xx, t) dx,

where L̂(·) is known as the Lagrangian density of the system for obvious reasons, and l is
the length of the continuum. Using the extremization condition (A.2), we obtain

∫ t2

t1

∫ l

0
δL̂(w, w,t , w,x, w,xx, t) dx dt = 0,

or

∫ t2

t1

∫ l

0

[
∂L̂
∂w

δw + ∂L̂
∂w,t

δw,t + ∂L̂
∂w,x

δw,x + ∂L̂
∂w,xx

δw,xx

]
dx dt = 0.

Integrating by parts appropriately, one can obtain

∫ l

0

∂L̂
∂w,t

δw

∣∣∣∣
t2

t1

dx +
∫ t2

t1

[
∂L̂

∂w,xx

δw,x +
{

∂L̂
∂w,x

− d

dx

(
∂L̂

∂w,xx

)}
δw

] ∣∣∣∣
l

0

dt

+
∫ t2

t1

∫ l

0

[
∂L̂
∂w

− d

dt

(
∂L̂
∂w,t

)
− d

dx

(
∂L̂

∂w,x

)
+ d2

dx2

(
∂L̂

∂w,xx

)]
δw dx dt = 0.

(A.4)
Since we started with the objective of finding the intermediate configurations of the

system between two configurations connected by a trajectory, we do not vary the initial and
final configurations on the trajectory. Thus, δw|t1 = δw|t2 ≡ 0. Therefore, the first integral
in (A.4) vanishes identically. Now, the remaining terms in (A.4) have to vanish for all the
possible variations considered in Hamilton’s principle. The second term in (A.4) contains
the variations at the boundary only. Since these boundary variations can be held fixed
independently of the variations at other points of the trajectory, the fundamental lemma of
the calculus of variations tells us that the integrand of the third term in (A.4) must vanish.
Thus,

∂L̂
∂w

− d

dt

(
∂L̂
∂w,t

)
− d

dx

(
∂L̂

∂w,x

)
+ d2

dx2

(
∂L̂

∂w,xx

)
= 0, (A.5)
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which is the equation of motion of the system. Finally, the second integral vanishes, for
example, if

∂L̂
∂w,xx

∣∣∣∣
x=0

≡ 0, or δw,x

∣∣
x=0 ≡ 0, (A.6)

∂L̂
∂w,xx

∣∣∣∣
x=l

≡ 0, or δw,x

∣∣
x=l

≡ 0, (A.7)

∂L̂
∂w,x

− d

dx

(
∂L̂

∂w,xx

)∣∣∣∣
x=0

≡ 0, or δw
∣∣
x=0 ≡ 0, (A.8)

and

∂L̂
∂w,x

− d

dx

(
∂L̂

∂w,xx

) ∣∣∣∣
x=l

≡ 0, or δw
∣∣
x=l

≡ 0. (A.9)

These relations yield possible boundary conditions of the problem. Note, however, that
Hamilton’s principle only requires the sum of all the boundary terms to vanish, and not nec-
essarily the different boundary terms individually (see the examples with special boundary
conditions in Section 3.1.2). The solution of the equation of motion (A.5) along with the
boundary conditions (A.6)–(A.9) yields the successive configurations of the system at any
time instant starting from any arbitrary initial condition.

When a system is subject to generalized non-potential or external forces Q(x, t), one
can introduce them in Hamilton’s principle through the virtual work expression δW =
Q(x, t)δw. Hamilton’s principle (A.2) is then written as

∫ t1

t0

[δL + δW] dt = 0

⇒
∫ t1

t0

[δL + Q(x, t)δw] dt = 0. (A.10)

This is, however, not strictly a variational principle, and is sometimes referred to as the
extended Hamilton’s principle. Following the steps discussed above, the equation of motion
in this case can be easily obtained as

∂L̂
∂w

− d

dt

(
∂L̂
∂w,t

)
− d

dx

(
∂L̂

∂w,x

)
+ d2

dx2

(
∂L̂

∂w,xx

)
+ Q(x, t) = 0. (A.11)

The boundary conditions (A.6)–(A.9), however, remain the same.
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Appendix B

Harmonic waves and dispersion
relation

B.1 FOURIER REPRESENTATION AND HARMONIC WAVES

It is known from the theory of Fourier transforms (see, for example, [1]) that any sufficiently
smooth square integrable function can be represented as

f (z) = 1

2π

∫ ∞

−∞
F(k)eikz dk, (B.1)

where

F(k) =
∫ ∞

−∞
f (z)e−ikz dz,

and k is the Fourier variable. Hence, a traveling wave solution f (x − ct) of the wave
equation can be represented using (B.1) as

f (x − ct) = 1

2π

∫ ∞

−∞
F(k)eik(x−ct) dk

= 1

2π

∫ ∞

−∞
F(k)ei(kx−ωt) dk, (B.2)

where ω = ck. The integrand in (B.2) can be easily recognized to be a harmonic traveling
wave in complex notation. Thus, a general traveling wave can be represented as a linear
superposition of harmonic traveling waves. This implies that wave propagation in linear
continuous systems can be conveniently studied by studying the propagation of a harmonic
wave solution of the form

w(x, t) = Bei(kx−ωt), (B.3)

where k = 2π/λ is defined as the wave number, λ is the wavelength, and ω is the circular
frequency of the harmonic wave.
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Consider an unforced taut string governed by the equation (see Chapter 1)

ρAw,tt − T w,xx = 0, (B.4)

where ρ is the density, A is the area of cross-section, and T is the tension. Substituting
(B.3) in (B.4) yields

D(ω, k)Bei(kx−ωt) = 0

⇒ D(ω, k) := −ρAω2 + T k2 = 0, (B.5)

where D(ω, k) = 0 is known as the dispersion relation. Thus, the dispersion relation pro-
vides, in terms of the properties of the medium (here, the string), a connection between the
frequency and the wave number of the harmonic waves that can propagate in the medium.

A uniform Euler–Bernoulli beam is described by (see Chapter 3)

ρAw,tt + EIw,xxxx = 0, (B.6)

where E is the Young’s modulus and I is the second moment of the area of cross-section.
Substituting (B.3) in (B.6) yields the dispersion relation of the beam as

−ρAω2 + EIk4 = 0. (B.7)

Now, depending on the problem and the kind of analysis intended, there are two approaches,
namely the spatial framework and the temporal framework. In the former, we first solve the
dispersion relation for k in terms of ω. For example, in the case of a taut string

k = ±ω

c
, (B.8)

where c = √
T /ρA. Then, the complete harmonic wave solution may be written using (B.8)

as

w(x, t) = A1e
i(ωx/c−ωt) + A2e

i(−ωx/c−ωt)

= [A1e
iωx/c + A2e

−iωx/c] e−iωt , (B.9)

where A1 and A2 are arbitrary constants. This solution is of the form w(x, t) = W(x)e−iωt ,
and hence suitable for modal analysis of finite continuous systems. Note that (B.9) repre-
sents the superposition of two counter-propagating harmonic waves of the form A1ei(kx−ωt)

and A2ei(−kx−ωt), and can meet boundary condition requirements at some point in the
medium. Hence (B.9) is also suitable for studying scattering of waves involving reflection
and transmission of waves at boundaries and obstacles.



B.2 Phase velocity and group velocity 369

In the temporal framework, we solve the dispersion relation D(ω, k) = 0 for ω in terms
of k. For the string, this gives

ω = ±ck. (B.10)

Therefore, the complete harmonic solution can be written as

w(x, t) = A1e
ik(x−ct) + A2e

ik(x+ct), (B.11)

where A1 and A2 are arbitrary constants. This harmonic wave solution has the form of
the d’Alembert solution discussed in Chapter 2. This form of solution is suitable for initial
value problems, or studying wave propagation in infinite continuous systems. For example,
from the dispersion relation (B.7) of the Euler–Bernoulli beam, one can solve

ω = ±
(√

EI

ρA

)
k2 = ±βk2.

Then, the solution of the initial value problem for the beam with w(x, 0) = w0(x) and
w,t (x, 0) = v0(x) can be written as

w(x, t) = 1

2π

∫ ∞

−∞

[
F(k)ei(kx−βk2t) + G(k)ei(kx+βk2t)

]
dk,

where F(k) and G(k) are obtained by solving

F(k) + G(k) =
∫ ∞

−∞
w0(x)e−ikx dx

and

−F(k) + G(k) = 1

βk2

∫ ∞

−∞
v0(x)e−ikx dx.

B.2 PHASE VELOCITY AND GROUP VELOCITY

Consider the harmonic traveling wave represented by (B.3). For a moving observer, this
wave is described by

w(x, t) = Bei(kx(t)−ωt),

where x(t) is the coordinate location of the observer at any time t . If the wave is to appear
stationary to this moving observer, the phase (kx(t) − ωt) of the wave must not change
with time, i.e.,

kẋ(t) − ω = 0 ⇒ ẋ(t) = ω

k
:= cP,
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where the special velocity cP is termed the phase velocity of the wave. Thus, cP represents
the speed at which the crests and troughs of a harmonic wave move. The ratio cP = ω/k is
easily obtained from the dispersion relation. For example, for a taut string cP = ω/k = c.
In general, cP can be a function of the wave number k. For example, for an Euler–Bernoulli
beam, (B.7) yields cP = (

√
EI/ρA)k. In that case, the medium is known as a dispersive

medium. Thus, in a dispersive medium, harmonic waves of different wave numbers propagate
at different speeds.

As mentioned previously, a general waveform can be considered to be composed of a
number of harmonic wave components. When the waveform travels through a dispersive
medium it will distort since the phase speeds of the harmonic components constituting the
waveform are all different. Hence, we require a different definition of speed of the waveform
in a dispersive medium, which is discussed next.

Consider the Fourier representation of a traveling wave in a dispersive medium of the
form

f (x, t) = 1

2π

∫ ∞

−∞
F(k)ei(kx−ω(k)t) dk. (B.12)

A wave is termed narrow-band when its spectrum is zero everywhere except over a narrow
band of wave numbers, i.e., F(k) = 0 for |k − k0| > ε, as shown in Figure B.1. Such a
waveform is an amplitude modulated wave like the one shown in Figure B.2, and is termed
a wave packet. Such a wave packet has a functional representation of the form

1

2π

∫ ∞

−∞
F(k)eikx dk = f0(x)eik0x, (B.13)

where f0(x) represents the modulating envelope, as shown in Figure B.2. It is of interest
to determine the velocity of the profile of the wave packet since the energy of the packet is
localized in the high-amplitude region.

F(k)

k

k0

2ε

Figure B.1 Spectrum of a typical narrowband waveform in the wave number space
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f (x)

x

f0(x)

Figure B.2 Spatial signature of a typical narrow-band waveform

Let us take the central wave number as k0, and write k = k0 + ξ , where ξ ∈ [−ε, ε].
Then, one can easily show from (B.13) that

1

2π

∫ ∞

−∞
F(k0 + ξ)eiξx dξ = f0(x). (B.14)

Using this, one can now rewrite (B.12) as

f (x, t) = 1

2π

∫ ∞

−∞
F(k0 + ξ)ei[k0x+ξx−ω(k0+ξ)t] dξ

or

f (x, t) ≈ ei(k0x−ω(k0)t) 1

2π

∫ ∞

−∞
F(k0 + ξ)eiξ [x−ω′(k0)t] dξ

or

f (x, t) = f0[x − ω′(k0)t] ei(k0x−ω(k0)t) (using (B.14))

or

f (x, t) = f0[x − cGt] eik0(x−cPt), (B.15)

where cP = ω(k0)/k0, and

cG := ω′(k0) = dω(k)

dk

∣∣∣∣
k=k0

,

is the group velocity of the wave. It is evident from (B.15) that the amplitude envelope f0[·]
of a wave packet travels at the group velocity cG, while the wave itself travels at the phase
velocity given by cP = ω(k0)/k0. It should be noted that the solution (B.15) is valid only
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ω

k

cG = dω/dk

D(ω, k) = 0

cP = ω/k

Figure B.3 The concept of phase and group velocities for a dispersive medium

for a small time due to the approximation involved in deriving it. The concepts of cP and
cG in a dispersive medium are graphically explained in Figure B.3, where the slopes of the
dashed lines yield the respective values.
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Appendix C

Variational formulation for
dynamics of plates

In deriving the equation of motion of a plate using the variational formulation, we will
require the following two standard mathematical results:

a(x, y)∇ · v(x, y) = ∇(av) − (∇a) · v, (C.1)∫
A

∇ · v(x, y) dx dy =
∮

B
v · n̂ ds, (C.2)

where A is the domain of integration and B is the boundary enclosing the domain A, and n̂
is the unit outward normal to the infinitesimal line element ds on B, as shown in Figure C.1.
The result (C.2) is the Gauss divergence theorem.

Consider a plate in the x-y-plane of the Cartesian coordinate system. Let w(x, y, t)

represent the transverse displacement field along the z-axis direction. The kinetic energy of
a plate element can be represented by

T = 1

2

∫ ∫ ∫ h/2

−h/2

[
ρw2

,t + ρz2(w2
,xt + w2

,yt )
]
dz dx dy

= 1

2

∫ ∫
[ρhw2

,t + I (w2
,xt + w2

,yt )] dx dy, (C.3)

where I = ρh3/12 is the moment of inertia per unit area of the plate. The potential energy
of the plate is given by the strain energy stored in the plate when it undergoes deformation.
From linear theory of elasticity, the strain energy in this case can be written as (see [1])

V = 1

2

∫ ∫ ∫ h/2

−h/2
(σxxεxx + σyyεyy + 2σxyεxy) dz dy dx.

Vibrations and Waves in Continuous Mechanical Systems P. Hagedorn and A. DasGupta
Ò 2007 John Wiley & Sons, Ltd
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B

A

y

x

n̂ = (cosα, sin α)T

α

ds

s

Figure C.1 Representation of unit tangent and normal vectors at a domain boundary

Using (5.4) and (5.6)–(5.8) in the above expression and simplifying yields

V = 1

2

∫ ∫
A

D[w2
,xx + w2

,yy + 2νw,xxw,yy + 2(1 − ν)w2
,xy] dx dy

= D

2

∫ ∫
A
[(w,xx + w,yy)

2 + 2(1 − ν)(w2
,xy − w,xxw,yy)] dx dy, (C.4)

where

D = Eh3

12(1 − ν2)

is assumed to be independent of (x, y). In other words, the material properties E and ν,
and the thickness h, from here onwards, are taken to be constant. For a more general case,
one may take D = D(x, y) and retain it inside the integral in (C.4).

Now, from Hamilton’s principle, the dynamics of the plate must satisfy

δ

∫ t2

t1

(T − V) dt = 0

or ∫ t2

t1

δT dt −
∫ t2

t1

δV1 dt −
∫ t2

t1

δV2 dt = 0, (C.5)

where

V1 = D

2

∫ ∫
(∇2w)2 dx dy,

V2 = D(1 − ν)

∫ ∫
(w2

,xy − w,xxw,yy) dx dy.

We have partitioned the action integral into three terms for convenience.
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Consider the first term in (C.5). Using the standard arguments of the variational formu-
lation of dynamics, we can rewrite the first term as

∫ t2

t1

δT dt =
∫ t2

t1

∫ ∫
[ρhw,t δw,t + I (w,xt δw,xt + w,yt δw,yt )] dx dy dt

=
∫ ∫

[ρhw,t δw + I (w,xt δw,x + w,yt δw,y)]
t2
t1 dx dy

+
∫ t2

t1

∫ ∫
[−ρhw,tt δw − I (w,xtt δw,x + w,ytt δw,y)] dx dy dt

=
∫ t2

t1

∫ ∫
[−ρhw,tt δw − I {(w,xtt δw),x − w,xxtt δw

+(w,ytt δw),y − w,yytt δw}] dx dydt

=
∫ t2

t1

∫ ∫
[−ρhw,tt δw − I∇ · ( δw∇w,tt ) + I (∇2w,tt ) δw] dx dy dt.

Now, applying the Gauss divergence theorem (C.2) to the second term in the above expres-
sion, we have

∫ t2

t1

δT = −
∫ t2

t1

[∮
I (∇w,tt ) · n̂ δw ds +

∫ ∫
(ρhw,tt + I∇2w) δw dx dy

]
dt

=
∫ t2

t1

[
−
∮

Iw,ntt δw ds +
∫ ∫

(ρhw,tt + I∇2w) δw dx dy

]
dt, (C.6)

where we have used the definition

w,ntt := ∇w,tt · n̂ = w,xtt cosα + w,ytt sinα.

Next, consider the integrand of the second term in (C.5). We can write

δV1 = D

∫ ∫
∇2w∇ · (∇δw) dx dy

= D

∫ ∫
[∇ · (∇2w∇δw) − (∇∇2w) · (∇δw)] dx dy (using (C.1))

= D

∫ ∫
[∇ · (∇2w∇δw) − ∇ · (δw∇∇2w)

+∇2∇2w δw] dx dy (using (C.1))

= D

∮
[(∇2w∇δw) · n̂ − (δw∇∇2w) · n̂] ds

+ D

∫ ∫
∇4w δw dx dy (using (C.2))

= D

∮
[∇2w δw,n − ∇2w,n δw] ds + D

∫ ∫
∇4w δw dx dy. (C.7)
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The integrand of the third term in (C.5) can be written as

δV2 = D(1 − ν)

∫ ∫
[2w,xy δw,xy − w,xx δw,yy − w,yy δw,xx ] dx dy

= D(1 − ν)

∫ ∫
[(w,xy δw,y),x − w,xxy δw,y + (w,xy δw,x),y − w,xyy δw,x

−(w,xx δw,y),y + w,xxy δw,y − (w,yy δw,x),x + w,xyy δw,x] dx dy

= D(1 − ν)

∫ ∫
∇ · F dx dy, (C.8)

where

F = (Fx, Fy)
T = [(w,xy δw,y − w,yy δw,x), (w,xy δw,x − w,xx δw,y)]

T.

Using (C.2) to (C.8) we get

δV2 = D(1 − ν)

∮
F · n̂ ds

= D(1 − ν)

∮
[(cosαw,xy − sinαw,xx) δw,y

+ (sin αw,xy − cosαw,yy) δw,x] ds. (C.9)

Now, one can relate the derivatives in the Cartesian and the n̂–ŝ systems as

∂

∂x
= cosα

∂

∂n
− sin α

∂

∂s
and

∂

∂y
= sin α

∂

∂n
+ cosα

∂

∂s
.

Using the above transformations one can rewrite (C.9) as

δV2 = D(1 − ν)

[ ∮
[(cosαw,xy − sin αw,xx) sinα

+ (sinαw,xy − cosαw,yy) cosα δw,n ds

+
∮

[(cosαw,xy − sin αw,xx) cosα

−(sinαw,xy − cosαw,yy) sinα] δw,s] ds

]
. (C.10)

Integrating by parts the second contour integral in the above, and remembering that the
boundary term will be zero over a closed contour, we have

δV2 = D(1 − ν)

∮
(2 cosα sinαw,xy − sin2 αw,xx − cos2 αw,yy) δw,n

−(cos2 α − sin2 α)w,xy − cosα sin α(w,xx − w,yy),s δw ds. (C.11)
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Substituting (C.6), (C.7), and (C.11) into (C.5) yields

∫ t2

t1

[
−
∮

D[∇2w,n + D(1 − ν){cosα sinα(w,yy − w,xx)

+ (cos2 α − sin2 α)w,xy},s + Iw,ntt ] δw ds

+
∮

D[∇2w + (1 − ν)(2 cosα sin αw,xy

− cos2 αw,yy − sin2 αw,xx)] δw,n ds

+
∫ a

0

∫ b

0

[−ρhw,tt + I∇2w,tt − D∇4w
]
δw dx dy

]
dt = 0.

The equation of motion is obtained from the last integral as

ρhw,tt − I∇2w,tt + D∇4w = 0.

The boundary conditions are obtained as

[∇2w + (1 − ν)(2nxnyw,xy − n2
xw,yy − n2

yw,xx)
] = 0

or

w,n = 0, (x, y) ∈ B, (C.12)

and

−Iw,ntt − D[∇2w,n + (1 − ν){nxny(w,yy − w,xx) + (n2
x − n2

y)w,xy},s] = 0

or

w = 0, (x, y) ∈ B. (C.13)

Let us now consider the boundary conditions for the special case of a rectangular Kirchhoff
plate (that is, we set I = 0). The unit normals at one of the boundaries are shown in
Figure C.2. In the case of the rectangular plate, (C.12) and (C.13) for the boundary x = a

yield, respectively,

D[∇2w − (1 − ν)w,yy]x=a = 0 or w,x

∣∣
x=a

= 0

and

D[(∇2w),x + (1 − ν)w,xyy ]x=a = 0 or w
∣∣
x=a

= 0.

The conditions at the other boundaries can be derived similarly.
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y

n̂ = (1, 0)T

t̂ = (0, 1)T

xa

b

Figure C.2 Unit boundary normal and tangent vectors for a rectangular plate

t̂ = (− sin φ, cos φ)T

n̂ = (cosφ, sin φ)T

φ

Figure C.3 Unit boundary normal and tangent vectors for a circular plate

For a circular plate, as shown in Figure C.3, the boundary conditions in the polar coor-
dinates can be obtained from (C.12) and (C.13) using the operator transformations

∂

∂x
= cosα

∂

∂r
− sinα

∂

r∂φ
and

∂

∂y
= sin α

∂

∂r
+ cosα

∂

r∂φ
.

Using these transformations in (C.12) and (C.13) yields, respectively,

[
∇2w − (1 − ν)

1

r

(
w,r + 1

r
w,φφ

)]
r=R

= 0 or w,r

∣∣
r=R

= 0,

and [
(∇2w),r + (1 − ν)

1

r

(
1

r
w,φφ

)
,r

]
r=R

= 0 or w
∣∣
r=R

= 0.
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Index

Acoustic
intensity, 296
monopole, 305
radiation

from membranes and plates, 307
radiation efficiency, 310
short-circuit, 311
wave equation, 291

Acoustic waves
cylindrical, 305
from a breathing sphere, 301
in slightly viscous fluids, 318
in wave guides, 314
inhomogeneous, 300
plane, 294
reflection and refraction, 297, 357
refraction of, 298
Spherical, 300

Added mass, 82, 303
Apparent-resonance, 34
Approximate methods, 40

collocation method, 262
finite-element method, 272
Galerkin method, 47, 267
Rayleigh method, 41
Rayleigh-Ritz method, 43, 269
Ritz method, 44

Average intensity, 296
Axially translating

beam, 165
string, 57

Bar
collision, 99
impulsive start, 93
longitudinal dynamics, 6, 11
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step forcing, 95
torsional dynamics, 7, 13
varying cross-section, 22

Beam
cantilever, 126

stability with follower force, 152
damped vibration, 149
dispersion relation, 138
dynamics, 113, 116
energy transport, 140
Euler–Bernoulli, 116
Euler–Bernoulli model, 116
evanescent waves, 139
flexure-torsion coupling, 155
free–free, 128
motion of material points, 159
Rayleigh model, 116
simply-supported, 124

stability with axial force, 151
tensioned, 120
Timoshenko model, 144
translating, 165
traveling force response, 135
wave scattering, 142

Bernoulli equation, 322
Bernoulli’s solution, 14
Bessel differential equation, 20, 193, 306
Boundary condition

non-homogeneous, 137
Boundary conditions

classification, 4, 244
non-homogeneous, 56

Boundary value problem
eigenfunction expansion method, 33
Green’s function method, 34

Breathing sphere, 301
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Characteristics of wave equation, 71
Circular membrane, 190
Circular plate, 221, 231
Circular wave guide, 316
Classical damping, 53
Coefficient of

reflection, 83
transmission, 88

Coincidence frequency, 312
Collision of bars, 99
Collocation method, 262
Continuous systems with discrete elements, 27
Critical speed

of flow in pipes, 170
of translating string, 59

Cut-off frequency
a string on compliant foundation, 103
of circular wave guides, 318
of rectangular wave guides, 316
of waves in Timoshenko beam, 148
surface waves in a channel, 333

Cylindrical acoustic waves, 305

D’Alembert’s solution, 69
initial value problem, 73
translating string, 104

Damping, 50
classical/proportional, 53
discrete, 53
distributed, 50
pervasive, 56
radiation, 82, 89, 303, 313

Degenerate modes, 187, 194
Dispersion relation, 368

beam, 138
circular wave guide, 318
membrane, 203
Mindlin plate, 237
plate, 237
rectangular wave guide, 315
string on compliant foundation, 102
surface waves in a channel, 333
Timoshenko beam, 147

Dispersive medium, 370
wave propagation, 102

Distributed damping, 50, 149
Divergence instability, 152
Divergence theorem, 184, 294
Domain of dependence, 73

Effective pressure, 297

Eigenvalue problem, 19
continuous systems with discrete elements,

27
integral formulation, 252

Elastic continuum
wave equations, 343
Navier’s equations, 342
specific impedance, 348
wave speeds, 343

Elastic half-space
reflection and refraction of acoustic waves,

357
surface waves, 353

Energetics
of waves in elastic continuum, 346
of plane acoustic waves, 295
of wave motion, 79
of waves in beams, 140

Equivalent impedance, 90
Euler–Bernoulli

beam model, 116
Euler–Bernoulli hypothesis, 113
Evanescent waves, 104, 139
Expansion theorem, 25, 247
Extended Hamilton’s principle, 365

Finite-element method, 272
Flexure–torsion coupling in beams, 155
Fluid conveying pipes, 168
Flutter instability, 155
Follower force, 152
Forced vibration, 31

general forcing, 36
harmonic force, 32
resonance, 33
traveling force, 37

Frequency splitting, 195

Galerkin method, 47, 267
Gauss divergence theorem, 184, 294
Green’s function

for boundary value problems, 34
for a string, 35
for a translating string, 66

Group velocity, 369
of waves in beams, 140

Hamilton’s principle, 363
Hanging string, 2, 3, 19
Harmonic waves, 77, 344, 367
Hydrodynamic short-circuit, 311
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Impedance, 77
of membranes, 203
specific, 78, 295, 348

Inhomogeneous waves, 300, 352, 359
Initial value problem, 16, 72

solution using Fourier transform, 76
D’Alembert’s solution, 73
solution using Laplace transform, 30

Intensity, 81
average, 296
of spherical waves, 301
vector, 207, 214, 296, 347

Internal damping, 149

Kirchhoff plate, 221
Kirchhoff-Rayleigh plate, 220

Laplace equation, 321
Laplace transform

for initial value problem, 30
Laplacian, 180, 181
Love waves, 360

Membrane
degenerate modes, 187, 194
dispersion relation, 186, 203
dynamics, 179, 181
impedance, 203
modal analysis

circular, 193
rectangular, 187

wave speed, 180
Membranes

acoustic radiation, 307
Method of subdomains, 266
Mindlin plate

dispersion relation, 237
Modal analysis, 18

of beams, 121
of continuous systems with discrete elements,

27
of membranes, 185
of plates, 222, 231
of sloshing, 323, 327
translating string, 58

Modal degeneracy
circular membranes, 194
circular plates, 233
rectangular membranes, 187

Mode conversion, 351, 352
Mode splitting, 195

Navier’s equation, 342
Navier–Stokes equation, 318
Near-fields, 104, 139
Non-homogeneous boundary

condition, 56, 137

Orthogonality, 17
of eigenfunctions, 24

of hanging string, 22
of beam, 122
of plate, 228

of eigenvectors of continuous systems with
discrete elements, 29

P-wave, 342
mode conversion, 351
wave speed, 343

Pervasive damping, 56
Phase velocity, 369

of waves in beams, 139
of waves in plates, 237
Rayleigh waves, 356

Pipes conveying fluid, 168
Plate

circular, 221, 231
modal degeneracy, 233

dispersion relation, 237
dynamics, 217, 373
effect of rotary inertia, 228
Kirchhoff model, 221
Kirchhoff-Rayleigh model, 220
on flexible foundation, 227
rectangular, 222
waves, 236
with varying thickness, 238

Plates
acoustic radiation, 307

Power
average, 81
instantaneous, 81
spherical waves, 304

Proportional damping, 53

Radiation
condition, 206, 306
damping, 82, 89, 303, 313
efficiency, 310
resistance and reactance, 303

Range of influence, 73
Rayleigh beam, 116
Rayleigh method, 41
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Rayleigh quotient, 41
Rayleigh waves, 353

phase speed, 356
motion of material points, 357

Rayleigh-Ritz method, 43, 269
Rectangular wave guide, 314
Reflection and refraction of acoustic waves,

297, 357
Reflection of sound

from elastic half-space, 357
Reflection of waves, 83
Resonance, 33
Ritz method, 44
Root mean square pressure, 297
Rotating shaft, 163

S-wave, 342
mode conversion, 352
wave speed, 343

Scattering of waves, 83, 87
Self-adjoint operator, 25, 243
Sloshing, 323
Sommerfeld radiation condition,

206, 306
Sound pressure level, 297
Specific impedance, 78

breathing sphere, 303
elastic continuum, 348
of fluids, 295
spherical waves, 301

Spherical acoustic waves, 300
Stability

of beam with axial force, 151
of beam with follower force, 152
of fluid conveying pipes, 168
of rotating shafts, 163
of translating beams, 165

Stoneley waves, 360
Stress resultants, 218
String

dynamics, 1, 10
eigenvalue problem, 19
hanging, 2, 3, 19
on compliant foundation, 102
translating, 57

D’Alembert’s solution, 104
Green’s function, 66
with interaction, 61

with traveling force, 37
Surface waves

in a channel, 330
in elastic half-space, 353
in incompressible liquids, 320

Tensioned beam, 120
Timoshenko beam, 144

equation of motion
Newtonian formulation, 144

Translating
beam, 165
string, 57

D’Alembert’s solution, 104
Green’s function, 66
with interaction, 61

Traveling force
on a beam, 135
on a string, 37

resonance speed, 38
Traveling wave solution, 71
Traveling waves, 77, 138, 202

Fourier representation, 367

Variational principle, 363
Velocity of sound, 292
Virtual mass, 303

Wave
intensity, 81
number, 77, 138, 367
speed, 343
speed, 4, 139, 180, 238, 291

Wave equation, 69
acoustic, 291

in slightly viscous fluids, 319
characteristics, 71
D’Alembert’s solution, 71
elastic continuum, 343
initial value problem, 72
membrane, 202

Wave guide, 314
Wave vector, 203, 345
Waves

in plates, 236
in beams, 138
in elastic continuum, 344
in fluids, 289
in membranes, 202
in slightly viscous fluids, 318
on elastic surface, 353
on liquid surface, 320
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