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General Coupling Matrix Synthesis Methods
for Chebyshev Filtering Functions

Richard J. Cameron,Senior Member, IEEE

Abstract—Methods are presented for the generation of the
transfer polynomials, and then the direct synthesis of the cor-
responding canonical network coupling matrices for Chebyshev
(i.e., prescribed-equiripple) filtering functions of the most general
kind. A simple recursion technique is described for the generation
of the polynomials for even- or odd-degree Chebyshev filter-
ing functions with symmetrically or asymmetrically prescribed
transmission zeros and/or group delay equalization zero pairs.
The method for the synthesis of the coupling matrix for the cor-
responding single- or double-terminated network is then given.
Finally, a novel direct technique, not involving optimization, for
reconfiguring the matrix into a practical form suitable for real-
ization with microwave resonator technology is introduced. These
universal methods will be useful for the design of efficient high-
performance microwave filters in a wide variety of technologies
for application in space and terrestrial communication systems.

Index Terms— Chebyshev characteristics, circuit synthesis
methods, coupling matrix, microwave filters.

I. INTRODUCTION

M ICROWAVE filters incorporating the Chebyshev class
of filtering function have, for many years, found

frequent application within microwave space and terrestrial
communication systems. The generic features of equiripple-
amplitude in-band characteristics, together with the sharp
cutoffs at the edge of the passband and high selectivity, give
an acceptable compromise between lowest signal degradation
and highest noise/interference rejection. The ability to build in
prescribed transmission zeros for improving the close-to-band
rejection slopes and/or linearizing the in-band group delay
have enhanced its usefulness.

As the frequency spectrum becomes more crowded, spec-
ifications for channel filters have tended to become very
much more severe. Very high close-to-band rejections are
required to prevent interference to or from closely neighboring
channels; at the same time, the incompatible requirements of
in-band group-delay and amplitude flatness and symmetry are
demanded to minimize signal degradation. All this is to be
achieved with lowest insertion loss; on the high-power side to
minimize the size, mass, and prime power consumption of RF
power generation equipment and ease thermal management
problems, and on the low-power (receive) side to reduce
system noise figure if the filter is before or among the first
amplification stages of the system.
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In order to cope with the increasing demand for capacity
in restricted spectral bandwidths, specifications for channel
filter rejections have tended to become asymmetric. This is
particularly true for the front-end transmit/receive (Tx/Rx)
diplexers in the base stations of mobile communications sys-
tems, where very high rejection levels (sometimes as high
as 120 dB) are needed from the Rx filter over the closely
neighboring Tx channel’s usable bandwidth and vice versa
to prevent Tx-to-Rx interference. On the outer sides of the
Tx and Rx channels, rejection requirements tend to be less
severe. Such asymmetric rejection specifications are best met
with asymmetric filtering characteristics, reducing filter degree
to a minimum and, therefore, minimizing insertion loss, in-
band distortions, and mass as compared with the symmetric
equivalent achieving the same critical rejection levels.

In addition to the asymmetric feature, there is often a need
for singly terminated designs. The singly terminated network
has some special electrical properties which are useful for the
design of manifold-coupled or star-coupled contiguous channel
multiplexers and diplexers.

The methods to be presented in this paper are completely
general for the design of the transfer functions and the syn-
thesis of the prototype filter networks with characteristics
belonging to the Chebyshev class of filtering function as
follows:

1) even or odd degree;
2) prescribed transmission and/or group-delay equalization

zeros;
3) asymmetric or symmetric characteristics;
4) singly or doubly terminated networks.

The first part of this paper describes an efficient recursive
technique for generating the Chebyshev transfer and reflection
polynomials, given the numbers and positions of the trans-
mission zeros it is required to realize. This is followed by a
summary of the method used to generate the corresponding
coupling matrix. Having been well covered in previous papers
[1]–[4], only the techniques used to deal with asymmetric char-
acteristics will be detailed. Finally, a novel nonoptimization
method is presented for directly reducing the coupling matrix
resultant from the synthesis procedure, which, in general, will
have all nonzero elements, to the more practical canonical
folded network form. An example of usage is included.

A microwave filter may be realized directly from the folded
coupling matrix, topology, and strengths of its inter-resonator
couplings directly corresponding to the nonzero elements of
the matrix. Recently, this has proven very useful for the
design of dielectric resonator channel demultiplexer filters,
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but more often, the folded network is used as the starting
point for a further series of similarity transformations to
convert the matrix into forms suitable for realizations in other
technologies, e.g., [9] or [10].

II. POLYNOMIAL SYNTHESIS

For any two-port lossless filter network composed of a
series of intercoupled resonators, the transfer and reflection
functions may be expressed as a ratio of twoth degree
polynomials

(1)

where is the real frequency variable related to the more
familiar complex frequency variable by . For a
Chebyshev filtering function, is a constant normalizing
to the equiripple level at as follows:

where is the prescribed return loss level in decibels and
it is assumed that all the polynomials have been normalized
such that their highest degree coefficients are unity.
and share a common denominator , and the
polynomial contains the transfer function transmission
zeros.

Using the conservation of energy formula for a lossless
network and (1)

(2)

where

is known as the filtering function of degree and
has a form for the general Chebyshev characteristic [5]

(3)

where

and is the position of the th transmission zero
in the complex -plane. It may be easily verified that when

, when , and when
, all of which are necessary conditions

for a Chebyshev response. Also, as all of the prescribed
transmission zeros approach infinity, degenerates to the
familiar pure Chebyshev function

The rules to be observed when prescribing the positions of
the transmission zeros are that symmetry must be preserved
about the imaginary axis of the complex-plane to ensure

that the numerator and denominator polynomials of
have purely real coefficients. Also, for the polynomial synthe-
sis method about to be described, the number of transmission
zeros with finite positions in the-plane must be . If

, those zeros without finite positions must be placed at
infinity. However, the two-port canonical networks to be used
later to embody the transfer function will realize a maximum of

finite-position zeros. When synthesizing the polynomials
for these networks, at least two of the transmission zeros must
be placed at infinity.

The aim now is to find the coefficients of theth degree
polynomials in the variable corresponding to the right-hand
side (RHS) of (3). With these polynomials, it is then possible
to proceed to prototype network synthesis, from which a real
electrical network with the transfer characteristic of
(1) may be derived.

The first step in the polynomial synthesis procedure is to
replace the term in (3) with its identity

(4)

where and Then,

(5)

Multiplying the second term in (5)(top and bottom) by
yields

(6)

because in
the bottom line of the second term will always be unity. This
is easily verified by substituting for and using (4).

Equation (6) may now be written in its final form by
substituting for , , and using (3) and (4) as follows:

(7)

where

a transformed frequency variable.
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By comparison with (2), it may be seen that the denominator
of is , the numerator polynomial of
generated from the prescribed transmission zeros. Also
from (2), the numerator of is the numerator of

, and appears at first to be a mixture of two finite-degree
polynomials, one in the variable purely, while the other has
each coefficient multiplied by the transformed variable.

However, the coefficients multiplied by will cancel with
each other when (7) is multiplied out. This is probably best
proven by demonstration, by multiplying out the left-hand side
(LHS) and RHS product terms in the numerator of in (7)
for a few low values of . In each case, it will be seen that
the expansions will result in a sum of factors, each factor
composed of multiples of and elements. Because of the
positive sign in the LHS product term in (7), the, factors
resultant from multiplying out the LHS term will always be
positive in sign. Multiplying out the RHS product term in (7)
will produce the same , factors; however, the negative
sign will mean that those factors containing an odd number of

elements will be negative in sign and will cancel with the
corresponding factors from the LHS product term.

The remaining factors will now contain only even numbers
of elements, and, therefore, , which is a
common multiplier for all the elements [see (7)], will be
raised by even powers only, thus producing subpolynomials
in the variable only. Thus, the numerator of will be a
polynomial in the variable purely

These effects were used to develop a simple algorithm to
determine the coefficients of the numerator polynomial of

the numerator of .

A. Recursive Technique

The numerator of (7) may be rewritten as

(8)

where

(9)

(10)

The method for computing the coefficients of is
basically a recursive technique where the solution for theth
degree is built up using the results of the th degree.
Considering first the polynomial (9), this may be
rearranged into two polynomials and , where
the polynomial contains the coefficients of the terms
in the variable only, while each coefficient of the auxiliary
polynomial is multiplied by the transformed variable

as follows:

where

and

(11)

The recursion cycle is initiated with the terms corresponding
to the first prescribed transmission zero, i.e., by putting

in (9) and (11) as follows:

(12)

For the first cycle of the process, has to be multiplied
by the terms corresponding to the second prescribed zero
[see (9)] as follows:

(13)

Multiplying out and again allocating terms purely in to
, terms multiplied by to , and recognizing that

will result in ,
a polynomial purely in and, therefore, to be allocated to

as follows:

(14)

Having obtained these new polynomials and ,
the cycle may be repeated with the third prescribed zero, and
so on until all of the prescribed zeros (including those at

) are used, i.e., cycles.
If the same process is repeated for [

as in (11)], then it will be found that
and , and thus from (8) and (11) it may
be seen that the numerator of is equal to after

cycles of this recursion method. Now the reflection
zeros may be found by rooting and the denominator
polynomial found from (2) using, for example, the
alternating singularity principle as described in [7].

To illustrate the procedure, the recursions will be applied to
a fourth-degree example with an equiripple return-loss level
of 22 dB and prescribed zeros at and ,
chosen to give two attenuation lobe levels of 30 dB each on
the upper side of the passband.

Initializing, using (12) with
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TABLE I
SINGULARITIES OF FOURTH-DEGREE ASYMMETRIC CHEBYSHEV

FILTER WITH TWO PRESCRIBED TRANSMISSION ZEROS

Fig. 1. Low-pass prototype transfer and reflection characteristics of
fourth-degree asymmetric Chebyshev filter, with two prescribed transmission
zeros at+j1:3217 and+j1:8082.

After the first cycle, with

After the second cycle, with

After the third cycle, with

At this stage, the polynomial is the numerator of
the reflection function , and rooting it will yield
the in-band reflection zeros. Rooting will yield the

in-band reflection maxima. The-plane coordinates
of these zeros, together with the corresponding transmission
poles, are given in Table I, and plots of the transfer and
reflection characteristics are given in Fig 1.

III. SYNTHESIS OF THESINGLE- AND DOUBLE-TERMINATED

COUPLING MATRIX

The procedure for synthesizing the coupling matrix from
the transfer and reflection polynomials follows similar lines to
those established in seminal papers by Atiaet al. in the 1970’s
[1]–[4]. The methods are well-covered in these papers and
will only be outlined below and in the Appendix, expanding
where necessary to include the asymmetric case. The single-
terminated case is included because of its usefulness for the
design of contiguous-channel multiplexers where sometimes

asymmetric characteristics are used, as well as symmetric.
A topical example of such an application is in the Tx/Rx
diplexers of cellular communications base stations, to obtain
very high rejection levels over the contiguous Rx or Tx usable
bands.

The starting point for the synthesis of the coupling matrix
for both the single- and double-terminated cases are the
transfer and reflection polynomials , , and

, determined in the previous section as

and (15)

In the general case, the coefficients of will be complex
and those of and will alternate between purely
real and purely imaginary as the power ofincreases. The
degree of and will be , and the degree of
corresponds to the number of noninfinite zeros that were
originally prescribed. As mentioned before, the successful
synthesis of the two-port networks to be considered here
depends on at least two of the transmission zeros being at
infinity, therefore, the degree of must not exceed .

In this section, the synthesis of the rational polynomials
for the short-circuit admittance parameters and
from the transfer/reflection polynomials , , and
will be described. The procedure differs slightly for the single-
and double-terminated cases and will be treated separately. The
method used to synthesize the coupling matrix for the network
from and will then be outlined.

A. Double-Terminated Case

Fig. 2(a) shows a two-port lossless filter network with a
voltage source of internal impedance on the LHS and load
impedance to the RHS. The driving point impedance of
this network in terms of its short- and open-circuit parameters
is [11]

(16)

if is normalized to [Fig 2(b)].
Also, if , the driving point impedance

(17)

where , , , and are complex-even and complex-
odd polynomials, respectively, in the variableconstructed
from and .

For the even-ordered case, bringingoutside the brackets
of the numerator of (17) yields

(18)

By comparing (18) and (16), it may be seen that

(19)

and since the denominator of is the same as that of ,
and the numerator of has the same transmission zeros as

(20)
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(a) (b)

(c)

Fig. 2. General two-port cross-coupled network. (a) General two–port lossless network operating between source and load impedancesR1 andRN . (b)
Network with transformers to give unity terminating impedances. (c) “Inner” cross-coupled network.

Similarly,

and for odd.

The complex-even and complex-odd polynomials and
may be easily constructed from and by making

use of (17) as follows:

Then,

and

where and are the complex coef-
ficients of and . The above procedure ensures that
both and will have purely real coefficients, and since
the coefficients of the highest degree terms in and

are both purely real, and the degree of is , that
the common denominator of and is of degree and
the degree of each of their numerators is .

B. Single-Terminated Case

The construction of the polynomials and for the
single-terminated case follows similar lines to the double-
terminated procedure. For the single-terminated case, the
source impedance and its transfer admittance
may be expressed in terms of its short-circuit admittance
parameters [3], [11]

(21)

From (15)

for even

for odd

where and are the complex-even and complex-odd
polynomials constituting . For a single-terminated net-
work with , the transfer function equals the
transfer admittance [11] and by comparing with (21) it
may be seen that, for even,

and for odd

(22)

where

and , etc., are the complex coefficients of
as before. Note that for the single-terminated case, it is only
necessary to know and , the numerator and
denominator of , to determine and .



438 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 4, APRIL 1999

Fig. 3. Folded canonical network coupling matrix form—seventh-degree
example. “s” and “xa” couplings are zero for symmetric characteristics.

C. Synthesis of the Coupling Matrix

Having determined the numerator and denominator polyno-
mials of and , it is now possible to proceed to the
synthesis of the coupling matrix of the electrical network.
Under electrical analysis, this prototype network will precisely
yield the same transfer and reflection characteristics as those
embodied within the purely polynomial representations of

and .
The procedure for synthesizing the coupling matrix is almost

unchanged from that originally established in [1], [2], and [4]
for symmetric networks, and is outlined in the Appendix.

IV. COUPLING-MATRIX REDUCTION

The elements of the coupling matrixM that emerges from
the synthesis procedure described in Section III will, in gen-
eral, all have nonzero values. The nonzero values that will
occur in the diagonal elements of the coupling matrices for
electrically asymmetric networks represent the offsets from
center frequency of each resonance (asynchronously tuned).
Nonzero entries everywhere else means that in the network
that M represents, couplings exist between every resonator
node and every other resonator node. As this is clearly
impractical, it is usual to annihilate couplings with a sequence
of similarity transforms (sometimes called rotations) until a
more convenient form with a minimal number of couplings
is obtained. The use of similarity transforms ensures that the
eigenvalues and eigenvectors of the matrixM are preserved,
such that under analysis, the transformed matrix will yield
exactly the same transfer and reflection characteristics as the
original matrix.

There are several more practical canonical forms for the
transformed coupling matrixM . Two of the better-known
forms are the “right-column justified” (RCJ) form [8] and the
more generally useful “folded” form [6] (Fig. 3). Either of
these canonical forms may be used directly if it is convenient
to realize the couplings or be used as a starting point for
the application of further transforms to create an alternative
resonator intercoupling topology, optimally adapted for the
physical and electrical constraints of the technology with

Fig. 4. Example of seventh-degree rotation matrixRr-pivot [3, 5], angle�r.

which the filter will eventually be realized, e.g., [9], [10]. The
method for reduction of the coupling matrix to the folded form
will be described here. The RCJ form may be derived using
a very similar method.

A. Similarity Transformation and Annihilation
of Matrix Elements

A similarity transform on an coupling matrix
is carried out by pre- and post-multiplying by an
rotation matrix and its transpose as follows:

where is the original matrix, is the matrix after the
transform operation, and the rotation matrix is defined
as in Fig. 4. The pivot of means that
elements , ,

or , and is the angle of the rotation. All other
entries apart from the principal diagonal are zero.

The eigenvalues of the matrix after the transform
are exactly the same as those of the original matrix ,
which means that an arbitrarily long series of transforms with
arbitrarily defined pivots and angles may be applied, starting
with . Each transform in the series takes the form

(23)

and under analysis the matrix resultant at the end of the
series of transforms will yield exactly the same performance
as the original matrix .

When a similarity transform of pivot and angle
is applied to a coupling matrix , the elements in rows
and and columns and of the resultant matrix change
in value from the corresponding element values in . For
the th element in the row or columnor of , and not
on the cross points of the pivot (i.e., ), the value will
change according to the following formula:

for an element in row

for an element in row

for an element in column

for an element in column

(24)

where , ,
and the undashed matrix elements belong to the matrix ,
and the dashed to .
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Fig. 5. Seventh-degree coupling matrix: reduction sequence for folded
canonical form. The shaded elements are those that may be affected by a
similarity transform at pivot [3, 5], angle�r . All others will be affected.

Two properties of a similarity transform which will be
exploited for the matrix reduction process to be described
below are noted here: 1)only those elements in the rows
and columns and of the pivot [ ] of a transform
may possibly be affected by the transform. All others will
remain at their previous values and 2) if two elements fac-
ing each other across the rows and columns of the pivot
of a transform are both zero before the application of the
transform, they will still be zero after the transform. For
example, if the elements and in Fig. 5 happen to
be both zero before the transform with pivot [3, 5], they will
still be zero after the transform, regardless of the transform
angle .

The equations in (24) may be used to annihilate (zero)
specific elements in the coupling matrix. For example, to
annihilate a nonzero element (and simultaneously )
in the coupling matrix of Fig. 5, a transform of pivot [3, 5]
and angle may be applied to the
coupling matrix [see the last formula in (24) with

]. In the transformed matrix, and will be
zero and all values in rows and columns 3 and 5 (shaded in
Fig. 5) may have changed.

The method for reducing the full coupling matrix
resultant from the synthesis procedure of Section III to the
folded form of Fig. 3 involves applying a series of similarity
transforms to that annihilate unrealizable elements one
by one. The transforms are applied in a certain order and
pattern that makes use of the two effects mentioned above,
ensuring that once annihilated, an element is not regenerated
by a subsequent transform in the sequence.

B. Reduction Procedure—Full Coupling Matrix
to Folded Canonical Form

There are a number of transform sequences that will reduce
the full coupling matrix to the folded form. The sequence
used here involves alternately annihilating elements right to
left along rows and top to bottom down columns as shown in
the seventh-degree example in Fig. 5, starting with the element
in the first row and the ( )th column ( ).

may be annihilated with a transform of pivot [5, 6] and
angle . This is followed by a second
transform, pivot [4, 5], angle ,
which will annihilate element . The previously annihilated
element is unaffected by this transform because it is
lying outside the rows and columns of the latest pivot and

TABLE II
SEVENTH-DEGREE EXAMPLE: SIMILARITY TRANSFORM SEQUENCE FOR

REDUCTION TO THE FOLDED FORM. TOTAL NUMBER OF

TRANSFORMSR =

N�3

n�1

n = 10 [SEE (23)]

remains at zero. Now, third and fourth transforms at pivots
[3, 4] and [2, 3] and angles and

will annihilate and , re-
spectively, again without disturbing the previously annihilated
elements.

After these four transforms, the elements in the first row
of the matrix between the main line coupling and the
element in the final column will be zero. Due to the symmetry
about the principal diagonal, the elements between and

in the first column will also be zero.
Next, the three elements in column 7, , , and ,

are annihilated with transforms at pivots [3, 4], [4, 5], and
[5, 6] and angles , , and

, respectively, [see first formula in (24)]. As
with the rows, the columns are cleared down to the first main-
line coupling encountered in that column. The couplings ,

, , and annihilated in the first sweep will remain
at zero because they face each other across the pivot columns
of the transforms of the second sweep and will, therefore, be
unaffected.

Continuing on, a third sweep along row 2 annihilates
and in that order, and the final sweep annihilates in
column 6. At this point, it may be seen that the form of the
folded canonical coupling matrix has been achieved (Fig. 5),
with its two cross diagonals containing the symmetric and
asymmetric cross couplings. Table II summarizes the entire
annihilation procedure.

The final values and positions of the elements in the cross
diagonals are automatically determined—no specific action
to annihilate couplings within them needs to be taken. As
the number of finite-position prescribed transmission zeros
that the transfer function is realizing grows from one to the
maximum permitted ( ), then the entries in the cross
diagonals will progressively become nonzero starting with the
asymmetric entry nearest to the principal diagonals ( in
the seventh-degree example). If the original filtering function
that the matrix is realizing is symmetric, then the asymmetric
cross couplings , , and will automatically be
zero (as will the self couplings in the principal diagonal

to ).
The regular pattern and order of the annihilation procedure

makes it very amenable to computer programming for any
degree of coupling matrix.
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TABLE III
SEVENTH-DEGREE ASYMMETRIC FILTER: COEFFICIENTS OFTRANSFER

AND REFLECTION POLYNOMIALS. " = 6:0251

TABLE IV
COUPLING MATRIX BEFORE APPLICATION OF REDUCTION PROCESS.

ELEMENT VALUES ARE SYMMETRIC ABOUT THE PRINCIPAL

DIAGONAL. R1 = 0:7220, RN = 2:2354

V. EXAMPLE OF USAGE

To illustrate the reduction procedure, an example is taken
of a seventh-degree 23-dB return-loss single-terminated asym-
metric filter, where a complex pair of transmission zeros at

in the -plane are positioned to give group-
delay equalization over about 60% of the bandwidth, and a
single zero is placed at on the imaginary axis to
give a rejection lobe level of 30 dB on the upper side of the
passband.

With knowledge of the positions of the three Tx zeros, the
numerator polynomial of may be constructed by the
recursive technique of Section II, and then by using the given
return loss and the constant, the denominator polynomial
common to and determined. The-plane coefficients
of these polynomials are given in Table III.

From these coefficients the numerators and denominators
of and may be built up using (22). Being a single-
terminated design, the coefficients of the polynomial are
not needed. Now, the residues resultant from the partial-
fraction expansions of and will give the first and last
rows of the orthogonal matrix (A7). The remaining rows of

are found using an orthonormalization process and, finally,
the coupling matrix formed using (A4). The element values
of are given in Table IV.

To reduce this full coupling matrix to the folded form, a
series of ten similarity transforms may now be applied to
according to Table II and (23). Each transform is applied to
the coupling matrix resultant from the previous transform,
starting with [ in (23)]. After the last of the
transforms in the series, the nonzero couplings in the matrix

will topologically correspond with couplings between
filter resonators arranged in a folded pattern, ready for direct
realization in a suitable technology (Table V). Note that the
couplings and in the cross diagonals, which are

TABLE V
COUPLING MATRIX AFTER REDUCTION TO FOLDED FORM (MMM10)

(a)

(b)

Fig. 6. Seventh-degree synthesis example: analysis of folded coupling ma-
trix. (a) Rejection and return loss. (b) Group delay.

not needed to realize this particular transfer function, will
automatically be zero. No specific action to annihilate them
needs to be taken.

The results of analyzing this coupling matrix are given in
Fig. 6(a) (rejection/return loss) and Fig. 6(b) (group delay).
It may be seen that the 30-dB lobe level and equalized in-
band group delay have not been affected by the transformation
process.

Fig. 7(a) shows the topology of the folded network cor-
responding to the coupling matrix of Table V, and Fig. 7(b)
shows a possible realization for the filter in coupled coaxial-
resonator cavities. In this particular case, all the cross cou-
plings happen to be the same sign as the main-line couplings,
but in general, they will be mixed in sign.

VI. CONCLUSION

General methods have been presented for the generation
of the transfer and reflection polynomials for the equiripple
(Chebyshev) class of a filtering function with prescribed
transmission zeros and then the efficient direct synthesis
of the coupling matrix for the folded form of canonical
network. If practical, microwave bandpass filters in a variety of
technologies may be realized directly from the folded-network



CAMERON: GENERAL COUPLING MATRIX SYNTHESIS METHODS FOR CHEBYSHEV FILTERING FUNCTIONS 441

(a)

(b)

Fig. 7. Realization in folded configuration. (a) Folded network coupling
and routing schematic. (b) Corresponding realization in coaxial-resonator
technology.

coupling matrix or a further series of similarity transforms may
be applied to reconfigure the coupling matrix to other more
convenient forms. The methods are applicable for symmetric
or asymmetric even- or odd-degree transfer characteristics;
also for single- or double-terminated realizations.

No restrictions apply to the prescription of the finite-position
transmission zeros to be built into the characteristics, except
that the pattern of their positions must be symmetric about the
imaginary axis of the complex-plane, and their total numbers
must not exceed ; being the degree of the transfer
characteristic.

APPENDIX

A. Synthesis of the Coupling Matrix

The source and load impedances and of the general
two-port network of Fig. 2(a) may be normalized to unity by
the inclusion of transformers at the input and output of the net-
work of turns ratio and , respectively [Fig. 2(b)].
The “inner” general cross-coupled prototype bandpass network
is shown in Fig. 2(c).

Since the prototype coupling coefficients and the network
terminating impedances are assumed to be frequency invariant,
the synthesis of the coupling matrix for this network may
by done as a low-pass prototype after mapping with the
formula , where is the prototype bandpass
frequency variable. For the prototype bandpass network, the
center frequency and bandwidth are both 1 rad/s.

The two-port short-circuit admittance parameters relating to
Fig. 2(b) are

of which and have both been determined
already from the transfer/reflection functions as outlined in
Section III. These parameters may be scaled through the

transformers to represent the “inner” network in Fig. 2(c)
giving

(A1)

where the dashed parameters relate to the inner network.
Referring now to the networks of Fig. 2(b) and (c), the loop

equations may be represented in matrix form [4]

(A2)
where is an matrix with all entries zero, except

and , is the reciprocal
coupling matrix (i.e., ) and is the identity matrix.

The short-circuit transfer admittance of the overall
network may be now determined by putting , , and

(i.e., ), and solving (A2) for as follows:

and similarly (by putting the voltage source at the other end
of the network)

(A3)

This is the essential step in the network synthesis pro-
cedure that relates the transfer function expressed in purely
mathematical terms (i.e., , , etc., expressed as rational
polynomials) to the real world of the coupling matrix, each
element of which corresponds uniquely to a physical coupling
element in the realized filter.

Since is real and symmetric about its principal diagonal,
all of its eigenvalues are real. Thus, an matrix
with rows of orthogonal unit vectors exists, which satisfies the
equation

(A4)

where are the eigenvalues
of and is the transpose of such that .
Substituting (A4) into (A3) yields

(A5)

The general solution for an element, of an inverse
eigenmatrix problem such as the RHS side of (A5) is

Therefore, from (A5),
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and

(A6)

Equations (A6) show that the eigenvalues of are
also the roots of the denominator polynomial common to
both and [this can also be seen from (A3)].
Thus, we can now develop the first and last rows and

of the orthogonal matrix by equating the residues of
and with and , respectively, at

corresponding eigenvalue poles. Knowing the numerator
and denominator polynomials of and [(19), (20),
(22)], their residues and may be determined from a
partial fraction expansion, and then

(A7)

The transformer turns ratios and may be found by
scaling the magnitudes of the row vectors and to
unity for the “inner” network of Fig. 2 as follows [see (A1)]:

Then,

and

With the first and last rows of now determined, the
remaining orthogonal rows may be constructed with the
Gram–Schmidt orthonormalization process or equivalent and,
finally, the coupling matrix synthesized using (A4).
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