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Preface to the Third Edition

It has been a great pleasure for me to have prepared the latest edition of my
book on nonlinear optics. My intrigue in the subject matter of this book is as
strong as it was when the first edition was published in 1992.

The principal changes present in the third edition are as follows: (1) The
book has been entirely rewritten using the SI system of units. I personally
prefer the elegance of the gaussian system of units, which was used in the first
two editions, but I realize that most readers would prefer the SI system, and
the change was made for this reason. (2) In addition, a large number of minor
changes have been made throughout the text to clarify the intended meaning
and to make the arguments easier to follow. I am indebted to the countless
comments received from students and colleagues both in Rochester and from
around the world that have allowed me to improve the writing in this man-
ner. (3) Moreover, several sections that treat entirely new material have been
added. Applications of harmonic generation, including applications within the
fields of microscopy and biophotonics, are treated in Subsection 2.7.1. Elec-
tromagnetically induced transparency is treated in Section 3.8. Some brief but
crucial comments regarding limitations to the maximum size of the intensity-
induced refractive-index change are made in Section 4.7. The use of nonlinear
optical methods for inducing unusual values of the group velocity of light are
discussed briefly in Section 3.8 and in Subsection 6.6.2. Spectroscopy based
on coherent anti–Stokes Raman scattering (CARS) is discussed in Section
10.5. In addition, the appendix has been expanded to include brief descrip-
tions of both the SI and gaussian systems of units and procedures for conver-
sion between them.

xiii



xiv Preface to the Third Edition

The book in its present form contains far too much material to be covered
within a conventional one-semester course. For this reason, I am often asked
for advice on how to structure a course based on the content of my textbook.
Some of my thoughts along these lines are as follows: (1) I have endeavored
as much as possible to make each part of the book self-contained. Thus, the
sophisticated reader can read the book in any desired order and can read only
sections of personal interest. (2) Nonetheless, when using the book as a course
text, I suggest starting with Chapters 1 and 2, which present the basic formal-
ism of the subject material. At that point, topics of interest can be taught in
nearly any order. (3) Special mention should be made regarding Chapters 3
and 6, which deal with quantum mechanical treatments of nonlinear optical
phenomena. These chapters are among the most challenging of any within the
book. These chapters can be skipped entirely if one is comfortable with estab-
lishing only a phenomenological description of nonlinear optical phenomena.
Alternatively, these chapters can form the basis of a formal treatment of how
the laws of quantum mechanics can be applied to provide detailed descrip-
tions of a variety of optical phenomena. (4) From a different perspective, I am
sometimes asked for my advice on extracting the essential material from the
book—that is, in determining which are topics that everyone should know.
This question often arises in the context of determining what material stu-
dents should study when preparing for qualifying exams. My best response to
questions of this sort is that the essential material is as follows: Chapter 1 in
its entirety; Sections 2.1–2.3, 2.4, and 2.10 of Chapter 2; Subsection 3.5.1 of
Chapter 3; Sections 4.1, 4.6, and 4.7 of Chapter 4; Chapter 7 in its entirety;
Section 8.1 of Chapter 8; and Section 9.1 of Chapter 9. (5) Finally, I often tell
my classroom students that my course is in some ways as much a course on
optical physics as it is a course on nonlinear optics. I simply use the concept
of nonlinear optics as a unifying theme for presenting conceptual issues and
practical applications of optical physics. Recognizing that this is part of my
perspective in writing, this book could be useful to its readers.

I want to express my thanks once again to the many students and colleagues
who have given me useful advice and comments regarding this book over the
past fifteen years. I am especially indebted to my own graduate students for
the assistance and encouragement they have given to me.

Robert Boyd
Rochester, New York
October, 2007



Preface to the Second Edition

In the ten years since the publication of the first edition of this book, the field
of nonlinear optics has continued to achieve new advances both in fundamen-
tal physics and in practical applications. Moreover, the author’s fascination
with this subject has held firm over this time interval. The present work ex-
tends the treatment of the first edition by including a considerable body of
additional material and by making numerous small improvements in the pre-
sentation of the material included in the first edition.

The primary differences between the first and second editions are as fol-
lows.

Two additional sections have been added to Chapter 1, which deals with the
nonlinear optical susceptibility. Section 1.6 deals with time-domain descrip-
tions of optical nonlinearities, and Section 1.7 deals with Kramers–Kronig
relations in nonlinear optics. In addition, a description of the symmetry prop-
erties of gallium arsenide has been added to Section 1.5.

Three sections have been added to Chapter 2, which treats wave-equation
descriptions of nonlinear optical interactions. Section 2.8 treats optical para-
metric oscillators, Section 2.9 treats quasi-phase-matching, and Section 2.11
treats nonlinear optical surface interactions.

Two sections have been added to Chapter 4, which deals with the intensity-
dependent refractive index. Section 4.5 treats thermal nonlinearities, and Sec-
tion 4.6 treats semiconductor nonlinearities.

Chapter 5 is an entirely new chapter dealing with the molecular origin of
the nonlinear optical response. (Consequently the chapter numbers of all the
following chapters are one greater than those of the first edition.) This chap-
ter treats electronic nonlinearities in the static approximation, semiempirical

xv
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models of the nonlinear susceptibility, the nonlinear response of conjugated
polymers, the bond charge model of optical nonlinearities, nonlinear optics of
chiral materials, and nonlinear optics of liquid crystals.

In Chapter 7 on processes resulting from the intensity-dependent refrac-
tive index, the section on self-action effects (now Section 7.1) has been sig-
nificantly expanded. In addition, a description of optical switching has been
included in Section 7.3, now entitled optical bistability and optical switching.

In Chapter 9, which deals with stimulated Brillouin scattering, a discussion
of transient effects has been included.

Chapter 12 is an entirely new chapter dealing with optical damage and mul-
tiphoton absorption. Chapter 13 is an entirely new chapter dealing with ultra-
fast and intense-field nonlinear optics.

The Appendices have been expanded to include a treatment of the gaussian
system of units. In addition, many additional homework problems and litera-
ture references have been added.

I would like to take this opportunity to thank my many colleagues who
have given me advice and suggestions regarding the writing of this book. In
addition to the individuals mentioned in the preface to the first edition, I would
like to thank G. S. Agarwal, P. Agostini, G. P. Agrawal, M. D. Feit, A. L.
Gaeta, D. J. Gauthier, L. V. Hau, F. Kajzar, M. Kauranen, S. G. Lukishova,
A. C. Melissinos, Q-H. Park, M. Saffman, B. W. Shore, D. D. Smith, I. A.
Walmsley, G. W. Wicks, and Z. Zyss. I especially wish to thank M. Kauranen
and A. L. Gaeta for suggesting additional homework problems and to thank
A. L. Gaeta for advice on the preparation of Section 13.2.



Preface to the First Edition

Nonlinear optics is the study of the interaction of intense laser light with mat-
ter. This book is a textbook on nonlinear optics at the level of a beginning
graduate student. The intent of the book is to provide an introduction to the
field of nonlinear optics that stresses fundamental concepts and that enables
the student to go on to perform independent research in this field. The au-
thor has successfully used a preliminary version of this book in his course at
the University of Rochester, which is typically attended by students ranging
from seniors to advanced PhD students from disciplines that include optics,
physics, chemistry, electrical engineering, mechanical engineering, and chem-
ical engineering. This book could be used in graduate courses in the areas of
nonlinear optics, quantum optics, quantum electronics, laser physics, elec-
trooptics, and modern optics. By deleting some of the more difficult sections,
this book would also be suitable for use by advanced undergraduates. On the
other hand, some of the material in the book is rather advanced and would be
suitable for senior graduate students and research scientists.

The field of nonlinear optics is now thirty years old, if we take its begin-
nings to be the observation of second-harmonic generation by Franken and
coworkers in 1961. Interest in this field has grown continuously since its be-
ginnings, and the field of nonlinear optics now ranges from fundamental stud-
ies of the interaction of light with matter to applications such as laser fre-
quency conversion and optical switching. In fact, the field of nonlinear optics
has grown so enormously that it is not possible for one book to cover all of the
topics of current interest. In addition, since I want this book to be accessible to
beginning graduate students, I have attempted to treat the topics that are cov-
ered in a reasonably self-contained manner. This consideration also restricts

xvii
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the number of topics that can be treated. My strategy in deciding what topics
to include has been to stress the fundamental aspects of nonlinear optics, and
to include applications and experimental results only as necessary to illustrate
these fundamental issues. Many of the specific topics that I have chosen to
include are those of particular historical value.

Nonlinear optics is notationally very complicated, and unfortunately much
of the notational complication is unavoidable. Because the notational aspects
of nonlinear optics have historically been very confusing, considerable effort
is made, especially in the early chapters, to explain the notational conventions.
The book uses primarily the gaussian system of units, both to establish a con-
nection with the historical papers of nonlinear optics, most of which were
written using the gaussian system, and also because the author believes that
the laws of electromagnetism are more physically transparent when written in
this system. At several places in the text (see especially the appendices at the
end of the book), tables are provided to facilitate conversion to other systems
of units.

The book is organized as follows: Chapter 1 presents an introduction to the
field of nonlinear optics from the perspective of the nonlinear susceptibility.
The nonlinear susceptibility is a quantity that is used to determine the nonlin-
ear polarization of a material medium in terms of the strength of an applied
optical-frequency electric field. It thus provides a framework for describing
nonlinear optical phenomena. Chapter 2 continues the description of nonlin-
ear optics by describing the propagation of light waves through nonlinear op-
tical media by means of the optical wave equation. This chapter introduces the
important concept of phase matching and presents detailed descriptions of the
important nonlinear optical phenomena of second-harmonic generation and
sum- and difference-frequency generation. Chapter 3 concludes the introduc-
tory portion of the book by presenting a description of the quantum mechan-
ical theory of the nonlinear optical susceptibility. Simplified expressions for
the nonlinear susceptibility are first derived through use of the Schrödinger
equation, and then more accurate expressions are derived through use of the
density matrix equations of motion. The density matrix formalism is itself de-
veloped in considerable detail in this chapter in order to render this important
discussion accessible to the beginning student.

Chapters 4 through 6 deal with properties and applications of the nonlinear
refractive index. Chapter 4 introduces the topic of the nonlinear refractive in-
dex. Properties, including tensor properties, of the nonlinear refractive index
are discussed in detail, and physical processes that lead to the nonlinear re-
fractive index, such as nonresonant electronic polarization and molecular ori-
entation, are described. Chapter 5 is devoted to a description of nonlinearities
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in the refractive index resulting from the response of two-level atoms. Related
topics that are discussed in this chapter include saturation, power broaden-
ing, optical Stark shifts, Rabi oscillations, and dressed atomic states. Chapter
6 deals with applications of the nonlinear refractive index. Topics that are
included are optical phase conjugation, self focusing, optical bistability, two-
beam coupling, pulse propagation, and the formation of optical solitons.

Chapters 7 through 9 deal with spontaneous and stimulated light scatter-
ing and the related topic of acoustooptics. Chapter 7 introduces this area by
presenting a description of theories of spontaneous light scattering and by de-
scribing the important practical topic of acoustooptics. Chapter 8 presents a
description of stimulated Brillouin and stimulated Rayleigh scattering. These
topics are related in that they both entail the scattering of light from material
disturbances that can be described in terms of the standard thermodynamic
variables of pressure and entropy. Also included in this chapter is a descrip-
tion of phase conjugation by stimulated Brillouin scattering and a theoreti-
cal description of stimulated Brillouin scattering in gases. Chapter 9 presents
a description of stimulated Raman and stimulated Rayleigh-wing scattering.
These processes are related in that they entail the scattering of light from dis-
turbances associated with the positions of atoms within a molecule.

The book concludes with Chapter 10, which treats the electrooptic and pho-
torefractive effects. The chapter begins with a description of the electrooptic
effect and describes how this effect can be used to fabricate light modulators.
The chapter then presents a description of the photorefractive effect, which is
a nonlinear optical interaction that results from the electrooptic effect. The use
of the photorefractive effect in two-beam coupling and in four-wave mixing
is also described.

The author wishes to acknowledge his deep appreciation for discussions
of the material in this book with his graduate students at the University of
Rochester. He is sure that he has learned as much from them as they have
from him. He also gratefully acknowledges discussions with numerous other
professional colleagues, including N. Bloembergen, D. Chemla, R. Y. Chiao,
J. H. Eberly, C. Flytzanis, J. Goldhar, G. Grynberg, J. H. Haus, R. W. Hell-
warth, K. R. MacDonald, S. Mukamel, P. Narum, M. G. Raymer, J. E. Sipe,
C. R. Stroud, Jr., C. H. Townes, H. Winful, and B. Ya. Zel’dovich. In addition,
the assistance of J. J. Maki and A. Gamliel in the preparation of the figures is
gratefully acknowledged.



Chapter 1

The Nonlinear Optical Susceptibility

1.1. Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of
the modification of the optical properties of a material system by the pres-
ence of light. Typically, only laser light is sufficiently intense to modify the
optical properties of a material system. The beginning of the field of nonlin-
ear optics is often taken to be the discovery of second-harmonic generation
by Franken et al. (1961), shortly after the demonstration of the first working
laser by Maiman in 1960.∗ Nonlinear optical phenomena are “nonlinear” in
the sense that they occur when the response of a material system to an ap-
plied optical field depends in a nonlinear manner on the strength of the optical
field. For example, second-harmonic generation occurs as a result of the part
of the atomic response that scales quadratically with the strength of the ap-
plied optical field. Consequently, the intensity of the light generated at the
second-harmonic frequency tends to increase as the square of the intensity of
the applied laser light.

In order to describe more precisely what we mean by an optical nonlinear-
ity, let us consider how the dipole moment per unit volume, or polarization
P̃ (t), of a material system depends on the strength Ẽ(t) of an applied optical

∗ It should be noted, however, that some nonlinear effects were discovered prior to the advent of

the laser. The earliest example known to the authors is the observation of saturation effects in the

luminescence of dye molecules reported by G.N. Lewis et al. (1941).

1



2 1 ♦ The Nonlinear Optical Susceptibility

field.∗ In the case of conventional (i.e., linear) optics, the induced polarization
depends linearly on the electric field strength in a manner that can often be
described by the relationship

P̃ (t) = ε0χ
(1)Ẽ(t), (1.1.1)

where the constant of proportionality χ(1) is known as the linear suscepti-
bility and ε0 is the permittivity of free space. In nonlinear optics, the optical
response can often be described by generalizing Eq. (1.1.1) by expressing the
polarization P̃ (t) as a power series in the field strength Ẽ(t) as

P̃ (t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · ]

≡ P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + · · · . (1.1.2)

The quantities χ(2) and χ(3) are known as the second- and third-order non-
linear optical susceptibilities, respectively. For simplicity, we have taken the
fields P̃ (t) and Ẽ(t) to be scalar quantities in writing Eqs. (1.1.1) and (1.1.2).
In Section 1.3 we show how to treat the vector nature of the fields; in such
a case χ(1) becomes a second-rank tensor, χ(2) becomes a third-rank tensor,
and so on. In writing Eqs. (1.1.1) and (1.1.2) in the forms shown, we have
also assumed that the polarization at time t depends only on the instantaneous
value of the electric field strength. The assumption that the medium responds
instantaneously also implies (through the Kramers–Kronig relations†) that the
medium must be lossless and dispersionless. We shall see in Section 1.3 how
to generalize these equations for the case of a medium with dispersion and
loss. In general, the nonlinear susceptibilities depend on the frequencies of the
applied fields, but under our present assumption of instantaneous response, we
take them to be constants.

We shall refer to P̃ (2)(t) = ε0χ
(2)Ẽ2(t) as the second-order nonlinear po-

larization and to P̃ (3)(t) = ε0χ
(3)Ẽ3(t) as the third-order nonlinear polariza-

tion. We shall see later in this section that physical processes that occur as
a result of the second-order polarization P̃ (2) tend to be distinct from those
that occur as a result of the third-order polarization P̃ (3). In addition, we shall
show in Section 1.5 that second-order nonlinear optical interactions can occur
only in noncentrosymmetric crystals—that is, in crystals that do not display
inversion symmetry. Since liquids, gases, amorphous solids (such as glass),

∗ Throughout the text, we use the tilde (˜) to denote a quantity that varies rapidly in time. Constant
quantities, slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for
example, Eq. (1.2.1).

† See, for example, Loudon (1973, Chapter 4) or the discussion in Section 1.7 of this book for a
discussion of the Kramers–Kronig relations.
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and even many crystals display inversion symmetry, χ(2) vanishes identically
for such media, and consequently such materials cannot produce second-order
nonlinear optical interactions. On the other hand, third-order nonlinear optical
interactions (i.e., those described by a χ(3) susceptibility) can occur for both
centrosymmetric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of the
nonlinear susceptibilities for various physical mechanisms that lead to optical
nonlinearities. For the present, we shall make a simple order-of-magnitude
estimate of the size of these quantities for the common case in which the non-
linearity is electronic in origin (see, for instance, Armstrong et al., 1962). One
might expect that the lowest-order correction term P̃ (2) would be compara-
ble to the linear response P̃ (1) when the amplitude of the applied field Ẽ is of
the order of the characteristic atomic electric field strength Eat = e/(4πε0a

2
0 ),

where −e is the charge of the electron and a0 = 4πε0h̄
2/me2 is the Bohr ra-

dius of the hydrogen atom (here h̄ is Planck’s constant divided by 2π , and m is
the mass of the electron). Numerically, we find that Eat = 5.14 × 1011 V/m.∗
We thus expect that under conditions of nonresonant excitation the second-
order susceptibility χ(2) will be of the order of χ(1)/Eat. For condensed mat-
ter χ(1) is of the order of unity, and we hence expect that χ(2) will be of the
order of 1/Eat, or that

χ(2) � 1.94 × 10−12 m/V. (1.1.3)

Similarly, we expect χ(3) to be of the order of χ(1)/E2
at, which for condensed

matter is of the order of

χ(3) � 3.78 × 10−24 m2/V2. (1.1.4)

These predictions are in fact quite accurate, as one can see by comparing these
values with actual measured values of χ(2) (see, for instance, Table 1.5.3) and
χ(3) (see, for instance, Table 4.3.1).

For certain purposes, it is useful to express the second- and third-order
susceptibilities in terms of fundamental physical constants. As just noted,
for condensed matter χ(1) is of the order of unity. This result can be justi-
fied either as an empirical fact or can be justified more rigorously by noting
that χ(1) is the product of atomic number density and atomic polarizability.
The number density N of condensed matter is of the order of (a0)

−3, and
the nonresonant polarizability is of the order of (a0)

3. We thus deduce that
χ(1) is of the order of unity. We then find that χ(2) � (4πε0)

3h̄4/m2e5 and
χ(3) � (4πε0)

6h̄8/m4e10. See Boyd (1999) for further details.

∗ Except where otherwise noted, we use the SI (MKS) system of units throughout this book. The
appendix to this book presents a prescription for converting among systems of units.
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The most usual procedure for describing nonlinear optical phenomena is
based on expressing the polarization P̃ (t) in terms of the applied electric field
strength Ẽ(t), as we have done in Eq. (1.1.2). The reason why the polarization
plays a key role in the description of nonlinear optical phenomena is that a
time-varying polarization can act as the source of new components of the
electromagnetic field. For example, we shall see in Section 2.1 that the wave
equation in nonlinear optical media often has the form

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 1

ε0c2

∂2P̃ NL

∂t2
, (1.1.5)

where n is the usual linear refractive index and c is the speed of light in vac-
uum. We can interpret this expression as an inhomogeneous wave equation
in which the polarization P̃ NL associated with the nonlinear response drives
the electric field Ẽ. Since ∂2P̃ NL/∂t2 is a measure of the acceleration of the
charges that constitute the medium, this equation is consistent with Larmor’s
theorem of electromagnetism which states that accelerated charges generate
electromagnetic radiation.

It should be noted that the power series expansion expressed by Eq. (1.1.2)
need not necessarily converge. In such circumstances the relationship between
the material response and the applied electric field amplitude must be ex-
pressed using different procedures. One such circumstance is that of resonant
excitation of an atomic system, in which case an appreciable fraction of the
atoms can be removed from the ground state. Saturation effects of this sort
can be described by procedures developed in Chapter 6. Even under nonreso-
nant conditions, Eq. (1.1.2) loses its validity if the applied laser field strength
becomes comparable to the characteristic atomic field strength Eat, because
of strong photoionization that can occur under these conditions. For future
reference, we note that the laser intensity associated with a peak field strength
of Eat is given by

Iat = 1

2
ε0cE

2
at = 3.5 × 1020 W/m2 = 3.5 × 1016 W/cm2. (1.1.6)

We shall see later in this book (see especially Chapter 13) how nonlinear
optical processes display qualitatively distinct features when excited by such
super-intense fields.

1.2. Descriptions of Nonlinear Optical Processes

In the present section, we present brief qualitative descriptions of a number
of nonlinear optical processes. In addition, for those processes that can oc-
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FIGURE 1.2.1 (a) Geometry of second-harmonic generation. (b) Energy-level dia-
gram describing second-harmonic generation.

cur in a lossless medium, we indicate how they can be described in terms of
the nonlinear contributions to the polarization described by Eq. (1.1.2).∗ Our
motivation is to provide an indication of the variety of nonlinear optical phe-
nomena that can occur. These interactions are described in greater detail in
later sections of this book. In this section we also introduce some notational
conventions and some of the basic concepts of nonlinear optics.

1.2.1. Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of
second-harmonic generation, which is illustrated schematically in Fig. 1.2.1.
Here a laser beam whose electric field strength is represented as

Ẽ(t) = Ee−iωt + c.c. (1.2.1)

is incident upon a crystal for which the second-order susceptibility χ(2) is
nonzero. The nonlinear polarization that is created in such a crystal is given
according to Eq. (1.1.2) as P̃ (2)(t) = ε0χ

(2)Ẽ2(t) or explicitly as

P̃ (2)(t) = 2ε0χ
(2)EE∗ + (

ε0χ
(2)E2e−i2ωt + c.c.

)
. (1.2.2)

We see that the second-order polarization consists of a contribution at zero fre-
quency (the first term) and a contribution at frequency 2ω (the second term).
According to the driven wave equation (1.1.5), this latter contribution can
lead to the generation of radiation at the second-harmonic frequency. Note
that the first contribution in Eq. (1.2.2) does not lead to the generation of elec-
tromagnetic radiation (because its second time derivative vanishes); it leads
to a process known as optical rectification, in which a static electric field is
created across the nonlinear crystal.

∗ Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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Under proper experimental conditions, the process of second-harmonic
generation can be so efficient that nearly all of the power in the incident
beam at frequency ω is converted to radiation at the second-harmonic fre-
quency 2ω. One common use of second-harmonic generation is to convert the
output of a fixed-frequency laser to a different spectral region. For example,
the Nd:YAG laser operates in the near infrared at a wavelength of 1.06 μm.
Second-harmonic generation is routinely used to convert the wavelength of
the radiation to 0.53 μm, in the middle of the visible spectrum.

Second-harmonic generation can be visualized by considering the interac-
tion in terms of the exchange of photons between the various frequency com-
ponents of the field. According to this picture, which is illustrated in part (b)
of Fig. 1.2.1, two photons of frequency ω are destroyed, and a photon of fre-
quency 2ω is simultaneously created in a single quantum-mechanical process.
The solid line in the figure represents the atomic ground state, and the dashed
lines represent what are known as virtual levels. These levels are not energy
eigenlevels of the free atom but rather represent the combined energy of one of
the energy eigenstates of the atom and of one or more photons of the radiation
field.

The theory of second-harmonic generation is developed more fully in Sec-
tion 2.6.

1.2.2. Sum- and Difference-Frequency Generation

Let us next consider the circumstance in which the optical field incident upon
a second-order nonlinear optical medium consists of two distinct frequency
components, which we represent in the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the
nonlinear polarization is of the form

P̃ (2)(t) = ε0χ
(2)Ẽ(t)2, (1.2.4)

we find that the nonlinear polarization is given by

P̃ (2)(t) = ε0χ
(2)

[
E2

1e−2iω1t + E2
2e−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e−i(ω1−ω2)t + c.c.

] + 2ε0χ
(2)

[
E1E

∗
1 + E2E

∗
2

]
.

(1.2.5)
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It is convenient to express this result using the notation

P̃ (2)(t) =
∑
n

P (ωn)e
−iωnt , (1.2.6)

where the summation extends over positive and negative frequencies ωn. The
complex amplitudes of the various frequency components of the nonlinear
polarization are hence given by

P(2ω1) = ε0χ
(2)E2

1 (SHG),

P (2ω2) = ε0χ
(2)E2

2 (SHG),

P (ω1 + ω2) = 2ε0χ
(2)E1E2 (SFG), (1.2.7)

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (DFG),

P (0) = 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2 ) (OR).

Here we have labeled each expression by the name of the physical process
that it describes, such as second-harmonic generation (SHG), sum-frequency
generation (SFG), difference-frequency generation (DFG), and optical rectifi-
cation (OR). Note that, in accordance with our complex notation, there is also
a response at the negative of each of the nonzero frequencies just given:

P(−2ω1) = ε0χ
(2)E∗

1
2, P (−2ω2) = ε0χ

(2)E∗
2

2,

P (−ω1 − ω2) = 2ε0χ
(2)E∗

1E∗
2 , P (ω2 − ω1) = 2ε0χ

(2)E2E
∗
1 .

(1.2.8)

However, since each of these quantities is simply the complex conjugate of
one of the quantities given in Eq. (1.2.7), it is not necessary to take explicit
account of both the positive and negative frequency components.∗

∗ Not all workers in nonlinear optics use our convention that the fields and polarizations are given
by Eqs. (1.2.3) and (1.2.6). Another common convention is to define the field amplitudes according to

Ẽ(t) = 1

2

(
E′

1e−iω1t + E′
2e−iω2t + c.c.

)
,

P̃ (t) = 1

2

∑
n

P ′(ωn)eiωnt ,

where in the second expression the summation extends over all positive and negative frequencies.
Using this convention, one finds that

P ′(2ω1) = 1

2
ε0χ(2)E′2

1 , P ′(2ω2) = 1

2
ε0χ(2)E′2

2 ,

P ′(ω1 + ω2) = ε0χ(2)E′
1E′

2, P ′(ω1 − ω2) = ε0χ(2)E′
1E′∗

2 ,

P ′(0) = ε0χ(2)
(
E′

1E′∗
1 + E′

2E′∗
2

)
.

Note that these expressions differ from Eqs. (1.2.7) by factors of 1
2 .
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We see from Eq. (1.2.7) that four different nonzero frequency components
are present in the nonlinear polarization. However, typically no more than one
of these frequency components will be present with any appreciable intensity
in the radiation generated by the nonlinear optical interaction. The reason for
this behavior is that the nonlinear polarization can efficiently produce an out-
put signal only if a certain phase-matching condition (which is discussed in
detail in Section 2.7) is satisfied, and usually this condition cannot be satisfied
for more than one frequency component of the nonlinear polarization. Oper-
ationally, one often chooses which frequency component will be radiated by
properly selecting the polarization of the input radiation and the orientation
of the nonlinear crystal.

1.2.3. Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illus-
trated in Fig. 1.2.2. According to Eq. (1.2.7), the complex amplitude of the
nonlinear polarization describing this process is given by the expression

P(ω1 + ω2) = 2ε0χ
(2)E1E2. (1.2.9)

In many ways the process of sum-frequency generation is analogous to that of
second-harmonic generation, except that in sum-frequency generation the two
input waves are at different frequencies. One application of sum-frequency
generation is to produce tunable radiation in the ultraviolet spectral region by
choosing one of the input waves to be the output of a fixed-frequency visible
laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2
and 2.4.

FIGURE 1.2.2 Sum-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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1.2.4. Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear
polarization of the form

P(ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (1.2.10)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is
the difference of those of the applied fields. Difference-frequency generation
can be used to produce tunable infrared radiation by mixing the output of a
frequency-tunable visible laser with that of a fixed-frequency visible laser.

Superficially, difference-frequency generation and sum-frequency gener-
ation appear to be very similar processes. However, an important differ-
ence between the two processes can be deduced from the description of
difference-frequency generation in terms of a photon energy-level diagram
(part (b) of Fig. 1.2.3). We see that conservation of energy requires that
for every photon that is created at the difference frequency ω3 = ω1 − ω2,
a photon at the higher input frequency (ω1) must be destroyed and a pho-
ton at the lower input frequency (ω2) must be created. Thus, the lower-
frequency input field is amplified by the process of difference-frequency
generation. For this reason, the process of difference-frequency generation
is also known as optical parametric amplification. According to the photon
energy-level description of difference-frequency generation, the atom first
absorbs a photon of frequency ω1 and jumps to the highest virtual level.
This level decays by a two-photon emission process that is stimulated by
the presence of the ω2 field, which is already present. Two-photon emission
can occur even if the ω2 field is not applied. The generated fields in such
a case are very much weaker, since they are created by spontaneous two-
photon emission from a virtual level. This process is known as parametric

FIGURE 1.2.3 Difference-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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fluorescence and has been observed experimentally (Byer and Harris, 1968;
Harris et al., 1967).

The theory of difference-frequency generation is developed more fully in
Section 2.5.

1.2.5. Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the
presence of radiation at frequency ω2 or ω3 can stimulate the emission of
additional photons at these frequencies. If the nonlinear crystal used in this
process is placed inside an optical resonator, as shown in Fig. 1.2.4, the ω2

and/or ω3 fields can build up to large values. Such a device is known as an op-
tical parametric oscillator. Optical parametric oscillators are frequently used at
infrared wavelengths, where other sources of tunable radiation are not readily
available. Such a device is tunable because any frequency ω2 that is smaller
than ω1 can satisfy the condition ω2 + ω3 = ω1 for some frequency ω3. In
practice, one controls the output frequency of an optical parametric oscillator
by adjusting the phase-matching condition, as discussed in Section 2.7. The
applied field frequency ω1 is often called the pump frequency, the desired out-
put frequency is called the signal frequency, and the other, unwanted, output
frequency is called the idler frequency.

1.2.6. Third-Order Nonlinear Optical Processes

We next consider the third-order contribution to the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ(t)3. (1.2.11)

For the general case in which the field Ẽ(t) is made up of several different
frequency components, the expression for P̃ (3)(t) is very complicated. For
this reason, we first consider the simple case in which the applied field is

FIGURE 1.2.4 The optical parametric oscillator. The cavity end mirrors have high
reflectivities at frequencies ω2 and/or ω3. The output frequencies can be tuned by
means of the orientation of the crystal.
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monochromatic and is given by

Ẽ(t) = E cosωt. (1.2.12)

Then, through use of the identity cos3 ωt = 1
4 cos 3ωt + 3

4 cosωt , we can ex-
press the nonlinear polarization as

P̃ (3)(t) = 1

4
ε0χ

(3)E3 cos 3ωt + 3

4
ε0χ

(3)E 3 cosωt. (1.2.13)

The significance of each of the two terms in this expression is described briefly
below.

1.2.7. Third-Harmonic Generation

The first term in Eq. (1.2.13) describes a response at frequency 3ω that is
created by an applied field at frequency ω. This term leads to the process
of third-harmonic generation, which is illustrated in Fig. 1.2.5. According to
the photon description of this process, shown in part (b) of the figure, three
photons of frequency ω are destroyed and one photon of frequency 3ω is
created in the microscopic description of this process.

1.2.8. Intensity-Dependent Refractive Index

The second term in Eq. (1.2.13) describes a nonlinear contribution to the po-
larization at the frequency of the incident field; this term hence leads to a
nonlinear contribution to the refractive index experienced by a wave at fre-
quency ω. We shall see in Section 4.1 that the refractive index in the presence
of this type of nonlinearity can be represented as

n = n0 + n2I, (1.2.14a)

FIGURE 1.2.5 Third-harmonic generation. (a) Geometry of the interaction.
(b) Energy-level description.
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FIGURE 1.2.6 Self-focusing of light.

where n0 is the usual (i.e., linear or low-intensity) refractive index, where

n2 = 3

2n2
0ε0c

χ(3) (1.2.14b)

is an optical constant that characterizes the strength of the optical nonlinearity,
and where I = 1

2n0ε0cE2 is the intensity of the incident wave.

Self-Focusing One of the processes that can occur as a result of the intensity-
dependent refractive index is self-focusing, which is illustrated in Fig. 1.2.6.
This process can occur when a beam of light having a nonuniform transverse
intensity distribution propagates through a material for which n2 is positive.
Under these conditions, the material effectively acts as a positive lens, which
causes the rays to curve toward each other. This process is of great practical
importance because the intensity at the focal spot of the self-focused beam is
usually sufficiently large to lead to optical damage of the material. The process
of self-focusing is described in greater detail in Section 7.1.

1.2.9. Third-Order Interactions (General Case)

Let us next examine the form of the nonlinear polarization

P̃ (3)(t) = ε0χ
(3)Ẽ3(t) (1.2.15a)

induced by an applied field that consists of three frequency components:

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c. (1.2.15b)

When we calculate Ẽ3(t), we find that the resulting expression contains 44
different frequency components, if we consider positive and negative frequen-
cies to be distinct. Explicitly, these frequencies are

ω1,ω2,ω3,3ω1,3ω2,3ω3, (ω1 + ω2 + ω3), (ω1 + ω2 − ω3),

(ω1 + ω3 − ω2), (ω2 + ω3 − ω1), (2ω1 ± ω2), (2ω1 ± ω3), (2ω2 ± ω1),

(2ω2 ± ω3), (2ω3 ± ω1), (2ω3 ± ω2),
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and the negative of each. Again representing the nonlinear polarization as

P̃ (3)(t) =
∑
n

P (ωn)e
−iωnt , (1.2.16)

we can write the complex amplitudes of the nonlinear polarization for each of
the positive frequencies as

P(ω1) = ε0χ
(3)

(
3E1E

∗
1 + 6E2E

∗
2 + 6E3E

∗
3

)
E1,

P (ω2) = ε0χ
(3)

(
6E1E

∗
1 + 3E2E

∗
2 + 6E3E

∗
3

)
E2,

P (ω3) = ε0χ
(3)

(
6E1E

∗
1 + 6E2E

∗
2 + 3E3E

∗
3

)
E3,

P (3ω1) = ε0χ
(3)E3

1, P (3ω2) = ε0χ
(3)E3

2, P (3ω3) = ε0χ
(3)E3

3,

P (ω1 + ω2 + ω3) = 6ε0χ
(3)E1E2E3,

P (ω1 + ω2 − ω3) = 6ε0χ
(3)E1E2E

∗
3 ,

P (ω1 + ω3 − ω2) = 6ε0χ
(3)E1E3E

∗
2 ,

P (ω2 + ω3 − ω1) = 6ε0χ
(3)E2E3E

∗
1 ,

P (2ω1 + ω2) = 3ε0χ
(3)E2

1E2, P (2ω1 + ω3) = 3ε0χ
(3)E2

1E3,

P (2ω2 + ω1) = 3ε0χ
(3)E2

2E1, P (2ω2 + ω3) = 3ε0χ
(3)E2

2E3,

P (2ω3 + ω1) = 3ε0χ
(3)E2

3E1, P (2ω3 + ω2) = 3ε0χ
(3)E2

3E2,

P (2ω1 − ω2) = 3ε0χ
(3)E2

1E∗
2 , P (2ω1 − ω3) = 3ε0χ

(3)E2
1E∗

3 ,

P (2ω2 − ω1) = 3ε0χ
(3)E2

2E∗
1 , P (2ω2 − ω3) = 3ε0χ

(3)E2
2E∗

3 ,

P (2ω3 − ω1) = 3ε0χ
(3)E2

3E∗
1 , P (2ω3 − ω2) = 3ε0χ

(3)E2
3E∗

2

(1.2.17)

We have displayed these expressions in complete detail because it is very
instructive to study their form. In each case the frequency argument of P

is equal to the sum of the frequencies associated with the field amplitudes
appearing on the right-hand side of the equation, if we adopt the convention
that a negative frequency is to be associated with a field amplitude that appears
as a complex conjugate. Also, the numerical factor (1, 3, or 6) that appears in
each term on the right-hand side of each equation is equal to the number of
distinct permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.17)
are illustrated in Fig. 1.2.7.

1.2.10. Parametric versus Nonparametric Processes

All of the processes described thus far in this chapter are examples of what
are known as parametric processes. The origin of this terminology is obscure,
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FIGURE 1.2.7 Two of the possible mixing processes described by Eq. (1.2.17) that
can occur when three input waves interact in a medium characterized by a χ(3) sus-
ceptibility.

but the word parametric has come to denote a process in which the initial and
final quantum-mechanical states of the system are identical. Consequently, in
a parametric process population can be removed from the ground state only
for those brief intervals of time when it resides in a virtual level. According
to the uncertainty principle, population can reside in a virtual level for a time
interval of the order of h̄/δE, where δE is the energy difference between the
virtual level and the nearest real level. Conversely, processes that do involve
the transfer of population from one real level to another are known as non-
parametric processes. The processes that we describe in the remainder of the
present section are all examples of nonparametric processes.

One difference between parametric and nonparametric processes is that
parametric processes can always be described by a real susceptibility; con-
versely, nonparametric processes are described by a complex susceptibility
by means of a procedure described in the following section. Another differ-
ence is that photon energy is always conserved in a parametric process; photon
energy need not be conserved in a nonparametric process, because energy can
be transferred to or from the material medium. For this reason, photon en-
ergy level diagrams of the sort shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and
1.2.7 to describe parametric processes play a less definitive role in describing
nonparametric processes.
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As a simple example of the distinction between parametric and nonpara-
metric processes, we consider the case of the usual (linear) index of refrac-
tion. The real part of the refractive index describes a response that occurs as a
consequence of parametric processes, whereas the imaginary part occurs as a
consequence of nonparametric processes. This conclusion holds because the
imaginary part of the refractive index describes the absorption of radiation,
which results from the transfer of population from the atomic ground state to
an excited state.

1.2.11. Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorp-
tion. Many material systems have the property that their absorption coefficient
decreases when measured using high laser intensity. Often the dependence of
the measured absorption coefficient α on the intensity I of the incident laser
radiation is given by the expression∗

α = α0

1 + I/Is

, (1.2.18)

where α0 is the low-intensity absorption coefficient, and Is is a parameter
known as the saturation intensity.

Optical Bistability One consequence of saturable absorption is optical bista-
bility. One way of constructing a bistable optical device is to place a saturable
absorber inside a Fabry–Perot resonator, as illustrated in Fig. 1.2.8. As the
input intensity is increased, the field inside the cavity also increases, lowering
the absorption that the field experiences and thus increasing the field inten-
sity still further. If the intensity of the incident field is subsequently lowered,
the field inside the cavity tends to remain large because the absorption of the
material system has already been reduced. A plot of the input-versus-output
characteristics thus looks qualitatively like that shown in Fig. 1.2.9. Note that

FIGURE 1.2.8 Bistable optical device.

∗ This form is valid, for instance, for the case of homogeneous broadening of a simple atomic
transition.
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FIGURE 1.2.9 Typical input-versus-output characteristics of a bistable optical device.

over some range of input intensities more than one output intensity is possible.
The process of optical bistability is described in greater detail in Section 7.3.

1.2.12. Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10,
an atom makes a transition from its ground state to an excited state by the
simultaneous absorption of two laser photons. The absorption cross section σ

describing this process increases linearly with laser intensity according to the
relation

σ = σ (2)I, (1.2.19)

where σ (2) is a coefficient that describes strength of the two-photon-
absorption process. (Recall that in conventional, linear optics the absorption
cross section σ is a constant.) Consequently, the atomic transition rate R due
to two-photon absorption scales as the square of the laser intensity. To justify
this conclusion, we note that R = σI/h̄ω, and consequently that

R = σ (2)I 2

h̄ω
. (1.2.20)

FIGURE 1.2.10 Two-photon absorption.
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FIGURE 1.2.11 Stimulated Raman scattering.

Two-photon absorption is a useful spectroscopic tool for determining the po-
sitions of energy levels that are not connected to the atomic ground state by a
one-photon transition. Two-photon absorption was first observed experimen-
tally by Kaiser and Garrett (1961).

1.2.13. Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon
of frequency ω is annihilated and a photon at the Stokes shifted frequency
ωs = ω−ωv is created, leaving the molecule (or atom) in an excited state with
energy h̄ωv. The excitation energy is referred to as ωv because stimulated Ra-
man scattering was first studied in molecular systems, where h̄ωv corresponds
to a vibrational energy. The efficiency of this process can be quite large, with
often 10% or more of the power of the incident light being converted to the
Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman
scattering is typically many orders of magnitude smaller. Stimulated Raman
scattering is described more fully in Chapter 10.

Other stimulated scattering processes such as stimulated Brillouin scatter-
ing and stimulated Rayleigh scattering also occur and are described more fully
in Chapter 9.

1.3. Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described in terms of a nonlinear po-
larization given by Eq. (1.1.2) only for a material system that is lossless and
dispersionless. In the present section, we consider the more general case of a
material with dispersion and/or loss. In this more general case the nonlinear
susceptibility becomes a complex quantity relating the complex amplitudes of
the electric field and polarization.
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We assume that we can represent the electric field vector of the optical wave
as the discrete sum of a number of frequency components as

Ẽ(r, t) =
∑
n

′
Ẽn(r, t), (1.3.1)

where

Ẽn(r, t) = En(r)e−iωnt + c.c. (1.3.2)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation
is to be taken over positive frequencies only. It is also convenient to define the
spatially slowly varying field amplitude An by means of the relation

En(r) = Ane
ikn·r, (1.3.3)

so that

Ẽ(r, t) =
∑
n

′
Ane

i(kn·r−ωnt) + c.c. (1.3.4)

On occasion, we shall express these field amplitudes using the alternative no-
tation

En = E(ωn) and An = A(ωn), (1.3.5)

where

E(−ωn) = E(ωn)
∗ and A(−ωn) = A(ωn)

∗. (1.3.6)

Using this new notation, we can write the total field in the more compact form

Ẽ(r, t) =
∑
n

E(ωn)e
−iωnt

=
∑
n

A(ωn)e
i(kn·r−ωnt), (1.3.7)

where the unprimed summation symbol denotes a summation over all fre-
quencies, both positive and negative.

Note that according to our definition of field amplitude, the field given by

Ẽ(r, t) = E cos(k · r − ωt) (1.3.8)

is represented by the complex field amplitudes

E(ω) = 1

2
Eeik·r, E(−ω) = 1

2
Ee−ik·r, (1.3.9)
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or alternatively, by the slowly varying amplitudes

A(ω) = 1

2
E, A(−ω) = 1

2
E . (1.3.10)

In either representation, factors of 1
2 appear because the physical field ampli-

tude E has been divided equally between the positive- and negative-frequency
field components.

Using a notation similar to that of Eq. (1.3.7), we can express the nonlinear
polarization as

P̃(r, t) =
∑
n

P(ωn)e
−iωnt , (1.3.11)

where, as before, the summation extends over all positive- and negative-
frequency field components.

We now define the components of the second-order susceptibility tensor
χ

(2)
ijk (ωn + ωm,ωn,ωm) as the constants of proportionality relating the ampli-

tude of the nonlinear polarization to the product of field amplitudes according
to

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm). (1.3.12)

Here the indices ijk refer to the Cartesian components of the fields. The no-
tation (nm) indicates that, in performing the summation over n and m, the
sum ωn + ωm is to be held fixed, although ωn and ωm are each allowed
to vary. Since the amplitude E(ωn) is associated with the time dependence
exp(−iωnt), and the amplitude E(ωm) is associated with the time depen-
dence exp(−iωmt), their product E(ωn)E(ωm) is associated with the time de-
pendence exp[−i(ωn + ωm)t]. Hence the product E(ωn)E(ωm) does in fact
lead to a contribution to the nonlinear polarization oscillating at frequency
ωn + ωm, as the notation of Eq. (1.3.12) suggests. Following convention, we
have written χ(2) as a function of three frequency arguments. This is tech-
nically unnecessary in that the first argument is always the sum of the other
two. To emphasize this fact, the susceptibility χ(2)(ω3,ω2,ω1) is sometimes
written as χ(2)(ω3;ω2,ω1) as a reminder that the first argument is different
from the other two, or it may be written symbolically as χ(2)(ω3 = ω2 + ω1).

Let us examine some of the consequences of the definition of the nonlinear
susceptibility as given by Eq. (1.3.12) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be ω1 and
ω2 and the sum frequency be ω3, so that ω3 = ω1 + ω2. Then, by carrying
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out the summation over ωn and ωm in Eq. (1.3.12), we find that

Pi(ω3) = ε0

∑
jk

[
χ

(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2)

+ χ
(2)
ijk (ω3,ω2,ω1)Ej (ω2)Ek(ω1)

]
. (1.3.13)

We now note that j and k are dummy indices and thus can be interchanged
in the second term. We next assume that the nonlinear susceptibility pos-
sesses intrinsic permutation symmetry (this symmetry is discussed in more
detail in Eq. (1.5.6) below), which states that

χ
(2)
ijk (ωm + ωn,ωm,ωn) = χ

(2)
ikj (ωm + ωn,ωn,ωm). (1.3.14)

Through use of this relation, the expression for the nonlinear polarization
becomes

Pi(ω3) = 2ε0

∑
jk

χ
(2)
ijk (ω3,ω1,ω2)Ej (ω1)Ek(ω2), (1.3.15)

and for the special case in which both input fields are polarized in the x

direction the polarization becomes

Pi(ω3) = 2ε0χ
(2)
ixx(ω3,ω1,ω2)Ex(ω1)Ex(ω2). (1.3.16)

2. Second-harmonic generation. We take the input frequency as ω1 and the
generated frequency as ω3 = 2ω1. If we again perform the summation over
field frequencies in Eq. (1.3.12), we obtain

Pi(ω3) = ε0

∑
jk

χ
(2)
ijk (ω3,ω1,ω1)Ej (ω1)Ek(ω1). (1.3.17)

Again assuming the special case of an input field polarization along the x

direction, this result becomes

Pi(ω3) = ε0χ
(2)
ixx(ω3,ω1,ω1)Ex(ω1)

2. (1.3.18)

Note that a factor of two appears in Eqs. (1.3.15) and (1.3.16), which de-
scribe sum-frequency generation, but not in Eqs. (1.3.17) and (1.3.18), which
describe second-harmonic generation. The fact that these expressions re-
main different even as ω2 approaches ω1 is perhaps at first sight surprising,
but is a consequence of our convention that χ

(2)
ijk (ω3,ω1,ω2) must approach

χ
(2)
ijk (ω3,ω1,ω1) as ω1 approaches ω2. Note that the expressions for P(2ω2)

and P(ω1 +ω2) that apply for the case of a dispersionless nonlinear suscepti-
bility (Eq. (1.2.7)) also differ by a factor of two. Moreover, one should expect
the nonlinear polarization produced by two distinct fields to be larger than that
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produced by a single field (both of the same amplitude, say), because the total
light intensity is larger in the former case.

In general, the summation over field frequencies (
∑

(nm)) in Eq. (1.3.12)
can be performed formally to obtain the result

Pi(ωn + ωm) = ε0D
∑
jk

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm),

(1.3.19)

where D is known as the degeneracy factor and is equal to the number of
distinct permutations of the applied field frequencies ωn and ωm.

The expression (1.3.12) defining the second-order susceptibility can readily
be generalized to higher-order interactions. In particular, the components of
the third-order susceptibility are defined as the coefficients relating the ampli-
tudes according to the expression

Pi(ωo + ωn + ωm) = ε0

∑
jkl

∑
(mno)

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

×Ej(ωo)Ek(ωn)El(ωm). (1.3.20)

We can again perform the summation over m, n, and o to obtain the result

Pi(ωo + ωn + ωm) = ε0D
∑
jkl

χ
(3)
ijkl(ω0 + ωn + ωm,ωo,ωn,ωm)

× Ej(ω0)Ek(ωn)El(ωm), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations
of the frequencies ωm, ωn, and ωo.

1.4. Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator,
is known to provide a very good description of the linear optical properties of
atomic vapors and of nonmetallic solids. In the present section, we extend the
Lorentz model by allowing the possibility of a nonlinearity in the restoring
force exerted on the electron. The details of the analysis differ depending
upon whether or not the medium possesses inversion symmetry.∗ We first treat
the case of a noncentrosymmetric medium, and we find that such a medium

∗ The role of symmetry in determining the nature of the nonlinear susceptibilty is discussed from a
more fundamental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.31)
to (1.5.35).
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can give rise to a second-order optical nonlinearity. We then treat the case of
a medium that possesses a center of symmetry and find that the lowest-order
nonlinearity that can occur in this case is a third-order nonlinear susceptibility.
Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities
presented here is that this model ascribes a single resonance frequency (ω0)

to each atom. In contrast, the quantum-mechanical theory of the nonlinear
optical susceptibility, to be developed in Chapter 3, allows each atom to pos-
sess many energy eigenvalues and hence more than one resonance frequency.
Since the present model allows for only one resonance frequency, it cannot
properly describe the complete resonance nature of the nonlinear susceptibil-
ity (such as, for example, the possibility of simultaneous one- and two-photon
resonances). However, it provides a good description for those cases in which
all of the optical frequencies are considerably smaller than the lowest elec-
tronic resonance frequency of the material system.

1.4.1. Noncentrosymmetric Media

For the case of noncentrosymmetric media, we take the equation of motion of
the electron position x̃ to be of the form

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −eẼ(t)/m. (1.4.1)

In this equation we have assumed that the applied electric field is given by
Ẽ(t), that the charge of the electron is −e, that there is a damping force of the
form∗ −2mγ ˙̃x, and that the restoring force is given by

F̃restoring = −mω2
0x̃ − max̃2, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We
obtain this form by assuming that the restoring force is a nonlinear function
of the displacement of the electron from its equilibrium position and retaining
the linear and quadratic terms in the Taylor series expansion of the restoring
force in the displacement x̃. We can understand the nature of this form of the
restoring force by noting that it corresponds to a potential energy function of
the form

U(x̃) = −
∫

F̃restoring dx̃ = 1

2
mω2

0x̃
2 + 1

3
max̃3. (1.4.3)

∗ The factor of two is introduced to make γ the dipole damping rate. 2γ is therefore the full width
at half maximum in angular frequency units of the atomic absorption profile in the limit of linear
response.
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FIGURE 1.4.1 Potential energy function for a noncentrosymmetric medium.

Here the first term corresponds to a harmonic potential and the second term
corresponds to an anharmonic correction term, as illustrated in Fig. 1.4.1.
This model corresponds to the physical situation of electrons in real mate-
rials, because the actual potential well that the atomic electron feels is not
perfectly parabolic. The present model can describe only noncentrosymmet-
ric media because we have assumed that the potential energy function U(x̃)

of Eq. (1.4.3) contains both even and odd powers of x̃; for a centrosymmetric
medium only even powers of x̃ could appear, because the potential function
U(x̃) must possess the symmetry U(x̃) = U(−x̃). For simplicity, we have
written Eq. (1.4.1) in the scalar-field approximation; note that we cannot treat
the tensor nature of the nonlinear susceptibility without making explicit as-
sumptions regarding the symmetry properties of the material.

We assume that the applied optical field is of the form

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c. (1.4.4)

No general solution to Eq. (1.4.1) for an applied field of the form (1.4.4) is
known. However, if the applied field is sufficiently weak, the nonlinear term
ax̃2 will be much smaller than the linear term ω2

0x̃ for any displacement x̃

that can be induced by the field. Under this circumstance, Eq. (1.4.1) can be
solved by means of a perturbation expansion. We use a procedure analogous
to that of Rayleigh–Schrödinger perturbation theory in quantum mechanics.
We replace Ẽ(t) in Eq. (1.4.1) by λẼ(t), where λ is a parameter that ranges
continuously between zero and one and that will be set equal to one at the end
of the calculation. The expansion parameter λ thus characterizes the strength
of the perturbation. Equation (1.4.1) then becomes

¨̃x + 2γ ˙̃x + ω2
0x̃ + ax̃2 = −λeẼ(t)/m. (1.4.5)
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We now seek a solution to Eq. (1.4.5) in the form of a power series expan-
sion in the strength λ of the perturbation, that is, a solution of the form

x̃ = λx̃(1) + λ2x̃(2) + λ3x̃(3) + · · · . (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the
coupling strength λ, we require that the terms in Eq. (1.4.5) proportional to λ,
λ2, λ3, etc., each satisfy the equation separately. We find that these terms lead
respectively to the equations

¨̃x(1) + 2γ ˙̃x(1) + ω2
0x̃

(1) = −eẼ(t)/m, (1.4.7a)

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) + a
[
x̃(1)

]2 = 0, (1.4.7b)

¨̃x(3) + 2γ ˙̃x(3) + ω2
0x̃

(3) + 2ax̃(1)x̃(2) = 0, etc. (1.4.7c)

We see from Eq. (1.4.7a) that the lowest-order contribution x̃(1) is governed
by the same equation as that of the conventional (i.e., linear) Lorentz model.
Its steady-state solution is thus given by

x̃(1)(t) = x(1)(ω1)e
−iω1t + x(1)(ω2)e

−iω2t + c.c., (1.4.8)

where the amplitudes x(1)(ωj ) have the form

x(1)(ωj ) = − e

m

Ej

D(ωj )
, (1.4.9)

where we have introduced the complex denominator function

D(ωj ) = ω2
0 − ω2

j − 2iωjγ. (1.4.10)

This expression for x̃(1)(t) is now squared and substituted into Eq. (1.4.7b),
which is solved to obtain the lowest-order correction term x̃(2). The square
of x̃(1)(t) contains the frequencies ±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2),
and 0. To determine the response at frequency 2ω1, for instance, we must
solve the equation

¨̃x(2) + 2γ ˙̃x(2) + ω2
0x̃

(2) = −a(eE1/m)2e−2iω1t

D2(ω1)
. (1.4.11)

We seek a steady-state solution of the form

x̃(2)(t) = x(2)(2ω1)e
−2iω1t . (1.4.12)

Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result

x(2)(2ω1) = −a(e/m)2E2
1

D(2ω1)D2(ω1)
, (1.4.13)
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where we have made use of the definition (1.4.10) of the function D(ωj ).
Analogously, the amplitudes of the responses at the other frequencies are
found to be

x(2)(2ω2) = −a(e/m)2E2
2

D(2ω2)D2(ω2)
, (1.4.14a)

x(2)(ω1 + ω2) = −2a(e/m)2E1E2

D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.14b)

x(2)(ω1 − ω2) = −2a(e/m)2E1E
∗
2

D(ω1 − ω2)D(ω1)D(−ω2)
, (1.4.14c)

x(2)(0) = −2a(e/m)2E1E
∗
1

D(0)D(ω1)D(−ω1)
+ −2a(e/m)2E2E

∗
2

D(0)D(ω2)D(−ω2)
.

(1.4.14d)

We next express these results in terms of the linear (χ(1)) and nonlinear
(χ(2)) susceptibilities. The linear susceptibility is defined through the relation

P (1)(ωj ) = ε0χ
(1)(ωj )E(ωj ). (1.4.15)

Since the linear contribution to the polarization is given by

P (1)(ωj ) = −Nex(1)(ωj ), (1.4.16)

where N is the number density of atoms, we find using Eqs. (1.4.8) and (1.4.9)
that the linear susceptibility is given by

χ(1)(ωj ) = N(e2/m)

ε0D(ωj )
. (1.4.17)

The nonlinear susceptibilities are calculated in an analogous manner. The
nonlinear susceptibility describing second-harmonic generation is defined by
the relation

P (2)(2ω1) = ε0χ
(2)(2ω1,ω1,ω1)E(ω1)

2, (1.4.18)

where P (2)(2ω1) is the amplitude of the component of the nonlinear polariza-
tion oscillating at frequency 2ω1 and is defined by the relation

P (2)(2ω1) = −Nex(2)(2ωi). (1.4.19)

Comparison of these equations with Eq. (1.4.13) gives

χ(2)(2ω1,ω1,ω1) = N(e3/m2)a

ε0D(2ω1)D2(ω1)
. (1.4.20)
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Through use of Eq. (1.4.17), this result can be written instead in terms of the
product of linear susceptibilities as

χ(2)(2ω1,ω1,ω1) = ε2
0ma

N2e3
χ(1)(2ω1)

[
χ(1)(ω1)

]2
. (1.4.21)

The nonlinear susceptibility for second-harmonic generation of the ω2 field
is obtained trivially from Eqs. (1.4.20) and (1.4.21) through the substitution
ω1 → ω2.

The nonlinear susceptibility describing sum-frequency generation is ob-
tained from the relations

P (2)(ω1 + ω2) = 2ε0χ
(2)(ω1 + ω2,ω1,ω2)E(ω1)E(ω2) (1.4.22)

and

P (2)(ω1 + ω2) = −Nex(2)(ω1 + ω2). (1.4.23)

Note that in this case the relation defining the nonlinear susceptibility con-
tains a factor of two because the two input fields are distinct, as discussed in
relation to Eq. (1.3.19). By comparison of these equations with (1.4.14b), the
nonlinear susceptibility is seen to be given by

χ(2)(ω1 + ω2,ω1,ω2) = N(e3/m2)a

ε0D(ω1 + ω2)D(ω1)D(ω2)
, (1.4.24)

which can be expressed in terms of the product of linear susceptibilities as

χ(2)(ω1 + ω2,ω1,ω2) = ε2
0ma

N2e3
χ(1)(ω1 + ω2)χ

(1)(ω1)χ
(1)(ω2). (1.4.25)

It can be seen by comparison of Eqs. (1.4.20) and (1.4.24) that, as ω2 ap-
proaches ω1, χ(2)(ω1 + ω2,ω1,ω2) approaches χ(2)(2ω1,ω1,ω1).

The nonlinear susceptibilities describing the other second-order processes
are obtained in an analogous manner. For difference-frequency generation we
find that

χ(2)(ω1 − ω2,ω1,−ω2) = N(e3/ε0m
2)a

D(ω1 − ω2)D(ω1)D(−ω2)

= ε2
0ma

N2e3
χ(1)(ω1 − ω2)χ

(1)(ω1)χ
(1)(−ω2),

(1.4.26)
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and for optical rectification we find that

χ(2)(0,ω1,−ω1) = N(e3/m2)a

ε0D(0)D(ω1)D(−ω1)

= ε2
0ma

N2e3
χ(1)(0)χ(1)(ω1)χ

(1)(−ω1). (1.4.27)

The analysis just presented shows that the lowest-order nonlinear contri-
bution to the polarization of a noncentrosymmetric material is second order
in the applied field strength. This analysis can readily be extended to include
higher-order effects. The solution to Eq. (1.4.7c), for example, leads to a third-
order or χ(3) susceptibility, and more generally terms proportional to λn in the
expansion described by Eq. (1.4.6) lead to a χ(n) susceptibility.

1.4.2. Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson,
1966) can be understood in terms of the calculation just presented. Miller
noted that the quantity

χ(2)(ω1 + ω2, ω1, ω2)

χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2)
(1.4.28)

is nearly constant for all noncentrosymmetric crystals. By comparison with
Eq. (1.4.25), we see this quantity will be constant only if the combination

maε2
0

N2e3
(1.4.29)

is nearly constant. In fact, the atomic number density N is nearly the same
(∼1022 cm−3) for all condensed matter, and the parameters m and e are fun-
damental constants. We can estimate the size of the nonlinear coefficient a by
noting that the linear and nonlinear contributions to the restoring force given
by Eq. (1.4.2) would be expected to become comparable when the displace-
ment x̃ of the electron from its equilibrium position is approximately equal to
the size of the atom. This distance is of the order of the separation between
atoms—that is, of the lattice constant d . This reasoning leads to the order-of-
magnitude estimate that mω2

0d = mad2 or that

a = ω2
0

d
. (1.4.30)

Since ω0 and d are roughly the same for most solids, the quantity a would
also be expected to be roughly the same for all materials where it does not
vanish by reasons of symmetry.
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We can also make use of the estimate of the nonlinear coefficient a given
by Eq. (1.4.30) to estimate of the size of the second-order susceptibility under
highly nonresonant conditions. If we replace D(ω) by ω2

0 in the denominator
of Eq. (1.4.24), set N equal to 1/d3, and set a equal to ω2

0/d , we find that χ(2)

is given approximately by

χ(2) = e3

ε0m2ω4
0d

4
. (1.4.31)

Using the values ω0 = 1 × 1016 rad/s, d = 3 Å, e = 1.6 × 10−19 C, and
m = 9.1 × 10−31 kg, we find that

χ(2) � 6.9 × 10−12 m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3
(see p. 50).

1.4.3. Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic
restoring force is given not by Eq. (1.4.2) but rather by

F̃restoring = −mω2
0x̃ + mbx̃3, (1.4.33)

where b is a parameter that characterizes the strength of the nonlinearity. This
restoring force corresponds to the potential energy function

U(x̃) = −
∫

F̃restoringdx̃ = 1

2
mω2

0x̃
2 − 1

4
mbx̃4. (1.4.34)

This potential function is illustrated in the Fig. 1.4.2 (for the usual case in
which b is positive) and is seen to be symmetric under the operation x̃ → −x̃,
which it must be for a medium that possesses a center of inversion symmetry.
Note that −mbx̃4/4 is simply the lowest-order correction term to the parabolic
potential well described by the term 1

2mω2
0x̃

2. We assume that the electronic
displacement x̃ never becomes so large that it is necessary to include higher-
order terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from
the restoring force of Eq. (1.4.33) is a third-order contribution to the polar-
ization, which can be described by a χ(3) susceptibility. As in the case of
non-centrosymmetric media, the tensor properties of this susceptibility can-
not be specified unless the internal symmetries of the medium are completely
known. One of the most important cases is that of a material that is isotropic
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FIGURE 1.4.2 Potential energy function for a centrosymmetric medium.

(as well as being centrosymmetric). Examples of such materials are glasses
and liquids. In such a case, we can take the restoring force to have the form

F̃restoring = −mω2
0 r̃ + mb(r̃ · r̃)r̃. (1.4.35)

The second contribution to the restoring force must have the form shown be-
cause it is the only form that is third-order in the displacement r̃ and is di-
rected in the r̃ direction, which is the only possible direction for an isotropic
medium.

The equation of motion for the electron displacement from equilibrium is
thus

¨̃r + 2γ ˙̃r + ω2
0 r̃ − b(r̃ · r̃)r̃ = −eẼ(t)/m. (1.4.36)

We assume that the applied field is given by

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + E3e
−iω3t + c.c.; (1.4.37)

we allow the field to have three distinct frequency components because this is
the most general possibility for a third-order interaction. However, the algebra
becomes very tedious if all three terms are written explicitly, and hence we
express the applied field as

Ẽ(t) =
∑
n

E(ωn)e
−iωnt . (1.4.38)

The method of solution is analogous to that used above for a noncentrosym-
metric medium. We replace Ẽ(t) in Eq. (1.4.36) by λẼ(t), where λ is a pa-
rameter that characterizes the strength of the perturbation and that is set equal
to unity at the end of the calculation. We seek a solution to Eq. (1.4.36) having
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the form of a power series in the parameter λ:

r̃(t) = λr̃(1)(t) + λ2r̃(2)(t) + λ3r̃(3)(t) + · · · . (1.4.39)

We insert Eq. (1.4.39) into Eq. (1.4.36) and require that the terms proportional
to λn vanish separately for each value of n. We thereby find that

¨̃r(1) + 2γ ˙̃r(1) + ω2
0 r̃(1) = −eẼ(t)/m, (1.4.40a)

¨̃r(2) + 2γ ˙̃r(2) + ω2
0 r̃(2) = 0, (1.4.40b)

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃(3) − b

(
r̃(1) · r̃(1)

)
r̃(1) = 0 (1.4.40c)

for n = 1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector ver-
sion of Eq. (1.4.7a), encountered above. Its steady-state solution is

r̃(1)(t) =
∑
n

r(1)(ωn)e
−iωnt , (1.4.41a)

where

r(1)(ωn) = −eE(ωn)/m

D(ωn)
(1.4.41b)

with D(ωn) given as above by D(ωn) = ω2
0 − ω2

n − 2iωnγ . Since the polar-
ization at frequency ωn is given by

P(1)(ωn) = −Ner(1)(ωn), (1.4.42)

we can describe the Cartesian components of the polarization through the
relation

P
(1)
i (ωn) = ε0

∑
j

χ
(1)
ij (ωn)Ej (ωn). (1.4.43a)

Here the linear susceptibility is given by

χ
(1)
ij (ωn) = χ(1)(ωn)δij (1.4.43b)

with χ(1)(ωn) given as in Eq. (1.4.17) by

χ(1)(ωn) = Ne2/m

ε0D(ωn)
(1.4.43c)

and where δij is the Kronecker delta, which is defined such that δij = 1 for
i = j and δij = 0 for i 
= j .

The second-order response of the system is described by Eq. (1.4.40b).
Since this equation is damped but not driven, its steady-state solution
vanishes, that is,

r̃(2) = 0. (1.4.44)
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To calculate the third-order response, we substitute the expression for
r̃(1)(t) given by Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

¨̃r(3) + 2γ ˙̃r(3) + ω2
0 r̃(3) = −

∑
mnp

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)

× e−i(ωm+ωn+ωp)t . (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equa-
tion contains many different frequencies. We denote one of these frequencies
by ωq = ωm + ωn + ωp . The solution to Eq. (1.4.45) can then be written in
the form

r̃(3)(t) =
∑
q

r(3)(ωq)e−iωq t . (1.4.46)

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r(3)(ωq) is given by

(−ω2
q − iωq2γ + ω2

0

)
r(3)(ωq) = −

∑
(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωm)D(ωn)D(ωp)
,

(1.4.47)

where the summation is to be carried out over frequencies ωm, ωn, and ωp

with the restriction that ωm +ωn +ωp must equal ωq . Since the coefficient of
r(3)(ωq) on the left-hand side is just D(ωq), we obtain

r(3)(ωq) = −
∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.48)

The amplitude of the polarization component oscillating at frequency ωq then
is given in terms of this amplitude by

P(3)(ωq) = −Ner(3)(ωq). (1.4.49)

We next recall the definition of the third-order nonlinear susceptibility
Eq. (1.3.20),

P
(3)
i (ωq) = ε0

∑
jkl

∑
(mnp)

χ
(3)
ijkl(ωq,ωm,ωn,ωp)Ej (ωm)Ek(ωn)El(ωp).

(1.4.50)

Since this equation contains a summation over the dummy variables m, n,
and p, there is more than one possible choice for the expression for the nonlin-
ear susceptibility. An obvious choice for this expression for the susceptibility,
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based on the way in which Eqs. (1.4.48) and (1.4.49) are written, is

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4δjkδil

ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.51)

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear sus-
ceptibility, it does not explicitly show the full symmetry of the interaction
in terms of the arbitrariness of which field we call Ej(ωm), which we call
Ek(ωn), and which we call El(ωp). It is conventional to define nonlinear
susceptibilities in a manner that displays this symmetry, which is known as
intrinsic permutation symmetry. Since there are six possible permutations of
the orders in which Ej(ωm), Ek(ωn), and El(ωp) may be taken, we define
the third-order susceptibility to be one-sixth of the sum of the six expressions
analogous to Eq. (1.4.51) with the input fields taken in all possible orders.
When we carry out this prescription, we find that only three distinct contribu-
tions occur and that the resulting form for the nonlinear susceptibility is given
by

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = Nbe4[δij δkl + δikδjl + δilδjk]

3ε0m3D(ωq)D(ωm)D(ωn)D(ωp)
. (1.4.52)

This expression can be rewritten in terms of the linear susceptibilities at the
four different frequencies ωq,ωm,ωn, and ωp by using Eq. (1.4.43c) to elim-
inate the resonance denominator factors D(ω). We thereby obtain

χ
(3)
ijkl(ωq,ωm,ωn,ωp) = bmε3

0

3N3e4

[
χ(1)(ωq)χ(1)(ωm)χ(1)(ωn)χ

(1)(ωp)
]

× [δij δkl + δikδjl + δilδjk]. (1.4.53)

We can estimate the value of the phenomenological constant b that appears
in this result by means of an argument analogous to that used above (see
Eq. (1.4.30)) to estimate the value of the constant a that appears in the ex-
pression for χ(2). We assume that the linear and nonlinear contributions to the
restoring force given by Eq. (1.4.33) will become comparable in magnitude
when the displacement x̃ becomes comparable to the atomic dimension d , that
is, when mω2

0d = mbd3, which implies that

b = ω2
0

d2
. (1.4.54)

Using this expression for b, we can now estimate the value of the nonlinear
susceptibility. For the case of nonresonant excitation, D(ω) is approximately
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equal to ω2
0, and hence from Eq. (1.4.52) we obtain

χ(3) � Nbe4

ε0m3ω8
0

= e4

ε0m3ω6
0d

5
. (1.4.55)

Taking d = 3 Å and ω0 = 7 × 1015 rad/sec, we obtain

χ(3) � 344 pm2/V2 (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear suscepti-
bility of many materials.

1.5. Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the non-
linear susceptibility. Let us first see why it is important that we understand
these symmetry properties. We consider the mutual interaction of three waves
of frequencies ω1, ω2, and ω3 = ω1 + ω2, as illustrated in Fig. 1.5.1. A com-
plete description of the interaction of these waves requires that we know the
nonlinear polarizations P(ωi) influencing each of them. Since these quantities
are given in general (see also Eq. (1.3.12)) by the expression

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

χ
(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm), (1.5.1)

we therefore need to determine the six tensors

χ
(2)
ijk (ω1,ω3,−ω2), χ

(2)
ijk (ω1,−ω2,ω3), χ

(2)
ijk (ω2,ω3,−ω1),

χ
(2)
ijk (ω2,−ω1,ω3), χ

(2)
ijk (ω3,ω1,ω2), and χ

(2)
ijk (ω3,ω2,ω1)

and six additional tensors in which each frequency is replaced by its negative.
In these expressions, the indices i, j , and k can independently take on the
values x, y, and z. Since each of these 12 tensors thus consists of 27 Cartesian
components, as many as 324 different (complex) numbers need to be specified
in order to describe the interaction.

FIGURE 1.5.1 Optical waves of frequencies ω1, ω2, and ω3 = ω1 + ω2 interact in a
lossless second-order nonlinear optical medium.
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Fortunately, there are a number of restrictions resulting from symmetries
that relate the various components of χ(2), and hence far fewer than 324 num-
bers are usually needed to describe the nonlinear coupling. In this section, we
study some of these formal properties of the nonlinear susceptibility. The dis-
cussion will deal primarily with the second-order χ(2) susceptibility, but can
readily be extended to χ(3) and higher-order susceptibilities.

1.5.1. Reality of the Fields

Recall that the nonlinear polarization describing the sum-frequency response
to input fields at frequencies ωn and ωm has been represented as

P̃i(r, t) = Pi(ωn + ωm)e−i(ωn+ωm)t + Pi(−ωn − ωm)ei(ωn+ωm)t . (1.5.2)

Since P̃i(r, t) is a physically measurable quantity, it must be purely real, and
hence its positive- and negative-frequency components must be related by

Pi(−ωn − ωm) = Pi(ωn + ωm)∗. (1.5.3)

The electric field must also be a real quantity, and its complex frequency com-
ponents must obey the analogous conditions:

Ej(−ωn) = Ej(ωn)
∗, (1.5.4a)

Ek(−ωm) = Ek(ωm)∗. (1.5.4b)

Since the fields and polarization are related to each other through the second-
order susceptibility of Eq. (1.5.1), we conclude that the positive- and negative-
frequency components of the susceptibility must be related according to

χ
(2)
ijk (−ωn − ωm,−ωn,−ωm) = χ

(2)
ijk (ωn + ωm,ωn,ωm)∗. (1.5.5)

1.5.2. Intrinsic Permutation Symmetry

Earlier we introduced the concept of intrinsic permutation symmetry when we
rewrote the expression (1.4.51) for the nonlinear susceptibility of a classical,
anharmonic oscillator in the conventional form of Eq. (1.4.52). In the present
section, we treat the concept of intrinsic permutation symmetry from a more
general point of view.

According to Eq. (1.5.1), one of the contributions to the nonlinear polar-
ization Pi(ωn + ωm) is the product χ

(2)
ijk (ωn + ωm,ωn,ωm)Ej (ωn)Ek(ωm).

However, since j , k, n, and m are dummy indices, we could just as well have
written this contribution with n interchanged with m and with j interchanged



1.5. Properties of the Nonlinear Susceptibility 35

with k, that is, as χ
(2)
ikj (ωn + ωm,ωm,ωn)Ek(ωm)Ej (ωn). These two expres-

sions are numerically equal if we require that the nonlinear susceptibility be
unchanged by the simultaneous interchange of its last two frequency argu-
ments and its last two Cartesian indices:

χ
(2)
ijk (ωn + ωm,ωn,ωm) = χ

(2)
ikj (ωn + ωm,ωm,ωn). (1.5.6)

This property is known as intrinsic permutation symmetry. More physically,
this condition is simply a statement that it cannot matter which is the first field
and which is the second field in products such as Ej(ωn)Ek(ωm).

Note that this symmetry condition is introduced purely as a matter of conve-
nience. For example, we could set one member of the pair of elements shown
in Eq. (1.5.6) equal to zero and double the value of the other member. Then,
when the double summation of Eq. (1.5.1) was carried out, the result for the
physically meaningful quantity Pj (ωn + ωm) would be left unchanged.

This symmetry condition can also be derived from a more general point
of view using the concept of the nonlinear response function (Butcher, 1965;
Flytzanis, 1975).

1.5.3. Symmetries for Lossless Media

Two additional symmetries of the nonlinear susceptibility tensor occur for the
case of a lossless nonlinear medium.

The first of these conditions states that for a lossless medium all of the com-
ponents of χ

(2)
ijk (ωn +ωm,ωn,ωm) are real. This result is obeyed for the classi-

cal anharmonic oscillator described in Section 1.4, as can be verified by evalu-
ating the expression for χ(2) in the limit in which all of the applied frequencies
and their sums and differences are significantly different from the resonance
frequency. The general proof that χ(2) is real for a lossless medium is ob-
tained by verifying that the quantum-mechanical expression for χ(2) (which
is derived in Chapter 3) is also purely real in this limit.

The second of these new symmetries is full permutation symmetry. This
condition states that all of the frequency arguments of the nonlinear suscep-
tibility can be freely interchanged, as long as the corresponding Cartesian
indices are interchanged simultaneously. In permuting the frequency argu-
ments, it must be recalled that the first argument is always the sum of the
latter two, and thus that the signs of the frequencies must be inverted when
the first frequency is interchanged with either of the latter two. Full permuta-
tion symmetry implies, for instance, that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(−ω1 = ω2 − ω3). (1.5.7)
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However, according to Eq. (1.5.5), the right-hand side of this equation is equal
to χ

(2)
jki(ω1 = −ω2 + ω3)

∗, which, due to the reality of χ(2) for a lossless

medium, is equal to χ
(2)
jki(ω1 = −ω2 + ω3). We hence conclude that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3). (1.5.8)

By an analogous procedure, one can show that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
kij (ω2 = ω3 − ω1). (1.5.9)

A general proof of the validity of the condition of full permutation symme-
try entails verifying that the quantum-mechanical expression for χ(2) (which
is derived in Chapter 3) obeys this condition when all of the optical frequen-
cies are detuned many linewidths from the resonance frequencies of the op-
tical medium. Full permutation symmetry can also be deduced from a con-
sideration of the field energy density within a nonlinear medium, as shown
below.

1.5.4. Field Energy Density for a Nonlinear Medium

The condition that the nonlinear susceptibility must possess full permutation
symmetry for a lossless medium can be deduced from a consideration of the
form of the electromagnetic field energy within a nonlinear medium. For the
case of a linear medium, the energy density associated with the electric field

Ẽi(t) =
∑
n

Ei(ωn)e
−iωnt (1.5.10)

is given according to Poynting’s theorem as

U = 1

2

〈
D̃ · Ẽ

〉 = 1

2

∑
i

〈
D̃iẼi

〉
, (1.5.11)

where the angular brackets denote a time average. Since the displacement
vector is given by

D̃i(t) = ε0

∑
j

εij Ẽj (t) = ε0

∑
j

∑
n

εij (ωn)Ej (ωn)e
−iωnt , (1.5.12)

where the dielectric tensor is given by

εij (ωn) = δij + χ
(1)
ij (ωn), (1.5.13)
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we can write the energy density as

U = ε0

2

∑
i

∑
n

E∗
i (ωn)Ei(ωn) + ε0

2

∑
ij

∑
n

E∗
i (ωn)χ

(1)
ij (ωn)Ej (ωn).

(1.5.14)

Here the first term represents the energy density associated with the electric
field in vacuum and the second term represents the energy stored in the polar-
ization of the medium.

For the case of a nonlinear medium, the expression for the electric field
energy density (Armstrong et al., 1962; Kleinman, 1962; Pershan, 1963) as-
sociated with the polarization of the medium takes the more general form

U = ε0

2

∑
ij

∑
n

χ
(1)
ij (ωn)E

∗
i (ωn)Ej (ωn)

+ ε0

3

∑
ijk

∑
mn

χ
(2)′
ijk (−ωn − ωm,ωm,ωn)E

∗
i (ωm + ωn)Ej (ωm)Ek(ωn)

+ ε0

4

∑
ijkl

∑
mno

χ
(3)′
ijkl(−ωo − ωn − ωm,ωm,ωn,ωo) (1.5.15)

× E∗
i (ωm + ωn + ωo)Ej (ωm)Ek(ωn)El(ωo) + · · · .

For the present, the quantities χ(2)′ , χ(3)′ , . . . are to be thought of simply
as coefficients in the power series expansion of U in the amplitudes of the
applied field; later these quantities will be related to the nonlinear susceptibil-
ities. Since the order in which the fields are multiplied together in determining
U is immaterial, the quantities χ(n)′ clearly possess full permutation symme-
try, that is, their frequency arguments can be freely permuted as long as the
corresponding indices are also permuted.

In order to relate the expression (1.5.15) for the energy density to the non-
linear polarization, and subsequently to the nonlinear susceptibility, we use
the result that the polarization of a medium is given (Landau and Lifshitz,
1960; Pershan, 1963) by the expression

Pi(ωn) = ∂U

∂E∗
i (ωn)

. (1.5.16)

Thus, by differentiation of Eq. (1.5.15), we obtain an expression for the linear
polarization as

P
(1)
i (ωm) = ε0

∑
j

χ
(1)
ij (ωm)Ej (ωm), (1.5.17a)
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and for the nonlinear polarization as∗

P
(2)
i (ωm + ωn) = ε0

∑
jk

∑
(mn)

χ
(2)′
ijk (−ωm − ωn,ωm,ωn)Ej (ωm)Ek(ωn)

(1.5.17b)

P
(3)
i (ωm + ωn + ωo) = ε0

∑
jkl

∑
(mno)

χ
(3)′
ijkl(−ωm − ωn − ωo,ωm,ωn,ωo)

× Ej(ωm)Ek(ωn)El(ωo). (1.5.17c)

We note that these last two expressions are identical to Eqs. (1.3.12) and
(1.3.20), which define the nonlinear susceptibilities (except for the unimpor-
tant fact that the quantities χ(n) and χ(n)′ use opposite conventions regarding
the sign of the first frequency argument). Since the quantities χ(n)′ possess
full permutation symmetry, we conclude that the susceptibilities χ(n) do also.
Note that this demonstration is valid only for the case of a lossless medium,
because only in this case is the internal energy a function of state.

1.5.5. Kleinman’s Symmetry

Quite often nonlinear optical interactions involve optical waves whose fre-
quencies ωi are much smaller than the lowest resonance frequency of the
material system. Under these conditions, the nonlinear susceptibility is es-
sentially independent of frequency. For example, the expression (1.4.24) for
the second-order susceptibility of an anharmonic oscillator predicts a value of
the susceptibility that is essentially independent of the frequencies of the ap-
plied waves whenever these frequencies are much smaller than the resonance
frequency ω0. Furthermore, under conditions of low-frequency excitation the
system responds essentially instantaneously to the applied field, and we have
seen in Section 1.2 that under such conditions the nonlinear polarization can
be described in the time domain by the relation

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.18)

where χ(2) can be taken to be a constant.
Since the medium is necessarily lossless whenever the applied field fre-

quencies ωi are very much smaller than the resonance frequency ω0, the con-
dition of full permutation symmetry (1.5.7) must be valid under these circum-
stances. This condition states that the indices can be permuted as long as the

∗ In performing the differentiation, the prefactors 1
2 , 1

3 , 1
4 , . . . of Eq. (1.5.15) disappear because 2,

3, 4, . . . equivalent terms appear as the result of the summations over the frequency arguments.
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frequencies are permuted simultaneously, and it leads to the conclusion that

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω1 = −ω2 + ω3) = χ

(2)
kij (ω2 = ω3 − ω1)

= χ
(2)
ikj (ω3 = ω2 + ω1) = χ

(2)
kj i (ω2 = −ω1 + ω3)

= χ
(2)
j ik(ω1 = ω3 − ω2).

However, under the present conditions χ(2) does not actually depend on the
frequencies, and we can therefore permute the indices without permuting the
frequencies, leading to the result

χ
(2)
ijk (ω3 = ω1 + ω2) = χ

(2)
jki(ω3 = ω1 + ω2) = χ

(2)
kij (ω3 = ω1 + ω2)

= χ
(2)
ikj (ω3 = ω1 +ω2) = χ

(2)
j ik(ω3 = ω1 +ω2)

= χ
(2)
kj i (ω3 = ω1 + ω2). (1.5.19)

This result is known as the Kleinman symmetry condition. It is valid whenever
dispersion of the susceptibility can be neglected.

1.5.6. Contracted Notation

We now introduce a notational device that is often used when the Kleinman
symmetry condition is valid. We introduce the tensor

dijk = 1

2
χ

(2)
ijk (1.5.20)

and for simplicity suppress the frequency arguments. The factor of 1
2 is a

consequence of historical convention. The nonlinear polarization can then be
written as

Pi(ωn + ωm) = ε0

∑
jk

∑
(nm)

2dijkEj (ωn)Ek(ωm). (1.5.21)

We now assume that dijk is symmetric in its last two indices. This assumption
is valid whenever Kleinman’s symmetry condition is valid and in addition is
valid in general for second-harmonic generation, since in this case ωn and ωm

are equal. We then simplify the notation by introducing a contracted matrix
dil according to the prescription

jk: 11 22 33 23,32 31,13 12,21
l: 1 2 3 4 5 6

(1.5.22)
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The nonlinear susceptibility tensor can then be represented as the 3×6 matrix

dil =
⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦ . (1.5.23)

If we now explicitly introduce the Kleinman symmetry condition—that is, we
assert that the indices dijk can be freely permuted, we find that not all of the
18 elements of dil are independent. For instance, we see that

d12 ≡ d122 = d212 ≡ d26 (1.5.24a)

and that

d14 ≡ d123 = d213 ≡ d25. (1.5.24b)

By applying this type of argument systematically, we find that dil has only 10
independent elements when the Kleinman symmetry condition is valid; the
form of dil under these conditions is

dil =
⎡
⎣d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

⎤
⎦ . (1.5.25)

We can describe the nonlinear polarization leading to second-harmonic gen-
eration in terms of dil by the matrix equation

⎡
⎣Px(2ω)

Py(2ω)

Pz(2ω)

⎤
⎦ = 2ε0

⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)

2Ex(ω)Ez(ω)

2Ex(ω)Ey(ω)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(1.5.26)

When the Kleinman symmetry condition is valid, we can describe the nonlin-
ear polarization leading to sum-frequency generation (with ω3 = ω1 + ω2) by
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the equation⎡
⎣Px(ω3)

Py(ω3)

Pz(ω3)

⎤
⎦ = 4ε0

⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

Ex(ω1)Ex(ω2)

Ey(ω1)Ey(ω2)

Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)

Ex(ω1)Ez(ω2) + Ez(ω1)Ex(ω2)

Ex(ω1)Ey(ω2) + Ey(ω1)Ex(ω2)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.5.27)

As described above in relation to Eq. (1.3.16), the extra factor of 2 comes
from the summation over n and m in Eq. (1.5.21).

1.5.7. Effective Value of d (deff )

For a fixed geometry (i.e., for fixed propagation and polarization directions) it
is possible to express the nonlinear polarization giving rise to sum-frequency
generation by means of the scalar relationship

P(ω3) = 4ε0deffE(ω1)E(ω2), (1.5.28)

and analogously for second-harmonic generation by

P(2ω) = 2ε0deffE(ω)2, (1.5.29)

where

E(ω) = ∣∣E(ω)
∣∣ and P(ω) = ∣∣P(ω)

∣∣.
In each case, deff is obtained by first determining P explicitly through use of
Eq. (1.5.26) or (1.5.27).

A general prescription for calculating deff for each of the crystal classes
has been presented by Midwinter and Warner (1965); see also Table 3.1 of
Zernike and Midwinter (1973). They show, for example, that for a negative
uniaxial crystal of crystal class 3m the effective value of d is given by the
expression

deff = d31 sin θ − d22 cos θ sin 3φ (1.5.30a)

under conditions (known as type I conditions) such that the two lower-
frequency waves have the same polarization, and by

deff = d22 cos2 θ cos 3φ (1.5.30b)
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under conditions (known as type II conditions) such that the polarizations are
orthogonal. In these equations, θ is the angle between the propagation vector
and the crystalline z axis (the optic axis), and φ is the azimuthal angle between
the propagation vector and the xz crystalline plane.

1.5.8. Spatial Symmetry of the Nonlinear Medium

The forms of the linear and nonlinear susceptibility tensors are constrained by
the symmetry properties of the optical medium. To see why this should be so,
let us consider a crystal for which the x and y directions are equivalent but
for which the z direction is different. By saying that the x and y directions are
equivalent, we mean that if the crystal were rotated by 90 degrees about the
z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would
expect that the optical response would be the same for an applied optical field
polarized in either the x or the y direction, and thus, for example, that the
second-order susceptibility components χ

(2)
zxx and χ

(2)
zyy would be equal.

For any particular crystal, the form of the linear and nonlinear optical sus-
ceptibilities can be determined by considering the consequences of all of the
symmetry properties for that particular crystal. For this reason, it is necessary
to determine what types of symmetry properties can occur in a crystalline
medium. By means of the mathematical method known as group theory, crys-
tallographers have found that all crystals can be classified as belonging to one
of 32 possible crystal classes depending on what is called the point group
symmetry of the crystal. The details of this classification scheme lie outside
of the subject matter of the present text.∗ However, by way of examples, a
crystal is said to belong to point group 4 if it possesses only a fourfold axis
of symmetry, to point group 3 if it possesses only a threefold axis of sym-
metry, and to belong to point group 3m if it possesses a threefold axis of
symmetry and in addition a plane of mirror symmetry perpendicular to this
axis.

1.5.9. Influence of Spatial Symmetry on the Linear Optical
Properties of a Material Medium

As an illustration of the consequences of spatial symmetry on the optical
properties of a material system, let us first consider the restrictions that this

∗ The reader who is interested in the details should consult Buerger (1963) or any of the other
books on group theory and crystal symmetry listed in the bibliography at the end of this chapter.
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symmetry imposes on the form of the linear susceptibility tensor χ(1). The
results of a group theoretical analysis shows that five different cases are pos-
sible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crys-
tal system to which the material belongs. By convention, crystals are cate-
gorized in terms of seven possible crystal systems on the basis of the form
of the crystal lattice. (Table 1.5.2 on p. 47 gives the correspondence be-
tween crystal system and each of the 32 point groups.) For completeness,
isotropic materials (such as liquids and gases) are also included in Table
1.5.1. We see from this table that cubic and isotropic materials are isotropic
in their linear optical properties, because χ(1) is diagonal with equal diag-
onal components. All of the other crystal systems are anisotropic in their
linear optical properties (in the sense that the polarization P need not be
parallel to the applied electric field E) and consequently display the prop-
erty of birefringence. Tetragonal, trigonal, and hexagonal crystals are said
to be uniaxial crystals because there is one particular direction (the z axis)
for which the linear optical properties display rotational symmetry. Crystals
of the triclinic, monoclinic, and orthorhombic systems are said to be biax-
ial.

TABLE 1.5.1 Form of the linear susceptibility tensor χ() as determined by the
symmetry properties of the optical medium, for each of the seven crystal classes
and for isotropic materials. Each nonvanishing element is denoted by its cartesian
indices

Triclinic

⎡
⎢⎣

xx xy xz

yx yy yz

zx zy zz

⎤
⎥⎦

Monoclinic

⎡
⎢⎣

xx 0 xz

0 yy 0
zx 0 zz

⎤
⎥⎦

Orthorhombic

⎡
⎢⎣

xx 0 0
0 yy 0
0 0 zz

⎤
⎥⎦

Tetragonal
Trigonal
Hexagonal

⎡
⎢⎣

xx 0 0
0 xx 0
0 0 zz

⎤
⎥⎦

Cubic
Isotropic

⎡
⎢⎣

xx 0 0
0 xx 0
0 0 xx

⎤
⎥⎦
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1.5.10. Influence of Inversion Symmetry on the Second-Order
Nonlinear Response

One of the symmetry properties that some but not all crystals possess is cen-
trosymmetry, also known as inversion symmetry. For a material system that is
centrosymmetric (i.e., possesses a center of inversion) the χ(2) nonlinear sus-
ceptibility must vanish identically. Since 11 of the 32 crystal classes possess
inversion symmetry, this rule is very powerful, as it immediately eliminates
all crystals belonging to these classes from consideration for second-order
nonlinear optical interactions.

Although the result that χ(2) vanishes for a centrosymmetric medium is
general in nature, we shall demonstrate this fact only for the special case of
second-harmonic generation in a medium that responds instantaneously to the
applied optical field. We assume that the nonlinear polarization is given by

P̃ (t) = ε0χ
(2)Ẽ2(t), (1.5.31)

where the applied field is given by

Ẽ(t) = E cosωt. (1.5.32)

If we now change the sign of the applied electric field Ẽ(t), the sign of the
induced polarization P̃ (t) must also change, because we have assumed that
the medium possesses inversion symmetry. Hence the relation (1.5.31) must
be replaced by

−P̃ (t) = ε0χ
(2)

[−Ẽ(t)
]2

, (1.5.33)

which shows that

−P̃ (t) = ε0χ
(2)Ẽ2(t). (1.5.34)

By comparison of this result with Eq. (1.5.31), we see that P̃ (t) must equal
−P̃ (t), which can occur only if P̃ (t) vanishes identically. This result shows
that

χ(2) = 0. (1.5.35)

This result can be understood intuitively by considering the motion of an
electron in a nonparabolic potential well. Because of the nonlinearity of the
associated restoring force, the atomic response will show significant harmonic
distortion. Part (a) of Fig. 1.5.2 shows the waveform of the incident mono-
chromatic electromagnetic wave of frequency ω. For the case of a medium
with linear response (part (b)), there is no distortion of the waveform asso-
ciated with the polarization of the medium. Part (c) shows the induced po-
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FIGURE 1.5.2 Waveforms associated with the atomic response.

larization for the case of a nonlinear medium that possesses a center of sym-
metry and whose potential energy function has the form shown in Fig. 1.4.2.
Although significant waveform distortion is evident, only odd harmonics of
the fundamental frequency are present. For the case (part (d)) of a nonlinear,
noncentrosymmetric medium having a potential energy function of the form
shown in Fig. 1.4.1, both even and odd harmonics are present in the wave-
form associated with the atomic response. Note also the qualitative difference
between the waveforms shown in parts (c) and (d). For the centrosymmet-
ric medium (part (c)), the time-averaged response is zero, whereas for the
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noncentrosymmetric medium (part (d)) the time-average response is nonzero,
because the medium responds differently to an electric field pointing, say, in
the upward direction than to one pointing downward.∗

1.5.11. Influence of Spatial Symmetry on the Second-Order
Susceptibility

We have just seen how inversion symmetry when present requires that the
second-order vanish identically. Any additional symmetry property of a non-
linear optical medium can impose additional restrictions on the form of the
nonlinear susceptibility tensor. By explicit consideration of the symmetries
of each of the 32 crystal classes, one can determine the allowed form of the
susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed origi-
nally by Butcher (1965), are presented in Table 1.5.2. Under those conditions
(described following Eq. (1.5.21)) where the second-order susceptibility can
be described using contracted notation, the results presented in Table 1.5.2
can usefully be displayed graphically. These results, as adapted from Zernike
and Midwinter (1973), are presented in Fig. 1.5.3. Note that the influence of
Kleinman symmetry is also described in the figure. As an example of how to
use the table, the diagram for a crystal of class 3m is meant to imply that the
form of the dil matrix is

dil =
⎡
⎣ 0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0
d31 d31 d33 0 0 0

⎤
⎦

The second-order nonlinear optical susceptibilities of a number of crystals
are summarized in Table 1.5.3. This table should be used only with some cau-
tion. There is considerable spread in the values of the nonlinear coefficients
quoted in the literature, both because of the wavelength dependence of the
nonlinear susceptibility and because of measurement inaccuracies. A detailed
analysis of the measurement of nonlinear coefficients has been presented by
Shoji et al. (1997). The references cited in the footnote to the table provide
more detailed tabulations of nonlinear coefficients.

∗ Parts (a) and (b) of Fig. 1.5.2 are plots of the function sinωt , part (c) is a plot of the function

sinωt − 0.25 sin 3ωt , and part (d) is a plot of −0.2 + sinωt + 0.2 cos 2ωt .
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TABLE 1.5.2 Form of the second-order susceptibility tensor for each of the 32
crystal classes. Each element is denoted by its Cartesian indices

Crystal System Crystal Class Nonvanishing Tensor Elements

Triclinic 1 = C1 All elements are independent and nonzero
1̄ = S2 Each element vanishes

Monoclinic 2 = C2 xyz, xzy, xxy, xyx, yxx, yyy, yzz, yzx, yxz, zyz,

zzy, zxy, zyx (twofold axis parallel to ŷ)
m = C1h xxx, xyy, xzz, xzx, xxz, yyz, yzy, yxy, yyx, zxx,

zyy, zzz, zzx, zxz (mirror plane perpendicular to ŷ)
2/m = C2h Each element vanishes

Orthorhombic 222 = D2 xyz, xzy, yzx, yxz, zxy, zyx

mm2 = C2v xzx, xxz, yyz, yzy, zxx, zyy, zzz

mmm = D2h Each element vanishes

Tetragonal 4 = C4 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,

zxx = zyy, zzz, zxy = −zyx

4̄ = S4 xyz = yxz, xzy = yzx, xzx = −yzy, xxz = −yyz,

zxx = −zyy, zxy = zyx

422 = D4 xyz = −yxz, xzy = −yzx, zxy = −zyx

4mm = C4v xzx = yzy, xxz = yyz, zxx = zyy, zzz

4̄2m = D2d xyz = yxz, xzy = yzx, zxy = zyx

4/m = C4h Each element vanishes
4/mmm = D4h Each element vanishes

Cubic 432 = O xyz = −xzy = yzx = −yxz = zxy = −zyx

4̄3m = Td xyz = xzy = yzx = yxz = zxy = zyx

23 = T xyz = yzx = zxy, xzy = yxz = zyx

m3 = Th, m3m = Oh Each element vanishes

Trigonal 3 = C3 xxx = −xyy = −yyz = −yxy, xyz = −yxz, xzy = −yzx,

xzx = yzy, xxz = yyz, yyy = −yxx = −xxy = −xyx,

zxx = zyy, zzz, zxy = −zyx

32 = D3 xxx = −xyy = −yyx = −yxy, xyz = −yxz,

xzy = −yzx, zxy = −zyx

3m = C3v xzx = yzy, xxz = yyz, zxx = zyy, zzz, yyy = −yxx =
−xxy = −xyx (mirror plane perpendicular to x̂)

3̄ = S6, 3̄m = D3d Each element vanishes

Hexagonal 6 = C6 xyz = −yxz, xzy = −yzx, xzx = yzy, xxz = yyz,

zxx = zyy, zzz, zxy = −zyx

6̄ = C3h xxx = −xyy = −yxy = −yyx,

yyy = −yxx = −xyx = −xxy

622 = D6 xyz = −yxz, xzy = −yxz, zxy = −zyx

6mm = C6v xzx = yzy, xxz = yyz, zxx = zyy, zzz

6̄m2 = D3h yyy = −yxx = −xxy = −xyx

6/m = C6h Each element vanishes
6/mmm = D6h Each element vanishes
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1.5.12. Number of Independent Elements of χ
(2)
ijk (ω3, ω2, ω1)

We remarked in relation to Eq. (1.5.1) that as many as 324 complex numbers
must be specified in order to describe the general interaction of three optical
waves. In practice, this number is often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are
independent (see Eq. (1.5.5)). Furthermore, the intrinsic permutation symme-
try of χ(2) (Eq. (1.5.6)) shows that there are only 81 independent parameters.

FIGURE 1.5.3 Form of the dil matrix for the 21 crystal classes that lack inversion
symmetry. Small dot: zero coefficient; large dot: nonzero coefficient; square: coeffi-
cient that is zero when Kleinman’s symmetry condition is valid; connected symbols:
numerically equal coefficients, but the open-symbol coefficient is opposite in sign
to the closed symbol to which it is joined. Dashed connections are valid only under
Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)
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FIGURE 1.5.3 (continued)

For a lossless medium, all elements of χ(2) are real and the condition of full
permutation symmetry is valid, implying that only 27 of these numbers are in-
dependent. For second-harmonic generation, contracted notation can be used,
and only 18 independent elements exist. When Kleinman’s symmetry is valid,
only 10 of these elements are independent. Furthermore, any crystalline sym-
metries of the nonlinear material can reduce this number further.

1.5.13. Distinction between Noncentrosymmetric and
Cubic Crystal Classes

It is worth noting that a material can possess a cubic lattice and yet be non-
centrosymmetric. In fact, gallium arsenide is an example of a material with
just these properties. Gallium arsenide crystallizes in what is known as the
zincblende structure (named after the well-known mineral form of zinc sul-
fide), which has crystal point group 4̄3m. As can be seen from Table 1.5.2
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TABLE 1.5.3 Second-order nonlinear optical susceptibilities for several crystals

Material Point Group dil (pm/V)

Ag3AsS3 3m = C3v d22 = 18
(proustite) d15 = 11

AgGaSe2 4̄2m = D2d d36 = 33

AgSbS3 3m = C3v d15 = 8
(pyrargyrite) d22 = 9

beta-BaB2O4 (BBO) 3m = C3v d22 = 2.2
(beta barium borate)

CdGeAs2 4̄2m = D2d d36 = 235

CdS 6mm = C6v d33 = 78
d31 = −40

GaAs 4̄3m d36 = 370

KH2PO4 2m d36 = 0.43
(KDP)

KD2PO4 2m d36 = 0.42
(KD*P)

LiIO3 6 = C6 d15 = −5.5
d31 = −7

LiNbO3 3m = C3v d32 = −30
d31 = −5.9

Quartz 32 = D3 d11 = 0.3
d14 = 0.008

Notes: Values are obtained from a variety of sources. Some of the more complete tabulations are
those of R.L. Sutherland (1996), that of A.V. Smith, and the data sheets of Cleveland Crystals, Inc.

To convert to the gaussian system, multiply each entry by (3×10−8)/4π = 2.386×10−9 to obtain
d in esu units of cm/statvolt.

In any system of units, χ(2) = 2d by convention.

or from Fig. 1.5.3, materials of the 4̄3m crystal class possess a nonvanish-
ing second-order nonlinear optical response. In fact, as can be seen from
Table 1.5.3, gallium arsenide has an unusually large second-order nonlinear
susceptibility. However, as the zincblende crystal structure possesses a cu-
bic lattice, gallium arsenide does not display birefringence. We shall see in
Chapter 2 that it is necessary that a material possess adequate birefringence
in order that the phase matching condition of nonlinear optics be satisfied.
Because gallium arsenide does not possess birefringence, it cannot normally
participate in phase-matched second-order interactions.
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FIGURE 1.5.4 Illustration of (a) the diamond structure and (b) the zincblende struc-
ture. Both possess a cubic lattice and thus cannot display birefringence, but the car-
bon structure is centrosymmetric, whereas the zincblende structure is noncentrosym-
metric.

It is perhaps surprising that a material can possess the highly regular
spatial arrangement of atoms characteristic of the cubic lattice and yet be
noncentrosymmetric. This distinction can be appreciated by examination of
Fig. 1.5.4, which shows both the diamond structure (point group m3m) and
the zincblende structure (point group 4̄3m). One sees that the crystal lattice
is the same in the two cases, but that the arrangement of atoms within the
lattice allows carbon but not zincblende to possess a center of inversion sym-
metry. In detail, a point of inversion symmetry for the diamond structure is
located midway between any two nearest-neighbor carbon atoms. This sym-
metry does not occur in the zincblende structure because the nearest neighbors
are of different species.

1.5.14. Distinction between Noncentrosymmetric and Polar
Crystal Classes

As noted above, of the 32 crystal point groups, only 21 are noncentrosymmet-
ric and consequently can possess a nonzero second-order susceptibility χ(2).
A more restrictive condition is that certain crystal possess a permanent dipole
moment. Crystals of this sort are known as polar crystals, or as ferroelectric
crystals.∗ This property has important technological consequences, because
crystals of this sort can display the pyroelectric effect (a change of perma-
nent dipole moment with temperature, which can be used to construct optical

∗ The subtle distinctions among polar, pyroelectric, piezoelectric, and ferroelectric crystals are
described by Nye (1985, pp. 78–81).
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detectors)∗ or the photorefractive effect, which is described in greater detail
in Chapter 11. Group theoretical arguments (see, for instance, Nye, 1985)
demonstrate that the polar crystal classes are

1 2 3 4 6
m mm2 3m 4mm 6mm

Clearly, all polar crystal classes are noncentrosymmetric, but not all noncen-
trosymmetric crystal classes are polar. This distinction can be seen straightfor-
wardly by means of an example from molecular physics. Consider a molecule
with tetrahedral symmetry such as CCl4. In this molecule the four chlorine
ions are arranged on the vertices of a regular tetrahedron, which is centered
on the carbon ion. Clearly this arrangement cannot possess a permanent dipole
moment, but this structure is nonetheless noncentrosymmetric.

1.5.15. Influence of Spatial Symmetry on the Third-Order
Nonlinear Response

The spatial symmetry of the nonlinear optical medium also restricts the form
of the third-order nonlinear optical susceptibility. The allowed form of the sus-
ceptibility has been calculated by Butcher (1965) and has been summarized
by Hellwarth (1977); a minor correction to these results was later pointed out
by Shang and Hsu (1987). These results are presented in Table 1.5.4. Note that
for the important special case of an isotropic optical material, the results pre-
sented in Table 1.5.4 agree with the result derived explicitly in the discussion
of the nonlinear refractive index in Section 4.2.

1.6. Time-Domain Description of Optical Nonlinearities

In the preceding sections, we described optical nonlinearities in terms of the
response of an optical material to one or more essentially monochromatic
applied fields. We found that the induced nonlinear polarization consists of
a discrete summation of frequency components at the harmonics of and the
sums and differences of the frequencies present in the applied field. In partic-
ular, we described the nonlinear response in the frequency domain by relating
the frequency components P(ω) of the nonlinear polarization to those of the
applied optical field, E(ω′).

It is also possible to describe optical nonlinearities directly in the time do-
main by considering the polarization P̃ (t) that is produced by some arbitrary

∗ The operation of pyroelectric detectors is described, for instance, in Section 13.3 of Boyd (1983).
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TABLE 1.5.4 Form of the third-order susceptibility tensor χ(3) for each of the
crystal classes and for isotropic materials. Each element is denoted by its Carte-
sian indices
Isotropic

There are 21 nonzero elements, of which only 3 are independent. They are:

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx,

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx,

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy;
and

xxxx = yyyy = zzzz = xxyy + xyxy + xyyx.

Cubic

For the two classes 23 and m3, there are 21 nonzero elements, of which only 7 are independent.
They are:

xxxx = yyyy = zzzz,

yyzz = zzxx = xxyy,

zzyy = xxzz = yyxx,

yzyz = zxzx = xyxy,

zyzy = xzxz = yxyx,

yzzy = zxxz = xyyx,

zyyz = xzzx = yxxy.

For the three classes 432, 4̄3m, and m3m, there are 21 nonzero elements, of which only 4 are indepen-
dent. They are:

xxxx = yyyy = zzzz,

yyzz = zzyy = zzxx = xxzz = xxyy = yyxx,

yzyz = zyzy = zxzx = xzxz = xyxy = yxyx,

yzzy = zyyz = zxxz = xzzx = xyyx = yxxy.

Hexagonal

For the three classes 6, 6̄, and 6/m, there are 41 nonzero elements, of which only 19 are independent.
They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎪⎨
⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,

zzyy = zzxx, zzxy = −zzyx,

zyyz = zxxz, zxyz = −zyxz,

yzzy = xzzx, xzzy = −yzzx,

yzyz = xzxz, xzyz = −yzxz,

zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

⎧⎨
⎩

yyxy = −xxyx,

yxyy = −xyxx,

xyyy = −yxxx.

(continued)



54 1 ♦ The Nonlinear Optical Susceptibility

TABLE 1.5.4 (continued)

For the four classes 622, 6mm, 6/mmm, and 6̄m2, there are 21 nonzero elements, of which only 10
are independent. They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎪⎨
⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz,

zzyy = zzxx,

zyyz = zxxz,

yzzy = xzzx,

yzyz = xzxz,

zyzy = zxzx.

Trigonal

For the two classes 3 and 3̄, there are 73 nonzero elements, of which only 27 are independent. They
are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎪⎨
⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,

yyzz = xxzz, xyzz = −yxzz,

zzyy = zzxx, zzxy = −zzyx,

zyyz = zxxz, zxyz = −zyxz,

yzzy = xzzx, xzzy = −yzzx,

yzyz = xzxz, xzyz = −yzxz,

zyzy = zxzx, zxzy = −zyzx,

xxxy = −yyyx = yyxy + yxyy + xyyy,

⎧⎪⎨
⎪⎩

yyxy = −xxyx,

yxyy = −xyxx,

xyyy = −yxxx.

yyyz = −yxxz = −xyxz = −xxyz,

yyzy = −yxzx = −xyzx = −xxzy,

yzyy = −yzxx = −xzyx = −xzxy,

zyyy = −zyxx = −zxyx = −zxxy,

xxxz = −xyyz = −yxyz = −yyxz,

xxzx = −xyzy = −yxzy = −yyzx,

xzxx = −yzxy = −yzyx = −xzyy,

zxxx = −zxyy = −zyxy = −zyyx.

For the three classes 3m, 3̄m, and 32, there are 37 nonzero elements, of which only 14 are independent.
They are:

zzzz,

xxxx = yyyy = xxyy + xyyx + xyxy,

⎧⎪⎨
⎪⎩

xxyy = yyxx,

xyyx = yxxy,

xyxy = yxyx,
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TABLE 1.5.4 (continued)

yyzz = xxzz, xxxz = −xyyz = −yxyz = −yyxz,

zzyy = zzxx, xxzx = −xyzy = −yxzy = −yyzx,

zyyz = zxxz, xzxx = −xzyy = −yzxy = −yzyx,

yzzy = xzzx, zxxx = −zxyy = −zyxy = −zyyx,

yzyz = xzxz,

zyzy = zxzx.

Tetragonal

For the three classes 4, 4̄, and 4/m, there are 41 nonzero elements, of which only 21 are independent.
They are:

xxxx = yyyy, zzzz,

zzxx = zzyy, xyzz = −yxzz, xxyy = yyxx, xxxy = −yyyx,

xxzz = zzyy, zzxy = −zzyx, xyxy = yxyx, xxyx = −yyxy,

zxzx = zyzy, xzyz = −yzxz, xyyx = yxxy, xyxx = −yxyy,

xzxz = yzyz, zxzy = −zyzx, yxxx = −xyyy,

zxxz = zyyz, zxyz = −zyxz,

xzzx = yzzy, xzzy = −yzzx.

For the four classes 422, 4mm, 4/mmm, and 4̄2m, there are 21 nonzero elements, of which only 11
are independent. They are:

xxxx = yyyy, zzzz,

yyzz = xxzz, yzzy = xzzx xxyy = yyxx,

zzyy = zzxx, yzyz = xzxz xyxy = yxyx,

zyyz = zxxz, zyzy = zxzx xyyx = yxxy.

Monoclinic

For the three classes 2, m, and 2/m, there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal,
18 elements with indices equal in pairs,
12 elements with indices having two y’s one x, and one z,

4 elements with indices having three x’s and one z,

4 elements with indices having three z’s and one x.

Orthorhombic

For all three classes, 222, mm2, and mmm, there are 21 independent nonzero elements, consisting of:

3 elements with indices all equal,
18 elements with indices equal in pairs.

Triclinic

For both classes, 1 and 1̄, there are 81 independent nonzero elements.

applied field Ẽ(t). These two methods of description are entirely equivalent,
although description in the time domain is more convenient for certain types
of problems, such as those involving applied fields in the form of short pulses;
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conversely, description in the frequency domain is more convenient when each
input field is nearly monochromatic.

Let us first consider the special case of a material that displays a purely
linear response. We can describe the polarization induced in such a material
by

P̃ (1)(t) = ε0

∫ ∞

0
R(1)(τ )Ẽ(t − τ ) dτ. (1.6.1)

Here R(1)(τ ) is the linear response function, which gives the contribution to
the polarization produced at time t by an electric field applied at the earlier
time t −τ . The total polarization is obtained by integrating these contributions
over all previous times τ . In writing Eq. (1.6.1) as shown, with the lower limit
of integration set equal to zero and not to −∞, we have assumed that R(1)(τ )

obeys the causality condition R(1)(τ ) = 0 for τ < 0. This condition expresses
the fact that P̃ (1)(t) depends only on past and not on future values of Ẽ(t).

Equation (1.6.1) can be transformed to the frequency domain by introduc-
ing the Fourier transforms of the various quantities that appear in this equa-
tion. We adopt the following definition of the Fourier transform:

E(ω) =
∫ ∞

−∞
Ẽ(t)eiωt dt (1.6.2a)

Ẽ(t) = 1

2π

∫ ∞

−∞
E(ω)e−iωt dω (1.6.2b)

with analogous definitions for other quantities. By introducing Eq. (1.6.2b)
into Eq. (1.6.1), we obtain

P̃ (1)(t) = ε0

∫ ∞

0
dτ

∫ ∞

−∞
dω

2π
R(1)(τ )E(ω)e−iω(t−τ)

= ε0

∫ ∞

−∞
dω

2π

∫ ∞

0
dτR(1)(τ )eiωτE(ω)e−iωt (1.6.3)

or

P̃ (1)(t) = ε0

∫ ∞

−∞
dω

2π
χ(1)(ω;ω)E(ω)e−iωt , (1.6.4)

where we have introduced an explicit expression for the linear susceptibility

χ(1)(ω;ω) =
∫ ∞

0
dτ R(1)(τ )eiωτ . (1.6.5)

Equation (1.6.4) gives the time-varying polarization in terms of the frequency
components of the applied field and the frequency dependent susceptibility.
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By replacing the left-hand side of this equation with
∫

P (1)(ω) exp(−iωt) dω/

2π and noting that the equality must be maintained for each frequency ω, we
recover the usual frequency domain description of linear response:

P (1)(ω) = ε0χ
(1)(ω;ω)E(ω). (1.6.6)

The nonlinear response can be described by analogous procedures. The
contribution to the polarization second-order in the applied field strength is
represented as

P̃ (2)(t) = ε0

∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)E(t − τ1)E(t − τ2), (1.6.7)

where the causality condition requires that R(2)(τ1, τ2) = 0 if either τ1 or τ2

is negative. As above, we write E(t − τ1) and E(t − τ2) in terms of their
Fourier transforms using Eq. (1.6.2b) so that the expression for the second-
order polarization becomes

P̃ (2)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

0
dτ1

∫ ∞

0
dτ2R

(2)(τ1, τ2)

× E(ω1)e
−iω1(t−τ1)E(ω2)e

−iω2(t−τ2)

= ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π
χ(2)(ωσ ;ω1,ω2)E(ω1)E(ω2)e

−iωσ t ,

(1.6.8)

where we have defined ωσ = ω1 + ω2 and have introduced the second-order
susceptibility

χ(2)(ωσ ;ω1,ω2) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 R(2)(τ1, τ2)e

i(ω1τ1+ω2τ2). (1.6.9)

This procedure can readily be generalized to higher-order susceptibilities. In
particular, we can express the third-order polarization as

P̃ (3)(t) = ε0

∫ ∞

−∞
dω1

2π

∫ ∞

−∞
dω2

2π

∫ ∞

−∞
dω3

2π
χ(3)(ωσ ;ω1,ω2,ω3)

× E(ω1)E(ω2)E(ω3)e
−iωσ t , (1.6.10)
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where ωσ = ω1 + ω2 + ω3 and where

χ(3)(ωσ ;ω1,ω2,ω3) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

0
dτ3

× R(3)(τ1, τ2, τ3) ei(ω1τ1+ω2τ2+ω3τ3).

(1.6.11)

1.7. Kramers–Kronig Relations in Linear and Nonlinear Optics

Kramers–Kronig relations are often encountered in linear optics. These con-
ditions relate the real and imaginary parts of frequency-dependent quantities
such as the linear susceptibility. They are useful because, for instance, they al-
low one to determine the real part of the susceptibility at some particular fre-
quency from a knowledge of the frequency dependence of the imaginary part
of the susceptibility. Since it is often easier to measure an absorption spec-
trum than to measure the frequency dependence of the refractive index, this
result is of considerable practical importance. In this section, we review the
derivation of the Kramers–Kronig relations as they are usually formulated for
a system with linear response, and then show how Kramers–Kronig relations
can be formulated to apply to some (but not all) nonlinear optical interactions.

1.7.1. Kramers–Kronig Relations in Linear Optics

We saw in the previous section that the linear susceptibility can be represented
as

χ(1)(ω) ≡ χ(1)(ω;ω) =
∫ ∞

0
R(1)(τ )eiωτ dτ, (1.7.1)

where the lower limit of integration has been set equal to zero to reflect the
fact that R(1)(τ ) obeys the causality condition R(1)(τ ) = 0 for τ < 0. Note
also (e.g., from Eq. (1.6.1)) that R(1)(τ ) is necessarily real, since it relates
two inherently real quantities P̃ (t) and Ẽ(t). We thus deduce immediately
from Eq. (1.7.1) that

χ(1)(−ω) = χ(1)(ω)∗. (1.7.2)

Let us examine some of the other mathematical properties of the linear sus-
ceptibility. In doing so, it is useful, as a purely mathematical artifact, to treat
the frequency ω as a complex quantity ω = Re ω + i Im ω. An important
mathematical property of χ(ω) is the fact that it is analytic (i.e., single-valued
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and possessing continuous derivatives) in the upper half of the complex plane,
that is, for Im ω ≥ 0. In order to demonstrate that χ(ω) is analytic in the up-
per half plane, it is adequate to show that the integral in Eq. (1.7.1) converges
everywhere in that region. We first note that the integrand in Eq. (1.7.1) is of
the form R(1)(τ ) exp[i(Re ω)τ ] exp[−(Im ω)τ ], and since R(1)(τ ) is every-
where finite, the presence of the factor exp[−(Im ω)τ ] is adequate to ensure
convergence of the integral for Im ω > 0. For Im ω = 0 (that is, along the
real axis) the integral can be shown to converge, either from a mathematical
argument based on the fact the R(1)(τ ) must be square integrable or from the
physical statement that χ(ω) for ω real is a physically measurable quantity
and hence must be finite.

To establish the Kramers–Kronig relations, we next consider the integral

Int =
∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.3)

We adopt the convention that in expressions such as (1.7.3) we are to take the
Cauchy principal value of the integral—that is,

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
≡ lim

δ→0

[∫ ω−δ

−∞
χ(1)(ω′) dω′

ω′ − ω
+

∫ ∞

ω+δ

χ(1)(ω′) dω′

ω′ − ω

]
.

(1.7.4)

We evaluate expression (1.7.3) using the techniques of contour integration,
noting that the desired integral is given by Int = Int(A) − Int(B) − Int(C)

where Int(A), Int(B), and Int(C) are the path integrals of χ(1)(ω′)/(ω′ − ω)

over the paths shown in Fig. 1.7.1. Since χ(1)(ω′) is analytic in the upper half
plane, the only singularity of the integrand χ(ω′)/(ω′ − ω) in the upper half-
plane is a simple pole along the real axis at ω′ = ω. We thus find that Int(A) =
0 by Cauchy’s theorem since its closed path of integration contains no poles.
Furthermore, Int(B) = 0 since the integration path increases as |ω′|, whereas
for large |ω′| the integrand scales as χ(ω′)/|ω′|, and thus the product will tend
toward zero so long as χ(ω′) approaches zero for sufficiently large ω′. Finally,
by the residue theorem Int(C) = −πiχ(ω). By introducing these values into
Eq. (1.7.3), we obtain the result

χ(1)(ω) = −i

π

∫ ∞

−∞
χ(1)(ω′) dω′

ω′ − ω
. (1.7.5)

By separating χ(1)(ω) into its real and imaginary parts as χ(1)(ω) =
Reχ(1)(ω) + i Imχ(1)(ω), we obtain one form of the Kramers–Kronig re-
lations:
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FIGURE 1.7.1 Diagrams used in the contour integration of Eq. (1.7.3). (a) shows
the complex ω′ plane, (b) shows the desired path of integration, and (c), (d), and (e)
show paths over which the integral can be evaluated using the techniques of contour
integration. In performing the integration the limits r1 → ∞ and r2 → 0 are taken.

Reχ(1)(ω) = 1

π

∫ ∞

−∞
Imχ(1)(ω′) dω′

ω′ − ω
, (1.7.6a)

Imχ(1)(ω) = − 1

π

∫ ∞

−∞
Reχ(1)(ω′) dω′

ω′ − ω
. (1.7.6b)

These integrals show how the real part of χ(1) can be deduced from a knowl-
edge of the frequency dependence of the imaginary part of χ(1), and vice
versa. Since it is usually easier to measure absorption spectra than the fre-
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quency dependence of the refractive index, it can be quite useful to make use
of Eq. (1.7.6a) as a means of predicting the frequency dependence of the real
part of χ(1).

The Kramers–Kronig relations can be rewritten to involve integration over
only (physically meaningful) positive frequencies. From Eq. (1.7.2), we see
that

Reχ(1)(−ω) = Reχ(1)(ω), Imχ(1)(−ω) = − Imχ(1)(ω). (1.7.7)

We can thus rewrite Eq. (1.7.6b) as follows:

Imχ(1)(ω) = − 1

π

∫ 0

−∞
Reχ(1)(ω′) dω′

ω′ − ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω

= 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ + ω
− 1

π

∫ ∞

0

Reχ(1)(ω′) dω′

ω′ − ω

(1.7.8)

and hence

Imχ(1)(ω) = −2ω

π

∫ ∞

0

Reχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9a)

We similarly find that

Reχ(1)(ω) = 2

π

∫ ∞

0

ω′ Imχ(1)(ω′)
ω′2 − ω2

dω′. (1.7.9b)

1.7.2. Kramers–Kronig Relations in Nonlinear Optics

Relations analogous to the usual Kramers–Kronig relations for the linear re-
sponse can be deduced for some but not all nonlinear optical interactions. Let
us first consider a nonlinear susceptibility of the form χ(3)(ωσ ;ω1,ω2,ω3)

with ωσ = ω1 + ω2 + ω3 and with ω1,ω2, and ω3 all positive and distinct.
Such a susceptibility obeys a Kramers–Kronig relation in each of the three
input frequencies, for example,

χ(3)(ωσ ;ω1,ω2,ω3) = 1

iπ

∫ ∞

−∞
χ(3)(ω′

σ ;ω1,ω
′
2,ω3)

ω′
2 − ω2

dω′
2, (1.7.10)

where ω′
σ = ω1 + ω′

2 + ω3. Similar results hold for integrals involving ω′
1

and ω′
3. The proof of this result proceeds in a manner strictly analogous to that

of the linear Kramers–Kronig relation. In particular, we note from Eq. (1.6.11)
that χ(3)(ωσ ;ω1,ω2,ω3) is the Fourier transform of a causal response func-
tion, and hence χ(3)(ωσ ;ω1,ω2,ω3) considered as a function of its three
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independent variables ω1,ω2, and ω3, is analytic in the region Imω1 ≥ 0,
Imω2 ≥ 0, and Imω3 ≥ 0. We can then perform the integration indicated on
the right-hand side of Eq. (1.7.10) as a contour integration closed in the up-
per part of the complex ω2 plane, and obtain the indicated result. In fact, it
is not at all surprising that a Kramers–Kronig-like relation should exist for
the present situation; the expression χ(3)(ωσ ;ω1,ω2,ω3)E(ω1)E(ω2)E(ω3)

is linear in the field E(ω2) and the physical system is causal, and thus the rea-
soning leading to the usual linear Kramers–Kronig relation is directly relevant
to the present situation.

Note that in Eq. (1.7.10) all but one of the input frequencies are held fixed.
Kramers–Kronig relations can also be formulated under more general circum-
stances. It can be shown (see, for instance, Section 6.2 of Hutchings et al.,
1992) by means of a somewhat intricate argument that

χ(n)(ωσ ;ω1 + p1ω,ω2 + p2ω, . . . ,ωn + pnω)

= 1

iπ

∫ ∞

−∞
χ(n)(ω′

σ ;ω1 + p1ω
′,ω2 + p2ω

′, . . . ,ωn + pnω
′)

ω′ − ω
dω′

(1.7.11)

where pi ≥ 0 for all i and where at least one pi must be nonzero. Among the
many special cases included in Eq. (1.7.11) are those involving the suscepti-
bility for second-harmonic generation

χ(2)(2ω;ω,ω) = 1

iπ

∫ ∞

−∞
χ(2)(2ω′;ω′,ω′)

ω′ − ω
dω′ (1.7.12)

and for third-harmonic generation

χ(3)(3ω;ω,ω,ω) = 1

iπ

∫ ∞

−∞
χ(3)(3ω′;ω′,ω′,ω′)

ω′ − ω
dω′. (1.7.13)

Kramers–Kronig relations can also be formulated for the change in refrac-
tive index induced by an auxiliary beam, which is described by a susceptibility
of the sort χ(3)(ω;ω,ω1,−ω1). In particular, one can show (Hutchings et al.,
1992) that

χ(3)(ω;ω,ω1,−ω1) = 1

iπ

∫ ∞

−∞
χ(3)(ω′;ω′,ω1,−ω1) dω′

ω′ − ω
. (1.7.14)

Probably the most important process for which it is not possible to
form a Kramers–Kronig relation is for the self-induced change in re-
fractive index, that is, for processes described by the nonlinear suscepti-
bility χ(3)(ω;ω,ω,−ω). Note that this susceptibility is not of the form
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of Eq. (1.7.10) or of (1.7.11), because the first two applied frequencies are
equal and because the third frequency is negative. Moreover, one can show
by explicit calculation (see the problems at the end of this chapter) that for
specific model systems the real and imaginary parts of χ(3) are not related in
the proper manner to satisfy the Kramers–Kronig relations.

To summarize the results of this section, we have seen that Kramers–Kronig
relations, which are always valid in linear optics, are valid for some but not
all nonlinear optical processes.

Problems

1. Conversion from Gaussian to SI units. For proustite χ
(2)
yyy has the value

1.3×10−7 cm/statvolt in Gaussian units. What is its value in MKS units?
[Ans: 5.4 × 10−11 m/V.]

2. Numerical estimate of nonlinear optical quantities. A laser beam of fre-
quency ω carrying 1 W of power is focused to a spot size of 30-μm di-
ameter in a crystal having a refractive index of n = 2 and a second-order
susceptibility of χ(2) = 4 × 10−11 m/V. Calculate numerically the ampli-
tude P(2ω) of the component of the nonlinear polarization oscillating at
frequency 2ω. Estimate numerically the amplitude of the dipole moment
per atom μ(2ω) oscillating at frequency 2ω. Compare this value with the
atomic unit of dipole moment (ea0, where a0 is the Bohr radius) and with
the linear response of the atom, that is, with the component μ(ω) of the
dipole moment oscillating at frequency ω. We shall see in the next chapter
that, under the conditions stated above, nearly all of the incident power
can be converted to the second harmonic for a 1-cm-long crystal.

[Ans: P(2ω) = 4.7×10−11 C/m3. Assuming that N = 1028 atoms/m3,
μ(2ω) = 4.7 × 10−39 Cm = 5.56 × 10−10ea0, where ea0 = 8.5 ×
10−30 Cm. By comparison, P(ω) = 9.7 × 10−6 C/m3 and μ(ω) =
9.7 × 10−34 Cm = 1.14 × 10−4ea0, which shows that μ(2ω)/μ(ω) =
4.9 × 10−6.]

3. Perturbation expansion. Explain why it is unnecessary to include the term
λ0x̃(0) in the power series of Eq. (1.4.6).

4. Tensor properties of the anharmonic oscillator model. Starting from
Eq. (1.4.52), relevant to a collection of isotropic, centrosymmetric, an-
harmonic oscillators, show that the nonlinear susceptibility possesses the
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following tensor properties:

χ1122 = χ1212 = χ1221 = χ1133 = χ1313 = χ1331 = χ2233 = χ2323

= χ2332 = χ2211 = χ2121 = χ2112 = χ3311 = χ3131 = χ3113

= χ3322 = χ3232 = χ3223 = 1
3χ1111 = 1

3χ2222 = 1
3χ3333,

with all other elements vanishing. Give a simple physical argument that
explains why the vanishing elements do vanish. Also, give a simple phys-
ical argument that explains why χijhl possesses off-diagonal tensor com-
ponents, even though the medium is isotropic.

5. Comparison of the centrosymmetric and noncentrosymmetric models. For
the noncentrosymmetric anharmonic oscillator described by Eq. (1.4.1),
derive an expression for the third-order displacement x̃(3) and conse-
quently for the third-order susceptibility χ

(3)
1111(ωq,ωm,ωn,ωp). Com-

pare this result to that given by Eq. (1.4.52) for a purely centrosymmetric
medium. Note that for a noncentrosymmetric medium both of these con-
tributions can be present. Estimate the size of each of these contributions
to see which is larger.

6. Determination of deff. Verify Eqs. (1.5.30a) and (1.5.30b).
7. Formal properties of the third-order response. Section 1.5 contains a de-

scription of some of the formal mathematical properties of the second-
order susceptibility. For the present problem, you are to determine the
analogous symmetry properties of the third-order susceptibility χ(3). In
your response, be sure to include the equations analogous to Eqs. (1.5.1),
(1.5.2), (1.5.5), (1.5.6), (1.5.8), (1.5.9), and (1.5.19).

8. Consequences of crystalline symmetry. Through explicit consideration of
the symmetry properties of each of the 32 point groups, verify the results
presented in Tables 1.5.2 and 1.5.4 and in Fig. 1.5.3.

[Notes: This problem is lengthy and requires a more detailed knowl-
edge of group theory and crystal symmetry than that presented in this
text. For a list of recommended readings on these subjects, see the refer-
ence list to the present chapter. For a discussion of this problem, see also
Butcher (1965).]

9. Subtlety regarding crystal class 432. According to Table 1.5.2, χ(2) pos-
sesses nonvanishing tensor elements for crystal class 432, but according
to Fig. 1.5.3 dil for this crystal class vanishes identically. Justify these two
statements by taking explicit account of the additional constraints that are
implicit in the definition of the dil matrix.

10. Kramers–Kronig relations. Show by explicit calculation that the linear
susceptibility of an optical transition modeled in the two-level approx-
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imation obeys the Kramers–Kronig relations, but that neither the total
susceptibility χ nor the third-order susceptibility χ(3) obeys these rela-
tions. Explain this result by finding the location of the poles of χ and
of χ(3).

[Hints: χ(1) and χ(3) are given by Eqs. (6.3.33) and χ is given by
Eq. (6.3.23).]

11. Kramers–Kronig relations. For the classical anharmonic oscillator model
of Eq. (1.4.20) show by explicit calculation that χ(2)(2ω;ω,ω) obeys
the Kramers–Kronig relations in the form (1.7.12). Show also that
χ(2)(ω1;ω3,−ω2) does not satisfy Kramers–Kronig relations.

12. Example of the third-order response. The third-order polarization in-
cludes a term oscillating at the fundamental frequency and given by

P (3)(ω) = 3ε0χ
(3)

∣∣E(ω)
∣∣2

E(ω).

Assume that the field at frequency ω includes two contributions that prop-
agate in the directions given by wave vectors k1 and k2. Assume also that
the second contribution is sufficiently weak that it can be treated linearly.
Calculate the nonlinear polarization at the fundamental frequency and
give the physical interpretation of its different terms.
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Chapter 2

Wave-Equation Description of
Nonlinear Optical Interactions

2.1. The Wave Equation for Nonlinear Optical Media

We have seen in the last chapter how nonlinearity in the response of a material
system to an intense laser field can cause the polarization of the medium to
develop new frequency components not present in the incident radiation field.
These new frequency components of the polarization act as sources of new
frequency components of the electromagnetic field. In the present chapter,
we examine how Maxwell’s equations describe the generation of these new
components of the field, and more generally we see how the various frequency
components of the field become coupled by the nonlinear interaction.

Before developing the mathematical theory of these effects, we shall give
a simple physical picture of how these frequency components are generated.
For definiteness, we consider the case of sum-frequency generation as shown
in part (a) of Fig. 2.1.1, where the input fields are at frequencies ω1 and ω2.
Because of nonlinearities in the atomic response, each atom develops an os-
cillating dipole moment which contains a component at frequency ω1 + ω2.
An isolated atom would radiate at this frequency in the form of a dipole ra-
diation pattern, as shown symbolically in part (b) of the figure. However, any
material sample contains an enormous number N of atomic dipoles, each os-
cillating with a phase that is determined by the phases of the incident fields.
If the relative phasing of these dipoles is correct, the field radiated by each
dipole will add constructively in the forward direction, leading to radiation in
the form of a well-defined beam, as illustrated in part (c) of the figure. The
system will act as a phased array of dipoles when a certain condition, known
as the phase-matching condition (see Eq. (2.2.14) in the next section), is satis-

69
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FIGURE 2.1.1 Sum-frequency generation.

fied. Under these conditions, the electric field strength of the radiation emitted
in the forward direction will be N times larger than that due to any one atom,
and consequently the intensity will be N2 times as large.

Let us now consider the form of the wave equation for the propagation of
light through a nonlinear optical medium. We begin with Maxwell’s equa-
tions, which we write in SI units in the form∗

∇ · D̃ = ρ̃, (2.1.1)

∇ · B̃ = 0, (2.1.2)

∇ × Ẽ = −∂B̃
∂t

, (2.1.3)

∇ × H̃ = ∂D̃
∂t

+ J̃. (2.1.4)

We are primarily interested in the solution of these equations in regions of
space that contain no free charges, so that

ρ̃ = 0, (2.1.5)

∗ Throughout the text we use a tilde (˜) to denote a quantity that varies rapidly in time.
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and that contain no free currents, so that

J̃ = 0. (2.1.6)

We also assume that the material is nonmagnetic, so that

B̃ = μ0H̃. (2.1.7)

However, we allow the material to be nonlinear in the sense that the fields D̃
and Ẽ are related by

D̃ = ε0Ẽ + P̃, (2.1.8)

where in general the polarization vector P̃ depends nonlinearly upon the local
value of the electric field strength Ẽ.

We now proceed to derive the optical wave equation in the usual manner.
We take the curl of the curl-Ẽ Maxwell equation (2.1.3), interchange the order
of space and time derivatives on the right-hand side of the resulting equation,
and use Eqs. (2.1.4), (2.1.6), and (2.1.7) to replace ∇ × B̃ by μ0(∂D̃/∂t), to
obtain the equation

∇ × ∇ × Ẽ + μ0
∂2

∂t2
D̃ = 0. (2.1.9a)

We now use Eq. (2.1.8) to eliminate D̃ from this equation, and we thereby
obtain the expression

∇ × ∇ × Ẽ + 1

c2

∂2

∂t2
Ẽ = − 1

ε0c2

∂2P̃
∂t2

. (2.1.9b)

On the right-hand side of this equation we have replaced μ0 by 1/ε0c
2 for

future convenience.
This is the most general form of the wave equation in nonlinear optics.

Under certain conditions it can be simplified. For example, by using an iden-
tity from vector calculus, we can write the first term on the left-hand side of
Eq. (2.1.9b) as

∇ × ∇ × Ẽ = ∇(∇ · Ẽ
) − ∇2Ẽ. (2.1.10)

In the linear optics of isotropic source-free media, the first term on the right-
hand side of this equation vanishes because the Maxwell equation ∇ · D̃ = 0
implies that ∇ · Ẽ = 0. However, in nonlinear optics this term is generally
nonvanishing even for isotropic materials, as a consequence of the more gen-
eral relation (2.1.8) between D̃ and Ẽ. Fortunately, in nonlinear optics the first
term on the right-hand side of Eq. (2.1.10) can usually be dropped for cases of
interest. For example, if Ẽ is of the form of a transverse, infinite plane wave,
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∇ · Ẽ vanishes identically. More generally, the first term can often be shown to
be small, even when it does not vanish identically, especially when the slowly
varying amplitude approximation (see Section 2.2) is valid. For the remain-
der of this book, we shall usually assume that the contribution of ∇(∇ · Ẽ) in
Eq. (2.1.10) is negligible so that the wave equation can be taken to have the
form

∇2Ẽ − 1

c2

∂2

∂t2
Ẽ = 1

ε0c2

∂2P̃
∂t2

. (2.1.11)

Alternatively, the wave equation can be expressed as

∇2Ẽ − 1

ε0c2

∂2

∂t2
D̃ = 0 (2.1.12)

where D̃ = ε0Ẽ + P̃.
It is often convenient to split P̃ into its linear and nonlinear parts as

P̃ = P̃(1) + P̃NL. (2.1.13)

Here P̃(1) is the part of P̃ that depends linearly on the electric field strength Ẽ.
We can similarly decompose the displacement field D̃ into its linear and non-
linear parts as

D̃ = D̃(1) + P̃NL, (2.1.14a)

where the linear part is given by

D̃(1) = ε0Ẽ + P̃(1). (2.1.14b)

In terms of this quantity, the wave equation (2.1.11) can be written as

∇2Ẽ − 1

ε0c2

∂2D̃(1)

∂t2
= 1

ε0c2

∂2P̃NL

∂t2
. (2.1.15)

To see why this form of the wave equation is useful, let us first consider the
case of a lossless, dispersionless medium. We can then express the relation
between D̃(1) and Ẽ in terms of a real, frequency-independent dielectric tensor
ε(1) as

D̃(1) = ε0ε
(1) · Ẽ. (2.1.16a)

For the case of an isotropic material, this relation reduces to simply

D̃(1) = ε0ε
(1)Ẽ, (2.1.16b)

where ε(1) is a scalar quantity. Note that we are using the convention that ε0 =
8.85 × 10−12 F/m is a fundamental constant, the permittivity of free space,
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whereas ε(1) is the dimensionless, relative permittivity which is different for
each material. For this (simpler) case of an isotropic, dispersionless material,
the wave equation (2.1.15) becomes

−∇2Ẽ + ε(1)

c2

∂2Ẽ
∂t2

= − 1

ε0c2

∂2P̃NL

∂t2
. (2.1.17)

This equation has the form of a driven (i.e., inhomogeneous) wave equation;
the nonlinear response of the medium acts as a source term which appears
on the right-hand side of this equation. In the absence of this source term,
Eq. (2.1.17) admits solutions of the form of free waves propagating with
velocity c/n, where n is the (linear) index of refraction that satisfies n2 = ε(1).

For the case of a dispersive medium, we must consider each frequency com-
ponent of the field separately. We represent the electric, linear displacement,
and polarization fields as the sums of their various frequency components:

Ẽ(r, t) =
∑
n

′
Ẽn(r, t), (2.1.18a)

D̃(1)(r, t) =
∑
n

′
D̃(1)

n (r, t), (2.1.18b)

P̃NL(r, t) =
∑
n

′
P̃NL

n (r, t), (2.1.18c)

where the summation is to be performed over positive field frequencies only,
and we represent each frequency component in terms of its complex amplitude
as

Ẽn(r, t) = En(r)e−iωnt + c.c., (2.1.19a)

D̃(1)
n (r, t) = D(1)

n (r)e−iωnt + c.c., (2.1.19b)

P̃NL
n (r, t) = PNL

n (r)e−iωnt + c.c. (2.1.19c)

If dissipation can be neglected, the relationship between D̃(1)
n and Ẽn can be

expressed in terms of a real, frequency-dependent dielectric tensor accord-
ing to

D̃(1)
n (r, t) = ε0ε

(1)(ωn) · Ẽn(r, t). (2.1.20)

When Eqs. (2.1.18a) through (2.1.20) are introduced into Eq. (2.1.15), we
obtain a wave equation analogous to (2.1.17) that is valid for each frequency
component of the field:

∇2Ẽn − ε(1)(ωn)

c2

∂2Ẽn

∂t2
= 1

ε0c2

∂2P̃NL
n

∂t2
. (2.1.21)
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The general case of a dissipative medium is treated by allowing the dielec-
tric tensor to be a complex quantity that relates the complex field amplitudes
according to

D(1)
n (r) = ε0ε

(1)(ωn) · En(r). (2.1.22)

This expression, along with Eqs. (2.1.17) and (2.1.18), can be introduced into
the wave equation (2.1.15), to obtain

∇2En(r) + ω2
n

c2
ε(1)(ωn) · En(r) = − ω2

n

ε0c2
PNL

n (r). (2.1.23)

2.2. The Coupled-Wave Equations for Sum-Frequency
Generation

We next study how the nonlinear optical wave equation that we derived
in the previous section can be used to describe specific nonlinear optical
interactions. In particular, we consider sum-frequency generation in a lossless
nonlinear optical medium involving collimated, monochromatic, continuous-
wave input beams. We assume the configuration shown in Fig. 2.2.1, where
the applied waves fall onto the nonlinear medium at normal incidence. For
simplicity, we ignore double refraction effects. The treatment given here can
be generalized straightforwardly to include nonnormal incidence and double
refraction.∗

The wave equation in Eq. (2.1.21) must hold for each frequency component
of the field and in particular for the sum-frequency component at frequency
ω3. In the absence of a nonlinear source term, the solution to this equation for
a plane wave at frequency ω3 propagating in the +z direction is

Ẽ3(z, t) = A3e
i(k3z−ω3t) + c.c., (2.2.1)

FIGURE 2.2.1 Sum-frequency generation.

∗ See, for example, Shen (1984, Chapter 6).
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where∗

k3 = n3ω3

c
, n2

3 = ε(1)(ω3), (2.2.2)

and where the amplitude of the wave A3 is a constant. We expect on physical
grounds that, when the nonlinear source term is not too large, the solution to
Eq. (2.1.21) will still be of the form of Eq. (2.2.1), except that A3 will become
a slowly varying function of z. We hence adopt Eq. (2.2.1) with A3 taken to be
a function of z as the form of the trial solution to the wave equation (2.1.21)
in the presence of the nonlinear source term.

We represent the nonlinear source term appearing in Eq. (2.1.21) as

P̃3(z, t) = P3e
−iω3t + c.c., (2.2.3)

where according to Eq. (1.5.28)

P3 = 4ε0deffE1E2. (2.2.4)

We represent the applied fields (i = 1,2) as

Ẽi(z, t) = Eie
−iωi t + c.c., where Ei = Aie

ikiz. (2.2.5)

The amplitude of the nonlinear polarization can then be written as

P3 = 4ε0deffA1A2e
i(k1+k2)z ≡ p3e

i(k1+k2)z. (2.2.6)

We now substitute Eqs. (2.2.1), (2.2.3), and (2.2.6) into the wave equation
(2.1.21). Since the fields depend only on the longitudinal coordinate z, we can
replace ∇2 by d2/dz2. We then obtain

[
d2A3

dz2
+ 2ik3

dA3

dz
− k2

3A3 + ε(1)(ω3)ω
2
3A3

c2

]
ei(k3z−ω3t) + c.c.

= −4deffω
2
3

c2
A1A2e

i[(k1+k2)z−ω3t] + c.c. (2.2.7)

Since k2
3 = ε(1)(ω3)ω

2
3/c

2, the third and fourth terms on the left-hand side of
this expression cancel. Note that we can drop the complex conjugate terms
from each side and still maintain the equality. We can then cancel the factor
exp(−iω3t) on each side and write the resulting equation as

d2A3

dz2
+ 2ik3

dA3

dz
= −4deffω

2
3

c2
A1A2e

i(k1+k2−k3)z. (2.2.8)

∗ For convenience, we are working in the scalar field approximation; n3 represents the refractive
index appropriate to the state of polarization of the ω3 wave.



76 2 ♦ Wave-Equation Description of Nonlinear Optical Interactions

It is usually permissible to neglect the first term on the left-hand side of this
equation on the grounds that it is very much smaller than the second. This
approximation is known as the slowly varying amplitude approximation and
is valid whenever ∣∣∣∣d

2A3

dz2

∣∣∣∣ �
∣∣∣∣k3

dA3

dz

∣∣∣∣. (2.2.9)

This condition requires that the fractional change in A3 in a distance of the
order of an optical wavelength must be much smaller than unity. When this
approximation is made, Eq. (2.2.8) becomes

dA3

dz
= 2ideffω

2
3

k3c2
A1A2e

i�kz, (2.2.10)

where we have introduced the quantity

�k = k1 + k2 − k3, (2.2.11)

which is called the wavevector (or momentum) mismatch. Equation (2.2.10) is
known as a coupled-amplitude equation, because it shows how the amplitude
of the ω3 wave varies as a consequence of its coupling to the ω1 and ω2 waves.
In general, the spatial variation of the ω1 and ω2 waves must also be taken
into consideration, and we can derive analogous equations for the ω1 and ω2

fields by repeating the derivation given above for each of these frequencies.
We hence find two additional coupled-amplitude equations given by

dA1

dz
= 2ideffω

2
1

k1c2
A3A

∗
2e

−i�kz, (2.2.12a)

dA2

dz
= 2ideffω

2
2

k2c2
A3A

∗
1e

−i�kz. (2.2.12b)

Note that, in writing these equations in the forms shown, we have assumed
that the medium is lossless. For a lossless medium, no explicit loss terms
need be included in these equations, and furthermore we can make use of
the condition of full permutation symmetry (Eq. (1.5.8)) to conclude that the
coupling coefficient has the same value deff in each equation.

For future reference, we note that Eq. (2.2.10) can be written more generally
in terms of the slowly varying amplitude p3 of the nonlinear polarization as

dA3

dz
= iω3

2ε0n3c
p3e

i�kz, (2.2.13)
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where according to Eq. (2.2.6) p3 is given by P3 = p3 exp[i(k1 + k2)z]. Anal-
ogous equations can be written of course for the spatial variations of A1

and A2.

2.2.1. Phase-Matching Considerations

For simplicity, let us first assume that the amplitudes A1 and A2 of the input
fields can be taken as constants on the right-hand side of Eq. (2.2.10). This
assumption is valid whenever the conversion of the input fields into the sum-
frequency field is not too large. We note that, for the special case

�k = 0, (2.2.14)

the amplitude A3 of the sum-frequency wave increases linearly with z, and
consequently that its intensity increases quadratically with z. The condition
(2.2.14) is known as the condition of perfect phase matching. When this con-
dition is fulfilled, the generated wave maintains a fixed phase relation with
respect to the nonlinear polarization and is able to extract energy most ef-
ficiently from the incident waves. From a microscopic point of view, when
the condition (2.2.14) is fulfilled the individual atomic dipoles that constitute
the material system are properly phased so that the field emitted by each di-
pole adds coherently in the forward direction. The total power radiated by the
ensemble of atomic dipoles thus scales as the square of the number of atoms
that participate.

When the condition (2.2.14) is not satisfied, the intensity of the emit-
ted radiation is smaller than for the case of �k = 0. The amplitude of the
sum-frequency (ω3) field at the exit plane of the nonlinear medium is given
in this case by integrating Eq. (2.2.10) from z = 0 to z = L, yielding

A3(L) = 2ideffω
2
3A1A2

k3c2

∫ L

0
ei�kz dz = 2ideffω

2
3A1A2

k3c2

(
ei�kL − 1

i�k

)
.

(2.2.15)

The intensity of the ω3 wave is given by the magnitude of the time-averaged
Poynting vector, which for our definition of field amplitude is given by

Ii = 2niε0c|Ai |2, i = 1,2,3. (2.2.16)

We thus obtain

I3 = 8n3ε0d
2
effω

4
3|A1|2|A2|2

k2
3c3

∣∣∣∣e
i�kL − 1

�k

∣∣∣∣
2

. (2.2.17)
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The squared modulus that appears in this equation can be expressed as
∣∣∣∣e

i�kL − 1

�k

∣∣∣∣
2

= L2
(

ei�kL − 1

�kL

)(
e−i�kL − 1

�kL

)
= 2L2 (1 − cos�kL)

(�kL)2

= L2 sin2(�kL/2)

(�kL/2)2
≡ L2 sinc2(�kL/2). (2.2.18)

Finally, our expression for I3 can be written in terms of the intensities of the
incident fields by using Eq. (2.2.16) to express |Ai |2 in terms of the intensities,
yielding the result

I3 = 8d2
effω

2
3I1I2

n1n2n3ε0c2
L2 sinc2

(
�kL

2

)
. (2.2.19)

Note that the effect of wavevector mismatch is included entirely in the factor
sinc2(�kL/2). This factor, which is known as the phase mismatch factor, is
plotted in Fig. 2.2.2.

It should be noted that the efficiency of the three-wave mixing process
decreases as |�k|L increases, with some oscillations occurring. The reason
for this behavior is that if L is greater than approximately 1/�k, the output
wave can get out of phase with its driving polarization, and power can flow
from the ω3 wave back into the ω1 and ω2 waves (see Eq. (2.2.10)). For this
reason, one sometimes defines

Lcoh = 2/�k (2.2.20)

FIGURE 2.2.2 Effects of wavevector mismatch on the efficiency of sum-frequency
generation.
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to be the coherent buildup length of the interaction, so that the phase mismatch
factor in Eq. (2.2.19) can be written as

sinc2(L/Lcoh). (2.2.21)

2.3. Phase Matching

We saw in Section 2.2 that for sum-frequency generation involving undepleted
input beams, the intensity of the generated field at frequency ω3 = ω1 + ω2

varies with the wavevector mismatch

�k = k1 + k2 − k3 (2.3.1)

according to

I3 = I
(max)
3

[
sin(�kL/2)

(�kL/2)

]2

. (2.3.2)

This expression predicts a dramatic decrease in the efficiency of the sum-
frequency generation process when the condition of perfect phase matching,
�k = 0, is not satisfied.

For nonlinear mixing processes that are sufficiently efficient to lead to de-
pletion of the input beams, the functional dependence of the efficiency of the
process on the phase mismatch is no longer given by Eq. (2.3.2). However,
even in this case the efficient generation of the output field requires that the
condition �k = 0 be maintained.

Behavior of the sort predicted by Eq. (2.3.2) was first observed experimen-
tally by Maker et al. (1962) and is illustrated in Fig. 2.3.1. Their experiment
involved focusing the output of a pulsed ruby laser into a single crystal of
quartz and measuring how the intensity of the second-harmonic signal varied
as the crystal was rotated, thus varying the effective path length L through
the crystal. The wavevector mismatch �k was nonzero and approximately the
same for all orientations used in their experiment.

The phase-matching condition �k = 0 is often difficult to achieve because
the refractive index of materials that are lossless in the range ω1 to ω3 (we
assume that ω1 ≤ ω2 < ω3) shows an effect known as normal dispersion: the
refractive index is an increasing function of frequency. As a result, the condi-
tion for perfect phase matching with collinear beams,

n1ω1

c
+ n2ω2

c
= n3ω3

c
, (2.3.3)
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FIGURE 2.3.1 (a) Experimental setup of Maker et al. (1962). (b) Their experimental
results.

where

ω1 + ω2 = ω3, (2.3.4)

cannot be achieved. For the case of second-harmonic generation, with ω1 =
ω2, ω3 = 2ω1, these conditions require that

n(ω1) = n(2ω1), (2.3.5)

which is clearly not possible when n(ω) increases monotonically with ω. For
the case of sum-frequency generation, the argument is slightly more compli-
cated, but the conclusion is the same. To show that phase matching is not
possible in this case, we first rewrite Eq. (2.3.3) as

n3 = n1ω1 + n2ω2

ω3
. (2.3.6)

This result is now used to express the refractive index difference n3 − n2 as

n3 − n2 = n1ω1 + n2ω2 − n2ω3

ω3
= n1ω1 − n2(ω3 − ω2)

ω3
= n1ω1 − n2ω1

ω3
,
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or finally as

n3 − n2 = (n1 − n2)
ω1

ω3
. (2.3.7)

For normal dispersion, n3 must be greater than n2, and hence the left-hand
side of this equation must be positive. However, n2 must also be greater
than n1, showing that the right-hand side must be negative, which demon-
strates that Eq. (2.3.7) cannot possess a solution.

In principle, it is possible to achieve the phase-matching condition by mak-
ing use of anomalous dispersion, that is, the decrease in refractive index with
increasing frequency that occurs near an absorption feature. However, the
most common procedure for achieving phase matching is to make use of the
birefringence displayed by many crystals. Birefringence is the dependence of
the refractive index on the direction of polarization of the optical radiation.
Not all crystals display birefringence; in particular, crystals belonging to the
cubic crystal system are optically isotropic (i.e., show no birefringence) and
thus are not phase-matchable.

The linear optical properties of the various crystal systems are summarized
in Table 2.3.1.

In order to achieve phase matching through the use of birefringent crys-
tals, the highest-frequency wave ω3 = ω1 + ω2 is polarized in the direction
that gives it the lower of the two possible refractive indices. For the case of
a negative uniaxial crystal, as in the example shown in Fig. 2.3.2, this choice
corresponds to the extraordinary polarization. There are two choices for the
polarizations of the lower-frequency waves. Midwinter and Warner (1965) de-
fine type I phase matching to be the case in which the two lower-frequency
waves have the same polarization, and type II to be the case where the polar-
izations are orthogonal. The possibilities are summarized in Table 2.3.2. No
assumptions regarding the relative sizes of ω1 and ω2 are implied by the clas-
sification scheme. However, for type II phase matching it is easier to achieve
the phase-matching condition (i.e., less birefringence is required) if ω2 > ω1

for the choice of ω1 and ω2 used in writing the table. Also, independent of the
relative values of ω1 and ω2, type I phase matching is easier to achieve than
type II.

Careful control of the refractive indices at each of the three optical frequen-
cies is required in order to achieve the phase-matching condition (�k = 0).
Typically phase matching is accomplished by one of two methods: angle tun-
ing and temperature tuning.

Angle Tuning This method involves precise angular orientation of the crystal
with respect to the propagation direction of the incident light. It is most sim-
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TABLE 2.3.1 Linear optical classification of the various crystal systems

System Linear Optical Classification

Triclinic, monoclinic, orthorhombic Biaxial

Trigonal, tetragonal, hexagonal Uniaxial

Cubic Isotropic

FIGURE 2.3.2 Dispersion of the refractive indices of a negative uniaxial crystal. For
the opposite case of a positive uniaxial crystal, the extraordinary index ne is greater
than the ordinary index no.

TABLE 2.3.2 Phase-matching methods for uniaxial crys-
tals

Positive uniaxial Negative uniaxial
(ne > n0) (ne < n0)

Type I no
3ω3 = ne

1ω1 + ne
2ω2 ne

3ω3 = no
1ω1 + no

2ω2
Type II no

3ω3 = no
1ω1 + ne

2ω2 ne
3ω3 = ne

1ω1 + no
2ω2

ply described for the case of a uniaxial crystal, and the following discussion
is restricted to this case. Uniaxial crystals are characterized by a particular
direction known as the optic axis (or c axis or z axis). Light polarized per-
pendicular to the plane containing the propagation vector k and the optic axis
is called the ordinary polarization. Such light experiences the ordinary refrac-
tive index no. Light polarized in the plane containing k and the optic axis is
called the extraordinary polarization and experiences a refractive index ne(θ)

that depends on the angle θ between the optic axis and k according to the
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FIGURE 2.3.3 Geometry of angle-tuned phase matching of second-harmonic gener-
ation for the case of a negative uniaxial crystal.

relation∗

1

ne(θ)2
= sin2 θ

n̄2
e

+ cos2 θ

n2
o

. (2.3.8)

Here n̄e is the principal value of the extraordinary refractive index. Note that
ne(θ) is equal to the principal value n̄e for θ = 90 degrees and is equal to no

for θ = 0. Phase matching is achieved by adjusting the angle θ to obtain the
value of ne(θ) for which the condition �k = 0 is satisfied.

As an illustration of angle phase matching, we consider the case of
type I second-harmonic generation in a negative uniaxial crystal, as shown in
Fig. 2.3.3. Since ne is less than no for a negative uniaxial crystal, one chooses
the fundamental frequency to propagate as an ordinary wave and the second-
harmonic frequency to propagate as an extraordinary wave, in order that the
birefringence of the material can compensate for the dispersion. The phase-
matching condition (2.3.5) then becomes

ne(2ω,θ) = no(ω), (2.3.9)

or

sin2 θ

n̄e(2ω)2
+ cos2 θ

no(2ω)2
= 1

no(ω)2
. (2.3.10)

In order to simplify this equation, we replace cos2 θ by 1 − sin2 θ and solve
for sin2 θ to obtain

sin2 θ =
1

no(ω)2
− 1

no(2ω)2

1

n̄e(2ω)2
− 1

no(2ω)2

. (2.3.11)

This equation shows how the crystal should be oriented in order to achieve
the phase-matching condition. Note that this equation does not necessarily

∗ For a derivation of this relation, see, for example, Born and Wolf (1975, Section 14.3), Klein
(1970, Eq. (11.160a)), or Zernike and Midwinter (1973, Eq. (1.26)).
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possess a solution for a physically realizable orientation angle (that is, a real
value of the angle θ ). For example, if for some material the dispersion in
the linear refractive index is too large or the birefringence is too small, the
right-hand side of this equation can have a magnitude larger than unity and
consequently the equation will have no solution.

Temperature Tuning There is one serious drawback to the use of angle tuning.
Whenever the angle θ between the propagation direction and the optic axis
has a value other than 0 or 90 degrees, the Poynting vector S and the propaga-
tion vector k are not parallel for extraordinary rays. As a result, ordinary and
extraordinary rays with parallel propagation vectors quickly diverge from one
another as they propagate through the crystal. This walkoff effect limits the
spatial overlap of the two waves and decreases the efficiency of any nonlinear
mixing process involving such waves.

For some crystals, notably lithium niobate, the amount of birefringence is
strongly temperature-dependent. As a result, it is possible to phase-match the
mixing process by holding θ fixed at 90 degrees and varying the temperature
of the crystal. The temperature dependence of the refractive indices of lithium
niobate has been given by Hobden and Warner (1966).

2.4. Quasi-Phase-Matching

Section 2.3 describes techniques that utilize the birefringence of an optical
material to achieve the phase-matching condition of nonlinear optics. This
condition must be maintained for the efficient generation of new frequency
components in any nonlinear optical interaction. However, there are circum-
stances under which these techniques are not suitable. For instance, a particu-
lar material may possess no birefringence (an example is gallium arsenide) or
may possess insufficient birefringence to compensate for the dispersion of the
linear refractive indices over the wavelength range of interest. The problem of
insufficient birefringence becomes increasingly acute at shorter wavelengths,
because (as illustrated very schematically in Fig. 2.3.2) the refractive index of
a given material tends to increase rapidly with frequency at high frequencies,
whereas the birefringence (that is, the difference between the ordinary and
extraordinary refractive indices) tends to be more nearly constant. Another
circumstance under which birefringence phase matching cannot be used is
when a particular application requires the use of the d33 nonlinear coefficient,
which tends to be much larger than the off-diagonal coefficients. However, the
d33 nonlinear coefficient can be accessed only if all the interacting waves are
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polarized in the same direction. Under this circumstance, even if birefringence
is present it cannot be used to compensate for dispersion.

There is a technique known as quasi-phase-matching that can be used when
normal phase matching cannot be implemented. The idea of quasi-phase-
matching is illustrated in Fig. 2.4.1, which shows both a single crystal of non-
linear optical material (part (a)) and a periodically poled material (part (b)).
A periodically poled material is a structure that has been fabricated in such a
manner that the orientation of one of the crystalline axes, often the c axis of a
ferroelectric material, is inverted periodically as a function of position within
the material. An inversion in the direction of the c axis has the consequence
of inverting the sign of the nonlinear coupling coefficient deff. This periodic
alternation of the sign of deff can compensate for a nonzero wavevector mis-
match �k. The nature of this effect is illustrated in Fig. 2.4.2. Curve (a) of
this figure shows that, in a perfectly phase matched interaction in an ordinary
single-crystal nonlinear optical material, the field strength of the generated
wave grows linearly with propagation distance. In the presence of a wavevec-
tor mismatch (curve c), the field amplitude of the generated wave oscillates
with propagation distance. The nature of quasi-phase-matching is illustrated
by curve (b). Here it is assumed that the period � of the alternation of the
crystalline axis has been set equal to twice the coherent buildup length Lcoh

of the nonlinear interaction. Then, each time the field amplitude of the gener-
ated wave is about to begin to decrease as a consequence of the wavevector
mismatch, a reversal of the sign of deff occurs which allows the field amplitude
to continue to grow monotonically.

A mathematical description of quasi-phase-matching can be formulated as
follows. We let d(z) denote the spatial dependence of the nonlinear coupling
coefficient. In the example shown in part (b) of Fig. 2.4.1, d(z) is simply the

FIGURE 2.4.1 Schematic representations of a second-order nonlinear optical material
in the form of (a) a homogeneous single crystal and (b) a periodically poled material
in which the positive c axis alternates in orientation with period �.
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FIGURE 2.4.2 Comparison of the spatial variation of the field amplitude of the gener-
ated wave in a nonlinear optical interaction for three different phase matching condi-
tions. Curve (a) assumes that the phase-matching condition is perfectly satisfied, and
consequently the field amplitude grows linearly with propagation distance. Curve (c)
assumes that the wavevector mismatch �k is nonzero, and consequently the field am-
plitude of the generated wave oscillates periodically with distance. Curve (b) assumes
the case of a quasi-phase-matched interaction, in which the orientation of the positive c

axis is periodically modulated with a period of twice the coherent buildup length Lcoh,
in order to compensate for the influence of wavevector mismatch. In this case the field
amplitude grows monotonically with propagation distance, although less rapidly than
in the case of a perfectly phase-matched interaction.

square-wave function which can be represented as

d(z) = deff sign
[
cos(2πz/�)

]; (2.4.1)

more complicated spatial variations are also possible. In this equation, deff

denotes the nonlinear coefficient of the homogeneous material. The spatial
variation of the nonlinear coefficient leads to a modification of the coupled
amplitude equations describing the nonlinear optical interaction. The nature
of the modification can be deduced by noting that, in the derivation of the cou-
pled amplitude equations, the constant quantity deff appearing in Eq. (2.2.6)
must be replaced by the spatially varying quantity d(z). It is useful to describe
the spatial variation of d(z) in terms of a Fourier series as

d(z) = deff

∞∑
m=−∞

Gm exp(ikmz), (2.4.2)
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where km = 2πm/� is the magnitude of the grating vector associated with
the mth Fourier component of d(z). For the form of modulation given in the
example of Eq. (2.4.1), the coefficients Gm are readily shown to be given by

Gm = (2/mπ) sin(mπ/2), (2.4.3)

from which it follows that the fundamental amplitude G1 is given by G1 =
2/π . Coupled amplitude equations are now derived as in Section 2.2. In per-
forming this derivation, one assumes that one particular Fourier component
of d(z) provides the dominant coupling among the interacting waves. After
making the slowly varying amplitude approximation, one obtains the set of
equations

dA1

dz
= 2iω1dQ

n1c
A3A

∗
2e

−i(�kQ−2km)z, (2.4.4a)

dA2

dz
= 2iω2dQ

n2c
A3A

∗
1e

−i(�kQ−2km)z, (2.4.4b)

dA3

dz
= 2iω3dQ

n3c
A1A2e

i�kQz, (2.4.4c)

where dQ is the nonlinear coupling coefficient which depends on the Fourier
order m according to

dQ = deffGm (2.4.5)

and where the wavevector mismatch for order m is given by

�kQ = k1 + k2 − k3 + km. (2.4.6)

Note that these coupled amplitude equations are formally identical to those
derived above (that is, Eqs. (2.2.10), (2.2.12a), and (2.2.12b)) for a homoge-
neous material, but they involve modified values of the nonlinear coupling
coefficient deff and wavevector mismatch �k. Because of the tendency for dQ

to decrease with increasing values of m (see Eq. (2.9.3)), it is most desirable to
achieve quasi-phase-matching through use of a first-order (m = 1) interaction
for which

�kQ = k1 + k2 − k3 − 2π/�, dQ = (2/π)deff. (2.4.7)

From the first of these relations, we see that the optimum period for the quasi-
phase-matched structure is given by

� = 2Lcoh = 2π/(k1 + k2 − k3). (2.4.8)
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As a numerical example, one finds that Lcoh is equal to 3.4 μm for second-
harmonic generation of radiation at a wavelength of 1.06 μm in lithium nio-
bate.

A number of different approaches have been proposed for the fabrication of
quasi-phase-matched structures. The idea of quasi-phase-matching originates
in a very early paper by Armstrong et al. (1962), which suggests slicing a non-
linear optical medium into thin segments and rotating alternating segments
by 180 degrees. This approach, while feasible, is hampered by the required
thinness of the individual layers. More recent work has involved the study of
techniques that lead to the growth of crystals with a periodic alternation in
the orientation of the crystalline c axis or of techniques that allow the orien-
tation of the c axis to be inverted locally in an existing crystal. A particularly
promising approach, which originated with Yamada et al. (1993), is the use of
a static electric field to invert the orientation of the ferroelectric domains (and
consequently of the crystalline c axis) in a thin sample of lithium niobate. In
this approach, a metallic electrode pattern in the form of long stripes is de-
posited onto the top surface of a lithium niobate crystal, whereas the bottom
surface is uniformly coated to act as a ground plane. A static electric field of
the order of 21 kV/mm is then applied to the material, which leads to domain
reversal only of the material directly under the top electrode. Khanarian et al.
(1990) have demonstrated that polymeric materials can similarly be periodi-
cally poled by the application of a static electric field. Quasi-phase-matched
materials offer promise for many applications of nonlinear optics, some of
which are outlined in the review of Byer (1997).

2.5. The Manley–Rowe Relations

Let us now consider, from a general point of view, the mutual interaction of
three optical waves propagating through a lossless nonlinear optical medium,
as illustrated in Fig. 2.5.1.

FIGURE 2.5.1 Optical waves of frequencies ω1, ω2, and ω3 = ω1 + ω2 interact in a
lossless nonlinear optical medium.
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We have just derived the coupled-amplitude equations (Eqs. (2.2.10)
through (2.2.12b)) that describe the spatial variation of the amplitude of each
wave. Let us now consider the spatial variation of the intensity associated with
each of these waves. Since

Ii = 2niε0cAiA
∗
i , (2.5.1)

the variation of the intensity is described by

dIi

dz
= 2niε0c

(
A∗

i

dAi

dz
+ Ai

dA∗
i

dz

)
. (2.5.2)

Through use of this result and Eq. (2.2.12a), we find that the spatial variation
of the intensity of the wave at frequency ω1 is given by

dI1

dz
= 2niε0c

2deffω
2
1

k1c2

(
iA∗

1A3A
∗
2e

−i�kz + c.c.
)

= 4ε0deffω1
(
iA3A

∗
1A

∗
2e

−i�kz + c.c.
)

or by

dI1

dz
= −8ε0deffω1 Im

(
A3A

∗
1A

∗
2e

−i�kz
)
. (2.5.3a)

We similarly find that the spatial variation of the intensities of the waves at
frequencies ω2 and ω3 is given by

dI2

dz
= −8ε0deffω2 Im

(
A3A

∗
1A

∗
2e

−i�kz
)
, (2.5.3b)

dI3

dz
= −8ε0deffω3 Im

(
A∗

3A1A2e
i�kz

)

= 8ε0deffω3 Im
(
A3A

∗
1A

∗
2e

−i�kz
)
. (2.5.3c)

We see that the sign of dI1/dz is the same as that of dI2/dz but is opposite to
that of dI3/dz. We also see that the direction of energy flow depends on the
relative phases of the three interacting fields.

The set of Eqs. (2.5.3) shows that the total power flow is conserved, as
expected for propagation through a lossless medium. To demonstrate this fact,
we define the total intensity as

I = I1 + I2 + I3. (2.5.4)
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We then find that the spatial variation of the total intensity is given by

dI

dz
= dI1

dz
+ dI2

dz
+ dI3

dz

= −8ε0deff(ω1 + ω2 − ω3) Im
(
A3A

∗
1A

∗
2e

i�kz
) = 0, (2.5.5)

where we have made use of Eqs. (2.5.3) and where the last equality follows
from the fact that ω3 = ω1 + ω2.

The set of Eqs. (2.5.3) also implies that

d

dz

(
I1

ω1

)
= d

dz

(
I2

ω2

)
= − d

dz

(
I3

ω3

)
, (2.5.6)

as can be verified by inspection. These equalities are known as the Manley–
Rowe relations (Manley and Rowe, 1959). Since the energy of a photon of
frequency ωi is h̄ωi , the quantity Ii/ωi that appears in these relations is pro-
portional to the intensity of the wave measured in photons per unit area per
unit time. The Manley–Rowe relations can alternatively be expressed as

d

dz

(
I2

ω2
+ I3

ω3

)
= 0,

d

dz

(
I1

ω1
+ I3

ω3

)
= 0,

d

dz

(
I1

ω1
− I2

ω2

)
= 0.

(2.5.7)

These equations can be formally integrated to obtain the three conserved
quantities (conserved in the sense that they are spatially invariant) M1, M2,
and M3, which are given by

M1 = I2

ω2
+ I3

ω3
, M2 = I1

ω1
+ I3

ω3
, M3 = I1

ω1
− I2

ω2
. (2.5.8)

These relations tell us that the rate at which photons at frequency ω1 are
created is equal to the rate at which photons at frequency ω2 are created and
is equal to the rate at which photons at frequency ω3 are destroyed. This re-
sult can be understood intuitively by means of the energy level description
of a three-wave mixing process, which is shown in Fig. 2.5.2. This diagram
shows that, for a lossless medium, the creation of an ω1 photon must be ac-
companied by the creation of an ω2 photon and the annihilation of an ω3 pho-
ton. It seems at first sight surprising that the Manley–Rowe relations should
be consistent with this quantum-mechanical interpretation, when our deriva-
tion of these relations appears to be entirely classical. Note, however, that
our derivation implicitly assumes that the nonlinear susceptibility possesses
full permutation symmetry in that we have taken the coupling constant deff

to have the same value in each of the coupled-amplitude equations (2.2.10),
(2.2.12a), and (2.2.12b). We remarked earlier (following Eq. (1.5.9)) that in
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FIGURE 2.5.2 Photon description of the interaction of three optical waves.

a sense the condition of full permutation symmetry is a consequence of the
laws of quantum mechanics.

2.6. Sum-Frequency Generation

In Section 2.2, we treated the process of sum-frequency generation in the
simple limit in which the two input fields are undepleted by the nonlinear
interaction. In the present section, we treat this process more generally. We
assume the configuration shown in Fig. 2.6.1.

The coupled-amplitude equations describing this interaction were derived
above and appear as Eqs. (2.2.10) through (2.2.12b). These equations can be
solved exactly in terms of the Jacobi elliptic functions. We shall not present
the details of this solution, because the method is very similar to the one that
we use in Section 2.7 to treat second-harmonic generation. Details can be
found in Armstrong et al. (1962); see also Problem 2 at the end of this chapter.

Instead, we treat the somewhat simpler (but more illustrative) case in which
one of the applied fields (taken to be at frequency ω2) is strong, but the other
field (at frequency ω1) is weak. This situation would apply to the conver-
sion of a weak infrared signal of frequency ω1 to a visible frequency ω3 by
mixing with an intense laser beam of frequency ω2 (see, for example, Boyd
and Townes, 1977). This process is known as upconversion, because in this
process the information-bearing beam is converted to a higher frequency. Usu-
ally optical-frequency waves are easier to detect with good sensitivity than
are infrared waves. Since we can assume that the amplitude A2 of the field at
frequency ω2 is unaffected by the interaction, we can take A2 as a constant
in the coupled-amplitude equations (Eqs. (2.2.10) through (2.2.12b)), which
then reduce to the simpler set
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FIGURE 2.6.1 Sum-frequency generation. Typically, no input field is applied at fre-
quency ω3.

dA1

dz
= K1A3e

−i�kz, (2.6.1a)

dA3

dz
= K3A1e

+i�kz, (2.6.1b)

where we have introduced the quantities

K1 = 2iω2
1deff

k1c2
A∗

2, K3 = 2iω2
3deff

k3c2
A2, (2.6.2a)

and

�k = k1 + k2 − k3. (2.6.2b)

The solution to Eq. (2.4.1) is particularly simple if we set �k = 0, and we
first treat this case. We take the derivative of Eq. (2.6.1a) to obtain

d2A1

dz2
= K1

dA3

dz
. (2.6.3)

We now use Eq. (2.6.1b) to eliminate dA3/dz from the right-hand side of this
equation to obtain an equation involving only A1(z):

d2A1

dz2
= −κ2A1, (2.6.4)

where we have introduced the positive coupling coefficient κ2 defined by

κ2 ≡ −K1K3 = 4ω2
1ω

2
3d

2
eff|A2|2

k1k3c4
. (2.6.5)

The general solution to Eq. (2.6.4) is

A1(z) = B cosκz + C sinκz. (2.6.6a)

We now obtain the form of A3(z) through use of Eq. (2.6.1a), which shows
that A3(z) = (dA1/dz)/K1, or

A3(z) = −Bκ

K1
sinκz + Cκ

K1
cosκz. (2.6.6b)
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We next find the solution that satisfies the appropriate boundary condi-
tions. We assume that the ω3 field is not present at the input, so that the
boundary conditions become A3(0) = 0 with A1(0) specified. We find from
Eq. (2.6.6b) that the boundary condition A3(0) = 0 implies that C = 0, and
from Eq. (2.6.6a) that B = A1(0). The solution for the ω1 field is thus given
by

A1(z) = A1(0) cosκz (2.6.7)

and for the ω3 field by

A3(z) = −A1(0)
κ

K1
sinκz. (2.6.8)

To simplify the form of this equation we express the ratio κ/K1 as follows:

κ

K1
= 2ω1ω3deff|A2|

(k1k3)1/2c2

k1c
2

2iω2
1deffA

∗
2

= −i

(
n1ω3

n3ω1

)1/2 |A2|
A∗

2
.

The ratio |A2|/A∗
2 can be represented as

|A2|
A∗

2
= A2

A2

|A2|
A∗

2
= A2|A2|

|A2|2 = A2

|A2| = eiφ2,

where φ2 denotes the phase of A2. We hence find that

A3(z) = i

(
n1ω3

n3ω1

)1/2

A1(0) sinκzeiφ2 . (2.6.9)

The nature of the solution given by Eqs. (2.6.7) and (2.6.9) is illustrated in
Fig. 2.6.2.

FIGURE 2.6.2 Variation of |A1|2 and |A3|2 for the case of perfect phase matching in
the undepleted-pump approximation.
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Let us next solve Eqs. (2.4.1) for the general case of arbitrary wave vector
mismatch. We seek a solution to these equations of the form

A1(z) = (Feigz + Ge−igz)e−i�kz/2, (2.6.10)

A3(z) = (Ceigz + De−igz)ei�kz/2, (2.6.11)

where g gives the rate of spatial variation of the fields and where C, D, F ,
and G are constants whose values depend on the boundary conditions. We
take this form for the trial solution because we expect the ω1 and ω3 waves
to display the same spatial variation, since they are coupled to each other.
We separate out the factors e±i�kz/2 because doing so simplifies the final
form of the solution. Equations (2.6.10) and (2.6.11) are now substituted into
Eq. (2.6.1a), to obtain

(
igFeigz − igGe−igz

)
e−(1/2)i�kz − 1

2 i�k
(
Feigz + Ge−igz

)
e−(1/2)i�kz

= (
K1Ceigz + K1De−igz

)
e−(1/2)i�kz. (2.6.12)

Since this equation must hold for all values of z, the terms that vary as eigz

and e−igz must each maintain the equality separately; the coefficients of these
terms thus must be related by

F
(
ig − 1

2 i�k
) = K1C, (2.6.13)

−G
(
ig + 1

2 i�k
) = K1D. (2.6.14)

In a similar fashion, we find by substituting the trial solution into Eq. (2.6.1b)
that

(
igCeigz − igDe−igz

)
e(1/2)i�kz + 1

2 i�k
(
Ceigz + De−igz

)
e(1/2)i�kz

= (
K3Feigz + K3Ge−igz

)
e(1/2)i�kz, (2.6.15)

and in order for this equation to hold for all values of z, the coefficients must
satisfy

C
(
ig + 1

2 i�k
) = K3F, (2.6.16)

−D
(
ig − 1

2 i�k
) = K3G. (2.6.17)

Equations (2.6.13) and (2.6.16) constitute simultaneous equations for F

and C. We write these equations in matrix form as
[
i
(
g − 1

2�k
) −K1

−K3 i
(
g + 1

2�k
)
][

F

C

]
= 0.
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A solution to this set of equations exists only if the determinant of the matrix
of coefficients vanishes, i.e., if

g2 = −K1K3 + 1
4�k2. (2.6.18)

As before (cf. Eq. (2.6.5)), we introduce the positive quantity κ2 = −K1K3,
so that we can express the solution to Eq. (2.6.18) as

g =
√

κ2 + 1
4�k2. (2.6.19)

In determining g we take only the positive square root in the foregoing ex-
pression, since our trial solution (2.6.10) and (2.6.11) explicitly contains both
the e+gz and e−gz spatial variations.

The general solution to our original set of equations (2.6.1) is given by
Eqs. (2.6.10) and (2.6.11) with g given by Eq. (2.6.19). We evaluate the arbi-
trary constants C, D, F , and G appearing in the general solution by applying
appropriate boundary conditions. We assume that the fields A1 and A3 are
specified at the input plane z = 0 of the nonlinear medium, so that A1(0) and
A3(0) are known. Then, by evaluating Eqs. (2.6.10) and (2.6.11) at z = 0, we
find that

A1(0) = F + G, (2.6.20)

A3(0) = C + D. (2.6.21)

Equations (2.6.13) and (2.6.14) give two additional relations among the quan-
tities C, D, F , and G. Consequently there are four independent linear equa-
tions relating the four quantities C, D, F , and G, and their simultaneous so-
lution specifies these four quantities. The values of C, D, F , and G thereby
obtained are introduced into the trial solutions (2.6.10) and (2.6.11) to obtain
the solution that meets the boundary conditions. This solution is given by

A1(z) =
[
A1(0) cosgz +

(
K1

g
A3(0) + i�k

2g
A1(0)

)
singz

]
e−(1/2)i�kz,

(2.6.22)

A3(z) =
[
A3(0) cosgz +

(−i�k

2g
A3(0) + K3

g
A1(0)

)
singz

]
e(1/2)i�kz.

(2.6.23)

In order to interpret this result, let us consider the special case in which
no sum-frequency field is incident on the medium, so that A3(0) = 0.
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FIGURE 2.6.3 Spatial variation of the sum-frequency wave in the undepleted-pump
approximation.

Equation (2.6.23) then reduces to

A3(z) = K3

g
A1(0) singz e(1/2)i�kz (2.6.24)

and the intensity of the generated wave is proportional to

∣∣A3(z)
∣∣2 = ∣∣A1(0)

∣∣2 |K3|2
g2

sin2 gz, (2.6.25)

where g is given as before by Eq. (2.6.19). We note that the characteristic scale
length g−1 of the interaction becomes shorter as �k increases. However, as
�k increases the maximum intensity of the generated wave decreases. Since,
according to Eq. (2.6.25), the intensity of the generated wave is inversely pro-
portional to g2, we see that as �k is increased the maximum intensity of the
generated wave is decreased by the factor |K3|2/(κ2 + 1

4�k2). This sort of
behavior is illustrated in Fig. 2.6.3, in which the predictions of Eq. (2.6.25)
are displayed graphically.

2.7. Second-Harmonic Generation

In this section we present a mathematical description of the process of second-
harmonic generation, shown symbolically in Fig. 2.7.1. We assume that the
medium is lossless both at the fundamental frequency ω1 and at the second-
harmonic frequency ω2 =2ω1, so that the nonlinear susceptibility obeys the
condition of full permutation symmetry. Our discussion closely follows that
of one of the first theoretical treatments of second-harmonic generation (Arm-
strong et al., 1962).

We take the total electric field within the nonlinear medium to be given by

Ẽ(z, t) = Ẽ1(z, t) + Ẽ2(z, t), (2.7.1)
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FIGURE 2.7.1 Second-harmonic generation.

where each component is expressed in terms of a complex amplitude Ej(z)

and slowly varying amplitude Aj(z) according to

Ẽj (z, t) = Ej(z)e
−iωj t + c.c., (2.7.2)

where

Ej(z) = Aj(z)e
ikj z, (2.7.3)

and where the propagation constant and refractive index are given by

kj = njωj/c, nj = [
ε(1)(ωj )

]1/2
. (2.7.4)

We assume that each frequency component of the electric field obeys the
driven wave equation (see also Eq. (2.1.21))

∂2Ẽj

∂z2
− ε(1)(ωj )

c2

∂2Ẽj

∂t2
= 1

ε0c2

∂2

∂t2
P̃j . (2.7.5)

The nonlinear polarization is represented as

P̃ NL(z, t) = P̃1(z, t) + P̃2(z, t) (2.7.6)

with

P̃j (z, t) = Pj (z)e
−iωj t + c.c., j = 1,2. (2.7.7)

The expressions for the polarization amplitudes are given according to
Eqs. (1.5.28) and (1.5.29) by

P1(z) = 4ε0deffE2E
∗
1 = 4ε0deffA2A

∗
1e

i(k2−k1)z (2.7.8)

and

P2(z) = 2ε0deffE
2
1 = 2ε0deffA

2
1e

2ik1z. (2.7.9)

Note that the degeneracy factors appearing in these two expressions are dif-
ferent. We obtain coupled-amplitude equations for the two frequency com-
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ponents by methods analogous to those used in Section 2.2 in deriving the
coupled-amplitude equations for sum-frequency generation. We find that

dA1

dz
= 2iω2

1deff

k1c2
A2A

∗
1e

−i�kz (2.7.10)

and

dA2

dz
= iω2

2deff

k2c2
A2

1e
i�kz, (2.7.11)

where

�k = 2k1 − k2. (2.7.12)

In the undepleted-pump approximation (i.e., A1 constant), Eq. (2.7.11) can
be integrated immediately to obtain an expression for the spatial dependence
of the second-harmonic field amplitude. More generally, the pair of coupled
equations must be solved simultaneously. To do so, it is convenient to work
with the modulus and phase of each of the field amplitudes rather than with the
complex quantities themselves. It is also convenient to express these ampli-
tudes in dimensionless form. To do so, we write the complex, slowly varying
field amplitudes as

A1 =
(

I

2n1ε0c

)1/2

u1e
iφ1, (2.7.13)

A2 =
(

I

2n2ε0c

)1/2

u2e
iφ2 . (2.7.14)

Here we have introduced the total intensity of the two waves,

I = I1 + I2, (2.7.15)

where the intensity of each wave is given by

Ij = 2njε0c|Aj |2. (2.7.16)

As a consequence of the Manley–Rowe relations, the total intensity I is in-
variant under propagation. The real, normalized field amplitudes u1 and u2 are
defined such that u2

1 +u2
2 is also a conserved (i.e., spatially invariant) quantity

that satisfies the relation

u1(z)
2 + u2(z)

2 = 1. (2.7.17)

We next introduce a normalized distance parameter

ζ = z/l, (2.7.18)



2.7. Second-Harmonic Generation 99

where

l =
(

2n2
1n2

ε0cI

)1/2
c

2ω1deff
(2.7.19)

is the characteristic distance over which the fields exchange energy. We also
introduce the relative phase of the interacting fields,

θ = 2φ1 − φ2 + �kz, (2.7.20)

and a normalized phase mismatch parameter

�s = �kl. (2.7.21)

The quantities uj , φj , ζ , and �s defined in Eqs. (2.7.13) through (2.7.21) are
now introduced into the coupled-amplitude equations (2.7.10) and (2.7.11),
which reduce after straightforward (but lengthy) algebra to the set of coupled
equations for the three real quantities u1, u2, and θ :

du1

dζ
= u1u2 sin θ, (2.7.22)

du2

dζ
= −u2

1 sin θ, (2.7.23)

dθ

dζ
= �s + cos θ

sin θ

d

dζ

(
lnu2

1u2
)
. (2.7.24)

This set of equations has been solved under general conditions by Armstrong
et al. We shall return later to a discussion of the general solution, but for now
we assume the case of perfect phase matching so that �k and hence �s van-
ish. It is easy to verify by direct differentiation that, for �s = 0, Eq. (2.7.24)
can be rewritten as

d

dζ
ln

(
u2

1u2 cos θ
) = 0. (2.7.25)

Hence the quantity ln(cos θu2
1u2) is a constant, which we call ln
, so that the

solution to Eq. (2.7.25) can be expressed as

u2
1u2 cos θ = 
. (2.7.26)

The quantity 
 is independent of the normalized propagation distance ζ , and
thus the value of 
 can be determined from the known values of u1, u2, and θ

at the entrance face to the nonlinear medium, ζ = 0.
We have thus found two conserved quantities: u2

1 + u2
2 (according to

Eq. (2.7.17)) and u2
1u2 cos θ (according to Eq. (2.7.26)). These conserved

quantities can be used to decouple the set of equations (2.7.22)–(2.7.24).
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Equation (2.7.23), for instance, can be written using Eq. (2.7.17) and the iden-
tity sin2 θ + cos2 θ = 1 as

du2

dζ
= ±(

1 − u2
2

)(
1 − cos2 θ

)1/2
. (2.7.27)

Equations (2.7.26) and (2.7.17) are next used to express cos2 θ in terms of the
conserved quantity 
 and the unknown function u2; the resulting expression
is substituted into Eq. (2.7.27), which becomes

du2

dζ
= ±(

1 − u2
2

)(
1 − 
2

u4
1u

2
2

)1/2

= ±(
1 − u2

2

)(
1 − 
2

(1 − u2
2)

2u2
2

)1/2

.

(2.7.28)

This result is simplified algebraically to give

u2
du2

dζ
= ±[(

1 − u2
2

)2
u2

2 − 
2]1/2
,

or

du2
2

dζ
= ±2

[(
1 − u2

2

)2
u2

2 − 
2]1/2
. (2.7.29)

This equation is of a standard form, whose solution can be expressed in terms
of the Jacobi elliptic functions. An example of the solution for one particular
choice of initial conditions is illustrated in Fig. 2.7.2. Note that, in general,
the fundamental and second-harmonic fields interchange energy periodically.

The solution of Eq. (2.7.29) becomes particularly simple for the special
case in which the constant 
 vanishes. The condition 
 = 0 occurs whenever

FIGURE 2.7.2 Typical solution to Eq. (2.7.29), after Armstrong et al. (1962).
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the amplitude of either of the two input fields is equal to zero or whenever the
fields are initially phased so that cos θ = 0. We note that since 
 is a conserved
quantity, it is then equal to zero for all values of ζ , which in general requires
(see Eq. (2.7.26)) that

cos θ = 0. (2.7.30a)

For definiteness, we assume that

sin θ = −1 (2.7.30b)

(rather than +1). We hence see that the relative phase of the interacting fields
is spatially invariant for the case of 
 = 0. In addition, when 
 = 0 the
coupled-amplitude equations (2.7.22) through (2.7.24) take on the relatively
simple forms

du1

dζ
= −u1u2, (2.7.31)

du2

dζ
= u2

1. (2.7.32)

This second equation can be transformed through use of Eq. (2.7.17) to obtain

du2

dζ
= 1 − u2

2, (2.7.33)

whose solution is

u2 = tanh(ζ + ζ0), (2.7.34)

where ζ0 is a constant of integration.
We now assume that the initial conditions are

u1(0) = 1, u2(0) = 0. (2.7.35)

These conditions imply that no second-harmonic light is incident on the non-
linear crystal, as is the case in most experiments. Then, since tanh 0 = 0, we
see that the integration constant ζ0 is equal to 0 and hence that

u2(ζ ) = tanh ζ. (2.7.36)

The amplitude u1 of the fundamental wave is found immediately through use
of Eq. (2.7.32) (or through use of Eq. (2.7.17)) to be given by

u1(ζ ) = sech ζ. (2.7.37)
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FIGURE 2.7.3 Spatial variations of the fundamental and second-harmonic field am-
plitudes for the case of perfect phase matching and the boundary condition u2(0) = 0.

Recall that ζ = z/l. For the case in which only the fundamental field is present
at z = 0, the length parameter of Eq. (2.7.19) is given by

l = (n1n2)
1/2c

2ω1deff|A1(0)| . (2.7.38)

The solution given by Eqs. (2.7.36) and (2.7.37) is shown graphically in
Fig. 2.7.3. We see that in the limit ζ → ∞ all of the incident radiation is con-
verted into the second harmonic. In addition, we note that tanh (ζ + ζ0) has
the same asymptotic behavior for any finite value of ζ0. Thus, whenever 
 is
equal to zero, all of the radiation at the fundamental frequency will eventually
be converted to the second harmonic, for any initial ratio of u1 to u2.

As mentioned above, Armstrong et al. have also solved the coupled-
amplitude equations describing second-harmonic generation for arbitrary �k.
They find that in this case the solution can also be expressed in terms of el-
liptic integrals. We shall not reproduce their derivation here; instead we sum-
marize their results graphically in Fig. 2.7.4 for the case in which no radiation
is incident at the second-harmonic frequency. We see from the figure that the
effect of a nonzero propagation-vector mismatch is to lower the conversion
efficiency.

As an illustration of how to apply the formulas derived in this section, we
estimate the conversion efficiency for second-harmonic generation attainable
using typical cw lasers. We first estimate the numerical value of the parame-
ter ζ given by Eqs. (2.7.18) and (2.7.38) at the plane z = L, where L is the
length of the nonlinear crystal. We assume that the incident laser beam carries
power P and is focused to a spot size w0 at the center of the crystal. The field
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FIGURE 2.7.4 Effect of wavevector mismatch on the efficiency of second-harmonic
generation.

strength A1 can then be estimated by the expression

I1 = P

πw2
0

= 2n1ε0cA
2
1. (2.7.39)

We assume that the beam is optimally focused in the sense that the focal spot
size w0 is chosen so that the depth b of the focal region is equal to the length L

of the crystal, that is,∗

b ≡ 2πw2
0

λ1/n1
= L, (2.7.40)

where λ1 denotes the wavelength of the incident wave in vacuum. From
Eqs. (2.7.39) and (2.7.40), the characteristic value of the laser field amplitude
under these conditions is seen to be given by

A1 =
(

P

ε0cλ1L

)1/2

, (2.7.41)

hence the parameter ζ = L/l is given through use of Eq. (2.7.38) by

ζ =
(

16π2d2
effLP

ε0cn1n2λ
3
1

)1/2

. (2.7.42)

Typical values of the parameters appearing in this equation are deff = 4 ×
10−12 m/V, L = 1 cm, P = 1 W, λ = 0.5 × 10−6 m, and n = 2, which lead

∗ See also the discussion of nonlinear interactions involving focused gaussian beams presented in
Section 2.10.
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to the value ζ = 0.14. The efficiency η for conversion of power from the ω1

wave to the ω2 wave can be defined by

η = u2
2(L)

u2
1(0)

, (2.7.43)

and from Eq. (2.7.36), we see that for the values just given, η is of the order
of 2%.

2.7.1. Applications of Second-Harmonic Generation

Surface Nonlinear Optics One important application of second-harmonic gen-
eration is its use as an exacting diagnostic of the surface properties of optical
materials. As noted above, second-harmonic generation is a forbidden process
for a material that possesses a center of inversion symmetry. The surface of
a material clearly lacks inversion symmetry, and thus second-harmonic gen-
eration can occur at the surface of a material of any symmetry group. For
the same reason, the intensity and angular distribution of surface second-
harmonic generation depends critically on the morphology of a surface and
on the presence of impurities on the surface of the material. Good reviews of
the early work in this area are given by Shen (1985, 1989), and procedures for
calculating the intensity of the second-harmonic light are given by Mizrahi
and Sipe (1988).

Nonlinear Optical Microscopy An important application of harmonic genera-
tion is nonlinear microscopy. One motivation for using nonlinear effects and
in particular harmonic generation in microscopy is to provide enhanced trans-
verse and longitudinal resolution. Resolution is enhanced because nonlinear
processes are excited most efficiently in the region of maximum intensity of a
focused laser beam. Microscopy based on harmonic generation also offers the
advantage that the signal is far removed in frequency from unwanted back-
ground light that results from linear scattering of the incident laser beam.
Moreover, light at a wavelength sufficiently long that it will not damage bio-
logical materials can be used to achieve a resolution that would normally re-
quire a much shorter wavelength. Harmonic-generation microscopy can make
use either of the intrinsic nonlinear response of biological materials or can
be used with materials that are labeled with nonlinear optical chromophores.
Microscopy based on second-harmonic generation in the configuration of a
confocal microscope and excited by femtosecond laser pulses was introduced
by Curley et al. (1992). Also, harmonic-generation microscopy can be used to
form images of transparent (phase) objects, because the phase matching con-
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dition of nonlinear optics depends sensitively on the refractive index variation
within the sample being imaged (Muller et al., 1998).

Guo et al. (1997) have used tomography based on second-harmonic gen-
eration to characterize biological materials. Gauderon et al. (1998) have
demonstrated three-dimensional imaging based on second-harmonic genera-
tion with fs laser pulses. They used this method to characterize the microcrys-
tal structure of lithium triborate. Campagnola et al. (1999) have used second-
harmonic generation to produce images of live cells. Moreaux et al. (2000)
have used styrl dyes as labels to image membranes using second-harmonic
generation microscopy.

Third-harmonic generation has also been used for imaging applications.
Muller et al. (1998) have demonstrated imaging of transparent objects using
microscopy based on third-harmonic generation. Yelin and Silberberg (1999)
have constructed a scanning microscope based on third-harmonic generation
and have used it for the imaging of biological materials.

Nonlinear optical interactions that do not entail harmonic generation also
have been shown to hold great promise in optical microscopy. For example,
Gustafsson (2005) has shown that through the use of structured illumination
and a sample that exhibits saturable absorption, he was able to achieve a trans-
verse resolution of 50 nm. Moreover, Westphal and Hell (2005) have shown
the depletion of fluorescence by means of stimulated emission can be used
to achieve extremely high subwavelength resolution (in particular, 16 nm or
1/50 of their operating wavelength) in optical microscopy.

2.8. Difference-Frequency Generation and Parametric
Amplification

Let us now consider the situation shown in Fig. 2.8.1, in which optical waves
at frequencies ω3 and ω1 interact in a lossless nonlinear optical medium to
produce an output wave at the difference frequency ω2 = ω3 − ω1. For sim-
plicity, we assume that the ω3 wave is a strong wave (i.e., is undepleted by

FIGURE 2.8.1 Difference-frequency generation. Typically, no input field is applied
at frequency ω2.



106 2 ♦ Wave-Equation Description of Nonlinear Optical Interactions

the nonlinear interaction, so that we can treat A3 as being essentially con-
stant), and for the present we assume that no field is incident on the medium
at frequency ω2.

The coupled-amplitude equations describing this interaction are obtained
by a method analogous to that used in Section 2.2 to obtain the equations
describing sum-frequency generation and have the form

dA1

dz
= 2iω2

1deff

k1c2
A3A

∗
2e

i�kz, (2.8.1a)

dA2

dz
= 2iω2

2deff

k2c2
A3A

∗
1e

i�kz, (2.8.1b)

where

�k = k3 − k1 − k2. (2.8.2)

We first solve these equations for the case of perfect phase matching—that
is, �k = 0. We differentiate Eq. (2.8.1b) with respect to z and introduce the
complex conjugate of Eq. (2.8.1a) to eliminate dA∗

1/dz from the right-hand
side. We thereby obtain the equation

d2A2

dz2
= 4ω2

1ω
2
2d

2
eff

k1k2c4
A3A

∗
3A2 ≡ κ2A2, (2.8.3)

where we have introduced the real coupling constant κ given by

κ2 = 4d2
effω

2
1ω

2
2

k1k2c4
|A3|2. (2.8.4)

The general solution to this equation is

A2(z) = C sinhκz + D coshκz, (2.8.5)

where C and D are integration constants whose values depend on the bound-
ary conditions.

We now assume the boundary conditions

A2(0) = 0, A1(0) arbitrary. (2.8.6)

The solution to Eqs. (2.8.1a) and (2.8.1b) that meets these boundary condi-
tions is readily found to be

A1(z) = A1(0) coshκz, (2.8.7)

A2(z) = i
(n1ω2

n2ω1

)1/2 A3

|A3|A
∗
1(0) sinhκz. (2.8.8)
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FIGURE 2.8.2 Spatial evolution of A1 and A2 for difference-frequency generation
for the case �k = 0 in the constant-pump approximation.

The nature of this solution is shown in Fig. 2.8.2. Note that both the ω1 and
the ω2 fields experience monotonic growth and that asymptotically each field
experiences exponential growth (i.e., for κz � 1, each grows as eκz). We see
from the form of the solution that the ω1 field retains its initial phase and is
simply amplified by the interaction, whereas the generated wave at frequency
ω2 has a phase that depends both on that of the pump wave and on that of the
ω1 wave. This behavior of monotonic growth of both waves is qualitatively
dissimilar from that of sum-frequency generation, where oscillatory behavior
occurs.

The reason for the different behavior in this case can be understood intu-
itively in terms of the energy level diagram shown in Fig. 2.8.3. We can think
of diagram (a) as showing how the presence of a field at frequency ω1 stim-
ulates the downward transition that leads to the generation of the ω2 field.
Likewise, diagram (b) shows that the ω2 field stimulates the generation of the
ω1 field. Hence the generation of the ω1 field reinforces the generation of the
ω2 field, and vice versa, leading to the exponential growth of each wave.

Since the ω1 field is amplified by the process of difference-frequency gen-
eration, which is a parametric process, this process is also known as para-
metric amplification. In this language, one says that the signal wave (the ω1

wave) is amplified by the nonlinear mixing process, and an idler wave (at
ω2 = ω3 − ω1) is generated by the process. If mirrors that are highly reflect-
ing at frequencies ω1 and/or ω2 are placed on either side of the nonlinear
medium to form an optical resonator, oscillation can occur as a consequence
of the gain of the parametric amplification process. Such a device is known
as a parametric oscillator and is described in greater detail in the following
section.
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FIGURE 2.8.3 Difference-frequency generation.

The first cw optical parametric oscillator was built by Giordmaine and
Miller in 1965. The theory of parametric amplification and parametric os-
cillators has been reviewed by Byer and Herbst (1977).

The solution to the coupled-amplitude equations (2.8.1) for the general case
of arbitrary �k �= 0 makes a good exercise for the reader (see Problem 4 at
the end of this chapter).

2.9. Optical Parametric Oscillators

We noted in the previous section that the process of difference-frequency gen-
eration necessarily leads to the amplification of the lower-frequency input
field. This amplification process is known as optical parametric amplifica-
tion, and the gain resulting from this process can be used to construct a device
known as an optical parametric oscillator (OPO). These features are summa-
rized in Fig. 2.9.1. Part (a) of the figure shows that in generating the difference
frequency ωi = ωp −ωs, the lower-frequency input wave ωs is amplified. Con-
ventionally, ωp is known as the pump frequency, ωs the signal frequency, and
ωi the idler frequency. The gain associated with the process of optical para-
metric amplification can in the presence of feedback produce oscillation, as
shown in part (b) of the figure. If the end mirrors of this device are highly
reflecting at both frequencies ωs and ωi, the device is known as a doubly res-
onant oscillator; if they are highly reflecting at ωs or ωi but not at both, the
device is known as a singly resonant oscillator. Note that when an OPO is
operated near the point of degeneracy (ωs = ωi) it tends to operate as a dou-
bly resonant oscillator.∗ The optical parametric oscillator has proven to be a

∗ In principle, polarization effects can be used to suppress cavity feedback for either the signal or
idler wave for the case of type-II phase matching.



2.9. Optical Parametric Oscillators 109

FIGURE 2.9.1 (a) Relationship between difference-frequency generation and optical
parametric amplification. (b) The gain associated with the process of optical paramet-
ric amplification can be used to construct the device shown, which is known as an
optical parametric oscillator.

versatile source of frequency-tunable radiation throughout the infrared, visi-
ble, and ultraviolet spectral regions. It can produce either a continuous-wave
output or pulses of nanosecond, picosecond, or femtosecond duration.

Let us recall how to calculate the gain of the process of optical paramet-
ric amplification. For convenience, we label the pump, signal, and idler fre-
quencies as ωp = ω3,ωs = ω1, and ωi = ω2. We take the coupled amplitude
equations to have the form (see also Eqs. (2.8.1))

dA1

dz
= 2iω2

1deff

k1c2
A3A

∗
2e

i�kz, (2.9.1a)

dA2

dz
= 2iω2

2deff

k2c2
A3A

∗
1e

i�kz, (2.9.1b)

where �k ≡ k3 − k1 − k2. These equations possess the solution

A1(z) =
[
A1(0)

(
coshgz − i�k

2g
sinhgz

)
+ κ1

g
A∗

2(0) sinhgz

]
ei�kz/2,

(2.9.2a)

A2(z) =
[
A2(0)

(
coshgz − i�k

2g
sinhgz

)
+ κ2

g
A∗

1(0) sinhgz

]
ei�kz/2,

(2.9.2b)

where we have introduced the quantities

g = [
κ1κ

∗
2 − (�k/2)2]1/2 and κi = 2iω2

i deffA3

kic2
. (2.9.3)

For the special case of perfect phase matching (�k = 0) and under the as-
sumption that the input amplitude of field A2 vanishes (A2(0) = 0), the
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solution reduces to

A1(z) = A1(0) coshgz ⇒ 1
2A1(0) exp(gz) (2.9.4a)

A2(z) = i
(n1ω2

n2ω1

)1/2 A3

|A3|A
∗
1(0) sinhgz ⇒ O(1)A∗

1(0) exp(gz).

(2.9.4b)

In each expression, the last form gives the asymptotic value for large z, and the
symbol O(1) means of the order of unity. One sees that asymptotically both
waves experience exponential growth, with an amplitude gain coefficient of g.

Threshold for Parametric Oscillation We next consider the threshold condition
for the establishment of parametric oscillation. We treat the device shown in
Fig. 2.9.1(b), in which the two end mirrors are assumed to be identical but are
allowed to have different (intensity) reflectivities R1 and R2 at the signal and
idler frequencies.

As a first approximation, we express the threshold condition as a state-
ment that the fractional energy gain per pass must equal the fractional en-
ergy loss per pass. Under the assumptions of exact cavity resonance, of per-
fect phase matching (�k = 0), and that the cavity is doubly resonant with
the same reflectivity at the signal and idler frequencies (that is, R1 =R2 ≡R,
(1 − R) � 1), this condition can be expressed as

(
e2gL − 1

) = 2(1 − R). (2.9.5)

Under the realistic condition that the single-pass exponential gain 2gL is not
large compared to unity, this condition becomes

gL = 1 − R. (2.9.6)

This is the threshold condition first formulated by Giordmaine and Miller
(1965).

The threshold condition for optical parametric oscillation can be formulated
more generally as a statement that the fields within the resonator must repli-
cate themselves each round trip. For arbitrary end-mirror reflectivities at the
signal and idler frequencies, this condition can be expressed, again assuming
perfect phase matching, as

A1(0) =
[
A1(0) coshgL + κ1

g
A∗

2(0) sinhgL
]
(1 − l1), (2.9.7a)

A∗
2(0) =

[
A∗

2(0) coshgL + κ∗
2

g
A1(0) sinhgL

]
(1 − l2), (2.9.7b)
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where li = 1 − Rie
−αiL is the fractional amplitude loss per pass, αi being the

absorption coefficient of the crystal at frequency ωi. By requiring that both of
Eqs. (2.9.7) be satisfied simultaneously, we find the threshold condition to be

coshgL = 1 + l1l2

2 − l1 − l2
. (2.9.8)

The threshold conditions for both doubly resonant oscillators and singly res-
onant oscillators are contained in this result. The doubly resonant oscillator is
described by taking the limit of low loss for both the signal and idler waves
(l1, l2 � 1). In this limit, coshgL can be approximated by 1 + 1

2 g2L2, lead-
ing to the conclusion that the threshold condition for a doubly resonant oscil-
lator is

g2L2 = l1l2, (2.9.9)

in consistency with Eq. (2.9.6).
The threshold condition for a singly resonant oscillator can be obtained by

assuming that there is no feedback for the idler frequency, that is, that l2 = 1.
If we assume low loss for the signal frequency (that is, l1 � 1), the threshold
condition becomes

g2L2 = 2l1. (2.9.10)

Note that the threshold value of gL for a singly resonant oscillator is larger
than that of the doubly resonant oscillator by a factor of (2/l2)

1/2. Despite
this fact, it is usually desirable to configure optical parametric oscillators to
be singly resonant because of the increased stability of singly resonant oscil-
lators, for reasons that are explained below.

For simplicity, the treatment of this subsection has assumed the case of per-
fect phase matching. It is easy to show that the threshold condition for the case
�k �= 0 can be obtained by replacing g2 by g2 sinc2(�kL/2) in Eqs. (2.9.9)
and (2.9.10).

Wavelength Tuning of an OPO The condition of energy conservation ωs +
ωi = ωp allows any frequency ωs smaller than ωp to be generated by an optical
parametric oscillator. The output frequency ωs can be controlled through the
phase-matching condition �k = 0, which invariably can be satisfied for at
most one pair of frequencies ωs and ωi. The output frequency bandwidth can
often be narrowed by placing wavelength-selective items (such as etalons)
inside the OPO cavity.

The principles of phase matching were described earlier in Section 2.3.
Recall that phase matching can be achieved either by varying the orientation
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of the nonlinear crystal (angle phase matching) or by varying the temperature
of the crystal.

2.9.1. Influence of Cavity Mode Structure on OPO Tuning

Let us now take a more detailed look at the tuning characteristics of an OPO.
We shall see that both the tuning and stability characteristics of an OPO are
very different for the singly resonant and doubly resonant cases.

Note first that under typical conditions the cavity mode spacing and cavity
resonance width tend to be much smaller than the width of the gain curve of
the optical parametric amplification process. This circumstance is illustrated
in Fig. 2.9.2.∗ Let us next consider which of these cavity modes will actually
undergo oscillation.

For the case of a singly resonant oscillator (displayed in part a of Fig. 2.9.3),
the situation is relatively simple. Oscillation occurs on the cavity mode closest
to the peak of the gain curve. Note also that (barring mechanical instabilities,
etc.) oscillation will occur on only one cavity mode. The reason for this be-
havior is that once oscillation commences on the cavity mode closest to the
peak of the gain curve, the pump power is depleted, thus lowering the gain to
the value of the loss for this mode. By assumption, the gain will be smaller at
the frequencies of the other cavity modes, and thus these modes will be below

FIGURE 2.9.2 Schematic representation of the gain spectrum (the broad curve) and
cavity mode structure of an OPO. Note that typically many cavity modes lie beneath
the gain profile of the OPO.

∗ This example assumes that the cavity length Lc is 15 cm so that the cavity mode spacing �νc =
c/2Lc is 1 GHz, that the cavity finesse F is 100 so that the linewidth associated with each mode is
1 GHz/F = 10 MHz and that the width of the gain curve is 100 GHz. This gain linewidth is estimated
by assuming that �kL (which is zero at the center of the gain line and where L is the crystal length)
drops to the value π at the edge of the gain line. If we then assume that �k changes with signal
frequency because of material dispersion, and that dn/dν is of the order of 10−15 sec, we obtain
100 GHz as the gain bandwidth.
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FIGURE 2.9.3 (a) Symbolic representation of the mode structure of a singly resonant
OPO. (b) Symbolic representation of the mode structure of a doubly resonant OPO.
The signal-frequency and idler-frequency axes increase in opposite directions, such
that at each horizontal point ωs +ωi has the fixed value ωp. Thus, any point on the axis
represents a point where the energy conservation relation ωs + ωi = ωp is satisfied,
although only at points where signal and idler modes occur at the same horizontal
point is the double-resonance condition satisfied.

threshold for oscillation. This behavior is very much analogous to that of a
homogeneously broadened laser, which tends to oscillate on a single cavity
mode.

Consider now the different situation of a doubly resonant oscillator
(Fig. 2.9.3(b)). For a doubly resonant oscillator, oscillation is very much fa-
vored under conditions such that a signal and its corresponding idler mode
can simultaneously support oscillation. Note from the figure that neither of
these modes is necessarily the mode closest to the peak of the gain curve
(which occurs at �k = 0). As a consequence doubly resonant oscillators tend
not to tune smoothly. Moreover, such devices tend not to run stably, because,
for example, small fluctuations in the pump frequency or the cavity length L

can lead to disproportionately large variations in the signal frequency.
The argument just presented, based on the structure of Fig. 2.9.3(b), presup-

poses that the cavity modes are not equally spaced. In fact, it is easy to show
that the cavity mode spacing for a cavity of length Lc filled with a dispersive
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medium is given by

�νc = 1

n(g)

c

2Lc

; where n(g) = n + ν
dn

dν
(2.9.11)

(see Problems 7 and 8 at the end of this chapter), which clearly is not a con-
stant as a function of frequency. Here n(g) is known as the group index.

Let us next examine more quantitatively the nature of the decreased stabil-
ity of the doubly resonant oscillator. We first estimate the characteristic fre-
quency separation δω between the peak of the gain curve and the frequency
of actual oscillation, which is illustrated pictorially in Fig. 2.9.3(b). To do so,
it is convenient to first introduce the quantity

�ω ≡ ωp − ω(m)
s − ω

(m)
i , (2.9.12)

where ω
(m)
s is one of the signal cavity-mode frequencies and similarly

for ω
(m)
i . Clearly, oscillation can occur only for a pair of modes such that

�ω ≈ 0 (or more precisely where �ω � δωc where δωc is the spectral width
of the cavity resonance). Note next that in jumping by one cavity mode for
both ωs and ωi, the quantity �ω will change by the amount

δ(�ω) = 2π

(
c

2n
(g)
s Lc

− c

2n
(g)
i Lc

)
= πc

Lc

(
n

(g)
i − n

(g)
s

n
(g)
s n

(g)
i

)
. (2.9.13)

We next estimate the value of the frequency separation δω by noting that
it corresponds to a change in �ω from its value near the point �k = 0 to its
value (≈ 0) at the oscillation point. Unless the length of the OPO cavity is
actively controlled, the value of �ω near �k = 0 can be as large as one-half
of a typical mode spacing or

�ω0 � 1

2

(
2πc

2n(g)Lc

)
= πc

2n(g)Lc

, (2.9.14)

where n(g) is some typical value of the group index. The number of modes
between the peak of the gain curve and the actual operating point under this
situation is thus of the order of

N = �ω0

δ(�ω)
= n(g)

2(n
(g)
s − n

(g)
i )

(2.9.15)

and the characteristic frequency separation δω is thus given by

δω = �ωcN � 2πc

2n(g)Lc

N = πc

2Lc

1

(n
(g)
s − n

(g)
i )

. (2.9.16)
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Note that this shift can be very large for n
(g)
s ≈ n

(g)
i .

The model just presented can be used to estimate an important quantity,
the operational linewidth δω(OPO) of the oscillator. We noted above that in
principle an OPO should oscillate on a single cavity mode. However, because
of unavoidable technical noise, an OPO might be expected to oscillate (si-
multaneously or sequentially) on many different cavity modes. The techni-
cal noise might be in the form of mechanical vibrations of the OPO cavity,
leading to a jitter of amount δωc in the resonance frequency of each cavity
mode. Alternatively, the technical noise might be in the form of the spectral
breadth δωp of the pump radiation. Whichever effect is larger might be ex-
pected to dominate and thus the effective value of the technical noise is given
by δωeff = max(δωc, δωp). Analogously to Eq. (2.9.15), one then expects the
number of modes that undergo oscillation to be given by

Nosc = δωeff

δ(�ω)
= max(δωp, δωc)

δ(�ω)
. (2.9.17)

Consequently, the OPO linewidth is expected to be

δω(osc) = NOPO�ωc = ng

n
(s)
g − n

(i)
g

max(δωp, δωc). (2.9.18)

Note that the linewidth of an OPO tends to be much greater than that of the
pump field or that of the bare OPO cavity. Active stabilization can be used to
decrease this linewidth.

Equation (2.9.18) has important implications in the design of OPOs. Note
that this expression formally diverges at the point of degeneracy for a type-I
(but not a type-II) OPO. The narrower linewidth of a type-II OPO compared
to that of a type-I OPO constructed of the same material has been observed in
practice by Bosenberg and Tang (1990).

We conclude this section with a brief historical summary of progress in the
development of OPOs. The first operating OPO was demonstrated by Giord-
maine and Miller (1965); it utilized the nonlinear optical response of lithium
niobate and worked in the pulsed regime. Continuous-wave operation of an
OPO was demonstrated by Smith et al. (1968) and utilized a Ba2NaNb5O15

nonlinear crystal. Interest in the development of OPOs was renewed in the
1980s as a consequence of the availability of new nonlinear materials such
as β-BaB2O4 (beta-barium borate or BBO), LiB3O5 (lithium borate or LBO),
and KTiOPO4 (KTP), which possess high nonlinearity, high resistance to laser
damage, and large birefringence. These materials led to the rapid develop-
ment of new OPO capabilities, such as continuous tunability from 0.42 to
2.3 µm in a BBO OPO with conversion efficiencies as large as 32% (Bosen-
berg et al., 1989), and OPOs that can produce tunable femtosecond pulses in
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KTP (Edelstein et al., 1989). The use of quasi-phase-matching in periodically
poled lithium niobate has also been utilized to produce novel OPOs.

2.10. Nonlinear Optical Interactions with Focused
Gaussian Beams

In the past several sections we have treated nonlinear optical interactions in
the approximation in which all of the interacting waves are taken to be infinite
plane waves. However, in practice, the incident radiation is usually focused
into the nonlinear optical medium in order to increase its intensity and hence
to increase the efficiency of the nonlinear optical process. The present sec-
tion explores the nature of nonlinear optical interactions that are excited by
focused laser beams.

2.10.1. Paraxial Wave Equation

We assume that each frequency component of the beam obeys a wave equation
of the form of Eq. (2.1.21)—that is,

∇2Ẽn − 1

(c/n)2

∂2Ẽn

∂t2
= 1

ε0c2

∂2P̃n

∂t2
. (2.10.1)

We next represent the electric field Ẽn and polarization P̃n as

Ẽn(r, t) = An(r)ei(knz−ωnt) + c.c., (2.10.2a)

P̃n(r, t) = pn(r)ei(k′
nz−ωnt) + c.c. (2.10.2b)

Here we allow Ẽn and P̃n to represent nonplane waves by allowing the com-
plex amplitudes An and pn to be spatially varying quantities. In addition, we
allow the possibility of a wavevector mismatch by allowing the wavevec-
tor of P̃n to be different from that of Ẽn. We next substitute Eqs. (2.10.2)
into (2.10.1). Since we have specified the z direction as the dominant di-
rection of propagation of the wave Ẽn, it is useful to express the Laplace
operator as ∇2 = ∂2/∂z2 + ∇2

T, where the transverse laplacian is given by
∇2

T = ∂2/∂x2 + ∂2/∂y2 in rectangular coordinates and is given by ∇2
T =

(1/r)(∂/∂r)(r∂/∂r)+ (1/r)2∂2/∂φ2, where r2 = x2 +y2 in cylindrical coor-
dinates. As in the derivation of Eq. (2.2.10), we now make the slowly varying
amplitude approximation, that is, we assume that longitudinal variation of An

can occur only over distances much larger than an optical wavelength. We
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hence find that Eq. (2.10.1) becomes

2ikn

∂An

∂z
+ ∇2

TAn = − ω2
n

ε0c2
pne

i�kz, (2.10.3)

where �k = k′
n − kn. This result is known as the paraxial wave equation,

because the approximation of neglecting the contribution ∂2A/∂z2 on the left-
hand side is justifiable insofar as the wave En is propagating primarily along
the z axis.

2.10.2. Gaussian Beams

Let us first study the nature of the solution to Eq. (2.10.3) for the case of the
free propagation of an optical wave, that is, for the case in which the source
term containing pn vanishes. The paraxial wave equation is solved in such a
case by a beam having a transverse intensity distribution that is everywhere a
gaussian and that can be represented in the scalar approximation as (Kogelnik
and Li, 1966)

A(r, z) =A w0

w(z)
e−r2/w(z)2

eikr2/2R(z)ei�(z), (2.10.4a)

where

w(z) = w0
[
1 + (

λz/πw2
0

)2]1/2 (2.10.4b)

represents the 1/e radius of the field distribution, where

R(z) = z
[
1 + (

πw2
0/λz

)2] (2.10.4c)

represents the radius of curvature of the optical wavefront, and where

�(z) = − arctan
(
λz/πw2

0

)
(2.10.4d)

represents the spatial variation of the phase of the wave (measured with re-
spect to that of an infinite plane wave). In these formulas, w0 represents the
beam waist radius (that is, the value of w at the plane z = 0), and λ = 2πc/nω

represents the wavelength of the radiation in the medium. The angular diver-
gence of the beam in the far field is given by θff = λ/πw0. The nature of this
solution is illustrated in Fig. 2.10.1.

For theoretical work it is often convenient to represent the gaussian beam
in the more compact (but less intuitive) form (see Problem 10 at the end of the
chapter)

A(r, z) = A
1 + iζ

e−r2/w2
0(1+iζ ). (2.10.5a)
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FIGURE 2.10.1 (a) Field amplitude distribution of a gaussian laser beam. (b) Varia-
tion of the beam radius w and wavefront radius of curvature R with position z. (c) Re-
lation between the beam waist radius and the confocal parameter b.

Here∗

ζ = 2z/b (2.10.5b)

is a dimensionless longitudinal coordinate defined in terms of the confocal
parameter

b = 2πw2
0/λ = kw2

0, (2.10.5c)

which, as illustrated in part (c) of Fig. 2.10.1, is a measure of the longitudinal
extent of the focal region of the gaussian beam. The total power P carried
by a gaussian laser beam can be calculated by integrating over the transverse
intensity distribution of the beam. Since P = ∫

I2πrdr , where the intensity

∗ Note that the quantity ζ defined here bears no relation to the quantity ζ introduced in Eq. (2.7.18)

in our discussion of second-harmonic generation.
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is given by I = 2nε0c|A|2, we find that

P = nε0cπw2
0|A|2. (2.10.6)

2.10.3. Harmonic Generation Using Focused Gaussian Beams

Let us now treat harmonic generation excited by a gaussian fundamental
beam. For generality, we consider the generation of the qth harmonic. Accord-
ing to Eq. (2.10.3), the amplitude Aq of the ωq = qω frequency component
of the optical field must obey the equation

2ikq

∂Aq

∂z
+ ∇2

TAq = −ω2
q

c2
χ(q)A

q

1ei�kz, (2.10.7)

where �k = qk1 − kq and where we have set the complex amplitude pq of
the nonlinear polarization equal to pq = ε0χ

(q)A
q

1 . Here χ(q) is the nonlinear
susceptibility describing qth-harmonic generation—that is, χ(q) = χ(q)(qω =
ω + ω + · · · + ω), and A1 is the complex amplitude of the fundamental wave,
which according to Eq. (2.10.5a) can be represented as

A1(r, z) = A1

1 + iζ
e−r2/w2

0(1+iζ ). (2.10.8)

We work in the constant-pump approximation. We solve Eq. (2.10.7) by
adopting the trial solution

Aq(r, z) = Aq(z)

1 + iζ
e−qr2/w2

0(1+iζ ), (2.10.9)

where Aq(z) is a function of z. One might guess this form for the trial so-
lution because its radial dependence is identical to that of the source term in
Eq. (2.10.7). Note also that (ignoring the spatial variation of Aq(z)) the trial
solution corresponds to a beam with the same confocal parameter as the fun-
damental beam Eq. (2.10.8); this behavior makes sense in that the harmonic
wave is generated coherently over a region whose longitudinal extent is equal
to that of the fundamental wave. If the trial solution Eq. (2.10.9) is substi-
tuted into Eq. (2.10.7), we find that to very good approximation it satisfies
this equation so long as Aq(z) obeys the (ordinary) differential equation

dAq

dz
= iqω

2nqc
χ(q)Aq

1
ei�kz

(1 + iζ )q−1
. (2.10.10)

This equation can be integrated directly to obtain

Aq(z) = iqω

2nc
χ(q)Aq

1Jq(�k, z0, z), (2.10.11a)
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where

Jq(�k, z0, z) =
∫ z

z0

ei�kz′
dz′

(1 + 2iz′/b)q−1
, (2.10.11b)

and where z0 represents the value of z at the entrance to the nonlinear medium.
We see that the harmonic radiation is generated with a confocal parameter
equal to that of the incident laser beam. Hence the beam waist radius of the
qth harmonic radiation is q1/2 times smaller than that of the incident beam,
and the far-field diffraction angle θff = λ/πw0 is q1/2 times smaller than that
of the incident laser beam. We have solved Eq. (2.10.7) by guessing the correct
form (Eq. (2.10.9)) for the trial solution; a constructive solution to Eq. (2.10.7)
has been presented by Kleinman et al. (1966) for second-harmonic generation
and by Ward and New (1969) for the general case of qth-harmonic generation.

The integral appearing in Eq. (2.10.11b) can be evaluated analytically for
certain special cases. One such case is the plane-wave limit, where b �
|z0|, |z|. In this limit the integral reduces to

Jq(�k, z0, z) =
∫ z

z0

ei�kz′
dz′ = ei�kz − ei�kz0

i�k
, (2.10.12a)

which implies that

∣∣Jq(�k, z0, z)
∣∣2 = L2 sinc2

(
�kL

2

)
(2.10.12b)

where L = z − z0 is the length of the interaction region.
The opposite limiting case is that in which the fundamental wave is fo-

cused tightly within the interior of the nonlinear medium; this condition im-
plies that z0 = −|z0|, z = |z|, and b � |z0|, |z|. In this limit the integral in
Eq. (2.10.11b) can be approximated by replacing the limits of integration by
plus and minus infinity—that is,

Jq(�k, z0, z) =
∫ ∞

−∞
ei�kz′

dz′

(1 + 2iz′/b)q−1
. (2.10.13a)

This integral can be evaluated by means of a straightforward contour integra-
tion. One finds that

Jq(�k, z0, z) =
{

0, �k ≤ 0,

b
2

2π
(q−2)!(

b�k
2 )q−2e−b�k/2, �k > 0.

(2.10.13b)

This functional form is illustrated for the case of third-harmonic genera-
tion (q = 3) in Fig. 2.10.2. We find the somewhat surprising result that the
efficiency of third-harmonic generation in the tight-focusing limit vanishes
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FIGURE 2.10.2 Dependence of the phase-matching factor J3 for third-harmonic gen-
eration on the normalized confocal parameter b�k, in the tight-focusing limit.

identically for the case of perfect phase matching (�k = 0) and is maximized
through the use of a positive wavevector mismatch. This behavior can be un-
derstood in terms of the phase shift of π radians that any beam of light experi-
ences in passing through its focus. This effect is known as the phase anomaly
and was first studied systematically by Gouy (1890). For the case of nonlin-
ear optics, this effect has important consequences over and above the phase
shift imparted to the transmitted light beam, because in general the nonlinear
polarization p = ε0χ

(q)A
q

1 will experience a phase shift that is q times larger
than that experienced by the incident wave of amplitude A1. Consequently,
the nonlinear polarization will be unable to couple efficiently to the gener-
ated wave of amplitude Aq unless a wavevector mismatch �k is introduced to
compensate for the phase shift due to the passage of the incident wave through
its focus. The reason why �k should be positive in order for this compensa-
tion to occur can be understood intuitively in terms of the argument presented
in Fig. 2.10.3.

Boyd and Kleinman (1968) have considered how to adjust the focus of the
incident laser beam to optimize the efficiency of second-harmonic generation.
They find that the highest efficiency is obtained when beam walkoff effects
(mentioned in Section 2.3) are negligible, when the incident laser beam is fo-
cused so that the beam waist is located at the center of the crystal and the
ratio L/b is equal to 2.84, and when the wavevector mismatch is set equal to
�k = 3.2/L. In this case, the power generated at the second-harmonic fre-
quency is equal to

P2ω = K

[
128π2ω3

1d
2
effL

c4n1n2

]
P2

ω. (2.10.14)
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FIGURE 2.10.3 Illustration of why a positive value of �k is desirable in harmonic
generation with focused laser beams. (a) Wavevector diagram for third-harmonic gen-
eration with �k positive. Even though the process is phase mismatched, the fun-
damental beam contains an angular spread of wavevectors and the phase-matched
process illustrated in (b) can occur with high efficiency. (c) Conversely, for �k nega-
tive, efficient harmonic generation cannot occur.

Here K is a numerical constant that depends on the system of units in which
this equation is evaluated. For the gaussian system, which was used in the
original work, K = 1.068. In addition, Boyd and Kleinman show heuristi-
cally that other parametric processes, such as sum- and difference-frequency
generation, are optimized by choosing the same confocal parameter for both
input waves and applying the same criteria used to optimize second-harmonic
generation.

2.11. Nonlinear Optics at an Interface

There are certain nonlinear optical processes that can occur at the interface
between two dissimilar optical materials. Two such examples are shown sche-
matically in Fig. 2.11.1. Part (a) shows an optical wave falling onto a second-
order nonlinear optical material. We saw earlier (in Section 2.7) how to predict
the amplitude of the second-harmonic wave generated in the forward direc-
tion. But in fact, a much weaker second-harmonic wave is generated in reflec-
tion at the interface separating the two materials. We shall see in the present
section how to predict the intensity of this reflected harmonic wave. Part (b)
of the figure shows a wave falling onto a centrosymmetric nonlinear optical
material. Such a material cannot possess a bulk second-order nonlinear optical
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FIGURE 2.11.1 Illustration of second-harmonic generation in reflection at the surface
of (a) a second-order nonlinear optical material and (b) a centrosymmetric nonlinear
optical material.

susceptibility, but the presence of the interface breaks the inversion symmetry
for a thin region (of the order of one molecular diameter in thickness) near the
interface, and this thin layer can emit a second-harmonic wave. The intensity
of the light emitted by this surface layer depends sensitively on the structural
properties of the surface and especially upon the presence of molecules ab-
sorbed onto the surface. For this reason surface second-harmonic generation
is an important diagnostic method for studies in surface science.

Let us consider in greater detail the situation illustrated in part (a) of
Fig. 2.11.1. We assume that the wave at the fundamental frequency incident
on the interface can be described by

Ẽi(r, t) = Ei(ωi)e
−iωit + c.c. where Ei(ωi) = Ai(ωi)e

iki(ωi)·r. (2.11.1)

This wave will be partially reflected and partially transmitted into the nonlin-
ear optical material. Let us represent the transmitted component as

ET(ωi) = AT(ωi)e
ikT(ωi)·r, (2.11.2)

where the amplitude AT(ωi) and propagation direction kT(ωi) can be deter-
mined from the standard Fresnel equations of linear optics. For simplicity,
in the present discussion we ignore the effects of birefringence; we note that
birefringence vanishes identically in crystals (such as GaAs) that are noncen-
trosymmetric yet possess a cubic lattice. The transmitted fundamental wave
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will create a nonlinear polarization at frequency ωs = 2ωi within the medium
which we represent as

P̃(r, t) = Pe−iωst + c.c. where P = peiks(ωs)·r and p = p̂ε0χ
(2)
eff A2

T(ωi)

(2.11.3)

and where ks(ωs) = 2kT(ωi).
The details of the ensuing analysis differ depending upon whether p lies

within or is perpendicular to the plane of incidence. Here we treat only the
case of p perpendicular to the plane of incidence (also known as the TE
geometry); a treatment of the other case can be found for instance in Bloem-
bergen and Pershan (1962) or in Shen (1984). As described by Eq. (2.1.23),
this nonlinear polarization will give rise to radiation at the second-harmonic
frequency ωs. The generation of this radiation is governed by the equation

∇2E(ωs) + [
ε(ωs)ω

2
s /c

2]E(ωs) = −(
ω2

s /ε0c
2)p⊥eiks·r (2.11.4)

where p⊥ is the component of p perpendicular to the plane of incidence. The
formal solution to this equation consists of any particular solution plus a gen-
eral solution to the homogeneous version of this equation obtained by setting
its right-hand side equal to zero. It turns out that we can meet all of the ap-
propriate boundary conditions by assuming that the homogeneous solution is
an infinite plane wave of as yet unspecified amplitude A(ωs) and wavevector
kT(ωs). We thus represent the solution to Eq. (2.11.4) as

ET(ωs) = A(ωs)e
ikT(ωs)·r + (ω2

s /ε0c
2)

|ks|2 − |kT(ωs)|2 p⊥eiks·r, (2.11.5)

where ks = √
ε(ωs)ωs/c and where |kT(ωs)|2 = εT(ωs)ω2

s /c
2. The electro-

magnetic boundary conditions at the interface require that the components
of E and of H tangential to the plane of the interface be continuous. These
boundary conditions can be satisfied only if we postulate the existence of a
reflected, second-harmonic wave which we represent as

ER(ωs) = AR(ωs)e
ikR(ωs)·r. (2.11.6)

In order that the boundary conditions be met at each point along the interface,
it is necessary that the nonlinear polarization of wavevector ks = 2kT(ωi),
the transmitted second-harmonic wave of wavevector kT(ωs), and the re-
flected second-harmonic wave of wavevector kR(ωs) have identical wavevec-
tor components along the plane of the interface. This situation is illustrated in
Fig. 2.11.2, where we let x be a coordinate measured along the interface in
the plane of incidence and let z denote a coordinate measured perpendicular
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FIGURE 2.11.2 (a) Geometry showing the creation of a transmitted and reflected
second-harmonic wave at the surface of a second-order nonlinear optical material.
(b) Definition of the electric and magnetic field vectors for the case in which P is
perpendicular to the plane of incidence.

to the plane of incidence. We thus require that

ks
x = kR

x (ωs) = kT
x (ωs) (2.11.7)

(note that ks
x ≡ 2kT

x (ωi)). Furthermore, we can express the magnitude of each
of the propagation vectors in terms of the dielectric constant of each medium
as

kT(ωs) = ε
1/2
T (ωs) ωs/c, (2.11.8a)

kR(ωs) = ε
1/2
R (ωs) ωs/c, (2.11.8b)

ki(ωi) = ε
1/2
R (ωi) ωi/c, (2.11.8c)

where εR denotes the dielectric constant of the linear, incident medium and εT

denotes the linear dielectric constant of the nonlinear medium. For mathemati-
cal convenience, we also introduce a fictitious dielectric constant εs associated
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with the nonlinear polarization defined such that

ks = ε
1/2
s ωs/c. (2.11.9)

From Eqs. (2.11.7) through (2.11.9) we can readily determine expressions
relating the angles θi, θR, θs, and θT (see Fig. 2.11.2), which are given by

ε
1/2
R (ωi) sin θi = ε

1/2
R (ωs) sin θR = ε

1/2
T (ωs) sin θs = ε

1/2
s sin θs. (2.11.10)

This equation can be considered to be the nonlinear optical generalization of
Snell’s law.

We next apply explicitly the boundary conditions at the interface between
the linear and nonlinear medium. According to Eq. (2.11.5), p⊥ will lead to
the generation of an electric field in the E⊥ = Ey direction, and in accordance
with Maxwell’s equations the associated magnetic field will lie in the xz plane
(see part (b) of Fig. 2.11.2). The continuity of the tangential components of E
and H then leads to the equations

Ey : AR⊥ = AT⊥ + p⊥/ε0c
2[εs − εT(ωs)

]
,

Hx : − ε
1/2
R (ωs)A

R⊥ cos θR = ε
1/2
T (ωs)A

T⊥ cos θT

+ p⊥ cos θsε
1/2
s

/[
εs − εT(ωs)

]
. (2.11.11)

These equations are readily solved simultaneously to obtain expression for
AR⊥ and AT⊥. These expressions are then introduced into Eqs. (2.11.5) and
(2.11.6) to find that the transmitted and reflected fields are given by

ER⊥ = −μ0p⊥eikR(ωs)·r

[ε1/2
T (ωs) cos θT + ε

1/2
R (ωs) cos θR][ε1/2

T (ωs) cos θT + ε
1/2
s cos θs

]
≡ AR⊥eikR(ωs)·r, (2.11.12a)

ET⊥ = −μ0p⊥
εT(ωs) − εs

[
eiks ·r − ε

1/2
s cos θs + ε

1/2
R (ωs) cos θR

ε
1/2
T ωs) cos θT + ε

1/2
R (ωs) cos θR

eikT(ωs)·r
]
.

(2.11.12b)

The transmitted second-harmonic wave is thus composed of a homogeneous
wave with propagation vector kT and an inhomogeneous wave with propaga-
tion vector ks . We see from Fig. 2.11.2 that ks − kT must lie in the z direction
and is given by

ks − kT = �kẑ = (ωs/c)
[
ε

1/2
s cos θs − ε

1/2
T (ωs) cos θT

]
ẑ. (2.11.13)
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If this result is introduced into Eq. (2.11.12b), we can express the transmitted
field in the form

ET⊥ =
[
AR⊥ + μ0(ωs/c)

2p⊥
2kT(ωs)

(
ei�kz − 1

�k

)]
eikT(ωs)·r

≡ AT⊥ eikT(ωs)·r. (2.11.14)

This equation has the form of a plane wave with a spatially varying ampli-
tude; the spatial variation is a manifestation of imperfect phase matching of
the nonlinear optical interaction. The present formalism demonstrates that the
origin of the spatial variation is the interference of the homogeneous and in-
homogeneous solutions of the driven wave equation.

Let us interpret further the result given by Eq. (2.11.14). We assume that
�kz is much smaller than unity for all propagation distances z of interest. We
then find that, correct to first order in �k, the amplitude of the transmitted
wave is given by

AT⊥ = AR⊥ + (ω/c)2p⊥(iz)

2ε0c2kT(ωs)
= AR⊥ + i(ω/c)p⊥z

2ε0c2ε1/2(ωs)
. (2.11.15)

We see that the amplitude of the generated wave thus grows linearly from its
boundary value AR⊥. We also see from Eq. (2.11.12a) that AR⊥ will be given to
order of magnitude by

AR⊥ � − p⊥
4ε0c2ε

, (2.11.16)

where ε is some characteristic value of the dielectric constant of the region
near the interface. On the basis of this result, Eq. (2.11.15) can be approxi-
mated as

AT⊥ � − πp⊥
4ε0c2ε

[
1 − 2ikT(ωs)z

]
. (2.11.17)

This result shows that the surface term makes a contribution comparable to
that of the bulk term for a thickness t given by

t = λ/4π. (2.11.18)

Let us next examine the situation of Fig. 2.11.1(b), which considers har-
monic generation at the interface between two centrosymmetric media. An
accurate treatment of such a situation would require that we know the non-
linear optical properties of the region near the interface at a molecular level,
which is not possible at the present level of description (because we can rig-
orously deduce macroscopic properties from microscopic properties, but not
vice versa). Nonetheless, we can make an order-of-magnitude estimate of the
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amplitude of the reflected wave for typical materials. Let us model the in-
terface between two centrosymmetric materials as possessing a second-order
susceptibility χ(2) confined to a thickness of the order of a molecular di-
mension a0. Here χ(2) is a typical value of the second-order susceptibility
of a noncentrosymmetric material. This assumption taken in conjunction with
Eq. (2.11.18) leads to the prediction

AT⊥(centrosymmetric) = 4πa0

λ
AT⊥(noncentrosymmetric)

� 10−3AT⊥(noncentrosymmetric). (2.11.19)

This result is in agreement with the predictions of more detailed models (see,
for instance, Mizrahi and Sipe, 1988).

Problems

1. Infrared upconversion. One means of detecting infrared radiation is to
first convert the infrared radiation to the visible by the process of sum-
frequency generation. Assume that infrared radiation of frequency ω1 is
mixed with an intense laser beam of frequency ω2 to form the upcon-
verted signal at frequency ω3 = ω1 +ω2. Derive a formula that shows how
the quantum efficiency for converting infrared photons to visible photons
depends on the length L and nonlinear coefficient deff of the mixing crys-
tal, and on the phase mismatch �k. Estimate numerically the value of the
quantum efficiency for upconversion of 10-μm infrared radiation using a
1-cm-long proustite crystal, 1 W of laser power at a wavelength of 0.65
μm, and the case of perfect phase matching and optimum focusing.

[Ans.: ηQ = 2%.]
2. Sum-frequency generation. Solve the coupled-wave equations describing

sum-frequency generation (Eqs. (2.2.10) through (2.2.12b)) for the case
of perfect phase matching (�k = 0) but without making the approxima-
tion of Section 2.6 that the amplitude of the ω2 wave can be taken to be
constant.

[Hint: This problem is very challenging. For help, see Armstrong et al.
(1962).]

3. Systems of units. Rewrite each of the displayed equations in Sections 2.1
through 2.5 in the gaussian system of units.

4. Difference-frequency generation. Solve the coupled-amplitude equations
describing difference-frequency generation in the constant-pump limit,
and thereby verify Eqs. (2.9.2) of the text. Assume that ω1 + ω2 = ω3,
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where the amplitude A3 of the ω3 pump wave is constant, that the medium
is lossless at each of the optical frequencies, that the momentum mis-
match �k is arbitrary, and that in general there can be an input signal at
each of the frequencies ω1, ω2, and ω3. Interpret your results by sketching
representative cases of the solution and by taking special limiting cases
such as that of perfect phase matching and of only two input fields.

5. Second-harmonic generation. Verify that Eq. (2.7.29) possesses solutions
of the sort shown in Fig. 2.7.2.

6. Second-harmonic generation. Solve the coupled amplitude equations for
the case of second-harmonic generation with the initial conditions A2 =
0 but A1 arbitrary at z = 0. Assume that �k is arbitrary. Sketch how
|A(2ω)|2 varies with z for several values of �k, and thus verify the results
shown in Fig. 2.7.2.

7. Mode structure of an optical cavity. Verify Eq. (2.9.11).
[Ans.: Assume that the refractive index n is a function of ν and

require that an integral number m of half wavelengths fit within the
cavity of length Lc. Thus mλ/2 = Lc or, since λ = c/nν, we obtain
nν = cm/2Lc. We want to determine the frequency separation of adja-
cent modes. Thus, �(nν) = �(cm/2Lc) where � refers to the change
in the indicated quantity between adjacent modes. Note that �(nν) =
n�ν + ν�n = n�ν + ν(dn/dν)�ν = [n + ν(dn/dν)]�ν and that
�(cm/2Lc) = c/2Lc�(m) = c/2Lc. Thus,

�ν = c

2Lc(n + ν dn/dν)
= vg

2Lc

= c

2ngLc

,

where vg = c/[n + ν(dn/dν)] is the usual expression for the group ve-
locity and where ng = n + ν(dn/dν) is the group index.]

8. Mode structure of an optical cavity. Generalize the result of the previous
problem to the situation in which the cavity length is L but the material
medium has length Lc < L.

9. Quasi-phase-matching. Generalize the discussion of the text leading from
Eq. (2.4.1) to Eq. (2.4.6) by allowing the lengths of the inverted and non-
inverted sections of nonlinear optical material to be different. Let � be
the period of the structure and l be the length of the inverted region. Show
how each of the equations in this range is modified by this different as-
sumption, and comment explicitly on the resulting modification to the
value of dQ and to the condition for the establishment of quasi-phase-
matching.

10. Gaussian laser beams. Verify that Eqs. (2.10.4a) and (2.10.5a) are equiv-
alent descriptions of a gaussian laser beam, and verify that they satisfy
the paraxial wave Eq. (2.10.3).
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11. Gaussian laser beams. Verify the statement made in the text that the trial
solution given by Eq. (2.10.9) satisfies the paraxial wave equation in the
form of Eq. (2.10.7) if the amplitude Aq(z) satisfies the ordinary differ-
ential equation (2.10.10).

12. Phase matching with focused beams. Evaluate the integral appearing in
Eq. (2.10.13a) and thereby verify Eq. (2.10.13b).

13. Third-harmonic generation. Assuming the condition of perfect phase
matching, derive and solve exactly the coupled-amplitude equations de-
scribing third-harmonic generation. You may assume that the nonlin-
ear optical material is lossless. Include in your analysis the processes
described by the two susceptibility elements χ(3)(3ω;ω,ω,ω) and
χ(3)(ω;3ω,−ω,−ω). Calculate the intensity of the third harmonic wave
as a function of the length of the interaction region for the following two
situations: (a) In the limit in which the undepleted pump approximation
is valid. (b) For the general case in which the pump intensity cannot be
assumed to remain constant.

14. Poynting’s theorem. Derive the form of Poynting’s theorem valid for a
nonlinear optical material for which D̃ = ε0Ẽ + P̃ with P̃ = ε0[χ(1)Ẽ +
χ(2)Ẽ2 + χ(3)Ẽ3]. Assume that the material is nonmagnetic in the sense
that B̃ = μ0H̃.

15. Backward second-harmonic generation. Part (c) of Fig. 2.1.1 implies that
second-harmonic generation is radiated in the forward but is not appre-
ciably radiated in the backward direction. Verify that this conclusion is
in fact correct by deriving the coupled amplitude equation for a second-
harmonic field propagating in the backward direction, and show that the
amplitude of this wave can never become appreciable. (Note that a more
rigorous calculation that reaches the same conclusion is presented in Sec-
tion 2.11.)

16. Second-harmonic generation. Consider the process of second-harmonic
generation both with �k = 0 and �k �= 0 in a lossless material. State the
conditions under which the following types of behavior occur: (i) The
fundamental and second-harmonic fields periodically exchange energy.
(ii) The second-harmonic field asymptotically acquires all of the en-
ergy. (iii) The fundamental field asymptotically acquires all of the energy.
(iv) Part of the energy resides in each component, and this fraction does
not vary with z.

17. Manley–Rowe relations. Derive the Manley–Rowe relations for the
process of second-harmonic generation. The derivation is analogous to
that presented in Section 2.5 for the process of sum-frequency generation.
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18. Phase-matching requirements. Explain why processes such as second-
harmonic generation can be efficient only if the phase-matching relation
�k = 0 is satisfied, whereas no such requirement occurs for the case of
two-photon absorption.

19. Elementary treatment of second-harmonic generation. The treatment of
second-harmonic generation presented in the text is in many ways too
mathematically complicated to allow for a simple conceptual understand-
ing of the process. As an alternative, simpler approach, carry through the
suggestion presented the sentence that follows Eq. (2.7.12). In particular,
solve Eq. (2.7.11) in the undeplated pump limit and then use this result to
express the intensity of the generated field in terms of the intensity of the
fundamental field, the length L of the interaction region, and the value
�k of the wavevector mismatch.

20. Cascaded optical nonlinearities. The intent of this problem is to develop
an understanding of the phenomenon known as cascaded optical nonlin-
earities. By cascaded optical nonlinearities, one means that, through prop-
agation, a second-order nonlinearity can mimic a third-order nonlinearity.
In particular, in this problem you are to calculate the phase shift acquired
by an optical wave in propagating through a second-order nonlinear opti-
cal material under conditions of nearly phase-matched second-harmonic
generation, and to determine the conditions under which the phase shift
acquired by the fundamental wave is approximately proportional to the
product of the path length and the intensity.

To proceed, start for example with Eqs. (2.7.10) and (2.7.11), and show
that one can eliminate A2 to obtain the equation

d2A1

dz2
+ i�k

dA1

dz
− 
2(1 − 2|A1/A0|2

)
A1 = 0,

where 
 is a constant (give an expression for it) and A0 is the incident
value of the fundamental field. Show that under proper conditions (give
specifics) the solution to this equation corresponds to a wave whose phase
increases linearly with the length L of the nonlinear material and with the
intensity I of the incident wave.

21. Optimum focusing and second-harmonic generation. Explain why it is
that under optimum focusing conditions the power generated at the sec-
ond harmonic frequency scales linearly rather than quadratically with the
length L of the nonlinear crystal. (See Eq. (2.10.14).)

22. Harmonic generation with focused gaussian beams. Develop and eluci-
date a conceptual understanding of why the intensity of the generated
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harmonic signal vanishes whenever the phase mismatch factor �kL is
negative or zero. (See Fig. 2.10.2.)
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Chapter 3

Quantum-Mechanical Theory of the
Nonlinear Optical Susceptibility

3.1. Introduction

In this chapter, we use the laws of quantum mechanics to derive explicit
expressions for the nonlinear optical susceptibility. The motivation for ob-
taining these expressions is at least threefold: (1) these expressions display
the functional form of the nonlinear optical susceptibility and hence show
how the susceptibility depends on material parameters such as dipole transi-
tion moments and atomic energy levels, (2) these expressions display the in-
ternal symmetries of the susceptibility, and (3) these expressions can be used
to make predictions of the numerical values of the nonlinear susceptibilities.
These numerical predictions are particularly reliable for the case of atomic va-
pors, because the atomic parameters (such as atomic energy levels and dipole
transition moments) that appear in the quantum-mechanical expressions are
often known with high accuracy. In addition, since the energy levels of free
atoms are very sharp (as opposed to the case of most solids, where allowed en-
ergies have the form of broad bands), it is possible to obtain very large values
of the nonlinear susceptibility through the technique of resonance enhance-
ment. The idea behind resonance enhancement of the nonlinear optical sus-
ceptibility is shown schematically in Fig. 3.1.1 for the case of third-harmonic
generation. In part (a) of this figure, we show the process of third-harmonic
generation in terms of the virtual levels introduced in Chapter 1. In part (b) we
also show real atomic levels, indicated by solid horizontal lines. If one of the
real atomic levels is nearly coincident with one of the virtual levels of the indi-
cated process, the coupling between the radiation and the atom is particularly
strong and the nonlinear optical susceptibility becomes large.

135
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FIGURE 3.1.1 Third-harmonic generation described in terms of virtual levels (a) and
with real atomic levels indicated (b).

FIGURE 3.1.2 Three strategies for enhancing the process of third-harmonic genera-
tion.

Three possible strategies for enhancing the efficiency of third-harmonic
generation through the technique of resonance enhancement are illustrated in
Fig. 3.1.2. In part (a), the one-photon transition is nearly resonant, in part (b)
the two-photon transition is nearly resonant, and in part (c) the three-photon
transition is nearly resonant. The formulas derived later in this chapter demon-
strate that all three procedures are equally effective at increasing the value
of the third-order nonlinear susceptibility. However, the method shown in
part (b) is usually the preferred way in which to generate the third-harmonic
field with high efficiency, for the following reason. For the case of a one-
photon resonance (part a), the incident field experiences linear absorption and
is rapidly attenuated as it propagates through the medium. Similarly, for the
case of the three-photon resonance (part c), the generated field experiences
linear absorption. However, for the case of a two-photon resonance (part b),
there is no linear absorption to limit the efficiency of the process.
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3.2. Schrödinger Equation Calculation of the Nonlinear
Optical Susceptibility

In this section, we present a derivation of the nonlinear optical susceptibil-
ity based on quantum-mechanical perturbation theory of the atomic wave
function. The expressions that we derive using this formalism can be used to
make accurate predictions of the nonresonant response of atomic and molec-
ular systems. Relaxation processes, which are important for the case of near-
resonant excitation, cannot be adequately described by this formalism. Re-
laxation processes are discussed later in this chapter in connection with the
density matrix formulation of the theory of the nonlinear optical suscepti-
bility. Even though the density matrix formalism provides results that are
more generally valid, the calculation of the nonlinear susceptibility is much
more complicated when performed using this method. For this reason, we first
present a calculation of the nonlinear susceptibility based on the properties of
the atomic wavefunction, since this method is somewhat simpler and for this
reason gives a clearer picture of the underlying physics of the nonlinear inter-
action.

One of the fundamental assumption of quantum mechanics is that all of the
properties of the atomic system can be described in terms of the atomic wave-
function ψ(r, t), which is the solution to the time-dependent Schrödinger
equation

ih̄
∂ψ

∂t
= Ĥψ. (3.2.1)

Here Ĥ is the Hamiltonian operator∗

Ĥ = Ĥ0 + V̂ (t), (3.2.2)

which is written as the sum of the Hamiltonian Ĥ0 for a free atom and an
interaction Hamiltonian, V̂ (t), which describes the interaction of the atom
with the electromagnetic field. We usually take the interaction Hamiltonian to
be of the form

V̂ (t) = −μ̂ · Ẽ(t), (3.2.3)

where μ̂ = −er̂ is the electric dipole moment operator and −e is the charge
of the electron.

∗ We use a caret “above a quantity” to indicate that the quantity H is a quantum-mechanical oper-
ator. For the most part, in this book we work in the coordinate representation, in which case quantum-
mechanical operators are represented by ordinary numbers for positions and by differential operators
for momenta.
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3.2.1. Energy Eigenstates

For the case in which no external field is applied to the atom, the Hamil-
tonian Ĥ is simply equal to Ĥ0, and Schrödinger’s equation (3.2.1) possesses
solutions in the form of energy eigenstates. These states are also known as
stationary states, because the time of evolution of these states is given by a
simple exponential phase factor. These states have the form

ψn(r, t) = un(r)e−iωnt . (3.2.4a)

By substituting this form into the Schrödinger equation (3.2.1), we find that
the spatially varying part of the wavefunction un(r) must satisfy the eigen-
value equation (known as the time-independent Schrödinger equation)

Ĥ0un(r) = Enun(r), (3.2.4b)

where En = h̄ωn. Here n is a label used to distinguish the various solutions.
For future convenience, we assume that these solutions are chosen in such a
manner that they constitute a complete, orthonormal set satisfying the condi-
tion ∫

u∗
mun d3r = δmn. (3.2.5)

3.2.2. Perturbation Solution to Schrödinger’s Equation

For the general case in which the atom is exposed to an electromagnetic field,
Schrödinger’s equation (3.2.1) usually cannot be solved exactly. In such cases,
it is often adequate to solve Schrödinger’s equation through the use of pertur-
bation theory. In order to solve Eq. (3.2.1) systematically in terms of a pertur-
bation expansion, we replace the Hamiltonian (3.2.2) by

Ĥ = Ĥ0 + λV̂ (t), (3.2.6)

where λ is a continuously varying parameter ranging from zero to unity that
characterizes the strength of the interaction; the value λ = 1 corresponds to the
actual physical situation. We now seek a solution to Schrödinger’s equation in
the form of a power series in λ:

ψ(r, t) = ψ(0)(r, t) + λψ(1)(r, t) + λ2ψ(2)(r, t) + · · · . (3.2.7)

By requiring that the solution be of this form for any value of λ, we assure that
ψ(N) will be that part of the solution which is of order N in the interaction
energy V . We now introduce Eq. (3.2.7) into Eq. (3.2.1) and require that all
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terms proportional to λN satisfy the equality separately. We thereby obtain the
set of equations

ih̄
∂ψ(0)

∂t
= Ĥ0ψ

(0), (3.2.8a)

ih̄
∂ψ(N)

∂t
= Ĥ0ψ

(N) + V̂ ψ(N−1), N = 1,2,3 . . . . (3.2.8b)

Equation (3.2.8a) is simply Schrödinger’s equation for the atom in the ab-
sence of its interaction with the applied field; we assume for definiteness that
initially the atom is in state g (typically the ground state) so that the solution
to this equation can be represented as

ψ(0)(r, t) = ug(r)e−iEgt/h̄. (3.2.9)

The remaining equations in the perturbation expansion (Eq. (3.2.8b)) are read-
ily solved by making use of the fact that the energy eigenfunctions for the free
atom constitute a complete set of basis functions, in terms of which any func-
tion can be expanded. In particular, we represent the N th-order contribution
to the wavefunction ψ(N)(r, t) as the sum

ψ(N)(r, t) =
∑

l

a
(N)
l (t)ul(r)e−iωl t . (3.2.10)

Here a
(N)
l (t) gives the probability amplitude that, to N th order in the pertur-

bation, the atom is in energy eigenstate l at time t . If Eq. (3.2.10) is substituted
into Eq. (3.2.8b), we find that the probability amplitudes obey the system of
equations

ih̄
∑

l

ȧ
(N)
l ul(r)e−iωl t =

∑
l

a
(N−1)
l V̂ ul(r)e−iωl t , (3.2.11)

where the dot denotes a total time derivative. This equation relates all of the
probability amplitudes of order N to all of the amplitudes of order N − 1.
To simplify this equation, we multiply each side from the left by u∗

m and
we integrate the resulting equation over all space. Then through use of the
orthonormality condition (3.2.5), we obtain the equation

ȧ(N)
m (t) = (ih̄)−1

∑
l

a
(N−1)
l (t)Vml(t)e

iωmlt , (3.2.12)

where ωml ≡ ωm − ωl and where we have introduced the matrix elements of
the perturbing Hamiltonian, which are defined by

Vml ≡ 〈
um

∣∣V̂ ∣∣ul

〉 =
∫

u∗
mV̂ ul d

3r. (3.2.13)
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The form of Eq. (3.2.12) demonstrates the usefulness of the perturbation tech-
nique; once the probability amplitudes of order N −1 are determined, the am-
plitudes of the next higher order (N) can be obtained by straightforward time
integration. In particular, we find that

a(N)
m (t) = (ih̄)−1

∑
l

∫ t

−∞
dt ′Vml(t

′)a(N−1)
l (t ′)eiωmlt

′
. (3.2.14)

We shall eventually be interested in determining the linear, second-order,
and third-order optical susceptibilities. To do so, we shall require explicit ex-
pressions for the probability amplitudes up to third order in the perturbation
expansion. We now determine the form of these amplitudes.

To determine the first-order amplitudes a
(1)
m (t), we set a

(0)
l in Eq. (3.2.14)

equal to δlg , corresponding to an atom known to be in state g in zeroth order.
We represent the optical field Ẽ(t) as a discrete sum of (positive and negative)
frequency components as

Ẽ(t) =
∑
p

E(ωp)e−iωpt . (3.2.15)

Through use of Eqs. (3.2.3) and (3.2.15), we can then replace Vml(t
′) by

−∑
p μml · E(ωp) exp(−iωpt ′), where μml = ∫

u∗
mμ̂ul d

3r is known as the
electric dipole transition moment. We next evaluate the integral appearing in
Eq. (3.2.14) and assume that the contribution from the lower limit of integra-
tion vanishes; we thereby find that

a(1)
m (t) = 1

h̄

∑
p

μmg · E(ωp)

ωmg − ωp

ei(ωmg−ωp)t . (3.2.16)

We next determine the second-order correction to the probability ampli-
tudes by using Eq. (3.2.14) once again, but with N set equal to 2. We intro-
duce Eq. (3.2.16) for a

(1)
m into the right-hand side of this equation and perform

the integration to find that

a(2)
n (t) = 1

h̄2

∑
pq

∑
m

[μnm · E(ωq)][μmg · E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

ei(ωng−ωp−ωq)t . (3.2.17)

Analogously, through an additional use of Eq. (3.2.14), we find that the
third-order correction to the probability amplitude is given by

a(3)
ν (t) = 1

h̄3

∑
pqr

∑
mn

[μνn · E(ωr)][μnm · E(ωq)][μmg · E(ωp)]
(ωνg − ωp − ωq − ωr)(ωng − ωp − ωq)(ωmg − ωp)

× ei(ωνg−ωp−ωq−ωr)t . (3.2.18)
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3.2.3. Linear Susceptibility

Let us use the results just obtained to describe the linear optical properties of
a material system. According to the rules of quantum mechanics, the expecta-
tion value of the electric dipole moment is given by

〈p̃〉 = 〈ψ |μ̂|ψ〉, (3.2.19)

where ψ is given by the perturbation expansion (3.2.7) with λ set equal to one.
We thus find that the lowest-order contribution to 〈p̃〉 (i.e., the contribution
linear in the applied field amplitude) is given by〈

p̃(1)
〉 = 〈

ψ(0)
∣∣μ̂∣∣ψ(1)

〉 + 〈
ψ(1)

∣∣μ̂∣∣ψ(0)
〉
, (3.2.20)

where ψ(0) is given by Eq. (3.2.9) and ψ(1) is given by Eqs. (3.2.10) and
(3.2.16). By substituting these forms into Eq. (3.2.20) we find that

〈
p̃(1)

〉 = 1

h̄

∑
p

∑
m

(
μgm[μmg ·E(ωp)]

ωmg − ωp

e−iωpt + [μmg ·E(ωp)]∗μmg

ω∗
mg − ωp

eiωpt

)
.

(3.2.21)

In writing Eq. (3.2.21) in the form shown, we have formally allowed the
possibility that the transition frequency ωmg is a complex quantity. We have
done this because a crude way of incorporating damping phenomena into the
theory is to take ωmg to be the complex quantity ωmg = (Em − Eg)/h̄ −
i�m/2, where �m is the population decay rate of the upper level m. This
procedure is not totally acceptable, because it cannot describe the cascade of
population among the excited states nor can it describe dephasing processes
that are not accompanied by the transfer of population. Nonetheless, for the
remainder of the present section, we shall allow the transition frequency to be
a complex quantity in order to provide an indication of how damping effects
could be incorporated into the present theory.

Equation (3.2.21) is written as a summation over all positive and negative
field frequencies ωp . This result is easier to interpret if we formally replace
ωp by −ωp in the second term, in which case the expression becomes

〈
p̃(1)

〉 = 1

h̄

∑
p

∑
m

(
μgm[μmg ·E(ωp)]

ωmg − ωp

+ [μgm ·E(ωp)]μmg

ω∗
mg + ωp

)
e−iωpt .

(3.2.22)

We now use this result to calculate the form of the linear susceptibility.
We take the linear polarization to be P̃(1) = N〈p̃(1)〉, where N is the number
density of atoms. We next express the polarization in terms of its complex
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FIGURE 3.2.1 The resonant (a) and antiresonant (b) contributions to the linear sus-
ceptibility of Eq. (3.2.23).

amplitude as P̃(1) = ∑
p P(1)(ωp) exp(−iωpt). Finally, we introduce the lin-

ear susceptibility defined through the relation P
(1)
i (ωp) = ε0

∑
j χ

(1)
ij Ej (ωp).

We thereby find that

χ
(1)
ij (ωp) = N

ε0h̄

∑
m

(
μi

gmμ
j
mg

ωmg − ωp

+ μ
j
gmμi

mg

ω∗
mg + ωp

)
. (3.2.23)

The first and second terms in Eq. (3.2.23) can be interpreted as the resonant
and antiresonant contributions to the susceptibility, as illustrated in Fig. 3.2.1.
In this figure we have indicated where level m would have to be located in
order for the corresponding term to become resonant. Note that if g denotes
the ground state, it is impossible for the second term to become resonant,
which is why it is called the antiresonant contribution.

3.2.4. Second-Order Susceptibility

The expression for the second-order susceptibility is derived in a manner anal-
ogous to that used for the linear susceptibility. The second-order contribution
(i.e., the contribution second order in V̂ ) to the induced dipole moment per
atom is given by〈

p̃(2)
〉 = 〈

ψ(0)
∣∣μ̂∣∣ψ(2)

〉 + 〈
ψ(1)

∣∣μ̂∣∣ψ(1)
〉 + 〈

ψ(2)
∣∣μ̂∣∣ψ(0)

〉
, (3.2.24)

where ψ(0) is given by Eq. (3.2.9), and ψ(1) and ψ(2) are given by
Eqs. (3.2.10), (3.2.16), and (3.2.17). We find that 〈p̃(2)〉 is given explicitly by

〈
p̃(2)

〉 = 1

h̄2

∑
pq

∑
mn

(
μgn[μnm ·E(ωq)][μmg ·E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

e−i(ωp+ωq)t

+ [μng ·E(ωq)]∗μnm[μmg ·E(ωq)]
(ω∗

ng − ωq)(ωmg − ωp)
e−i(ωp−ωq)t

+ [μng ·E(ωq)]∗[μnm ·E(ωp)]∗μmg

(ω∗
ng − ωq)(ω∗

mg − ωq − ωq)
ei(ωp+ωq)t

)
. (3.2.25)
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As in the case of the linear susceptibility, this equation can be rendered more
transparent by replacing ωq by −ωq in the second term and by replacing ωq

by −ωq and ωp by −ωp in the third term; these substitutions are permis-
sible because the expression is to be summed over frequencies ωp and ωq .
We thereby obtain an expression in which each term has the same frequency
dependence:

〈
p̃(2)

〉 = 1

h̄2

∑
pq

∑
mn

(
μgn[μnm ·E(ωq)][μmg ·E(ωp)]
(ωng − ωp − ωq)(ωmg − ωp)

+ [μgn ·E(ωq)]μnm[μmg ·E(ωp)]
(ω∗

ng + ωq)(ωmg − ωp)

+ [μgn ·E(ωq)][μnm ·E(ωp)]μmg

(ω∗
ng + ωq)(ω∗

mg + ωq + ωq)

)
e−i(ωp+ωqt). (3.2.26)

We next take the second-order polarization to be P̃(2) = N〈p̃(2)〉 and repre-
sent it in terms of its frequency components as P̃(2) = ∑

r P(2)(ωr) exp(−iωr t).
We also introduce the standard definition of the second-order susceptibility
(see also Eq. (1.3.13)):

P
(2)
i = ε0

∑
jk

∑
(pq)

χ
(2)
ijk (ωp + ωq,ωq,ωp)Ej (ωq)Ek(ωp)

and find that the second-order susceptibility is given by

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

ε0h̄
2
PI

∑
mn

(
μi

gnμ
j
nmμk

mg

(ωng − ωp − ωq)(ωmg − ωp)

+ μ
j
gnμ

i
nmμk

mg

(ω∗
ng + ωq)(ωmg − ωp)

+ μ
j
gnμ

k
nmμi

mg

(ω∗
ng + ωq)(ω∗

mg + ωp + ωq)

)
. (3.2.27)

In this expression, the symbol PI denotes the intrinsic permutation operator.
This operator tells us to average the expression that follows it over both per-
mutations of the frequencies ωp and ωq of the applied fields. The Cartesian
indices j and k are to be permuted simultaneously. We introduce the intrinsic
permutation operator into Eq. (3.2.27) to ensure that the resulting expression
obeys the condition of intrinsic permutation symmetry, as described in the
discussion of Eqs. (1.4.52) and (1.5.6). The nature of the expression (3.2.27)
for the second-order susceptibility can be understood in terms of the energy
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FIGURE 3.2.2 Resonance structure of the three terms of the second-order suscepti-
bility of Eq. (3.2.27).

level diagrams depicted in Fig. 3.2.2, which show where the levels m and n

would have to be located in order for each term in the expression to become
resonant.

The quantum-mechanical expression for the second-order susceptibility
given by Eq. (3.2.27) is sometimes called a sum-over states expression be-
cause it involves a sum over all of the excited states of the atom. This ex-
pression actually is comprised of six terms; through use of the intrinsic per-
mutation operator PI , we have been able to express the susceptibility in the
form (3.2.27), in which only three terms are displayed explicitly. For the case
of highly nonresonant excitation, such that the resonance frequencies ωmg

and ωng can be taken to be real quantities, the expression for χ(2) can be sim-
plified still further. In particular, under such circumstances Eq. (3.2.27) can
be expressed as

χ
(2)
ijk (ωσ ,ωq,ωp) = N

ε0h̄
2
PF

∑
mn

μi
gnμ

j
nmμk

mg

(ωng − ωσ )(ωmg − ωp)
, (3.2.28)

where ωσ = ωp +ωq . Here we have introduced the full permutation operator,
PF , defined such that the expression that follows it is to be summed over all
permutations of the frequencies ωp , ωq , and −ωσ —that is, over all input and
output frequencies. The Cartesian indices are to be permuted along with the
frequencies. The final result is then to be divided by the number of permuta-
tions of the input frequencies. The equivalence of Eqs. (3.2.27) and (3.2.28)
can be verified by explicitly expanding the right-hand side of each equation
into all six terms. The six permutations denoted by the operator PF are

(−ωσ ,ωq,ωp) → (−ωσ ,ωp,ωq), (ωq,−ωσ ,ωp), (ωq,ωp,−ωσ ),

(ωp,−ωσ ,ωq), (ωp,ωq,−ωσ ).
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Since we can express the nonlinear susceptibility in the form of Eq. (3.2.28),
we have proven the statement made in Section 1.5 that the second-order sus-
ceptibility of a lossless medium possesses full permutation symmetry.

3.2.5. Third-Order Susceptibility

We now calculate the third-order susceptibility. The dipole moment per atom,
correct to third order in perturbation theory, is given by

〈
p̃(3)

〉 = 〈
ψ(0)

∣∣μ̂∣∣ψ(3)
〉 + 〈

ψ(1)
∣∣μ̂∣∣ψ(2)

〉 + 〈
ψ(2)

∣∣μ̂∣∣ψ(1)
〉 + 〈

ψ(3)
∣∣μ̂∣∣ψ(0)

〉
.

(3.2.29)

Formulas for ψ(0),ψ(1),ψ(2),ψ(3), are given by Eqs. (3.2.9), (3.2.10),
(3.2.16), (3.2.17), and (3.2.18). We thus find that

〈
p̃(3)

〉 = 1

h̄3

∑
pqr

∑
mnν

×
(

μgν[μνn ·E(ωr)][μnm ·E(ωq)][μmg ·E(ωp)]
(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

× e−i(ωp+ωq+ωr)t

+ [μνg ·E(ωr)]∗μνn[μnm ·E(ωq)][μmg ·E(ωp)]
(ω∗

νg − ωr)(ωng − ωq − ωp)(ωmg − ωp)

× e−i(ωp+ωq−ωr)t

+ [μνg ·E(ωr)]∗[μnν ·E(ωq)]∗μnm[μmg ·E(ωp)]
(ω∗

νg − ωr)(ω∗
ng − ωr − ωq)(ωmg − ωp)

× e−i(ωp−ωq−ωr)t

+ [μνg ·E(ωr)]∗[μnν ·E(ωq)]∗[μmn ·E(ωp)]∗μmg

(ω∗
νg − ωr)(ω∗

ng − ωr − ωq)(ω∗
mg − ωr − ωq − ωp)

× e+i(ωp+ωq+ωr)t

)
. (3.2.30)

Since the expression is summed over all positive and negative values
of ωp,ωq , and ωr , we can replace these quantities by their negatives in those
expressions where the complex conjugate of a field amplitude appears. We
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thereby obtain the expression

〈
p̃(3)

〉 = 1

h̄3

∑
pqr

∑
mnν

×
(

μgν[μνn ·E(ωr)][μnm ·E(ωq)][μmg ·E(ωp)]
(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

+ [μgν ·E(ωr)]μνn[μnm ·E(ωq)][μmg ·E(ωp)]
(ω∗

νg + ωr)(ωng − ωq − ωp)(ωmg − ωp)

+ [μgν ·E(ωr)][μνn ·E(ωq)]μnm[μmg ·E(ωp)]
(ω∗

νg + ωr)(ω∗
ng + ωr + ωq)(ωmg − ωp)

+ [μgν ·E(ωr)][μνn ·E(ωq)][μnm ·E(ωp)]μmg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ω∗
mg + ωr + ωq + ωp)

)

× e−i(ωp+ωq+ωr)t . (3.2.31)

We now use this result to calculate the third-order susceptibility: We
let P̃(3) = N〈p̃(3)〉 = ∑

s P(3)(ωs) exp(−iωst) and introduce the defini-
tion (1.3.21) of the third-order susceptibility:

Pk(ωp +ωq +ωr) = ε0

∑
hij

∑
(pqr)

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)Ej (ωr)Ei(ωq)Eh(ωp).

We thereby obtain the result

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0h̄
3
PI

∑
mnν

[
μk

gνμ
j
νnμ

i
nmμh

mg

(ωνg − ωr − ωq − ωp)(ωng − ωq − ωp)(ωmg − ωp)

+ μ
j
gνμ

k
νnμ

i
nmμh

mg

(ω∗
νg + ωr)(ωng − ωq − ωp)(ωmg − ωp)

+ μ
j
gνμ

i
νnμ

k
nmμh

mg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ωmg − ωp)

+ μ
j
gνμ

i
νnμ

h
nmμk

mg

(ω∗
νg + ωr)(ω∗

ng + ωr + ωq)(ω∗
mg + ωr + ωq + ωp)

]
. (3.2.32)

Here we have again made use of the intrinsic permutation operator PI defined
following Eq. (3.2.27). The complete expression for the third-order suscepti-
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FIGURE 3.2.3 Locations of the resonances of each term in the expression (3.2.32) for
the third-order susceptibility.

bility actually contains 24 terms, of which only four are displayed explicitly in
Eq. (3.2.33); the others can be obtained through permutations of the frequen-
cies (and Cartesian indices) of the applied fields. The locations of the reso-
nances in the displayed terms of this expression are illustrated in Fig. 3.2.3.

As in the case of the second-order susceptibility, the expression for χ(3)

can be written very compactly for the case of highly nonresonant excitation
such that the imaginary parts of the resonance frequencies (recall that ωlg =
(El −Eg)/h̄− i�l/2) can be ignored. In this case, the expression for χ(3) can
be written as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0h̄
3
PF

∑
mnν

μk
gνμ

j
νnμ

i
nmμh

mg

(ωνg − ωσ )(ωng − ωq − ωp)(ωmg − ωp)
, (3.2.33)

where ωσ = ωp + ωq + ωr and where we have made use of the full permuta-
tion operator PF defined following Eq. (3.2.28).

3.2.6. Third-Harmonic Generation in Alkali Metal Vapors

As an example of the use of Eq. (3.2.33), we next calculate the nonlinear op-
tical susceptibility describing third-harmonic generation in a vapor of sodium
atoms. Except for minor changes in notation, our treatment follows that of the
original treatment of Miles and Harris (1973). We assume that the incident
radiation is linearly polarized in the z direction. Consequently, the nonlinear
polarization will have only a z component, and we can suppress the tensor
nature of the nonlinear interaction. If we represent the applied field as

Ẽ(r, t) = E1(r)e−iωt + c.c., (3.2.34)
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we find that the nonlinear polarization can be represented as

P̃ (r, t) = P3(r)e−i3ωt + c.c., (3.2.35)

where

P3(r) = ε0χ
(3)(3ω)E3

1 . (3.2.36)

Here χ(3)(3ω) is an abbreviated form of the quantity χ(3)(3ω = ω + ω + ω).
The nonlinear susceptibility describing third-harmonic generation is given,
ignoring damping effects, by

χ(3)(3ω) = N

ε0h̄
3

∑
mnν

μgνμνnμnmμmg

×
[

1

(ωνg − 3ω)(ωng − 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng − 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng + 2ω)(ωmg − ω)

+ 1

(ωνg + ω)(ωng + 2ω)(ωmg + 3ω)

]
. (3.2.37)

Equation (3.2.37) can be readily evaluated through use of the known energy
level structure and dipole transition moments of the sodium atom. Figure 3.2.4

FIGURE 3.2.4 (a) Energy-level diagram of the sodium atom. (b) The third-harmonic
generation process.
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FIGURE 3.2.5 Two coupling schemes that contribute to the third-order susceptibility.

shows an energy level diagram of the low-lying states of the sodium atom and
a photon energy level diagram describing the process of third-harmonic gen-
eration. We see that only the first contribution to Eq. (3.2.37) can become fully
resonant. This term becomes fully resonant when ω is nearly equal to ωmg ,
2ω is nearly equal to ωng , and 3ω is nearly equal to ωνg . In performing the
summation over excited levels m, n, and ν, the only levels that contribute are
those that obey the selection rule �l = ±1 for electric dipole transitions. In
particular, since the ground state is an s state, the matrix element μmg will be
nonzero only if m denotes a p state. Similarly, since m denotes a p state, the
matrix element μnm will be nonzero only if n denotes an s or a d state. In
either case, ν must denote a p state, since only in this case can both μνn and
μgν be nonzero. The two types of coupling schemes that contribute to χ(3)

are shown in Fig. 3.2.5.
Through use of tabulated values of the matrix elements for the sodium atom,

Miles and Harris (1973) have calculated numerically the value of χ(3) as a
function of the vacuum wavelength λ = 2πc/ω of the incident laser field.
The results of this calculation are shown in Fig. 3.2.6. A number of strong
resonances in the nonlinear susceptibility are evident. Each such resonance is
labeled by the quantum number of the level and the type of resonance that
leads to the resonance enhancement. The peak labeled 3p(3ω), for example,
is due to a three-photon resonance with the 3p level of sodium. Miles and
Harris also presented experimental results that confirm predictions of their
theory.

Because atomic vapors are centrosymmetric, they cannot produce a second-
order response. Nonetheless, the presence of a static electric field can break
the inversion symmetry of the material medium, allowing processes such as
sum-frequency generation to occur. These effects can be particularly large if
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FIGURE 3.2.6 The nonlinear susceptibility describing third-harmonic generation in
atomic sodium vapor plotted versus the vacuum wavelength of the fundamental radi-
ation (after Miles and Harris, 1973).

the optical fields excite the high-lying Rydberg levels of an atomic system.
The details of this process have been described theoretically by Boyd and
Xiang (1982), with experimental confirmation presented by Gauthier et al.
(1983) and Boyd et al. (1984).

3.3. Density Matrix Formulation of Quantum Mechanics

In the present section through Section 3.7, we calculate the nonlinear optical
susceptibility through use of the density matrix formulation of quantum me-
chanics. We use this formalism because it is capable of treating effects, such
as collisional broadening of the atomic resonances, that cannot be treated by
the simple theoretical formalism based on the atomic wave function. We need
to be able to treat such effects for a number of related reasons. We saw in the
previous section that nonlinear effects become particularly large when one
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of the frequencies of the incident laser field, or when sums or differences of
these frequencies, becomes equal to a transition frequency of the atomic sys-
tem. But the formalism of the previous section does not allow us to describe
the width of these resonances, and thus it cannot tell us how accurately we
need to set the laser frequency to that of the atomic resonance. The wavefunc-
tion formalism also does not tell us how strongly the response is modified
when the laser frequency lies within the width of the resonance.

Let us begin by reviewing how the density matrix formalism follows from
the basic laws of quantum mechanics.∗ If a quantum-mechanical system (such
as an atom) is known to be in a particular quantum-mechanical state that we
designate s, we can describe all of the physical properties of the system in
terms of the wavefunction ψs(r, t) appropriate to this state. This wavefunction
obeys the Schrödinger equation

ih̄
∂ψs(r, t)

∂t
= Ĥψs(r, t), (3.3.1)

where Ĥ denotes the Hamiltonian operator of the system. We assume that Ĥ

can be represented as

Ĥ = Ĥ0 + V̂ (t), (3.3.2)

where Ĥ0 is the Hamiltonian for a free atom and V̂ (t) represents the inter-
action energy. In order to determine how the wavefunction evolves in time, it
is often helpful to make explicit use of the fact that the energy eigenstates of
the free-atom Hamiltonian Ĥ0 form a complete set of basis functions. We can
hence represent the wavefunction of state s as

ψs(r, t) =
∑
n

Cs
n(t)un(r), (3.3.3)

where, as we noted in Section 3.2, the functions un(r) are the energy eigen-
solutions to the time-independent Schrödinger equation

Ĥ0un(r) = Enun(r), (3.3.4)

which are assumed to be orthonormal in that they obey the relation∫
u∗

m(r)un(r) d3r = δmn. (3.3.5)

The expansion coefficient Cs
n(t) gives the probability amplitude that the atom,

which is known to be in state s, is in energy eigenstate n at time t . The time

∗ The reader who is already familiar with the density matrix formalism can skip directly to Sec-
tion 3.4.
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evolution of ψs(r, t) can be specified in terms of the time evolution of each of
the expansion coefficient Cs

n(t). To determine how these coefficients evolve in
time, we introduce the expansion (3.3.3) into Schrödinger’s equation (3.3.1)
to obtain

ih̄
∑
n

dCs
n(t)

dt
un(r) =

∑
n

Cs
n(t)Ĥun(r). (3.3.6)

Each side of this equation involves a summation over all of the energy eigen-
states of the system. In order to simplify this equation, we multiply each side
from the left by u∗

m(r) and integrate over all space. The summation on the
left-hand side of the resulting equation reduces to a single term through use
of the orthogonality condition of Eq. (3.3.5). The right-hand side is simplified
by introducing the matrix elements of the Hamiltonian operator Ĥ , defined
through

Hmn =
∫

u∗
m(r)Ĥun(r) d3r. (3.3.7)

We thereby obtain the result

ih̄
d

dt
Cs

m(t) =
∑
n

HmnC
s
n(t). (3.3.8)

This equation is entirely equivalent to the Schrödinger equation (3.3.1), but it
is written in terms of the probability amplitudes Cs

n(t).
The expectation value of any observable quantity can be calculated in terms

of the wavefunction of the system. A basic postulate of quantum mechanics
states that any observable quantity A is associated with a Hermitian opera-
tor Â. The expectation value of A is then obtained according to the prescrip-
tion

〈A〉 =
∫

ψ∗
s Âψs d3r. (3.3.9)

Here the angular brackets denote a quantum-mechanical average. This rela-
tionship can alternatively be written in Dirac notation as

〈A〉 = 〈
ψs

∣∣Â∣∣ψs

〉 = 〈
s
∣∣Â∣∣s〉, (3.3.10)

where we shall use either |ψs〉 or |s〉 to denote the state s. The expectation
value 〈A〉 can be expressed in terms of the probability amplitudes Cs

n(t) by
introducing Eq. (3.3.3) into Eq. (3.3.9) to obtain

〈A〉 =
∑
mn

Cs∗
m Cs

nAmn, (3.3.11)
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where we have introduced the matrix elements Amn of the operator Â, defined
through

Amn = 〈
um

∣∣Â∣∣un

〉 =
∫

u∗
mÂun d3r. (3.3.12)

As long as the initial state and the Hamiltonian operator Ĥ for the system
are known, the formalism described by Eqs. (3.3.1) through (3.3.12) is capable
of providing a complete description of the time evolution of the system and
of all of its observable properties. However, there are circumstances under
which the state of the system is not known in a precise manner. An example
is a collection of atoms in an atomic vapor, where the atoms can interact with
one another by means of collisions. Each time a collision occurs, the wave
function of each interacting atom is modified. If the collisions are sufficiently
weak, the modification may involve only an overall change in the phase of the
wave function. However, since it is computationally infeasible to keep track
of the phase of each atom within the atomic vapor, from a practical point of
view the state of each atom is not known.

Under such circumstances, where the precise state of the system is un-
known, the density matrix formalism can be used to describe the system in
a statistical sense. Let us denote by p(s) the probability that the system is in
the state s. The quantity p(s) is to be understood as a classical rather than
a quantum-mechanical probability. Hence p(s) simply reflects our lack of
knowledge of the actual quantum-mechanical state of the system; it is not a
consequence of any sort of quantum-mechanical uncertainty relation. In terms
of p(s), we define the elements of the density matrix of the system by

ρnm =
∑

s

p(s)Cs∗
m Cs

n. (3.3.13)

This relation can also be written symbolically as

ρnm = C∗
mCn, (3.3.14)

where the overbar denotes an ensemble average, that is, an average over all
of the possible states of the system. In either form, the indices n and m are
understood to run over all of the energy eigenstates of the system.

The elements of the density matrix have the following physical interpre-
tation: The diagonal elements ρnn give the probability that the system is in
energy eigenstate n. The off-diagonal elements have a somewhat more ab-
stract interpretation: ρnm gives the “coherence” between levels n and m, in
the sense that ρnm will be nonzero only if the system is in a coherent super-
position of energy eigenstate n and m. We show below that the off-diagonal
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elements of the density matrix are, in certain circumstances, proportional to
the induced electric dipole moment of the atom.

The density matrix is useful because it can be used to calculate the expec-
tation value of any observable quantity. Since the expectation value of an ob-
servable quantity A for a system known to be in the quantum state s is given
according to Eq. (3.3.11) by 〈A〉 = ∑

mn Cs∗
m Cs

nAmn, the expectation value
for the case in which the exact state of the system is not known is obtained by
averaging Eq. (3.3.11) over all possible states of the system, to yield

〈A〉 =
∑

s

p(s)
∑
nm

Cs∗
m Cs

nAmn. (3.3.15)

The notation used on the left-hand side of this equation means that we are cal-
culating the ensemble average of the quantum-mechanical expectation value
of the observable quantity A.∗ Through use of Eq. (3.3.13), this quantity can
alternatively be expressed as

〈A〉 =
∑
nm

ρnmAmn. (3.3.16)

The double summation in the equation can be simplified as follows:
∑
nm

ρnmAmn =
∑
n

(∑
m

ρnmAmn

)
=

∑
n

(
ρ̂Â

)
nn

≡ tr
(
ρ̂Â

)
,

where we have introduced the trace operation, which is defined for any oper-
ator M̂ by tr M̂ = ∑

n Mnn. The expectation value of A is hence given by

〈A〉 = tr
(
ρ̂Â

)
. (3.3.17)

The notation used in these equations is that ρ̂ denotes the density operator,
whose n,m matrix component is denoted ρnm; ρ̂Â denotes the product of ρ̂

with the operator Â; and (ρ̂Â)nn denotes the n, n component of the matrix
representation of this product.

We have just seen that the expectation value of any observable quantity
can be determined straightforwardly in terms of the density matrix. In order
to determine how any expectation value evolves in time, it is thus necessary
only to determine how the density matrix itself evolves in time. By direct time
differentiation of Eq. (3.3.13), we find that

ρ̇nm =
∑

s

dp(s)

dt
Cs∗

m Cs
n +

∑
s

p(s)

(
Cs∗

m

dCs
n

dt
+ dCs∗

m

dt
Cs

n

)
. (3.3.18)

∗ In later sections of this chapter, we shall follow conventional notation and omit the overbar from
expressions such as 〈A〉, allowing the angular brackets to denote both a quantum and a classical
average.
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For the present, let us assume that p(s) does not vary in time, so that the
first term in this expression vanishes. We can then evaluate the second term
straightforwardly by using Schrödinger’s equation for the time evolution of
the probability amplitudes equation (3.3.8). From this equation we obtain the
expressions

Cs∗
m

dCs
n

dt
= −i

h̄
Cs∗

m

∑
ν

HnνC
s
ν,

Cs
n

dCs∗
m

dt
= i

h̄
Cs

n

∑
ν

H ∗
mνC

s∗
ν = i

h̄
Cs

n

∑
ν

HνmCs∗
ν .

These results are now substituted into Eq. (3.3.18) (with the first term on the
right-hand side omitted) to obtain

ρ̇nm =
∑

s

p(s)
i

h̄

∑
ν

(
Cs

nC
s∗
ν Hνm − Cs∗

m Cs
νHnν

)
. (3.3.19)

The right-hand side of this equation can be written more compactly by intro-
ducing the form (3.3.13) for the density matrix to obtain

ρ̇nm = i

h̄

∑
ν

(ρnνHνm − Hnνρνm). (3.3.20)

Finally, the summation over ν can be performed formally to write this result
as

ρ̇nm = i

h̄

(
ρ̂Ĥ − Ĥ ρ̂

)
nm

= −i

h̄

[
Ĥ , ρ̂

]
nm

. (3.3.21)

We have written the last form in terms of the commutator, defined for any two
operators Â and B̂ by [Â, B̂] = ÂB̂ − B̂Â.

Equation (3.3.21) describes how the density matrix evolves in time as the
result of interactions that are included in the Hamiltonian Ĥ . However, as
mentioned above, there are certain interactions (such as those resulting from
collisions between atoms) that cannot conveniently be included in a Hamil-
tonian description. Such interactions can lead to a change in the state of the
system, and hence to a nonvanishing value of dp(s)/dt . We include such
effects in the formalism by adding phenomenological damping terms to the
equation of motion (3.3.21). There is more than one way to model such decay
processes. We shall often model such processes by taking the density matrix
equations to have the form

ρ̇nm = −i

h̄

[
Ĥ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.3.22)
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Here the second term on the right-hand side is a phenomenological damping
term, which indicates that ρnm relaxes to its equilibrium value ρ

(eq)
nm at rate

γnm. Since γnm is a decay rate, we assume that γnm = γmn. In addition, we
make the physical assumption that

ρ
(eq)
nm = 0 for n 
= m. (3.3.23)

We are thereby asserting that in thermal equilibrium the excited states of the
system may contain population (i.e., ρ

(eq)
nn can be nonzero) but that thermal

excitation, which is expected to be an incoherent process, cannot produce any
coherent superpositions of atomic states (ρ

(eq)
nm = 0 for n 
= m).

An alternative method of describing decay phenomena is to assume that
the off-diagonal elements of the density matrix are damped in the manner
described above, but to describe the damping of the diagonal elements by
allowing population to decay from higher-lying levels to lower-lying levels.
In such a case, the density matrix equations of motion are given by

ρ̇nm = −ih̄−1[Ĥ , ρ̂
]
nm

− γnmρnm, n 
= m, (3.3.24a)

ρ̇nn = −ih̄−1[Ĥ , ρ̂
]
nn

+
∑

Em>En

�nmρmm −
∑

Em<En

�mnρnn. (3.3.24b)

Here �nm gives the rate per atom at which population decays from level m to
level n, and, as above, γnm gives the damping rate of the ρnm coherence.

The damping rates γnm for the off-diagonal elements of the density matrix
are not entirely independent of the damping rates of the diagonal elements. In
fact, under quite general conditions the off-diagonal elements can be repre-
sented as

γnm = 1
2 (�n + �m) + γ (col)

nm . (3.3.25)

Here, �n and �m denote the total decay rates of population out of levels n and
m, respectively. In the notation of Eq. (3.3.24b), for example, �n is given by
the expression

�n =
∑

n′ (En′<En)

�n′n. (3.3.26)

The quantity γ
(col)
nm in Eq. (3.3.25) is the dipole dephasing rate due to processes

(such as elastic collisions) that are not associated with the transfer of pop-
ulation; γ

(col)
nm is sometimes called the proper dephasing rate. To see why

Eq. (3.3.25) depends upon the population decay rates in the manner indicated,
we note that if level n has lifetime τn = 1/�n, the probability to be in level n
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must decay as ∣∣Cn(t)
∣∣2 = ∣∣Cn(0)

∣∣2
e−�nt , (3.3.27)

and thus the probability amplitude must vary in time as

Cn(t) = Cn(0)e−iωnt e−�nt/2. (3.3.28)

Likewise, the probability amplitude of being in level m must vary as

Cm(t) = Cm(0)e−iωmt e−�mt/2. (3.3.29)

Thus, the coherence between the two levels must vary as

C∗
n(t)Cm(t) = C∗

n(0)Cm(0)e−iωmnt e−(�n+�m)t/2. (3.3.30)

But since the ensemble average of C∗
nCm is just ρmn, whose damping rate is

denoted γmn, it follows that

γmn = 1
2 (�n + �m). (3.3.31)

3.3.1. Example: Two-Level Atom

As an example of the use of the density matrix formalism, we apply it to the
simple case illustrated in Fig. 3.3.1, in which only the two atomic states a

and b interact appreciably with the incident optical field. The wavefunction
describing state s of such an atom is given by

ψs(r, t) = Cs
a(t)ua(r) + Cs

b(t)ub(r), (3.3.32)

and thus the density matrix describing the atom is the two-by-two matrix given
explicitly by [

ρaa ρab

ρba ρbb

]
=

[
CaC∗

a CaC
∗
b

CbC∗
a CbC

∗
b

]
. (3.3.33)

The matrix representation of the dipole moment operator is

μ̂ ⇒
[

0 μab

μba 0

]
, (3.3.34)

FIGURE 3.3.1 A two-level atom.
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where μij = μ∗
j i = −e〈i|ẑ|j 〉, −e is the electron charge, and ẑ is the posi-

tion operator for the electron. We have set the diagonal elements of the di-
pole moment operator equal to zero on the basis of the implicit assumption
that states a and b have definite parity, in which case 〈a|r̂|a〉 and 〈b|r̂|b〉
vanish identically as a consequence of symmetry considerations. The ex-
pectation value of the dipole moment is given according to Eq. (3.3.17) by
〈μ̂〉 = tr(ρ̂μ̂). Explicitly, ρ̂μ̂ is represented as

ρ̂μ̂ ⇒
[
ρaa ρab

ρba ρbb

][
0 μab

μba 0

]
=

[
ρabμba ρaaμab

ρbbμba ρbaμab

]
(3.3.35)

and thus the expectation value of the induced dipole moment is given by

〈μ〉 = tr(ρ̂μ̂) = ρabμba + ρbaμab. (3.3.36)

As stated in connection with Eq. (3.3.14), the expectation value of the dipole
moment is seen to depend upon the off-diagonal elements of the density ma-
trix.

The density matrix treatment of the two-level atom is developed more fully
in Chapter 6.

3.4. Perturbation Solution of the Density Matrix
Equation of Motion

In the last section, we saw that the density matrix equation of motion with the
phenomenological inclusion of damping is given by

ρ̇nm = −i

h̄

[
Ĥ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.1)

In general, this equation cannot be solved exactly for physical systems of
interest, and for this reason it is useful to develop a perturbative technique for
solving it. This technique presupposes that, as in Eq. (3.3.2) in the preceding
section, the Hamiltonian can be split into two parts as

Ĥ = Ĥ0 + V̂ (t), (3.4.2)

where Ĥ0 represents the Hamiltonian of the free atom and V̂ (t) represents
the energy of interaction of the atom with the externally applied radiation
field. This interaction is assumed to be weak in the sense that the expectation
value and matrix elements of V̂ are much smaller than the expectation value
of Ĥ0. We usually assume that this interaction energy is given adequately by
the electric dipole approximation as

V̂ = −μ̂ · Ẽ(t), (3.4.3)
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where μ̂ = −er̂ denotes the electric dipole moment operator of the atom.
However, for generality and for compactness of notation, we shall introduce
Eq. (3.4.3) only when necessary.

When Eq. (3.4.2) is introduced into Eq. (3.4.1), the commutator [Ĥ , ρ̂]
splits into two terms. We examine first the commutator of Ĥ0 with ρ̂. We
assume that the states n represent the energy eigenfunctions un of the unper-
turbed Hamiltonian Ĥ0 and thus satisfy the equation Ĥ0un = Enun (see also
Eq. (3.3.4)). As a consequence, the matrix representation of Ĥ0 is diagonal—
that is,

H0,nm = Enδnm. (3.4.4)

The commutator can thus be expanded as

[
Ĥ0, ρ̂

]
nm

= (
Ĥ0ρ̂ − ρ̂Ĥ0

)
nm

=
∑
ν

(H0,nνρνm − ρnνH0,νm)

=
∑
ν

(Enδnνρνm − ρnνδνmEm)

= Enρnm − Emρnm = (En − Em)ρnm. (3.4.5)

For future convenience, we define the transition frequency (in angular fre-
quency units) as

ωnm = En − Em

h̄
. (3.4.6)

Through use of Eqs. (3.4.2), (3.4.5), and (3.4.6), the density matrix equation
of motion (3.4.1) thus becomes

ρ̇nm = −iωnmρnm − i

h̄

[
V̂ , ρ̂

]
nm

− γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.7)

We can also expand the commutator of V̂ with ρ̂ to obtain the density matrix
equation of motion in the form∗

∗ In this section, we are describing the time evolution of the system in the Schrödinger picture.
It is sometimes convenient to describe the time evolution instead in the interaction picture. To find
the analogous equation of motion in the interaction picture, we define new quantities σnm and σ

(eq)
nm

through

ρnm = σnme−iωnmt , ρ
(eq)
nm = σ

(eq)
nm e−iωnmt .

In terms of these new quantities, Eq. (3.4.8) becomes

σ̇nm = − i

h̄

∑
ν

[
Vnνσνmeiωnν t − σnνeiωνmtVνm

] − γnm

(
σnm − σ

(eq)
nm

)
.
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ρ̇nm = −iωnmρnm − i

h̄

∑
ν

(Vnνρνm − ρnνVνm) − γnm

(
ρnm − ρ

(eq)
nm

)
. (3.4.8)

For most problems of physical interest, Eq. (3.4.8) cannot be solved analyti-
cally. We therefore seek a solution in the form of a perturbation expansion. In
order to carry out this procedure, we replace Vij in Eq. (3.4.8) by λVij , where
λ is a parameter ranging between zero and one that characterizes the strength
of the perturbation. The value λ = 1 is taken to represent the actual physical
situation. We now seek a solution to Eq. (3.4.8) in the form of a power series
in λ—that is,

ρnm = ρ(0)
nm + λρ(1)

nm + λ2ρ(2)
nm + · · · . (3.4.9)

We require that Eq. (3.4.9) be a solution of Eq. (3.4.8) for any value of the
parameter λ. In order for this condition to hold, the coefficients of each power
of λ must satisfy Eq. (3.4.8) separately. We thereby obtain the set of equa-
tions

ρ̇(0)
nm = −iωnmρ(0)

nm − γnm

(
ρ(0)

nm − ρ
(eq)
nm

)
, (3.4.10a)

ρ̇(1)
nm = −(iωnm + γnm)ρ(1) − ih̄−1[V̂ , ρ̂(0)

]
nm

, (3.4.10b)

ρ̇(2)
nm = −(iωnm + γnm)ρ(2) − ih̄−1[V̂ , ρ̂(1)

]
nm

, (3.4.10c)

and so on. This system of equations can now be integrated directly, since, if
the set of equations is solved in the order shown, each equation contains only
linear homogeneous terms and inhomogeneous terms that are already known.

Equation (3.4.10a) describes the time evolution of the system in the absence
of any external field. We take the steady-state solution to this equation to be

ρ(0)
nm = ρ

(eq)
nm , (3.4.11a)

where (for reasons given earlier; see Eq. (3.3.23))

ρ
(eq)
nm = 0 for n 
= m. (3.4.11b)

Now that ρ
(0)
nm is known, Eq. (3.4.10b) can be integrated. To do so, we make a

change of variables by representing ρ
(1)
nm as

ρ(1)
nm(t) = S(1)

nm(t)e−(iωnm+γnm)t . (3.4.12)

The derivative ρ̇
(1)
nm can be represented in terms of S

(1)
nm as

ρ̇(1)
nm = −(iωnm + γnm)S(1)

nme−(iωnm+γnm)t + Ṡ(1)
nme−(iωnm+γnm)t . (3.4.13)



3.5. Density Matrix Calculation of the Linear Susceptibility 161

These forms are substituted into Eq. (3.4.10b), which then becomes

Ṡ(1)
nm = −i

h̄

[
V̂ , ρ̂(0)

]
nm

e(iωnm+γnm)t . (3.4.14)

This equation can be integrated to give

S(1)
nm =

∫ t

−∞
−i

h̄

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)t ′ dt ′. (3.4.15)

This expression is now substituted back into Eq. (3.4.12) to obtain

ρ(1)
nm(t) =

∫ t

−∞
−i

h̄

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)(t ′−t) dt ′. (3.4.16)

In similar way, all of the higher-order corrections to the density matrix can
be obtained. These expressions are formally identical to Eq. (3.4.16). The
expression for ρ

(N)
nm , for example, is obtained by replacing ρ̂(0) with ρ̂(N−1)

on the right-hand side of Eq. (3.4.16).

3.5. Density Matrix Calculation of the Linear Susceptibility

As a first application of the perturbation solution to the density matrix equa-
tions of motion, we calculate the linear susceptibility of an atomic system.
The relevant starting equation for this calculation is Eq. (3.4.16), which we
write in the form

ρ(1)
nm(t) = e−(iωnm+γnm)t

∫ t

−∞
dt ′ −i

h̄

[
V̂ (t ′), ρ̂(0)

]
nm

e(iωnm+γnm)t ′ . (3.5.1)

As before, the interaction Hamiltonian is given by Eq. (3.4.3) as

V̂ (t ′) = −μ̂ · Ẽ(t ′), (3.5.2)

and we assume that the unperturbed density matrix is given by (see also
Eqs. (3.4.11))

ρ(0)
nm = 0 for n 
= m. (3.5.3)

We represent the applied field as

Ẽ(t) =
∑
p

E(ωp)e−iωpt . (3.5.4)
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The first step is to obtain an explicit expression for the commutator appear-
ing in Eq. (3.5.1):

[
V̂ (t), ρ̂(0)

]
nm

=
∑
ν

[
V (t)nνρ

(0)
νm − ρ(0)

nν V (t)νm

]

= −
∑
ν

[
μnνρ

(0)
νm − ρ(0)

nν μνm

] · Ẽ(t)

= −(
ρ(0)

mm − ρ(0)
nn

)
μnm · Ẽ(t). (3.5.5)

Here the second form is obtained by introducing V̂ (t) explicitly from
Eq. (3.5.2), and the third form is obtained by performing the summation over
all ν and utilizing the condition (3.5.3). This expression for the commutator
is introduced into Eq. (3.5.1) to obtain

ρ(1)
nm(t) = i

h̄

(
ρ(0)

mm − ρ(0)
nn

)
μnm · e−(iωnm+γnm)t

∫ t

−∞
Ẽ(t ′)e(iωnm+γnm)t ′ dt ′.

(3.5.6)
We next introduce Eq. (3.5.4) for Ẽ(t) to obtain

ρ(1)
nm(t) = i

h̄

(
ρ(0)

mm − ρ(0
nn

)
μnm ·

∑
p

E(ωp)

× e−(iωnm+γnm)t

∫ t

−∞
e[i(ωnm−ωp)+γnm]t ′ dt ′. (3.5.7)

The second line of this expression can be evaluated explicitly as

e−(iωnm+γnm)t

(
e[i(ωnm−ωp)+γnm]t ′

i(ωnm − ωp) + γnm

)∣∣∣∣
t

−∞
= e−iωpt

i(ωnm − ωp) + γnm

, (3.5.8)

and ρ
(1)
nm is thus seen to be given by

ρ(1)
nm = h̄−1(ρ(0)

mm − ρ(0)
nn

)∑
p

μnm ·E(ωp)e−iωpt

(ωnm − ωp) − iγnm

. (3.5.9)
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We next use this result to calculate the expectation value of the induced
dipole moment∗:

〈
μ̃(t)

〉 = tr
(
ρ̂(1)μ̂

) =
∑
nm

ρ(1)
nmμmn

=
∑
nm

h̄−1(ρ(0)
mm − ρ(0)

nn

)∑
p

μmn[μnm ·E(ωp)]e−iωpt

(ωnm − ωp) − iγnm

. (3.5.10)

We decompose 〈μ̃(t)〉 into its frequency components according to

〈
μ̃(t)

〉 = ∑
p

〈
μ(ωp)

〉
e−iωpt (3.5.11)

and define the linear susceptibility tensor χ (1)(ω) by the equation

P(ωp) = N
〈
μ(ωp)

〉 = ε0χ
(1)(ωp) ·E(ωp), (3.5.12)

where N denotes the atomic number density. By comparing this equation with

Eq. (3.5.10), we find that the linear susceptibility is given by

χ (1)(ωp) = N

ε0h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μmnμnm

(ωnm − ωp) − iγnm

. (3.5.13)

The result given by Eqs. (3.5.12) and (3.5.13) can be written in Cartesian

component form as

Pi(ωp) = N
〈
μi(ωp)

〉 = ∑
j

ε0χ
(1)
ij (ωp)Ej (ωp) (3.5.14)

with

χ
(1)
ij (ωp) = N

ε0h̄

∑
nm

(
ρ(0)

mm − ρ(0)
nn

) μi
mnμ

j
nm

(ωnm − ωp) − iγnm

. (3.5.15)

We see that the linear susceptibility is proportional to the population differ-

ence ρ
(0)
mm −ρ

(0)
nn ; thus, if levels m and n contain equal populations, the m → n

transition does not contribute to the linear susceptibility.
Equation (3.5.15) is an extremely compact way of representing the linear

susceptibility. At times it is more intuitive to express the susceptibility in an

∗ Here and throughout the remainder of this chapter we are omitting the bar over quantities such
as 〈μ〉 for simplicity of notation. Hence, the angular brackets are meant to imply both a quantum and
an ensemble average.
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expanded form. We first rewrite Eq. (3.5.15) as

χ
(1)
ij (ωp) = N

ε0h̄

∑
nm

ρ(0)
mm

μi
mnμ

j
nm

(ωnm − ωp) − iγnm

− N

h̄

∑
nm

ρ(0)
nn

μi
mnμ

j
nm

(ωnm − ωp) − iγnm

. (3.5.16)

We next interchange the dummy indices n and m in the second summation so
that the two summations can be recombined as

χ
(1)
ij (ωp) = N

ε0h̄

∑
nm

ρ(0)
mm

[
μi

mnμ
j
nm

(ωnm − ωp) − iγnm

− μi
nmμ

j
mn

(ωmn − ωp) − iγmn

]
.

(3.5.17)

We now use the fact that ωmn = −ωnm and γnm = γmn to write this result as

χ
(1)
ij (ωp) = N

ε0h̄

∑
nm

ρ(0)
mm

[
μi

mnμ
j
nm

(ωnm − ωp) − iγnm

+ μi
nmμ

j
mn

(ωnm + ωp) + iγnm

]
.

(3.5.18)

In order to interpret this result, let us first make the simplifying assumption
that all of the population is in one level (typically the ground state), which we
denote as level a. Mathematically, this assumption can be stated as

ρ(0)
aa = 1, ρ(0)

mm = 0 for m 
= a. (3.5.19)

We now perform the summation over m in Eq. (3.5.18) to obtain

χ
(1)
ij (ωp) = N

ε0h̄

∑
n

[
μi

anμ
j
na

(ωna − ωp) − iγna

+ μi
naμ

j
an

(ωna + ωp) + iγna

]
. (3.5.20)

We see that for positive frequencies (i.e., for ωp > 0), only the first term can
become resonant. The second term is known as the antiresonant or counter-
rotating term. We can often drop the second term, especially when ωp is close
to one of the resonance frequencies of the atom. Let us assume that ωp is
nearly resonant with the transition frequency ωna . Then to good approxima-
tion the linear susceptibility is given by

χ
(1)
ij (ωp) = N

ε0h̄

μi
anμ

j
na

(ωna − ωp) − iγna

= N

ε0h̄
μi

anμ
j
na

(ωna − ωp) + iγna

(ωna − ωp)2 + γ 2
na

.

(3.5.21)
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FIGURE 3.5.1 Resonance nature of the linear susceptibility.

The real and imaginary parts of this expression are shown in Fig. 3.5.1. We
see that the imaginary part of χij has the form of a Lorentzian line shape with
a linewidth (full width at half maximum) equal to 2γna .

3.5.1. Linear Response Theory

Linear response theory plays a key role in the understanding of many optical
phenomena, and for this reason we devote the remainder of this section to the
interpretation of the results just derived. Let us first specialize our results to the
case of an isotropic material. As a consequence of symmetry considerations,
P must be parallel to E in such a medium, and we can therefore express the
linear susceptibility as the scalar quantity χ(1)(ω) defined through P(ω) =
ε0χ

(1)(ω)E(ω), which is given by

χ(1)(ω) = N

ε0h̄

∑
n

1
3 |μna|2

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]
.

(3.5.22)

For simplicity we are assuming the case of a J = 0 (nondegenerate) ground
state and J = 1 excited states. We have included the factor of 1

3 for the fol-
lowing reason: The summation over n includes all of the magnetic sublevels
of the atomic excited states. However, on average only one-third of the a → n
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transitions will have their dipole transition moments parallel to the polariza-
tion vector of the incident field, and hence only one-third of these transitions
contribute effectively to the susceptibility.

It is useful to introduce the oscillator strength of the a → n transition. This
quantity is defined by

fna = 2mωna|μna|2
3h̄e2

. (3.5.23)

Standard books on quantum mechanics (see, for example, Bethe and Salpeter,
1977) show that this quantity obeys the oscillator strength sum rule—that is,∑

n

fna = 1. (3.5.24)

If a is the atomic ground state, the frequency ωna is necessarily positive, and
the sum rule hence shows that the oscillator strength is a positive quantity
bounded by unity—that is, 0 ≤ fna ≤ 1. The expression (3.5.22) for the linear
susceptibility can be written in terms of the oscillator strength as

χ(1)(ω) =
∑
n

Nfnae
2

2ε0mωna

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]



∑
n

fna

[
Ne2/ε0m

ω2
na − ω2 − 2iωnaγna

]
. (3.5.25)

In the latter form, the expression in square brackets is formally identi-
cal to the expression for the linear susceptibility predicted by the classical
Lorentz model of the atom (see also Eq. (1.4.17)). We see that the quantum-
mechanical prediction differs from that of the Lorentz model only in that in
the quantum-mechanical theory there can be more than one resonance fre-
quency ωna . The strength of each such transition is given by the value of the
oscillator strength.

Let us next see how to calculate the refractive index and absorption coef-
ficient. The refractive index n(ω) is related to the linear dielectric constant
ε(1)(ω) and linear susceptibility χ(1)(ω) through

n(ω) =
√

ε(1)(ω) =
√

1 + χ(1)(ω) 
 1 + 1
2χ(1)(ω). (3.5.26)

In obtaining the last expression, we have assumed that the medium is suffi-
ciently dilute (i.e., N sufficiently small) that χ(1) � 1. For the remainder of
the present section, we shall assume that this assumption is valid, both so that
we can use Eq. (3.5.26) as written and also so that we can ignore local-field
corrections (cf. Section 3.9). The significance of the refractive index n(ω) is
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that the propagation of a plane wave through the material system is described
by

Ẽ(z, t) = E0e
i(kz−ωt) + c.c., (3.5.27)

where the propagation constant k is given by

k = n(ω)ω/c. (3.5.28)

Hence, the intensity I = ncε0〈Ẽ(z, t)2〉 of this wave varies with position in
the medium according to

I (z) = I0e
−αz, (3.5.29)

where the absorption coefficient α is given by

α = 2n′′ω/c, (3.5.30)

and where we have defined the real and imaginary parts of the refractive in-
dex as n(ω) = n′ + in′′. Alternatively, through use of Eq. (3.5.26), we can
represent the absorption coefficient in terms of the susceptibility as

α = χ(1)′′ω/c, (3.5.31a)

where χ(1)(ω) = χ(1)′ + iχ(1)′′. Through use of Eq. (3.5.25), we find that the
absorption coefficient of the material system is given by

α ≈
∑
n

fnaNe2

2mε0cγna

[
γ 2
na

(ωna − ω)2 + γ 2
na

]
. (3.5.31b)

In obtaining this result, we have replaced ω in Eq. (3.5.31a) by ωna , which is
valid for a narrow resonance.

It is often useful to describe the response of a material system to an applied
field in terms of microscopic rather than macroscopic quantities. We define
the atomic polarizability γ (1)(ω) as the coefficient relating the induced dipole
moment 〈μ(ω)〉 and the applied field E(ω):∗

〈
μ(ω)

〉 = γ (1)(ω)E(ω). (3.5.32)

The susceptibility and polarizability are related (when local-field corrections
can be ignored) through

χ(1)(ω) = Nγ (1)(ω), (3.5.33)

∗ Note that many authors use the symbol α to denote the polarizability. We use the present notation
to avoid confusion with the absorption coefficient.
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and we thus find from Eq. (3.5.22) that the polarizability is given by

γ (1)(ω) = 1

ε0h̄

∑
n

1
3 |μna|2

[
1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]
.

(3.5.34)

Another microscopic quantity that is often encountered is the absorption cross
section σ , which is defined through the relation

α = Nσ. (3.5.35)

The cross section can hence be interpreted as the effective area of an atom
for removing radiation from an incident beam of light. By comparison with
Eqs. (3.5.31a) and (3.5.33), we see that the absorption cross section is related
to the atomic polarizability γ (1) = γ (1)′ + iγ (1)′′ through

σ = γ (1)′′ω/c. (3.5.36)

Equation (3.5.34) shows how the polarizability can be calculated in terms
of the transition frequencies ωna , the dipole transition moments μna , and the
dipole dephasing rates γna . The transition frequencies and dipole moments
are inherent properties of any atomic system and can be obtained either by
solving Schrödinger’s equation for the atom or through laboratory measure-
ment. The dipole dephasing rate, however, depends not only on the inherent
atomic properties but also on the local environment. We saw in Eq. (3.3.25)
that the dipole dephasing rate γmn can be represented as

γnm = 1
2 (�n + �m) + γ (col)

nm . (3.5.37)

Next we calculate the maximum values that the polarizability and absorp-
tion cross section can attain. We consider the case of resonant excitation
(ω = ωna) of some excited level n. We find, through use of Eq. (3.5.34) and
dropping the nonresonant contribution, that the polarizability is purely imag-
inary and is given by

γ (1)
res = i|μn′a|2

ε0h̄γn′a
. (3.5.38)

We have let n′ designate the state associated with level n that is excited by
the incident light. Note that the factor of 1

3 no longer appears in Eq. (3.5.38),
because we are now considering a particular state of the upper level and are no
longer summing over n. The polarizability will take on its maximum possible
value if γn′a is as small as possible, which according to Eq. (3.5.37) occurs
when γ

(col)
n′a = 0. If a is the atomic ground state, as we have been assuming,
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its decay rate �a must vanish, and thus the minimum possible value of γn′a
is 1

2�n′ .
The population decay rate out of state n′ is usually dominated by sponta-

neous emission. If state n′ can decay only to the ground state, this decay rate
is equal to the Einstein A coefficient and is given by

�n′ = ω3
na|μn′a|2

3πε0h̄c3
. (3.5.39)

If γn′a = 1
2�n′ is inserted into Eq. (3.5.38), we find that the maximum possible

value that the polarizability can possess is

γ (1)
max = i6π

(
λ

2π

)3

. (3.5.40)

We find the value of the absorption cross section associated with this value of
the polarizability through use of Eq. (3.5.36):

σmax = 3λ2

2π
. (3.5.41)

These results show that under resonant excitation an atomic system possesses
an effective linear dimension approximately equal to an optical wavelength.

Recall that the treatment given in this subsection assumes the case of a
J = 0 lower level and a J = 1 upper level. More generally, when Ja is the
total angular momentum quantum number of the lower level and Jb is that
of the upper level, the maximum on-resonance cross section can be shown to
have the form

σmax = gb

ga

λ2

2π
, (3.5.42)

where gb = 2Jb + 1 is the degeneracy of the upper level and ga = 2Ja + 1
is that of the lower level. Furthermore, we have implicitly assumed in the
treatment given above that the lower-level sublevels are equally populated, as
they would be in thermal equilibrium. If the ground level sublevels are not
equally populated, due for instance to optical pumping effects, the result of
Eq. (3.5.42) needs to be modified further. To account for these effects, this
equation is to be multiplied by a numerical factor that lies between 0 and 3.
The cross section vanishes, for example, for an atom that is optically pumped
so that the direction of the dipole transition moment is perpendicular to that
of the electric field vector of the incident radiation, and it attains its maximum
value when these directions are parallel. These considerations are described
in greater detail by Siegman (1986).



170 3 ♦ Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility

3.6. Density Matrix Calculation of the Second-Order
Susceptibility

In this section we calculate the second-order (i.e., χ(2)) susceptibility of an
atomic system. We present the calculation in considerable detail, for the fol-
lowing two reasons: (1) the second-order susceptibility is intrinsically impor-
tant for many applications; and (2) the calculation of the third-order suscepti-
bility proceeds along lines that are analogous to those followed in the present
derivation. However, the expression for the third-order susceptibility χ(3) is so
complicated (it contains 48 terms) that it is not feasible to show all of the steps
in the calculation of χ(3). Thus the present development serves as a template
for the calculation of higher-order susceptibilities.

From the perturbation expansion (3.4.16), the general result for the second-
order correction to ρ̂ is given by

ρ(2)
nm = e−(iωnm+γnm)t

∫ t

−∞
−i

h̄

[
V̂ , ρ̂(1)

]
nm

e(iωnm+γnm)t ′ dt ′, (3.6.1)

where the commutator can be expressed (by analogy with Eq. (3.5.5)) as

[
V̂ , ρ̂(1)

]
nm

= −
∑
ν

(
μnνρ

(1)
νm − ρ(1)

nν μνm

) · Ẽ(t). (3.6.2)

In order to evaluate this commutator, the first-order solution given by
Eq. (3.5.9) is written with changes in the dummy indices as

ρ(1)
νm = h̄−1(ρ(0)

mm − ρ(0)
νν

)∑
p

μνm ·E(ωp)

(ωνm − ωp) − iγνm

e−iωpt (3.6.3)

and as

ρ(1)
nν = h̄−1(ρ(0)

νν − ρ(0)
nn

)∑
p

μnν ·E(ωp)

(ωnν − ωp) − iγnν

e−iωpt . (3.6.4)

The applied optical field Ẽ(t) is expressed as

Ẽ(t) =
∑
q

E(ωq)e
−iωq t . (3.6.5)
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The commutator of Eq. (3.6.2) thus becomes

[
V̂ , ρ̂(1)

]
nm

= −h̄−1
∑
ν

(
ρ(0)

mm − ρ(0)
νν

)

×
∑
pq

[μnν ·E(ωq)][μνm ·E(ωp)]
(ωνm − ωq) − iγνm

e−i(ωp+ωq)t

+ h̄−1
∑
ν

(
ρ(0)

νν − ρ(0)
nn

)

×
∑
pq

[μnν ·E(ωp)][μνm ·E(ωq)]
(ωnν − ωp) − iγnν

e−i(ωp+ωq)t . (3.6.6)

This expression is now inserted into Eq. (3.6.1), and the integration is per-
formed to obtain

ρ(2)
nm =

∑
ν

∑
pq

e−i(ωp+ωq)t

×
{

ρ
(0)
mm − ρ

(0)
νν

h̄2

[μnν ·E(ωq)][μνm ·E(ωp)]
[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm]

− ρ
(0)
νν − ρ

(0)
nn

h̄2

[μnν ·E(ωq)][μνm ·E(ωq)]
[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]

}

≡
∑
ν

∑
pq

Knmνe
−i(ωp+ωq)t . (3.6.7)

We have given the complicated expression in curly braces the label Knmν

because it appears in many subsequent equations.
We next calculate the expectation value of the atomic dipole moment, which

(according to Eq. (3.3.16)) is given by

〈μ̃〉 =
∑
nm

ρnmμmn. (3.6.8)

We are interested in the various frequency components of 〈μ̃〉, whose complex
amplitudes 〈μ(ωr)〉 are defined through

〈μ̃〉 =
∑

r

〈
μ(ωr)

〉
e−iωr t . (3.6.9)
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Then, in particular, the complex amplitude of the component of the atomic
dipole moment oscillating at frequency ωp + ωq is given by

〈
μ(ωp + ωq)

〉 = ∑
nmν

∑
(pq)

Knmνμmn, (3.6.10)

and consequently the complex amplitude of the component of the nonlinear
polarization oscillating at frequency ωp + ωq is given by

P(2)(ωp + ωq) = N
〈
μ(ωp + ωq)

〉 = N
∑
nmν

∑
(pq)

Knmνμmn. (3.6.11)

We define the nonlinear susceptibility through the equation

[lll]P (2)
i (ωp + ωq) = ε0

∑
jk

∑
(pq)

χ
(2)
ijk (ωp + ωq,ωq,ωp)Ej (ωq)Ek(ωp),

(3.6.12)

using the same notation as that used earlier (see also Eq. (1.3.13)). By com-
parison of Eqs. (3.6.7), (3.6.11), and (3.6.12), we obtain a tentative expression
for the susceptibility tensor given by

χ
(2)′
ijk (ωp + ωq,ωq,ωp) = N

ε0h̄
2

×
∑
mnν

{(
ρ(0)

mm − ρ(0)
νν

) μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a)

− (
ρ(0)

νν − ρ(0)
nn

) μi
mnμ

j
νmμk

nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]
}
. (b)

(3.6.13)

We have labeled the two terms that appear in this expression (a) and (b) so
that we can keep track of how these terms contribute to our final expression
for the second-order susceptibility.

Equation (3.6.13) can be used in conjunction with Eq. (3.6.12) to make
proper predictions of the nonlinear polarization, which is a physically mean-
ingful quantity. However, Eq. (3.6.13) does not possess intrinsic permutation
symmetry (cf. Section 1.5), which we require the susceptibility to possess.
We therefore define the nonlinear susceptibility to be one-half the sum of
the right-hand side of Eq. (3.6.13) with an analogous expression obtained
by simultaneously interchanging ωp with ωq and j with k. We thereby
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obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2 ε0h̄
2

×
∑
mnν

{(
ρ(0)

mm − ρ(0)
νν

)[ μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a1)

+ μi
mnμ

k
nνμ

j
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωq) − iγνm]
]

(a2)

− (
ρ(0)

νν − ρ(0)
nn

)[ μi
mnμ

j
νmμk

nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωp) − iγnν]
(b1)

+ μi
mnμ

k
νmμ

j
nν

[(ωnm − ωp − ωq) − iγnm][(ωnν − ωq) − iγnν]
]}

. (b2)

(3.6.14)

This expression displays intrinsic permutation symmetry and gives the non-
linear susceptibility in a reasonably compact fashion. It is clear from its form
that certain contributions to the susceptibility vanish when two of the levels
associated with the contribution contain equal populations. We shall exam-
ine the nature of this cancellation in greater detail below (see Eq. (3.6.17)).
Note that the population differences that appear in this expression are always
associated with the two levels separated by a one-photon resonance, as we
can see by inspection of the detuning factors that appear in the denomina-
tor.

The expression for the second-order nonlinear susceptibility can be rewrit-
ten in several different forms, all of which are equivalent but provide dif-
ferent insights in to the resonant nature of the nonlinear coupling. Since the
indices m, n, and ν are summed over, they constitute dummy indices. We can
therefore replace the indices ν, n, and m in the last two terms of Eq. (3.6.14)
by m, ν, and n, respectively, so that the population difference term is the same
as that of the first two terms. We thereby recast the second-order susceptibility
into the form

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2ε0h̄
2

∑
mnν

(
ρ(0)

mm − ρ(0)
νν

)

×
{

μi
mnμ

j
nνμ

k
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωp) − iγνm] (a1)
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+ μi
mnμ

k
nνμ

j
νm

[(ωnm − ωp − ωq) − iγnm][(ωνm − ωq) − iγνm] (a2)

− μi
nνμ

j
mnμ

k
νm

[(ωνn − ωp − ωq) − iγνn][(ωνm − ωp) − iγνm] (b1)

− μi
nνμ

k
mnμ

j
νm

[(ωνn − ωp − ωq) − iγνn][(ωνm − ωq) − iγνm]
}
. (b2) (3.6.15)

We can make this result more transparent by making another change in
dummy indices: we replace indices m, ν, and n by l, m, and n, respectively.
In addition, we replace ωlm, ωln, and ωmn by −ωml , −ωnl , and −ωnm, respec-
tively, whenever one of them appears. Also, we reorder the product of matrix
elements in the numerator so that the subscripts n, m, and l are “chained” in
the sense shown and thereby obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp) = N

2 ε0h̄
2

∑
lmn

(
ρ

(0)
ll − ρ(0)

mm

)

×
{

μi
lnμ

j
nmμk

ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (a1)

+ μi
lnμ

k
nmμ

j
ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωq) − iγml] (a2)

+ μ
j
lnμ

i
nmμk

ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωp) − iγml] (b1)

+ μk
lnμ

i
nmμ

j
ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωq) − iγml]
}
. (b2) (3.6.16)

One way of interpreting this result is to consider where levels l, m, and n

would have to be located in order for each of the terms to become resonant.
The positions of these energies are illustrated in Fig. 3.6.1. For definiteness,
we have drawn the figure with ωp and ωq positive. In each case the magni-
tude of the contribution to the nonlinear susceptibility is proportional to the
population difference between levels l and m.

In order to illustrate how to make use of Eq. (3.6.16) and to examine the
nature of the cancellation that can occur when more than one of the atomic
levels contains population, we consider the simple three-level atomic system
illustrated in Fig. 3.6.2. We assume that only levels a, b, and c interact ap-
preciably with the optical fields and that the applied field at frequency ω1 is
nearly resonant with the a → b transition, the applied field at frequency ω2 is
nearly resonant with the b → c transition, and the generated field frequency
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FIGURE 3.6.1 The resonance structure of Eq. (3.6.16).

FIGURE 3.6.2 Three-level atomic system.

ω3 = ω1 +ω2 is nearly resonant with the c → a transition. If we now perform
the summation over the dummy indices l, m, and n in Eq. (3.6.16) and retain
only those terms in which both factors in the denominator are resonant, we
find that the nonlinear susceptibility is given by

χ
(2)
ijk (ω3,ω2,ω1)

= N

2ε0h̄
2

{(
ρ(0)

aa − ρ
(0)
bb

)[ μi
acμ

j
cbμ

k
ba

[(ωca − ω3) − iγca][(ωba − ω1) − iγba]
]

+ (
ρ(0)

cc − ρ
(0)
bb

)[ μi
acμ

j
cbμ

k
ba

[(ωca − ω3) − iγca][(ωcb − ω2) − iγcb]
]}

. (3.6.17)

Here the first term comes from the first term in Eq. (3.6.16), and the sec-
ond term comes from the last (fourth) term in Eq. (3.6.16). Note that the first
term vanishes if ρ

(0)
aa = ρ

(0)
bb and that the second term vanishes if ρ

(0)
bb = ρ

(0)
cc .

If all three populations are equal, the resonant contribution vanishes identi-
cally.
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For some purposes it is useful to express the general result (3.6.16) for the
second-order susceptibility in terms of a summation over populations rather
than a summation over population differences. In order to cast the suscepti-
bility in such a form, we change the dummy indices l, m, and n to n, l, and m

in the summation containing ρ
(0)
mm but leave them unchanged in the summation

containing ρ
(0)
ll . We thereby obtain the result

χ
(2)
ijk (ωp + ωq,ωq,ωp)

= N

2 ε0h̄
2

∑
lmn

ρ
(0)
ll

{
μi

lnμ
j
nmμk

ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml] (a1)

+ μi
lnμ

k
nmμ

j
ml

[(ωnl − ωp − ωq) − iγnl][(ωml − ωq) − iγml] (a2)

+ μk
lnμ

i
nmμ

j
ml

[(ωmn − ωp − ωq) − iγmn][(ωnl + ωp) + iγnl] (a′
1)

+ μ
j
lnμ

i
nmμk

ml

[(ωmn − ωp − ωq) − iγmn][(ωnl + ωq) + iγnl] (a′
2)

+ μ
j
lnμ

i
nmμk

ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωp) − iγml] (b1)

+ μk
lnμ

i
nmμ

j
ml

[(ωnm + ωp + ωq) + iγnm][(ωml − ωq) − iγml] (b2)

+ μk
lnμ

j
nmμi

ml

[(ωml + ωp + ωq) + iγml][(ωnl + ωp) + iγnl] (b′
1)

+ μ
j
lnμ

k
nmμi

ml

[(ωml + ωp + ωq) + iγml][(ωnl + ωq) + iγnl]
}
. (b′

2)

(3.6.18)

As before, we can interpret this result by considering the conditions under
which each term of the equation can become resonant. Figure 3.6.3 shows
where the energy levels l, m, and n would have to be located in order for
each term to become resonant, under the assumption the ωp and ωq are both
positive. Note that the unprimed diagrams are the same as those of Fig. 3.6.1
(which represents Eq. (3.6.16)), but that diagrams b′

1 and b′
2 represent new

resonances not present in Fig. 3.6.1.
Another way of making sense of the general eight-term expression for χ(2)

Eq. (3.6.18) is to keep track of how the density matrix is modified in each
order of perturbation theory. Through examination of Eqs. (3.6.1) through
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FIGURE 3.6.3 The resonances of Eq. (3.6.18).

(3.6.7), we find that the terms of type a, a′, b, b′ occur as the result of the
following perturbation expansion:

(a): ρ
(0)
mm → ρ

(1)
νm → ρ

(2)
nm, (a′): ρ

(0)
νν → ρ

(1)
νm → ρ

(2)
nm,

(b): ρ
(0)
νν → ρ

(1)
nν → ρ

(2)
nm, (b′): ρ

(0)
nn → ρ

(1)
nν → ρ

(2)
nm.

However, in writing Eq. (3.6.18) in the displayed form, we have changed the
dummy indices appearing in it. In terms of these new indices, the perturbation
expansion is

(a): ρ
(0)
ll → ρ

(1)
ml → ρ

(2)
nl , (a′): ρ

(0)
ll → ρ

(1)
ln → ρ

(2)
mn,

(b): ρ
(0)
ll → ρ

(1)
ml → ρ

(2)
mn, (b′): ρ

(0)
ll → ρ

(1)
ln → ρ

(2)
lm .

(3.6.19)

Note that the various terms differ in whether it is the left or right index that
is changed by each elementary interaction and by the order in which such a
modification occurs.

A convenient way of keeping track of the order in which the elementary
interactions occur is by means of double-sided Feynman diagrams. These di-
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FIGURE 3.6.4 Double-sided Feynman diagrams.

agrams represent the way in which the density operator is modified by the
interaction of the atom with the laser field. We represent the density operator
as

ρ̂ = |ψ〉〈ψ |, (3.6.20)

where |ψ〉 represents the key vector for some state of the system, 〈ψ | (the bar
vector) represents the Hermitian adjoint of 〈ψ |, and the overbar represents
an ensemble average. The elements of the density matrix are related to the
density operator ρ̂ through the equation

ρnm = 〈
n
∣∣ρ̂∣∣m〉

. (3.6.21)

Figure 3.6.4 gives a pictorial description of the modification of the den-
sity matrix as indicated by the expressions (3.6.19). The left-hand side of
each diagram indicates the time evolution of |ψ〉, and the right-hand side
indicates the time evolution of 〈ψ |, with time increasing vertically upward.
Each interaction with the applied field is indicated by a solid arrow labeled
by the field frequency. The trace operation, which corresponds to calculat-
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ing the output field, is indicated by the wavy arrow.∗ It should be noted
that there are several different conventions concerning the rules for draw-
ing double-sided Feynman diagrams (Boyd and Mukamel, 1984; Prior, 1984;
Yee and Gustafson, 1978).

3.6.1. χ(2) in the Limit of Nonresonant Excitation

When all of the frequencies ωp , ωq , and ωp + ωq differ significantly from
any resonance frequency of the atomic system, the imaginary contributions to
the denominators in Eq. (3.6.18) can be ignored. In this case, the expression
for χ(2) can be simplified. In particular, terms (a′

2) and (b1) can be combined
into a single term, and similarly for terms (a′

1) and (b2). We note that the
numerators of terms (a′

2) and (b1) are identical and that their denominators
can be combined as follows:

1

(ωmn − ωp − ωq)(ωnl + ωq)
+ 1

(−ωmn + ωp + ωq)(ωml − ωp)

= 1

(ωmn − ωp − ωq)

[
1

ωnl + ωq

− 1

ωml − ωp

]

= 1

(ωmn − ωp − ωq)

[
ωml − ωp − ωnl − ωq

(ωnl + ωq)(ωml − ωp)

]

= 1

(ωmn − ωp − ωq)

[
ωmn − ωp − ωq

(ωnl + ωq)(ωml − ωp)

]

= 1

(ωnl + ωq)(ωml − ωp)
. (3.6.22)

The same procedure can be performed on terms (a′
1) and (b2); the only differ-

ence between this case and the one treated in Eq. (3.6.22) is that ωp and ωq

have switched roles. The frequency dependence is thus

1

(ωnl + ωp)(ωml − ωq)
. (3.6.23)

The expression for χ(2) in the off-resonance case thus becomes

∗ In drawing Fig. 3.6.4, we have implicitly assumed that all of the applied field frequencies are

positive, which corresponds to the absorption of an incident photon. The interaction with a negative
field frequency which corresponds to the emission of a photon, is sometimes indicated by a solid arrow

pointing diagonally upward and away from (rather than toward) the central double line.
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χ
(2)
ijk (ωp + ωq,ωq,ωp)

= N

2ε0h̄
2

∑
lmn ρ

(0)
ll

{
μi

lnμ
j
nmμk

ml

[(ωnl − ωp − ωq)(ωml − ωp)
(a1)

+ μi
lnμ

k
nmμ

j
ml

(ωnl − ωp − ωq)(ωml − ωq)
(a2)

+ μ
j
lnμ

i
nmμk

ml

(ωnl + ωq)(ωml − ωp)
(b1), (a′

2)

+ μk
lnμ

i
nmμ

j
ml

(ωnl + ωp)(ωml − ωq)
(b2), (a′

1)

+ μk
lnμ

j
nmμi

ml

(ωml + ωp + ωq)(ωnl + ωp)
(b′

1)

+ μ
j
lnμ

k
nmμi

ml

(ωml + ωp + ωq)(ωnl + ωq)

}
. (b′

2) (3.6.24)

Note that only six terms appear in this expression for the off-resonance
susceptibility, whereas eight terms appear in the general expression of
Eq. (3.6.18). One can verify by explicit calculation that Eq. (3.6.24) satisfies
the condition of full permutation symmetry (see also Eq. (1.5.7)). In addition,
one can see by inspection that Eq. (3.6.24) is identical to the result obtained
above (Eq. (3.2.27)) based on perturbation theory of the atomic wavefunction.

There are several diagrammatic methods that can be used to interpret this
expression. One of the simplest is to plot the photon energies on an atomic
energy-level diagram. This method displays the conditions under which each
contribution can become resonant. The results of such an analysis gives ex-
actly the same diagrams displayed in Fig. 3.6.3. Equation (3.6.24) can also be
understood in terms of a diagrammatic approach introduced by Ward (1965).

3.7. Density Matrix Calculation of the Third-Order
Susceptibility

The third-order correction to the density matrix is given by the perturbation
expansion of Eq. (3.4.16) as

ρ(3)
nm = e−(iωnm+γnm)t

∫ t

−∞
−i

h̄

[
V̂ , ρ̂(2)

]
nm

e(iωnm+γnm)t ′ dt ′, (3.7.1)
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where the commutator can be represented explicitly as

[
V̂ , ρ̂(2)

]
nm

= −
∑
ν

(
μnνρ

(2)
νm − ρ(2)

nν μνm

) · Ẽ(t). (3.7.2)

Expressions for ρ
(2)
νm and ρ

(2)
nν are available from Eq. (3.6.7). Since these ex-

pressions are very complicated, we use the abbreviated notation introduced
there:

ρ(2)
νm =

∑
l

∑
pq

Kνmle
−i(ωp+ωq)t , (3.7.3)

where Kνml has been displayed explicitly. We also represent the electric field
as

Ẽ(t) =
∑

r

E(ωr)e
−iωr t . (3.7.4)

The commutator thus becomes

[
V̂ , ρ̂(2)

]
nm

= −
∑
νl

∑
pqr

[
μnν ·E(ωr)

]
Kνmle

−i(ωp+ωq+ωr)t

+
∑
νl

∑
pqr

[
μνm ·E(ωr)

]
Knνle

−i(ωp+ωq+ωr)t . (3.7.5)

The integration of Eq. (3.7.1) with the commutator given by Eq. (3.7.5) can
now be performed. We obtain

ρ(3)
nm = 1

h̄

∑
νl

∑
pqr

{ [μnν ·E(ωr)]Kνml

(ωnm − ωp − ωq − ωr) − iγnm

− [μνm ·E(ωr)]Knνl

(ωnm − ωp − ωq − ωr) − iγnm

}
e−i(ωp+ωq+ωr)t . (3.7.6)

The nonlinear polarization oscillating at frequency ωp + ωq + ωr is given
by

P(ωp + ωq + ωr) = N
〈
μ(ωp + ωq + ωr)

〉
, (3.7.7)

where

〈μ̃〉 =
∑
nm

ρnmμmn ≡
∑

s

〈
μ(ωs)

〉
e−iωs t . (3.7.8)
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We express the nonlinear polarization in terms of the third-order susceptibility
defined by (see also Eq. (1.3.21))

Pk(ωp + ωq + ωr) = ε0

∑
hij

∑
pqr

χ
(3)
kj ih(ωp + ωq + ωr,ωr,ωq,ωp)

× Ej(ωr)Ei(ωq)Eh(ωp). (3.7.9)

By combining Eqs. (3.7.6) through (3.7.9), we find that the third-order sus-
ceptibility is given by

χ
(3)
kj ih(ωp + ωq + ωr,ωr ,ωq,ωp) = N

ε0h̄
3
PI

∑
nmνl

{
(ρ

(0)
mm − ρ

(0)
ll )μk

mnμ
j
nνμ

i
νlμ

h
lm

[(ωnm − ωp − ωq − ωr) − iγnm][(ωνm − ωp − ωq) − iγνm][(ωlm − ωp) − iγlm]
(a)

− (ρ
(0)
ll − ρ

(0)
νν )μk

mnμ
j
nνμ

i
lmμh

νl

[(ωnm − ωp − ωq − ωr) − iγnm][(ωνm − ωp − ωq) − iγνm][(ωνl − ωp) − iγνl]
(b)

− (ρ
(0)
νν − ρ

(0)
ll )μk

mnμ
j
νmμi

nlμ
h
lν

[(ωnm − ωp − ωq − ωr) − iγnm][(ωnν − ωp − ωq) − iγnν][(ωlν − ωp) − iγlν]
(c)

+ (ρ
(0)
ll − ρ

(0)
nn )μk

mnμ
j
νmμi

lνμ
h
nl

[(ωnm − ωp − ωq − ωr) − iγnm][(ωnν − ωp − ωq) − iγnν][(ωnl − ωp) − iγnl]
}
.

(d)

(3.7.10)

Here we have again made use of the intrinsic permutation operator PI , whose
meaning is that everything to the right of it is to be averaged over all possible
permutations of the input frequencies ωp , ωq , and ωr , with the cartesian in-
dices h, i, j permuted simultaneously. Next, we rewrite this equation as eight
separate terms by changing the dummy indices so that l is always the index
of ρ

(0)
ii . We also require that only positive resonance frequencies appear if the

energies are ordered so that Eν > En > Em > El , and we arrange the matrix
elements so that they appear in “natural” order, l → m → n → ν (reading
right to left). We obtain
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χ
(3)
kj ih(ωp + ωq + ωr,ωr,ωq,ωp) = N

ε0h̄
3
PI

∑
νnml

ρ
(0)
ll

×
{

μk
lνμ

j
νnμ

i
nmμh

ml

[(ωνl − ωp − ωq − ωr) − iγνl][(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml]
(a1)

+ μh
lνμ

k
νnμ

j
nmμi

ml

[(ωnν − ωp − ωq − ωr) − iγnν][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl]
(a2)

+ μi
lνμ

k
νnμ

j
nmμh

ml

[(ωnν − ωp − ωq − ωr) − iγnν][(ωνm + ωp + ωq) + iγνm][(ωml − ωp) − iγml]
(b1)

+ μh
lνμ

i
νnμ

k
nmμ

j
ml

[(ωmn − ωp − ωq − ωr) − iγmn][(ωnl + ωp + ωq) + iγnl][(ωνl + ωp) + iγνl]
(b2)

+ μ
j
lνμ

k
νnμ

i
nmμh

ml

[(ωνn + ωp + ωq + ωr) + iγνn][(ωnl − ωp − ωq) − iγnl][(ωml − ωp) − iγml]
(c1)

+ μh
lνμ

j
νnμ

k
nmμi

ml

[(ωnm + ωp + ωq + ωr) + iγnm][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl]
(c2)

+ μi
lνμ

j
νnμ

k
nmμh

ml

[(ωnm + ωp + ωq + ωr) + iγnm][(ωνm + ωp + ωq) + iγmν][(ωml − ωp) − iγml]
(d1)

+ μh
lνμ

i
νnμ

j
nmμk

ml

[(ωml + ωp + ωq + ωr) + iγml][(ωnl + ωp + ωq) + iγnl][(ωνl + ωp) + iγνl]
}
.

(d2)

(3.7.11)

For the general case in which ωp , ωq , and ωr are distinct, six permutations
of the field frequencies occur, and thus the expression for χ(3) consists of 48
different terms once the permutation operator PI is expanded. The resonance
structure of this expression can be understood in terms of the energy level
diagrams shown in Fig. 3.7.1. Furthermore, the nature of the perturbation ex-
pansion leading to Eq. (3.7.11) can be understood in terms of the double-sided
Feynman diagrams shown in Fig. 3.7.2.
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FIGURE 3.7.1 The resonance structure of the expression (3.7.11) for the third-order
nonlinear susceptibility.

We saw in Section 3.2 that the general expression for the third-order suscep-
tibility calculated using perturbation theory applied to the atomic wavefunc-
tion contained 24 terms. Equation (3.2.33) shows four of these terms explic-
itly; the other terms are obtained from the six permutations of the frequencies
of the applied field. It can be shown that Eq. (3.7.11) reduces to Eq. (3.2.33) in
the limit of nonresonant excitation, where the imaginary contributions (iγαβ)

appearing in Eq. (3.7.11) can be ignored. One can demonstrate this fact by
means of a calculation similar to that used to derive Eq. (3.6.23), which ap-
plies to the case of the second-order susceptibility (see Problem 5 at the end
of this chapter).

In fact, even in the general case in which the imaginary contributions iγαβ

appearing in Eq. (3.7.11) are retained, it is possible to rewrite the 48-term ex-
pression (3.7.11) in the form of the 24-term expression (3.2.33) by allowing
the coefficient of each of the 24 terms to be weakly frequency-dependent.
These frequency-dependent coefficients usually display resonances at fre-
quencies other than those that appear in Fig. 3.7.1, and these new resonances
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FIGURE 3.7.2 Double-sided Feynman diagrams associated with the various terms in
Eq. (3.7.11).

occur only if the line-broadening mechanism is collisional (rather than radia-
tive). The nature of these collision-induced resonances has been discussed by
Bloembergen et al. (1978), Prior (1984), and Rothberg (1987).

3.8. Electromagnetically Induced Transparency

Electromagnetically induced transparency (EIT) is a powerful technique that
can be used to render a material system transparent to resonant laser radiation
while retaining the large and desirable nonlinear optical properties associated
with the resonant response of a material system. EIT was first described the-
oretically by Harris et al. (1990), although EIT shares some features with
processes described earlier by Gray et al. (1978) and by Tewari and Agarwal
(1986). EIT also shares some similarity with the process known as lasing with-
out inversion (Harris, 1989; Kocharovskaya and Khanis, 1988; Scully et al.,
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FIGURE 3.8.1 Typical situation for observing electromagnetically induced trans-
parency.

1989). EIT has been observed both in atomic systems (Boller et al., 1991;
Field et al., 1991) and in solids (Ham et al., 1997; Zhao et al., 1997). Labora-
tory studies have confirmed that EIT can be used to enhance the efficiency of
nonlinear optical processes including nonlinear frequency conversion (Hakuta
et al., 1991; Jain et al., 1996) and optical phase conjugation (Hemmer et al.,
1995; Li and Xiao, 1996). Moreover, EIT plays a key role in the generation of
“slow light” (Budker et al., 1999; Boyd and Gauthier, 2002; Hau et al., 1999;
Inouye et al., 2000; Kash et al., 1999). In addition, it has been predicted that
EIT can enhance the properties of a much broader range of processes, includ-
ing squeezed-light generation (Lukin et al., 1999) and low-light-level pho-
tonic switching (Harris and Yamomoto, 1998; Imamoğlu et al., 1997). More
information about EIT can be found in the review articles on EIT cited at the
end of this chapter.

Let us analyze a prototypical example of EIT. The situation is illustrated
in part (a) of Fig. 3.8.1. Laser fields at frequencies ω and ωs are applied to
an atomic system with the intent of generating radiation at the sum frequency
ω4 = 2ω + ωs . One would normally expect that strong absorption of light at
frequency ω4 would severely limit the efficiency of the sum-frequency gener-
ation process. However, we shall see that by allowing the field at frequency ωs

to be a strong saturating field one is able to eliminate absorption at the a → d

transition frequency while maintaining a large four-wave-mixing susceptibil-
ity.

Our goal is to treat the sum-frequency generation process illustrated in
part (a) of Fig. 3.8.1 and to show how it can be excited more efficiently
through use of EIT techniques. As a first step, we examine how absorption
at a specified frequency can be essentially eliminated by means of the EIT
process. Later in this section we shall return to the study of sum-frequency
generation and show that the nonlinear response leading to this process can
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remain large even when linear absorption at the output frequency is elimi-
nated.

We thus first examine how linear absorption at frequency ω4 is modified by
an intense saturating field of amplitude Es at frequency ωs , as illustrated in
part (b) of Fig. 3.8.1. To treat this problem, we need to include states a, d ,
and c in the atomic wavefunction. Common sense might suggest that we thus
express the wavefunction as

ψ(r, t) = C′
a(t)ua(r)e−iωat +C′

d(t)ud(r)e−iωd t +C′
c(t)uc(r)e−iωct , (3.8.1)

where h̄ωj is the energy of level j , and solve Schrödinger’s equation to deter-
mine the time evolution of the expansion coefficients C′

a(t), C′
d(t), and C′

c(t).
But in fact the calculation proceeds much more simply if instead we work in
the interaction picture and represent the wavefunction as

ψ(r, t) = Ca(t)ua(r) + Cd(t)ud(r)e−iω4t + Cc(t)uc(r)e−i(ω4−ωs)t . (3.8.2)

In fact, this representation makes sense because in a driven system the coeffi-
cients are expected to oscillate at the driving frequency, not at the resonance
frequency. We require that ψ(r, t) obey Schrödinger’s equation in the form

ih̄
∂ψ

∂t
= Ĥψ with Ĥ = Ĥ0 + V̂ , (3.8.3)

where in the rotating-wave and electric-dipole approximations we can express
the interaction energy as

V̂ = −μ̂(E4e
−iω4t + E∗

s eiωs t ). (3.8.4)

We next proceed to derive equations of motion for the coefficients Cj .
We begin by introducing the wave function (3.8.2) into Schrödinger’s equa-
tion (3.8.3) to obtain

ih̄
[
Ċaua + Ċdude−iω4t − iω4Cdude−iω4t + Ċcuce

−i(ω4−ωs)t

− i(ω4 − ωs)Ccuce
−i(ω4−ωs)t

]
= Cah̄ωaua + Cdh̄ωdude−iω4t + Cch̄ωcuce

−i(ω4−ωs)t

+ V̂
[
Caua + Cdude−iω4t + Ccuce

−i(ω4−ωs)t
]
. (3.8.5)

We turn this result into three separate equations by the usual procedure of
multiplying successively by ua

∗, ud
∗, and uc

∗ and integrating the resulting
equation over all space. Assuming the quantities uj to be orthonormal, we
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obtain

ih̄Ċa = h̄ωaCa + VadCde−iω4t ,

ih̄
[
Ċde−iω4t − iω4Cde−iω4t

] = h̄ωdCde−iω4t + VdaCa + VdcCce
−i(ω4−ωs)t ,

ih̄
[
Ċce

−i(ω4−ωs)t − i(ω4 − ωs)Cce
−i(ω4−ωs)t

] = h̄ωcCce
−i(ω4−ωs)t + VcdCde−iω4t .

(3.8.6)

We next introduce the explicit forms of the matrix elements of V:

V ∗
ad = Vda = −μdaE4e

−iω4t ,

V ∗
dc = Vcd = −μcdE∗

s eiωs t . (3.8.7)

Also, we measure energies relative to that of the ground state a so that

h̄ωa → h̄ωaa = 0, h̄ωd → h̄ωda, h̄ωc → h̄ωca. (3.8.8)

In addition, we introduce the Rabi frequencies

� = μdaE4/h̄ and �∗
s = μcdE∗

s /h̄. (3.8.9)

Equations (3.8.6) thus become

Ċa = iCd�∗,

Ċd − iδCd = iCa� + iCc�s,

Ċc − i(δ − �)Cc = iCd�∗
s , (3.8.10)

where

δ ≡ ω4 − ωda and � ≡ ωs − ωdc. (3.8.11)

We want to solve these equations correct to all orders in �s and to lowest
order in �. One might guess that one can do so by ignoring the first equation
and replacing Ca by unity in the second equation. But to proceed more rigor-
ously, we perform a formal perturbation expansion in the field amplitude �.
We introduce a strength parameter λ, which we assume to be real, and we
replace � by λ�. We also expand Cj as a power series in λ as

Cj = C
(0)
j + λC

(1)
j + λ2C

(2)
j + · · · . (3.8.12)
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By introducing these forms into each of the three equations of expres-
sion (3.8.10), we obtain

Ċ
(0)
a + λĊ

(1)
a = iC

(0)
d λ�∗ + iC

(1)
d λ2�∗,

(
Ċ

(0)
d

− iδC
(0)
d

) + λ
(
Ċ

(1)
d

− iδC
(1)
d

) = iC
(0)
a �λ + iC

(1)
a �λ2 + iC

(0)
c �sλ + iC

(1)
c �sλ

2,

[
Ċ

(0)
c − i(δ − �)C

(0)
c

] + λ
[
Ċ

(1)
c − i(δ − �)C

(1)
c

] = iC
(0)
d λ�∗

s + iC
(1)
d λ2�∗

s .

(3.8.13)

We next note that because these equations must be valid for arbitrary values of
the parameter λ, the coefficients of each power of λ must satisfy the equations
separately. In particular, the portions of Eqs. (3.8.13) that are independent of λ

are given by:

Ċ
(0)
a = 0,

Ċ
(0)
d − iδC

(0)
d = iC0

a� + iC
(0)
c �s,

Ċ
(0)
c − i(δ − �)C

(0)
c = iC

(0)
d �∗

s . (3.8.14)

We take the solution to these equations to be the one corresponding to the
assumed initial conditions—that is,

C(0)
a = 1 and C

(0)
d = C(0)

c = 0, (3.8.15)

for all times. Next, we note that the portions of Eqs. (3.8.13) that are linear in
λ are given by:

Ċ
(1)
a = 0,

Ċ
(1)
d − iδC

(1)
d = i� + iC

(0)
c �s,

Ċ
(1)
c − i(δ − �)C

(1)
c = iC

(0)
d �∗

s . (3.8.16)

We take the solution to the first equation as C
(1)
a = 0 for all times. We now

drop the superscript (1) on the remaining equations for notational simplicity.
We thus need to solve the equations

Ċd − iδCd = i� + i�sCc,

Ċc − i(δ − �)Cc = i�∗
s Cd. (3.8.17)

Note that these equations are consistent with the “guess” that we made earlier
in connection with Eqs. (3.8.10). Note also that there are no time-dependent
coefficients on the right-hand sides of Eqs. (3.8.17). (This is in fact why we
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chose to work in the interaction picture.) We can thus find the steady state
solution to these equations by setting the time derivatives to zero:

0 = � + δCd + �sCc,

0 = �2
sCd + (δ − �)Cc. (3.8.18)

We solve these equations algebraically to find that

Cd = �(δ − �)

|�s |2 − δ(δ − �)
. (3.8.19)

The physical quantity of primary interest is the induced dipole moment,
which can be determined as follows:

p̃ = 〈ψ |μ̂|ψ〉 = 〈
ψ(0)

∣∣μ̂∣∣ψ(1)
〉 + 〈

ψ(1)
∣∣μ̂∣∣ψ(0)

〉
= 〈a|μ̂|d〉Cde−iω4t + c.c. = μadCde−iω4t + c.c. (3.8.20)

We thus find that the dipole moment amplitude is given by

p = μad�(δ + �)

|�s |2 − (δ + �)δ
(3.8.21)

and consequently that the polarization is given by

P = Np ≡ ε0χ
(1)E, (3.8.22)

which implies that

χ(1) = N |μda|2
ε0h̄

(δ − �)

|�s |2 − (δ − �)δ
. (3.8.23)

Next, we add damping, using a phenomenological description. We let γd

and γc be the decay rates of the probability amplitudes to be in levels d and e

respectively. By examination of Eqs. (3.8.17) we see that we can model the
effects of damping by replacing δ by δ + iγd and � by � + i(γc − γd). We
thus find that Eq. (3.8.21) becomes

p = μad�(δ − � + iγc)

|�s |2 − (δ + iγd)(δ − � + iγc)
(3.8.24)

and that the general form for χ(1) is given by

χ(1) = N

h̄

|μda|2(δ − � + iγc)

|�s |2 − (δ + iγd)(δ − � + iγc)
. (3.8.25)
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FIGURE 3.8.2 (a) and (b) Illustration of reduced optical absorption based on EIT.
In the examples shown, � = ωs − ωdc is set equal to 0 and the ratio γc/γd is set
equal to 0.01. The absorption spectrum is shown in the presence of a strongly satu-
rating field (a) and a weakly saturating field (b). In each case the absorption nearly
vanishes at line center, and the absorption spectrum in the complete absence of the
saturating field (labeled �s = 0) is shown for comparison. (c) and (d) The magni-
tude of the nonlinear response leading to sum-frequency generation is shown. In each
case the nonlinear response remains appreciable at the frequency of nearly complete
transparency.

Note that when both fields are turned to the exact resonance (δ = � = 0), the
susceptibility becomes simply

χ(1) = N

h̄

|μda|2iγc

|�s |2 + γcγd

, (3.8.26)

which is purely imaginary. In this case, the absorption experienced by the field
at frequency ω4 can be rendered arbitrarily small by choosing the field �s to
be saturating. The nature of the modification of the absorption spectrum is
illustrated in parts (a) and (b) of Fig. 3.8.2. In part (a), we see that in the
presence of a strongly saturating field the absorption feature splits into two
components, with each component separated from the center of the feature by
the Rabi frequency |�s | associated with the strong field. In part (b), we see
that in the presence of a weakly saturating field a pronounced dip is induced
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in the absorption profile. In each case the absorption drops to nearly zero at
the position of the resonance.

We now calculate the response leading to sum-frequency generation. We
express the wavefunction in the interaction picture as

ψ(r, t) = Ca(t)ua(r) + Cb(t)ub(r)e−iωt

+ Cc(t)uc(r)e−i2ωt + Cd(t)ud(r)e−i(2ω+ωc)t . (3.8.27)

As before, this wavefunction must satisfy the Schrödinger equation (3.8.3).
We thereby find that

ih̄
[
Ċaua + Ċbube

−iωt − iωCbube
−iωt + Ċcuce

−i2ωt − 2iωCcuce
−i2ωt

+ Ċdude−i(2ω+ωc)t − i
(
2ω + ωc

)
Cdude−i(2ω+ωc)t

]
= h̄wbaCbube

−iωt + h̄ωcaCcuce
−i2ωt + h̄ωdaCdude−i(2ω+ωc)t

+ V̂
[
Caua + Cbube

−iωt + Ccuce
−i2ωt + Cdude−i(2ω+ωc)t

]
.

(3.8.28)

We now separate this expression into four equations by the usual method
of multiplying successively by ua

∗, ub
∗, uc

∗, and ud
∗ and integrating over all

space. Recalling from Eq. (3.8.8) that h̄ωaa = 0, we find that

ih̄Ċa = VabCbe
−iωt ,

ih̄(Ċb − iωCb)e
−iωt = h̄ωbaCbe

−iωt + VbaCa + VbcCce
−i2ωt ,

ih̄(Ċc − i2ωCc)e
−i2ωt = h̄ωcaCce

−i2ωt + VcbCbe
−iωt + VcdCde−i(2ω+ωs)t ,

ih̄
[
Ċd − i(2ω + ωc)Cd

]
e−(2ω+ωs)t = h̄ωdaCde−(2ω+ωs)t + VdcCce

−i2ωt .

(3.8.29)

We next represent the matrix elements of the interaction Hamiltonian as

Vba = Vab
∗ = −μbaEe−iωt = −h̄�bae

−iωt ,

Vcb = Vbc
∗ = −μcbEe−iωt = −h̄�cbe

−iωt ,

Vdc = Vcd
∗ = −μdcEse

−iωs t = −h̄�dce
−iωs t , (3.8.30)

and introduce the detuning factors as

δ1 = ω − ωba, δ2 = 2ω − ωca and � = ωs − ωdc. (3.8.31)
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We thus find that

Ċa = iCb�
∗
ba, (3.8.32a)

Ċb − iCbδ1 = iCa�ba + iCc�
∗
cb, (3.8.32b)

Ċc − iCcδ2 = iCb�cb + iCd�∗
dc, (3.8.32c)

Ċd − iCd(δ2 + �) = iCc�dc. (3.8.32d)

We wish to solve these equations perturbatively in �ba and �cb but to all
orders in �dc. We first note that consistent with this assumption we can ig-
nore Eq. (3.8.32a) altogether, as |Cb| � |Ca| and therefore Ca ≈ 1. In solving
Eq. (3.8.32b), we can drop the last term because |Cc| � |Cb|. Then setting
Ca = 1 and taking Ċb = 0 for the steady-state solution, we find that

Cb = −�ba/δ1. (3.8.33)

We next need to find the simultaneous, steady-state solutions to Eqs. (3.8.32c)
and (3.8.32d). We set the time derivatives to zero to obtain

−Cc = Cb�cb

δ2
+ Cd�∗

dc

δ2
,

Cd = −Cc�dc

(δ2 + �)
. (3.8.34)

We now introduce the first of these equations into the second and make use of
Eq. (3.8.33) to obtain

Cd = −�ba�cb�dc

δ1δ2(δ2 + �)
+ Cd

|�dc|2
(δ2 + �)δ2

(3.8.35)

and thus to find that

Cd = − �dc�cb�ba

δ1δ2(δ2 + �)

[ |�dc|2
δ2(δ2 + �)

]−1

(3.8.36)

= − �dc�cb�ba

δ1[δ2(δ2 + �) − |�dc|2] . (3.8.37)

The induced dipole moment at the sum frequency is now calculated as

p̃ = 〈ψ |μ̂|ψ〉 = 〈ua|μ̂|Cdud〉 + c.c. = μadCd + c.c. (3.8.38)
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We thus find that the complex amplitude of the induced dipole moment is give
by

p = −μad�dc�cb�ba

δ1[δ2(δ2 + �) − |�dc|2] = −μadμbcμcbμbaE
2Es

h̄3δ1[δ2(δ2 + �) − |�dc|2]
≡ 3ε0χ

(3)E2Ec

N
.

(3.8.39)

We thus find that

χ(3) = −Nμadμdcμcbμba

3ε0h̄δ1[δ2(δ2 + �) − |�dc|2] . (3.8.40)

As in Eq. (3.8.25), we can add the effects of damping to this result by replac-
ing δ2 with δ2 + iγc and replacing δ2 + � with δ2 + � + iγd . We thus find
that

χ(3) = −Nμadμdcμcbμba

3ε0h̄δ1[(δ2 + iγc)(δ2 + � + iγd) − |�dc|2] . (3.8.41)

Note that in the limit |�dc| → 0 this result reduces to the usual expression
for the resonant contribution to the third-order susceptibility. Some of the nu-
merical predictions given by Eq. (3.8.41) are shown in Fig. 3.8.2(c) and (d).
We see that in each case the nonlinear response remains appreciable at the
position of the initial resonance, and even shows a peak for the conditions of
panel (d).

3.9. Local-Field Corrections to the Nonlinear
Optical Susceptibility

The treatment of the nonlinear optical susceptibility presented thus far has
made the implicit assumption that the electric field acting on each atom or
molecule is the macroscopic electric field that appears in Maxwell’s equa-
tions. In general, one has to distinguish between the macroscopic electric field
and the effective electric field that each atom experiences, which is also known
as the Lorentz local field. The distinction between these two fields is impor-
tant except for the case of a medium that is so dilute that its linear dielectric
constant is nearly equal to unity.

3.9.1. Local-Field Effects in Linear Optics

Let us first review the theory of local field effects in linear optics. The elec-
tric field Ẽ that appears in Maxwell’s equations in the form of Eqs. (2.1.1)
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FIGURE 3.9.1 Calculation of the Lorentz local field.

through (2.1.8) is known as the macroscopic or Maxwell field. This field is
obtained by performing a spatial average of the actual (that is, microscopic)
electric field over a region of space whose linear dimensions are of the order
of at least several atomic diameters. It is useful to perform such an average to
smooth out the wild variations in the electric field that occur in the immediate
vicinity of the atomic nuclei and electrons. The macroscopic electric field thus
has contributions from sources external to the material system and from the
charges of all of the molecules that constitute the system.

Let us now see how to calculate the dipole moment induced in a representa-
tive molecule contained within the material system. We assume for simplicity
that the medium is lossless and dispersionless, so that we can conveniently
represent the fields as time-varying quantities. We let Ẽ represent the macro-
scopic field and P̃ the polarization within the bulk of the material. Further-
more, we represent the dipole moment induced in a typical molecule as

p̃ = ε0αẼloc, (3.9.1)

where α is the usual linear polarizability∗ and where Ẽloc is the local field—
that is, the effective electric field that acts on the molecule. The local field is
the field resulting from all external sources and from all molecules within the
sample except the one under consideration.

We calculate this field through use of a procedure described by Lorentz
(1952). We imagine drawing a small sphere centered on the molecule under
consideration, as shown in Fig. 3.9.1. This sphere is assumed to be sufficiently
large that it contains many molecules. The electric field produced at the cen-
ter of the sphere by molecules contained within the sphere (not including the
molecule at the center) will tend to cancel, and for the case of a liquid, gas, or
cubic crystal, this cancellation can be shown to be exact. We can then imagine
removing these molecules from the sphere, leaving only the molecule un-
der consideration, which is then located at the center of an evacuated sphere

∗ Note that in this section we are using the symbol α to denote the polarizability and not the
absorption coefficient.
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within an otherwise uniformly polarized medium. It is then a simple problem
in electrostatics to calculate the value of the field at the center of the sphere.
The field, which we identify as the Lorentz local field, is given by (see also
Born and Wolf, 1975, Section 2.3, or Jackson, 1975, Section 4.5)

Ẽloc = Ẽ + 1

3ε0
P̃. (3.9.2)

By definition, the polarization of the material is given by

P̃ = N p̃, (3.9.3)

where N is the number density of molecules and p̃ is the dipole moment
per molecule, which under the present circumstances is given by Eq. (3.9.1).
By combining Eqs. (3.9.1) through (3.9.3), we find that the polarization and
macroscopic field are related by

P̃ = Nε0α

(
Ẽ + 1

3ε0
P̃
)

. (3.9.4)

It is useful to express this result in terms of the linear susceptibility χ(1),
defined by

P̃ = ε0χ
(1)Ẽ. (3.9.5)

If we substitute this expression for P̃ into Eq. (3.9.4) and solve the resulting
equation for χ(1), we find that

χ(1) = Nα

1 − 1
3Nα

. (3.9.6)

For the usual case in which the polarizability α is positive, we see that the
susceptibility is larger than the value Nα predicted if we ignore local-field
effects. We also see that the susceptibility increases with N more rapidly than
linearly.

Alternatively, we can express the result given by Eq. (3.9.6) in terms of the
linear dielectric constant

ε(1) = 1 + χ(1). (3.9.7)

If the left-hand side of Eq. (3.9.6) is replaced by χ(1) = (ε(1) − 1) and the
resulting equation is rearranged so that its right-hand side is linear in α, we
find that the dielectric constant is given by the expression

ε(1) − 1

ε(1) + 2
= 1

3Nα. (3.9.8a)
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This equation (often with ε(1) replaced by n2) is known as the Lorentz–Lorenz
law. Note that, through rearrangement, Eq. (3.9.8a) can be written as

ε(1) + 2

3
= 1

1 − 1
3Nα

. (3.9.8b)

Equation (3.9.6) can thus be expressed as

χ(1) = ε(1) + 2

3
Nα. (3.9.8c)

This result shows that χ(1) is larger than Nα by the factor (ε(1) + 2)/3. The
factor (ε(1) + 2)/3 can thus be interpreted as the local-field enhancement fac-
tor for the linear susceptibility.

3.9.2. Local-Field Effects in Nonlinear Optics

In the nonlinear-optical case, the Lorentz local field is still given by
Eq. (3.9.2), but the polarization now has both linear and nonlinear contri-
butions:

P̃ = P̃L + P̃NL. (3.9.9)

We represent the linear contribution as

P̃L = Nε0γ
(1)Ẽloc. (3.9.10)

Note that this contribution is “linear” in the sense that it is linear in the strength
of the local field. In general it is not linear in the strength of the macroscopic
field. We next introduce Eqs. (3.9.2) and (3.9.9) into this equation to obtain

P̃L = Nε0α

(
Ẽ + 1

3ε0
P̃L + 1

3ε0
P̃NL

)
. (3.9.11)

We now solve this equation for P̃L and use Eqs. (3.9.6) and (3.9.7) to ex-
press the factor Nα that appears in the resulting expression in terms of the
linear dielectric constant. We thereby obtain

P̃L = [
ε(1) − 1

](
ε0Ẽ + 1

3 P̃NL)
. (3.9.12)

Next we consider the displacement vector

D̃ = ε0Ẽ + P̃ = ε0Ẽ + P̃L + P̃NL. (3.9.13)
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If the expression (3.9.12) for the linear polarization is substituted into this
expression, we obtain

D̃ = ε0ε
(1)Ẽ +

(
ε(1) + 2

3

)
P̃NL. (3.9.14)

We see that the second term is not simply P̃NL, as might have been expected,
but rather that the nonlinear polarization appears multiplied by the factor
(ε(1) + 2)/3. We recall that in the derivation of the polarization-driven wave
equation of nonlinear optics, a nonlinear source term appears when the sec-
ond time derivative of D̃ is calculated (see, for example, Eq. (2.1.9a)). As a
consequence of Eq. (3.9.14), we see that the nonlinear source term is actu-
ally the nonlinear polarization P̃NL multiplied by the factor (ε(1) + 2)/3. To
emphasize this point, Bloembergen (1965) introduces the nonlinear source
polarization defined by

P̃NLS =
(

ε(1) + 2

3

)
P̃NL (3.9.15)

so that Eq. (3.9.14) can be expressed as

D̃ = ε0ε
(1)Ẽ + P̃NLS. (3.9.16)

When the derivation of the wave equation is carried out as in Section 2.1 using
this expression for D̃, we obtain the result

∇ × ∇ × Ẽ + ε(1)

c2

∂2Ẽ
∂t2

= − 1

ε0c2

∂2P̃NLS

∂t2
. (3.9.17)

This result shows how local-field effects are incorporated into the wave
equation.

The distinction between the local and macroscopic fields also arises in that
the field that induces a dipole moment in each atom is the local field, whereas
by definition the nonlinear susceptibility relates the nonlinear source polariza-
tion to the macroscopic field. To good approximation, we can relate the local
and macroscopic fields by replacing P̃ by P̃L in Eq. (3.9.2) to obtain

Ẽloc = Ẽ + 1
3χ(1)Ẽ = [

1 + 1
3

(
ε(1) − 1

)]
Ẽ,

or

Ẽloc =
(

ε(1) + 2

3

)
Ẽ. (3.9.18)

We now apply the results given by Eqs. (3.9.17) and (3.9.18) to the case of
second-order nonlinear interactions. We define the nonlinear susceptibility by
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means of the equation (see also Eq. (1.3.13))

P NLS
i (ωm + ωn) = ε0

∑
jk

∑
(mn)

χ
(2)
ijk (ωm + ωn,ωm,ωn)Ej (ωm)Ek(ωn),

(3.9.19)
where

P NLS
i (ωm + ωn) =

(
ε(1)(ωm + ωn) + 2

3

)
P NL

i (ωm + ωn) (3.9.20)

and where the quantities Ej(ωm) represent macroscopic fields. The nonlinear
polarization (i.e., the second-order contribution to the dipole moment per unit
volume) can be represented as

P NL
i (ωm + ωn) = Nε0

∑
jk

∑
(mn)

βijk(ωm + ωn,ωm,ωn)E
loc
j (ωm)Eloc

k (ωn),

(3.9.21)
where the proportionality constant βijk is known as the second-order hyper-
polarizability. The local fields appearing in this expression are related to the
macroscopic fields according to Eq. (3.9.18), which we now rewrite as

Eloc
j (ωm) =

(
ε(1)(ωm) + 2

3

)
Ej(ωm). (3.9.22)

By combining Eqs. (3.9.19) through (3.9.22), we find that the nonlinear sus-
ceptibility can be represented as

χ
(2)
ijk (ωm + ωn,ωm,ωn)

=L(2)(ωm + ωn,ωm,ωn)Nβijk(ωm + ωn,ωm,ωn), (3.9.23)

where

L(2)(ωm + ωn,ωm,ωn)

=
(

ε(1)(ωm + ωn) + 2

3

)(
ε(1)(ωm) + 2

3

)(
ε(1)(ωn) + 2

3

)
(3.9.24)

gives the local-field enhancement factor for the second-order susceptibility.
For example, Eq. (3.6.18) for χ(2) should be multiplied by this factor to obtain
the correct expression including local-field effects.

This result is readily generalized to higher-order nonlinear interaction. For
example, the expression for χ(3) obtained ignoring local-field effects should
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be multiplied by the factor

L(3)(ωl + ωm + ωn,ωl,ωm,ωn)

=
(

ε(1)(ωl + ωm + ωn) + 2

3

)(
ε(1)(ωl) + 2

3

)

×
(

ε(1)(ωm) + 2

3

)(
ε(1)(ωn) + 2

3

)
. (3.9.25)

Our derivation of the form of the local-field enhancement factor has essen-
tially followed the procedure of Bloembergen (1965). The nature of local-field
effects in nonlinear optics can be understood from a very different point of
view introduced by Mizrahi and Sipe (1986). This method has the desirable
feature that, unlike the procedure just described, it does not require that we
introduce the somewhat arbitrary distinction between the nonlinear polariza-
tion and the nonlinear source polarization. For simplicity, we describe this
procedure only for the case of third-harmonic generation in the scalar field
approximation. We assume that the total polarization (including both linear
and nonlinear contributions) at the third-harmonic frequency is given by

P(3ω) = Nε0 α(3ω)Eloc(3ω) + Nε0γ (3ω,ω,ω,ω)E3
loc(ω), (3.9.26)

where α(3ω) is the linear polarizability for radiation at frequency 3ω and
where γ (3ω,ω,ω,ω) is the hyperpolarizability leading to third-harmonic
generation. We next use Eqs. (3.9.2) and (3.9.18) to rewrite Eq. (3.9.26) as

P(3ω) = Nε0α(3ω)

[
E(3ω) + 1

3ε0
P(3ω)

]

+ Nε0γ (3ω,ω,ω,ω)

(
ε(1)(ω) + 2

3

)3

E(ω)3. (3.9.27)

This equation is now solved algebraically for P(3ω) to obtain

P(3ω) = Nα(3ω)E(3ω)

1 − 1
3Nα(3ω)

+ Nγ (3ω,ω,ω,ω)

1 − 1
3 Nα(3ω)

(
ε(1)(ω) + 2

3

)3

E(ω)3.

(3.9.28)

We can identify the first and second terms of this expression as the linear and
third-order polarizations, which we represent as

P(3ω) = ε0χ
(1)(3ω)E(3ω) + ε0χ

(3)(3ω,ω,ω,ω)E(ω)3, (3.9.29)
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where (in agreement with the unusual Lorentz Lorenz law) the linear suscep-
tibility is given by

χ(1)(3ω) = Nα(3ω)

1 − 1
3 Nα(3ω)

, (3.9.30)

and where the third-order susceptibility is given by

χ(3)(3ω,ω,ω,ω) =
(

ε(1)(ω) + 2

3

)3(
ε(1)(3ω) + 2

3

)
Nγ (3ω,ω,ω,ω).

(3.9.31)

We have made use of Eq. (3.9.8b) in writing Eq. (3.9.31) in the form shown.
Note that the result (3.9.31) agrees with the previous result described by
Eq. (3.9.25).

Experimental results demonstrating the influence of local-field effects on
the linear and nonlinear optical response have been presented by Maki et al.
(1991). The analysis given above has assumed that the material is homoge-
neous in its structural properties. The analysis of local-field effects in com-
posite materials comprised of two or more constituents is an area of active
current research. In a composite material, the local electric field can vary con-
siderably in space, and this effect can lead to an overall enhancement of the
nonlinear optical response. These effects have been described by Fischer et al.
(1995) and by Nelson and Boyd (1999).

Problems

1. Estimate of the refractive index of an atomic vapor. Starting (for in-
stance) from Eq. (3.5.20), perform an estimate of the magnitude of the
on-resonance absorption coefficient of a dense atomic vapor assuming that
the atomic number density is N = 1017 cm−3, that μ = 2.5ea0, that the
transition vacuum wavelength is 0.6 µm, and that the transition is homoge-
neously broadened with a linewidth (FWHM) of 10 GHz. Under the same
conditions, calculate the maximum value of the real part of the refractive
index near the peak of the absorption line. (These values are realistic under
laboratory conditions. See for instance Maki et al., 1991.)

[Ans.: α = 8 × 104 cm−1, n(max) = 1.2].
2. Estimate of the refractive index of glass. Starting (for instance) from

Eq. (3.5.20), perform an estimate of the magnitude of the real part of the
refractive index of glass at visible wavelengths. Choose realistic values for
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the atomic number density, dipole transition moment, and detuning from
resonance.

3. Maximum value of the on-resonance cross section. Verify Eq. (3.5.42).
4. Permutation symmetry of the nonlinear susceptibility. Show that Eq. (3.6.24)

possesses full permutation symmetry.
5. Resonant nonlinear optical response. Derive, using the density matrix for-

malism, an expression for the resonant contribution to the third-order sus-
ceptibility χ(3) describing third-harmonic generation as illustrated below.

Assume that, in thermal equilibrium, all of the population resides in the
ground state. Note that since all input frequencies are equal and since only
the resonant contribution is required, the answer will consist of one term
and not 48 terms, which occur for the most general case of χ(3). Work this
problem by starting with the perturbation expansion (3.4.16) derived in the
text and specializing the ensuing derivation to the interaction shown in the
figure.[
Ans.: χ

(3)
kj ih(3ω,ω,ω,ω)

= N

ε0h̄
3

μk
adμ

j
dcμ

i
cbμ

h
ba

[(ωda − 3ω) − iγda][(ωca − 2ω) − iγca][(ωba − ω) − iγba]
]
.

6. Model calculation of the nonlinear susceptibility. Consider the mutual in-
teraction of four optical fields as illustrated in the following figure. Assume
that all of the fields have the same linear polarization and that in thermal
equilibrium all of the population is contained in level a. Assume that the
waves are tuned sufficiently closely to the indicated resonances that only
these contributions to the nonlinear interaction need be taken into account.
You may work this problem either by specializing the general result of
Eq. (3.7.11) to the interaction shown in the figure or by repeating the
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derivation given in the text and specializing at each step to this interac-
tion.

(a) Calculate the four nonlinear susceptibilities

χ(3)(ω4 = ω1 + ω2 − ω3), χ(3)(ω3 = ω1 + ω2 − ω4),

χ(3)(ω1 = ω3 + ω4 − ω2), χ(3)(ω2 = ω3 + ω4 − ω1)

that describe the four-wave mixing process, and determine the conditions
under which these quantities are equal.

(b) In addition, calculate the nonlinear susceptibilities

χ(3)(ω1 = ω1 + ω2 − ω2), χ(3)(ω2 = ω2 + ω−ω1)

that describe two-photon absorption of the ω1 and ω2 fields, and determine
the conditions under which they are equal. [Experimental investigation of
some of the effects described by these quantities is reported by Malcuit
et al., 1985.]

7. Generalization of Problems 4 and 5. Repeat the calculation of the resonant
contributions to χ(3) for the cases studied in Problems 4 and 5 for the
more general situation in which each of the levels can contain population
in thermal equilibrium. Interpret your results. [Note: The solution to this
problem is very lengthy.]

8. Pressure-induced resonances in nonlinear optics. Verify the statement
made in the text that Eq. (3.7.11) reduces to Eq. (3.2.33) in the limit in
which damping effects are negligible. Show also that, even when damping
is not negligible, the general 48-term expression for χ(3) can be cast into
an expression containing 24 terms, 12 of which contain “pressure-induced”
resonances.

9. Electromagnetically induced transparency. The goal of this problem is to
determine how the linear susceptibility χ(1)(2ω1 + ωs) and the nonlinear
optical susceptibility χ(3)(ωsum = ω1 + ω1 + ωs) are modified when the
field at frequency ωs is a strong saturating field. We shall find that un-
der appropriate circumstances the presence of the strong field can signif-
icantly decrease the (unwanted) linear absorption experienced by the sum
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frequency field while leaving the magnitude of the nonlinear response rel-
atively unaffected. This problem was worked out in the body of the text
using the wavefunction formalism. For this problem, you are to treat this
problem using the density-matrix formalism, using the coupling scheme
shown in the accompanying figure. Note that level b is appreciably detuned
from a one-photon resonance but that all other excited states are excited at
a near resonance frequency.
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Chapter 4

The Intensity-Dependent Refractive
Index

The refractive index of many optical materials depends on the intensity of
the light used to measure the refractive index. In this chapter, we examine
some of the mathematical descriptions of the nonlinear refractive index and
examine some of the physical processes that give rise to this effect. In the
following chapter, we study the intensity-dependent refractive index resulting
from the resonant response of an atomic system, and in Chapter 7 we study
some physical processes that result from the nonlinear refractive index.

4.1. Descriptions of the Intensity-Dependent Refractive Index

The refractive index of many materials can be described by the relation

n = n0 + n̄2
〈
Ẽ2〉, (4.1.1)

where n0 represents the usual, weak-field refractive index and n̄2 is a new
optical constant (sometimes called the second-order index of refraction) that
gives the rate at which the refractive index increases with increasing opti-
cal intensity.∗ The angular brackets surrounding the quantity Ẽ2 represent a
time average. Thus, if the optical field is of the form

Ẽ(t) = E(ω)e−iωt + c.c. (4.1.2)

so that 〈
Ẽ(t)2〉 = 2E(ω)E(ω)∗ = 2

∣∣E(ω)
∣∣2

, (4.1.3)

∗ We place a bar over the symbol n2 to prevent confusion with a different definition of n2, which
is introduced in Eq. (4.1.15).

207
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we find that

n = n0 + 2n̄2
∣∣E(ω)

∣∣2
. (4.1.4)

The change in refractive index described by Eq. (4.1.1) or (4.1.4) is sometimes
called the optical Kerr effect, by analogy with the traditional Kerr electrooptic
effect, in which the refractive index of a material changes by an amount that
is proportional to the square of the strength of an applied static electric field.

Of course, the interaction of a beam of light with a nonlinear optical
medium can also be described in terms of the nonlinear polarization. The
part of the nonlinear polarization that influences the propagation of a beam of
frequency ω is

P NL(ω) = 3ε0χ
(3)(ω = ω + ω − ω)

∣∣E(ω)
∣∣2

E(ω). (4.1.5)

For simplicity we are assuming here that the light is linearly polarized and are
suppressing the tensor indices of χ(3); the tensor nature of χ(3) is addressed
explicitly in the following sections. The total polarization of the material sys-
tem is then described by

P TOT(ω) = ε0χ
(1)E(ω) + 3ε0χ

(3)
∣∣E(ω)

∣∣2
E(ω) ≡ ε0χeffE(ω), (4.1.6)

where we have introduced the effective susceptibility

χeff = χ(1) + 3χ(3)
∣∣E(ω)

∣∣2
. (4.1.7)

In order to relate the nonlinear susceptibility χ(3) to the nonlinear refractive
index n2, we note that it is generally true that

n2 = 1 + χeff, (4.1.8)

and by introducing Eq. (4.1.4) on the left-hand side and Eq. (4.1.7) on the
right-hand side of this equation, we find that

[
n0 + 2n̄2

∣∣E(ω)
∣∣2]2 = 1 + χ(1) + 3χ(3)

∣∣E(ω)
∣∣2

. (4.1.9)

Correct to terms of order |E(ω)|2, this expression when expanded becomes
n2

0 + 4n0n̄2|E(ω)|2 = (1 + χ(1)) + [3χ(3)|E(ω)|2], which shows that the lin-
ear and nonlinear refractive indices are related to the linear and nonlinear
susceptibilities by

n0 = (
1 + χ(1)

)1/2 (4.1.10)

and

n̄2 = 3χ(3)

4n0
. (4.1.11)
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FIGURE 4.1.1 Two ways of measuring the intensity-dependent refractive index. In
part (a), a strong beam of light modifies its own propagation, whereas in part (b),
a strong beam of light influences the propagation of a weak beam.

The discussion just given has implicitly assumed that the refractive index
is measured using a single laser beam, as shown in part (a) of Fig. 4.1.1.
Another way of measuring the intensity-dependent refractive index is to use
two separate beams, as illustrated in part (b) of the figure. Here the presence
of the strong beam of amplitude E(ω) leads to a modification of the refractive
index experienced by a weak probe wave of amplitude E(ω′). The nonlinear
polarization affecting the probe wave is given by

P NL(ω′) = 6ε0χ
(3)(ω′ = ω′ + ω − ω)

∣∣E(ω)
∣∣2

E(ω′). (4.1.12)

Note that the degeneracy factor (6) for this case is twice as large as that for
the single-beam case of Eq. (4.1.5). In fact, for the two-beam case the degen-
eracy factor is equal to 6 even if ω′ is equal to ω, because the probe beam is
physically distinguishable from the strong pump beam owing to its different
direction of propagation. The probe wave hence experiences a refractive index
given by

n = n0 + 2n̄
(cross)
2

∣∣E(ω)
∣∣2

, (4.1.13)

where

n̄
(cross)
2 = 3χ(3)

2n0
. (4.1.14)

Note that the nonlinear coefficient n̄
(cross)
2 describing cross-coupling effects is

twice as large as the coefficient n̄2 of Eq. (4.1.11) which describes self-action
effects. Hence, a strong wave affects the refractive index of a weak wave of
the same frequency twice as much as it affects its own refractive index. This
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effect, for the case in which n2 is positive, is known as weak-wave retardation
(Chiao et al., 1966).

An alternative way of defining the intensity-dependent refractive index∗ is
by means of the equation

n = n0 + n2I, (4.1.15)

where I denotes the time-averaged intensity of the optical field, given by

I = 2n0ε0c
∣∣E(ω)

∣∣2
. (4.1.16)

Since the total refractive index n must be the same using either description of
the nonlinear contribution, we see by comparing Eqs. (4.1.4) and (4.1.15) that

2n̄2
∣∣E(ω)

∣∣2 = n2I, (4.1.17)

and thus that n̄2 and n2 are related by

n2 = n̄2

n0ε0c
, (4.1.18)

where we have made use of Eq. (4.1.16). If Eq. (4.1.11) is introduced into this
expression, we find that n2 is related to χ(3) by

n2 = 3

4n2
0ε0c

χ(3). (4.1.19)

This relation can be expressed numerically as

n2

(
m2

W

)
= 283

n2
0

χ(3)

(
m2

V2

)
. (4.1.20)

Nonlinear susceptibilities are sometimes quoted in gaussian units. Procedures
for converting between the gaussian and SI units are presented in the appen-
dix. One useful relation is the following:

n2

(
cm2

W

)
= 12π2

n2
0c

107χ(3)(esu) = 0.0395

n2
0

χ(3)(esu). (4.1.21)

Some of the physical processes that can produce a nonlinear change in
the refractive index are listed in Table 4.1.1, along with typical values of n2,
of χ(3), and of the characteristic time scale for the nonlinear response to de-
velop. Electronic polarization, molecular orientation, and thermal effects are

∗ For definiteness, we are treating the single-beam case of part (a) of Fig. 4.1.1. The extension to
the two-beam case is straightforward.
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TABLE 4.1.1 Typical values of the nonlinear refractive index a

Mechanism n2
(cm2/W)

χ
(3)
1111

(m2/V2)

Response Time
(sec)

Electronic polarization 10−16 10−22 10−15

Molecular orientation 10−14 10−20 10−12

Electrostriction 10−14 10−20 10−9

Saturated atomic absorption 10−10 10−16 10−8

Thermal effects 10−6 10−12 10−3

Photorefractive effect b (large) (large) (intensity-dependent)

a For linearly polarized light.
b The photorefractive effect often leads to a very strong nonlinear response. This response usually

cannot be described in terms of a χ(3) (or an n2) nonlinear susceptibility, because the nonlinear
polarization does not depend on the applied field strength in the same manner as the other mechanisms
listed.

discussed in the present chapter, saturated absorption is discussed in Chap-
ter 7, electrostriction is discussed in Chapter 9, and the photorefractive effect
is described in Chapter 11.

In Table 4.1.2 the experimentally measured values of the nonlinear sus-
ceptibility are presented for several materials. Some of the methods that are
used to measure the nonlinear susceptibility have been reviewed by Hellwarth
(1977). As an example of the use of Table 4.1.2, note that for carbon disulfide
the value of n2 is approximately 3 × 10−14 cm2/W. Thus, a laser beam of
intensity I = 1 MW/cm2 can produce a refractive index change of 3 × 10−8.
Even though this change is rather small, refractive index changes of this order
of magnitude can lead to dramatic nonlinear optical effects (some of which
are described in Chapter 7) for the case of phase-matched nonlinear optical
interactions.

4.2. Tensor Nature of the Third-Order Susceptibility

The third-order susceptibility χ
(3)
ijkl is a fourth-rank tensor, and thus is de-

scribed in terms of 81 separate elements. For crystalline solids with low sym-
metry, all 81 of these elements are independent and can be nonzero (Butcher,
1965). However, for materials possessing a higher degree of spatial symme-
try, the number of independent elements is very much reduced; as we show
below, there are only three independent elements for an isotropic material.

Let us see how to determine the tensor nature of the third-order suscep-
tibility for the case of an isotropic material such as a glass, a liquid, or a vapor.
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TABLE 4.1.2 Third-order nonlinear optical coefficients of various materials a

Material n0 χ(3) (m2/V2) n2 (cm2/W) Comments and References b

Crystals

Al2O3 1.8 3.1×10−22 2.9×10−16 1
CdS 2.34 9.8×10−20 5.1×10−14 1,1.06 µm
Diamond 2.42 2.5×10−21 1.3×10−15 1
GaAs 3.47 1.4×10−18 3.3×10−13 1,1.06 µm
Ge 4.0 5.6×10−19 9.9×10−14 2, THG |χ(3)|
LiF 1.4 6.2×10−23 9.0×10−17 1
Si 3.4 2.8×10−18 2.7×10−14 2, THG |χ(3)|
TiO2 2.48 2.1×10−20 9.4×10−15 1
ZnSe 2.7 6.2×10−20 3.0×10−14 1,1.06 µm

Glasses

Fused silica 1.47 2.5×10−22 3.2×10−16 1
As2S3 glass 2.4 4.1×10−19 2.0×10−13 3
BK-7 1.52 2.8×10−22 3.4×10−16 1
BSC 1.51 5.0×10−22 6.4×10−16 1
Pb Bi gallate 2.3 2.2×10−20 1.3×10−14 4
SF-55 1.73 2.1×10−21 2.0×10−15 1
SF-59 1.953 4.3×10−21 3.3×10−15 1

Nanoparticles

CdSSe in glass 1.5 1.4×10−20 1.8×10−14 3, nonres.
CS 3-68 glass 1.5 1.8×10−16 2.3×10−10 3, res.
Gold in glass 1.5 2.1×10−16 2.6×10−10 3, res.

Polymers

Polydiacetylenes
PTS 8.4×10−18 3.0×10−12 5, nonres.
PTS −5.6×10−16 −2.0×10−10 6, res.
9BCMU 2.7×10−18 7, |n2|, res.
4BCMU 1.56 −1.3×10−19 −1.5×10−13 8, nonres, β =

0.01 cm/MWLiquids
Acetone 1.36 1.5×10−21 2.4×10−15 9
Benzene 1.5 9.5×10−22 1.2×10−15 9
Carbon disulfide 1.63 3.1×10−20 3.2×10−14 9, τ = 2 psec
CCl4 1.45 1.1×10−21 1.5×10−15 9
Diiodomethane 1.69 1.5×10−20 1.5×10−14 9
Ethanol 1.36 5.0×10−22 7.7×10−16 9
Methanol 1.33 4.3×10−22 6.9×10−16 9
Nitrobenzene 1.56 5.7×10−20 6.7×10−14 9
Water 1.33 2.5×10−22 4.1×10−16 9

Other materials

Air 1.0003 1.7×10−25 5.0×10−19 10
Ag 2.8×10−19 2, THG |χ(3)|
Au 7.6×10−19 2, THG |χ(3)|
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TABLE 4.1.2 (continued)

Material n0 χ(3) (m2/V2) n2 (cm2/W) Comments and References b

Vacuum 1 3.4×10−41 1.0×10−34 11
Cold atoms 1.0 7.1 × 10−8 0.2 12, (EIT BEC)
Fluorescein dye

in glass 1.5 (2.8 + 2.8i) × 10−8 0.035(1+i) 13, τ = 0.1s

a This table assumes the definition of the third-order susceptibility χ(3) used in this book, as given
for instance by Eq. (1.1.2) or by Eq. (1.3.21). This definition is consistent with that introduced by
Bloembergen (1964). Some workers use an alternative definition which renders their values four times
smaller. In compiling this table we have converted the literature values when necessary to the present
definition.

The quantity n2 is the coefficient of the intensity-dependent refractive index which is defined such
that n = n0 + n2I , where n0 is the linear refractive index and I is the laser intensity. The relation
between n2 and χ(3) is consequently n2 = 12π2χ(3)/n2

0. When the intensity is measured in W/cm2

and χ(3) is measured in electrostatic units (esu), that is, in cm2 statvolt−2, the relation between n2
and χ(3) becomes n2(cm2/W) = 0.0395χ(3)(esu)/n2

0. The quantity β is the coefficient describing
two-photon absorption.

b References for Table 4.1.2: Chase and Van Stryland (1995), Bloembergen et al. (1969), Vogel
et al. (1991), Hall et al. (1989), Lawrence et al. (1994), Carter et al. (1985), Molyneux et al. (1993),
Erlich et al. (1993), Sutherland (1996), Pennington et al. (1989), Euler and Kockel (1935), Hau et al.

(1999), Kramer et al. (1986).

We begin by considering the general case in which the applied frequencies
are arbitrary, and we represent the susceptibility as χijkl ≡ χ

(3)
ijkl(ω4 = ω1 +

ω2 +ω3). Since each of the coordinate axes must be equivalent in an isotropic
material, it is clear that the susceptibility possesses the following symmetry
properties:

χ1111 = χ2222 = χ3333, (4.2.1a)

χ1122 = χ1133 = χ2211 = χ2233 = χ3311 = χ3322, (4.2.1b)

χ1212 = χ1313 = χ2323 = χ2121 = χ3131 = χ3232, (4.2.1c)

χ1221 = χ1331 = χ2112 = χ2332 = χ3113 = χ3223. (4.2.1d)

One can also see that the 21 elements listed are the only nonzero elements
of χ(3), because these are the only elements that possess the property that
any cartesian index (1, 2, or 3) that appears at least once appears an even
number of times. An index cannot appear an odd number of times, because,
for example, χ1222 would give the response in the x̂1 direction due to a field
applied in the x̂2 direction. This response must vanish in an isotropic material,
because there is no reason why the response should be in the +x̂1 direction
rather than in the −x̂1 direction.
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The four types of nonzero elements appearing in the four equations (4.2.1)
are not independent of one another and, in fact, are related by the equation

χ1111 = χ1122 + χ1212 + χ1221. (4.2.2)

One can deduce this result by requiring that the predicted value of the non-
linear polarization be the same when calculated in two different coordinate
systems that are rotated with respect to each other by an arbitrary amount.
A rotation of 45 degrees about the x̂3 axis is a convenient choice for deriv-
ing this relation. The results given by Eqs. (4.2.1) and (4.2.2) can be used to
express the nonlinear susceptibility in the compact form

χijkl = χ1122δij δkl + χ1212δikδjl + χ1221δilδjk. (4.2.3)

This form shows that the third-order susceptibility has three independent ele-
ments for the general case in which the field frequencies are arbitrary.

Let us first specialize this result to the case of third-harmonic generation,
where the frequency dependence of the susceptibility is taken as χijkl(3ω =
ω + ω + ω). As a consequence of the intrinsic permutation symmetry of the
nonlinear susceptibility, the elements of the susceptibility tensor are related
by χ1122 = χ1212 = χ1221 and thus Eq. (4.2.3) becomes

χijkl(3ω = ω + ω + ω) = χ1122(3ω = ω + ω + ω)(δij δkl + δikδjl + δilδjk).

(4.2.4)

Hence, there is only one independent element of the susceptibility tensor de-
scribing third-harmonic generation.

We next apply the result given in Eq. (4.2.3) to the nonlinear refractive
index, that is, we consider the choice of frequencies given by χijkl(ω =
ω + ω − ω). For this choice of frequencies, the condition of intrinsic per-
mutation symmetry requires that χ1122 be equal to χ1212, and hence χijkl can
be represented by

χijkl(ω = ω + ω − ω) = χ1122(ω = ω + ω − ω)

× (δij δkl + δikδjl) + χ1221(ω = ω + ω − ω)(δilδjk). (4.2.5)

The nonlinear polarization leading to the nonlinear refractive index is given
in terms of the nonlinear susceptibility by (see also Eq. (1.3.21))

Pi(ω) = 3ε0

∑
jkl

χijkl(ω = ω + ω − ω)Ej (ω)Ek(ω)El(−ω). (4.2.6)

If we introduce Eq. (4.2.5) into this equation, we find that

Pi = 6ε0χ1122Ei(E · E∗) + 3ε0χ1221E
∗
i (E · E). (4.2.7)
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This equation can be written entirely in vector form as

P = 6ε0χ1122(E · E∗)E + 3ε0χ1221(E · E)E∗. (4.2.8)

Following the notation of Maker and Terhune (1965) (see also Maker et al.,
1964), we introduce the coefficients

A = 6χ1122 (or A = 3χ1122 + 3χ1212) (4.2.9a)

and

B = 6χ1221, (4.2.9b)

in terms of which the nonlinear polarization of Eq. (4.2.8) can be written as

P = ε0A(E · E∗)E + 1
2ε0B(E · E)E∗. (4.2.10)

We see that the nonlinear polarization consists of two contributions. These
contributions have very different physical characters, since the first contribu-
tion has the vector nature of E, whereas the second contribution has the vector
nature of E∗. The first contribution thus produces a nonlinear polarization with
the same handedness as E, whereas the second contribution produces a non-
linear polarization with the opposite handedness. The consequences of this
behavior on the propagation of a beam of light through a nonlinear optical
medium are described below.

The origin of the different physical characters of the two contributions to P
can be understood in terms of the energy level diagrams shown in Fig. 4.2.1.
Here part (a) illustrates one-photon-resonant contributions to the nonlinear
coupling. We will show in Eq. (4.3.14) that processes of this sort contribute
only to the coefficient A. Part (b) of the figure illustrates two-photon-resonant
processes, which in general contribute to both the coefficients A and B

(see Eqs. (4.3.13) and (4.3.14)). However, under certain circumstances, such
as those described later in connection with Fig. 7.2.9, two-photon-resonant
processes contribute only to the coefficient B .

FIGURE 4.2.1 Diagrams (a) and (b) represent the resonant contributions to the non-
linear coefficients A and B , respectively.
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For some purposes, it is useful to describe the nonlinear polarization not by
Eq. (4.2.10) but rather in terms of an effective linear susceptibility defined by
means of the relationship

Pi =
∑
j

ε0χ
(eff)
ij Ej . (4.2.11)

Then, as can be verified by direct substitution, Eqs. (4.2.10) and (4.2.11) lead
to identical predictions for the nonlinear polarization if the effective linear
susceptibility is given by

χ
(eff)
ij = ε0A

′(E · E∗)δij + 1
2ε0B

′(EiE
∗
j + E∗

i Ej ), (4.2.12a)

where

A′ = A − 1
2B = 6χ1122 − 3χ1221 (4.2.12b)

and

B ′ = B = 6χ1221. (4.2.12c)

The results given in Eq. (4.2.10) or in Eqs. (4.2.12) show that the nonlinear
susceptibility tensor describing the nonlinear refractive index of an isotropic
material possesses only two independent elements. The relative magnitude of
these two coefficients depends on the nature of the physical process that pro-
duces the optical nonlinearity. For some of the physical mechanisms leading
to a nonlinear refractive index, these ratios are given by

B/A = 6, B ′/A′ = −3 for molecular orientation, (4.2.13a)

B/A = 1, B ′/A′ = 2 for nonresonant electronic response, (4.2.13b)

B/A = 0, B ′/A′ = 0 for electrostriction. (4.2.13c)

These conclusions will be justified in the discussion that follows; see espe-
cially Eq. (4.4.37) for the case of molecular orientation, Eq. (4.3.14) for non-
resonant electronic response of bound electrons, and Eq. (9.2.15) for elec-
trostriction. Note also that A is equal to B by definition whenever the Klein-
man symmetry condition is valid.

The trace of the effective susceptibility is given by

Trχij ≡
∑

i

χii = (3A′ + B ′)E · E∗. (4.2.14)

Hence, Trχij vanishes for the molecular orientation mechanism. This result
can be understood from the point of view that molecular orientation does not
add any “additional polarizability,” it simply redistributes the amount that is
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present among different tensor components. For the resonant response of an
atomic transition, the ratio of B to A depends upon the angular momentum
quantum numbers of the two atomic levels. Formulas for A and B for such a
case have been presented by Saikan and Kiguchi (1982).

4.2.1. Propagation through Isotropic Nonlinear Media

Let us next consider the propagation of a beam of light through a material
whose nonlinear optical properties are described by Eq. (4.2.10). As we show
below, only linearly or circularly polarized light is transmitted through such
a medium with its state of polarization unchanged. When elliptically polar-
ized light propagates through such a medium, the orientation of the polariza-
tion ellipse rotates as a function of propagation distance due to the nonlinear
interaction.

Let us consider a beam of arbitrary polarization propagating in the positive
z direction. The electric field vector of such a beam can always be decom-
posed into a linear combination of left- and right-hand circular components
as

E = E+σ̂+ + E−σ̂−, (4.2.15)

where the circular-polarization unit vectors are illustrated in Fig. 4.2.2 and are
defined by

σ̂± = x̂ ± iŷ√
2

. (4.2.16)

By convention, σ̂+ corresponds to left-hand circular and σ̂− to right-hand
circular polarization (for a beam propagating in the positive z direction).

We now introduce the decomposition (4.2.15) into Eq. (4.2.10). We find,
using the identities

σ̂ ∗
± = σ̂∓, σ̂± · σ̂± = 0, σ̂± · σ̂∓ = 1,

FIGURE 4.2.2 The σ̂+ and σ̂− circular polarizations.
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that the products E∗ · E and E · E become

E∗ · E = (E∗+σ̂ ∗
+ + E∗−σ̂ ∗

−) · (E+σ̂+ + E−σ̂−) = E∗+E+ + E∗−E−

= |E+|2 + |E−|2

and

E · E = (E+σ̂+ + E−σ̂−) · (E+σ̂+ + E−σ̂−) = E+E− + E−E+ = 2E+E−,

so Eq. (4.2.10) can be written as

PNL = ε0A
(|E+|2 + |E−|2)E + ε0B(E+E−)E∗. (4.2.17)

If we now represent PNL in terms of its circular components as

PNL = P+σ̂+ + P−σ̂−, (4.2.18)

we find that the coefficient P+ is given by

P+ = ε0A
(|E+|2 + |E−|2)E+ + ε0B(E+E−)E∗−

= ε0A
(|E+|2 + |E−|2)E+ + ε0B|E−|2E+

= ε0A|E+|2E+ + ε0(A + B)|E−|2E+ (4.2.19a)

and similarly that

P− = ε0A|E−|2E− + ε0(A + B)|E+|2E−. (4.2.19b)

These results can be summarized as

P± ≡ ε0χ
NL± E±, (4.2.20a)

where we have introduced the effective nonlinear susceptibilities

χNL± = A|E±|2 + (A + B)|E∓|2. (4.2.20b)

The expressions (4.2.15) and (4.2.18) for the field and nonlinear polarization
are now introduced into the wave equation,

∇2E(z, t) = ε(1)

c2

∂2E(z, t)

∂t2
+ 1

ε0c2

∂2

∂t2
PNL, (4.2.21)

where Ẽ(z, t) = E exp(−iωt)+c.c. and P̃(z, t) = P exp(−iωt)+c.c. We next
decompose Eq. (4.2.21) into its σ̂+ and σ̂− components. Since, according to
Eq. (4.2.20a), P± is proportional to E±, the two terms on the right-hand side
of the resulting equation can be combined into a single term, so the wave
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equation for each circular component becomes

∇2Ẽ±(z, t) = ε
(eff)
±
c2

∂2Ẽ±(z, t)

∂t2
, (4.2.22a)

where

ε
(eff)
± = ε(1) + χNL± . (4.2.22b)

This equation possesses solutions of the form of plane waves propagating
with the phase velocity c/n±, where n± = [ε(eff)

± ]1/2. Letting n2
0 = ε(1), we

find that

n2± = n2
0 + χNL± = n2

0 + [
A|E±|2 + (A + B)|E∓|2]

= n2
0

(
1 + 1

n2
0

[
A|E±|2 + (A + B)|E∓|2]

)
,

and thus

n± 	 n0 + 1

2n0

[
A|E±|2 + (A + B)|E∓|2]. (4.2.23)

We see that the left- and right-circular components of the beam propagate with
different phase velocities. The difference in their refractive indices is given by


n ≡ n+ − n− = B

2n0

(|E−|2 − |E+|2). (4.2.24)

Note that this difference depends upon the value of the coefficient B but not
that of the coefficient A. Since the left- and right-hand circular components
propagate with different phase velocities, the polarization ellipse of the light
will rotate as the beam propagates through the nonlinear medium; a similar
effect occurs in the linear optics of optically active materials.

In order to determine the angle of rotation, we express the field amplitude
as

E(z) = E+σ̂+ + E−σ̂− = A+ein+ωz/cσ̂+ + A−ein−ωz/cσ̂−
= (

A+ei(1/2)
nωz/cσ̂+ + A−e−i(1/2)
nωz/cσ̂−
)
ei(1/2)(n++n−)ωz/c.

(4.2.25)

We now introduce the mean propagation constant km = 1
2 (n+ + n−)ω/c and

the angle

θ = 1
2
n

ω

c
z, (4.2.26a)
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FIGURE 4.2.3 Polarization ellipses of the incident and transmitted waves.

in terms of which Eq. (4.2.25) becomes

E(z) = (
A+σ̂+eiθ + A−σ̂−e−iθ

)
eikmz. (4.2.26b)

As illustrated in Fig. 4.2.3, this equation describes a wave whose polar-
ization ellipse is the same as that of the incident wave but rotated through the
angle θ (measured clockwise in the xy plane, in conformity with the sign con-
vention for rotation angles in optical activity). This conclusion can be demon-
strated by noting that

σ̂±e±iθ = x̂′ ± iŷ′
√

2
, (4.2.27)

where x̂′ and ŷ′ are polarization unit vectors in a new coordinate system—that
is,

x′ = x cos θ − y sin θ, (4.2.28a)

y′ = x sin θ + y cos θ. (4.2.28b)

Measurement of the rotation angle θ provides a sensitive method for deter-
mining the nonlinear coefficient B (see also Eqs. (4.2.24) and (4.2.26a)).

As mentioned above, there are two cases in which the polarization ellipse
does not rotate. One case is that of circularly polarized light. In this case only
one of the σ̂± components is present, and we see from Eq. (4.2.23) that the
change in refractive index is given by

δncircular = 1

2n0
A|E|2, (4.2.29)

which clearly depends on the coefficient A but not on the coefficient B .
The other case in which there is no rotation is that of linearly polarized
light. Since linearly polarized light is a combination of equal amounts of
left- and right-hand circular components (i.e., |E−|2 = |E+|2), we see di-
rectly from Eq. (4.2.24) that the index difference 
n vanishes. If we let E
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denote the total field amplitude of the linearly polarized radiation, so that
|E|2 = 2|E+|2 = 2|E−|2, we find from Eq. (4.2.23) that for linearly polarized
light the change in refractive index is given by

δnlinear = 1

2n0

(
A + 1

2B
)|E|2. (4.2.30)

Note that this change depends on the coefficients A = 6χ1122 and B = 6χ1221

as A + 1
2B , which according to Eqs. (4.2.2) and (4.2.9a,b) is equal to 3χ1111.

We see from Eqs. (4.2.29) and (4.2.30) that, for the usual case in which A and
B have the same sign, linearly polarized light experiences a larger nonlinear
change in refractive index than does circularly polarized light. In general the
relative change in refractive index, δnlinear/δncircular, is equal to 1 + B/2A,
which for the mechanisms described after Eq. (4.2.10) becomes

δnlinear

δncircular
=

⎧⎨
⎩

4 for molecular orientation,
3
2 for nonresonant electronic nonlinearities,
1 for electrostriction.

For the case of two laser beams counterpropagating through a nonlinear ma-
terial, the theoretical analysis is far more complex than that just presented
for the single-beam situation, and a variety of additional phenomena can oc-
cur, including polarization bistability and polarization instabilities including
chaos. These effects have been described theoretically by Gaeta et al. (1987)
and have been observed experimentally by Gauthier et al. (1988, 1990).

4.3. Nonresonant Electronic Nonlinearities

Nonresonant electronic nonlinearities occur as the result of the nonlinear re-
sponse of bound electrons to an applied optical field. This nonlinearity usually
is not particularly large (χ(3) ∼ 10−22 m2/V2 is typical) but is of consider-
able importance because it is present in all dielectric materials. Furthermore,
recent work has shown that certain organic nonlinear optical materials (such
as polydiacetylene) can have nonresonant third-order susceptibilities as large
as 10−17 m2/V2 as a consequence of the response of delocalized π electrons.

Nonresonant electronic nonlinearities are extremely fast, since they involve
only virtual processes. The characteristic response time of this process is the
time required for the electron cloud to become distorted in response to an
applied optical field. This response time can be estimated as the orbital period
of the electron in its motion about the nucleus, which according to the Bohr
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model of the atom is given by

τ = 2πa0/v,

where a0 = 0.5 × 10−10 m is the Bohr radius of the atom and v 	 c/137 is a
typical electronic velocity. We hence find that τ 	 10−16 s.

4.3.1. Classical, Anharmonic Oscillator Model of Electronic
Nonlinearities

A simple model of electronic nonlinearities is the classical, anharmonic oscil-
lator model presented in Section 1.4. According to this model, one assumes
that the potential well binding the electron to the atomic nucleus deviates from
the parabolic potential of the usual Lorentz model. We approximate the actual
potential well as

U(r) = 1
2mω2

0|r|2 − 1
4mb|r|4, (4.3.1)

where b is a phenomenological nonlinear constant whose value is of the order
of ω2

0/d
2, where d is a typical atomic dimension. By solving the equation of

motion for an electron in such a potential well, we obtain expression (1.4.52)
for the third-order susceptibility. When applied to the case of the nonlinear
refractive index, this expression becomes

χ
(3)
ijkl(ω = ω + ω − ω) = Nbe4[δij δkl + δikδjl + δilδjk]

3ε0m3D(ω)3D(−ω)
, (4.3.2)

where D(ω) = ω2
0 − ω2 − 2iωγ . In the notation of Maker and Terhune

(Eq. (4.2.10)), this result implies that

A = B = 2Nbe4

ε0m3D(ω)3D(−ω)
. (4.3.3)

Hence, according to the classical, anharmonic oscillator model of electronic
nonlinearities, A is equal to B for any value of the optical field frequency
(whether resonant or nonresonant). For the case of far-off-resonant excitation
(i.e., ω � ω0), we can replace D(ω) by ω2

0 in Eq. (4.3.2). If in addition we set
b equal to ω2

0/d
2, we find that

χ(3) 	 Ne4

ε0m3ω6
0d

2
. (4.3.4)

For the typical values N = 4 × 1022 cm−3, d = 3 × 10−10 m, and ω0 = 7 ×
1015 rad/s, we find that χ(3) 	 3 × 10−22 m2/V2.
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4.3.2. Quantum-Mechanical Model of Nonresonant Electronic
Nonlinearities

Let us now calculate the third-order susceptibility describing the nonlinear
refractive index using the laws of quantum mechanics. Since we are interested
primarily in the case of nonresonant excitation, we make use of the expression
for the nonlinear susceptibility in the form given by Eq. (3.2.33) – that is,

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0h̄
3
PF

∑
lmn

[
μk

gnμ
j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq −ωp)(ωlg − ωp)

]
, (4.3.5)

where ωσ = ωr + ωq + ωp . We want to apply this expression to the case

of the nonlinear refractive index, with the frequencies arranged as χ
(3)
kj ih

(ω,ω,ω,−ω) = χ
(3)
kj ih(ω = ω + ω − ω). One sees that Eq. (4.3.5) appears

to have divergent contributions for this choice of frequencies, because the
factor ωmg −ωq −ωp in the denominator vanishes when the dummy index m

is equal to g and when ωp = −ωq = ±ω. However, in fact this divergence
exists in appearance only (Hanna et al., 1979; Orr and Ward, 1971); one can
readily rearrange Eq. (4.3.5) into a form where no divergence appears. We
first rewrite Eq. (4.3.5) as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0h̄
3
PF

[∑
lmn

′ μk
gnμ

j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq − ωp)(ωlg − ωp)

−
∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωq + ωp)(ωlg − ωp)

]
. (4.3.6)

Here the prime on the first summation indicates that the terms correspond-
ing to m = g are to be omitted from the summation over m; these terms are
displayed explicitly in the second summation. The second summation, which
appears to be divergent for ωq = −ωp , is now rearranged. We make use of the
identity

1

XY
= 1

(X + Y )Y
+ 1

(X + Y )X
, (4.3.7)
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with X = ωq + ωp and Y = ωlg − ωp , to express Eq. (4.3.6) as

χ
(3)
kj ih(ωσ ,ωr,ωq,ωp)

= N

ε0h̄
3
PF

[∑
lmn

′ μk
gnμ

j
nmμi

mlμ
h
lg

(ωng − ωσ )(ωmg − ωq − ωp)(ωlg − ωp)

−
∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωlg − ωp)

]
(4.3.8)

in addition to the contribution

PF

∑
ln

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωq + ωp)
. (4.3.9)

However, this additional contribution vanishes, because for every term of the
form

μk
gnμ

j
ngμ

i
glμ

h
lg

(ωng − ωσ )(ωlg + ωq)(ωq + ωp)
(4.3.10a)

that appears in Eq. (4.3.9), there is another term with the dummy summation
indices n and l interchanged, with the pair (−ωσ , k) interchanged with (ωq, i),
and with the pair (ωp,h) interchanged with (ωr, j ); this term is of the form

μi
glμ

h
lgμ

k
gnμ

j
ng

(ωlg + ωq)(ωng − ωσ )(ωr − ωσ )
. (4.3.10b)

Since ωσ = ωp +ωq +ωr , it follows that (ωq +ωp) = −(ωr −ωσ ), and hence
the expression (4.3.10a) and (4.3.10b) are equal in magnitude but opposite in
sign. The expression (4.3.8) for the nonlinear susceptibility is thus equivalent
to Eq. (4.3.5) but is more useful for our present purpose because no apparent
divergences are present.

We now specialize Eq. (4.3.8) to the case of the nonlinear refractive index
with the choice of frequencies given by χ

(3)
kj ih(ω,ω,ω,−ω). When we expand

the permutation operator PF , we find that each displayed term in Eq. (4.3.8)
actually represents 24 terms. The resonance nature of each such term can be
analyzed by means of diagrams of the sort shown in Fig. 3.2.3.∗ Rather than
considering all 48 terms of the expanded version of Eq. (4.3.8), let us consider

∗ Note, however, that Fig. 3.2.3 as drawn presupposes that the three input frequencies are all pos-
itive, whereas for the case of the nonlinear refractive index two of the input frequencies are positive
and one is negative.
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only the nearly resonant terms, which would be expected to make the largest
contributions to χ(3). One finds, after detailed analysis of Eq. (4.3.8), that the
resonant contribution to the nonlinear susceptibility is given by

χ
(3)
kj ih(ω,ω,ω,−ω) = χ

(3)
kj ih(ω = ω + ω − ω) = N

6 ε0h̄
3

×
(∑

lmn

′ μk
gnμ

h
nmμi

mlμ
j
lg + μk

gnμ
h
nmμ

j
mlμ

i
lg + μh

gnμ
k
nmμi

mlμ
j
lg + μh

gnμ
k
nmμ

j
mlμ

i
lg
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(4.3.11)

Here the first summation represents two-photon-resonant processes and the
second summation represents one-photon-resonant processes, in the sense
illustrated in Fig. 4.3.1.

We can use Eq. (4.3.11) to obtain explicit expressions for the resonant con-
tributions to the nonvanishing elements of the nonlinear susceptibility tensor
for an isotropic medium. We find, for example, that χ1111(ω = ω + ω − ω) is
given by

χ1111 = 2N

3ε0h̄
3

∑
lmn

′ μx
gnμ

x
nmμx

mlμ
x
lg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)

− 2N

3ε0h̄
3

∑
ln

μx
gnμ

x
ngμ

x
glμ

x
lg

(ωng − ω)(ωlg − ω)(ωlg − ω)
. (4.3.12)

Note that both one- and two-photon-resonant terms contribute to this expres-
sion. When ω is smaller than any resonant frequency of the material system,

FIGURE 4.3.1 Resonance nature of the first (a) and second (b) summations of
Eq. (4.3.11).
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the two-photon contribution (the first term) tends to be positive. This contri-
bution is positive because, in the presence of an applied optical field, there is
some nonzero probability that the atom will reside in an excited state (state l

or n as Fig. 4.3.1(a) is drawn). Since the (linear) polarizability of an atom in
an excited state tends to be larger than that of an atom in the ground state, the
effective polarizability of an atom is increased by the presence of an intense
optical field; consequently this contribution to χ(3) is positive. On the other
hand, the one-photon contribution to χ1111 (the second term of Eq. (4.3.12))
is always negative when ω is smaller than any resonance frequency of the ma-
terial system, because the product of matrix elements that appears in the nu-
merator of this term is positive definite. We can understand this result from the
point of view that the origin of one-photon-resonant contributions to the non-
linear susceptibility is saturation of the atomic response, which in the present
case corresponds to a decrease of the positive linear susceptibility. We can
also understand this result as a consequence of the ac Stark effect, which (as
we shall see in Section 6.5) leads to an intensity-dependent increase in the
separation of the lower and upper levels and consequently to a diminished
optical response, as illustrated in Fig. 4.3.2.

In a similar fashion, we find that the resonant contribution to χ1221 (or to 1
6B

in the notation of Maker and Terhune) is given by

χ1221 = 2

3

N

ε0h̄
3

∑
lmn

′ μx
gnμ

x
nmμ

y
mlμ

y
lg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)
. (4.3.13)

The one-photon-resonant terms do not contribute to χ1221, since these terms
involve the summation of the product of two matrix elements of the sort
μx

glμ
y
lg , and this contribution always vanishes.∗

FIGURE 4.3.2 For ω < ωlg the ac Stark effect leads to an increase in the energy
separation of the ground and excited states.

∗ To see that this contribution vanishes, choose x to be the quantization axis. Then if μx
gl

is nonzero,

μ
y
gl

must vanish, and vice versa.
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We also find that the resonant contribution to χ1122 (or to 1
6A) is given by

χ1122 = N

3ε0h̄
3
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gnμ

y
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(ωng − ω)(ωmg − ω)(ωlg − ω)
. (4.3.14)

4.3.3. χ(3) in the Low-Frequency Limit

In practice, one is often interested in determining the value of the third-order
susceptibility under highly nonresonant conditions—that is, for the case in
which the optical frequency is very much smaller than any resonance fre-
quency of the atomic system. An example would be the nonlinear response
of an insulating solid to visible radiation. In such cases, each of the terms
in the expansion of the permutation operator in Eq. (4.3.8) makes a compa-
rable contribution to the nonlinear susceptibility, and no simplification such
as those leading to Eqs. (4.3.11) through (4.3.14) is possible. It is an exper-
imental fact that in the low-frequency limit both χ1122 and χ1221 (and con-
sequently χ1111 = 2χ1122 + χ1221) are positive in sign for the vast majority
of optical materials. Also, the Kleinman symmetry condition becomes rele-
vant under conditions of low-frequency excitation, which implies that χ1122

is equal to χ1221, or that B is equal to A in the notation of Maker and Terhune.
We can use the results of the quantum-mechanical model to make an order-

of-magnitude prediction of the value of the nonresonant third-order suscep-
tibility. If we assume that the optical frequency ω is much smaller than all
atomic resonance frequencies, we find from Eq. (4.3.5) that the nonresonant
value of the nonlinear optical susceptibility is given by

χ(3) 	 8Nμ4

ε0h̄
3ω3

0

, (4.3.15)

where μ is a typical value of the dipole matrix element and ω0 is a typical
value of the atomic resonance frequency. It should be noted that while the
predictions of the classical model (Eq. (4.3.4)) and the quantum-mechanical
model (Eq. (4.3.15)) show different functional dependences on the displayed
variables, the two expressions are in fact equal if we identify d with the Bohr
radius a0 = 4πε0h̄

2/me2, μ with the atomic unit of electric dipole moment
−ea0, and ω0 with the Rydberg constant in angular frequency units, ω0 =
me4/32π2ε2

0 h̄3. Hence, the quantum-mechanical model also predicts that the
third-order susceptibility is of the order of magnitude of 3 × 10−22 m2/V2.
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TABLE 4.3.1 Nonlinear optical coefficient for materials showing electronic
nonlinearities a

Material n0 χ1111 (m2/V2) n2 (m2/W)

Diamond 2.42 21 × 10−22 10 × 10−20

Yttrium aluminum garnet 1.83 8.4 × 10−22 8.4 × 10−20

Sapphire 1.8 4.2 × 10−22 3.7 × 10−20

Borosilicate crown glass 1.5 3.5 × 10−22 4.4 × 10−20

Fused silica 1.47 2.8 × 10−22 3.67×10−20

CaF2 1.43 2.24×10−22 3.1 × 10−20

LiF 1.4 1.4 × 10−22 2.0 × 10−20

a Values are obtained from optical frequency mixing experiments and thus do not include elec-
trostrictive contributions, since electrostriction is a slow process that cannot respond at optical frequen-
cies. The value of n̄2 is calculated as n̄2 = 3πχ1111/n0. (Adapted from Hellwarth, 1977, Tables 7.1
and 9.1.)

The measured values of χ(3) and n2 for several materials that display nonres-
onant electronic nonlinearities are given in Table 4.3.1.

4.4. Nonlinearities Due to Molecular Orientation

Liquids that are composed of anisotropic molecules (i.e., molecules having
an anisotropic polarizability tensor) typically possess a large value of n2. The
origin of this nonlinearity is the tendency of molecules to become aligned in
the electric field of an applied optical wave. The optical wave then experiences
a modified value of the refractive index because the average polarizability per
molecule has been changed by the molecular alignment.

Consider, for example, the case of carbon disulfide (CS2), which is illus-
trated in part (a) of Fig. 4.4.1. Carbon disulfide is a cigar-shaped molecule
(i.e., a prolate spheroid), and consequently the polarizability α3 experienced
by an optical field that is parallel to the symmetry axis is larger than the po-
larizability α1 experienced by a field that is perpendicular to its symmetry
axis—that is,

α3 > α1. (4.4.1)

Consider now what happens when such a molecule is subjected to a dc elec-
tric field, as shown in part (b) of the figure. Since α3 is larger than α1, the
component of the induced dipole moment along the molecular axis will be
disproportionately long. The induced dipole moment p thus will not be par-
allel to E but will be offset from it in the direction of the symmetry axis.



4.4. Nonlinearities Due to Molecular Orientation 229

FIGURE 4.4.1 (a) A prolate spheroidal molecule, such as carbon disulfide. (b) The
dipole moment p induced by an electric field E.

A torque

τ = p × E (4.4.2)

will thus be exerted on the molecule. This torque is directed in such a manner
as to twist the molecule into alignment with the applied electric field.

The tendency of the molecule to become aligned in the applied electric field
is counteracted by thermal agitation, which tends to randomize the molecular
orientation. The mean degree of molecular orientation is quantified through
use of the Boltzmann factor. To determine the Boltzmann factor, we first cal-
culate the potential energy of the molecule in the applied electric field. If the
applied field is changed by an amount dE, the orientational potential energy
is changed by the amount

dU = −p · dE = −p3 dE3 − p1 dE1, (4.4.3)

where we have decomposed E into its components along the molecular
axis (E3) and perpendicular to the molecular axis (E1). Since

p3 = α3E3 (4.4.4)

and

p1 = α1E1, (4.4.5)

we find that

dU = −α3E3 dE3 − α1E1 dE1, (4.4.6)

which can be integrated to give

U = −1
2

(
α3E

2
3 + α1E

2
1

)
. (4.4.7)
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FIGURE 4.4.2 Alignment energy of a molecule.

If we now introduce the angle θ between E and the molecular axis (see
Fig. 4.4.1(b)), we find that the orientational potential energy is given by

U = −1
2

[
α3E

2 cos2 θ + α1E
2 sin2 θ

]
= −1

2α1E
2 − 1

2 (α3 − α1)E
2 cos2 θ. (4.4.8)

Since α3 − α1 has been assumed to be positive, this result shows that the
potential energy is lower when the molecular axis is parallel to E than when
it is perpendicular to E, as illustrated in Fig. 4.4.2.

Our discussion thus far has assumed that the applied field is static. We now
allow the field to vary in time at an optical frequency. For simplicity we as-
sume that the light is linearly polarized; the general case of elliptical polariza-
tion is treated at the end of the present section. We thus replace E in Eq. (4.4.9)
by the time-varying scalar quantity Ẽ(t). The square of Ẽ will contain fre-
quency components near zero frequency and components at approximately
twice the optical frequency ω. Since orientational relaxation times for mole-
cules are typically of the order of a few picoseconds, the molecular orientation
can respond to the frequency components near zero frequency but not to those

near 2ω. We can thus formally replace E2 in Eq. (4.4.9) by Ẽ2, where the bar
denotes a time average over many cycles of the optical field.

We now calculate the intensity-dependent refractive index for such a
medium. For simplicity, we first ignore local-field corrections, in which case
the refractive index is given by

n2 = 1 + χ = 1 + N〈α〉, (4.4.9)

where N is the number density of molecules and where 〈α〉 denotes the ex-
pectation value of the molecular polarizability experienced by the incident
radiation. To obtain an expression for 〈α〉, we note that the mean orientational
potential energy is given by 〈U 〉 = −1

2 |E|2〈α〉, which by comparison with the
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average of Eq. (4.4.8) shows that

〈α〉 = α3
〈
cos2 θ

〉 + α1
〈
sin2 θ

〉 = α1 + (α3 − α1)
〈
cos2 θ

〉
. (4.4.10)

Here 〈cos2 θ〉 denotes the expectation value of cos2 θ in thermal equilibrium
and is given in terms of the Boltzmann distribution as

〈
cos2 θ

〉 =
∫

d� cos2 θ exp[−U(θ)/kT ]∫
d� exp[−U(θ)/kT ] , (4.4.11)

where
∫

d� denotes an integration over all solid angles. For convenience, we
introduce the intensity parameter

J = 1
2 (α3 − α1)Ẽ2/kT , (4.4.12)

and let d� = 2π sin θdθ . We then find that 〈cos2 θ〉 is given by

〈
cos2 θ

〉 =
∫ π

0 cos2 θ exp(J cos2 θ) sin θ dθ∫ π

0 exp(J cos2 θ) sin θ dθ
. (4.4.13)

Equations (4.4.9) through (4.4.13) can be used to determine the refractive

index experienced by fields of arbitrary intensity Ẽ2.
Let us first calculate the refractive index experienced by a weak optical

field, by taking the limit J → 0. For this case we find that the average of cos2 θ

is given by

〈
cos2 θ

〉
0 =

∫ π

0 cos2 θ sin θ dθ∫ π

0 sin θ dθ
= 1

3 (4.4.14)

and that according to Eq. (4.4.10), the mean polarizability is given by

〈α〉0 = 1
3α3 + 2

3α1. (4.4.15)

Using Eq. (4.4.9), we find that the refractive index is given by

n2
0 = 1 + N

( 1
3α3 + 2

3α1
)
. (4.4.16)

Note that this result makes good physical sense: in the absence of interactions
that tend to align the molecules, the mean polarizability is equal to one-third
of that associated with the direction of the symmetry axis of the molecule plus
two-thirds of that associated with directions perpendicular to this axis.

For the general case in which an intense optical field is applied, we find
from Eqs. (4.4.9) and (4.4.10) that the refractive index is given by

n2 = 1 + N
[
α1 + (α3 − α1)

〈
cos2 θ

〉]
, (4.4.17)
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and thus by comparison with Eq. (4.4.16) that the square of the refractive
index changes by the amount

n2 − n2
0 = N

[ 1
3α1 + (α3 − α1)

〈
cos2 θ

〉 − 1
3α3

]
= N(α3 − α1)

(〈
cos2 θ

〉 − 1
3

)
. (4.4.18)

Since n2 − n2
0 is usually very much smaller than n2

0, we can express the left-
hand side of this equation as

n2 − n2
0 = (n − n0)(n + n0) 	 2n0(n − n0)

and thus find that the refractive index can be expressed as

n = n0 + δn, (4.4.19)

where the nonlinear change in refractive index is given by

δn ≡ n − n0 = N

2n0
(α3 − α1)

(〈
cos2 θ

〉 − 1
3

)
. (4.4.20)

The quantity 〈cos2 θ〉, given by Eq. (4.4.13), can be calculated in terms of
a tabulated function (the Dawson integral). Figure 4.4.3 shows a plot of

〈cos2 θ〉 − 1
3 as a function of the intensity parameter J = 1

2 (α3 − α1)Ẽ2/kT .
In order to obtain an explicit formula for the change in refractive index, we

expand the exponentials appearing in Eq. (4.4.13) and integrate the resulting

FIGURE 4.4.3 Variation of the quantity (〈cos2 θ〉 − 1
3 ), which is proportional to the

nonlinear change in refractive index δn, with the intensity parameter J . Note that for
J � 5, δn increases nearly linearly with J .
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expression term by term. We find that

〈
cos2 θ

〉 = 1

3
+ 4J

45
+ 8J 2

945
+ · · · . (4.4.21)

Dropping all terms but the first two, we find from (4.4.20) that the change in
the refractive index due to the nonlinear interaction is given by

δn = N

2n0
(α3 − α1)

4J

45
= N

45n0
(α3 − α1)

2 Ẽ2

kT
. (4.4.22)

We can express this result as

δn = n̄2Ẽ2, (4.4.23)

where the second-order nonlinear refractive index is given by

n̄2 = N

45n0

(α3 − α1)
2

kT
. (4.4.24)

Note that n̄2 is positive both for the case α3 > α1 (the case that we have been
considering explicitly) and for the opposite case where α3 < α1. The reason
for this behavior is that the torque experienced by the molecule is always
directed in a manner that tends to align the molecule so that the light sees a
larger value of the polarizability.

A more accurate prediction of the nonlinear refractive index is obtained by
including the effects of local-field corrections. We begin with the Lorentz–
Lorenz law (see also Eq. (3.8.8a)),

n2 − 1

n2 + 2
= 1

3
N〈α〉, (4.4.25)

instead of the approximate relationship (4.4.9). By repeating the derivation
leading to Eq. (4.4.24) with Eq. (4.4.9) replaced by Eq. (4.4.25) and with

Ẽ2 replaced by the square of the Lorentz local field (see the discussion of
Section 3.8), we find that the second-order nonlinear refractive index is given
by

n̄2 = N

45n0

(
n2

0 + 2

3

)4
(α3 − α1)

2

kT
. (4.4.26)

Note that this result is consistent with the general prescription given in
Section 3.8, which states that local-field effects can be included by multi-
plying the results obtained in the absence of local field corrections (that
is, Eq. (4.4.24)) by the local-field correction factor (3) = [(n2

0 + 2)/3]4 of
Eq. (3.8.25).
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Finally, we quote some numerical values relevant to the material carbon
disulfide. The maximum possible value of δn is 0.58 and would correspond
to a complete alignment of the molecules. The value J = 1 corresponds to
a field strength of E 	 3 × 109 V/m. The value of n̄2 is hence equal to
1.3 × 10−11 esu. Through use of Eq. (4.1.18) and the value n0 = 1.63, we
can convert this result to the value n2 = 3 × 10−22 m2/W.

4.4.1. Tensor Properties of χ(3) for the Molecular Orientation Effect

Let us now consider the nonlinear response of a collection of anisotropic
molecules to light of arbitrary polarization. Close et al. (1966) have shown
that the mean polarizability in thermal equilibrium for a molecule whose three
principal polarizabilities a, b, and c are distinct can be represented as

〈αij 〉 = αδij + γij , (4.4.27)

where the linear contribution to the mean polarizability is given by

α = 1
3 (a + b + c), (4.4.28)

and where the lowest-order nonlinear correction term is given by

γij = C
∑
kl

(3δikδjl − δij δkl)Ẽ
loc
k (t)Ẽloc

l (t). (4.4.29)

Here the constant C is given by

C = (a − b)2 + (b − c)2 + (a − c)2

90kT
, (4.4.30)

and Ẽloc denotes the Lorentz local field. In the appendix to this section, we
derive the result given by Eqs. (4.4.27) through (4.4.30) for the special case
of an axially symmetric molecule; the derivation for the general case is left as
an exercise to the reader. Next, we use these results to determine the form of
the third-order susceptibility tensor. We first ignore local-field corrections and
replace Ẽloc

k (t) by the microscopic electric field Ẽk(t), which we represent as

Ẽk(t) = Eke
−iωt + c.c. (4.4.31)

The electric-field-dependent factor appearing in Eq. (4.4.29) thus becomes

Ẽloc
k (t)Ẽloc

l (t) = EkE
∗
l + E∗

kEl. (4.4.32)
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Since we are ignoring local-field corrections, we can assume that the polar-
ization is given by

Pi = ε0

∑
j

N〈αij 〉Ej (4.4.33)

and thus that the third-order contribution to the polarization is given by

P
(3)
i = ε0N

∑
j

γijEj . (4.4.34)

By introducing the form for γij given by Eqs. (4.4.29) and (4.4.32) into this
expression, we find that

P
(3)
i = ε0NC

∑
jkl

(3δikδjl − δij δkl)(EkE
∗
l + E∗

kEl)Ej ,

which can be written entirely in vector form as

P(3) = ε0NC
[
3(E · E∗)E + 3(E · E)E∗ − (E · E∗)E − (E · E∗)E

]
= ε0NC

[
(E · E∗)E + 3(E · E)E∗]. (4.4.35)

This result can be rewritten using the notation of Maker and Terhune (see also
Eq. (4.2.10)) as

P(3) = ε0A(E · E∗)E + 1
2ε0B(E · E)E∗, (4.4.36)

where the coefficients A and B are given by B = 6A = 6NC, which through
use of the expression (4.4.30) for C becomes

B = 6A = N

[
(a − b)2 + (b − c)2 + (a − c)2

15kT

]
. (4.4.37)

This result shows that for the molecular orientation effect the ratio B/A

is equal to 6, a result quoted earlier without proof (in (4.2.13a)). As in
Eq. (4.4.26), local-field corrections can be included in the present formalism
by replacing Eq. (4.4.37) by

B = 6A =
(

n2
0 + 2

3

)4

N

[
(a − b)2 + (b − c)2 + (a − c)2

15kT

]
. (4.4.38)

4.5. Thermal Nonlinear Optical Effects

Thermal processes can lead to large (and often unwanted) nonlinear optical
effects. The origin of thermal nonlinear optical effects is that some fraction
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of the incident laser power is absorbed in passing through an optical material.
The temperature of the illuminated portion of the material consequently in-
creases, which leads to a change in the refractive index of the material. For
gases, the refractive index invariably decreases with increasing temperature
(at constant pressure), but for condensed matter the refractive index can ei-
ther increase or decrease with changes in temperature, depending on details
of the internal structure of the material. The time scale for changes in the
temperature of the material can be quite long (of the order of seconds), and
consequently thermal effects often lead to strongly time-dependent nonlinear
optical phenomena.

Thermal effects can be described mathematically by assuming that the re-
fractive index ñ varies with temperature according to∗

ñ = n0 +
(

dn

dT

)
T̃1, (4.5.1)

where the quantity (dn/dT ) describes the temperature dependence of the
refractive index of a given material and where T̃1 designates the laser-induced
change in temperature. We assume that T̃1 obeys the heat-transport equation

(ρ0C)
∂T̃1

∂t
− κ∇2T̃1 = αĨ (r). (4.5.2)

Here (ρ0C) denotes the heat capacity per unit volume, κ denotes the ther-
mal conductivity, and α denotes the linear absorption coefficient of the ma-
terial. We express the heat capacity in the form (ρ0C) because most hand-
books tabulate the material density ρ0 and the heat capacity per unit mass C

rather than their product (ρ0C), which is the quantity of direct relevance in
the present context. Representative values of dn/dT , (ρ0C), and κ are shown
in Table 4.5.1.

Equation (4.5.2) can be solved as a boundary value problem for any specific
physical circumstance, and hence the refractive index at any point in space
can be found from Eq. (4.5.1). Note that thermal nonlinear optical effects are
nonlocal, because the change in refractive index at some given point will in
general depend on the laser intensity at other nearby points. For our present
purposes, let us make some simple numerical estimates of the magnitude of
the thermal contribution to the change in refractive index for the situation
shown in Fig. 4.5.1. We assume that a circular laser beam of intensity I0 and
radius R (and consequently power P = πR2I0) falls onto a slab of optical
material of thickness L and absorption coefficient α.

∗ As elsewhere in this text, a tilde is used to designate an explicitly time-dependent quantity.
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TABLE 4.5.1 Thermal properties of various optical materials

Material (ρ0C) (J/cm3) a κ (W/m K) dn/dT (K−1) b

Diamond 1.76 660
Ethanol 1.91 0.168
Fused silica 1.67 1.4 1.2 × 10−5

Sodium chloride 1.95 6.4 −3.6 × 10−5

Water (liquid) 4.2 0.56
Air c 1.2 × 10−3 26 × 10−3 −1.0 × 10−6

a (ρ0C) is the heat capacity per unit volume, and κ is the thermal conductivity. More extensive
listings of these quantities can be found in the CRC Handbook of Chemistry and Physics, Section D,
and in the American Institute of Physics Handbook, Section 4.

b dn/dT is the temperature coefficient of the refractive index. It can be either positive or negative,
and for condensed matter typically lies in the range ±3 × 10−5 K−1. See, for instance, the American

Institute of Physics Handbook, Section 6b.
c C is measured at constant pressure. Values are quoted at STP. Under other conditions, the values

of these quantities can be found by noting that to good approximation (ρ0C) is proportional to the
density, κ is independent of the density, and that for any ideal gas dn/dT = −(n − 1)/T .

FIGURE 4.5.1 Geometry for the description of thermal nonlinear optical effects.

Let us first estimate the response time τ associated with the change in tem-
perature for this situation. We take τ to be some measure of the time taken
for the temperature distribution to reach its new steady state after the laser
field is suddenly switched on or switched off. For definiteness we assume the
latter situation. We then estimate τ by approximating ∂T̃1/∂t in Eq. (4.5.2)
by T1/τ and by approximating ∇2T̃1 as T1/R

2. Equation (4.5.2) then becomes
(ρ0C)T1/τ ≈ κT1/R

2, from which it follows that

τ ≈ (ρ0C)R2

κ
. (4.5.3)

We can estimate numerically the response time τ for condensed matter
by adopting the typical values (ρ0C) = 106 J/m3 K, κ = 1 W/m K, and
R = 1 mm, and thus find that τ ≈ 1 s. Even for a tightly collimated beam
with R = 10 µm, one finds that τ ≈ 100 µs. These response times are much
longer than the pulse duration T produced by most pulsed lasers. One thus
reaches the conclusion that, in the consideration of thermal effects, the power
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(or alternatively the intensity) is the relevant quantity for continuous-wave
laser beams, but that the pulse energy Q = PT (or alternatively the fluence,
the energy per unit cross-sectional area) is the relevant quantity in the consid-
eration of pulsed lasers.

4.5.1. Thermal Nonlinearities with Continuous-Wave Laser Beams

We have just seen that the analysis of thermal effects in nonlinear optics is dif-
ferent for continuous wave than for pulsed radiation. Let us consider first the
case of continuous-wave radiation. Under steady-state conditions the equation
of heat transport then reduces to

−κ∇2T̃1 = αĨ (r). (4.5.4)

This equation can be solved explicitly for any assumed laser profile Ĩ (r). For
our present purposes it suffices to make an order-of-magnitude estimate of the
maximum temperature rise T

(max)
1 at the center of the laser beam. To do so,

we replace ∇2T̃1 by −T
(max)
1 /R2, and thereby find that

T
(max)

1 = αI (max)R2

κ
, (4.5.5)

where I (max) is the laser intensity at the center of the laser beam. Then from
Eq. (4.5.1) we estimate the maximum change in refractive index as


n =
(

dn

dT

)
αI (max)R2

κ
. (4.5.6)

We can express this change in terms of an effective nonlinear refractive index
coefficient n

(th)
2 defined through 
n = n

(th)
2 I (max) to obtain

n
(th)
2 =

(
dn

dT

)
αR2

κ
. (4.5.7)

Note that this quantity is geometry-dependent (through the R2 factor) and
hence is not an intrinsic property of an optical material. Nonetheless, it pro-
vides a useful way of quantifying the magnitude of thermal nonlinear optical
effects. If we estimate its size through use of the values (dn/dT ) = 10−5 K−1,
α = 1 cm−1, R = 1 mm, and κ = 1 W/m K, we find that n

(th)
2 = 10−5 cm2/W.

By way of comparison, recall that for fused silica n2 = 3 × 10−16 cm2/W.
Even for a much smaller beam size (R = 10 µm) and a much smaller ab-
sorption coefficient (α = 0.01 cm−1), we still obtain a relatively large thermal
nonlinear coefficient of n

(th)
2 = 10−11 cm2/W. The conclusion to be drawn
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from these numbers is clear: thermal effects are usually the dominant nonlin-
ear optical mechanism for continuous-wave laser beams. Analyses of thermal
effects in nonlinear optics have been presented by Bespalov et al. (1989),
Hoffman (1986), Martin and Hellwarth (1979), and Tochio et al. (1981). Re-
cent experimental investigations of thermal nonlinear optical effects in gases
have been reported by Bentley et al. (2000).

4.5.2. Thermal Nonlinearities with Pulsed Laser Beams

As mentioned earlier, for most pulsed lasers the induced change in refractive
index is proportional to the pulse energy Q = ∫

P̃ (t) dt rather than to the in-
stantaneous power P̃ (t) (or alternatively it is proportional to the pulse fluence
F = ∫

Ĩ (t) dt rather than to the pulse intensity Ĩ (t)). For this reason, it is
not possible to describe the change in refractive index in terms of a quantity
such as n

(th)
2 . Rather, 
ñ increases (or decreases) monotonically during the

time extent of the laser pulse. Nonetheless one can develop simple criteria for
determining the conditions under which thermal nonlinear optical effects are
important. In particular, let us consider the conditions under which the thermal
change in refractive index


n(th) =
(

dn

dT

)
T

(max)
1 (4.5.8)

will be greater than or equal to the change resulting from the electronic re-
sponse


n(el) = n
(el)
2 I. (4.5.9)

We estimate the maximum change in temperature T
(max)
1 induced by the laser

beam as follows: For a short laser pulse (pulse duration tp much shorter than
the thermal response time τ of Eq. (4.5.3)), the heat transport equation (4.5.2)
reduces to

(ρ0C)
∂T̃1

∂t
= αĨ (r); (4.5.10)

we have dropped the term −κ∇2T̃1 because in a time tp � τ at most a negli-
gible fraction of the absorbed energy can diffuse out of the interaction region.
By approximating ∂T̃1/∂t as T

(max)
1 /tp , we find that

T
(max)
1 = αI (max)tp

(ρ0C)
. (4.5.11)
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By combining Eqs. (4.5.8) through (4.5.11), we find that the thermal contri-
bution to the change in refractive index will exceed the electronic contribution
if the laser pulse duration satisfies the inequality

tp ≥ n
(el)
2 (ρ0C)

(dn/dT )α
. (4.5.12)

If we evaluate this expression assuming the typical values n
(el)
2 = 3 ×

10−16 cm2/W, (ρ0C) = 1 × 106 J/m3 K, (dn/dT ) = 1 × 10−5 K−1,
α = 1 cm−1, we find that the condition for the importance of thermal effects
becomes

tp ≥ 30 psec. (4.5.13)

We thus see that thermal effects are likely to make a contribution to the non-
linear optical response for all but the shortest (tp � 30 psec) laser pulses.

4.6. Semiconductor Nonlinearities

Semiconductor materials play an important role in nonlinear optics both be-
cause they produce large nonlinear optical responses and because these ma-
terials lend themselves to the construction of integrated devices in which
electronic, semiconductor laser, and nonlinear optical components are all fab-
ricated on a single semiconductor substrate.

A key feature of semiconductor materials is that their allowed electronic
energy states take the form of broad bands separated by forbidden regions.
The filled or nearly filled bands are known as valence bands and the empty
or nearly empty bands are known as conduction bands. The energy separation
between the highest valance band and the lowest conduction band is known
as the band-gap energy Eg . These concepts are illustrated in Fig. 4.6.1(a).
A crucial distinction associated with the nonlinear optical properties of a
semiconductor material is whether the photon energy h̄ω of the laser field
is greater than or smaller than the band-gap energy. For h̄ω > Eg , as illus-
trated in part (b) of the figure, the nonlinear response results from the transfer
of electrons to the conduction band, leading to a modification of the opti-
cal properties of the material. For the opposite case h̄ω < Eg the nonlinear
response is essentially instantaneous and occurs as the result of parametric
processes involving virtual levels. We treat these two situations separately.
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FIGURE 4.6.1 (a) The valence band (VB) and conduction band (CB) of a semicon-
ductor are separated by energy Eg . For h̄ω > Eg (b), the nonlinear response results
from the transfer of electrons to the conductions band, whereas for h̄ω < Eg (c), the
nonlinear response involves virtual transitions.

4.6.1. Nonlinearities Resulting from Band-to-Band Transitions

For h̄ω > Eg , the nonlinear response occurs as the result of band-to-band
transitions. For all but the shortest laser pulses, the nonlinear response can be
described in terms of the conduction band population Nc, which can be taken
to obey a rate equation of the form

dNc

dt
= αI

h̄ω
− (Nc − N

(0)
c )

τR

, (4.6.1)

where α is the absorption coefficient of the material at the laser frequency,
N

(0)
c is the conduction band electron population in thermal equilibrium, and

τR is the electron–hole recombination time. In steady state this equation pos-
sesses the solution

Nc = N(0)
c + αIτR

h̄ω
. (4.6.2)

However, for the common situation in which the laser pulse duration is shorter
than the material response time τR , the conduction-band electron density in-
creases monotonically during the laser pulse.

The change in electron concentration described by Eq. (4.6.1) leads to a
change in the optical properties by means of several different mechanisms,
which we now describe.

Free-Electron Response To first approximation, electrons in the conduction
band can be considered to respond freely to an applied optical field. The free
electron contribution to the dielectric constant is well known (see Eq. (13.7.3))
and has the form

ε(ω) = εb − ω2
p

ω(ω + i/τ )
, (4.6.3)
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where εb is the contribution to the dielectric constant from bound changes,
ω2

p is the square of the plasma frequency and is given by ω2
p = Nce

2/ε0m,
and τ is an optical response time that in general is not equal to τR and is typi-
cally much shorter than it. Since Nc increases with laser intensity, ε(ω) is seen
to decrease with laser intensity. In the steady-state limit, we can derive an ap-
proximate expression (see Problem 11) for the intensity-dependent refractive
index as n = n0 + n2I , where

n2
0 = εb − Nc(0)e2

ε0mω(ω + i/τ )
(4.6.4)

and

n2 = − e2ατR

2εbn0mh̄ω3
. (4.6.5)

Note that n2 is proportional to ω−3. One thus expects this mechanism to
become dominant at long wavelengths. If we evaluate this expression us-
ing the characteristic values m = 0.1 me (note that m in Eq. (4.6.5) is the
effective mass of the conduction-band electron), n0 = 3.5, α = 104 cm−1,
h̄ω = 0.75 eV, τr = 10 nsec, we find that n2 = 3 × 10−10 m2/W, a reasonably
large value.

Modification of Optical Properties by Plasma Screening Effects A direct conse-
quence of the presence of electrons in the semiconductor conduction band
is that the material becomes weakly conducting. As a result, charges can
flow to shield any unbalanced free charges, and the Coulomb interaction be-
tween charged particles becomes effectively weakened. In the classical limit
in which the electrons obey a Maxwell–Boltzmann distribution, the screened
potential energy between two point particles of charge e becomes

V = e2

4πε0εr
e−κr , (4.6.6)

where ε is the (real) dielectric constant of the semiconductor material and
where

κ =
√

Nce2

ε0kT
(4.6.7)

is the Debye–Hückel screening wavenumber.
One consequence of the reduction of the strength of the Coulomb interac-

tion is that excitonic features can disappear at high conduction-band electron
densities. Let us recall briefly the nature of excitonic features in semiconduc-
tors. An electron in the conduction band will feel a force of attraction to a
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hole in the valence band as the result of their Coulomb interaction. This at-
traction can be sufficiently strong that the pair forms a bound state known as
an exciton. Excitonic energy levels typically lie slightly below the edge of the
conduction band, at an energy given by

En = Ec − R∗/n2, (4.6.8)

where n is the principal quantum number, Ec is the energy of the bot-
tom of the conduction band, and R∗ = h̄2(2mra

∗2
0 )−1 is the effective Ryd-

berg constant. Here mr is the reduced mass of the electron–hole pair and
a∗

0 = 4πε0h̄
2(mre

2)−1 is the effective first Bohr radius. Laboratory results
showing absorption features associated with transitions to these excitonic lev-
els are shown in Fig. 4.6.2. Often only the lowest exciton states contribute
significantly to the semiconductor absorption spectrum; the situation in which
only the n = 1 state is visible is shown in Fig. 4.6.3(a). In the presence of a
laser beam sufficiently intense to place an appreciable population of electrons
into the conduction band, plasma screening effects can lead to the disappear-
ance of these excitonic resonances, leading to an absorption spectrum of the
sort shown in part (b) of the figure. Let 
α denote the amount by which the
absorption coefficient has changed because of the presence of the optical field.
The change in absorption coefficient is accompanied by a change in refractive
index. This change can be calculated by means of the Kramers–Kronig rela-
tions (see Section 1.7), which in the present context we write in the form


n(ω) = c

π

∫ ∞

0


α(ω′) dω′

ω′2 − ω2
, (4.6.9)

where the principal part of the integral is to be taken. The change in refractive
index is shown symbolically in part (c) of Fig. 4.6.3. Note that 
n is positive

FIGURE 4.6.2 Absorption spectrum of Cu2O at a temperature of 4.2 K. The spectral
features result from transitions from the top of the valance band to the exciton level
labeled in the figure. (After Tayagaki et al., 1995.)
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FIGURE 4.6.3 Schematic low-temperature absorption spectrum of a semiconductor
in the absence (a) and in the presence (b) of an appreciable number of optically excited
conduction band electrons. (c) The modification of the refractive index associated with
the optically induced change in absorption coefficient.

on the high-frequency side of the exciton resonance and is negative on the
low-frequency side. However, the change in refractive index is appreciable
only over a narrow range of frequency on either side of the exact resonance.

Change of Optical Properties Due to Band-Filling Effects As electrons are trans-
ferred from the valence band to the conduction band, the absorption coeffi-
cient of a semiconductor must decrease. This effect is in many ways analo-
gous to saturation effects in atomic systems, as described in Chapter 6, but in
the present case with the added complexity that the electrons must obey the
Pauli principle and thus must occupy a range of energies within the conduction
band. This process leads to a lowering of the refractive index for frequencies
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below the band edge and a raising of the refractive index for frequencies above
the band edge. The sense of the change in refractive index is thus the same as
that for a two-level atom. The change in refractive index resulting from band
filling can be calculated more precisely by means of a Kramers–Kronig analy-
sis of the sort described in the previous paragraph; details are described, for
instance, by Peyghambarian et al. (1993, Section 13-4).

Change in Optical Properties Due to Band-Gap Renormalization For reasons that
are rather subtle (exchange and Coulomb correlations), the band-gap energy
of most semiconductors decreases at high concentrations of conduction band
electrons, with a resulting change in the optical properties.

4.6.2. Nonlinearities Involving Virtual Transitions

Let us next consider the nonlinear response of a semiconductor or insulator
under the condition h̄ω < Eg , as illustrated in Fig. 4.6.4(a). In this situation,
the photon energy is too small to allow single-photon absorption to populate
the conduction band, and the nonlinear response involves virtual processes
such as those shown in parts (b) and (c) of the figure. The “two-photon”
process of part (b) usually is much stronger than the “one-photon” process of
part (c) except for photon energies h̄ω approaching the band-gap energy Eg .
In the approximation in which only the two-photon process of part (b) is con-
sidered, a simple model can be developed to describe the nonlinear response
of the material. We shall not present the details here, which involve some con-
siderations of the band theory of solids that lie outside the scope of the present
work. Sheik-Bahae et al. (1990, 1991) show that the nonlinear refractive index

FIGURE 4.6.4 (a) For h̄ω < Eg , the nonlinear response involves virtual transitions.
Under many circumstances, virtual two-photon processes (b) make a larger contribu-
tion to the nonlinear response than do one-photon processes (c).
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coefficient defined such that 
n = n2I can be expressed as

n2 = K
h̄c

√
Ep

2n2
0E

4
g

G2(h̄ω/Eg), (4.6.10)

where Ep = 21 eV, K can be considered to be a single free parameter whose
value is found empirically to be 3.1 × 103 in units such that Ep and Eg are
measured in eV and n2 is measured in cm2/W, and where G2 is the universal
function

G2(x) = −2 + 6x − 3x2 − x3 − 3
4x4 − 3

4x5 + 2(1 − 2x)3/2�(1 − 2x)

64x6
,

(4.6.11)

where �(y) is the Heaviside step function defined such that �(y) = 0 for
y < 0 and �(y) = 1 for y ≥ 0. In the same approximation, the two-photon
absorption coefficient defined such that α = α0 + βI is given by

β = K
√

Ep

n2
0E

3
g

F2(2h̄ω/Eg), (4.6.12)

where F2 is the universal function

F2(2x) = (2x − 1)3/2

(2x)5
for 2x > 1 (4.6.13)

and F2(2x) = 0 otherwise. These functional forms are illustrated in Fig. 4.6.5.
Note that the process of two-photon absorption vanishes for h̄ω < 1

2Eg for
reasons of energetics. Note also that the nonlinear refractive index peaks at
h̄ω/Eg ≈ 0.54, vanishes at h̄ω/Eg ≈ 0.69, and is negative for h̄ω/Eg � 0.69.
Note also from Eq. (4.6.10) that n2 scales as E−4

g . Thus narrow-band-gap
semiconductors are expected to produce a much larger nonlinear response
than large-band-gap semiconductors. These predictions are in very good
agreement with experimental results; see, for instance, Fig. 4.6.6.

In general, both the slow, band-to-band nonlinearities considered earlier
and the instantaneous nonlinearities considered here occur simultaneously.
Said et al. (1992) have studied several semiconductors under conditions such
that both processes occur simultaneously, and they find that the change in
refractive index is well described by the equation


n = n2I + σrNc, (4.6.14)

where as usual n2 gives the instantaneous nonlinear response and where σr is
the change in refractive index per unit conduction band electron density. Their
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FIGURE 4.6.5 Variation of the nonlinear refraction coefficient n2 and the two-
photon-absorption coefficient with photon energy h̄ω according to the model of
Sheik-Bahae et al. (1990).

TABLE 4.6.1 Nonlinear optical coefficients of several semiconductors

Semiconductor β (m/TW) n2 (m2/W) σr (m3)

ZnSe at 532 nm 58 −6.8×10−18 −0.8 × 10−27

GaAs at 1064 nm 260 −4.1×10−17 −6.5 × 10−27

CdTe at 1064 nm 260 −3 × 10−17 −5 × 10−27

ZnTe at 1064 nm 42 1.2×10−17 −0.75×10−27

After Said et al. (1992).

measured values of these quantities as well as the two-photon-absorption co-
efficient are given in Table 4.6.1.

4.7. Concluding Remarks

Throughout this chapter, we have assumed that the refractive index variation

n scales monotonically with laser intensity as 
n = n2I . In fact, for any
given material there is a maximum change in refractive index that can be
observed. This maximum index change comes about either because of satu-
ration effects or because there is a maximum laser intensity that can be used
as a consequence of laser damage effects. A particularly large value of the
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FIGURE 4.6.6 Comparison of the predictions (solid line) of the model of
Sheik-Bahae et al. (1990) with measured values (data points) of the nonlinear re-
fraction parameter n2 for a variety of materials.

refractive index variation of 
nmax = 0.14 has been reported by Brzozowski
et al. (2003). This large change was observed in an InGaAs/InAlGaAs mul-
tiple quantum well sample at a wavelength of approximately 1500 nm and
using a pulse fluence of 116 µJ/cm2.

For certain conceptual purposes, it can be useful to express the nonlinear
susceptibility in dimensionless form (see, for instance, Kok et al., 2002). One
prescription for doing so is to define the dimensionless susceptibility as

χ
(3)
D = E2

1,maxχ
(3), (4.7.1)

where E2
1,max is the largest electric field that can be produced in free space

by a single photon. Since a pulse of light can be localized to a volume of the
order the cube of the vacuum wavelength λ, one finds that

h̄ω

λ3
= 2ε0E

2
1,max (4.7.2)
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and thus that

χ
(3)
D = h̄ω

2ε0λ3
χ(3). (4.7.3)

For the case of fused silica (χ(3) = 2.5 × 10−22 m2/W2) and a wavelength
of 1.0 µm, this expression when evaluated becomes χ

(3)
D = 4.5 × 10−13. The

smallness of this number quantifies the notion that nonresonant nonlinear op-
tical interactions tend to be extremely weak, at least on a local scale. It is
only the cumulative effect of nonlinear interactions taking place over large
distances that allows nonlinear processes to produce intense output fields. It
should be noted, however, that for some of the largest reported optical nonlin-
earities the dimensionless susceptibility can become large. For example, for
the case of the nonlinear response of a Bose–Einstein condensate, as quoted
in Table 4.1.2, the dimensionless susceptibility becomes χ

(3)
D ≈ 100.

Problems

1. n2 for a lossy medium. Generalize the derivation of Eq. (4.1.19) to allow
the linear refractive index to be a complex quantity n̄0.
[Ans: Replace n2

0 in the denominator of Eq. (4.1.19) by n̄0 Re n̄0.]
2. Tensor properties of χ(3) for an isotropic medium. Derive Eqs. (4.2.2).
3. Ellipse rotation. A 1-cm-long sample of carbon disulfide is illuminated by

elliptically polarized light of intensity I = 1 MW/cm2. Determine how
the angle through which the polarization ellipse is rotated depends upon
the ellipticity of the light, and calculate numerically the maximum value
of the rotation angle. Quantify the ellipticity in terms of the parameter δ

where (−1 ≤ δ ≤ 1) which defines the polarization unit vector through the
relation

ε̂ = x̂ + iδŷ
(1 + δ2)1/2

.

[Hint: The third-order nonlinear optical response of carbon disulfide is due
mainly to molecular orientation.]

4. Sign of χ(3). Verify the statement made in the text that the first term in
expression (4.3.12) is positive whenever ω is smaller than any resonance
frequency of the atomic system.

5. Tensor properties of the molecular orientation effect. Derive the result
given by Eqs. (4.4.27) through (4.4.30) for the general case in which a,
b, and c are all distinct.
[This problem is extremely challenging.]
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6. Thermal nonlinearities. In Section 4.5, we basically used dimensional
analysis to make an order-of-magnitude estimate of the size of thermal
nonlinearities. In this problem, we consider a situation in which the equa-
tion of heat transport can be solved exactly.

Consider a laser beam of diameter D1 and power P propagating through
a long glass rod of diameter D2. The outer surface of the glass rod is held
at the fixed temperature T0. Assume steady-state conditions, and make the
simplifying assumption that the transverse intensity profile of the laser
beam is uniform. Determine the local temperature T at each point within
the glass rod and determine the maximum change in refractive index. Eval-
uate numerically for realistic conditions.

7. Nonlinearity due to the magnetic force. Consider a plane electromag-
netic wave incident upon a free electron. If the field is strong enough,
the electron will acquire sufficient velocity that the magnetic force FM =
(−e/c)v × B has a noticeable effect on its motion. This is one source of
the nonlinear electronic response.

(a) Show that for an optical plane wave with electric field E = x̂
(E0e

i(kz−ωt) + c.c.) the electromagnetic force on an electron is

FEM = −e
(
E0e

−iωt + c.c.
)[

x̂
(

1 − ż

c

)
+ ẑ

(
ẋ

c

)]
.

How large (order of magnitude) can ẋ/c become for a free electron in a
beam with a peak intensity of 1017 W/cm2?

(b) Derive expressions for χ(2)(2ω) and χ(2)(0) for a collection of free
electrons in terms of the electron number density N . (You may assume
there are no “frictional” forces.) In what direction(s) will light at 2ω be
emitted?

(c) Derive expressions for χ(3)(ω) and χ(3)(3ω).
(d) Good conductors can often be modeled using the free electron model.

Assuming the magnetic force is the only source of optical nonlinearity,
make a numerical estimate (order of magnitude) of χ(3)(ω) for gold.

8. Nonlinear phase shift of a focused gaussian beam. Derive an expression
for the nonlinear phase shift experienced by a focused gaussian laser beam
of beam-waist radius w0 carrying power P in passing through a nonlin-
ear optical material characterized by a nonlinear refractive index n2. Per-
form this calculation by integrating the on-axis intensity from z = −∞
to z = +∞. Comment on the accuracy of this method of calculation, and
speculate regarding computational methods that could provide a more ac-
curate prediction of the nonlinear phase shift.
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9. Nonlinear phase shift of a focused gaussian beam. Assuming the valid-
ity of the procedure used in the previous question (that is, by integrating
from −∞ to +∞), determine numerically the nonlinear phase shift that
can be obtained by a focused gaussian laser beam in propagating through
optical glass, when the power of the beam is adjusted to be just below
the laser damage threshold. Assume initially that the glass is a plate 1 cm
thick, but also describe how the phase shift scales with the thickness of the
glass plate. For definiteness, assume that the beam waist is at the center of
the glass block, and assume that bulk (not surface) damage is the limiting
process. Take I (damage) = 10 GW/cm2.

10. Nonlinear phase shift of a focused gaussian beam. Same as the previous
problem, but assume that surface damage is the limiting process.

11. Semiconductor nonlinear response. Derive Eq. (4.6.5).
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Chapter 5

Molecular Origin of the Nonlinear
Optical Response

In Chapter 3, we presented a general quantum-mechanical theory of the non-
linear optical susceptibility. This calculation was based on time-dependent
perturbation theory and led to explicit predictions for the complete frequency
dependence of the linear and nonlinear optical susceptibilities. Unfortunately,
however, these quantum-mechanical expressions are typically far too compli-
cated to be of use for practical calculations.

In this chapter we review some of the simpler approaches that have been
implemented to develop an understanding of the nonlinear optical character-
istics of various materials. Many of these approaches are based on under-
standing the optical properties at the molecular level. In the present chapter
we also present brief descriptions of the nonlinear optical characteristics of
conjugated polymers, chiral molecules, and liquid crystals.

5.1. Nonlinear Susceptibilities Calculated Using
Time-Independent Perturbation Theory

One approach to the practical calculation of nonlinear optical susceptibilities
is based on the use of time-independent perturbation theory (see, e.g., Jha
and Bloembergen, 1968 or Ducuing, 1977). The motivation for using this ap-
proach is that time-independent perturbation theory is usually much easier to
implement than time-dependent perturbation theory. The justification of the
use of this approach is that one is often interested in the study of nonlinear
optical interactions in the highly nonresonant limit ω � ω0 (where ω is the
optical frequency and ω0 is the resonance frequency of the material system),
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in order to avoid absorption losses. For ω � ω0, the optical field can to good
approximation be taken to be a quasi-static quantity.

To see how this method proceeds, let us represent the polarization of a ma-
terial system in the usual form∗

P̃ = ε0χ
(1)Ẽ + ε0χ

(2)Ẽ2 + ε0χ
(3)Ẽ3 + · · · . (5.1.1)

We can then calculate the energy stored in polarizing the medium as

W = −
∫ Ẽ

0
P̃ (Ẽ′) dẼ′ = −1

2
χ(1)Ẽ2 − 1

3
χ(2)Ẽ3 − 1

4
χ(3)Ẽ3 · · ·

≡ W(2) + W(3) + W(4) + · · · . (5.1.2)

The significance of this result is that it shows that if we know W as a func-
tion of Ẽ (either by calculation or, for instance, from Stark effect measure-
ments), we can use this knowledge to deduce the various orders of susceptibil-
ity χ(n). For instance, if we know W as a power series in Ẽ we can determine
the susceptibilities as†

χ(n−1) = −nW(n)

ε0Ẽn
. (5.1.3)

More generally, even if the power series expansion is not known, the nonlinear
susceptibilities can be obtained through differentiation as

χ(n−1) = −1

ε0(n − 1)!
∂nW

∂Ẽn

∣∣∣∣
E=0

. (5.1.4)

Before turning our attention to the general quantum-mechanical calculation
of W(n), let us see how to apply the result given by Eq. (5.1.3) to the special
case of the hydrogen atom.

5.1.1. Hydrogen Atom

From considerations of the Stark effect, it is well known how to calculate the
ground state energy w of the hydrogen atom as a function of the strength E of
an applied electric field (Schiff, 1968; Sewell, 1949). We shall not present the
details of the calculation here, both because they are readily available in the

∗ As a notational convention, in the present discussion we retain the tilde over P and E both for
slowly varying (quasi-static) and for fully static fields.

† For time-varying fields, Eq. (5.1.3) still holds, but with W(n) and Ẽn replaced by their time
averages, that is, by 〈W(n)〉 and 〈Ẽn〉. For Ẽ = Ee−iωt + c.c., one finds that Ẽ = 2E cos(ωt + φ),
and Ẽn = 2nEn cosn(ωt + φ), so that 〈Ẽn〉 = 2nEn〈cosn(ωt + φ)〉. Note that 〈cos2(ωt + φ)〉 = 1/2
and 〈cos4(ωt + φ)〉 = 3/8.
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scientific literature and because the simplest method for obtaining this result
makes use of the special symmetry properties of the hydrogen atom and does
not readily generalize to other situations. One finds that

w

2R
= −1

2
− 9

4

(
E

Eat

)2

− 3555

64

(
E

Eat

)4

+ · · · , (5.1.5)

where R = e2h̄2/4πε0mc2 = 13.6 eV is the Rydberg constant and where
Eat = e/4πε0a

2
0 = m2e5/(4πε0)

3h̄4 = 5.14 × 1011 V/m is the atomic unit
of electric field strength. We now let W = Nw where N is the number density
of atoms and introduce Eq. (5.1.5) into Eq. (5.1.3). We thus find that

χ(1) = Nα where α = 9

2
a 3

0 , (5.1.6a)

χ(3) = Nγ where γ = 3555

16

a 7
0

e6
, (5.1.6b)

where a0 = 4πε0h̄
2/me2 is the Bohr radius. Note that these results conform

with standard scaling laws for nonresonant polarizabilities

α 	 atomic volume V, (5.1.7a)

γ ∝ V 7/3. (5.1.7b)

5.1.2. General Expression for the Nonlinear Susceptibility in the
Quasi-Static Limit

A standard problem in quantum mechanics involves determining how the en-
ergy of some state |ψn〉 of an atomic system is modified in response to a
perturbation of the atom. To treat this problem mathematically, we assume
that the Hamiltonian of the system can be represented as

Ĥ = Ĥ0 + V̂ , (5.1.8)

where Ĥ0 represents the total energy of the free atom and V̂ represents the
quasi-static perturbation due to some external field. For the problem at hand
we assume that

V̂ = −μ̂Ẽ, (5.1.9)

where μ̂ = −ex̂ is the electric dipole moment operator and Ẽ is an applied
quasi-static field. We require that the atomic wavefunction obey the time-
independent Schrödinger equation

Ĥ |ψn〉 = wn|ψn〉. (5.1.10)
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For most situations of interest Eqs. (5.1.8)–(5.1.10) cannot be solved in closed
form, and must be solved using perturbation theory. One represents the energy
wn and state vector |ψn〉 as power series in the perturbation as

wn = w(0)
n + w(1)

n + w(2)
n + · · · , (5.1.11a)

|ψn〉 = ∣∣ψ(0)
n

〉 + ∣∣ψ(1)
n

〉 + ∣∣ψ(2)
n

〉 + · · · . (5.1.11b)

The details of the procedure are well documented in the scientific literature;
see, for instance, Dalgarno (1961). One finds that the energies are given by

w(1)
n = eẼ

〈
n|x|n〉

, (5.1.12a)

w(2)
n = e2Ẽ2

∑
s

′ 〈n|x|s〉〈s|x|n〉
w

(0)
s − w

(0)
n

, (5.1.12b)

w(3)
n = e3Ẽ3

∑
st

′ 〈n|x|s〉〈s|x|t〉〈t |x|n〉
(w

(0)
s − w

(0)
n )(w

(0)
t − w

(0)
n )

, (5.1.12c)

w(4)
n = e4Ẽ4

∑
stu

′ 〈n|x|s〉〈s|x|t〉〈t |x|u〉〈u|x|n〉
(w

(0)
s − w

(0)
n )(w

(0)
t − w

(0)
n )(w

(0)
u − w

(0)
n )

− e2Ẽ2w(2)
n

∑
u

′ 〈n|x|u〉〈u|x|n〉
(w

(0)
u − w

(0)
n )2

. (5.1.12d)

The prime following each summation symbol indicates that the state n is to
be omitted from the indicated summation. Through use of these expressions
one can deduce explicit forms for the linear and nonlinear susceptibilities. We
let W = Nw, assume that the state of interest is the ground state g, and make
use of Eqs. (5.1.3) to find that

χ(1) = Nα, α = αxx = 2e2

h̄

∑
s �=g

xgsxsg

ωsg

, (5.1.13a)

χ(2) = Nβ, β = βxxx = 3e3

h̄2

∑
s,t �=g

xgtxtsxsg

ωtgωsg

, (5.1.13b)

χ(3) =Nγ, γ =γxxxx = 4e4

h̄3

( ∑
s,t,u�=g

xguxutxtsxsg

ωugωtgωsg

−
∑
s,t �=g

xgtxtgxgsxsg

ωtgω2
sg

)
,

(5.1.13c)

where h̄ωsg = w
(0)
s − w

(0)
g , and so on. We see that χ(3) naturally decomposes

into the sum of two terms, which can be represented schematically in terms
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FIGURE 5.1.1 Schematic representation of the two terms appearing in Eq. (5.1.13c).

of the two diagrams shown in Fig. 5.1.1. Note that this result is entirely con-
sistent with the predictions of the model of the nonlinear susceptibility based
on time-dependent perturbation theory (see Eq. (4.3.12)), but is more simply
obtained by the present formalism.

Equations (5.1.13) constitute the quantum-mechanical predictions for the
static values of the linear and nonlinear susceptibilities. Evaluation of these
expressions can be still quite demanding, as it requires knowledge of all of the
resonance frequencies and dipole transition moments connecting to the atomic
ground state. Several approximations can be made to simplify these expres-
sions. One example is the Unsöld approximation, which entails replacing each
resonance frequency (e.g., ωsg) by some average transition frequency ω0. The
expression (5.1.13a) for the linear polarizability then becomes

α = 2e2

h̄ω0

∑
s

′〈g|x|s〉〈s|x|g〉. (5.1.14)

We formally rewrite this expression as

α = 2e2

h̄ω0

〈
g
∣∣xÔx

∣∣g〉
where Ô =

∑
s

′|s〉〈s|. (5.1.15)

We now replace Ô by the unrestricted sum

Ô =
∑

s

|s〉〈s|, (5.1.16)

which we justify by noting that for states of fixed parity 〈g|x|g〉 vanishes, and
thus it is immaterial whether or not the state g is included in the sum over
all s. We next note that ∑

s

|s〉〈s| = 1 (5.1.17)
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by the closure assumption of quantum mechanics. We thus find that

α = 2e2

h̄ω0

〈
x2〉. (5.1.18a)

This result shows that the linear susceptibility is proportional to the electric
quadrupole moment of the ground-state electron distribution. We can apply
similar reasoning to the simplification of the expressions for the second- and
third-order nonlinear coefficients to find that

β = − 3e3

h̄2ω2
0

〈
x3〉, (5.1.18b)

γ = 4e4

h̄3ω3
0

[〈
x4〉 − 2

〈
x2〉2]. (5.1.18c)

These results show that the hyperpolarizabilities can be interpreted as mea-
sures of various higher-order moments of the ground state electron distri-
bution. Note that the linear polarizability and hyperpolarizabilities increase
rapidly with the physical dimensions of the electron cloud associated with
the atomic ground state. Note further that Eqs. (5.1.18a) and (5.1.18c) can be
combined to express γ in the intriguing form

γ = α2 g

h̄ω0
where g =

[ 〈x4〉
〈x2〉2

− 2

]
. (5.1.19)

Here g is a dimensionless quantity (known in statistics as the kurtosis) that
provides a measure of the normalized fourth moment of the ground-state elec-
tron distribution.

These expressions can be simplified still further by noting that within the
context of the present model the average transition frequency ω0 can itself be
represented in terms of the moments of x. We start with the Thomas–Reiche–
Kuhn sum rule (see, for instance, Eq. (61) of Bethe and Salpeter, 1977), which
states that

2m

h̄

∑
k

ωkg|xkg|2 = Z, (5.1.20)

where Z is the number of optically active electrons. If we now replace ωkg by
the average transition frequency ω0 and perform the summation over k in the
same manner as in the derivation of Eq. (5.1.18a), we obtain

ω0 = Z h̄

2m〈x2〉 . (5.1.21)
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This expression for ω0 can now be introduced into Eqs. (5.1.18) to obtain

α = 4e2m

Zh̄2

〈
x2〉2, (5.1.22)

β = −12e3m2

Z2h̄4

〈
x2〉2〈x3〉, (5.1.23)

γ = 32e4m3

Z3h̄6

〈
x2〉3(〈x4〉 − 2

〈
x2〉2). (5.1.24)

Note that these formulas can be used to infer scaling laws relating the optical
constants to the characteristic size L of a molecule. In particular, one finds
that α ∼ L4, β ∼ L7, and γ ∼ L10. Note the important result that nonlinear
coefficients increase rapidly with the size of a molecule. Note also that α is a
measure of the electric quadrupole moment of the ground-state electron dis-
tribution, β is a measure of the octopole moment of the ground-state electron
distribution, and γ depends on both the hexadecimal pole and the quadrupole
moment of the electron ground-state electron distribution.∗

5.2. Semiempirical Models of the Nonlinear Optical Susceptibility

We noted earlier in Section 1.4 that Miller’s rule can be successfully used
to predict the second-order nonlinear optical properties of a broad range of
materials. Miller’s rule can be generalized to third-order nonlinear optical in-
teractions, where it takes the form

χ(3)(ω4,ω3,ω2,ω1) = Aχ(1)(ω4) χ(1)(ω3) χ(1)(ω2) χ(1)(ω1), (5.2.1)

where ω4 = ω1 +ω2 +ω3 and where A is a quantity that is assumed to be fre-
quency independent and nearly the same for all materials. Wynne (1969) has
shown that this generalization of Miller’s rule is valid for certain optical ma-
terials, such as ionic crystals. However, this generalization is not universally
valid.

Wang (1970) has proposed a different relation that seems to be more gen-
erally valid. Wang’s relation is formulated for the nonlinear optical response
in the quasi-static limit and states that

χ(3) = Q′(χ(1)
)2

, where Q′ = g′/Neffh̄ω0, (5.2.2)

∗ There is an additional contribution to the hyperpolarizability β resulting from the difference in
permanent dipole moment between the ground and excited states. This contribution is not accounted
for by the present model.
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and where Neff = Nf is the product of the molecular number density N with
the oscillator strength f , ω0 is an average transition frequency, and g′ is a
dimensionless parameter of the order of unity which is assumed to be nearly
the same for all materials. Wang has shown empirically that the predictions of
Eq. (5.2.2) are accurate both for low-pressure gases (where Miller’s rule does
not make accurate predictions) and for ionic crystals (where Miller’s rule does
make accurate predictions). By comparison of this relation with Eq. (5.1.19),
we see that g′ is intimately related to the kurtosis of the ground-state electron
distribution. There does not seem to be any simple physical argument for why
the quantity g′ should be the same for all materials.

Model of Boling, Glass, and Owyoung

The formula (Eq. 5.2.2) of Wang serves as a starting point for the model of
Boling et al. (1978), which allows one to predict the nonlinear refractive index
constant n2 on the basis of linear optical properties. One assumes that the lin-
ear refractive index is described by the Lorentz–Lorenz law (see Eq. (3.8.8a))
and Lorentz oscillator model (see Eq. (1.4.17) or Eq. (3.5.25)) as

n2 − 1

n2 + 2
= 1

3
Nα, (5.2.3a)

α = f e2/m

ω2
0 − ω2

, (5.2.3b)

where f is the oscillator strength of the transition making the dominant con-
tribution to the optical properties. Note that by measuring the refractive index
as a function of frequency it is possible through use of these equations to
determine both the resonance frequency ω0 and the effective number den-
sity Nf . The nonlinear refractive index is determined from the standard set of
equations

n2 = 3
4n2ε0c

χ(3), χ(3) = L4Nγ, L = n2+2
3 , (5.2.4a)

γ = gα2

h̄ω0
. (5.2.4b)

Equation (5.2.4b) is the microscopic form of Wang’s formula (5.2.2), where
g is considered to be a free parameter. If Eq. (5.2.3b) is solved for α, which
is then introduced into Eq. (5.2.4b), and use is made of Eqs. (5.2.4a), we find
that the expression for n2 is given by

n2 = (n2 + 2)2(n2 − 1)2(gf )

6n2ε0c h̄ω0(Nf )
. (5.2.5)
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FIGURE 5.2.1 Comparison of the predictions of Eq. (5.2.5) with experimental results.
After Adair et al. (1989).

This equation gives a prediction for n2 in terms of the linear refractive in-
dex n, the quantities ω0 and (Nf ) which (as described above) can be deduced
from the dispersion in the refractive index, and the combination (gf ), which
is considered to be a constant quantity for a broad range of optical materials.
The value (gf ) = 3 is found empirically to give good agreement with mea-
sured values. A comparison of the predictions of this model with measured
values of n2 has been performed by Adair et al. (1989), and some of their
results are shown in Fig. 5.2.1. The two theoretical curves shown in this fig-
ure correspond to two different choices of the parameter (gf ) of Eq. (5.2.5).
Lenz et al. (2000) have described a model related to that of Boling et al. that
has good predictive value for describing the nonlinear optical properties of
chalcogenide glasses.
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5.3. Nonlinear Optical Properties of Conjugated Polymers

Certain polymers known as conjugated polymers can possess an extremely
large nonlinear optical response. For example, a certain form of polydi-
acetylene known as PTS possesses a third-order susceptibility of 3.5 ×
10−18 m2/V2, as compared to the value of 2.7 × 10−20 m2/V2 for carbon
disulfide. In this section some of the properties of conjugated polymers are
described.

A polymer is said to be conjugated if it contains alternating single and dou-
ble (or single and triple) bonds. Alternatively, a polymer is said to be saturated
if it contains only single bonds. A special class of conjugated polymers is the
polyenes, which are molecules that contain many double bonds.

Part (a) of Fig. 5.3.1 shows the structure of polyacetylene, a typical chain-
like conjugated polymer. According to convention, the single lines in this dia-
gram represent single bonds and double lines represent double bonds. A single
bond always has the structure of a σ bond, which is shown schematically in
part (b) of the figure. In contrast, a double bond consists of a σ bond and a π

bond, as shown in part (c) of the figure. A π bond is made up of the overlap
of two p orbitals, one from each atom that is connected by the bond.

The optical response of σ bonds is very different from that of π bonds
because σ electrons (that is, electrons contained in a σ bond) tend to be lo-
calized in space. In contrast, π electrons tend to be delocalized. Because π

electrons are delocalized, they tend to be less tightly bound and can respond
more freely to an applied optical field. They thus tend to produce larger linear
and nonlinear optical responses.

π electrons tend to be delocalized in the sense that a given electron can
be found anywhere along the polymer chain. They are delocalized because
(unlike the σ electrons) they tend to be located at some distance from the
symmetry axis. In addition, even though one conventionally draws a polymer
chain in the form shown in part (a) of the figure, for a long chain it would be
equally valid to exchange the locations of the single and double bonds. The
actual form of the polymer chain is thus a superposition of the two configura-
tions shown in part (d) of the figure. This perspective is reinforced by noting
that p orbitals extend both to the left and to the right of each carbon atom,
and thus there is considerable arbitrariness as to which bonds we should call
single bonds and which we should call double bonds. Thus, the actual electron
distribution might look more like that shown in part (e) of the figure.

As an abstraction, one can model the π electrons of a conjugated chain-
like polymer as being entirely free to move in a one-dimensional square well
potential whose length L is that of the polymer chain. Rustagi and Ducuing
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FIGURE 5.3.1 (a) Two common representations of a conjugated chainlike polymer.
(b) Standard representation of a single bond (left) and a schematic representation of
the electron charge distribution of the single bond (right). (c) Standard representation
of a double bond (left) and a schematic representation of the electron charge distrib-
ution of the double bond (right). (d) Two representations of the same polymer chain
with the locations of the single and double bonds interchanged, suggesting the arbi-
trariness of which bond is called the single bond and which is called the double bond
in an actual polymer chain. (e) Representation of the charge distribution of a conju-
gated chainlike polymer.

(1974) performed such a calculation and found that the linear and third-order
polarizabilities are given by

α = 8L3

3a0π2N and γ = 256L5

45a3
0 e2π6N 5

, (5.3.1)

where N is the number of electrons per unit length and a0 is the Bohr ra-
dius. (See also Problem 3 at the end of this chapter.) It should be noted that
the linear optical response increases rapidly with the length L of the polymer
chain and that the nonlinear optical response increases even more rapidly.
Of course, for condensed matter, the number of polymer chains per unit vol-
ume N will decrease with increasing chain length L, so the susceptibilities
χ(1) and χ(3) will increase less rapidly with L than do α and β themselves.
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FIGURE 5.3.2 Measured dependence of the value of the hyperpolarizability γ1111 on
the number of double bonds in the molecule. The data are from Hermann and Ducuing
(1974) and the straight line has a slope of 5 in accordance with Eq. (5.3.1). To convert
γ to SI units of m5/V2, multiply each value by 1.4 × 10−14.

Nonetheless, the present model predicts that conjugated polymers in the form
of long chains should possess extremely large values of the nonlinear optical
susceptibility. Some experimental results that confirm the L5 dependence of
the hyperpolarizability are shown in Fig. 5.3.2.

5.4. Bond-Charge Model of Nonlinear Optical Properties

In a collection of free atoms, the natural basis for describing the optical prop-
erties of the atomic system is the set of energy eigenstates of the individual
atoms. However, when atoms are arranged in a crystal lattice, it becomes more
natural to think of the outer electrons as being localized within the bonds that
confine the atoms to their lattice sites. (The inner-core electrons are so tightly
bound that they make negligible contribution to the optical response in any
case.) Extensive evidence shows that one can ascribe a linear polarizability,
and higher-order polarizabilities, to each bond in a molecule or crystalline
solid (Levine, 1969; Chemla, 1971). This evidence also shows that the polar-
izability of one bond is reasonably unaffected by the nature of nearby bonds.
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FIGURE 5.4.1 The bond-charge model applied to a chemical bond between con-
stituents A and B . Parts (b) and (c) show how the charge moves in response to applied
electric fields.

Thus, the susceptibility of a complex system can be predicted by summing
(taking proper account of their orientation) the responses of the various bonds
present in the material. Bond hyperpolarizabilities can be determined either
experimentally or by one of several different theoretical approaches.

The bond-charge model is illustrated in Fig. 5.4.1. Part (a) of this figure
shows a bond connecting atoms A and B . As an idealization, the bond is
considered to be a point charge of charge q located between the two ions.
Here rA and rB are the covalent radii of atoms A and B and d = rA + rB is
known as the bond length. According to Levine (1973), the bond charge is
given by

q = env(1/ε + 1
3fc), (5.4.1)

where nv is the number of electrons per bond, ε is the static dielectric con-
stant of the material, and fc is a parameter known as the fractional degree of
covalency of the bond.

Part (b) of Fig. 5.4.1 shows how the bond charge q moves in the presence of
an electric field E that is oriented parallel to the bond axis. The charge is seen
to move by an amount δr = α‖E/q , where α‖ is the polarizability measured
along the bond axis, and consequently the ion-to-bond-charge distances rA
and rB change by amounts

−�rA = �rB = δr = α‖E/q. (5.4.2)

Part (c) of the figure shows how the bond charge moves when E is applied
perpendicular to the bond axis. In this case δr = α⊥E/q , and to lowest order
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the distances rA and rB change by amounts

�rA = δr2

2rA
= α2⊥E2

2rAq2
, (5.4.3a)

�rB = δr2

2rB
= α2⊥E2

2rBq2
. (5.4.3b)

We see that a field parallel to the bond axis can induce a linear change in the
distances rA and rB , but that a field perpendicular to the axis can induce only
a second-order change in these quantities.

Let us now see how to make quantitative predictions using the bond-charge
model (Chemla et al., 1974). According to Phillips (1967) and Van Vechten
(1969), the (linear) bond polarizability can be represented as

α ≡ 1

3
(α‖ + 2α⊥) = (2a0)

3D
E2

0

E2
g

, (5.4.4)

where a0 = 4πε0h̄
2/me2 is the Bohr radius, E0 = me4/2(4πε0)

2h̄2 is the
Rydberg unit of energy, D is a numerical factor of the order of unity, and
Eg is the mean energy gap associated with the bond. This quantity can be
represented as

E2
g = E2

h + C2, (5.4.5)

where Eh is the homopolar contribution given by

Eh = 40d−2.5, (5.4.6a)

and where C is the heteropolar contribution given by

C = 1.5e−kR

(
zA

rA
− zB

rB

)
e2, (5.4.6b)

where zA and zB are the number of valence electrons on atoms A and B , re-
spectively, and where exp(−kR) is the Thomas–Fermi screening factor, with
R = 1

2 (rA + rB) = 1
2d . The numerical factor in Eq. (5.4.6a) presupposes that

d is measured in angstroms and Eh in electron volts.
The bond-charge model ascribes the nonlinear optical response of a mate-

rial system to the variation of the bond polarizability αij induced by an applied
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field Ej . Explicitly one expresses the bond dipole moment as

pi = p
(1)
i + p

(2)
i + p

(3)
i + · · ·

=
[
(αil)0 +

(
∂αil

∂Ej

)
Ej + 1

2

(
∂2αil

∂EjEk

)
EjEk

]
El + · · ·

≡ (αil)0El + βijkEjEl + γijklEjEkEl + · · · . (5.4.7)

Let us now calculate the hyperpolarizabilities βijk and γijkl . Since our
model assumes that the bonds are axially symmetric, the only nonvanishing
components of the hyperpolarizabilities are

β‖ = βzzz, β⊥ = βxzx, (5.4.8a)

γ‖ = γzzzz, γ⊥ = γxxxx, γ‖⊥ = γzzxx, (5.4.8b)

where we have assumed that z lies along the bond axis. We next note that, as a
consequence of Eqs. (5.4.3), a transverse field E⊥ cannot produce a first-order
(or in fact any odd order) change in αij —that is,

(
∂

∂E⊥

)q

αij = 0 for q odd. (5.4.9)

We also note that the present model obeys Kleinman symmetry, since it does
not consider the frequency dependence of any of the optical properties. Be-
cause of Kleinman symmetry, we can express β⊥ ≡ ∂αxx/∂Ez as

β⊥ = ∂αxz

∂Ex

, (5.4.10)

which vanishes by Eq. (5.4.9). We likewise find that

γ‖⊥ = 1

2

∂2αxz

∂Ex∂Ez

= 0. (5.4.11)

We thus deduce that the only nonvanishing components are β‖, γ‖, and γ⊥,
which can be expressed as

β‖ = ∂α‖
∂E‖

= 3
∂α

∂E‖
, (5.4.12)

γ‖ = ∂2α‖
∂E2‖

= 3

2

∂2α

∂E2‖
, (5.4.13)

γ⊥ = ∂2α⊥
∂E2⊥

= 3

4

∂2α

∂E2⊥
. (5.4.14)
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TABLE 5.4.1 Representative bond hyperpolarizabilities γ in units of
1.4 × 10−50 m5/V2 a

Bond λ = 1.064 µm λ = 1.907 µm

C–Cl 0.90 ± 0.04 0.7725
C–H 0.05 ± 0.04 −0.0275
O–H 0.42 ± 0.02 0.5531
C–C 0.32 ± 0.42 0.6211
C=C 1.03 ± 1.52 0.61
C–O 0.24 ± 0.19 0.30
C=O 0.82 ± 1.1 0.99

a After Kajzar and Messier (1985).

The equations just presented provide the basis of the bond-charge model. The
application of this model requires extensive numerical computation which
will not be reproduced here. In brief summary, the quantities Eh and C of
Eqs. (5.4.6) are developed in power series in the applied fields E‖ and E⊥
through use of Eqs. (5.4.2) and (5.4.3). Expression (5.4.4) for α can then
be expressed in a power series in the applied field, and the hyperpolariz-
abilities can be extracted from this power series expression through use of
Eqs. (5.4.12). Finally, susceptibilities χ

(2)
ijk and χ

(3)
ijkl are determined by sum-

ming over all bonds in a unit volume, taking account of the orientation of
each particular bond. This model has been shown to provide good predictive
value. For instance, Chemla et al. (1974) have found that this model provides
∼30% accuracy in calculating the third-order nonlinear optical response for
Ge, Si, and GaAs. Table 5.4.1 gives values of some measured bond hyperpo-
larizabilities. In addition Levine (1973) provides extensive tables comparing
the predictions of this model with experimental results.

5.5. Nonlinear Optics of Chiral Media

Special considerations apply to the analysis of the nonlinear optical properties
of a medium composed of a collection of chiral molecules. A chiral molecule
is a molecule with a “handedness,” that is, the mirror image of such a molecule
looks different from the molecule itself. By way of example, simple molecules
such as CS2, H2O, CH4 are achiral (that is, are not chiral) and are identical
to their mirror images; however, many organic molecules including simple
sugars such as dextrose are chiral.

In the context of linear optics, it is well known that chiral media display
the property of optical activity, that is, the rotation of the direction of linear
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FIGURE 5.5.1 (a) A collection of right-handed spirals and (b) a collection of
left-handed spirals. Each medium is isotropic (looks the same in all directions), but
neither possesses a center of inversion symmetry.

polarization of a light beam as it passes through such a material. (See, for
instance, Jenkins and White, 1976.) A material is said to be dextrorotatory if
the direction of the polarization rotates in a clockwise sense (looking into the
beam) as the beam propagates; if the polarization rotates counterclockwise,
the medium is said to be levorotatory. Two molecules that are mirror images of
each other are said to be enantiomers. An equal mixture of two enantiomers is
said to be a racemic mixture. Optical activity obviously vanishes for a racemic
mixture.

Let us now turn to a discussion of the nonlinear optical properties of chiral
materials. A liquid composed of chiral molecules is isotropic but nonetheless
noncentrosymmetric (see Fig. 5.5.1), and thus it can possess a second-order
nonlinear optical response. As we shall see, such a medium can produce sum-
or difference-frequency generation, but not second-harmonic generation, and
moreover can produce sum- or difference-frequency generation only if the two
input beams are non-collinear. The theory of second-order processes in chiral
media was developed by Giordmaine (1965) and was studied experimentally
by Rentzipis et al. (1966). More recent research on the nonlinear optics of
chiral media includes that of Verbiest et al. (1998).

Let us now turn to a theoretical description of second-order processes in
chiral materials. We represent the second-order polarization induced in such
a material as

Pi(ωσ ) = 2ε0

∑
jk

χ
(2)
ijk (ωσ = ω1 + ω2)EjFk, (5.5.1)

where Ej represents a field at frequency ω1 and Fk represents a field at fre-
quency ω2 (which can be a negative frequency). We now formally rewrite
Eq. (5.5.1) as

Pi = ε0

∑
jk

Sijk(EjFk + EkFj ) + ε0

∑
jk

Aijk(EjFk − EkFj ), (5.5.2)
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where Sijk and Aijk denote the symmetric and antisymmetric parts of χ
(2)
ijk

and are given by

Sijk = 1

2

(
χ

(2)
ijk + χ

(2)
ikj

)
, (5.5.3a)

Aijk = 1

2

(
χ

(2)
ijk − χ

(2)
ikj

)
. (5.5.3b)

Note that Aijk vanishes for second-harmonic generation or more generally
whenever the Kleinman symmetry condition is valid.

The tensor properties of the quantities Sijk and Aijk can be deduced us-
ing methods analogous to those described in Section 1.5. For the case of an
isotropic but noncentrosymmetric medium (which corresponds to point group
∞∞) one finds that Sijk vanishes identically and that the only nonvanishing
elements of Aijk are

A123 = A231 = A312. (5.5.4)

Consequently the nonlinear polarization can be expressed as

P = ε0A123 E × F. (5.5.5)

The experimental setup used by Rentzipis et al. to study these effects is
shown in Fig. 5.5.2. The two input beams are at different frequencies, as re-
quired for A123 to be nonzero. In addition, they are orthogonally polarized
to ensure that E × F is nonzero and are noncollinear to ensure that P has a
transverse component. Generation of a sum-frequency signal at 2314 Å was
reported for both dextrorotatory and levorotatory forms of arabinose, but no
signal was observed when the cell contained a racemic mixture of the two
forms. The measured value of A123 was 1.3 × 10−18 m/V; for comparison
note that d‖ (quartz) = 1.61 × 10−17 m/V. A detailed reexamination of the

FIGURE 5.5.2 Experimental setup to observe sum-frequency generation in an iso-
tropic, chiral medium.
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second-order nonlinear optical properties of this system has been presented
by Belkin et al. (2001).

5.6. Nonlinear Optics of Liquid Crystals

Liquid crystal materials often display large nonlinear optical effects. The time
scale for the development of such effects is often quite long (milliseconds or
longer), but even response times this long are adequate for certain applica-
tions.

Liquid crystals are composed of large, anisotropic molecules. Above a cer-
tain transition temperature, which varies significantly among various liquid
crystal materials but which might typically be 100 ◦C, these materials exist
in an isotropic phase in which they behave like ordinary liquids. Below this
transition temperature, liquid crystals exist in a mesotropic phase in which
the orientation of adjacent molecules becomes highly correlated, giving rise
to the name liquid crystal. At still lower temperatures liquid crystal materials
undergo another phase transition and behave as ordinary solids.

Several different types of order can occur in the mesotrophic phase. Two of
the most common are the nematic phase and the chiral nematic phase (which
is also known as the cholesteric phase), which are illustrated in Fig. 5.6.1.

Liquid crystalline materials possess strong nonlinear optical effects in both
the isotropic and mesotropic phases (Peccianti et al., 2000 and Wang and
Shen, 1973).

FIGURE 5.6.1 Two examples of ordered-phases (mesophases or mesotropic phases)
of liquid crystals. (a) In the nematic phase, the molecules are randomly distributed
in space but are aligned such that the long axis of each molecule points in the same
direction, known as the director. (b) In the chiral nematic phase, the molecules in each
plane are aligned as in the nematic phase, but the director orientation rotates between
successive planes.
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In the isotropic phase, liquid crystal materials display a molecular-
orientation nonlinear response of the sort described in Section 4.4, but typi-
cally with a much larger magnitude that is strongly temperature dependent. In
one particular case, Hanson et al. (1977) find that the nonlinear coefficient n2

and the response time τ are given by

n2 = 2.54 × 10−15

n0(T − T ∗)
m2K

W
, T > T ∗, (5.6.1)

τ = e2800/T (◦K)

T − T ∗ 7 × 10−11 ns K, T > T ∗, (5.6.2)

where T ∗ = 77 ◦C is the liquid-crystal transition temperature. In the range of
temperatures from 130 to 80 ◦C, n2 ranges from 3.2 to 60 × 10−13 cm2/W
and τ varies from 1 to 72 nsec. These n2 values are 10 to 200 times larger
than those of carbon disulfide.

Liquid crystal materials possess even stronger nonlinear optical properties
in the mesophase than in the isotropic phase. Once again, the mechanism is
one of molecular orientation, but in this case the process involves the col-
lective orientation of many interacting molecules. The effective nonlinear re-
sponse can be as much as 109 times larger than that of carbon disulfide.

Experimental studies of nonlinear optical processes in nematic liquid crys-
tals are often performed with the molecules anchored at the walls of the cell
that contains the liquid crystal material, as shown in Fig. 5.6.2.

The analysis of such a situation proceeds by considering the angle θ + θ0

between the director and the propagation vector k of the laser beam. Here θ0

is this angle in the absence of the laser field and θ is the reorientation angle

FIGURE 5.6.2 Typical cell configurations for studying optical processes in nematic
liquid crystals. (a) Planar alignment: The molecules are induced to anchor at the upper
and lower glass walls by rubbing these surfaces to induce small scratches into which
the molecules attach. (b) Homeotropic alignment: A surfactant is applied to the cell
windows to induce the molecules to align perpendicular to the plane of the window.
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FIGURE 5.6.3 Nature of director reorientation and typical molecular alignment of a
homeotropic-alignment, nematic-liquid-crystal cell in the presence of an intense laser
beam.

induced by the laser beam. It can be shown (Khoo, 2007) that this quantity
obeys the relation∗

K1
d2θ

dz2
+ (

n2
e − n2

o

) |A|2
4π

sin 2(θ + θ0) = 0. (5.6.3)

Here K1 is an elastic constant of the liquid crystal and no and ne are the
ordinary and extraordinary values of the refractive index of the nematic liquid
crystal in the absence of the influence of the incident laser beam. This equa-
tion is to be solved subject to the boundary conditions at the input (z = 0) and
output (z = d) planes of the cell. Khoo and Shen (1985) shows that if this pro-
cedure is carried through one finds that the director orientation typically has
the form shown in Fig. 5.6.3 and that the resulting change in refractive index,
averaged over the length of the cell, can be expressed as �n = n2I where

n2 = (n2
e − n2

o)
2 sin2(2β)d2

24K1c
. (5.6.4)

This expression can be evaluated for the conditions d = 100 µm, n2
e − n2

o =
0.6, K1 = 10−6(dyne), β = 45◦, giving

n2 = 5 × 10−7 m2/W. (5.6.5)

Problems

1. Stark shift in hydrogen. Verify Eq. (5.1.5).
2. Nonlinear response of the square-well potential. Making use of the for-

malism of Section 5.1, calculate the linear and third-order susceptibilities
of a collection of electrons confined in a one-dimensional, infinitely deep,

∗ For definiteness we assume the geometry of Fig. 5.6.2(b), and we use gaussian units as in Khoo’s
treatment.
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square-well potential. Note that this calculation constitutes a simple model
of the optical response of a conjugated polymer.

[Hint: See Rustagi and Ducuing, 1974.]
3. Classical calculation of the second-order response of chiral materials.

Consider an anharmonic oscillator for which the potential is of the form

V = 1

2

(
kax

2 + kby
2 + kcz

2) + Axyz.

Calculate the response of such an oscillator to an applied field of the form

E(t) = E1e
−iω1t + E2e

−iω2t + c.c.

Then by assuming that there is a randomly oriented distribution of such os-
cillators, derive an expression for χ(2) of such a material. Does it possess
both symmetric and antisymmetric contributions? Show that the antisym-
metric contribution can be expressed as

P = χNLE1 × E2.
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Chapter 6

Nonlinear Optics in the Two-Level
Approximation

6.1. Introduction

Our treatment of nonlinear optics in the previous chapters has for the most
part made use of power series expansions to relate the response of a material
system to the strength of the applied optical field. In simple cases, this relation
can be taken to be of the form

P̃ (t) = ε0χ
(1)Ẽ(t) + ε0χ

(2)Ẽ(t)2 + ε0χ
(3)Ẽ(t)3 + · · · . (6.1.1)

However, there are circumstances under which such a power series expansion
does not converge, and under such circumstances different methods must be
employed to describe nonlinear optical effects. One example is that of a sat-
urable absorber, where the absorption coefficient α is related to the intensity
I = 2nε0c|E|2 of the applied optical field by the relation

α = α0

1 + I/Is

, (6.1.2)

where α0 is the weak-field absorption coefficient and Is is an optical constant
called the saturation intensity. We can expand this equation in a power series
to obtain

α = α0
[
1 − (I/Is) + (I/Is)

2 − (I/Is)
3 + · · · ]. (6.1.3)

However, this series converges only for I < Is , and thus only in this limit can
saturable absorption be described by means of a power series of the sort given
by Eq. (6.1.1).

It is primarily under conditions such that a transition of the material system
is resonantly excited that perturbation techniques fail to provide an adequate

277
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description of the response of the system to an applied optical field. However,
under such conditions it is usually adequate to deal only with the two atomic
levels that are resonantly connected by the optical field. The increased com-
plexity entailed in describing the atomic system in a nonperturbative manner
is thus compensated in part by the ability to make the two-level approxima-
tion. When only two levels are included in the theoretical analysis, there is
no need to perform the sums over all atomic states that appear in the general
quantum-mechanical expressions for χ(3) given in Chapter 3.

In the present chapter we shall for the most part concentrate on the situation
in which a monochromatic beam of frequency ω interacts with a collection of
two-level atoms. The treatment is thus an extension of that of Chapter 4, which
treated the interaction of a monochromatic beam with a nonlinear medium in
terms of the third-order susceptibility χ(3)(ω = ω + ω − ω). In addition, in
the last two sections of this chapter we generalize the treatment by studying
nondegenerate four-wave mixing involving a collection of two-level atoms.

Even though the two-level model ignores many of the features present
in real atomic systems, there is still an enormous richness in the physical
processes that are described within the two-level approximation. Some of
the processes that can occur and that are described in the present chapter
include saturation effects, power broadening, Rabi oscillations, and optical
Stark shifts. Parallel treatments of optical nonlinearities in two-level atoms
can be found in the books of Allen and Eberly (1975) and Cohen-Tannoudji et
al. (1989) and in the reviews of Sargent (1978) and Boyd and Sargent (1988).

6.2. Density Matrix Equations of Motion for a Two-Level Atom

We first consider the density matrix equations of motion for a two-level sys-
tem in the absence of damping effects. Since damping mechanisms can be
very different under different physical conditions, there is no unique way to
include damping in the model. The present treatment thus serves as a starting
point for the inclusion of damping by any mechanism.

The interaction we are treating is illustrated in Fig. 6.2.1. The lower atomic
level is denoted a and the upper level b. We represent the Hamiltonian for this
system as

Ĥ = Ĥ0 + V̂ (t), (6.2.1)

where Ĥ0 denotes the atomic Hamiltonian and V̂ (t) denotes the energy of
interaction of the atom with the electromagnetic field. We denote the energies
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FIGURE 6.2.1 Near-resonant excitation of a two-level atom.

of the states a and b as

Ea = h̄ωa and Eb = h̄ωb. (6.2.2)

The Hamiltonian Ĥ0 can thus be represented by the diagonal matrix whose
elements are given by

H0,nm = Enδnm. (6.2.3)

We assume that the interaction energy can be adequately described in the
electric dipole approximation, in which case the interaction Hamiltonian has
the form

V̂ (t) = −μ̂Ẽ(t). (6.2.4)

We also assume that the atomic wave functions corresponding to states a and
b have definite parity so that the diagonal matrix elements of μ̂ vanish—that
is, we assume that μaa = μbb = 0 and thus that

Vaa = Vbb = 0. (6.2.5)

The only nonvanishing elements of Ṽ are hence Vba and Vab, which are given
explicitly by

Vba = V ∗
ab = −μbaẼ(t). (6.2.6)

We describe the state of this system by means of the density matrix, which
is given explicitly by

ρ̂ =
[
ρaa ρab

ρba ρbb

]
, (6.2.7)
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where ρba = ρ∗
ab. The time evolution of the density matrix is given, still in the

absence of damping effects, by Eq. (3.3.21) as

ρ̇nm = −i

h̄

[
Ĥ , ρ̂

]
nm

= −i

h̄

[(
Ĥ ρ̂

)
nm

− (
ρ̂Ĥ

)
nm

]

= −i

h̄

∑
v

(Hnvρvm − ρnvHvm). (6.2.8)

We now introduce the decomposition of the Hamiltonian into atomic and in-
teraction parts (Eq. (6.2.1)) into this expression to obtain

ρ̇nm = −iωnmρnm − i

h̄

∑
ν

(Vnνρνm − ρnνVνm), (6.2.9)

where we have introduced the transition frequency ωnm = (En − Em)/h̄. For
the case of the two-level atom, the indices n, m, and ν can take on the values
a or b only, and the equations of motion for the density matrix elements are
given explicitly as

ρ̇ba = −iωbaρba + i

h̄
Vba(ρbb − ρaa), (6.2.10a)

ρ̇bb = i

h̄
(Vbaρab − ρbaVab), (6.2.10b)

ρ̇aa = i

h̄
(Vabρba − ρabVba). (6.2.10c)

It can be seen by inspection that

ρ̇bb + ρ̇aa = 0, (6.2.11)

which shows that the total population ρbb +ρaa is a conserved quantity. From
the definition of the density matrix, we know that the diagonal elements of ρ̂

represent probabilities of occupation, and hence that

ρaa + ρbb = 1. (6.2.12)

No separate equation of motion is required for ρab, because of the relation
ρab = ρ∗

ba .
Equations (6.2.10) constitute the density matrix equations of motion for a

two-level atom in the absence of relaxation processes. These equations pro-
vide an adequate description of resonant nonlinear optical processes under
conditions where relaxation processes can be neglected, such as excitation
with short pulses whose duration is much less than the material relaxation
times. We next see how these equations are modified in the presence of relax-
ation processes.



6.2. Density Matrix Equations of Motion for a Two-Level Atom 281

FIGURE 6.2.2 Relaxation processes of the closed two-level atom.

6.2.1. Closed Two-Level Atom

Let us first consider relaxation processes of the sort illustrated schematically
in Fig. 6.2.2. We assume that the upper level b decays to the lower level a

at a rate 	ba and therefore that the lifetime of the upper level is given by
T1 = 1/	ba . Typically, the decay of the upper level would be due to spon-
taneous emission. This system is called closed, because any population that
leaves the upper level enters the lower level. We also assume that the atomic
dipole moment is dephased in the characteristic time T2, leading to a transition
linewidth (for weak applied fields) of characteristic width γba = 1/T2.∗

We can describe these relaxation processes mathematically by adding decay
terms phenomenologically to Eqs. (6.2.10); the modified equations are given
by

ρ̇ba = −
(

iωba + 1

T2

)
ρba + i

h̄
Vba(ρbb − ρaa), (6.2.13a)

ρ̇bb = −ρbb

T1
− i

h̄
(Vbaρab − ρbaVab), (6.2.13b)

ρ̇aa = ρbb

T1
+ i

h̄
(Vbaρab − ρbaVab). (6.2.13c)

The forms of the relaxation terms included in these equations will be justified
in the discussion given below. One can see by inspection of Eqs. (6.2.13) that
the condition

ρ̇bb + ρ̇aa = 0 (6.2.14)

is still satisfied.
Since Eq. (6.2.13a) depends on the populations ρbb and ρaa only in terms

of the population difference, ρbb − ρaa , it is useful to consider the equa-
tion of motion satisfied by this difference. We subtract Eq. (6.2.13c) from

∗ In fact, one can see from Eq. (6.3.25) that the full width at half maximum in angular frequency
units of the absorption line in the limit of weak fields is equal to 2γba .
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Eq. (6.2.13b) to find that

d

dt
(ρbb − ρaa) = −2ρbb

T1
− 2i

h̄
(Vbaρab − ρbaVab). (6.2.15)

The first term on the right-hand side can be rewritten using the relation 2ρbb =
(ρbb − ρaa) + 1 (which follows from Eq. (6.2.12)) to obtain

d

dt
(ρbb − ρaa) = − (ρbb − ρaa) + 1

T1
− 2i

h̄
(Vbaρab − ρbaVab). (6.2.16)

This relation is often generalized by allowing the possibility that the popu-
lation difference (ρbb − ρaa)

(eq) in thermal equilibrium can have some value
other than −1, the value taken above by assuming that only downward spon-
taneous transitions could occur. This generalized version of Eq. (6.2.16) is
given by

d

dt
(ρbb − ρaa) = − (ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1
− 2i

h̄
(Vbaρab − ρbaVab).

(6.2.17)

We therefore see that for a closed two-level system the density matrix equa-
tions of motion reduce to just two coupled equations, Eqs. (6.2.13a) and
(6.2.17).

In order to justify the choice of relaxation terms used in Eqs. (6.2.13a) and
(6.2.17), let us examine the nature of the solutions to these equations in the
absence of an applied field—that is, for Vba = 0. The solution to Eq. (6.2.17)
is

[
ρbb(t) − ρaa(t)

] = (ρbb − ρaa)
(eq)

+ {[
ρbb(0) − ρaa(0)

] − (ρbb − ρaa)
(eq)

}
e−t/T1 .

(6.2.18)

This equation shows that the population inversion [ρbb(t) − ρaa(t)] relaxes
from its initial value ρbb(0)−ρaa(0) to its equilibrium value (ρbb −ρaa)

(eq) in
a time of the order of T1. For this reason, T1 is called the population relaxation
time.

Similarly, the solution to Eq. (6.2.13a) for the case Vba = 0 is of the form

ρba(t) = ρba(0)e−(iωba+1/T2)t . (6.2.19)
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We can interpret this result more directly by considering the expectation value
of the induced dipole moment, which is given by〈

μ̃(t)
〉 = μabρba(t) + μbaρab(t) = μabρba(0)e−(iωba+1/T2)t + c.c.

= [
μabρba(0)e−iωbat + c.c.

]
e−t/T2 . (6.2.20)

This result shows that, for an undriven atom, the dipole moment oscillates at
frequency ωba and decays to zero in the characteristic time T2, which is hence
known as the dipole dephasing time.

For reasons that were discussed in relation to Eq. (3.3.25), T1 and T2 are
related to the collisional dephasing rate γc by

1

T2
= 1

2T1
+ γc. (6.2.21a)

For an atomic vapor, γc is usually described accurately by the formula

γc = CsN + Cf Nf , (6.2.21b)

where N is the number density of atoms having resonance frequency ωba ,
and Nf is the number density of any “foreign” atoms of a different atomic
species having a different resonance frequency. The parameters Cs and Cf

are coefficients describing self-broadening and foreign-gas broadening, re-
spectively. As an example, for the resonance line (i.e., the 3s → 3p transi-
tion) of atomic sodium, T1 is equal to 16 nsec, Cs = 1.50 × 10−7 cm3/sec,
and for the case of foreign-gas broadening by collisions with argon atoms,
Cf = 2.53 × 10−9 cm3/sec. The values of T1, Cs , and Cf for other transi-
tions are tabulated, for example, by Miles and Harris (1973).

6.2.2. Open Two-Level Atom

The open two-level atom is shown schematically in Fig. 6.2.3. Here the upper
and lower levels are allowed to exchange population with associated reservoir
levels. These levels might, for example, be magnetic sublevels or hyperfine
levels associated with states a and b. The system is called open because the
population that leaves the upper level does not necessarily enter the lower
level. This model is often encountered in connection with laser theory, in
which case the upper level or both levels are assumed to acquire population at
some controllable pump rates, which we take to be λb and λa for levels b and
a, respectively. As previously, we assume that the induced dipole moment re-
laxes in a characteristic time T2. In order to account for relaxation and pump-
ing processes of the sort just described, the density matrix equations (6.2.10)
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FIGURE 6.2.3 Relaxation processes for the open two-level atom.

are modified to become

ρ̇ba = −
(

iωba + 1

T2

)
ρba + i

h̄
Vba(ρbb − ρaa), (6.2.22a)

ρ̇bb = λb − 	b(ρbb − ρbb)
(eq) − i

h̄
(Vbaρab − ρbaVab), (6.2.22b)

ρ̇aa = λa − 	a(ρaa − ρaa)
(eq) + i

h̄
(Vbaρab − ρbaVab). (6.2.22c)

Note that in this case the total population contained in the two levels a and b is
not conserved and that in general all three equations must be considered. The
relaxation rates are related to the collisional dephasing rate γc and population
rates 	b and 	a by

1

T2
= 1

2 (	b + 	a) + γc. (6.2.23)

6.2.3. Two-Level Atom with a Non-Radiatively Coupled Third Level

The energy level scheme shown in Fig. 6.3.1 is often used to model a sat-
urable absorber. Population spontaneously leaves the optically excited level
b at a rate 	ba + 	bc, where 	ba is the rate of decay to the ground state a,
and 	bc is the rate of decay to level c. Level c acts as a trap level; popula-
tion decays from level c back to the ground state at a rate 	ca . In addition,
any dipole moment associated with the transition between levels a and b is
damped at a rate γba . These relaxation processes are modeled by modifying
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FIGURE 6.3.1 Relaxation processes for a two-level atom with a nonradiatively cou-
pled third level.

Eqs. (6.2.10) to

ρ̇ba = −(iωba + γba)ρba + i

h̄
Vba(ρbb − ρaa), (6.2.24a)

ρ̇bb = −(	ba + 	bc)ρbb − i

h̄
(Vbaρab − ρbaVab), (6.2.24b)

ρ̇cc = 	bcρbb − 	caρcc, (6.2.24c)

ρ̇aa = 	baρbb + 	caρcc + i

h̄
(Vbaρab − ρbaVab). (6.2.24d)

It can be seen by inspection that the population in the three levels is conserved,
that is, that

ρ̇aa + ρ̇bb + ρ̇cc = 0.

6.3. Steady-State Response of a Two-Level Atom to a
Monochromatic Field

We next examine the nature of the solution to the density matrix equations of
motion for a two-level atom in the presence of a monochromatic, steady-state
field. For definiteness, we treat the case of a closed two-level atom, although
our results would be qualitatively similar for any of the models described
above (see Problem 1 at the end of this chapter). For the closed two-level
atomic system, the density matrix equations were shown above (Eqs. (6.2.13a)
and (6.2.17)) to be of the form

d

dt
ρba = −

(
iωba + 1

T2

)
ρba + i

h̄
Vba(ρbb − ρaa), (6.3.1)

d

dt
(ρbb − ρaa) = − (ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1
− 2i

h̄
(Vbaρab − ρbaVab).

(6.3.2)
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In the electric dipole approximation, the interaction Hamiltonian for an ap-
plied field in the form of a monochromatic wave of frequency ω is given by

V̂ = −μ̂Ẽ(t) = −μ̂
(
Ee−iωt + E∗eiωt

)
, (6.3.3)

and the matrix elements of the interaction Hamiltonian are then given by

Vba = −μba

(
Ee−iωt + E∗eiωt

)
. (6.3.4)

Equations (6.3.1) and (6.3.2) cannot be solved exactly for Vba given by
Eq. (6.3.4). However, they can be solved in an approximation known as the
rotating-wave approximation. We recall from the discussion of Eq. (6.2.20)
that, in the absence of a driving field, ρba tends to evolve in time as
exp(−iωbat). For this reason, when ω is approximately equal to ωba , the part
of Vba that oscillates as e−iωt acts as a far more effective driving term for ρba

than does the part that oscillates as eiωt . It is thus a good approximation to
take Vba not as Eq. (6.3.4) but instead as

Vba = −μbaEe−iωt . (6.3.5)

This approximation is called the rotating-wave approximation. Within this
approximation, the density matrix equations of motion (6.3.1) and (6.3.2)
become

d

dt
ρba = −

(
iωba + 1

T2

)
ρba − i

h̄
μbaEe−iωt (ρbb − ρaa), (6.3.6)

d

dt
(ρbb − ρaa) = − (ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1

+ 2i

h̄

(
μbaEe−iωtρab − μabE

∗eiωtρba

)
. (6.3.7)

Note that (in the rotating-wave approximation) ρba is driven only at nearly
its resonance frequency ωba , and ρbb − ρaa is driven only at nearly zero fre-
quency, which is its natural frequency.

We next find the steady-state solution to Eqs. (6.3.6) and (6.3.7)—that is,
the solution that is valid long after the transients associated with the turn-on
of the driving field have died out. We do so by introducing the slowly varying
quantity σba , defined by

ρba(t) = σba(t)e
−iωt . (6.3.8)
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Equations (6.3.6) and (6.3.7) then become

d

dt
σba =

[
i(ω − ωba) − 1

T2

]
σba − i

h̄
μbaE(ρbb − ρaa), (6.3.9)

d

dt
(ρbb − ρaa) = − (ρbb − ρaa)−(ρbb − ρaa)

(eq)

T1

+ 2i

h̄

(
μbaEσab − μabE

∗σba

)
. (6.3.10)

The steady-state solution can now be obtained by setting the left-hand sides
of Eqs. (6.3.9) and (6.3.10) equal to zero. We thereby obtain two coupled
equations, which we solve algebraically to obtain

ρbb − ρaa = (ρbb − ρaa)
(eq)[1 + (ω − ωba)

2T 2
2 ]

1 + (ω − ωba)2T 2
2 + (4/h̄2)|μba|2|E|2T1T2

, (6.3.11)

ρba = σbae
−iωt = μbaEe−iωt (ρbb − ρaa)

h̄(ω − ωba + i/T2)
. (6.3.12)

We now use this result to calculate the polarization (i.e., the dipole moment
per unit volume), which is given in terms of the off-diagonal elements of the
density matrix by

P̃ (t) = N〈μ̃〉 = N Tr
( ˆ̃ρ ˆ̃μ) = N(μabρba + μbaρab), (6.3.13)

where N is the number density of atoms. We introduce the complex amplitude
P of the polarization through the relation

P̃ (t) = Pe−iωt + c.c., (6.3.14)

and we define the susceptibility χ as the constant of proportionality relating
P and E according to

P = ε0χE. (6.3.15)

We hence find from Eqs. (6.3.12) through (6.3.15) that the susceptibility is
given by

χ = N |μba|2(ρbb − ρaa)

ε0h̄(ω − ωba + i/T2)
, (6.3.16)

where ρbb − ρaa is given by Eq. (6.3.11). We introduce this expression for
[ρbb − ρaa] into Eq. (6.3.16) and rationalize the denominator to obtain the
result

χ = N(ρbb − ρaa)
(eq)|μba|2(ω − ωba − i/T2)T

2
2 /ε0h̄

1 + (ω − ωba)2T 2
2 + (4/h̄2)|μba|2|E|2T1T2

. (6.3.17)
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Note that this expression gives the total susceptibility, including both its linear
and nonlinear contributions.

We next introduce new notation to simplify this expression. We introduce
the quantity


 = 2|μba| |E|/h̄, (6.3.18)

which is known as the on-resonance Rabi frequency, and the quantity

� = ω − ωba, (6.3.19)

which is known as the detuning factor, so that the susceptibility can be ex-
pressed as

χ =
[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0h̄

]
�T2 − i

1 + �2T 2
2 + 
2T1T2

. (6.3.20)

Next, we express the combination of factors set off by square brackets in
this expression in terms of the normal (i.e., linear) absorption coefficient of
the material system, which is a directly measurable quantity. The absorption
coefficient is given in general by

α = 2ω

c
Imn = 2ω

c
Im

[
(1 + χ)1/2], (6.3.21a)

and, whenever the condition |χ | � 1 is valid, the absorption coefficient can
be expressed by

α = ω

c
Imχ. (6.3.21b)

If we let α0(�) denote the absorption coefficient experienced by a weak
optical wave detuned from the atomic resonance by an amount �, we find
by ignoring the contribution 
2T1T2 to the denominator of Eq. (6.3.20) that
α0(�) can be expressed as

α0(�) = α0(0)

1 + �2T 2
2

, (6.3.22a)

where the unsaturated, line-center absorption coefficient is given by

α0(0) = −ωba

c

[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0h̄

]
. (6.3.22b)

By introducing this last expression into Eq. (6.3.20), we find that the sus-
ceptibility can be expressed as

χ = − α0(0)

ωba/c

�T2 − i

1 + �2T 2
2 + 
2T1T2

. (6.3.23)
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In order to interpret this result, it is useful to express the susceptibility as
χ = χ ′ + iχ ′′ with its real and imaginary parts given by

χ ′ = − α0(0)

ωba/c

1√
1 + 
2T1T2

�T2/
√

1 + 
2T1T2

1 + �2T 2
2 /(1 + 
2T1T2)

, (6.3.24a)

χ ′′ = α0(0)

ωba/c

(
1

1 + 
2T1T2

)
1

1 + �2T 2
2 /(1 + 
2T1T2)

. (6.3.24b)

We see from these expressions that, even in the presence of an intense laser
field, χ ′ has a standard dispersive lineshape and χ ′′ has a Lorentzian line-
shape. However, each of these lines has been broadened with respect to its
weak-field width by the factor (1 +
2T1T2)

1/2. In particular, the width of the
absorption line (full width at half maximum) is given by

�ωFWHM = 2

T2

(
1 + 
2T1T2

)1/2
. (6.3.25)

The tendency of spectral lines to become broadened when measured using
intense optical fields is known as power broadening. We also see (e.g., from
Eq. (6.3.24b)) that the line center value of χ ′′ (and consequently of the ab-
sorption coefficient α) is decreased with respect to its weak-field value by
the factor (1 + 
2T1T2)

1/2. The tendency of the absorption to decrease when
measured using intense optical fields is known as saturation. This behavior is
illustrated in Fig. 6.3.2.

It is convenient to define, by means of the relation


2T1T2 = |E|2
|E0

s |2
, (6.3.26)

the quantity E0
s , which is known as the line-center saturation field strength.

Through the use of Eq. (6.3.18), we find that E0
s is given explicitly by

∣∣E0
s

∣∣2 = h̄2

4|μba|2T1T2
. (6.3.27)

The expression (6.3.23) for the susceptibility can be rewritten in terms of the
saturation field strength as

χ = −α0(0)

ωba/c

�T2 − i

1 + �2T 2
2 + |E|2/|E0

s |2 . (6.3.28)

We see from this expression that the significance of E0
s is that the absorption

experienced by an optical wave tuned to line center (which is proportional to
Imχ evaluated at � = 0) drops to one-half its weak-field value when the
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FIGURE 6.3.2 Real and imaginary parts of the susceptibility χ (in units of α0c/ωba)
plotted as functions of the optical frequency ω for several values of the saturation
parameter 
2T1T2.

optical field has a strength of E0
s . We can analogously define a saturation field

strength for a wave of arbitrary detuning, which we denote E�
s , by means of

the relation ∣∣E�
s

∣∣2 = ∣∣E0
s

∣∣2(1 + �2T 2
2

)
. (6.3.29)

We then see from Eq. (6.3.28) that Imχ drops to one-half its weak-field value
when a field of detuning � has a field strength of E�

s .
It is also useful to define the saturation intensity for a wave at line center

(assuming that |n − 1| � 1) as

I 0
s = 2ε0c

∣∣E0
s

∣∣2
, (6.3.30)

and the saturation intensity for a wave of arbitrary detuning as

I�
s = 2ε0c

∣∣E�
s

∣∣2 = I 0
s

(
1 + �2T 2

2

)
. (6.3.31)

In order to relate our present treatment of the nonlinear optical susceptibil-
ity to the perturbative treatment that we have used in the previous chapters,
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we next calculate the first- and third-order contributions to the susceptibility
of a collection of two-level atoms. By performing a power series expansion of
Eq. (6.3.28) in the quantity |E|2/|E0

s |2 and retaining only the first and second
terms, we find that the susceptibility can be approximated as

χ 	 −α0(0)

ωba/c

(
�T2 − i

1 + �2T 2
2

)(
1 − 1

1 + �2T 2
2

|E|2
|E0

s |2
)

. (6.3.32)

We now equate this expression with the usual power series expansion χ =
χ(1) + 3χ(3)|E2| (where χ(3) ≡ χ(3)(ω = ω + ω − ω)) to find that the first-
and third-order susceptibilities are given by

χ(1) = −α0(0)

ωba/c

�T2 − i

1 + �2T 2
2

, (6.3.33a)

χ(3) = α0(0)

3ωba/c

[
�T2 − i

(1 + �2T 2
2 )2

]
1

|E0
s |2

. (6.3.33b)

The frequency dependence of χ(3) as given by this expression is illustrated in
Fig. 6.3.3. Note that the sign of χ(3) is the opposite of that of χ(1). One can
understand this result by noting that χ(3) represents a saturation of the optical
response.

For some purposes, it is useful to express the nonlinear susceptibility in
terms of the line-center saturation intensity as

χ(3) = α0(0)

3ωba/c

[
�T2 − i

(1 + �2T 2
2 )2

]
2ε0c

I 0
s

(6.3.34a)

or, through the use of Eqs. (6.3.22a) and (6.3.31), in terms of the saturation
intensity and absorption coefficient at the laser frequency as

χ(3) = α0(�)(�T2 − i)

3ωba/c

2ε0c

I�
s

. (6.3.34b)

Note also that the third-order susceptibility can be related to the linear sus-
ceptibility by

χ(3) = −χ(1)

3(1 + �2T 2
2 )|E0

s |2
= −χ(1)

3|E�
s |2 . (6.3.35)
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FIGURE 6.3.3 Real and imaginary parts of the susceptibility χ(3) plotted as functions
of the optical frequency ω.

Furthermore, through use of Eqs. (6.3.22b) and (6.3.27), the first- and third-
order susceptibilities can be expressed in terms of microscopic quantities as

χ(1) =
[
N(ρbb − ρaa)

(eq)|μba|2 T2

ε0h̄

]
�T2 − i

1 + �2T 2
2

, (6.3.36a)

χ(3) = −4
3N(ρbb − ρaa)

(eq)|μba|4 T1T
2
2

ε0h̄
3

�T2 − i

(1 + �2T 2
2 )2

. (6.3.36b)

In the limit �T2 � 1, the expression for χ(3) reduces to

χ(3) = −4
3N(ρbb − ρaa)

(eq)|μba|4 1

h̄3�3

T1

T2
. (6.3.37)

Let us consider the magnitudes of some of the physical quantities we
have introduced in this section. Since (for n = 1) the intensity of an opti-
cal wave with field strength E is given by I = 2ε0c|E|2, the Rabi frequency
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of Eq. (6.3.18) can be expressed as


 = 2|μba|
h̄

(
I

2ε0c

)1/2

. (6.3.38)

Assuming that |μba| = 2.5ea0 = 2.0 × 10−29 Cm (as it is for the 3s → 3p

transition of atomic sodium) and that I is measured in W/cm2, this relation-
ship gives the numerical result


[rad/sec] = 2π
(
1 × 109)(I [W/cm2]

127

)1/2

. (6.3.39)

Hence, whenever the intensity I exceeds 127 W/cm2, 
/2π becomes greater
than 1 GHz, which is a typical value of the Doppler-broadened linewidth of an
atomic transition. Intensities this large are available from the focused output
of even low-power, cw lasers.

The saturation intensity of an atomic transition can be quite small. Again
using |μba| = 2.0 × 10−29 Cm, and assuming that T1 = 16 nsec (the value for
the 3p → 3s transition of atomic sodium) and that T2/T1 = 2 (the ratio for a
radiatively broadened transition; see Eq. (6.2.21a)), we find from Eq. (6.3.30)
that

I 0
s = 5.27

mW

cm2
= 52.7

W

m2
. (6.3.40)

Lastly, let us consider the magnitude of χ(3) under conditions of the near-
resonant excitation of an atomic transition. We take the typical values N =
1014 cm−3, (ρbb − ρaa)

(eq) = −1, μba = 2.0 × 10−29 Cm, � = ω − ωba =
2πc (1 cm−1) = 6π × 1010 rad/sec, and T2/T1 = 2, in which case we find
from Eq. (6.3.37) that χ(3) = 2.1 × 10−16 m2/V2. Note that this value is very
much larger than the values of the nonresonant susceptibilities discussed in
Chapter 4.

6.4. Optical Bloch Equations

In the previous two sections, we have treated the response of a two-level atom
to an applied optical field by working directly with the density matrix equa-
tions of motion. We chose to work with the density matrix equations in order
to establish a connection with the calculation of the third-order susceptibility
presented in Chapter 3. However, in theoretical quantum optics the response
of a two-level atom is often treated through use of the optical Bloch equations
or through related theoretical formalisms. Although these various formalisms
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are equivalent in their predictions, the equations of motion look very different
within different formalisms, and consequently different intuition regarding the
nature of resonant optical nonlinearities is obtained. In this section, we review
several of these formalisms.

We have seen (Eqs. (6.3.9) and (6.3.10)) that the density matrix equations
describing the interaction of a closed two-level atomic system with the optical
field

Ẽ(t) = E(t)e−iωt + c.c., (6.4.1)

can be written in the rotating-wave approximation as

d

dt
σba =

[
i(ω − ωba) − 1

T2

]
σba − i

h̄
μbaE(ρbb − ρaa), (6.4.2a)

d

dt
(ρbb − ρaa) = − (ρbb − ρaa) − (ρbb − ρaa)

(eq)

T1

+ 2i

h̄
(μbaEσab − μabE

∗σba), (6.4.2b)

where the slowly varying, off-diagonal density matrix component σba(t) is
defined by

ρba(t) = σba(t)e
−iωt . (6.4.3)

The form of Eqs. (6.4.2) can be greatly simplified by introducing the following
quantities:

1. The population inversions

w = ρbb − ρaa and w(eq) = (ρbb − ρaa)
(eq) (6.4.4a)

2. The detuning of the optical field from resonance,∗

� = ω − ωba (6.4.4b)

3. The atom-field coupling constant

κ = 2μba/h̄. (6.4.4c)

∗ Note that some authors use the opposite sign convention for �.
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We also drop the subscripts on σba for compactness. The density matrix
equations of motion (6.4.2) then take the simpler form

d

dt
σ =

(
i� − 1

T2

)
σ − 1

2 iκEw, (6.4.5a)

d

dt
w = −w − w(eq)

T1
+ i(κEσ ∗ − κ∗E∗σ). (6.4.5b)

It is instructive to consider the equation of motion satisfied by the complex
amplitude of the induced dipole moment. We first note that the expectation
value of the induced dipole moment is given by

〈 ˆ̃μ〉 = ρbaμab + ρabμba = σbaμabe
−iωt + σabμbae

iωt . (6.4.6)

If we define the complex amplitude p of the dipole moment 〈 ˆ̃μ〉 through the
relation

〈 ˆ̃μ〉 = pe−iωt + c.c., (6.4.7)

we find by comparison with Eq. (6.4.6) that

p = σbaμab. (6.4.8)

Equations (6.4.5) can hence be rewritten in terms of the dipole amplitude p

as

dp

dt
=

(
i� − 1

T2

)
p − h̄

4
i|κ|2Ew, (6.4.9a)

dw

dt
= −w − w(eq)

T1
− 4

h̄
Im(Ep∗). (6.4.9b)

These equations illustrate the nature of the coupling between the atom and
the optical field. Note that they are linear in the atomic variables p and w

and in the applied field amplitude E. However, the coupling is parametric: the
dipole moment p is driven by a term that depends on the product of E with
the inversion w, and likewise the inversion is driven by a term that depends
on the product of E with p.

For those cases in which the field amplitude E can be taken to be a real
quantity, the density matrix equations (6.4.5) can be simplified in a different
way. We assume that the phase convention for describing the atomic energy
eigenstates has been chosen such that μba and hence κ are real quantities. It
is then useful to express the density matrix element σ in terms of two real
quantities u and v as

σ = 1
2 (u − iv). (6.4.10)
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The factor of one-half and the minus sign are used here to conform with
convention (Allen and Eberly, 1975). This definition is introduced into Eq.
(6.4.5b), which becomes

d

dt
(u − iv) =

(
i� − 1

T2

)
(u − iv) − iκEw.

This equation can be separated into its real and imaginary parts as

d

dt
u = �v − u

T2
, (6.4.11a)

d

dt
v = −�u − v

T2
+ κEw. (6.4.11b)

Similarly, Eq. (6.4.5b) becomes

d

dt
w = −w − w(eq)

T1
− κEv. (6.4.11c)

The set (6.4.11) is known as the optical Bloch equations.
We next show that in the absence of relaxation processes (i.e., in the limit

T1, T2 → ∞) the variables u, v, and w obey the conservation law

u2 + v2 + w2 = 1. (6.4.12)

First, we note that the time derivative of u2 + v2 + w2 vanishes:

d

dt

(
u2 + v2 + w2) = 2u

du

dt
+ 2v

dv

dt
+ 2w

dw

dt

= 2u�v − 2v�u + 2vκEw − 2wκEv

= 0, (6.4.13)

where we have used Eqs. (6.4.11) in obtaining expressions for the time deriv-
atives. We hence see that u2 +v2 +w2 is a constant. Next, we note that before
the optical field is applied the atom must be in its ground state and hence that
w = −1 and u = v = 0 (as there can be no probability amplitude to be in the
upper level). In this case we see that u2 + v2 + w2 is equal to 1, but since the
quantity u2 + v2 + w2 is conserved, it must have this value at all times. We
also note that since all of the damping terms in Eqs. (6.4.11) have negative
signs associated with them, it must generally be true that

u2 + v2 + w2 ≤ 1. (6.4.14)
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6.4.1. Harmonic Oscillator Form of the Density Matrix Equations

Still different intuition regarding the nature of resonant optical nonlinearities
can be obtained by considering the equation of motion satisfied by the expec-
tation value of the dipole moment induced by the applied field (rather than
considering the equation satisfied by its complex amplitude). This quantity is
given by

M̃ ≡ 〈 ˆ̃μ〉 = ρbaμab + c.c. (6.4.15)

For simplicity of notation, we have introduced the new symbol M̃ rather than
continuing to use 〈 ˆ̃μ〉. Note that M̃ is a real quantity that oscillates at an
optical frequency.

We take the density matrix equations of motion in the form

ρ̇ba = −
(

iωba + 1

T2

)
ρba − i

h̄
μbaẼw, (6.4.16a)

ẇ = −w − w(eq)

T1
+ 4Ẽ

h̄
Im(μabρba), (6.4.16b)

where the dot denotes a time derivative. These equations follow from
Eqs. (6.2.6), (6.2.13a), and (6.2.17) and the definition w = ρbb − ρaa . Here Ẽ

is the real, time-varying optical field; note that we have not made the rotating-
wave approximation. We find by direct time differentiation of Eq. (6.4.15) and
subsequent use of Eq. (6.4.16a) that the time derivative of M̃ is given by

˙̃
M = ρ̇baμab + c.c.

= −
(

iωba + 1

T2

)
ρbaμab − i

h̄
|μba|2Ẽw + c.c.

= −
(

iωba + 1

T2

)
ρbaμab + c.c. (6.4.17)

We have dropped the second term in the second-to-last form because it is
imaginary and disappears when added to its complex conjugate. Next, we
calculate the second time derivative of M̃ by taking the time derivative of
Eq. (6.4.17) and introducing expression (6.4.16a) for ρ̇ba :

¨̃
M = −

(
iωba + 1

T2

)
ρ̇baμab + c.c.

=
(

iωba + 1

T2

)2

ρbaμab + i

h̄

(
iωba + 1

T2

)
|μba|2Ẽw + c.c.
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or

¨̃
M =

(
−ω2

ba + 2iωba

T2
+ 1

T 2
2

)
ρbaμab − ωba

h̄
|μba|2Ẽw + c.c. (6.4.18)

If we now introduce Eqs. (6.4.15) and (6.4.17) into this expression, we find
that M̃ obeys the equation

¨̃
M + 2

T2

˙̃
M + ω2

baM̃ = −M̃

T 2
2

− 2ωba

h̄
|μba|2Ẽw. (6.4.19)

Since ω2
ba is much larger than 1/T 2

2 in all physically realistic circumstances,
we can drop the first term on the right-hand side of this expression to obtain
the result

¨̃
M + 2

T2

˙̃
M + ω2

baM̃ = −2ωba

h̄
|μba|2Ẽw. (6.4.20)

This is the equation of a damped, driven harmonic oscillator. Note that the
driving term is proportional to the product of the applied field strength Ẽ(t)

with the inversion w.
We next consider the equation of motion satisfied by the inversion w. In or-

der to simplify Eq. (6.4.16b), we need an explicit expression for Im(ρbaμab).
To find such an expression, we rewrite Eq. (6.4.17) as

˙̃
M = −

(
iωba + 1

T2

)
ρbaμab + c.c.

= −iωba(ρbaμab − c.c.) − 1

T2
(ρbaμab + c.c.)

= 2ωba Im(ρbaμab) − M̃

T2
, (6.4.21)

which shows that

Im(ρbaμab) = 1

2ωba

(
˙̃

M + M̃

T2

)
. (6.4.22)

This result is now introduced into Eq. (6.4.16b), which becomes

ẇ = −w − w(eq)

T1
+ 2Ẽ

h̄ωba

(
˙̃

M + M̃

T2

)
. (6.4.23)
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Since ˙̃
M oscillates at an optical frequency (which is much larger than 1/T2),

the term M̃/T2 can be omitted, yielding the result

ẇ = −w − w(eq)

T1
+ 2

h̄ωba

Ẽ
˙̃

M. (6.4.24)

We see that the inversion w is driven by the product of Ẽ with ˙̃
M , which is

proportional to the part of M̃ that is 90 degrees out of phase with Ẽ. We also
see that w relaxes to its equilibrium value w(eq) (which is typically equal to
−1) in a time of the order of T1.

Equations (6.4.20) and (6.4.24) provide a description of the two-level
atomic system. Note that each equation is linear in the atomic variables M̃

and w. The origin of the nonlinear response of atomic systems lies in the fact
that the coupling to the optical field depends parametrically on the atomic
variables. A linear harmonic oscillator, for example, would be described by
Eq. (6.4.20) with the inversion w held fixed at the value −1. The fact that
the coupling depends on the inversion w, whose value depends on the applied
field strength as described by Eq. (6.4.24), leads to nonlinearities.

6.4.2. Adiabatic Following Limit

The treatment of Section 6.3 considered the steady-state response of a two-
level atom to a cw laser field. The adiabatic following limit (Grischkowsky,
1970) is another limit in which it is relatively easy to obtain solutions to the
density matrix equations of motion. The nature of the adiabatic following ap-
proximation is as follows: We assume that the optical field is in the form of a
pulse whose length τp obeys the condition

τp � T1, T2; (6.4.25)

we thus assume that essentially no relaxation occurs during the optical pulse.
In addition, we assume that the laser is detuned sufficiently far from resonance
that

|ω − ωba| � T −1
2 , τ−1

p ,μbaE/h̄; (6.4.26)

that is, we assume that the detuning is greater than the transition linewidth,
that no Fourier component of the pulse extends to the transition frequency,
and that the transition is not power-broadened into resonance with the pulse.
These conditions ensure that no appreciable population is excited to the upper
level by the laser pulse.
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To simplify the following analysis, we introduce the (complex) Rabi fre-
quency


(t) = 2μbaE(t)/h̄, (6.4.27)

where E(t) gives the time evolution of the pulse envelope. The density matrix
equations of motion (6.4.5) then become, in the limit T1 → ∞, T2 → ∞,

dσ

dt
= i�σ − 1

2 i
w, (6.4.28a)

dw

dt
= −i(
∗σ − 
σ ∗). (6.4.28b)

We note that the quantity w2 + 4σσ ∗ is a constant of the motion whose value
is given by

w2(t) + 4
∣∣σ(t)

∣∣2 = 1. (6.4.29)

This conclusion is verified by means of a derivation analogous to that leading
to Eq. (6.4.12).

We now make the adiabatic following approximation, that is, we assume
that for all times the atomic response is nearly in steady state with the applied
field. We thus set dσ/dt and dw/dt equal to zero in Eqs. (6.4.28). The si-
multaneous solution of these equations (which in fact is just the solution to
(6.4.28a)) is given by

σ(t) = w(t)
(t)

2�
. (6.4.30)

Since w(t) is a real quantity, this result shows that σ(t) is always in phase
with the driving field 
(t). We now combine Eqs. (6.4.29) and (6.4.30) to
obtain the equation

w(t)2 + w(t)2|
|2
�2

= 1, (6.4.31)

which can be solved for w(t) to obtain

w(t) = −|�|√
�2 + |
(t)|2 . (6.4.32)

This expression can now be substituted back into Eq. (6.4.30) to obtain the
result

σ(t) = − �

|�|
1
2
(t)√

�2 + |
(t)|2 . (6.4.33)
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We now use these results to deduce the value of the nonlinear susceptibility.
As in Eqs. (6.3.11) through (6.3.17), the polarization P is related to σ(t)

(recall that σ = σba) through

P = Nμabσ, (6.4.34)

which through use of Eq. (6.4.33) becomes

P = − �

|�|
1
2Nμab
(t)√
�2 + |
(t)|2 . (6.4.35)

Our derivation has assumed that the condition |�| � |
| is valid. We can thus
expand Eq. (6.4.35) in a power series in the small quantity |
|/� to obtain

P = �


�2

−1
2Nμab(

1 + |
|2/�2
)1/2

= −�


�2

1

2
Nμab

(
1 − 1

2

|
|2
�2

+ · · ·
)

. (6.4.36)

The contribution to P that is third-order in the applied field is thus given by

|
|2
�nμab

4�4
= 2N |μab|4

h̄3�3
|E|2E, (6.4.37)

where, in obtaining the second form, we have used the fact that 
 =
2μbaE/h̄. By convention, the coefficient of |E|2E is 3ε0χ

(3), and hence we
find that

χ(3) = 2N |μba|4
3ε0h̄

3�3
. (6.4.38)

Note that this prediction is identical to that of the steady-state theory
(Eq. (6.3.37)) in the limit �T2 � 1 for the case of a radiatively broadened
transition (i.e., T2/T1 = 2) for which (ρbb − ρaa)

(eq) = −1.

6.5. Rabi Oscillations and Dressed Atomic States

In this section we consider the response of a two-level atom to an optical field
sufficiently intense to remove a significant fraction of the population from the
atomic ground state. One might think that the only consequence of a field this
intense would be to lower the overall response of the atom. Such is not the
case, however. Stark shifts induced by the laser field profoundly modify the
energy-level structure of the atom, leading to new resonances in the optical
susceptibility. In the present section, we explore some of the processes that
occur in the presence of a strong driving field.
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The development will proceed primarily at the level of the atomic wave-
function, rather than at the level of the density matrix, as our interest is pri-
marily in determining how the atomic energy level structure is modified by
an intense driving field. Some brief comments regarding damping effects are
included at the end of this section.

6.5.1. Rabi Solution of the Schrödinger Equation

Let us consider the solution to the Schrödinger equation for a two-level atom
in the presence of an intense optical field.∗ We describe the state of the system
in terms of the atomic wave function ψ(r, t), which obeys the Schrödinger
equation

ih̄
∂ψ

∂t
= Ĥψ (6.5.1)

with the Hamiltonian operator Ĥ given by

Ĥ = Ĥ0 + V̂ (t). (6.5.2)

Here Ĥ0 represents the Hamiltonian of a free atom, and V̂ (t) represents the
energy of interaction with the applied field. In the electric dipole approxima-
tion, V̂ (t) is given by

V̂ (t) = μ̂Ẽ(t), (6.5.3)

where the dipole moment operator is given by μ̂ = −er̂ .
We assume that the applied field is given by Ẽ(t) = Ee−iωt+ c.c. with E

constant, and that the field is nearly resonant with an allowed transition be-
tween the atomic ground state a and some other level b, as shown in Fig. 6.2.1.
Since the effect of the interaction is to mix states a and b, the atomic wave-
function in the presence of the applied field can be represented as

ψ(r, t) = Ca(t)ua(r)e−iωat + Cb(t)ub(r)e−iωbt . (6.5.4)

Here ua(r)e−iωat represents the wavefunction of the atomic ground state a,
and ub(r)e−iωbt represents the wavefunction of the excited state b. We assume
that these wavefunctions are orthonormal in the sense that∫

d3r u∗
i (r)uj (r) = δij . (6.5.5)

The quantities Ca(t) and Cb(t) that appear in Eq. (6.5.4) can be interpreted
as the probability amplitudes that at time t the atom is in state a or state b,
respectively.

∗ See also Sargent et al. (1974, p. 26), or Dicke and Wittke (1960, p. 203).
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We next derive the equations of motion for Ca(t) and Cb(t), using methods
analogous to those used in Section 3.2. By introducing Eq. (6.5.4) into the
Schrödinger equation (6.5.1), multiplying the resulting equation by u∗

a , and
integrating this equation over all space, we find that

Ċa = 1

ih̄
CbVabe

−iωbat , (6.5.6)

where we have introduced the resonance frequency ωba = ωb − ωa and the
interaction matrix element

Vab = V ∗
ba =

∫
d3r u∗

aV̂ ub. (6.5.7)

Similarly, by multiplying instead by u∗
b and again integrating over all space,

we find that

Ċb = 1

ih̄
CaVbae

iωbat . (6.5.8)

We now explicitly introduce the form of the interaction Hamiltonian and
represent the interaction matrix elements as

V ∗
ab = Vba = −μbaẼ(t) = −μba

(
Ee−iωt + E∗eiωt

)
. (6.5.9)

Equations (6.5.6) and (6.5.8) then become

Ċa = −μab

ih̄
Cb

(
E∗e−i(ωba−ω)t + Ee−i(ωba+ω)t

)
(6.5.10a)

and

Ċb = −μba

ih̄
Ca

(
Eei(ωba−ω)t + E∗ei(ωba+ω)t

)
. (6.5.10b)

We next make the rotating-wave approximation, that is, we drop the rapidly
oscillating second terms in these equations and retain only the first terms.∗
We also introduce the detuning factor

� = ω − ωba. (6.5.11)

The coupled equations (6.5.10) then reduce to the set

Ċa = i
μabE

∗

h̄
Cbe

i�t , (6.5.12a)

Ċb = i
μbaE

h̄
Cae

−i�t . (6.5.12b)

∗ See also the discussion preceding Eq. (6.3.5).



304 6 ♦ Nonlinear Optics in the Two-Level Approximation

This set of equations can be readily solved by adopting a trial solution of
the form

Ca = Ke−iλt . (6.5.13)

This expression is introduced into Eq. (6.5.12a), which shows that Cb must be
of the form

Cb = −h̄λK

μabE∗ e−i(λ+�)t . (6.5.14)

This form for Cb and the trial solution (6.5.13) for Ca are now introduced into
Eq. (6.5.12b), which shows that the characteristic frequency λ must obey the
equation

λ(λ + �) = |μba|2|E|2
h̄2

. (6.5.15)

The solutions of this equation are given by

λ± = −1
2� ± 1

2
′, (6.5.16)

where we have introduced the generalized (or detuned) Rabi frequency


′ = (|
|2 + �2)1/2 (6.5.17)

and where, as before, 
 = 2μbaE/h̄ denotes the complex Rabi frequency.
The general solution to Eqs. (6.5.12) for Ca(t) can thus be expressed as

Ca(t) = e(1/2)i�t
(
A+e−(1/2)i
′t + A−e(1/2)i
′t), (6.5.18a)

where A+ and A− are constants of integration whose values depend on the
initial conditions. The corresponding expression for Cb(t) is obtained by in-
troducing this result into Eq. (6.5.12a):

Cb(t) = −h̄Ċa

μabE∗ e−i�t

= e−(1/2)i�t

(
� − 
′


∗ A+e−(1/2)i
′t + � + 
′


∗ A−e(1/2)i
′t
)

.

(6.5.18b)

Equations (6.5.18) give the general solution to Eqs. (6.5.12). Next, we find
the specific solution for two different sets of initial conditions.
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6.5.2. Solution for an Atom Initially in the Ground State

One realistic set of initial conditions is that of an atom known to be in the
ground state at time t = 0 so that

Ca(0) = 1 and Cb(0) = 0. (6.5.19)

Equation (6.5.18a) evaluated at t = 0 then shows that

A+ + A− = 1, (6.5.20)

while Eq. (6.5.18b) evaluated at t = 0 shows that

(� − 
′)A+ + (� + 
′)A− = 0. (6.5.21)

These equations are solved algebraically to find that

A+ = 1 − A− = 
′ + �

2
′ . (6.5.22)

The probability amplitudes Ca(t) and Cb(t) are now determined by intro-
ducing these expressions for A+ and A− into Eqs. (6.5.18), to obtain

Ca(t) = e(1/2)i�t

[(

′ + �

2
′

)
e−(1/2)i
′t +

(

′ + �

2
′

)
e(1/2)i
′t

]

= e(1/2)i�t

[
cos

( 1
2
′t

) − i�


′ sin
(1

2
′t
)]

(6.5.23)

and

Cb(t) = e−(1/2)i�t

(−


2
′ e
−(1/2)i
′t + 


2
′ e
(1/2)i
′t

)

= ie−(1/2)i�t

[




′ sin
( 1

2
′t
)]

. (6.5.24)

The probability that the atom is in level a at time t is hence given by

|Ca|2 = cos2(1
2
′t

) + �2


′2
sin2(1

2
′t
)
, (6.5.25)

while the probability of being in level b is given by

|Cb|2 = |
|2

′2

sin2(1
2
′t

)
. (6.5.26)

Note that (since 
′2 = |
|2 + �2)

|Ca|2 + |Cb|2 = 1, (6.5.27)

which shows that probability is conserved.
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FIGURE 6.5.1 Rabi oscillations of the populations in the ground (|Ca |2) and excited
(|Cb|2) states for the case of exact resonance (� = 0).

FIGURE 6.5.2 Rabi oscillations of the excited state population for two values of
� ≡ ω − ωba .

For the case of exact resonance (� = 0), Eqs. (6.5.25) and (6.5.26) reduce
to

|Ca|2 = cos2(1
2 |
|t), (6.5.28a)

|Cb|2 = sin2( 1
2 |
|t), (6.5.28b)

and the probabilities oscillate between zero and one in the simple manner il-
lustrated in Fig. 6.5.1. Note that, since the probability amplitude Ca oscillates
at angular frequency |
|/2, the probability |Ca|2 oscillates at angular fre-
quency |
|, that is, at the Rabi frequency. As the detuning � is increased, the
angular frequency at which the population oscillates increases, since the gen-
eralized Rabi frequency is given by 
′ = [|
|2 +�2]1/2, but the amplitude of
the oscillation decreases, as shown in Fig. 6.5.2.

Next, we calculate the expectation value of the atomic dipole moment
for an atom known to be in the atomic ground state at time t = 0. This
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quantity is given by

〈μ̃〉 = 〈ψ |μ̃|ψ〉, (6.5.29)

where ψ(r, t) is given by Eq. (6.5.4). We assume as before that 〈a|μ̃|a〉 =
〈b|μ̃|b〉 = 0, and we denote the nonvanishing matrix elements of μ̃ by

μab = 〈a|μ̃|b〉 = 〈b|μ̃|a〉∗ = μ∗
ba. (6.5.30)

We thus find that the induced dipole moment is given by

〈μ̃〉 = C∗
aCbμabe

−iωbat + c.c. (6.5.31)

or, introducing Eqs. (6.5.23) and (6.5.24) for Ca and Cb, by

〈μ̃〉 = μab





′

[−�

2ω′ e
−iωt + 1

4

(
�


′ − 1

)
e−i(ω+
′)t

+ 1

4

(
�


′ + 1

)
e
−i

(
ω−
′)t

]
+ c.c. (6.5.32)

This result shows that the atomic dipole oscillates not only at the driving
frequency ω but also at the Rabi sideband frequencies ω + 
′ and ω − 
′.
We can understand the origin of this effect by considering the frequencies
that are present in the atomic wavefunction. We recall that the wavefunction
is given by Eq. (6.5.4), where (according to Eqs. (6.5.23) and (6.5.24)) Ca(t)

contains frequencies −1
2 (�±
′) and Cb(t) contains frequencies 1

2 (�±
′).
Figure 6.5.3 shows graphically the frequencies that are present in the atomic
wavefunction. Note that the frequencies at which the atomic dipole oscillates
correspond to differences of the various frequency components of the wave-
function.

6.5.3. Dressed States

Another important solution to the Schrödinger equation for a two-level atom
is that corresponding to the dressed atomic states (Autler and Townes, 1955;
Cohen-Tannoudji and Reynaud, 1977). The characteristic feature of these
states is that the probability to be in atomic level a (or b) is constant in time.
As a consequence, the probability amplitudes Ca(t) and Cb(t) can depend
on time only in terms of exponential phase factors. Recall, however, that in
general Ca(t) and Cb(t) are given by Eqs. (6.5.18).

There are two ways in which the solution of Eqs. (6.5.18) can lead to time-
independent probabilities of occupancy for levels a and b. One such solution,
which we designate as ψ+, corresponds to the case in which the integration
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FIGURE 6.5.3 Frequency spectrum of the atomic wavefunction given by Eq. (6.5.4)
(with Ca(t) and Cb(t) given by Eqs. (6.5.28) and (6.5.29)) for the case of (a) positive
detuning (� > 0) and (b) negative detuning (� < 0).

constants A+ and A− have the values

A+ = 1, A− = 0 (for ψ+); (6.5.33a)

the other solution, which we designate as ψ−, corresponds to the case in which

A+ = 0, A− = 1 (for ψ−). (6.5.33b)

Explicitly, the atomic wavefunction corresponding to each of these solu-
tions is given, through use of Eqs. (6.5.4), (6.5.18), and (6.5.33), as

ψ± = N±
{
ua(r) exp

[−i
(
ωa − 1

2� ± 1
2
′)t]

+ � ∓ 
′


∗ ub(r) exp
[−i

(
ωb + 1

2� ± 1
2
′)t]

}
, (6.5.34)
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where N± is a normalization constant. The value of this constant is determined
by requiring that ∫

|ψ±|2 d3r = 1. (6.5.35)

By introducing Eq. (6.5.34) into this expression and performing the integra-
tions, we find that

|N±|2
[

1 + (� ∓ 
′)2

|
|2
]

= 1. (6.5.36)

For future convenience, we choose the phases of N± such that N± are given by

N± = 
∗


′

[

′

2(
′ ∓ �)

]1/2

. (6.5.37)

The normalized dressed-state wavefunctions are hence given by

ψ± = 
∗


′

[

′

2(
′ ∓ �)

]1/2

ua(r) exp
[−i

(
ωa − 1

2� ± 1
2
′)t]

∓
[

′ ∓ �

2
′

]1/2

ub(r) exp
[−i

(
ωb + 1

2� ± 1
2
′)t]. (6.5.38)

We next examine some of the properties of the dressed states. The proba-
bility amplitude for an atom in the dressed state ψ± to be in the atomic level
a is given by

〈a|ψ±〉 = 
∗


′

[

′

2(
′ ∓ �)

]1/2

exp
[−i

(
ωa − 1

2� ± 1
2
′)t], (6.5.39)

and thus the probability of finding the atom in the state a is given by

∣∣〈a|ψ±〉∣∣2 = |
|2

′2


′

2(
′ ∓ �)
= |
|2

2
′(
′ ∓ �)
. (6.5.40)

Similarly, the probability amplitude of finding the atom in state b is given by

〈b|ψ±〉 = ∓
(


′ ∓ �

2
′

)1/2

exp
[−i

(
ωb + 1

2� ± 1
2
′)t], (6.5.41)

and thus the probability of finding the atom in the state b is given by

∣∣〈b|ψ±〉∣∣2 = 
′ ± �

2
′ . (6.5.42)

Note that these probabilities of occupancy are indeed constant in time; in this
sense the dressed states constitute the stationary states of the coupled atom–
field system.
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The dressed states ψ± are solutions of Schrödinger’s equation in the pres-
ence of the total Hamiltonian Ĥ = Ĥ0 + V̂ (t). Thus, if the system is known to
be in state ψ+ (or ψ−) at the time t = 0, the system will remain in this state,
even though the system is subject to the interaction Hamiltonian V̂ . They are
stationary states in the sense just mentioned that the probability of finding the
atom in either of the atomic states a or b is constant in time. Although
the states ψ± are stationary states, they are not energy eigenstates, because
the Hamiltonian Ĥ depends explicitly on time.

It is easy to demonstrate that the dressed states are orthogonal—that is, that

〈ψ+|ψ−〉 = 0. (6.5.43)

The expectation value of the induced dipole moment for an atom in a
dressed state is given by

〈
ψ±|μ̂|ψ±

〉 = ∓ 


2
′ μabe
−iωt + c.c. (6.5.44)

Thus, the induced dipole moment of an atom in a dressed state oscillates only
at the driving frequency. However, the dipole transition moment between the
dressed states is nonzero:

〈ψ±|μ̂|ψ∓〉 = ±μab




2
′

(

′ ± �


′ ∓ �

)1/2

e−i(ω∓
′)t

∓ μba


∗

2
′

(

′ ∓ �


′ ± �

)1/2

ei(ω±
′)t . (6.5.45)

The properties of the dressed states are summarized in the frequency level
diagram shown for the case of positive � in Fig. 6.5.4(a) and for the case of
negative � in Fig. 6.5.4(b).

FIGURE 6.5.4 The dressed atomic states ψ+ and ψ− for � positive (a) and nega-
tive (b).
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Next, we consider the limiting form of the dressed states for the case of a
weak applied field—that is, for |
| � |�|. In this limit, we can approximate
the generalized Rabi frequency 
′ as


′ = (|
|2 + �2)1/2 = |�|
(

1 + |
|2
�2

)1/2

	 |�|
(

1 + 1

2

|
|2
�2

)
. (6.5.46)

Using this result, we can approximate the dressed-state wavefunctions of
Eq. (6.5.38) for the case of positive � as

ψ+ = 
∗

|
|uae
−iωat − |
|

2�
ube

i(ωb+�)t , (6.5.47a)

ψ− = 
∗

2�
uae

−i(ωa−�)t + ube
−iωbt . (6.5.47b)

We note that in this limit ψ+ is primarily ψa and ψ− is primarily ψb. The
smaller contribution to ψ+ can be identified with the virtual level induced by
the transition. For the case of negative �, we obtain

ψ+ = −
∗

2�
uae

−i(ωa−�)t − ube
−iωbt , (6.5.48a)

ψ− = 
∗

|
|uae
−iωat − |
|

2�
ube

−i(ωb+�)t . (6.5.48b)

Now ψ+ is primarily ψb, and ψ− is primarily ψa . These results are illustrated
in Fig. 6.5.5. Note that these results have been anticipated in drawing certain
of the levels as dashed lines in the weak-field limit of the diagrams shown in
Figs. 6.5.3 and 6.5.4.

FIGURE 6.5.5 The weak field limit of the dressed states ψ+ and ψ− for the case of
(a) positive and (b) negative detuning �.
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6.5.4. Inclusion of Relaxation Phenomena

In the absence of damping phenomena, it is adequate to treat the response of
a two-level atom to an applied optical field by solving Schrödinger’s equa-
tion for the time evolution of the wavefunction. We have seen that under such
circumstances the population inversion oscillates at the generalized Rabi fre-
quency 
′ = (
2 + �2)1/2. If damping effects are present, we expect that
these Rabi oscillations will eventually become damped out and that the pop-
ulation difference will approach some steady-state value. In order to treat this
behavior, we need to solve the density matrix equations of motion with the in-
clusion of damping effects. We take the density matrix equations in the form

ṗ =
(

i� − 1

T2

)
p − i

h̄
|μ|2Ew, (6.5.49a)

ẇ = −w + 1

T1
− 2i

h̄
(pE∗ − p∗E), (6.5.49b)

and we assume that at t = 0 the atom is in its ground state—that is, that

p(0) = 0, w(0) = −1, (6.5.50)

and that the field Ẽ(t) is turned on at t = 0 and oscillates harmonically there-
after (i.e., E = 0 for t < 0, E = constant for t ≥ 0).

Equations (6.5.49) can be solved in general under the conditions given
above (see Problem 4 at the end of this chapter). For the special case in which
T1 = T2, the form of the solution is considerably simpler than in the general
case. The solution to Eqs. (6.5.49) for the population inversion for this special
case is given by

w(t) = w0 − (1 + w0)e
−t/T2

[
cos
′t + 1


′T2
sin
′t

]
, (6.5.51a)

where

w0 = −(1 + �2T 2
2 )

1 + �2T 2
2 + 
2T1T2

. (6.5.51b)

The nature of this solution is shown in Fig. 6.5.6. Note that the Rabi oscilla-
tions are damped out in a time of the order of T2. Once the Rabi oscillations
have damped out, the system enters one of the dressed states of the coupled
atom–field system.

In summary, we have just seen that, in the absence of damping effects,
the population inversion of a strongly driven two-level atom oscillates at the
generalized Rabi frequency 
′ = (
2 + �2)1/2 and that consequently the in-
duced dipole moment oscillates at the applied frequency ω and also at the
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FIGURE 6.5.6 Damped Rabi oscillations.

Rabi sideband frequencies ω ± 
′. In the presence of dephasing processes,
the Rabi oscillations die out in a characteristic time given by the dipole de-
phasing time T2. Hence, Rabi oscillations are not present in the steady state.

In the following section, we explore the nature of the response of the atom
to a strong field at frequency ω and a weak field at frequency ω + δ. If the
frequency difference δ (or its negative −δ) between these two fields is nearly
equal to the generalized Rabi frequency 
′, the beat frequency between the
two applied fields can act as a source term to drive the Rabi oscillation. We
shall find that, in the presence of such a field, the population difference oscil-
lates at the beat frequency δ, and that the induced dipole moment contains the
frequency components ω and ω ± δ.

6.6. Optical Wave Mixing in Two-Level Systems

In the present section we consider the response of a collection of two-level
atoms to the simultaneous presence of a strong optical field (which we call
the pump field) and one or more weak optical fields (which we call probe
fields). These latter fields are considered weak in the sense that they alone
cannot saturate the response of the atomic system.

An example of such an occurrence is saturation spectroscopy, using a setup
of the sort shown in Fig. 6.6.1. In such an experiment, one determines how the
response of the medium to the probe wave is modified by the presence of the
pump wave. Typically, one might measure the transmission of the probe wave
as a function of the frequency ω and intensity of the pump wave and of the
frequency detuning δ between the pump and probe waves. The results of such
experiments can be used to obtain information regarding the dipole transition
moments and the relaxation times T1 and T2.
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FIGURE 6.6.1 Saturation spectroscopy setup.

Another example of the interactions considered in this section is the multi-
wave mixing experiment shown in part (a) of Fig. 6.6.2. Here the pump wave
at frequency ω and the probe wave at frequency ω + δ are copropagating (or
nearly copropagating) through the medium. For this geometry, the four-wave
mixing process shown in part (b) of the figure becomes phase-matched (or
nearly phase-matched), and this process leads to the generation of the sym-
metric sideband at frequency ω − δ.

At low intensities of the pump laser, the response of the atomic system at the
frequencies ω+δ and ω−δ can be calculated using perturbation theory of the
sort developed in Chapter 3. In this limit, one finds that the absorption (and
dispersion) experienced by the probe wave in the geometry of Fig. 6.6.1 is
somewhat reduced by the presence of the pump wave. One also finds that, for
the geometry of Fig. 6.6.2, the intensity of the generated sideband at frequency
ω − δ increases quadratically as the pump intensity is increased.

FIGURE 6.6.2 (a) Forward four-wave mixing. (b) Energy-level description of the
four-wave mixing process, drawn for clarity for the case in which δ is negative.
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In this section we show that the character of these nonlinear processes is
profoundly modified when the intensity of the pump laser is increased to the
extent that perturbation theory is not sufficient to describe the interaction.
These higher-order processes become important when the Rabi frequency 


associated with the pump field is greater than both the detuning � of the pump
wave from the atomic resonance and the transition linewidth 1/T2. Under this
condition, the atomic energy levels are strongly modified by the pump field,
leading to new resonances in the absorptive and mixing responses. In partic-
ular, we shall find that these new resonances can be excited when the pump-
probe detuning δ is approximately equal to ±
′, where 
′ is the generalized
Rabi frequency.

6.6.1. Solution of the Density Matrix Equations for a Two-Level
Atom in the Presence of Pump and Probe Fields

We have seen in Section 6.4 that the dynamical behavior of a two-level atom
in the presence of the optical field

Ẽ(t) = Ee−iωt + c.c. (6.6.1)

can be described in terms of equations of motion for the population inver-
sion w = ρbb − ρaa and the complex dipole amplitude p = μabσba , which is
related to the expectation value p̃(t) of the atomic dipole moment by

p̃(t) = pe−iωt + c.c. (6.6.2)

The equations of motion for p and w are given explicitly by

dp

dt
=

(
i� − 1

T2

)
p − i

h̄
|μba|2Ew, (6.6.3)

dw

dt
= −w − w(eq)

T1
+ 4

h̄
Im(pE∗), (6.6.4)

where � = ω − ωba . For the problem at hand, we represent the amplitude of
the applied optical field as

E = E0 + E1e
−iδt , (6.6.5)

where we assume that |E1| � |E0|. By introducing Eq. (6.6.5) into Eq. (6.6.1),
we find that the electric field can alternatively be expressed as

Ẽ(t) = E0e
−iωt + E1e

−i(ω+δ)t + c.c.; (6.6.6)

hence, E0 and E1 represent the complex amplitudes of the pump and probe
waves, respectively.
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Equations (6.6.3) and (6.6.4) cannot readily be solved exactly for the field
given in Eq. (6.6.5). Instead, our strategy will be to find a solution that is
exact in the amplitude E0 of the strong field and is correct to lowest order
in the amplitude E1 of the weak field. We hence require that the steady-state
solution of Eqs. (6.6.3) and (6.6.4) be of the form

p = p0 + p1e
−iδt + p−1e

iδt (6.6.7)

and

w = w0 + w1e
−iδt + w−1e

iδt , (6.6.8)

where p0 and w0 denote the solution for the case in which only the pump field
E0 is present, and where the other terms are assumed to be small in the sense
that

|p1|, |p−1| � |p0|, |w1|, |w−1| � |w0|. (6.6.9)

Note that, to the lowest order in the amplitude E1 of the probe field, 0 and
±δ are the only frequencies that can be present in the solution of Eqs. (6.6.3)
and (6.6.4). Note also that, in order for w(t) to be a real quantity, w−1 must
be equal to w∗

1 . Hence, w(t) is of the form w(t) = w0 + 2|w1| cos(δt + φ),
where φ is the phase of w. Thus, in the simultaneous presence of pump and
probe fields, the population difference oscillates harmonically at the pump–
probe frequency difference, and w1 represents the complex amplitude of the
population oscillation.

We now introduce the trial solution (6.6.7) and (6.6.8) into the density ma-
trix equations (6.6.3) and (6.6.4) and equate terms with the same time depen-
dence. In accordance with our perturbation assumptions, we drop any term
that contains the product of more than one small quantity. Then, for exam-
ple, the zero-frequency part of the equation of motion for dipole amplitude,
Eq. (6.6.3), becomes

0 =
(

i� − 1

T2

)
p0 − i

h̄
|μba|2E0w0,

whose solution is

p0 = h̄−1|μba|2E0w0

� + i/T2
. (6.6.10)

Likewise, the part of Eq. (6.6.3) oscillating as e−iδt is

−iδp1 =
(

i� − 1

T2

)
p1 − i

h̄
|μba|2(E0w1 + E1w0),
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which can be solved to obtain

p1 = h̄−1|μba|2(E0w1 + E1w0)

(� − δ) + i/T2
; (6.6.11)

the part of Eq. (6.6.3) oscillating as eiδt is

iδp−1 =
(

i� − 1

T2

)
p−1 − i

h̄
|μba|2(E0w−1),

which can be solved to obtain

p−1 = h̄−1|μba|2E0w−1

(� − δ) + i/T2
. (6.6.12)

Next, we consider the solution of the inversion equation (6.6.4). We in-
troduce the trial solution (6.6.7) and (6.6.8) into this equation. The zero-
frequency part of the resulting expression is

0 = −w0 − w(eq)

T1
+ 4

h̄
Im

(
p0E

∗
0

)
. (6.6.13)

We now introduce the expression (6.6.10) for p0 into this expression to obtain

w0 − w(eq)

T1
= 
2w0 Im

(
� − i/T2

�2 + 1/T 2
2

)
= −
2w0/T2

�2 + 1/T 2
2

, (6.6.14)

where we have introduced the on-resonance Rabi frequency 
 = 2|μbaE|/h̄.
We now solve Eq. (6.6.14) algebraically for w0 to obtain

w0 = w(eq)(1 + �2T 2
2 )

1 + �2T 2
2 + 
2T1T2

. (6.6.15)

We next consider the oscillating part of Eq. (6.6.4). The part of Im(pE∗)
oscillating at frequencies ±δ is given by

Im(pE∗) = Im
(
p0E

∗
1eiδt + p1E

∗
0e−iδt + p−1E

∗
0eiδt

)

= 1

2i

(
p0E

∗
1eiδt + p1E

∗
0e−iδt + p−1E

∗
0eiδt

− p∗
0E1e

−iδt − p∗
1E0e

iδt − p∗−1E0e
−iδt

)
, (6.6.16)

where in obtaining the second form we have used the identity Im z =
(z − z∗)/2i. We now introduce this result into Eq. (6.6.4). The part of the
resulting expression that varies as e−iδt is

−iδw1 = −w1

T1
− 2i

h̄

(
p1E

∗
0 − p∗

0E1 − p∗−1E0
)
.
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This expression is solved for w1 to obtain

w1 = 2h̄−1(p1E
∗
0 − p∗

0E1 − p∗−1E0)

δ + i/T1
. (6.6.17)

We similarly find from the part of Eq. (6.6.4) oscillating as eiδt that

w−1 = 2h̄−1(p∗
1E0 − p0E

∗
1 − p−1E

∗
0 )

δ − i/T1
. (6.6.18)

Note that w−1 = w∗
1 , as required from the condition that w(t) as given by

Eq. (6.6.8) be real.
At this point we have a set of six coupled equations [(6.6.10), (6.6.11),

(6.6.12), (6.6.15), (6.6.17), (6.6.18)] for the six quantities p0,p1,p−1,w0,w1,

w−1. We note that w0 is given by Eq. (6.6.15) in terms of known quantities.
Our strategy is thus to solve next for w1, since the other unknown quantities
are simply related to w0 and w1. We thus introduce the expressions for p1,p0,
and p−1 into Eq. (6.6.17), which becomes(

δ + i

T1

)
w1 = 2|μba|2

h̄2

×
( |E0|2w1

� + δ + i/T2
+ E1E

∗
0w0

� + δ + i/T2
− E1E

∗
0w0

� − i/T2
− |E0|2w1

� − δ − i/T2

)
.

This equation is now solved algebraically for w1, yielding

w1 = −w2
0|μba|2E1E

∗
0 h̄−2(δ − � + i/T2)(δ + 2i/T2)(� − i/T2)

−1

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 
2(δ + i/T2)
.

(6.6.19)

The combination of terms that appears in the denominator of this expression
appears repeatedly in the subsequent equations. For convenience we denote
this combination as

D(δ) =
(

δ + i

T1

)(
δ − � + i

T2

)(
δ + � + i

T2

)
− 
2

(
δ + i

T2

)
,

(6.6.20)

so that Eq. (6.6.19) can be written as

w1 = −2w0|μba|2E1E
∗
0 h̄−2 (δ − � + i/T2)(δ + 2i/T2)

(� − i/T2)D(δ)
. (6.6.21)

Note that w1 (and consequently p1 and p−1) shows a resonance whenever
the pump wave is tuned to line center so that � = 0, or whenever a zero oc-
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FIGURE 6.6.3 Resonances in the response of a two-level atom to pump and probe
fields, as given by the function D(δ), (a) in the limit 
2 → 0, and (b) in the general
case.

curs in the function D(δ). We next examine the resonance nature of the func-
tion D(δ). We first consider the limit 
2 → 0—that is, the χ(3) perturbation
theory limit. In this limit D(δ) is automatically factored into the product of
three terms as

D(δ) =
(

δ + i

T1

)(
δ − � + i

T2

)(
� + δ + i

T2

)
, (6.6.22)

and we see by inspection that zeros of D(δ) occur at

δ = 0,±�. (6.6.23)

The positions of these frequencies are indicated in part (a) of Fig. 6.6.3. How-
ever, inspection of Eq. (6.6.21) shows that no resonance occurs in w1 at δ = �,
because the factor δ − � + i/T2 in the numerator exactly cancels the same
factor in the denominator. However, a resonance occurs near δ = � when the
term containing 
2 in Eq. (6.6.20) is not ignored. χ(5) is the lowest-order
contribution to this resonance.

In the general case in which 
2 is not small, the full form of Eq. (6.6.20)
must be used. In order to determine its resonance structure, we write D(δ) in
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terms of its real and imaginary parts as

D(δ) = δ

(
δ2 − 
′2 − 1

T 2
2

− 2

T1T2

)

+ i

(
δ2 − �2

T1
+ 2δ2

T2
− 
2

T2
− 1

T1T
2
2

)
, (6.6.24)

where we have introduced the detuned Rabi frequency 
′ = (
2 + �2)1/2.
We see by inspection that the real part of D vanishes for

δ = 0, δ = ±
(


′2 + 1

T 2
2

+ 2

T1T2

)1/2

. (6.6.25)

If we now assume that 
′T2 is much greater than unity, these three reso-
nances will be well separated, and we can describe their properties separately.
In this limit, the function D(δ) becomes

D(δ) = δ
(
δ2 − 
′2) + i

(
δ2 − �2

T1
+ 2δ2 − 
2

T2

)
, (6.6.26)

and the three resonances occur at

δ = 0,±
′. (6.6.27)

Near the resonance at δ = 0, and D(δ) can be approximated as

D(δ) = −
′2(δ + i	0), (6.6.28a)

where

	0 = �2/T1 + 
2/T2

�2 + 
2
(6.6.28b)

represents the width of this resonance. Likewise, near the resonances at δ =
∓
′, D(δ) can be approximated as

D(δ) = 2
′2[(δ ± 
′) + i	±
]
, (6.6.29a)

where

	± = 
2/T1 + (2�2 + 
2)/T2

2(
2 + �2)
(6.6.29b)

represents the width of these resonances. Note that the positions of these reso-
nances can be understood in terms of the energies of the dressed atomic states,
as illustrated in Fig. 6.6.3b. Note also that, for the case of weak optical exci-
tation (i.e., for 
2 � �2), 	0 approaches the population decay rate 1/T1, and
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	± approach the dipole dephasing rate 1/T2. In the limit of strong optical ex-
citation (i.e., for 
2 � �2), 	0 approaches the limit 1/T2 and 	± approach
the limit 1

2 (1/T1 + 1/T2).
We next calculate the response of the atomic dipole at the sideband frequen-

cies ±δ. We introduce the expression (6.6.19) for w1 into Eq. (6.6.11) for p1

and obtain

p1 = h̄−1|μba|2w0E1

� + δ + i/T2

×
[

1 −
1
2
2(δ − � + i/T2)(δ + 2i/T2)/(� − i/T2)

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 
2(δ + i/T2)

]
.

(6.6.30)

Written in this form, we see that the response at the probe frequency ω + δ

can be considered to be the sum of two contributions. The first is the result
of the zero-frequency part of the population difference w. The second is the
result of population oscillations. The first term is resonant only at δ = −�,
whereas the second term contains the additional resonances associated with
the function D(δ). Sargent (1978) has pointed out that the second term obeys
the relation∫ ∞

−∞
−1

2
2(δ − � + i/T2)(δ + 2i/T2)(� − i/T2)
−1

(δ + i/T1)(δ − � + i/T2)(� + δ + i/T2) − 
2(δ + i/T2)
dδ = 0.

(6.6.31)

Thus, the second term, which results from population oscillations, does not
modify the integrated absorption of the atom in the presence of a pump field;
it simply leads to a spectral redistribution of probe-wave absorption.

A certain simplification of Eq. (6.6.30) can be obtained by combining the
two terms algebraically so that p1 can be expressed as

p1 = h̄−1|μba|2w0E1

D(δ)

[(
δ + i

T1

)(
δ − � + i

T2

)
− 1

2
2 δ

� − i/T2

]
.

(6.6.32)

Finally, we calculate the response at the sideband opposite to the applied
probe wave through use of Eqs. (6.6.12) and (6.6.21) and the fact that w−1 =
w∗

1 , as noted in the discussion following Eq. (6.6.18). We obtain the result

p−1 = 2w0|μba|4E2
0E∗

1 (δ − � − i/T2)(−δ + 2i/T2)(� + i/T2)
−1

h̄3(� − δ + i/T2)D∗(δ)
.

(6.6.33)
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6.6.2. Nonlinear Susceptibility and Coupled-Amplitude Equations

Let us now use these results to determine the forms of the nonlinear polariza-
tion and the nonlinear susceptibility. Since p1 is the complex amplitude of the
dipole moment at frequency ω + δ induced by a probe wave at this frequency,
the polarization at this frequency is P(ω+δ) = Np1. If we set P(ω+δ) equal
to ε0χ

(1)
eff (ω + δ)E1, we find that χ

(1)
eff (ω + δ) = Np1/ε0E1, or through use of

Eq. (6.6.32) that

χ
(1)
eff (ω + δ) = N |μba|2w0

ε0h̄D(δ)

[(
δ + i

T1

)(
δ − � + i

T2

)
− 1

2
2 δ

� − i/T2

]
.

(6.6.34)

We have called this quantity an effective linear susceptibility because it de-
pends on the intensity of the pump wave. Similarly, the part of the nonlinear
polarization oscillating at frequency ω − δ is given by P(ω − δ) = Np−1. If
we set this quantity equal to 3ε0χ

(3)
eff [ω − δ = ω +ω − (ω + δ)]E2

0E∗
1 , we find

through use of Eq. (6.6.33) that

χ
(3)
eff

[
ω − δ = ω + ω − (ω + δ)

]

= 2Nw0|μba|4(δ − � − i/T2)(−δ + 2i/T2)(� + i/T2)
−1

3ε0h̄
3(� − δ + i/T2)D∗(δ)

. (6.6.35)

We have called this quantity an effective third-order susceptibility, because it
too depends on the laser intensity.

The calculation just presented has assumed that E1 (the field at frequency
ω + δ) is the only weak wave that is present. However, for the geometry of
Fig. 6.6.2, a weak wave at frequency ω−δ is generated by the interaction, and
the response of the medium to this wave must also be taken into consideration.
If we let E−1 denote the complex amplitude of this new wave, we find that we
can represent the total response of the medium through the equations

P(ω + δ) = ε0χ
(1)
eff (ω + δ)E1 + 3ε0χ

(3)
eff

[
ω + δ = ω + ω − (ω − δ)

]
E2

0E∗−1,

(6.6.36a)

P(ω − δ) = ε0χ
(1)
eff (ω − δ)E−1 + 3ε0χ

(3)
eff

[
ω − δ = ω + ω − (ω + δ)

]
E2

0E∗
1 .

(6.6.36b)

Formulas for the new quantities χ
(1)
eff (ω−δ) and χ

(3)
eff [ω+δ = ω+ω−(ω−δ)]

can be obtained by formally replacing δ by −δ in Eqs. (6.6.34) and (6.6.35).
The nonlinear response of the medium as described by Eqs. (6.6.36) will of

course influence the propagation of the weak waves at frequencies ω ± δ. We
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can describe the propagation of these waves by means of coupled-amplitude
equations that we derive using methods described in Chapter 2. We introduce
the slowly varying amplitudes A±1 of the weak waves by means of the equa-
tion

E±1 = A±1e
ik±1z, (6.6.37a)

where the propagation constant is given by

k±1 = n±1(ω ± δ)/c. (6.6.37b)

Here n±1 is the real part of the refraction index experienced by each of the
sideband frequencies and is given by

n2±1 = 1 + Reχ
(1)
eff (ω ± δ). (6.6.37c)

We now introduce the nonlinear polarization of Eqs. (6.6.36) and the
field decomposition of Eq. (6.6.37a) into the wave equation in the form of
Eq. (2.1.22), and assume the validity of the slowly varying amplitude ap-
proximation. We find that the slowly varying amplitudes must obey the set
of coupled equations

dA1

dz
= −α1A1 + κ1A

∗−1e
i�kz, (6.6.38a)

dA−1

dz
= −α−1A−1 + κ−1A

∗
1e

i�kz, (6.6.38b)

where we have introduced the nonlinear absorption coefficients

α±1 = −1

2

(
ω ± δ

n±1c

)
Imχ

(1)
eff (ω ± δ), (6.6.39a)

the nonlinear coupling coefficients

κ±1 = −i
3

2

(
ω ± δ

n±1c

)
χ

(3)
eff

[
ω ± δ = ω + ω − (ω ∓ δ)

]
A2

0, (6.6.39b)

and the wavevector mismatch

�k = 2k0 − k1 − k−1, (6.6.39c)
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where k0 is the magnitude of the wavevector of the pump wave.∗ The coupled
wave equations given by Eqs. (6.6.38) can be solved explicitly for arbitrary
boundary conditions. We shall not present the solution here; it is formally
equivalent to the solution presented in Chapter 10 to the equations describ-
ing Stokes–anti-Stokes coupling in stimulated Raman scattering. The nature
of the solution to Eqs. (6.6.38) for the case of a two-level atomic system has
been described in detail by Boyd et al. (1981). These authors find that signif-
icant amplification of the A1 and A−1 waves can occur in the near-forward
direction as a consequence of the four-wave mixing processes described by
Eqs. (6.6.38). They also find that the gain is particularly large when the de-
tuning δ (or its negative −δ) is approximately equal to the generalized Rabi
frequency 
′. These effects have been studied experimentally by Harter et al.
(1981).

Let us consider the nature of the solutions of Eqs. (6.6.38) for the spe-
cial case of the geometry shown in Fig. 6.6.1. For this geometry, because of
the large angle θ between the pump and probe beams, the magnitude �k of
the wavevector mismatch is very large, and as a result the coupled-amplitude
equations (6.6.38a) and (6.6.38b) decouple into the two equations

dA1

dz
= −α1A1,

dA−1

dz
= −α−1A−1. (6.6.40)

Recall that α±1 denotes the absorption coefficient experienced by the probe
wave at frequency ω ± δ, and that α±1 depends on the probe–pump detuning
δ, on the detuning � of the pump wave from the atomic resonance, and on the
intensity I of the pump wave.

The dependence of α1 on the probe–pump detuning δ is illustrated for one
representative case in part (a) of Fig. 6.6.4. We see that three features appear
in the probe absorption spectrum. One of these features is centered on the
laser frequency, and the other two occur at the Rabi sidebands of the laser fre-
quency, that is, they occur at frequencies detuned from the laser frequency by
the generalized Rabi frequency 
′ = (
2 +�2)1/2 associated with the driven
atomic response. Note that α1 can become negative for two of these features;
the gain associated with these features was predicted by Mollow (1972) and
has been observed experimentally by Wu et al. (1977) and by Gruneisen et al.
(1988, 1989). The gain feature that occurs near δ = 0 can be considered to be

∗ We have arbitrarily placed the real part of χ
(1)
eff in n±1 and the imaginary part in α±1. We could

equivalently have placed all of χ
(1)
eff in a complex absorption coefficient α±1 and set �k equal to zero,

or could have placed all of χ
(1)
eff in a complex refraction index n±1 and set α±1 equal to zero. We have

chosen the present convention because it illustrates most clearly the separate effects of absorption and
of wavevector mismatch.
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FIGURE 6.6.4 (a) Absorption spectrum of a probe wave in the presence of a strong
pump wave for the case �T2 = −3, 
T2 = 8, and T2/T1 = 2. (b) Each of the features
in the spectrum shown in part (a) is identified by the corresponding transition between
dressed states of the atom. TP denotes the three-photon resonance, RL denotes the
Rayleigh resonance, and AC denotes the ac-Stark-shifted atomic resonance.

a form of stimulated Rayleigh scattering (see also Chapter 9). Alternatively,
the origin of this feature can be traced to the harmonic temporal modulation of
the population difference w(t), as described by Eqs. (6.6.8) and (6.6.21)—that
is, to coherent population oscillations. The gain associated with these features
has been utilized to construct optical parametric oscillators (Grandclement et
al., 1987). As demanded by Kramers–Kronig relations, there is a rapid spec-
tral variation of the refractive index associated with this gain feature. This
rapid frequency variation can lead to a significant modification of the group
velocity vg at which light pulses propagate through such a system in accor-
dance with the standard relation vg = c/ng , where the group index ng is given
by ng = n+ω(dn/dω). Physical situations occur for which ng � 1; the term
“slow light” is sometimes used to describe this situation. Analogously, the sit-
uation ng positive with ng � 1 corresponds to “fast light.” Most intriguingly,
physical situations can occur for which ng is negative, which corresponds to
“backward” light propagation. More detailed accounts of these possibilities
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have been presented by Bigelow et al. (2003a, 2003b), and Gehring et al.
(2006).

Part (b) of Fig. 6.6.4 shows the origin of each of the features shown in part
(a). The leftmost portion of this figure shows how the dressed states of the
atom are related to the unperturbed atomic energy states. The next diagram,
labeled TP, shows the origin of the three-photon resonance. Here the atom
makes a transition from the lowest dressed level to the highest dressed level
by the simultaneous absorption of two pump photons and the emission of a
photon at the Rabi sideband frequency ω − 
′. This process can amplify a
wave at the Rabi sideband frequency, as indicated by the region of negative
absorption labeled TP in part (a). The third diagram of part (b), labeled RL,
shows the origin of the stimulated Rayleigh resonance. The Rayleigh reso-
nance corresponds to a transition from the lower level of the lower doublet
to the upper doublet. Each of these transitions is centered on the frequency
of the pump laser. The final diagram of part (b) of the figure, labeled AC,
corresponds to the usual absorptive resonance of the atom as modified by the
ac= Stark effect. For the sign of the detuning used in the diagram, the atomic
absorption is shifted to higher frequencies. Note that this last feature can lead
only to absorption, whereas the first two features can lead to amplification.
The theory of optical wave mixing has been generalized by Agarwal and Boyd
(1988) to treat the quantum nature of the optical field; this theory shows how
quantum fluctuations can initiate the four-wave mixing process described in
this section.

Problems

1. Alternative relaxation models. Determine how the saturated absorption of
an atomic transition depends on the intensity of the incident (monochro-
matic) laser field for the case of an open two-level atom and for a two-level
atom with a non-radiatively coupled intermediate level, and compare these
results with those derived in Section 6.3 for a closed two-level atom.

2. χ(3) for an impurity-doped solid. One is often interested in determin-
ing the third-order susceptibility of a collection of two-level atoms con-
tained in a medium of constant (i.e., wavelength-independent and non-
intensity-dependent) refractive index n0. Show that the third-order suscep-
tibility of such a system is given by Eq. (6.3.36b) in the form shown, or
by Eq. (6.3.33b) with a factor of n0 introduced in the numerator, or by
Eq. (6.3.34a) or (6.3.34b) with a factor of n2

0 introduced in the numerator.
In cases in which I 0

s , I�
s , or α0(�) appears in the expression, it is to be
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understood that the expressions (6.3.30) and (6.3.31) for I 0
s and I�

s should
each be multiplied by a factor of n0 and the expression (6.3.22b) for α0(0)

should be divided by a factor of n0.
3. Orthogonality of dressed states. Verify Eq. (6.5.43).
4. Damping of Rabi oscillations. The intent of this problem is to determine

the influence of T1- and T2-type relaxation processes on Rabi oscillations
of the sort predicted by the solution to the Schrödinger equation for an
atom in the presence of an intense, near-resonant driving field. In particu-
lar, you are to solve the Bloch equation in the form of Eqs. (6.5.49) for the
time evolution of an atom known to be in the ground state at time t = 0 and
subject to a field Ee−iωt + c.c. that is turned on at time t = 0. In addition,
sketch the behavior of w and of p as functions of time.

[Hint: At a certain point in the calculation, the mathematical complexity
will be markedly reduced by assuming that T1 = T2. Make this simplifica-
tion only when it becomes necessary.]

5. Response times. Consider the question of estimating the response time of
nonresonant electronic nonlinearities of the sort described in Section 4.3.
Student A argues that it is well known that the response time under such
conditions is of the order of the reciprocal of the detuning of the laser field
from the nearest atomic resonance. Student B argues that only relaxation
processes can allow a system to enter the steady state and that consequently
the response time is of the order of the longer of T1 and T2—that is, is of
the order of T1. Who is right, and in what sense is each of them correct?

[Hint: Consider how the graph shown in Fig. 6.5.6 and the analogous
graph of p(t) would look in the limit of � � 
,�T2 � 1.]

[Partial answer: The nonlinearity turns on in a time �−1 but does not
reach its steady-state value until a time of the order of T1.]

6. Identity pertaining to population oscillations. Verify Eq. (6.6.31).
7. Coupled wave equations for forward four-wave mixing. Verify that

Eqs. (6.6.38) follow from the referenced equations. Also, display explic-
itly the two alternative forms of these equations alluded to in the footnote
to these equations.
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Chapter 7

Processes Resulting from the
Intensity-Dependent Refractive Index

In this chapter, we explore several processes of practical importance that occur
as a result of the intensity-dependent refractive index.

7.1. Self-Focusing of Light and Other Self-Action Effects

Self-focusing of light is the process in which an intense beam of light modifies
the optical properties of a material medium in such a manner that the beam is
caused to come to a focus within the material (Kelly, 1965). This circumstance
is shown schematically in Fig. 7.1.1(a). Here we have assumed that n2 is posi-
tive. As a result, the laser beam induces a refractive index variation within the
material with a larger refractive index at the center of the beam than at its pe-
riphery. Thus the material acts as if it were a positive lens, causing the beam to
come to a focus within the material. More generally, one refers to self-action
effects as effects in which a beam of light modifies its own propagation by
means of the nonlinear response of a material medium.

Another self-action effect is the self-trapping of light, which is illustrated
in Fig. 7.1.1(b). In this process a beam of light propagates with a constant
diameter as a consequence of an exact balance between self-focusing and dif-
fraction effects. An analysis of this circumstance, which is presented below,
shows that self-trapping can occur only if the power carried by the beam is
exactly equal to the so-called critical power for self-trapping

Pcr = π(0.61)2λ2
0

8n0n2
, (7.1.1)

329
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FIGURE 7.1.1 Schematic illustration of three self-action effects: (a) self-focusing of
light, (b) self-trapping of light, and (c) laser beam breakup, showing the transverse
distribution of intensity of a beam that has broken up into many filaments.

where λ0 is the vacuum wavelength of the laser radiation. This line of rea-
soning leads to the conclusion that self-focusing can occur only if the beam
power P is greater than Pcr.

The final self-action effect shown in Fig. 7.1.1(c) is laser beam breakup.∗
This process occurs only for P � Pcr and leads to the breakup of the beam
into many components each carrying approximately power Pcr. This process
occurs as a consequence of the growth of imperfections of the laser wavefront
by means of the amplification associated with the forward four-wave mixing
process.

Let us begin our analysis of self-action effects by developing a simple
model of the self-focusing process. For the present, we ignore the effects
of diffraction; these effects are introduced below. The neglect of diffraction
is justified if the beam diameter or intensity (or both) is sufficiently large.
Fig. 7.1.2 shows a collimated beam of light of characteristic radius w0 and an
on-axis intensity I0 falling onto a nonlinear optical material for which n2 is

∗ Some authors use the term filamentation to mean the creation of a self-trapped beam of light,
whereas other authors used this term to mean the quasi-random breakup of a beam into many trans-
verse components. While the author’s intended meaning is usually clear from context, in the present
work we avoid the use of the word filamentation to prevent ambiguity. Instead, we will usually speak
of self-trapped beams and of laser beam breakup.
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FIGURE 7.1.2 Prediction of the self-focusing distance zsf by means of Fermat’s prin-
ciple. The curved ray trajectories within the nonlinear material are approximated as
straight lines.

positive. We determine the distance zsf from the input face to the self-focus
through use of Fermat’s principle, which states that the optical path length∫

n(r) dl of all rays traveling from a wavefront at the input face to the self-
focus must be equal. As a first approximation, we take the refractive index
along the marginal ray to be the linear refractive index n0 of the medium and
the refractive index along the central ray to be n0 + n2I0. Fermat’s principle
then tells us that

(n0 + n2I )zsf = n0zsf/cos θsf, (7.1.2)

where the angle θsf is defined in the figure. If we approximate cos θsf as 1 −
1
2θ2

sf and solve the resulting expression for θsf, we find that

θsf = √
2n2I/n0. (7.1.3)

This quantity is known as the self-focusing angle and in general can be inter-
preted as the characteristic angle through which a beam of light is deviated as
a consequence of self-action effects. The ratio n2I/n0 of nonlinear to linear
refractive index is invariably a small quantity, thus justifying the use of the
paraxial approximation. In terms of the self-focusing angle, we can calculate
the characteristic self-focusing distance as zsf = w0/θsf or as

zsf = w0

√
n0

2n2I
= 2n0w

2
0

λ0

1√
P/Pcr

(for P � Pcr), (7.1.4)

where in writing the result in the second form we have made use of expression
(7.1.1).

The derivation leading to the result given by Eq. (7.1.4) ignores the effects
of diffraction, and thus might be expected to be valid when self-action ef-
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FIGURE 7.1.3 Definition of the parameters w, w0, and zmin. The “rays” are shown as
unmodified by the nonlinear interaction.

fects overwhelm those of diffraction—that is, for P � Pcr. For smaller laser
powers, the self-focusing distance can be estimated by noting that the beam
convergence angle is reduced by diffraction effects and is given approximately
by θ = (θ2

sf − θ2
dif)

1/2, where

θdif = 0.61λ0/n0d (7.1.5)

is the diffraction angle of a beam of diameter d and vacuum wavelength λ0.
Then, once again arguing that zsf = w0/θ , we find that

zsf = 2n0w
2
0

λ0

1√
P/Pcr − 1

. (7.1.6)

Yariv (1975) has shown that for the still more general case in which the
beam has arbitrary power and arbitrary beam-waist position, the distance from
the entrance face to the position of the self-focus is given by the formula

zsf =
1
2kw2

(P/Pcr − 1)1/2 + 2zmin/kw2
0

, (7.1.7)

where k = n0ω/c. The beam radius parameters w and w0 (which have their
conventional meanings) and zmin are defined in Fig. 7.1.3.

7.1.1. Self-Trapping of Light

Let us next consider the conditions under which self-trapping of light can
occur. One expects self-trapping to occur when the tendency of a beam to
spread as a consequence of diffraction is precisely balanced by the tendency
of the beam to contract as a consequence of self-focusing effects. The con-
dition for self-trapping can thus be expressed mathematically as a statement
that the diffraction angle of Eq. (7.1.5) be equal to the self-focusing angle of
Eq. (7.1.3)—that is, that

θdif = θsf. (7.1.8)
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By introducing Eqs. (7.1.3) and (7.1.5) into this equality, we find that self-
trapping will occur only if the intensity of the light within the beam is given
by

I = (0.61)2λ2
0

2n2n0d2
. (7.1.9)

Since the power contained in such a beam is given by P = (π/4)d2I , we also
see that self-trapping occurs only if the power contained in the beam has the
critical value

Pcr = π(0.61)2λ2
0

8n0n2
≈ λ2

0

8n0n2
. (7.1.10)

This result was stated above as Eq. (7.1.1) without proof. Note that according
to the present model a self-trapped beam can have any diameter d , and that
for any value of d the power contained in the filament has the same value,
given by Eq. (7.1.10). The value of the numerical coefficient appearing in
this formula depends on the detailed assumptions of the mathematical model
of self-focusing; this point has been discussed in detail by Fibich and Gaeta
(2000).

The process of laser-beam self-trapping can be described perhaps more
physically in terms of an argument presented by Chiao et al. (1964). One
makes the simplifying assumption that the laser beam has a flat-top intensity
distribution, as shown in Fig. 7.1.4(a). The refractive index distribution within
the nonlinear medium then has the form shown in part (b) of the figure, which
shows a cut through the medium that includes the symmetry axis of the laser
beam. Here the refractive index of the bulk of the material is denoted by n0

and the refractive index of that part of the medium exposed to the laser beam
is denoted by n0 + δn, where δn is the nonlinear contribution to the refrac-
tive index. Also shown in part (b) of the figure is a ray of light incident on
the boundary between the two regions. It is one ray of the bundle of rays that
makes up the laser beam. This ray will remain trapped within the laser beam if
it undergoes total internal reflection at the boundary between the two regions.
Total internal reflection occurs if θ is less than the critical angle θ0 for total
internal reflection, which is given by the equation

cos θ0 = n0

n0 + δn
. (7.1.11)

Since δn is very much smaller than n0 for essentially all nonlinear optical
materials, and consequently θ0 is much smaller than unity, Eq. (7.1.11) can be
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FIGURE 7.1.4 (a) Radial intensity distribution of a “flat-top” laser beam. (b) A ray of
light incident on the boundary formed by the edge of the laser beam.

approximated by

1 − 1
2θ2

0 = 1 − δn

n0
,

which shows that the critical angle is related to the nonlinear change in refrac-
tive index by

θ0 = (2δn/n0)
1/2. (7.1.12)

A laser beam of diameter d will contain rays within a cone whose maximum
angular extent is of the order of magnitude of the characteristic diffraction
angle θdif = 0.61λ0/n0d , where λ0 is the wavelength of the light in vacuum.
We expect that self-trapping will occur if total internal reflection occurs for
all of the rays contained within the beam, that is, if θdif = θ0. By comparing
Eqs. (7.1.12) and (7.1.5), we see that self-trapping will occur if

δn = 1
2n0(0.61λ0/dn0)

2, (7.1.13a)

or equivalently, if

d = 0.61λ0(2n0δn)−1/2. (7.1.13b)

If we now replace δn by n2I , we see that the diameter of a self-trapped beam
is related to the intensity of the light within the beam by

d = 0.61λ0(2n0n2I )−1/2. (7.1.14)
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The power contained in a beam whose diameter is given by Eq. (7.1.14) is as
before given by

Pcr = π

4
d2I = π(0.61)2λ2

0

8n0n2
. (7.1.15)

Note that the power, not the intensity, of the laser beam is crucial in determin-
ing whether self-focusing will occur.

When the power P greatly exceeds the critical power Pcr and self-focusing
does occur, the beam will usually break up into many filaments, each of which
contains power Pcr. The theory of filament formation has been described by
Bespalov and Talanov (1966) and is described more fully in a following sub-
section.

It is instructive to determine the numerical values of the various physical
quantities introduced in this section. For carbon disulfide (CS2), n2 for lin-
early polarized light is equal to 3.2 × 10−18 m2/W, n0 is equal to 1.7, and Pcr

at a wavelength of 1 μm is equal to 27 kW. For typical crystals and glasses,
n2 is in the range 5 × 10−20 to 5 × 10−19 m2/W and Pcr is in the range 0.2 to
2 MW. We can also estimate the self-focusing distance of Eq. (7.1.4). A fairly
modest Q-switched Nd:YAG laser operating at a wavelength of 1.06 µm might
produce an output pulse containing 10 mJ of energy with a pulse duration of
10 nsec, and thus with a peak power of the order of 1 MW. If we take w0 equal
to 100 µm, Eq. (7.1.4) predicts that zsf = 1 cm for carbon disulfide.

7.1.2. Mathematical Description of Self-Action Effects

The description of self-action effects just presented has been of a somewhat
qualitative nature. Self-action effects can be described more rigorously by
means of the nonlinear optical wave equation.

For the present we consider steady-state conditions only, as would apply
for excitation with a continuous-wave laser beam. The paraxial wave equation
under these conditions is given according to Eq. (2.10.3) by

2ik0
∂A

∂z
+ ∇2

T A = − ω2

ε0c2
pNL, (7.1.16)

where for a purely third-order nonlinear optical response the amplitude of the
nonlinear polarization is given by

pNL = 3ε0χ
(3)|A|2A. (7.1.17)

Steady-state self-trapping can be described by these equations.
We consider first the solution of Eqs. (7.1.16) and (7.1.17) for a beam that

is allowed to vary in one transverse dimension only. Such a situation could be
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realized experimentally for the situation in which a light field is constrained
to propagate within a planar waveguide. In this case these equations become

2ik0
∂A

∂z
+ ∂2A

∂x2
= −3χ(3) ω

2

c2
|A|2A, (7.1.18)

where A is now a function of x and z only. This equation possesses a solution
of the form

A(x, z) = A0 sech(x/x0)e
iγ z, (7.1.19)

where the width of the field distribution is given by

x0 = 1

k0

√
n0/2n2|A0|2 (7.1.20)

and the rate of nonlinear phase acquisition is given by

γ = k0n2|A0|2/n0, (7.1.21)

where, as in Section 4.1, n2 = 3χ(3)/4n0. The solution given by Eq. (7.1.19)
is sometimes referred to as a spatial soliton, because it describes a field that
can propagate for long distances with an invariant transverse profile. Behavior
of this sort has been observed experimentally by Barthelemy et al. (1985) and
by Aitchison et al. (1991).

For a beam that varies in both transverse directions, Eqs. (7.1.16) and
(7.1.17) cannot be solved analytically, and only numerical results are known.
The lowest-order solution for a beam with cylindrical symmetry was reported
by Chiao et al. (1964) and is of the form of a bell-shaped curve of approxi-
mately gaussian shape. Detailed analysis shows that in two transverse dimen-
sions spatial solitons are unstable in a pure Kerr medium (i.e., one described
by an n2 nonlinearity) but that they can propagate stably in a saturable non-
linear medium. Stable self-trapping in saturable media has been observed ex-
perimentally by Bjorkholm and Ashkin (1974). Higher-order solutions have
been reported by Haus (1966).

7.1.3. Laser Beam Breakup into Many Filaments

We mentioned earlier that beam breakup occurs as a consequence of the
growth by forward four-wave-mixing amplification of irregularities initially
present on the laser wavefront. This occurrence is illustrated schematically
in Fig. 7.1.5. Filamentation typically leads to the generation of a beam with
a random intensity distribution, of the sort shown in part (c) of Fig. 7.1.1.
However, under certain circumstances, the beam breakup process can produce
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FIGURE 7.1.5 Illustration of laser beam breakup by the growth of wavefront pertur-
bations.

beams with a transverse structure in the form of highly regular geometrical
patterns; see, for instance, Bennink et al. (2002).

Let us now present a mathematical description of the process of laser beam
breakup. Our derivation follows closely that of the original description of
Bespalov and Talanov (1966). We begin by expressing the field within the
nonlinear medium as

Ẽ(r, t) = E(r)e−iωt + c.c., (7.1.22)

where (see also Fig. 7.1.6) it is convenient to express the electric field ampli-
tude as the sum of three plane-wave components as

E(r) = E0(r) + E1(r) + E−1(r) = [
A0(z) + A1(r) + A−1(r)

]
eikz

= [
A0(z) + a1(z)e

iq·r + a−1(z)e
−iq·r]eikz,

where k = n0ω/c. Here E0 represents the strong central component of the
laser field and E1 and E−1 represent weak, symmetrically displaced spatial
sidemodes; at various points in the calculation it will prove useful to introduce
the related quantities A0, A±1 and a±1. The latter quantities are defined in
relation to the transverse component q of the optical wavevector of the off-
axis modes. We next calculate the nonlinear polarization in the usual manner:

P = 3ε0χ
(3)|E|2E ≡ P0 + P1 + P−1, (7.1.23)

where the part of the polarization that is phase matched to the strong central
component is given by

P0 = 3ε0χ
(3)|E0|2E0 = 3ε0χ

(3)|A0|2A0 eikz ≡ p0e
ikz, (7.1.24)

and where the part of the polarization that is phase matched to the sidemodes
is given by

P±1 = 3ε0χ
(3)

(
2|E0|2E±1 + E2

0E∗∓1

) ≡ p±1e
ikz. (7.1.25)
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FIGURE 7.1.6 (a) Filamentation occurs by the growth of the spatial sidemodes E1
and E−1 at the expense of the strong central component E0. (b) Wavevectors of the
interacting waves.

Let us first solve the wave equation for the spatial evolution of A0, which
is given by

2ik
∂A0

∂z
+ ∇2⊥A0 = − ω2

ε0c2
p0. (7.1.26)

Since ∇2⊥A0 = 0, the solution of this equation is simply

A0(z) = A00e
iγ z, (7.1.27)

where

γ = 3ωχ(3)

2n0c
|A00|2 = n2kvacI (7.1.28)

denotes the spatial rate of nonlinear phase acquisition and where, for simplic-
ity but without loss of generality, we assume that A00 is a real quantity. This
solution expresses the expected result that the strong central component sim-
ply acquires a nonlinear phase shift as it propagates. We now use this result
with Eq. (7.1.25) to find that the part of the nonlinear polarization that couples
to the sidemodes is given by

p±1 = 3ε0χ
(3)

[
2|A00|2A±1 + A2

00e
2iγ zA∗∓1

]
. (7.1.29)

We next consider the wave equation for the off-axis modes. Starting with

2ik
∂A±1

∂z
+ ∇2⊥A±1 = − ω2

ε0c2
p±1, (7.1.30)

we introduce A±1 = a±1 exp(±iq · r) and expression (7.1.29) for P±1 to ob-
tain

2ik
∂a±1

∂z
− q2a±1 = −ω2

c2
3χ(3)|A00|2

[
2a±1 + a∗∓1e

2iγ z
]
. (7.1.31)
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This equation is now rearranged, and expression (7.1.28) for γ is introduced
to obtain

da±1

dz
+ iq2

2k
a±1 = iγ

(
2a±1 + a∗∓1e

2iγ z
)
. (7.1.32)

We next perform a change of variables to remove the unwanted exponential
phase factor appearing in the last term in this equation. In particular, we define

a±1 = a′±1e
iγ z. (7.1.33)

In terms of the new “primed” variables, Eq. (7.1.32) becomes

d

dz
a′±1 = i

(
γ − q2/2k

)
a′±1 + iγ a′ ∗∓1. (7.1.34)

This set of equations now possesses constant coefficients and can be solved
directly. Perhaps the simplest way to solve these equations is to express them
in matrix form as

d

dz

[
a′

1

a′ ∗−1

]
=

[
i(γ − β) iγ

−iγ −i(γ − β)

][
a′

1

a′ ∗−1

]
, (7.1.35)

where β ≡ q2/2k. We seek the eigensolutions of this equation—that is, solu-
tions of the form [

a′
1(z)

a′ ∗−1(z)

]
=

[
a′

1(0)

a′ ∗−1(0)

]
e�z. (7.1.36)

This assumed solution is substituted into Eq. (7.1.35), which then becomes

[
i(γ − β) − � iγ

−iγ −i(γ − β) − �

][
a′

1(0)

a′ ∗−1(0)

]
= 0. (7.1.37)

This equation possesses nonvanishing solutions only if the determinant of the
two-by-two matrix appearing in this equation vanishes. This condition leads
to the result that

� = ±√
β(2γ − β). (7.1.38)

Note that this system of equations can produce gain (Re� > 0) only for
γ > 1

2β , which shows immediately that n2 must be positive in order for beam
breakup to occur. More explicitly, Fig. 7.1.7 shows a plot of the forward four-
wave-mixing gain coefficient � as a function of the transverse wavevector
magnitude q . We see that the maximum gain is numerically equal to the non-
linear phase shift γ experienced by the pump wave. We also see that the gain
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FIGURE 7.1.7 Variation of the gain coefficient � of the forward four-wave mixing
process that leads to laser-beam breakup with transverse wavevector magnitude q .

vanishes for all values of q greater than qmax = 2
√

kγ and reaches its maxi-
mum value for wavevector qopt = qmax/

√
2. There is consequently a charac-

teristic angle at which the breakup process occurs, which is given by

θopt = qopt/k. (7.1.39)

This angle has a direct physical interpretation, as described originally by
Chiao et al. (1966). In particular, θopt is the direction in which the near-
forward four-wave-mixing process becomes phase matched, when account is
taken of the nonlinear contributions to the wavevectors of the on- and off-axis
waves.

It is extremely instructive to calculate the characteristic power carried by
each of the filaments created by the breakup process. This power Pfil is of
the order of the initial intensity I of the laser beam times the characteristic
cross sectional area of one of the filaments. If we identify this area with the
square of the characteristic transverse distance scale associated with the beam
breakup process—that is, with w2

eff = (π/q)2, we find that

Pfil = λ2

8n0n2
, (7.1.40)

which is of the same order of magnitude as the critical power for self-focusing
Pcr introduced in Eq. (7.1.1). We thus see that the beam breakup process is
one in which the laser beam breaks up into a large number of individual com-
ponents, each of which carries power of the order of Pcr.

Conditions for the Occurrence of Nonlinear Beam Breakup Let us next deter-
mine the conditions under which laser breakup is expected to occur. This is
actually a quite subtle question, for at least two reasons. First, the breakup
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process grows from perturbations initially present on the laser wavefront, and
thus a very clean laser beam will have a much higher threshold for beam
breakup than a “dirty” beam. Second, whereas the gain of the breakup process
depends directly on laser intensity, the properties of whole-beam self-focusing
depend on the intensity and beam spot size in a more complicated manner.

To address this question, let us define a beam breakup distance zfil through
the relation n2kvacIzfil = G, where G is a numerical factor (of the order of 3
to 10) that specifies the level of gain that must be present in order for beam
breakup to occur. For the optimum transverse wavevector qopt the gain will
attain its maximum value � = γ = n2kvacI , and we thus find that

zfil = G

n2kvacI
. (7.1.41)

This distance is to be compared to the self-focusing distance

zsf = 2n0w
2
0

λ0

1√
P/Pcr − 1

(7.1.42)

(see Eq. (7.1.4) derived earlier), with Pcr = π(0.61)2λ2
0/8n0n2. The condition

for the occurrence of beam breakup then can be stated as zfil < L, where L

is the interaction path length, and zfil < zsf. These conditions state that the
breakup process must occur within the length of the interaction region, and
that the competing process of whole-beam self-focusing must not occur. Note
that zfil decreases more rapidly with increasing laser power (or intensity) than
does zsf, and thus beam breakup can always be induced through use of a suf-
ficiently large laser power. Let us calculate the value of the laser power under
conditions such that zfil is exactly equal to zsf. We find, using Eq. (7.1.42) in
the limit P � Pcr, that

P/Pcr = 4G2. (7.1.43)

For the representative value G = 5, we find that beam breakup is expected
only for P > 100Pcr.

7.1.4. Self-Action Effects with Pulsed Laser Beams

For simplicity and conceptual clarity, the preceding discussion has dealt with
continuous-wave laser beams. Self-action effects can have quite a different
character when excited using pulsed radiation. Only some general comments
are presented here. Additional aspects of self-action effects as excited by ul-
trashort optical pulses are presented in Chapter 13.
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Moving Focus Model The moving focus model was developed by Loy and
Shen (1973) to describe the properties of self-focusing when excited with
nanosecond laser pulses. To understand this model, one notes that for pulsed
radiation the self-focusing distance zsf of Eq. (7.1.4) (i.e., the distance from
the input face of the nonlinear medium to the self-focus point) will vary ac-
cording to the value of the instantaneous intensity I (t) at the input face. Thus,
the focal point will sweep through the material as it follows the temporal evo-
lution of the pulse intensity. Under many circumstances, damage will occur
at the point of peak intensity, and thus the damage tracks observed by early
works (Hercher, 1964) can be interpreted as the locus of focal points for all
values of the input intensity I (t). Some aspects of the moving focus model are
quite subtle. For instance, because of transit time effects, there are typically
two self-focal points within the material at any given time. One of these oc-
curs closer to the entrance face of the material and is a consequence of intense
light near the peak of the pulse, whereas another focus occurs at greater dis-
tances into the material and occurs as a consequence of earlier, weaker parts
of the pulse.

Transient Self-Focusing Transient self-focusing occurs when the laser pulse
duration τp is comparable to or shorter than the turn-on time of the material
response. In this situation, the nonlinear response develops during the time
extent of the laser pulse, and consequently the nonlinear response is stronger
for the trailing edge of the pulse than for the leading edge. Thus the trailing
edge is more strongly self-focused than is the leading edge, leading to signifi-
cant distortion of the pulse intensity distribution in both space and time. This
process has been described in detail by Shen (1975). Transient self-focusing
can be observed through use of picosecond laser pulses propagating through
liquids in which the dominant nonlinearity is the molecular orientation effect.

7.2. Optical Phase Conjugation

Optical phase conjugation is a process that can be used to remove the effects
of aberrations from certain types of optical systems (Zel’dovich et al., 1985;
Boyd and Grynberg, 1992). The nature of the phase conjugation process is
illustrated in Fig. 7.2.1. Part (a) of the figure shows an optical wave falling
at normal incidence onto an ordinary metallic mirror. We see that the most
advanced portion of the incident wavefront remains the most advanced af-
ter reflection has occurred. Part (b) of the figure shows the same wavefront
falling onto a phase-conjugate mirror. In this case the most advanced por-
tion turns into the most retarded portion in the reflection process. For this
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FIGURE 7.2.1 Reflection from (a) an ordinary mirror and (b) a phase-conjugate mir-
ror.

reason, optical phase conjugation is sometimes referred to as wavefront rever-
sal. Note, however, that the wavefront is reversed only with respect to normal
geometrical reflection; in fact, the generated wavefront exactly replicates the
incident wavefront but propagates in the opposite direction. For this reason,
optical phase conjugation is sometimes referred to as the generation of a time-
reversed wavefront, as shown more explicitly in Eq. (7.2.5).

The reason why the process illustrated in part (b) of Fig. 7.2.1 is called
phase conjugation can be understood by introducing a mathematical descrip-
tion of the process. We represent the wave incident on the phase-conjugate
mirror (called the signal wave) as

Ẽs(r, t) = Es(r)e−iωt + c.c. (7.2.1)

When illuminated by such a wave, a phase-conjugate mirror produces a re-
flected wave, called the phase-conjugate wave, described by

Ẽc(r, t) = rE∗
s (r)e

−iωt + c.c., (7.2.2)

where r represents the amplitude reflection coefficient of the phase-conjugate
mirror. In order to determine the significance of replacing Es(r) by E∗

s (r) in
the reflection process, it is useful to represent Es(r) as the product

Es(r) = ε̂sAs(r)eiks·r, (7.2.3)

where ε̂s represents the polarization unit vector, As(r) the slowly varying field
amplitude, and ks the mean wavevector of the incident light. The complex
conjugate of Eq. (7.2.3) is given explicitly by

E∗
s (r) = ε̂∗

s A
∗
s (r)e

−iks·r. (7.2.4)

We thus see that the action of an ideal phase-conjugate mirror is threefold:
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1. The complex polarization unit vector of the incident radiation is replaced
by its complex conjugate. For example, right-hand circular light remains
right-hand circular in reflection from a phase-conjugate mirror rather than
being converted into left-hand circular light, as is the case in reflection at
normal incidence from a metallic mirror.

2. As(r) is replaced by A∗
s (r), implying that the wavefront is reversed in the

sense illustrated in Fig. 7.2.1(b).∗
3. ks is replaced by −ks, showing that the incident wave is reflected back into

its direction of incidence. From the point of view of ray optics, this result
shows that each ray of the incident beam is precisely reflected back onto
itself.

Note further that Eqs. (7.2.1) through (7.2.4) imply that

Ẽc(r, t) = rẼs(r,−t). (7.2.5)

This result shows that the phase conjugation process can be thought of as the
generation of a time-reversed wavefront.

It is important to note that the description given by Eq. (7.2.4) refers to an
ideal phase-conjugate mirror. Many physical devices that are commonly re-
ferred to as phase-conjugate mirrors are imperfect either in the sense that they
do not possess all three properties just listed or in the sense that they possess
these properties only approximately. For example, many phase-conjugate mir-
rors are highly imperfect in their polarization properties, even though they are
nearly perfect in their ability to perform wavefront reversal.

7.2.1. Aberration Correction by Phase Conjugation

The process of phase conjugation is able to remove the effects of aberrations
under conditions such that a beam of light passes twice in opposite direc-
tions through an aberrating medium. The reason why optical phase conjuga-
tion leads to aberration correction is illustrated in Fig. 7.2.2. Here an initially
plane wavefront propagates through an aberrating medium. The aberration
may be due to turbulence in the earth’s atmosphere, inhomogeneities in the
refractive index of a piece of glass, or a poorly designed optical system. The
wavefront of the light leaving the medium therefore becomes distorted in the
manner shown schematically in the figure. If this aberrated wavefront is now
allowed to fall onto a phase-conjugate mirror, a conjugate wavefront will be
generated, and the sense of the wavefront distortion will be inverted in this

∗ Because of this property, the phase conjugation process displays special quantum noise charac-
teristics. These characteristics have been described by Gaeta and Boyd (1988).
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FIGURE 7.2.2 Aberration correction by optical phase conjugation.

FIGURE 7.2.3 Conjugate waves propagating through an inhomogeneous optical
medium.

reflected wave. As a result, when this wavefront passes through the aberrating
medium again, an undistorted output wave will emerge.

Let us now see how to demonstrate mathematically that optical phase con-
jugation leads to aberration correction. (Our treatment here is similar to that
of Yariv and Fisher in Fisher, 1983.) We consider a wave Ẽ(r, t) propagating
through a lossless material of nonuniform refractive index n(r) = [ε(r)]1/2,
as shown in Fig. 7.2.3.

We assume that the spatial variation of ε(r) occurs on a scale that is much
larger than an optical wavelength. The optical field in this region must obey
the wave equation, which we write in the form

∇2Ẽ − ε(r)
c2

∂2Ẽ

∂t2
= 0. (7.2.6)

We represent the field propagating to the right through this region as

Ẽ(r, t) = A(r)ei(kz−ωt) + c.c., (7.2.7)

where the field amplitude A(r) is assumed to be a slowly varying function
of r. Since we have singled out the z direction as the mean direction of prop-
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agation, it is convenient to express the Laplacian operator which appears in
Eq. (7.2.6) as

∇2 = ∂2

∂z2
+ ∇2

T , (7.2.8)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is called the transverse Laplacian. Equa-

tions (7.2.7) and (7.2.8) are now introduced into Eq. (7.2.6), which becomes

∇2
T A +

[
ω2ε(r)

c2
− k2

]
A + 2ik

∂A

∂z
= 0. (7.2.9)

In writing this equation in the form shown, we have omitted the term ∂2A/∂z2

because A(r) has been assumed to be slowly varying. Since this equation is
generally valid, so is its complex conjugate, which is given explicitly by

∇2
T A∗ +

[
ω2ε(r)

c2
− k2

]
A∗ − 2ik

∂A∗

∂z
= 0. (7.2.10)

However, this equation describes the wave

Ẽc(r, t) = A∗(r)ei(−kz−ωt) + c.c., (7.2.11)

which is a wave propagating in the negative z direction whose complex am-
plitude is everywhere the complex conjugate of the forward-going wave. This
proof shows that if the phase-conjugate mirror can generate a backward-going
wave whose amplitude is the complex conjugate of that of the forward-going
wave at any one plane (say the input face of the mirror), then the field am-
plitude of the backward-going wave will be the complex conjugate of that of
the forward-going wave at all points in front of the mirror. In particular, if the
forward-going wave is a plane wave before entering the aberrating medium,
then the backward-going (i.e., conjugate) wave emerging from the aberrating
medium will also be a plane wave.

The phase conjugation process is directly suited for removing the effects
of aberrations in double pass, but under special circumstances can be used to
perform single-pass aberration correction; see, for instance, MacDonald et al.
(1988).

7.2.2. Phase Conjugation by Degenerate Four-Wave Mixing

Let us now consider a physical process that can produce a phase conjugate
wavefront. It has been shown by Hellwarth (1977) and by Yariv and Pepper
(1977) that the phase conjugate of an incident wave can be created by the
process of degenerate four-wave mixing (DFWM) using the geometry shown
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FIGURE 7.2.4 Geometry of phase conjugation by degenerate four-wave mixing.

in Fig. 7.2.4. This four-wave mixing process is degenerate in the sense that
all four interacting waves have the same frequency. In this process, a lossless
nonlinear medium characterized by a third-order nonlinear susceptibility χ(3)

is illuminated by two strong counterpropagating pump waves E1 and E2 and
by a signal wave E3. The pump waves are usually taken to be plane waves,
although in principle they can possess any wavefront structure as long as their
amplitudes are complex conjugates of one another. The signal wave is allowed
to have an arbitrary wavefront. In this section we show that, as a result of the
nonlinear coupling between these waves, a new wave E4 is created that is
the phase conjugate of E3. We also derive an expression (Eq. (7.2.37)) that
describes the efficiency with which the conjugate wave is generated.

Since the mathematical development that follows is somewhat involved, it
is useful to consider first in simple terms why the interaction illustrated in
Fig. 7.2.4 leads to the generation of a conjugate wavefront. We represent the
four interacting waves by

Ẽi(r, t) = Ei(r)e−iωt + c.c.

= Ai(r)Ei(ki ·r−ωt) + c.c. (7.2.12)

for i = 1,2,3,4, where the Ai(r) are slowly varying quantities. The nonlinear
polarization produced within the medium by the three input waves will have,
in addition to a large number of other terms, a term of the form

P NL = 6ε0χ
(3)E1E2E

∗
3 = 6ε0χ

(3)A1A2A
∗
3e

i(k1+k2−k3)·r. (7.2.13)

Since we have assumed that the pump waves E1 and E2 are counterpropagat-
ing, their wavevectors are related by

k1 + k2 = 0, (7.2.14)

and thus Eq. (7.2.13) becomes

P NL = 6ε0χ
(3)A1A2A

∗
3e

−ik3·r. (7.2.15)
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We see that this contribution to the nonlinear polarization has a spatial de-
pendence that allows it to act as a phase-matched source term for a conjugate
wave (E4) having wavevector −k3, and thus we see that the wavevectors of
the signal and conjugate waves are related by

k3 = −k4. (7.2.16)

The field amplitude of the wave generated by the nonlinear polarization
of Eq. (7.2.15) will be proportional to A1A2A

∗
3. This wave will be the phase

conjugate of A3 whenever the phase of the product A1A2 is spatially invariant,
either because A1 and A2 both represent plane waves and hence are each
constant or because A1 and A2 are phase conjugates of one another (because
if A2 is proportional to A∗

1, then A1A2 will be proportional to the real quantity
|A1|2).

We can also understand the interaction shown in Fig. 7.2.4 from the fol-
lowing point of view. The incoming signal wave of amplitude A3 interferes
with one of the pump waves (e.g., the forward-going pump wave of amplitude
A1) to form a spatially varying intensity distribution. As a consequence of the
nonlinear response of the medium, a refractive index variation accompanies
this interference pattern. This variation acts as a volume diffraction grating,
which scatters the other pump wave to form the outgoing conjugate wave of
amplitude A4.

Let us now treat the degenerate four-wave mixing process more rigorously.
The total field amplitude within the nonlinear medium is given by

E = E1 + E2 + E3 + E4. (7.2.17)

This field produces a nonlinear polarization within the medium, given by

P = 3ε0χ
(3)E2E∗, (7.2.18)

where χ(3) = χ(3)(ω = ω + ω − ω). The product E2E∗ that appears on the
right-hand side of this equation contains a large number of terms with different
spatial dependences. Those terms with spatial dependence of the form

eik1·r for i = 1,2,3,4 (7.2.19)

are particularly important because they can act as phase-matched source terms
for one of the four interacting waves. The polarization amplitudes associated
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with these phase-matched contributions are as follows:

P1 = 3ε0χ
(3)

[
E2

1E∗
1 + 2E1E2E

∗
2 + 2E1E3E

∗
3 + 2E1E4E

∗
4 + 2E3E4E

∗
2

]
,

P2 = 3ε0χ
(3)

[
E2

2E∗
2 + 2E2E1E

∗
1 + 2E2E3E

∗
3 + 2E2E4E

∗
4 + 2E3E4E

∗
1

]
,

P3 = 3ε0χ
(3)

[
E2

3E∗
3 + 2E3E1E

∗
1 + 2E3E2E

∗
2 + 2E3E4E

∗
4 + 2E1E2E

∗
4

]
,

P4 = 3ε0χ
(3)

[
E2

4E∗
4 + 2E4E1E

∗
1 + 2E4E2E

∗
2 + 2E4E3E

∗
3 + 2E1E2E

∗
3

]
.

(7.2.20)

We next assume that the fields E3 and E4 are much weaker than the pump
fields E1 and E2. In the above expressions we therefore drop those terms that
contain more than one weak-field amplitude. We hence obtain

P1 = 3ε0χ
(3)

[
E2

1E∗
1 + 2E1E2E

∗
2

]
,

P2 = 3ε0χ
(3)

[
E2

2E∗
2 + 2E2E1E

∗
1

]
,

P3 = 3ε0χ
(3)

[
2E3E1E

∗
1 + 2E3E2E

∗
2 + 2E1E2E

∗
4

]
,

P4 = 3ε0χ
(3)

[
2E4E1E

∗
1 + 2E4E2E

∗
2 + 2E1E2E

∗
3

]
. (7.2.21)

Note that, at the present level of approximation, the E3 and E4 fields are
each driven by a polarization that depends on the amplitudes of all of the
fields, but that the polarizations driving the E1 and E2 fields depend only on
E1 and E2 themselves. We thus consider first the problem of calculating the
spatial evolution of the pump field amplitudes E1 and E2. We can then later
use these known amplitudes when we calculate the spatial evolution of the
signal and conjugate waves.

We assume that each of the interacting waves obeys the wave equation in
the form

∇2Ẽi − ε

c2

∂2Ẽi

∂t2
= 1

ε0c2

∂2

∂t2
P̃i . (7.2.22)

We now introduce Eqs. (7.2.12) and (7.2.21) into this equation and make the
slowly varying amplitude approximation. Also, we let z′ be the spatial coordi-
nate measured in the direction of propagation of the E1 field, and we assume
for simplicity that the pump waves have plane wavefronts. We then find that
the pump field A1 must obey the equation[(

−k2
1 + 2ik1

d

dz′ + εω2

c2

)
A1

]
ei(k1z

′−ωt)

= −ω2

c2
3χ(3)

[|A1|2 + 2|A2|2
]
A1e

i(k1z
′−ωt),
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which, after simplification, becomes

dA1

dz′ = 3iω

2nc
χ(3)

[|A1|2 + 2|A2|2
]
A1 ≡ iκ1A1. (7.2.23a)

We similarly find that the backward-going pump wave is described by the
equation

dA2

dz′ = −3iω

2nc
χ(3)

[|A2|2 + 2|A1|2
]
A2 ≡ iκ2A2. (7.2.23b)

Since κ1 and κ2 are real quantities, these equations show that A1 and A2

each undergo phase shifts as they propagate through the nonlinear medium.
The phase shift experienced by each wave depends both on its own intensity
and on that of the other wave. Note that each wave shifts the phase of the
other wave by twice as much as it shifts its own phase, in consistency with the
general result described in the discussion following Eq. (4.1.14). These phase
shifts can induce a phase mismatch into the process that generates the phase-
conjugate signal. Note that since only the phases (and not the amplitudes) of
the pump waves are affected by the nonlinear coupling, the quantities |A1|2
and |A2|2 are spatially invariant, and thus the quantities κ1 and κ2 that appear
in Eqs. (7.2.23) are in fact constants. These equations can therefore be solved
directly to obtain

A1(z
′) = A1(0)eiκ1z

′
, (7.2.24a)

A2(z
′) = A2(0)e−iκ2z

′
. (7.2.24b)

The product A1A2 that appears in the expression (7.2.15) for the nonlinear po-
larization responsible for producing the phase-conjugate wave therefore varies
spatially as

A1(z
′)A2(z

′) = A1(0)A2(0)ei(κ1−κ2)z
′ ; (7.2.25)

the factor ei(κ1−κ2)z
′

shows the effect of wavevector mismatch. If the two
pump beams have equal intensities so that κ1 = κ2, the product A1A2 be-
comes spatially invariant, so that

A1(z
′)A2(z

′) = A1(0)A2(0), (7.2.26)

and in this case the interaction is perfectly phase-matched. We shall hence-
forth assume that the pump intensities are equal.

We next consider the coupled-amplitude equations describing the signal and
conjugate fields, Ẽ3 and Ẽ4. We assume for simplicity that the incident sig-
nal wave has plane wavefronts. This is actually not a restrictive assumption,
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because an arbitrary signal field can be decomposed into plane-wave compo-
nents, each of which will couple to a plane-wave component of the conjugate
field Ẽ4. Under this assumption, the wave equation (7.2.22) applied to the
signal and conjugate fields leads to the coupled-amplitude equations

dA3

dz
= 3iω

nc
χ(3)

[(|A1|2 + |A2|2
)
A3 + A1A2A

∗
4

]
, (7.2.27a)

dA4

dz
= −3iω

nc
χ(3)

[(|A1|2 + |A2|2
)
A4 + A1A2A

∗
3

]
. (7.2.27b)

For convenience, we write these equations as

dA3

dz
= iκ3A3 + iκA∗

4, (7.2.28a)

dA4

dz
= −iκ3A4 − iκA∗

3, (7.2.28b)

where we have introduced the coupling coefficients

κ3 = 3ω

nc
χ(3)

(|A1|2 + |A2|2
)
, (7.2.29a)

κ = 3ω

nc
χ(3)A1A2. (7.2.29b)

The set of equations (7.2.28) can be simplified through a change of vari-
ables. We let

A3 = A′
3e

iκ3z, (7.2.30a)

A4 = A′
4e

−iκ3z. (7.2.30b)

Note that the primed and unprimed variables coincide at the input face of the
interaction region—that is, at the plane z = 0. We introduce these relations
into Eq. (7.2.28), which becomes

iκ3A
′
3e

iκ3z + dA′
3

dz
eiκ3z = iκ3A

′
3e

iκ3z + iκA′ ∗
4 eiκ3z,

or

dA′
3

dz
= iκA′ ∗

4 . (7.2.31a)

We similarly find that Eq. (7.2.28) becomes

dA′
4

dz
= −iκA′ ∗

3 . (7.2.31b)
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This set of equations shows why degenerate four-wave mixing leads to
phase conjugation: The generated field A′

4 is driven only by the complex
conjugate of the input field amplitude. We note that this set of equations is
formally identical to the set that we would have obtained if we had taken the
driving polarizations of Eq. (7.2.21) to be simply

P1 = P2 = 0, P3 = 6ε0χ
(3)E1E2E

∗
4 , P4 = 6ε0χ

(3)E1E2E
∗
3 ,

(7.2.32)

if we had ignored the modification of the pump waves resulting from the non-
linear interaction.

Next, we solve the set of equations (7.2.31). We take the derivative of
Eq. (7.2.31) with respect to z and introduce Eq. (7.2.31) to obtain∗

d2A′
4

dz2
+ |κ|2A′

4 = 0. (7.2.33)

This result shows that the spatial dependence of A′
4 must be of the form

A′
4(z) = B sin|κ|z + C cos|κ|z. (7.2.34)

In order to determine the constants B and C, we must specify the boundary
conditions for each of the two weak waves at their respective input planes. In
particular, we assume that A′∗

3 (0) and A′
4(L) are specified. In this case, the

solution of Eq. (7.2.33) is

A′ ∗
3 (z) = − i|κ|

κ

sin|κ|z
cos|κ|LA′

4(L) + cos[|κ|(z − L)]
cos|κ|L A′ ∗

3 (0), (7.2.35a)

A′
4(z) = cos|κ|z

cos|κ|LA′
4(L) − iκ

|κ|
sin[|κ|(z − L)]

cos|κ|L A′ ∗
3 (0). (7.2.35b)

However, for the case of four-wave mixing for optical phase conjugation, we
can usually assume that there is no conjugate wave injected into the medium
at z = L—that is, we can assume that

A′
4(L) = 0. (7.2.36)

∗ We are assuming throughout this discussion that χ(3) and hence κ are real; we have written the

equation in the form shown for generality and for consistency with other cases where κ is complex.
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Furthermore, we are usually interested only in the output values of the two
interacting fields. These output field amplitudes are then given by

A′ ∗
3 (L) = A′ ∗

3 (0)

cos|κ|L, (7.2.37a)

A′
4(0) = iκ

|κ|
(
tan|κ|L)

A′ ∗
3 (0). (7.2.37b)

Note that the transmitted signal wave A′ ∗
3 (L) is always more intense than

the incident wave. Note also that the output conjugate wave A4(0) can have
any intensity ranging from zero to infinity, the actual value depending on the
particular value of |κ|L. The reflectivity of a phase-conjugate mirror based on
degenerate four-wave mixing can exceed 100% because the mirror is actively
pumped by externally applied waves, which can supply energy.

From the point of view of energetics, we can describe the process of de-
generate four-wave mixing as a process in which one photon from each of
the pump waves is annihilated and one photon is added to each of the sig-
nal and conjugate waves, as shown in Fig. 7.2.5. Hence, the conjugate wave
A4 is created, and the signal wave A3 is amplified. The degenerate four-wave
mixing process with counterpropagating pump waves is automatically phase-
matched (when the two pump waves have equal intensity or whenever we
can ignore the nonlinear phase shifts experienced by each wave). We see that
this is true because no phase-mismatch terms of the sort e±i�κz appear on

FIGURE 7.2.5 Parts (a) and (b) are energy-level diagrams describing two different
interactions that can lead to phase conjugation by degenerate four-wave mixing. In ei-
ther case, the interaction involves the simultaneous annihilation of two pump photons
with the creation of signal and conjugate photons. Diagram (a) describes the domi-
nant interaction if the applied field frequency is nearly resonant with a one-photon
transition of the material system, whereas (b) describes the dominant interaction un-
der conditions of two-photon-resonant excitation. Part (c) shows the wavevectors of
the four interacting waves. Since k1 + k2 − k3 − k4 = 0, the process is perfectly
phase-matched.
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FIGURE 7.2.6 Experimental setup for studying phase conjugation by degenerate
four-wave mixing.

the right-hand sides of Eqs. (7.2.31). The fact that degenerate four-wave mix-
ing in the phase conjugation geometry is automatically phase-matched has a
very simple physical interpretation. Since this process entails the annihilation
of two pump photons and the creation of a signal and conjugate photon, the
total input energy is 2h̄ω and the total input momentum is h̄(k1 + k2) = 0;
likewise the total output energy is 2h̄ω and the total output momentum is
h̄(k3 + k4) = 0. If the two pump beams are not exactly counterpropagating,
then h̄(k1 + k2) does not vanish and the phase-matching condition is not au-
tomatically satisfied.

The first experimental demonstration of phase conjugation by degenerate
four-wave mixing was performed by Bloom and Bjorklund (1977). Their ex-
perimental setup is shown in Fig. 7.2.6. They observed that the presence of
the aberrating glass plate did not lower the resolution of the system when the
mirror was aligned to retroreflect the pump laser beam onto itself. However,
when this mirror was partially misaligned, the return beam passed through a
different portion of the aberrating glass and the resolution of the system was
degraded.
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Degenerate four-wave mixing is usually performed using the geometry of
Fig. 7.2.4, although it can also be performed using the surface nonlinearity of
the interface between a linear and nonlinear medium; see, for instance, Maki
et al. (1992) for details.

7.2.3. Polarization Properties of Phase Conjugation

Our discussion thus far has treated phase conjugation in the scalar approxi-
mation and has shown that phase conjugation can be used to remove the ef-
fects of wavefront aberrations. It is often desirable that phase conjugation be
able to remove the effects of polarization distortions as well. An example is
shown in Fig. 7.2.7. Here a beam of light that initially is linearly polarized
passes through a stressed optical component. As a result of stress-induced
birefringence, the state of polarization of the beam becomes distorted nonuni-
formly over the cross section of the beam. This beam then falls onto a phase-
conjugate mirror. If this mirror is ideal in the sense that the polarization unit
vector ε̂ of the incident light is replaced by its complex conjugate in the re-
flected beam, the effects of the polarization distortion will be removed in the
second pass through the stressed optical component, and the beam will be re-
turned to its initial state of linear polarization. A phase-conjugate mirror that
produces a reflected beam that is both a wavefront conjugate and a polariza-
tion conjugate is often called a vector phase-conjugate mirror.

In order to describe the polarization properties of the degenerate four-wave
mixing process, we consider the geometry shown in Fig. 7.2.8, where F, B,
and S denote the amplitudes of the forward- and backward-going pump waves

FIGURE 7.2.7 Polarization properties of phase conjugation.
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FIGURE 7.2.8 Geometry of vector phase conjugation.

and of the signal wave, respectively. The total applied field is thus given by

E = F + B + S. (7.2.38)

We assume that the angle θ between the signal and forward-going pump wave
is much smaller than unity, so that only the x and y components of the incident
fields have appreciable amplitudes. We also assume that the nonlinear optical
material is isotropic, so that the third-order nonlinear optical susceptibility
χ

(3)
ijkl = χ

(3)
ijkl(ω = ω + ω − ω) is given by Eq. (4.2.5) as

χ
(3)
ijkl = χ1122(δij δkl + δikδjl) + χ1221δilδjk, (7.2.39)

and so that the nonlinear polarization can be expressed as

P = 6ε0χ1122(E · E∗)E + 3ε0χ1221(E · E)E∗

= ε0A(E · E∗)E + 1
2ε0B(E · E)E∗.

If we now introduce Eq. (7.2.38) into Eq. (7.2.40), we find that the phase-
matched contribution to the nonlinear polarization that acts as a source for the
conjugate wave is given by
[
Px

Py

]
= 6ε0

[
χ1111BxFx + χ1221ByFy χ1122(BxFy + ByFx)

χ1122(ByFx + BxFy) χ1111ByFy + χ1221BxFx

][
S∗

x

S∗
y

]
,

(7.2.40)

where χ1111 = 2χ1122 + χ1221. The polarization properties of the phase-
conjugation process will be ideal (i.e., vector phase conjugation will be ob-
tained) whenever the two-by-two transfer matrix of Eq. (7.2.40) is a multiple
of the identity matrix. Under these conditions, both cartesian components of
the incident field are reflected with equal efficiency and no coupling between
orthogonal components occurs.

There are two different ways in which the matrix in Eq. (7.2.40) can be
made to reduce to a multiple of the identity matrix. One way is for A = 6χ1122
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to vanish identically. In this case Eq. (7.2.40) becomes

[
Px

Py

]
= 6ε0χ1221(BxFx + ByFy)

[
1 0
0 1

][
S∗

x

S∗
y

]

= 6ε0χ1221(BxFx + ByFy)

[
S∗

x

S∗
y

]
,

and thus the nonlinear polarization is proportional to the complex conjugate
of the signal amplitude for any choice of the polarization vectors of the pump
waves. This result can be understood directly in terms of Eq. (7.2.40), which
shows that P has the vector character of E∗ whenever χ1122 vanishes. How-
ever, χ1122 (or A) vanishes identically only under very unusual circumstances.
The only known case for this condition to occur is that of degenerate four-
wave mixing in an atomic system utilizing a two-photon resonance between
certain atomic states. This situation has been analyzed by Grynberg (1984)
and studied experimentally by Malcuit et al. (1988). The analysis can be de-
scribed most simply for the case of a transition between two S states of an
atom with zero electron spin. The four-wave mixing process can then be de-
scribed graphically by the diagram shown in Fig. 7.2.9. Since the lower and
upper levels each possess zero angular momentum, the sum of the angular
momenta of the signal and conjugate photons must be zero, and this condition
implies that the polarization unit vectors of the two waves must be related by
complex conjugation.

For most physical mechanisms giving rise to optical nonlinearities, the co-
efficient A does not vanish. (Recall that for molecular orientation B/A = 6,
for electrostriction B/A = 0, and for nonresonant electronic response
B/A = 1.) For the general case in which A is not equal to 0, vector phase
conjugation in the geometry in Fig. 7.2.8 can be obtained only when the
pump waves are circularly polarized and counterrotating. By counterrotating,

FIGURE 7.2.9 Phase conjugation by degenerate four-wave mixing using a two-
photon transition.
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we mean that if the forward-going wave is described by

F̃(z, t) = F
x̂ − iŷ√

2
ei(kz−ωt) + c.c., (7.2.41a)

then the backward-going wave is described by

B̃(z, t) = B
x̂ + iŷ√

2
ei(−kz−ωt) + c.c. (7.2.41b)

These waves are counterrotating in the sense that, for any fixed value of z,
F̃ rotates clockwise in time in the xy plane and B̃ rotates counterclockwise
in time. However, both waves are right-hand circularly polarized, since, by
convention, the handedness of a wave is the sense of rotation as determined
when looking into the beam.

In the notation of Eq. (7.2.40), the amplitudes of the fields described by
Eqs. (7.2.41) are given by

Fx = F√
2
eikz, Fy = −i

F√
2

ikz

,

Bx = B√
2
e−ikz, By = i

B√
2
e−ikz, (7.2.42)

and so Eq. (7.2.40) becomes
[
Px

Py

]
= 3ε0FB(χ1111 + χ1221)

[
1 0
0 1

][
S∗

x

S∗
y

]
. (7.2.43)

We see that the transfer matrix is again a multiple of the identity matrix and
hence that the nonlinear polarization vector is proportional to the complex
conjugate of the signal field vector. The fact that degenerate four-wave mixing
excited by counterrotating pump waves leads to vector phase conjugation was
predicted theoretically by Zel’dovich and Shkunov (1979) and was verified
experimentally by Martin et al. (1980).

The reason why degenerate four-wave mixing with counterrotating pump
waves leads to vector phase conjugation can be understood in terms of the con-
servation of linear and angular momentum. As just described, phase conjuga-
tion can be visualized as a process in which one photon from each pump wave
is annihilated and a signal and conjugate photon are simultaneously created.
Since the pump waves are counterpropagating and counterrotating, the total
linear and angular momenta of the two input photons must vanish. Then con-
servation of linear and angular momentum requires that the conjugate wave
must be emitted in a direction opposite to the direction of propagation of the
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signal wave and that its polarization vector must rotate in a sense opposite to
that of the signal wave.

7.3. Optical Bistability and Optical Switching

Certain nonlinear optical systems can possess more than one output state for
a given input state. The term optical bistability refers to the situation in which
two different output intensities are possible for a given input intensity, and
the more general term optical multistability is used to describe the circum-
stance in which two or more stable output states are possible. Interest in opti-
cal bistability stems from its potential usefulness as a switch for use in optical
communication and in optical computing.

Optical bistability was first described theoretically and observed experi-
mentally using an absorptive nonlinearity by Szöke et al. (1969). Optical
bistability was observed experimentally for the case of a refractive nonlin-
earity (real χ(3)) by Gibbs et al. (1976). The bistable optical device described
in these works consists of a nonlinear medium placed inside of a Fabry–Perot
resonator. Such a device is illustrated schematically in Fig. 7.3.1. Here A1 de-
notes the field amplitude of the incident wave, A′

1 denotes that of the reflected
wave, A2 and A′

2 denote the amplitudes of the forward- and backward-going
waves within the interferometer, and A3 denotes the amplitude of the trans-
mitted wave. The cavity mirrors are assumed to be identical and lossless, with
amplitude reflectance ρ and transmittance τ that are related to the intensity
reflectance R and transmittance T through

R = |ρ|2 and T = |τ |2 (7.3.1a)

with

R + T = 1. (7.3.1b)

The incident and internal fields are related to each other through boundary
conditions of the form

A′
2 = ρA2e

2ikl−αl, (7.3.2a)

A2 = τA1 + ρA′
2. (7.3.2b)

In these equations, we assume that the field amplitudes are measured at the
inner surface of the left-hand mirror. The propagation constant k = nω/c and
intensity absorption coefficient α are taken to be real quantities, which include
both their linear and nonlinear contributions. In writing Eq. (7.3.2) in the form
shown, we have implicitly made a mean-field approximation—that is, we have
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FIGURE 7.3.1 Bistable optical device in the form of a Fabry–Perot interferometer
containing a nonlinear medium.

assumed that the quantities k and α are spatially invariant; if such is not the
case, the exponent should be replaced by

∫ l

0 dz[2ik(z)−α(z)]. For simplicity
we also assume that the nonlinear material and the medium surrounding the
resonator have the same linear refractive indices.

Equations (7.3.2) can be solved algebraically by eliminating A′
2 to obtain

A2 = τA1

1 − ρ2e2ikl−αl
, (7.3.3)

what is known as Airy’s equation and which describes the properties of a
Fabry–Perot interferometer. If k or α (or both) is a sufficiently nonlinear func-
tion of the intensity of the light within the interferometer, this equation pre-
dicts bistability in the intensity of the transmitted wave. In general, both k and
α can display nonlinear behavior; however, we can obtain a better understand-
ing of the nature of optical bistability by considering in turn the limiting cases
in which either the absorptive or the refractive contribution dominates.

7.3.1. Absorptive Bistability

Let us first examine the case in which only the absorption coefficient α de-
pends nonlinearly on the field intensity. The wavevector magnitude k is hence
assumed to be constant. To simplify the following analysis, we assume that the
mirror separation l is adjusted so that the cavity is tuned to resonance with the
applied field; in such a case the factor ρ2e2ikl that appears in the denominator
of Eq. (7.3.3) is equal to the real quantity R. We also assume that αl � 1, so
that we can ignore the spatial variation of the intensity of the field inside the
cavity, which justifies the use of the mean-field approximation. Under these
conditions, Airy’s equation (7.3.3) reduces to

A2 = τA1

1 − R(1 − αl)
. (7.3.4)
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The analogous equation relating the incident and circulating intensities Ii =
2nε0|Ai |2 is given by

I2 = T I1

[1 − R(1 − αl)]2
. (7.3.5)

This equation can be simplified by introducing the dimensionless parameter
C (known as the cooperation number),

C = Rαl

1 − R
, (7.3.6)

which becomes (since 1+C = (1−R +Rαl)/(1−R) = [1−R(1−αl)]/T )

I2 = 1

T

I1

(1 + C)2
. (7.3.7)

We now assume that the absorption coefficient α and hence the parameter C

depend on the intensity of the light within the interferometer. For simplicity,
we assume that the absorption coefficient obeys the relation valid for a two-
level saturable absorber,

α = α0

1 + I/Is

, (7.3.8)

where α0 denotes the unsaturated absorption coefficient, I the local value of
the intensity, and Is the saturation intensity. For simplicity we also ignore the
standing-wave nature of the field within the interferometer and take I equal to
I2 + I ′

2 ≈ 2I2. It is only approximately valid to ignore standing-wave effects
for the interferometer of Fig. 7.3.1, but it is strictly valid for the traveling-
wave interferometer shown in Fig. 7.3.2. Under the assumption that the ab-
sorption coefficient depends on the intensity of the internal fields according to

FIGURE 7.3.2 Bistable optical device in the form of a traveling wave interferometer
containing a nonlinear medium.
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FIGURE 7.3.3 The input–output relation for a bistable optical device described by
Eqs. (7.3.10) and (7.3.11).

Eq. (7.3.8) with I = 2I2, the parameter C is given by

C = C0

1 + 2I2/Is

, (7.3.9)

with C0 = Rα0l/(1 −R). The relation between I1 and I2 given by Eq. (7.3.7)
can be rewritten using this expression for C as

I1 = TI2

(
1 + C0

1 + 2I2/Is

)2

. (7.3.10)

Finally, the output intensity I3 is related to I2 by

I3 = TI2. (7.3.11)

The input–output relation implied by Eqs. (7.3.10) and (7.3.11) is illustrated
graphically in Fig. 7.3.3 for several different values of the weak-field parame-
ter C0. For C0 greater than 8, more than one output intensity can occur for
certain values of the input intensity, which shows that the system possesses
multiple solutions.

The input–output characteristics for a system showing optical bistability
are shown schematically in Fig. 7.3.4(a). The portion of the curve that has
a negative slope is shown by a dashed line. This portion corresponds to the
branch of the solution to Eq. (7.3.10) for which the output intensity increases
as the input intensity decreases. As might be expected on intuitive grounds,
and as can be verified by means of a linear stability analysis, this branch of the
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FIGURE 7.3.4 Schematic representation of the input–output characteristics of a sys-
tem showing optical bistability.

solution is unstable; if the system is initially in this state, it will rapidly switch
to one of the stable solutions through the growth of small perturbations.

The solution shown in Fig. 7.3.4(a) displays hysteresis in the following
sense. We imagine that the input intensity I1 is initially zero and is slowly
increased. As I1 is increased from zero to Ih (the high jump point), the output
intensity is given by the lower branch of the solution—that is, by the segment
terminated by points a and b. As the input intensity is increased still further,
the output intensity must jump to point c and trace out that portion of the
curve labeled c–d . If the intensity is now slowly decreased, the system will
remain on the upper branch and the output intensity will be given by the curve
segment e–d . As the input intensity passes through the value Il (the low jump
point), the system makes a transition to point f and traces out the curve of
f –a as the input intensity is decreased to zero.

The use of such a device as an optical switch is illustrated in part (b) of
Fig. 7.3.4. If the input intensity is held fixed at the value Ib (the bias intensity),
the two stable output points indicated by the filled dots are possible. The state
of the system can be used to store binary information. The system can be
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forced to make a transition to the upper state by injecting a pulse of light so
that the total input intensity exceeds Ih; the system can be forced to make a
transition to the lower state by momentarily blocking the input beam.

7.3.2. Refractive Bistability

Let us now consider the case in which the absorption coefficient vanishes but
in which the refractive index n depends nonlinearly on the optical intensity.
For α = 0, Eq. (7.3.3) becomes

A2 = τA1

1 − ρ2e2ikl
= τA1

1 − Reiδ
. (7.3.12)

In obtaining the second form of this equation, we have written ρ2 in terms of
its amplitude and phase as

ρ2 = Reiφ (7.3.13)

and have introduced the total phase shift δ acquired in a round trip through
the cavity. This phase shift is the sum

δ = δ0 + δ2 (7.3.14)

of a linear contribution

δ0 = φ + 2n0
ω

c
l (7.3.15)

and a nonlinear contribution

δ2 = 2n2I
ω

c
l, (7.3.16)

where

I = I2 + I ′
2 
 2I2. (7.3.17)

Equation (7.3.12) can be used to relate the intensities Ii = 2nε0c|Ai |2 of
the incident and internal fields as

I2 = TI1

(1 − Reiδ)(1 − Re−iδ)
= TI1

1 + R2 − 2R cos δ

= TI1

(1 − R)2 + 4R sin2 1
2δ

= TI1

T 2 + 4R sin2 1
2δ

= I1/T

1 + (4R/T 2) sin2 1
2δ

, (7.3.18)
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FIGURE 7.3.5 Graphical solution to Eq. (7.3.19). The oscillatory curve represents the
right-hand side of this equation, and the straight lines labeled a through c represent the
left-hand side for increasing values of the input intensity I1.

which shows that
I2

I1
= 1/T

1 + (4R/T 2) sin2 1
2δ

, (7.3.19)

where, according to Eqs. (7.3.14) though (7.3.17), the phase shift is given by

δ = δ0 + (4n2ωl/c)I2. (7.3.20)

In order to determine the conditions under which bistability can occur, we
solve Eqs. (7.3.19) and (7.3.20) for the internal intensity I2 as a function of
the incident intensity I1. This procedure is readily performed graphically by
plotting each side of Eq. (7.3.19) as a function of I2. Such a plot is shown
in Fig. 7.3.5. We see that the system can possess one, three, five, or more
solutions depending on the value of I1. For the case in which three solutions
exist for the range of input intensities I1 that are available, a plot of I3 versus
I1 looks very much like the curves shown in Fig. 7.3.4. Hence, the qualitative
discussion of optical bistability given above is applicable in this case as well.

More detailed treatments of optical bistability can be found in Lugiato
(1984) and Gibbs (1985).

7.3.3. Optical Switching

Let us now analyze a prototypical all-optical switching device, as illustrated in
Fig. 7.3.6. For simplicity, in the present analysis we assume that only a signal
field is applied to the device; we shall show that this signal beam is directed
to one or the other of the output ports depending on its intensity. Such an
application of this device is illustrated in Fig. 7.3.7. A more general situation,
in which both signal and control fields are applied to the device, can be treated
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FIGURE 7.3.6 Configuration of an all-optical switch in the form of a Mach–Zehnder
interferometer containing a nonlinear element. The input signal field is routed to either
output 1 or 2 depending on its intensity and/or on the intensity of the control field.

FIGURE 7.3.7 Illustration of the use of the device of Fig. 7.3.6 (without a control
field) as a pulse sorter.
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by a similar but somewhat more detailed calculation, with the conclusion that
the control field can be used to route the signal beam to either output port.

We assume that a signal field of amplitude Es is incident upon the device
and that the beam splitters are symmetric (have the same amplitude reflection
and transmission coefficients r and t for beams incident on the beam splitter
from either side) with coefficients given by∗

r = i
√

R, t = √
T (7.3.21)

with

R + T = 1. (7.3.22)

The field at output port 1 is then seen to be given by

E1 = Es

(
rt + rteiφNL

)
, (7.3.23)

where

φNL = n2(ω/c)IL = n2(ω/c)|t |2(2n0ε0c)|Es |2L. (7.3.24)

The intensity at output port 1 is thus proportional to

|E1|2 = |Es |2|r|2|t |2
(
1 + eiφNL

)(
1 + e−iφNL

)
= 2|Es |2RT (1 + cosφNL). (7.3.25)

We similarly find that the output at port 2 is given by

E2 = Es

(
r2 + t2eiφNL

)
(7.3.26)

with an intensity proportional to

|E2|2 = |Es |2
[
R2 + T 2 − 2RT cosφNL

]
. (7.3.27)

Note that

|E1|2 + |E2|2 = |Es |2 (7.3.28)

as required by conservation of energy. These relations are illustrated in
Fig. 7.3.8 and lead to the sort of behavior shown qualitatively in Fig. 7.3.7.

Even though the calculation just presented is somewhat simplistic in that it
considers the situation in which there is only a single input beam, it illustrates
a crucial point: A nonlinear phase shift of π radians is required to produce
high-contrast all-optical switching. The requirement that the nonlinear phase

∗ This form of the beam-splitter relation ensures that the transfer characteristics obey a unitarity
condition or equivalently that they obey the Stokes relations.
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FIGURE 7.3.8 Plot of the transfer relations described by Eqs. (7.3.25) and (7.3.27).

shift be as large as π radians is generic to a broad class of all-optical switching
devices.

Let us therefore examine more carefully the conditions under which a non-
linear phase shift of π radians can be achieved. Let us first examine the conse-
quences of using a nonlinear optical material that displays linear absorption.
Under this circumstance the nonlinear phase shift is given by

φNL = n2(ω/c)

∫ L

0
I (z) dz, (7.3.29)

where

I (z) = I0e
−αz. (7.3.30)

Straightforward integration leads to the result

φNL = n2(ω/c)I0Leff, (7.3.31a)

where

Leff = 1 − e−αL

α
. (7.3.31b)

Note that

Leff → L for αL � 1, (7.3.32a)

Leff → 1/α for αL � 1. (7.3.32b)

Thus, for a strongly absorbing nonlinear optical material the effective inter-
action length can be much shorter than the physical length of the nonlinear
medium. We also note that optical damage (see also Chapter 11) imposes a
limit on how large a value of I0 can be used for a particular material. Thus
certain material cannot even in principle be used for all-optical switching.

When the optical material displays two-photon absorption as well as lin-
ear absorption, the absorption coefficient appearing in Eq. (7.3.30) should be
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FIGURE 7.3.9 Two-photon absorption (shown in a) can be prevented by utilizing a
material (b) such that the laser frequency lies below the half-band-gap energy. This
strategy, however, precludes the use of one-photon-resonant nonlinearities (c).

replaced by

α = α0 + βI, (7.3.33)

where β is the two-photon absorption coefficient.
Two-photon absorption is often a significant problem in the design of all-

optical switching devices because it occurs at the same order of nonlinearity as
the intensity-dependent refractive index n2 (because these processes are pro-
portional to the imaginary and real parts of χ(3), respectively). Two-photon
absorption can be eliminated entirely by choosing a material for which the
lowest-lying excited state lies more than 2h̄ω above the ground state, as illus-
trated schematically in Fig. 7.3.9. A good summary of all-optical switching
has been presented by Stegeman and Miller (1993).

7.4. Two-Beam Coupling

Let us consider the situation shown in Fig. 7.4.1 in which two beams of light
(which in general have different frequencies) interact in a nonlinear material.
Under certain conditions, the two beams interact in such a manner that energy
is transferred from one beam to the other; this phenomenon is known as two-
beam coupling. Two-beam coupling is a process that is automatically phase-
matched. Consequently the efficiency of the process does not depend critically
upon the angle θ between the two beams. The reason why this process is au-
tomatically phase-matched will be clarified by the following analysis; for the
present it is perhaps helpful to note that the origin of two-beam coupling is
that the refractive index experienced by either wave is modified by the inten-
sity of the other wave.
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FIGURE 7.4.1 Two-beam coupling.

Two-beam coupling occurs under several different circumstances in non-
linear optics. We saw in Chapter 6 that the nonlinear response of a two-level
atom to pump and probe fields can lead to amplification of the probe wave.
Furthermore, we shall see in Chapters 9 and 10 that gain occurs for various
scattering processes such as stimulated Brillouin scattering and stimulated
Raman scattering. Furthermore, in Chapter 11 we shall see that two-beam
coupling occurs in many photorefractive materials. In the present section, we
examine two-beam coupling from a general point of view that elucidates the
conditions under which such energy transfer can occur. Our analysis is similar
to that of Silberberg and Bar-Joseph (1982, 1984).

We describe the total optical field within the nonlinear medium as

Ẽ(r, t) = A1e
i(k1·r−ω1t) + A2e

i(k2·r−ω2t) + c.c., (7.4.1)

where ki = n0ωi/c, with n0 denoting the linear part of the refractive index
experienced by each wave. We now consider the intensity distribution asso-
ciated with the interference between the two waves. The intensity is given in
general by

I = n0ε0c
〈
Ẽ2〉, (7.4.2)

where the angular brackets denote an average over a time interval of many
optical periods. The intensity distribution for Ẽ given by Eq. (7.4.1) is hence
given by

I = 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(k1−k2)·r−i(ω1−ω2)t + c.c.
]}

= 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(q·r−δt) + c.c.
]}

, (7.4.3)

where we have introduced the wavevector difference (or “grating” wavevec-
tor)

q = k1 − k2 (7.4.4a)

and the frequency difference

δ = ω1 − ω2. (7.4.4b)
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FIGURE 7.4.2 Interference pattern formed by two interacting waves.

For the geometry of Fig. 7.4.1, the interference pattern has the form shown
in Fig. 7.4.2, where we have assumed that |δ| � ω1. Note that the pattern
moves upward for δ > 0, moves downward for δ < 0, and is stationary for
δ = 0.

A particularly simple example is the special case in which θ = 180 degrees.
Then, again assuming that |δ| � ω1, we find that the wavevector difference is
given approximately by

q 
 −2k2 (7.4.5)

and thus that the intensity distribution is given by

I = 2n0ε0c
{
A1A

∗
1 + A2A

∗
2 + [

A1A
∗
2e

i(−2kz−δt) + c.c.
]}

. (7.4.6)

The interference pattern is hence of the form shown in Fig. 7.4.3. If δ is pos-
itive, the interference pattern moves to the left, and if δ is negative, it moves
to the right—in either case with phase velocity |δ|/2k.

Since the material system is nonlinear, a refractive index variation accom-
panies this intensity variation. Each wave is scattered by this index variation,
or grating. We shall show below that no energy transfer accompanies this in-
teraction for the case of a nonlinear material that responds instantaneously
to the applied field. In order to allow the possibility of energy transfer, we
assume that the nonlinear part of the refractive index (nNL) obeys a Debye
relaxation equation of the form

τ
dnNL

dt
+ nNL = n2I. (7.4.7)

Note that this equation predicts that, in steady state, the nonlinear contribu-
tion to the refractive index is given simply by nNL = n2I , in consistency with
Eq. (4.1.15). However, under transient conditions it predicts that the nonlin-
earity develops in a time interval of the order of τ .

Equation (7.4.7) can be solved (i.e., by the method of variation of parame-
ters or by the Green’s function method) to give the result

nNL = n2

τ

∫ t

−∞
I (t ′)e(t ′−t)/τ dt ′. (7.4.8)
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FIGURE 7.4.3 Interference pattern formed by two counterpropagating beams.

The expression (7.4.3) for the intensity I (t) is next introduced into this equa-
tion. We find, for example, that the part of I (t) that varies as e−iδt leads to an
integral of the form

∫ t

−∞
e−iδt ′e(t ′−t)/τ dt ′ = e−t/τ

∫ t

−∞
e(−iδ+1/τ)t ′ dt ′ = e−iδt

−iδ + 1/τ
. (7.4.9)

Equation (7.4.8) hence shows that the nonlinear contribution to the refractive
index is given by

nNL = 2n0n2ε0c

[(
A1A

∗
1 + A2A

∗
2

) + A1A
∗
2e

i(q·r−δt)

1 − iδτ
+ A∗

1A2e
−i(q·r−δt)

1 + iδτ

]
.

(7.4.10)

Because of the complex nature of the denominators, the refractive index vari-
ation is not in general in phase with the intensity distribution.

In order to determine the degree of coupling between the two fields, we
require that the field given by Eq. (7.4.1) satisfy the wave equation

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 0, (7.4.11)

where we take the refractive index to have the form

n = n0 + nNL. (7.4.12)

We make the physical assumption that |nNL| � n0, in which case it is a good
approximation to express n2 as

n2 = n2
0 + 2n0nNL. (7.4.13)

Let us consider the part of Eq. (7.4.11) that shows a spatial and temporal
dependence given by exp[i(k2 · r − ω2t)]. Using Eqs. (7.4.1), (7.4.10), and
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(7.4.13), we find that this portion of Eq. (7.4.11) is given by

d2A2

dz2
+ 2ik2

dA2

dz
− k2

2A2 + n2
0ω

2
2

c2
A2

= −4n2
0n2ω

2
2ε0

c

(|A1|2 + |A2|2
)
A2 − 4n2

0n2ω
2
1ε0

c

|A1|2A2

1 + iδτ
. (7.4.14)

Note that the origin of the last term on the right-hand side is the scattering
of the field A1 exp[i(k1 · r − ω1t)] from the time-varying refractive index
distribution (i.e., the moving grating)

(2n0ε0n2/c)A
∗
1A2

e−i(q·r−δt)

1 + iδτ
,

whereas the origin of the first term on the right-hand side is the scattering of
the field A2 exp[i(k2 · r − ω2t)] from the stationary refractive index variation

(2n0ε0n2/c)
(
A1A

∗
1 + A2A

∗
2

)
.

We next drop the first term on the left-hand side of Eq. (7.4.14) by making
the slowly varying amplitude approximation, and we note that the third and
fourth terms exactly cancel. The equation then reduces to

dA2

dz
= 2in0n2(ω/c)

[(|A1|2 + |A2|2
)
A2 + |A1|2A2

1 + iδτ

]
, (7.4.15)

where, to good approximation, we have replaced ω1 and ω2 by ω. We now
calculate the rate of change of intensity of the ω2 field. We introduce the
intensities

I1 = 2n0ε0cA1A
∗
1 and I2 = 2n0ε0cA2A

∗
2 (7.4.16)

and note that the spatial variation of I2 is given by

dI2

dz
= 2n0ε0c

(
A∗

2
dA2

dz
+ A2

dA∗
2

dz

)
. (7.4.17)

We then find from Eqs. (7.4.15) through (7.4.17) that

dI2

dz
= 2n2ω

c

δτ

1 + δ2τ 2
I1I2. (7.4.18)

Note that only the last term on the right-hand side of Eq. (7.4.15) contributes
to energy transfer.

For the case of a positive value of n2 (e.g., for the molecular orientation Kerr
effect, for electrostriction, for a two-level atom with the optical frequencies
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FIGURE 7.4.4 Frequency dependence of the gain for two-beam coupling.

above the resonance frequency), Eq. (7.4.18) predicts gain for positive δ—
that is, for ω2 < ω1. The frequency dependence of Eq. (7.4.18) is shown in
Fig. 7.4.4.

Note that the ω2 wave experiences maximum gain for δτ = 1, in which case
Eq. (7.4.18) becomes

dI2

dz
= n2

ω

c
I1I2. (7.4.19)

Note also from Eq. (7.4.18) that in the limit of an infinitely fast nonlinearity,
that is, in the limit τ → 0, the coupling of intensity between the two waves
vanishes. The reason for this behavior is that only the imaginary part of the
(total) refractive index can lead to a change in intensity of the ω2 wave. We
see from Eq. (7.4.10) that (for a real n2) the only way in which nNL can
become complex is if τ is nonzero. When τ is nonzero, the response can lag
in phase behind the driving term, leading to a complex value of the nonlinear
contribution to the refractive index.

The theory just presented predicts that there will be no energy coupling if
the product δτ vanishes, either because the nonlinearity has a fast response
or because the input waves are at the same frequency. However, two-beam
coupling can occur in certain photorefractive crystals even between beams of
the same frequency (Feinberg, 1983). In such cases, energy transfer occurs
as a result of a spatial phase shift between the nonlinear index grating and
the optical intensity distribution. The direction of energy flow depends upon
the orientation of the wavevectors of the optical beams with respect to some
symmetry axis of the photorefractive crystal. The photorefractive effect is de-
scribed in greater detail in Chapter 11.
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7.5. Pulse Propagation and Temporal Solitons

In this section we study some of the nonlinear optical effects that can occur
when short optical pulses propagate through dispersive nonlinear optical me-
dia. We shall see that the spectral content of the pulse can become modified
by the nonlinear optical process of self-phase modulation. This process is es-
pecially important for pulses of high peak intensity. We shall also see that
(even for the case of a medium with a linear response) the shape of the pulse
can become modified by means of propagation effects such as dispersion of
the group velocity within the medium. This process is especially important
for very short optical pulses, which necessarily have a broad spectrum. In
general, self-phase modulation and group-velocity dispersion occur simulta-
neously, and both tend to modify the shape of the optical pulse. However,
under certain circumstances, which are described below, an exact cancella-
tion of these two effects can occur, allowing a special type of pulse known
as an optical soliton to propagate through large distances with no change in
pulse shape.

7.5.1. Self-Phase Modulation

Self-phase modulation is the change in the phase of an optical pulse resulting
from the nonlinearity of the refractive index of the material medium. In order
to understand the origin of this effect, let us consider the propagation of the
optical pulse

Ẽ(z, t) = Ã(z, t)ei(k0z−ω0t) + c.c. (7.5.1)

through a medium characterized by a nonlinear refractive index of the sort

n(t) = n0 + n2I (t), (7.5.2)

where I (t) = 2n0ε0c|Ã(z, t)|2. Note that for the present we are assuming that
the medium can respond essentially instantaneously to the pulse intensity. We
also assume that the length of the nonlinear medium is sufficiently small that
no reshaping of the optical pulse can occur within the medium; the only effect
of the medium is to change the phase of the transmitted pulse by the amount

φNL(t) = −n2I (t)ω0L/c. (7.5.3)

As a result of the time-varying phase of the wave, the spectrum of the trans-
mitted pulse will be modified and typically will be broader than that of the
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incident pulse. From a formal point of view, we can determine the spectral
content of the transmitted pulse by calculating its energy spectrum

S(ω) =
∣∣∣∣
∫ ∞

−∞
Ã(t)e−iω0t−iφNL(t)eiωt dt

∣∣∣∣
2

. (7.5.4)

However, it is more intuitive to describe the spectral content of the transmitted
pulse by introducing the concept of the instantaneous frequency ω(t) of the
pulse, which is described by

ω(t) = ω0 + δω(t), (7.5.5a)

where

δω(t) = d

dt
φNL(t) (7.5.5b)

denotes the variation of the instantaneous frequency. The instantaneous fre-
quency is a well-defined concept and is given by Eqs. (7.5.5) whenever the
amplitude Ã(t) varies slowly compared to an optical period.

As an example of the use of these formulas, we consider the case illustrated
in part (a) of Fig. 7.5.1, in which the pulse shape is given by the form

I (t) = I0 sech2(t/τ0). (7.5.6)

We then find from Eq. (7.5.3) that the nonlinear phase shift is given by

φNL(t) = −n2
ω0

c
LI0 sech2(t/τ0), (7.5.7)

and from Eq. (7.5.5b) that the change in instantaneous frequency is given by

δω(t) = 2n2
ω0

cτ0
LI0 sech2(t/τ0) tanh(t/τ0). (7.5.8)

The variation in the instantaneous frequency is illustrated in part (b) of
Fig. 7.5.1, under the assumption that n2 is positive. We see that the leading
edge of the pulse is shifted to lower frequencies and that the trailing edge is
shifted to higher frequencies. This conclusion is summarized schematically
in part (c) of the figure. The maximum value of the frequency shift is of the
order of

δωmax 
 �φ
(max)
NL

τ0
, where �φ

(max)
NL 
 n2

ω0

c
I0L. (7.5.9)

We expect that spectral broadening due to self-phase modulation will be
very important whenever δωmax exceeds the spectral width of the incident
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FIGURE 7.5.1 (a) Time dependence of the incident pulse. (b) Change in instanta-
neous frequency of the transmitted pulse. (c) Experimental arrangement to observe
self-phase modulation.

pulse, which for the case of a smooth pulse is of the order of 1/τ0. We thus
expect self-phase modulation to be important whenever �φ

(max)
NL ≥ 2π .

Self-phase modulation of the sort just described was studied initially by
Brewer (1967), Shimizu (1967), and Cheung et al. (1968). Its use in mea-
suring the intensity-dependent refractive index of optical fibers has been de-
scribed by Kim et al. (1994).

7.5.2. Pulse Propagation Equation

Let us next consider the equations that govern the propagation of the pulse

Ẽ(z, t) = Ã(z, t)ei(k0z−ω0t) + c.c., (7.5.10)

where k0 = nlin(ω0)ω0/c, through a dispersive, nonlinear optical medium. In
particular, we seek an equation that describes how the pulse envelope function
Ã(z, t) propagates through the medium. We begin with the wave equation in
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the form (see also Eq. (2.1.9a))

∂2Ẽ

∂z2
− 1

ε0c2

∂2D̃

∂t2
= 0, (7.5.11)

where D̃ represents the total displacement field, including both linear and
nonlinear contributions. We now introduce the Fourier transforms of Ẽ(z, t)

and D̃(z, t) by the equations

Ẽ(z, t) =
∫ ∞

−∞
E(z,ω)e−iωt dω

2π
, D̃(z, t) =

∫ ∞

−∞
D(z,ω)e−iωt dω

2π
.

(7.5.12)

The Fourier amplitudes E(z,ω) and D(z,ω) are related by

D(z,ω) = ε0ε(ω)E(z,ω), (7.5.13)

where ε(ω) is the effective dielectric constant that describes both the linear
and nonlinear contributions to the response.

Equations (7.5.12) and (7.5.13) are now introduced into the wave equation
(7.5.11), which leads to the result that each Fourier component of the field
must obey the equation

∂2E(z,ω)

∂z2
+ ε(ω)

ω2

c2
E(z,ω) = 0. (7.5.14)

We now write this equation in terms of the Fourier transform of Ã(z, t), which
is given by

A(z,ω′) =
∫ ∞

−∞
Ã(z, t)eiω′t dt, (7.5.15)

and which is related to E(z,ω) by

E(z,ω) = A(z,ω − ω0)e
ik0z + A∗(z,ω + ω0)e

−ik0z


 A(z,ω − ω0)e
ik0z. (7.5.16)

Here the second, approximate form is obtained by noting that a quantity such
as Ã(z, t) that varies slowly in time cannot possess high-frequency Fourier
components. This expression for E(z,ω) is now introduced into Eq. (7.5.14),
and the slowly-varying amplitude approximation is made so that the term con-
taining ∂2A/∂z2 can be dropped. One obtains

2ik0
∂A

∂z
+ (

k2 − k2
0

)
A = 0, (7.5.17)
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where

k(ω) = √
ε(ω)ω/c. (7.5.18)

In practice, k typically differs from k0 by only a small fraction amount and
thus to good approximation k2 − k2

0 can be replaced by 2k0(k − k0) so that
Eq. (7.5.17) becomes

∂A(z,ω − ω0)

∂z
− i(k − k0)A(z,ω − ω0) = 0. (7.5.19)

Recall that the propagation constant k depends both on the frequency and
(through the intensity dependence of ε) on the intensity of the optical wave.
It is often adequate to describe this dependence in terms of a truncated power
series expansion of the form

k = k0 + �kNL + k1(ω − ω0) + 1
2k2(ω − ω0)

2. (7.5.20)

In this expression, we have introduced the nonlinear contribution to the prop-
agation constant, given by

�kNL = �nNLω0/c = n2Iω0/c, (7.5.21)

with I = 2nlin(ω0)ε0c|Ã(z, t)|2, and have introduced the quantities

k1 =
(

dk

dω

)
ω=ω0

= 1

c

[
nlin(ω) + ω

dnlin(ω)

dω

]
ω=ω0

≡ 1

vg(ω0)
(7.5.22)

and

k2 =
(

d2k

dω2

)
ω=ω0

= d

dω

[
1

vg(ω)

]
ω=ω0

=
(

− 1

v2
g

dvg

dω

)
ω=ω0

. (7.5.23)

Here k1 is the reciprocal of the group velocity, and k2 is a measure of the dis-
persion of the group velocity. As illustrated in Fig. 7.5.2, the long-wavelength
components of an optical pulse propagate faster than the short-wavelength
components when the group velocity dispersion parameter k2 is positive, and
vice versa.

The expression (7.5.20) for k is next introduced into the reduced wave equa-
tion (7.5.19), which becomes

∂A

∂z
− i�kNLA − ik1(ω − ω0)A − 1

2 ik2(ω − ω0)
2A = 0. (7.5.24)

This equation is now transformed from the frequency domain to the time do-
main. To do so, we multiply each term by the factor exp[−i(ω − ω0)t] and
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FIGURE 7.5.2 Pulse spreading resulting from group velocity dispersion.

integrate the resulting equation over all values of ω − ω0. We next evaluate
the resulting integrals. First, by the definition of the Fourier transform, we find
that

∫ ∞

−∞
A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π
= Ã(z, t). (7.5.25a)

Next, by formal differentiation with respect to the time variable, we find that

∫ ∞

−∞
(ω − ω0)A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π

= 1

−i

∂

∂t

∫ ∞

−∞
A(z,ω − ω0)e

−i(ω−ω0)t
d(ω − ω0)

2π
= i

∂

∂t
Ã(z, t),

(7.5.25b)

and

∫ ∞

−∞
(ω − ω0)

2A(z,ω − ω0)e
−i(ω−ω0)t

d(ω − ω0)

2π
= − ∂2

∂t2
Ã(z, t).

(7.5.25c)

Equation (7.5.24) then becomes

∂Ã

∂z
+ k1

∂Ã

∂t
+ 1

2 ik2
∂2Ã

∂t2
− i�kNLÃ = 0. (7.5.26)
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This equation can be simplified by means of a coordinate transformation.
In particular, we introduce the retarded time τ by the substitution

τ = t − z

vg

= t − k1z, (7.5.27)

and we describe the optical pulse by the function Ãs(z, τ ), which is related to
the function Ã(z, t) by

Ãs(z, τ ) = Ã(z, t). (7.5.28)

We next use the chain rule of differentiation to establish that

∂Ã

∂z
= ∂Ãs

∂z
+ ∂Ãs

∂τ

∂τ

∂z
= ∂Ãs

∂z
− k1

∂Ãs

∂τ
, (7.5.29a)

∂Ã

∂t
= ∂Ãs

∂z

∂z

∂t
+ ∂Ãs

∂τ

∂τ

∂t
= ∂Ãs

∂τ
, (7.5.29b)

and analogously that ∂2Ã/∂t2 = ∂2Ãs/∂τ 2. These expressions are now intro-
duced into Eq. (7.5.26), which becomes

∂Ãs

∂z
+ 1

2 ik2
∂2Ãs

∂τ 2
− i�kNLÃs = 0. (7.5.30)

Finally, we express the nonlinear contribution to the propagation constant as

�kNL = n2
ω0

c
I = 2n0ε0n2ω0|Ãs |2 ≡ γ |Ãs |2, (7.5.31)

so that Eq. (7.5.30) can be expressed as

∂Ãs

∂z
+ 1

2 ik2
∂2Ãs

∂τ 2
= iγ |Ãs |2Ãs . (7.5.32)

This equation describes the propagation of optical pulses through disper-
sive, nonlinear optical media. Note that the second term on the left-hand side
shows how pulses tend to spread because of group velocity dispersion, and
that the term on the right-hand side shows how pulses tend to spread because
of self-phase modulation. Equation (7.5.32) is sometimes referred to as the
nonlinear Schrödinger equation.

7.5.3. Temporal Optical Solitons

Note from the form of the pulse propagation equation (7.5.32) that it is pos-
sible for the effects of group velocity dispersion to compensate for the effects
of self-phase modulation. In fact, under appropriate circumstances the degree
of compensation can be complete, and optical pulses can propagate through a
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dispersive, nonlinear optical medium with an invariant shape. Such pulses are
known as temporal optical solitons.

As an example of a soliton, note that Eq. (7.5.32) is solved identically by a
pulse whose amplitude is of the form

Ãs(z, τ ) = A0
s sech(τ/τ0)e

iκz, (7.5.33a)

where the pulse amplitude A0
s and pulse width τ0 must be related according

to

|A0
s |2 = −k2

γ τ 2
0

= −k2

2n0ε0n2ω0τ
2
0

(7.5.33b)

and where

κ = −k2/2τ 2
0 = 1

2γ |A0
s |2 (7.5.33c)

represents the phase shift experienced by the pulse on propagation. One can
verify by direct substitution that Eqs. (7.5.33) do in fact satisfy the pulse prop-
agation equation (7.5.32) (see Problem 15 at the end of this chapter).

Note that condition (7.5.33b) shows that k2 and n2 must have opposite signs
in order for Eq. (7.5.33a) to represent a physical pulse in which the inten-
sity |A0

s |2 and the square of the pulse width τ 2
0 are both positive. We can see

from Eq. (7.5.32) that in fact k2 and γ must have opposite signs in order for
group velocity dispersion to compensate for self-phase modulation (because
Ã−1

s (∂2Ãs/∂τ 2) will be negative near the peak of the pulse, where the factor
|Ãs |2Ãs is most important).

Expressions (7.5.33) give what is known as the fundamental soliton solu-
tion to the pulse propagation equation (7.5.32). Higher-order soliton solutions
also are known. These solutions were first obtained through use of inverse
scattering methods by Zakharov and Shabat (1972) and are described in more
detail by Agrawal (1989).

One circumstance under which k2 and γ have opposite signs occurs in
fused-silica optical fibers. In this case, the nonlinearity in the refractive index
occurs as the result of electronic polarization, and n2 is consequently positive.
The group velocity dispersion parameter k2 is positive for visible light but be-
comes negative for wavelengths longer than approximately 1.3 μm. This ef-
fect is illustrated in Fig. 7.5.3, in which the linear refractive index nlin and the
group index ng ≡ c/vg are plotted as functions of the vacuum wavelength of
the incident radiation. Optical solitons of the sort described by Eq. (7.5.33a)
have been observed by Mollenauer et al. (1980) in the propagation of light
pulses at a wavelength of 1.55 μm obtained from a color center laser.
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FIGURE 7.5.3 Dependence of the linear refractive index nlin and the group index
ng = c/vg on the vacuum wavelength for fused silica.

Problems

1. Spatial solitons. Verify that Eqs. (7.1.19) through (7.1.21) do indeed sat-
isfy Eq. (7.1.18).

2. Self-focusing and beam breakup. Read carefully the subsection that in-
cludes Eqs. (7.1.41) through (7.1.43) and write a short essay (one or two
paragraphs) describing how you would proceed to observe filamentation
in the laboratory making use of a laser pulse of 10 nsec duration (assumed
for simplicity to have a square-top time evolution) and making use of the
nonlinear response of carbon disulfide. Describe issues such as the pulse
energy that is required, the length of the interaction region you would use,
and the focusing characteristics of your laser beam.

3. Z-scan. In this problem we develop a mathematical description of the z-
scan procedure for measuring the nonlinear refractive index. The basis
of this procedure is that a sample is translated longitudinally through the
beam-waist region of a focused gaussian laser beam, and the variation of
the on-axis intensity in the far field is measured as a function of sample
position. The on-axis intensity in the far field is usually determined by
measuring the power transmitted through a small aperture placed on the
system axis. The variation of measured power with sample position is
found to be proportional to the nonlinear phase shift experienced in pass-
ing through the sample, and from this measured phase shift the value of
n2 of the sample can be determined from the known sample thickness L

and laser intensity at the sample.
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In detail, you are to derive an expression for the dependence of the frac-
tional change in on-axis intensity �I/I on the sample position z relative
to the position z0 of the beam waist of the incident laser beam. This ex-
pression will also depend on the values of n2, of L, and on the parameters
of the incident laser beam. For simplicity, assume that the sample is thin
both in the sense that L is much smaller than the confocal parameter b

of the incident laser beam and in that the maximum nonlinear phase shift
acquired in passing through the sample is much smaller than unity.

Here are some suggestions on how to proceed. Begin with the expres-
sion for a gaussian laser beam. Determine first how the beam will be
modified in passing through the nonlinear material. Note that under the
assumed conditions the beam diameter at the sample will be unchanged,
but that the wavefront curvature will be modified by nonlinear refraction.
Note that the modified beam itself approximates a gaussian beam, but
with a different value of the wavefront radius of curvature. By assum-
ing that this beam propagates according to the same laws that govern the
propagation of a gaussian beam, determine its on-axis intensity in the far
field as a function of z − z0.

Note that a more detailed analysis of the z-scan procedure (Sheik-
Bahae et al., 1990) leads to the somewhat different result

�I

I
= 4�maxx

(x2 + 1)(x2 + 9)
, x = 2(z − z0)/b, (7.5.34)

where �max is the nonlinear phase shift on-axis when the sample is at the
beam waist of the incident laser beam. Plot the functional dependence of
both your result and the literature result.

4. Optical phase conjugation. Solve the following coupled equations for the
boundary conditions that A3(0) and A4(L) are arbitrary:

dA3

dz
= −α3A3 − iκ∗

4 A∗
4,

dA4

dz
= α4A4 + iκ∗

3 A∗
3.

(These equations generalize Eqs. (7.2.31) and describe four-wave mixing
in the usual phase conjugation geometry for the case of a lossy medium.)
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5. Optical phase conjugation. Same as Problem 4 but with the inclusion of
phase-mismatch factors so that the coupled equations are given by

dA3

dz
= −α3A3 − iκ∗

4 A∗
4e

i�kz,

dA4

dz
= α4A4 + iκ∗

3 A∗
3e

−i�kz,

where �k = (k1 + k2 − k3 − k4) · ẑ, and k1 and k2 are the wavevectors
of the two pump waves.

6. Optical phase conjugation. Derive an expression for the phase-conjugate
reflectivity obtained by degenerate four-wave mixing utilizing the non-
linear response of a collection of “two-level” atoms. You may make the
rotating wave and slowly varying amplitude approximations and may as-
sume that the amplitudes of the strong pump waves are not modified by
the nonlinear interaction.

[Hint: This problem can be solved using the formalism developed in
Section 6.3. This problem has been solved in the scientific literature, and
the solution is given by Abrams and Lind, 1978.]

7. Polarization properties of phase conjugation. Verify Eq. (7.2.40).
8. Optical bistability. The discussion of absorptive optical bistability pre-

sented in the text assumed that the incident laser frequency was tuned to
a cavity resonance. Generalize this treatment by allowing the cavity to be
mistuned from resonance, so that the factor ρ2e2ikl appearing in the de-
nominator of Eq. (7.3.3) can be set equal to Reiδ0 , where δ0 is the cavity
mistuning in radians.

[Ans.: Eq. (7.3.10) must be replaced by

T I1 = I2

[
1 − 2R

(
1 − C0T/R

1 + 2I2/Is

)
cos δ0 + R2

(
1 − C0T/R

1 + 2I2/Is

)2]
.

Examination of this expression shows that larger values of C0 and I2 are
required in order to obtain optical bistability for δ0 �= 0.]

9. Optical bistability. The treatment of absorptive bistability given in the
text assumed that the absorption decreased with increasing laser intensity
according to

α = α0

1 + I/Is

.

In fact, many saturable absorbers are imperfect in that they do not saturate
all the way to zero; the absorption can better be represented by

α = α0

1 + I/Is

+ α1,
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where α1 is constant. How large can α1 be (for given α0) and still allow
the occurrence of bistability? Use the same approximations used in the
text, namely that α � 1 and that the cavity is tuned to exact resonance.
How are the requirements on the intensity of the incident laser beam mod-
ified by a nonzero value of α1?

10. Optical bistability. By means of a graphical analysis of the sort illustrated
in Fig. 7.3.5, make a plot of the transmitted intensity I3 as a function of
the incident intensity I1. Note that more than two stable solutions can
occur for a device that displays refractive bistability.

11. Optical bistability. Consider refractive bistability in a nonlinear Fabry–
Perot interferometer. Assume that the nonlinear material also displays
(linear) absorption. How are the intensity requirements for switching
modified by the inclusion of loss, and how large can the absorption be
and still allow the existence of bistability?

12. Optical switching. Show that any physically realizable beam splitter must
obey the relation (7.3.21).

13. Two-beam coupling. According to Section 7.4, the equations governing
the growth of two beams subject to two-beam coupling can be written

dI1

dz
= βI1I2,

dI2

dz
= −βI1I2.

Solve this system for I2(z) in terms of I2(0) and the total intensity I =
I1 + I2. (This is not difficult, but you may need to refer to a textbook on
differential equations.) Make a sketch of I2(z) for the cases β > 0 and
β < 0. What is β , both mathematically and physically?

14. Self-phase modulation. The analysis of self-phase modulation that led to
Fig. 7.5.1 assumed that the medium had instantaneous response and that
the temporal evolution of the pulse had a symmetric waveform. In this
case the spectrum of the pulse is seen to broaden symmetrically. How
is the spectrum modified for a medium with a sluggish response (given,
for example, by Eq. (7.4.7) with τ much longer than the pulse duration)?
How is the spectrum modified if the pulse waveform is not symmetric
(a sawtooth waveform, for example)?

15. Pulse propagation. How is the pulse propagation equation (7.5.32) mod-
ified if the quantity k2 − k2

0 is not approximated by 2k0(k − k0), as was
done in going from Eq. (7.5.18) to Eq. (7.1.19)?

[Ans.: k2 in Eq. (7.5.32) must be replaced by (k2
1 + 2k0k2)/2k0.]



Problems 387

Why is it that this new equation seems to predict that pulses will spread
as they propagate, even when both k2 and γ vanish?

16. Temporal solitons. Verify that the solution given by Eqs. (7.5.33) does in
fact satisfy the pulse propagation equation (7.5.32).

17. Temporal solitons. Calculate the peak power and energy of an optical soli-
ton with τ0 = 10 psec propagating in a silica-core optical fiber of 8 μm
core diameter at a wavelength of 1.55 μm.

[Solution: Using the typical values k2 = −20 psec2/km and n2 = 3 ×
10−16 cm2/W, we find that P = 80 mW and Q = 0.8 pJ. Note also that
the full width of the pulse measured at half intensity points is equal to
1.76τ0.]

18. Self-induced transparency. Optical solitons can also be formed as a con-
sequence of the resonant nonlinear optical response of a collection of
two-level atoms. Show that, in the absence of damping effects and for the
case of exact resonance, the equations describing the propagation of an
optical pulse through such a medium are of the form

∂Ã

∂z
+ 1

c

∂Ã

∂t
= 2πiωN

c
p,

dp

dt
= − i

h̄
|μ|2Ãw,

dw

dt
= −4i

h̄
Ãp

(where the atomic response is described as in Section 6.4). Show that
these equations yield soliton-like solutions of the form

Ã(z, t) = h̄

μτ0
sech

(
t − z/v

τ0

)
,

w(z, t) = −1 + 2 sech2
(

t − z/v

τ0

)
,

p(z, t) = −iμ sech

(
t − z/v

τ0

)
tanh

(
t − z/v

τ0

)

as long as the pulse width and pulse velocity are related by

c

v
= 1 + 2πNμ2ωτ 2

0

h̄
.

What is the value (and the significance) of the quantity∫ ∞

−∞
2μ

h̄
Ã(z, t) dt?
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(For the case of an inhomogeneously broadened medium, the equations
are still satisfied by a sech pulse, but the relation between v and τ0 is
different. See, for example, Allen and Eberly, 1975.)

19. Modulational instability. The intent of this problem is to determine the
conditions under which the propagation of a monochromatic laser field
inside an optical fiber is unstable to the growth of new frequency compo-
nents. Base your analysis on the nonlinear Schrödinger equation (NLSE)
in the form of Eq. (7.5.32). First note that the solution to the NLSE for
an input in the form of a cw monochromatic wave is the input field mul-
tiplied by an exponential phase factor describing a nonlinear phase shift.

One next wants to determine if this solution is stable to growth of weak
perturbations. Assume that the total field within the fiber has the form
of the strong component of amplitude A0 and frequency ω and two weak
sidebands symmetrically displaced by frequency δ such that the total field
within the fiber can be represented as

A(z, τ ) = A0(z) + A1(z)e
−iδτ + A2(z)e

iδτ .

(Here we have dropped the tilde and the subscript s for notational con-
venience.) Derive the differential equations satisfied by each of the field
amplitudes by linearizing the equations in A1 and A2. Note that A1 and
A2 are coupled by four-wave mixing interactions. Determine the condi-
tions for instability to occur by determining when the simultaneous solu-
tion to the equations for the A1 and A2 fields will experience exponential
growth. For what relative sign of n2 and k2 can this instability exist?
Sketch the dependence of the gain on the sideband detuning δ for vari-
ous values of the pump amplitude A0. Also determine the “eigenvector”
associated with the exponentially growing solution, that is, the particular
linear combination of A1 and A2 that experiences exponential growth.
Describe the nature of the modulation present on the transmitted field for
this particular eigenvector.

Thought question: Why does your solution depend on the group veloc-
ity and not the phase velocity and considering that we have analyzed this
situation under continuous-wave conditions?
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Chapter 8

Spontaneous Light Scattering and
Acoustooptics

8.1. Features of Spontaneous Light Scattering

In this chapter, we describe spontaneous light scattering; Chapters 9 and 10
present descriptions of various stimulated light-scattering processes. By spon-
taneous light scattering, we mean light scattering under conditions such that
the optical properties of the material system are unmodified by the presence
of the incident light beam. We shall see in the following two chapters that
the character of the light-scattering process is profoundly modified whenever
the intensity of the incident light is sufficiently large to modify the optical
properties of the material system.

Let us first consider the light-scattering experiment illustrated in part (a) of
Fig. 8.1.1. Under the most general circumstances, the spectrum of the scat-
tered light has the form shown in part (b) of the figure, in which Raman, Bril-
louin, Rayleigh, and Rayleigh-wing features are present. By definition, those
components of the scattered light that are shifted to lower frequencies are
known as Stokes components, and those components that are shifted to higher
frequencies are known as anti-Stokes components. Table 8.1.1 lists some of
the physical processes that can lead to light scattering of the sort shown in the
figure and gives some of the physical parameters that describe these processes.

One of these light-scattering processes is Raman scattering. Raman scat-
tering results from the interaction of light with the vibrational modes of the
molecules constituting the scattering medium. Raman scattering can equiva-
lently be described as the scattering of light from optical phonons.

391
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FIGURE 8.1.1 Spontaneous light scattering. (a) Experimental setup. (b) Typical ob-
served spectrum.

TABLE 8.1.1 Typical values of the parameters describing
several light-scattering processes

Shift Linewidth Relaxation Time Gain a

Process (cm−1) (cm−1) (sec) (m/MW)

Raman 1000 5 10−12 5 × 10−5

Brillouin 0.1 5 × 10−3 10−9 10−4

Rayleigh 0 5 × 10−4 10−8 10−6

Rayleigh-wing 0 5 10−12 10−5

a Gain of the stimulated version of the process.

Brillouin scattering is the scattering of light from sound waves—that is,
from propagating pressure (and thus density) waves. Brillouin scattering can
also be considered to be the scattering of light from acoustic phonons.

Rayleigh scattering (or Rayleigh-center scattering) is the scattering of light
from nonpropagating density fluctuations. Formally, it can be described as
scattering from entropy fluctuations. It is known as quasielastic scattering be-
cause it induces no frequency shift.

Rayleigh-wing scattering (i.e., scattering in the wing of the Rayleigh line) is
scattering from fluctuations in the orientation of anisotropic molecules. Since
the molecular reorientation process is very rapid, this component is spectrally
very broad. Rayleigh-wing scattering does not occur for molecules with an
isotropic polarizability tensor.
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FIGURE 8.1.2 Light scattering cannot occur in a completely homogeneous medium.

8.1.1. Fluctuations as the Origin of Light Scattering

Light scattering occurs as a consequence of fluctuations in the optical prop-
erties of a material medium; a completely homogeneous material can scat-
ter light only in the forward direction (see, for example, Fabelinskii, 1968).
This conclusion can be demonstrated with the aid of Fig. 8.1.2, which shows
a completely homogeneous medium being illuminated by a plane wave. We
suppose that the volume element dV1 scatters light into the θ direction. How-
ever, for any direction, except the exact forward direction (θ = 0), there must
be a nearby volume element (labeled dV2) whose scattered field interferes de-
structively with that from dV1. Since the same argument can be applied to any
volume element in the medium, we conclude that there can be no scattering
in any direction except θ = 0. Scattering in the direction θ = 0 is known as
coherent forward scattering and is the origin of the index of refraction. (See,
for example, the discussion in Section 31 of Feynman et al., 1963.)

Note that the argument that scattering cannot occur (except in the forward
direction) requires that the medium be completely homogeneous. Scattering
can occur as the result of fluctuations in any of the optical properties of the
medium. For example, if the density of the medium is nonuniform, then the
total number of molecules in the volume element dV1 may not be equal to the
number of molecules in dV2, and consequently the destructive interference
between the fields scattered by these two elements will not be exact.

Since light scattering results from fluctuations in the optical properties of a
material medium, it is useful to represent the dielectric tensor of the medium
(which for simplicity we assume to be isotropic in its average properties) as
(Landau and Lifshitz, 1960)

εik = ε̄δik + �εik, (8.1.1)
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where ε̄ represents the mean dielectric constant of the medium and where
�εik represents the (temporally and/or spatially varying) fluctuations in the
dielectric tensor that lead to light scattering. It is convenient to decompose the
fluctuation �εik in the dielectric tensor into the sum of a scalar contribution
�εδik and a (traceless) tensor contribution �ε

(t)
ik as

�εik = �εδik + �ε
(t)
ik . (8.1.2)

The scalar contribution �ε arises from fluctuations in thermodynamic
quantities such as the pressure, entropy, density, or temperature. In a chemical
solution it also has a contribution from fluctuations in concentration. Scatter-
ing that results from �ε is called scalar light scattering; examples of scalar
light scattering include Brillouin and Rayleigh scattering.

Scattering that results from �ε
(t)
ik is called tensor light scattering. The ten-

sor �ε
(t)
ik has been taken to be traceless (i.e.,

∑
i �ε

(t)
ii = 0), since the scalar

contribution �ε has been separated out. It is useful to express �ε
(t)
ik as

�ε
(t)
ik = �ε

(s)
ik + �ε

(a)
ik , (8.1.3)

where �ε
(s)
ik is the symmetric part of �ε

(t)
ik (symmetric in the sense that

�ε
(s)
ik = �ε

(s)
ki ) and gives rise to Rayleigh-wing scattering, and where �ε

(a)
ik

is the antisymmetric part of �ε
(t)
ik (that is, �ε

(a)
ik = −�ε

(a)
ki ) and gives rise to

Raman scattering.
It can be shown that the fluctuations �ε, �ε

(s)
ik , and �ε

(a)
ik are statistically

independent. Scattering due to �ε
(t)
ik is called depolarized scattering, because

in general the degree of polarization in the scattered light is smaller than that
of the incident light.

8.1.2. Scattering Coefficient

A quantity that is used to describe the efficiency of the scattering process is
the scattering coefficient R, which is defined in terms of the quantities shown
in Fig. 8.1.3. Here a beam of light of intensity I0 illuminates a scattering
region of volume V , and the intensity Is of the scattered light is measured
at a distance L from the interaction region. It is reasonable to assume that
the intensity of the scattered light increases linearly with the intensity I0 of
the incident light and with the volume V of the interaction region and that
it obeys the inverse square law with respect to the distance L to the point of
observation. We can hence represent Is as

Is = I0RV

L2
, (8.1.4)
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FIGURE 8.1.3 Quantities used to define the scattering coefficient.

where the constant of proportionality R is known as the scattering coefficient.
We now assume that the scattered light falls onto a small detector of pro-

jected area dA. The power hitting the detector is given by dP = IsdA. Since
the detector subtends a solid angle at the scattering region given by d� =
dA/L2, the scattered power per unit solid angle is given by dP/d� = IsL

2,
or by

dP

d�
= I0RV. (8.1.5)

Either Eq. (8.1.4) or (8.1.5) can be taken as the definition of the scattering
coefficient R. For scattering of visible light through an angle of 90 degrees, R

has the value 2 × 10−8 cm−1 for air and 1.4 × 10−4 m−1 for water.

8.1.3. Scattering Cross Section

It is also useful to define the scattering cross section. We consider a beam of
intensity I0 falling onto an individual molecule, as shown in Fig. 8.1.4. We
let P denote the total power of the radiation scattered by this molecule. We
assume that P increases linearly with I0 according to

P = σI0, (8.1.6)

where the constant of proportionality σ is known as the (total) scattering cross
section. Since I0 has the dimensions of power per unit area, we see that σ

has the dimensions of an area, which justifies it being called a cross section.
The cross section can be interpreted as the effective geometrical area of the
molecule for removing light from the incident beam.

We also define a differential cross section. Rather than describing the to-
tal scattered power, this quantity describes the power dP scattered in some
particular direction into the element of solid angle d�. We assume that the
scattered power per unit solid angle dP/d� increases linearly with the inci-



396 8 ♦ Spontaneous Light Scattering and Acoustooptics

FIGURE 8.1.4 Scattering of light by a molecule.

dent intensity according to

dP

d�
= I0

dσ

d�
, (8.1.7)

where dσ/d� is known as the differential cross section. Clearly, since P is
equal to

∫
(dP/d�)d�, it follows from Eqs. (8.1.6) and (8.1.7) that

σ =
∫

4π

dσ

d�
d�. (8.1.8)

Let us next see how to relate the differential scattering cross section dσ/d�

to the scattering coefficient R. If each of the N molecules contained in the
volume V of Fig. 8.1.3 scatters independently, then the total power per unit
solid angle of the scattered light will be N times larger than the result given
in Eq. (8.1.7). Consequently, by comparison with Eq. (8.1.5), we see that the
scattering coefficient is given by

R = N
V

dσ

d�
. (8.1.9)

One should be wary about taking this equation to constitute a generally
valid result. Recall that a completely homogeneous medium does not scatter
light at all, which implies that for such a medium R would be equal to zero
and not to (N /V )(dσ/d�). In the next section we examine the conditions
under which it is valid to assume that each molecule scatters independently.
As a general rule, Eq. (8.1.9) is valid for dilute media and is entirely invalid
for condensed matter.

8.2. Microscopic Theory of Light Scattering

Let us now consider light scattering in terms of the field scattered by each
molecule contained within the interaction region. Such a treatment is partic-
ularly well suited to the case of scattering from a dilute gas, where collective
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FIGURE 8.2.1 Geometry of light scattering from an individual molecule.

effects due to the interaction of the various molecules are relatively unim-
portant. (Light scattering from condensed matter is more conveniently treated
using the thermodynamic formalism presented in the next section.) As illus-
trated in Fig. 8.2.1, we assume that the optical field

Ẽ = E0e
−iωt + c.c. (8.2.1)

of intensity I0 = (2ncε0)|E0|2 is incident on a molecule whose linear dimen-
sions are assumed to be much smaller than the wavelength of light. In response
to the applied field, the molecule develops the dipole moment

p̃ = ε0α(ω)E0e
−iωt + c.c., (8.2.2)

where α(ω) is the polarizability of the particle. Explicit formulas for α(ω) for
certain types of scatterers are given below, but for reasons of generality we
leave the form of α(ω) unspecified for the present.

As a consequence of the time-varying dipole moment given by Eq. (8.2.2),
the particle will radiate. The intensity of this radiation at a distance L from the
scatterer is given by the magnitude of the Poynting vector (see, for example,
Jackson, 1982, Section 9.2) as

Is = n〈 ¨̃p2〉
16π2ε0c3L2

sin2 φ = nω4ε0|α(ω)|2 |E0|2
8π2c3L2

sin2 φ. (8.2.3)

The angular brackets in the first form imply that the time average of the en-
closed quantity is to be taken. As shown in Fig. 8.2.1, φ is the angle between
the induced dipole moment of the particle and the direction r to the point of
observation.

We next use Eq. (8.2.3) to derive an expression for the differential scattering
cross section. As in the derivation of Eq. (8.1.5), the scattered power per unit
solid angle is given by dP/d� = IsL

2. We introduce the differential cross
section of Eq. (8.1.7), dσ/d� = (dP/d�)/I0 = IsL

2/I0, which through the
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use of Eq. (8.2.3) becomes

dσ

d�
= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 sin2 φ. (8.2.4)

We note that this expression for the differential cross section dσ/d� predicts
a sin2 φ dependence for any functional form for α(ω). This result is a conse-
quence of our assumption that the scattering particle is small compared to an
optical wavelength and hence that the scattering is due solely to electric dipole
and not to higher-order multipole processes. Since the angular dependence of
dσ/d� is contained entirely in the sin2 φ term, we can immediately obtain an
expression for the total scattering cross section by integrating dσ/d� over all
solid angles, yielding

σ =
∫

4π

d�
dσ

d�
= 8π

3

1

16π2

ω4

c4

∣∣α(ω)
∣∣2 = 1

6π

ω4

c4

∣∣α(ω)
∣∣2

. (8.2.5)

In deriving Eq. (8.2.4) for the differential scattering cross section, we as-
sumed that the incident light was linearly polarized, and for convenience we
took the direction of polarization to lie in the plane of Fig. 8.2.1. For this di-
rection of polarization, the scattering angle θ and the angle φ of Eq. (8.2.3)
are related by θ + φ = 90 degrees, and thus for this direction of polarization
Eq. (8.2.4) can be expressed in terms of the scattering angle as

(
dσ

d�

)
p

= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 cos2 θ. (8.2.6)

Other types of polarization can be treated by allowing the incident field to have
a component perpendicular to the plane of Fig. 8.2.1. For this component φ is
equal to 90 degrees for any value of the scattering angle θ , and thus for this
component the differential cross section is given by

(
dσ

d�

)
s

= 1

16π2

ω4

c4

∣∣α(ω)
∣∣2 (8.2.7)

for any value of θ . Since unpolarized light consists of equal intensities in
the two orthogonal polarization directions, the differential cross section for
unpolarized light is obtained by averaging Eqs. (8.2.6) and (8.2.7), giving

(
dσ

d�

)
unpolarized

= 1

32π2

ω4

c4

∣∣α(ω)
∣∣2(1 + cos2 θ

)
. (8.2.8)

As an example of the use of these equations, we consider scattering from
an atom whose optical properties can be described by the Lorentz model of
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FIGURE 8.2.2 Frequency dependence of the scattering cross section of a Lorentz
oscillator.

the atom (that is, we model the atom as a simple harmonic oscillator). Ac-
cording to Eqs. (1.4.17) and (1.4.10) and the relation of χ(ω) = Nα(ω), the
polarizability of such an atom is given by

α(ω) = e2/mε0

ω2
0 − ω2 − 2iωγ

, (8.2.9)

where ω0 is the resonance frequency and γ is the dipole damping rate.
Through use of this expression, the total scattering cross section given by
Eq. (8.2.5) becomes

σ = 8π

3

(
e2

4πε0 mc2

)2
ω4

(ω2
0 − ω2)2 + 4ω2γ 2

. (8.2.10)

The frequency dependence of the scattering cross section predicted by this
equation is illustrated in Fig. 8.2.2. Equation (8.2.10) can be simplified under
several different limiting conditions. In particular, we find that

σ = 8π

3

(
e2

4πε0 mc2

)2
ω4

ω4
0

for ω � ω0, (8.2.11a)

σ = 2π

3

(
e2

4πε0 mc2

)2 ω2
0

(ω0 − ω)2 + γ 2
for ω � ω0, (8.2.11b)

σ = 8π

3

(
e2

4πε0 mc2

)2

for ω � ω0. (8.2.11c)

Equation (8.2.11a) shows that the scattering cross section increases as the
fourth power of the optical frequency ω in the limit ω � ω0. This result
leads, for example, to the prediction that the sky is blue, since the shorter
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wavelengths of sunlight are scattered far more efficiently in the earth’s at-
mosphere than are the longer wavelengths. Scattering in this limit is often
known as Rayleigh scattering. Equation (8.2.11b) shows that near the atomic
resonance frequency the dependence of the scattering cross section on the
optical frequency has a Lorentzian lineshape. Equation (8.2.11c) shows that
for very large frequencies the scattering cross section approaches a constant
value. This value is of the order of the square of the “classical” electron ra-
dius, re = e2/4πε0 mc2 = 2.82 × 10−15 m. Scattering in this limit is known
as Thompson scattering.

As a second example of the application of Eq. (8.2.5), we consider scatter-
ing from a collection of small dielectric spheres. We take ε1 to be the dielectric
constant of the material within each sphere and ε to be that of the surrounding
medium. We assume that each sphere is small in the sense that its radius a

is much smaller than the wavelength of the incident radiation. We can then
calculate the polarizability of each sphere using the laws of electrostatics. It is
straightforward to show (see, for example, Stratton, 1941, p. 206; or Jackson,
1982, p. 158) that the polarizability is given by the expression

α = 4πε
ε1 − ε

ε1 + 2ε
a3. (8.2.12)

Note that α depends on frequency only through any possible frequency depen-
dence of ε or of ε1. Through the use of Eq. (8.2.5), we find that the scattering
cross section is given by

σ = 16π2 8π

3

ω4

c4
a6ε2

(
ε1 − ε

ε1 + 2ε

)2

. (8.2.13)

Note that, as in the low-frequency limit of the Lorentz atom, the cross section
scales as the fourth power of the frequency. Note also that the cross section
scales as the square of the volume of each particle.

Let us now consider the rather subtle problem of calculating the total in-
tensity of the light scattered from a collection of molecules. We recall from
the discussion of Fig. 8.1.2 that only the fluctuations in the optical properties
of the medium can lead to light scattering. As shown in Fig. 8.2.3, we divide
the total scattering volume V into a large number of identical small regions of
volume V ′. We assume that V ′ is sufficiently small that all of the molecules
within V ′ radiate essentially in phase. The intensity of the light emitted by the
atoms in V ′ in some particular direction can thus be represented as

IV ′ = ν2Imol, (8.2.14)

where ν represents the number of molecules in V ′ and Imol denotes the inten-
sity of the light scattering by a single molecule.
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FIGURE 8.2.3 Light scattering from a collection of molecules.

We next calculate the total intensity of the scattered radiation from the en-
tire volume V . We recall from the discussion of Section 8.1 that, for each
volume element V ′, there will be another element whose radiated field tends
to interfere destructively with that from V ′. Insofar as each volume element
contains exactly the same number of molecules, the cancellation will be com-
plete. However, any deviation of ν from its mean value ν̄ can lead to a net
intensity of the scattered radiation. The contribution to the net scattered inten-
sity from volume element V ′ is thus given by �ν2Imol, where �ν2 denotes
the mean-square fluctuation given by �ν2 = ν2 − ν̄2. The intensity of the
radiation scattered from the total volume V is then given by

IV = Imol�ν2 V

V ′ , (8.2.15)

where the last factor V/V ′ gives the total number of regions of volume V ′
contained within the interaction volume V . This result shows how the total
scattered intensity IV depends on the fluctuations in the number density of
molecules. We also see that the scattered intensity IV vanishes if the fluctua-
tion �ν2 vanishes.

For the case of a medium sufficiently dilute that the locations of the indi-
vidual molecules are uncorrelated (that is, for an ideal gas), we can readily
calculate the mean fluctuation �ν2 in the number of particles. If N denotes
the mean number density of particles, then the mean number of particles in
the volume element V ′ is given by

ν̄ = NV ′, (8.2.16)

and the mean-square fluctuation is given by

�ν2 = ν2 − ν̄2 = ν̄, (8.2.17)

where the last equality follows from the properties of the Poisson probability
distribution, which are obeyed by uncorrelated particles. We hence find from
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Eqs. (8.2.15) through (8.2.17) that

IV = ν̄
V

V ′ Imol = NV Imol =N Imol. (8.2.18)

Hence, for an ideal gas the total intensity is simply the intensity of the light
scattered by a single molecule multiplied by the total number of molecules,
N = NV . Consequently the scattering coefficient R and differential cross
section dσ/d� introduced in Section 8.1 are related by Eq. (8.1.9)—that is,
by

R = N
dσ

d�
. (8.2.19)

By introducing Eq. (8.2.4) into this expression, we find that the scattering
coefficient is given by

R = N

16π2

ω4

c4

∣∣α(ω)
∣∣2 sin2 φ. (8.2.20)

If the scattering medium is sufficiently dilute that its refractive index can be
represented as

n = 1 + 1
2Nα(ω), (8.2.21)

Eq. (8.2.20) can be rewritten as

R = ω4

c4

|n − 1|2
4π2N

sin2 φ. (8.2.22)

This result can be used to determine the number density N of molecules in
a gaseous sample in terms of two optical constants: the refractive index n and
scattering coefficient R at a fixed angle φ. In fact, the first accurate measure-
ment of Loschmidt’s number (the number density of molecules at standard
temperature and pressure, N0 = 2.7 × 1019 cm−3) was performed through
application of Eq. (8.2.22).

8.3. Thermodynamic Theory of Scalar Light Scattering

We next develop a macroscopic description of the light scattering process.
We consider the case in which light scattering occurs as the result of fluctu-
ations in the (scalar) dielectric constant and in which these fluctuations are
themselves the result of fluctuations in thermodynamic variables, such as the
material density and temperature. We assume, as in Fig. 8.2.3 in the preceding
section, that the scattering volume V can be divided into a number of smaller
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volumes V ′ having the property that all atoms in V ′ radiate essentially in
phase in the θ direction. We let �ε denote the fluctuation of the dielectric
constant averaged over the volume V ′. Since ε = 1 + χ , the fluctuation in
the susceptibility is then given by �χ = �ε. Because of this change in the
susceptibility, the volume V ′ develops the additional polarization

P̃ = �χ Ẽ0 = �εẼ0 (8.3.1)

and hence the additional dipole moment

p̃ = ε0V
′P̃ = ε0�εV ′Ẽ0. (8.3.2)

The intensity Is = (ncε0)〈Ẽ2
s 〉 of the radiation emitted by this oscillating di-

pole moment is obtained by introducing Eq. (8.3.2) into Eq. (8.2.3), to obtain

Is = I0
ω4V ′2〈�ε2〉 sin2 φ

16π2L2c4
, (8.3.3)

where, as before, φ is the angle between p̃ and the direction to the point of ob-
servation, and where we have introduced the intensity I0 = (ncε0)〈Ẽ2

0〉 of the
incident light. Equation (8.3.3) gives the intensity of the light scattered from
one cell. The total intensity from all the cells is V/V ′ times as large, since the
fluctuations in the dielectric constant for different cells are uncorrelated.

We next calculate the mean-square fluctuation in the dielectric constant,
〈�ε2〉, for any one cell. We take the density ρ and temperature T as indepen-
dent thermodynamic variables. We then express the change in the dielectric
constant as

�ε =
(

∂ε

∂ρ

)
T

�ρ +
(

∂ε

∂T

)
ρ

�T . (8.3.4)

To good accuracy (the error is estimated to be of the order of 2%; see Fa-
belinskii, 1968), we can usually ignore the second term, since the dielectric
constant typically depends much more strongly on density than on tempera-
ture.∗ We thus find

〈
�ε2〉 =

(
∂ε

∂ρ

)2〈
�ρ2〉,

which can be expressed as

〈
�ε2〉 = γ 2

e

〈�ρ2〉
ρ2

0

, (8.3.5)

∗ For this reason, it is not crucial that we retain the subscript T on ∂ε/∂ρ.
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where ρ0 denotes the mean density of the material and where we have intro-
duced the electrostrictive constant γe, which is defined by∗

γe =
(

ρ
∂ε

∂ρ

)
ρ=ρ0

. (8.3.6)

The quantity 〈�ρ2〉/ρ2
0 appearing in Eq. (8.3.5) can be calculated using the

laws of statistical mechanics. The result (see, for example, Fabelinskii, 1968,
Appendix I, Eq. (I.13); or Landau and Lifshitz, 1969) is

〈�ρ2〉
ρ2

0

= kT CT

V ′ (8.3.7)

where

CT = − 1

V

(
∂V

∂p

)
T

(8.3.8)

is the isothermal compressibility. Note that the result given by Eq. (8.3.7)
(whose proof lies outside the subject area of this book) makes sense: Fluc-
tuations are driven by thermal excitation; the larger the compressibility, the
larger will be the resulting excursion; and the smaller the volume under con-
sideration, the easier it is to change its mean density.

By introducing Eqs. (8.3.5) and (8.3.7) into Eq. (8.3.3) and multiplying the
result by the total number of cells, V/V ′, we find that the total intensity of the
scattered radiation is given by

Is = I0
ω4V

16π2L2c4
γ 2
e CT kT sin2 φ. (8.3.9a)

We can use this result to find that the scattering coefficient R defined by
Eq. (8.1.4) is given by

R = ω4

16π2c4
γ 2
e CT kT sin2 φ. (8.3.9b)

8.3.1. Ideal Gas

As an example, let us apply the result given by Eq. (8.3.9a) to light scattering
from an ideal gas, for which the equation of state is of the form

pV =N kT , (8.3.10)

where N denotes the total number of molecules in the gas. We then find that
(∂V/∂p)T = −N kT /p2 and thus that the isothermal compressibility is given

∗ The reason why γe is called the electrostrictive constant will be described in Section 9.1.
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by

CT = N kT

Vp2
= 1

p
= V

N kT
. (8.3.11)

We next assume that ε − 1 is linearly proportional to ρ, so that we can repre-
sent ε as ε = 1 + Aρ for some constant A. We hence find that ∂ε/∂ρ = A, or
that ∂ε/∂ρ = (ε − 1)/ρ, and that the electrostrictive constant is given by

γe = ε − 1. (8.3.12)

If we now introduce Eqs. (8.3.11) and (8.3.12) into Eq. (8.3.9a), we find
that the scattered intensity can be expressed as

Is = I0
ω4V

16π2L2c4

(ε − 1)2

N
sin2 φ, (8.3.13)

where we have introduced the mean density of particles N =N /V . Through
use of Eq. (8.1.4), we can write this result in terms of the scattering coefficient
as

R = (ε − 1)2ω4 sin2 φ

16π2c4N
. (8.3.14)

Note that, since ε − 1 is equal to 2(n− 1) for a dilute gas (i.e., for ε − 1 � 1),
this result is in agreement with the prediction of the microscopic model of
light scattering for an ideal gas, given by Eq. (8.2.22).

8.3.2. Spectrum of the Scattered Light

The analysis just presented has led to an explicit prediction (8.3.9a) for the
total intensity of the light scattered as the result of the fluctuations in the
density (and hence the dielectric constant) of a material system in thermal
equilibrium. In order to determine the spectrum of the scattered light, we have
to examine the dynamical behavior of the density fluctuations that give rise to
light scattering. As before (see the discussion associated with Eq. (8.3.4)), we
represent the fluctuation in the dielectric constant as

�ε̃ =
(

∂ε

∂ρ

)
�ρ̃. (8.3.15)

We now choose the entropy s and pressure p to be the independent thermo-
dynamic variables. We can then represent the variation in density, �ρ̃, as

�ρ̃ =
(

∂ρ

∂p

)
s

�p̃ +
(

∂ρ

∂s

)
p

�s̃. (8.3.16)
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Here the first term describes adiabatic density fluctuations (that is, acoustic
waves) and leads to Brillouin scattering. The second term describes isobaric
density fluctuations (that is, entropy or temperature fluctuations) and leads to
Rayleigh-center scattering. The two contributions to �ρ̃ are quite different
in character and lead to very different spectral distributions of the scattered
light, because (as we shall see) the equations of motion for �p̃ and �s̃ are
very different.

8.3.3. Brillouin Scattering

The equation of motion for a pressure wave is well known from the field of
acoustics and is given by (see, e.g., Fabelinskii, 1968, Section 34.9)

∂2�p̃

∂t2
− �′∇2 ∂�p̃

∂t
− v2∇2�p̃ = 0. (8.3.17)

Here v denotes the velocity of sound, which is given in terms of thermody-
namic variables by

v2 =
(

∂p

∂ρ

)
s

. (8.3.18)

The equation for the velocity of sound is conveniently expressed in terms of
the compressibility C or in terms of its reciprocal, the bulk modulus K , which
are defined by

C ≡ 1

K
= − 1

V

∂V

∂p
= 1

ρ

∂ρ

∂p
. (8.3.19)

The compressibility can be measured either at constant temperature or at con-
stant entropy. The two values of the compressibility, denoted respectively as
CT and Cs , are related by

CT

Cs

= cp

cV

≡ γ, (8.3.20)

where cp is the specific heat (i.e., the heat capacity per unit mass, whose units
are J/kg K) at constant pressure, cV is the specific heat at constant volume,
and where their ratio γ is known as the adiabatic index. The velocity of sound
as defined by Eq. (8.3.18) can thus be written as

v2 = Ks

ρ
= 1

Csρ
. (8.3.21)

An important special case of the use of this formula is that of an ideal gas,
for which the equation of state is given by Eq. (8.3.10) and the isothermal
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TABLE 8.3.1 Typical sound
velocities
Material v (m/sec)

Gases

Dry air 3.31×102

He 9.65×102

H2 12.84×102

Water vapor 4.94×102

Liquids

CS2 1.15×103

CCl4 0.93×103

Ethanol 1.21×103

Water 1.50×103

Solids

Fused silica 5.97×103

Lucite 2.68×103

compressibility is given by Eq. (8.3.11). The adiabatic compressibility is thus
given by Cs = CT /γ = 1/γp. We hence find from Eq. (8.3.21) that the veloc-
ity of sound is given by

v =
(

γp

ρ

)1/2

=
(

γN kT

ρV

)1/2

=
(

γ kT

μ

)1/2

, (8.3.22)

where μ denotes the molecular mass. We thus see that the velocity of sound
is of the order of the mean thermal velocity of the molecules of the gas. The
velocity of sound for some common optical materials is listed in Table 8.3.1.

The parameter �′ appearing in the wave equation (8.3.17) is a damping
parameter that can be shown to be expressible as

�′ = 1

ρ

[
4

3
ηs + ηb + κ

Cp

(γ − 1)

]
, (8.3.23)

where ηs is the shear viscosity coefficient, ηb is the bulk viscosity coefficient,
and κ is the thermal conductivity. For most materials of interest in optics,
the last contribution to �′ is much smaller than the first two. Conventions
involving the naming of the viscosity coefficients are discussed briefly in the
Appendix to Section 9.6.

As an illustration of the nature of the acoustic wave equation (8.3.17), we
consider the propagation of the wave

�p̃ = �pei(qz−�t) + c.c. (8.3.24)

through an acoustic medium. By substituting this form into the acoustic wave
equation (Eq. 8.3.17), we find that q and � must be related by a dispersion
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relation of the form

�2 = q2(v2 − i��′). (8.3.25)

We can rewrite this relation as

q2 = �2

v2 − i��′ = �2/v2

1 − i��′/v2
� �2

v2

(
1 + i��′

v2

)
, (8.3.26)

which shows that

q � �

v
+ i�

2v
, (8.3.27)

where we have introduced the phonon decay rate

� = �′q2. (8.3.28)

We find by introducing the form for q given by Eq. (8.3.27) into Eq. (8.3.24)
that the intensity of the acoustic wave varies spatially as

∣∣�p(z)
∣∣2 = ∣∣�p(0)

∣∣2
e−αsz, (8.3.29)

where we have introduced the sound absorption coefficient

αs = q2�′

v
= �

v
. (8.3.30)

It is also useful to define the phonon lifetime as

τp = 1

�
= 1

q2�′ . (8.3.31)

Next, we calculate the rate at which light is scattered out of a beam of light
by these acoustic waves. We assume that the incident optical field is described
by

Ẽ0(z, t) = E0e
i(k·r−ωt) + c.c. (8.3.32)

and that the scattered field obeys the driven wave equation

∇2Ẽ − n2

c2

∂2Ẽ

∂t2
= 1

ε0c2

∂2P̃

∂t2
. (8.3.33)

We take the polarization P̃ of the medium to be given by Eq. (8.3.1) with
the variation �ε̃ in dielectric constant given by Eq. (8.3.15)—that is, we take
P̃ = ε0(∂ε/∂ρ)�ρ̃Ẽ0. We take the variation in density to be given by the
first contribution to Eq. (8.3.16) – that is, by �ρ̃ = (∂ρ/∂p)�p̃, where �p̃
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denotes the incremental pressure. We thus find that

P̃ (r, t) = ε0

(
∂ε

∂ρ

)(
∂ρ

∂p

)
s

�p̃(r, t)Ẽ0(z, t)

= ε0γeCs�p̃(r, t)Ẽ0(z, t), (8.3.34)

where we have introduced the adiabatic compressibility Cs of Eq. (8.3.19)
and the electrostrictive constant of Eq. (8.3.6). We take a typical component
of the thermally excited pressure disturbance within the interaction region to
be given by

�p̃(r, t) = �pei(q·r−�t) + c.c. (8.3.35)

By combining Eqs. (8.3.33) through (8.3.35), we find that the scattered field
must obey the wave equation

∇2Ẽ − n2

c2

∂2Ẽ
∂t2

= −γeCs

c2

[
(ω − �)2E0�p∗ei(k−q)·r−i(ω−�)t

+ (ω + �)2E0�pei(k+q)·r−i(ω+�)t + c.c.
]
.

(8.3.36)

The first term in this expression leads to Stokes scattering; the second to anti-
Stokes scattering. We study these two contributions in turn.

8.3.4. Stokes Scattering (First Term in Eq. (8.3.36))

The polarization is seen to have a component with wavevector

k′ ≡ k − q (8.3.37)

and frequency

ω′ ≡ ω − �, (8.3.38)

where the frequency ω and wavevector k of the incident optical field are re-
lated according to

ω = |k|c/n, (8.3.39)

and where the frequency � and wavevector q of the acoustic wave are related
according to

� = |q|v. (8.3.40)

This component of the polarization can couple efficiently to the scattered op-
tical wave only if its frequency ω′ and wavevector k′ are related by the dis-
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FIGURE 8.3.1 Illustration of Stokes Brillouin scattering.

persion relation for optical waves, namely

ω′ = |k′|c/n. (8.3.41)

In order for Eqs. (8.3.37) through (8.3.41) to be satisfied simultaneously,
the sound-wave frequency and wavevector must each have a particular value
for any scattering direction. For the case of scattering at the angle θ , we have
the situation illustrated in Fig. 8.3.1. Part (a) of this figure shows the relative
orientations of the wavevectors of the incident and scattered fields. Part (b)
illustrates Eq. (8.3.37) and shows how the wavevector of the acoustic distur-
bance is related to those of the incident and scattered optical radiation.

Since |k| is very nearly equal to |k′| (because � is much smaller than ω),
diagram (b) shows that

|q| = 2|k| sin(θ/2). (8.3.42)

The dispersion relation (8.3.40) then shows that the acoustic frequency is
given by

� = 2|k|v sin(θ/2) = 2nω
v

c
sin(θ/2). (8.3.43)

We note that the Stokes shift � is equal to zero for forward scattering and
is maximum for backscattering (i.e., for θ = 180 degrees). The maximum
frequency shift is thus given by

�max = 2n
v

c
ω. (8.3.44)
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For ω/2π = 3 × 1014 Hz (i.e., at λ = 1 µm), v = 1 × 103 m/sec (a typical
value), and n =1.5, we obtain �max/2π = 3 × 109 Hz.

Stokes scattering can be visualized as the scattering of light from a retreat-
ing acoustic wave, as illustrated in part (c) of Fig. 8.3.1.

8.3.5. Anti-Stokes Scattering (Second Term in Eq. (8.3.36))

The analysis here is analogous to that for Stokes scattering. The polarization
is seen to have a component with wavevector

k′ ≡ k + q (8.3.45)

and frequency

ω′ ≡ ω + �, (8.3.46)

where, as before, ω = |k|c/n and � = |q|v. This component of the polariza-
tion can couple efficiently to an electromagnetic wave only if ω′ and |k′| are
related by ω′ = |k′|c/n. We again assume that θ denotes the scattering angle,
as illustrated in Fig. 8.3.2. The condition (8.3.45) is illustrated as part (b) of
the figure. Since (as before) |k| is very nearly equal to |k′|, the length of the
acoustic wavevector is given by

|q| = 2|k| sin(θ/2). (8.3.47)

Hence, by Eq. (8.3.40), the acoustic frequency is given by

� = 2nω
v

c
sin(θ/2). (8.3.48)

FIGURE 8.3.2 Illustration of anti-Stokes Brillouin scattering.
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FIGURE 8.3.3 Spectrum showing Brillouin and Rayleigh scattering.

Anti-Stokes scattering can be visualized as scattering from an oncoming
sound wave, as shown in part (c) of Fig. 8.3.2.

We have thus far ignored attenuation of the acoustic wave in our analysis.
If we include this effect, we find that the light scattered into direction θ is not
monochromatic but has a spread in angular frequency whose width (FWHM)
is given by

δω = 1/τp = �′q2, (8.3.49)

which becomes, through use of Eq. (8.3.42),

δω = 4�′|k|2 sin2(θ/2) = 4n2�′ ω2

c2
sin2(θ/2). (8.3.50)

For the case of backscattering (θ = 180 degrees), δω/2π is typically of the
order of 100 MHz for organic liquids. Since the acoustic frequency is given by
Eq. (8.3.43), we see that the ratio of the linewidth to the Brillouin frequency
shift is given by

δω

�
= 2n�′ω

vc
sin(θ/2). (8.3.51)

The spectrum of the scattered light has the form shown in Fig. 8.3.3.

8.3.6. Rayleigh Center Scattering

We now consider the contribution to �ρ̃ (and hence to �ε̃) resulting from
isobaric density fluctuations, which are described by the second term in
Eq. (8.3.16) and are proportional to the entropy fluctuation �s̃. Entropy fluc-
tuations are described by the same equation as that describing temperature
variations:

ρcp

∂�s̃

∂t
− κ∇2�s̃ = 0, (8.3.52)

where, as before, cp denotes the specific heat at constant pressure, and where
κ denotes the thermal conductivity. Note that these fluctuations obey a diffu-
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sion equation and not a wave equation. A solution to the diffusion equation
(8.3.52) is

�s̃ = �s0e
−δt e−iq·r, (8.3.53)

where the damping rate of the entropy disturbance is given by

δ = κ

ρcp

q2. (8.3.54)

We see that, unlike pressure waves, entropy waves do not propagate. As a
result, the nonlinear polarization proportional to �s can give rise only to an
unshifted component of the scattered light. The width (FWHM) of this com-
ponent is given by δωc = δ—that is, by

δωc = 4κ

ρcp

|k|2 sin2(θ/2). (8.3.55)

As a representative case, for liquid water κ = 6 mW/cm K, ρ = 1 g/cm3,
cp = 4.2 J/g K, and the predicted width of the central component for backscat-
tering (θ = 180 degrees) of radiation at 500 nm is δωc/2π = 1.4 × 107 Hz.

It can be shown (Fabelinskii, 1968, Eq. (5.39)) that the relative intensities
of the Brillouin and Rayleigh center components are given by

Ic

2IB

= cp − cv

cv

= γ − 1. (8.3.56)

Here Ic denotes the integrated intensity of the central component, and IB that
of either of the Brillouin components. This result is known as the Landau–
Placzek relation.

8.4. Acoustooptics

The analysis just presented of the scattering of light from a sound wave can
be applied to the situation in which the sound wave is applied to the inter-
action region externally by means of a transducer. Such acoustooptic devices
are useful as intensity or frequency modulators for laser beams or as beam
deflectors.

Acoustooptic devices are commonly classified as falling into one of two
regimes, each of which will be discussed in greater detail below. These
regimes are as follows:

Bragg scattering. This type of scattering occurs for the case of interaction
lengths that are sufficiently long that phase-matching considerations be-
come important. Bragg scattering leads to a single diffracted beam. The
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name is given by analogy to the scattering of X-rays from the atomic planes
in a crystal. Bragg scattering can lead to an appreciable scattering efficiency
(>50%).

Raman–Nath scattering. This type of scattering occurs in cells with a short
interaction length. Phase-matching considerations are not important, and
several scattered orders are usually present.

We shall first consider the case of Bragg scattering of light waves; a more
precise statement of the conditions under which each type of scattering occurs
is given below in connection with the discussion of Raman–Nath scattering.

8.4.1. Bragg Scattering of Light by Sound Waves

The operation of a typical Bragg scattering cell is shown schematically in
Fig. 8.4.1. A traveling acoustic wave of frequency � and wavelength � =
2πv/� (where v denotes the velocity of sound) is established in the scat-
tering medium. The density variation associated with this acoustic wave pro-
duces a variation in the dielectric constant of the medium, and the incident
optical wave scatters from this variation. Although the amplitude of the wave
scattered from each acoustic wavefront is typically rather small, the total scat-
tered field can become quite intense if the various contributions add in phase
to produce constructive interference. The condition for constructive interfer-
ence to occur is obtained with the help of the construction shown in Fig. 8.4.2
and is given by the relation

λ = 2� sin θ, (8.4.1)

where λ is the wavelength of light in the medium. This condition is known
as the Bragg condition. It ensures that the path length difference between
rays that reflect from successive acoustic maxima is equal to an optical
wavelength. In a typical acoustooptic device, relevant parameters might be
v = 1.5 × 105 cm/sec and �/2π = 200 MHz, which imply that the acoustic
wavelength is equal to � = 2πv/� = 7.5 μm. If the optical wavelength is
0.5 μm, we see from Eq. (8.4.1) that sin θ = 1/30 and thus the deflection
angle is given by 2θ = 4 degrees.

The Bragg condition given by Eq. (8.4.1) can alternatively be understood
as a phase-matching condition. If k1 denotes the wavevector of the incident
optical wave, k2 that of the diffracted optical wave, and q that of the acoustic
wave, the Bragg condition can be seen with the help of Fig. 8.4.3(a) to be a
statement that

k2 = k1 + q. (8.4.2)
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FIGURE 8.4.1 Bragg-type acoustooptic modulator.

FIGURE 8.4.2 The Bragg condition for acoustooptic scattering.

By comparison with the analysis of Section 8.3 for spontaneous Brillouin
scattering (and as shown explicitly below), we see that the frequency of the
scattered beam is shifted upward to

ω2 = ω1 + �. (8.4.3)

Since � is much less than ω1, we see that ω2 is approximately equal to ω1, and
hence that |k2| � |k1|. The configuration shown in Fig. 8.4.1 shows the case
in which the acoustic wave is advancing toward the incident optical wave. For
the case of a sound wave propagating in the opposite direction, Eqs. (8.4.2)
and (8.4.3) must be replaced by

k2 = k1 − q, (8.4.4a)

ω2 = ω1 − �. (8.4.4b)
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FIGURE 8.4.3 The Bragg condition described as a phase-matching relation.

Figures 8.4.1 and 8.4.2 are unchanged except for the reversal of the direc-
tion of the sound velocity vector, although Fig. 8.4.3(a) must be replaced by
Fig. 8.4.3(b).

Bragg scattering of light by sound waves can be treated theoretically by
considering the time-varying change �ε̃ in the dielectric constant induced by
the acoustic density variation �ρ̃. It is usually adequate to assume that �ε̃

scales linearly with �ρ̃, so that

�ε̃ = ∂ε

∂ρ
�ρ̃ = γe

�ρ̃

ρ0
. (8.4.5)

Here ρ0 denotes the mean density of the material, and γe denotes the elec-
trostrictive constant defined by Eq. (8.3.6). Equation (8.4.5) applies rigor-
ously to the case of liquids, and it predicts the correct qualitative behavior
for other materials. For the case of anisotropic materials, the change in the
optical properties is described more precisely by means of a tensor relation,
which conventionally is given by

[
�

(
ε−1)]

ij
=

∑
kl

pijklSkl, (8.4.6)

where the quantity pijkl is known as the strain-optic tensor and where

Skl = 1

2

(
∂dk

∂xl

+ ∂dl

dxk

)
(8.4.7)

is the strain tensor, in which dk is the k component of the displacement of
a particle from its equilibrium position. Whenever the change in the inverse
of the dielectric tensor (ε−1)ij given by the right-hand side of Eq. (8.4.6) is
small, the change in the dielectric tensor εij is given by

(�ε)il = −
∑
jk

εij

[
�

(
ε−1)]

jk
εkl. (8.4.8)
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FIGURE 8.4.4 Geometry of a Bragg-type acoustooptic modulator.

Our theoretical treatment of Bragg scattering assumes the geometry shown
in Fig. 8.4.4. The interaction of the incident field

Ẽ1 = A1e
i(k1·r−ω1t) + c.c. (8.4.9)

with the acoustic wave of wavevector q produces the diffracted wave

Ẽ2 = A2e
i(k2·r−ω2t) + c.c. (8.4.10)

with ω2 = ω1 + �. The interaction is assumed to be nearly Bragg-matched
(i.e., phase-matched) in the sense that

k2 � k1 + q. (8.4.11)

The variation of the dielectric constant induced by the acoustic wave is repre-
sented as

�ε̃ = �εei(q·r−�t) + c.c., (8.4.12)

where the complex amplitude �ε is given by �ε = γe�ρ/ρ0 under those
conditions where the change in dielectric constant is accurately predicted by
Eq. (8.4.5). More generally, for anisotropic interactions, �ε is the amplitude
of the appropriate tensor component of �ε̃ij given by Eq. (8.4.6). The total
optical field Ẽ = Ẽ1 + Ẽ2 is required to satisfy the wave equation

∇2Ẽ − n2 + �ε̃

c2

∂2Ẽ

∂t2
= 0, (8.4.13)

where n denotes the refractive index of the material in the absence of the
acoustic wave. Since according to Eq. (8.4.12) �ε̃ oscillates at frequency �,
it couples the optical waves of frequencies ω1 and ω2 = ω1 + �.



418 8 ♦ Spontaneous Light Scattering and Acoustooptics

We first consider the portion of Eq. (8.4.13) that oscillates at frequency ω1.
This part is given by

∂2A1

∂x2
+ ∂2A1

∂z2
+ 2ik1x

∂A1

∂x
+ 2ik1z

∂A1

∂z
− (

k2
1x + k2

1z

)
A1

+ n2ω2
1

c2
A1 + ω2

2

c2
A2�ε∗ei(k2−k1−q)·r = 0. (8.4.14)

This equation can be simplified in the following manner: (1) We introduce the
slowly varying amplitude approximation, which entails ignoring the second-
order derivatives; (2) we note that A1 depends only on x and not on z, since the
interaction is invariant to a translation in the z direction, and so we set ∂A1/∂z

equal to 0; and (3) we note that k2
1x + k2

1z = n2ω2
1/c

2. Equation (8.4.14) thus
becomes

2ik1x

dA1

dx
= −ω2

2

c2
A2�ε∗ei(k2−k1−q)·r. (8.4.15)

Next, we note that the propagation vector mismatch k2 − k1 − q ≡ −�k
can have a nonzero component only in the x direction, because the geometry
we are considering has infinite extent in the z direction, and the z component
of the k wavevector mismatch must therefore vanish. We thus see that

(k2 − k1 − q) · r ≡ −�kx, (8.4.16)

and hence that Eq. (8.4.15) can be written as

dA1

dx
= iω2

2�ε∗

2k1xc2
A2e

−i�kx. (8.4.17)

By a completely analogous derivation, we find that the portion of the wave
equation (8.4.13) that describes a wave at frequency ω2 is given by

dA2

dx
= iω2

1�ε

2k2xc2
A1e

i�kx. (8.4.18)

Finally, we note that since ω1 � ω2 ≡ ω and k1x � k2x ≡ kx , the coupled
equations (8.4.17) and (8.4.18) can be written as

dA1

dx
= iκA2e

−i�kx, (8.4.19a)

dA2

dx
= iκ∗A1e

i�kx, (8.4.19b)
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where we have introduced the coupling constant

κ = ω2�ε∗

2kxc2
. (8.4.20)

The solution to these coupled-amplitude equations is particularly simple for
the case in which Ẽ1 is incident at the Bragg angle. In this case, the interaction
is perfectly phase-matched, so that �k = 0, and thus Eq. (8.4.19b) reduces to
the set

dA1

dx
= iκA2,

dA2

dx
= iκ∗A1. (8.4.21)

These equations are easily solved using methods similar to those introduced
in Chapter 2. The solution appropriate to the boundary conditions illustrated
in Fig. 8.4.4 is

A1(x) = A1(0) cos(|κ|x), (8.4.22a)

A2(x) = iκ∗

|κ| A1(0) sin(|κ|x). (8.4.22b)

Note that these solutions obey the relation
∣∣A1(x)

∣∣2 + ∣∣A2(x)
∣∣2 = ∣∣A1(0)

∣∣2
, (8.4.23)

which shows that the energy of the optical field is conserved in the Bragg scat-
tering process (since we have assumed that � � ω). We define the diffraction
efficiency of the Bragg scattering process to be the ratio of the output inten-
sity of the ω2 wave to the input intensity of the ω1 wave, and we find that the
diffraction efficiency is given by

η ≡ |A2(L)|2
|A1(0)|2 = sin2(|κ|L)

. (8.4.24)

For practical purposes, it is useful to express the coupling constant κ de-
fined by Eq. (8.4.20) in terms of the intensity (i.e., power per unit area) of the
acoustic wave. The intensity of a sound wave is given by the relation

I = Kv
〈�ρ̃2〉

ρ2
0

= 2Kv

∣∣∣∣�ρ

ρ0

∣∣∣∣
2

, (8.4.25)

where, as before, K = 1/C is the bulk modulus, v is the sound velocity, and
�ρ is the complex amplitude of the density disturbance associated with the
acoustic wave. It follows from Eq. (8.4.5) that �ε is equal to γe�ρ/ρ, and
thus the acoustic intensity can be written as I = 2Kv|�ε|2/γ 2

e . The coupling
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constant |κ| (see Eq. (8.4.20)) can thus be expressed as

|κ| = ωγe

2nc cos θ

(
I

2Kv

)1/2

, (8.4.26)

where we have replaced kx by n(ω/c) cos θ .
As an example, we evaluate Eq. (8.4.26) for the case of Bragg scattering in

water, which is characterized by the following physical constants: n = 1.33,
γe = 0.82, v = 1.5 × 103 m/sec, and K = 2.19 × 1011 m2/Newton. We as-
sume that cos θ � 1, as is usually the case; that the vacuum optical wavelength
is 0.5 μm, so that ω = 3.8 × 1015 rad/sec; and that the acoustic intensity is
1.0 W/cm2 (as might be obtained using 1 W of acoustic power and an acoustic
beam diameter of approximately 1 cm). Under these conditions, Eq. (8.4.26)
gives the value |κ| = 1.5 cm−1. According to Eq. (8.4.24), 100% conversion
of the incident beam into the diffracted beam is predicted for |κ|L = π/2, or
under the present conditions for a path length through the acoustic beam of
L = 1.0 cm.

For the case in which the incident beam does not intercept the acoustic
wavefronts at the Bragg angle, the theoretical analysis is more complicated
because the wavevector mismatch �k does not vanish. The phase-matching
diagrams for the cases of Bragg-angle and non-Bragg-angle incidence are
contrasted in Fig. 8.4.5. As discussed in connection with Eq. (8.4.16), the
wavevector mismatch can have a component only in the x direction, since the
medium is assumed to have infinite extent in the z direction.

We first determine the relationship between the wavevector mismatch �k

and the angle of incidence θ1. We note that the x and z components of the
vectors of diagram (b) obey the relations

k cos θ1 − k cos θ2 = �k, (8.4.27a)

k sin θ1 + k sin θ2 = q, (8.4.27b)

FIGURE 8.4.5 Wavevector diagrams for (a) incidence at the Bragg angle, so �k = 0,
and (b) non-Bragg-angle incidence, so �k �= 0.
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where we have let k1 � k2 = k. We note that if the angle of incidence θ1 is
equal to the Bragg angle

θB = sin−1 q

2k
= sin−1 λ

2�
, (8.4.28)

then Eqs. (8.4.27b) imply that the diffraction angle θ2 is also equal to θB and
that �k = 0. For the case in which the light is not incident at the Bragg angle,
we set

θ1 = θB + �θ, (8.4.29a)

where we assume that �θ � 1. We note that Eq. (8.4.27b) will be satisfied so
long as

θ2 = θB − �θ. (8.4.29b)

These values of θ1 and θ2 are now introduced into Eq. (8.4.27a). The cosine
functions are expanded to lowest order in �θ as

cos(θB ± �θ) = cos θB ∓ (sin θB)�θ,

and we obtain (2k sin θB)�θ = �k, which through use of Eq. (8.4.28) shows
that the wavevector mismatch �k that occurs as the result of an angular mis-
alignment �θ is given by

�k = −�θq. (8.4.30)

We next solve Eqs. (8.4.19b) for arbitrary values of �k. The solution for
the case in which no field at frequency ω2 is applied externally is

A1(x) = e−i(1/2)�kxA1(0)

(
cos sx + i

�k

2s
sin sx

)
, (8.4.31a)

A2(x) = iei(1/2)�kxA1(0)
κ∗

s
sin sx, (8.4.31b)

where

s2 = |κ|2 + ( 1
2�k

)2
. (8.4.32)

The diffraction efficiency for arbitrary �k is now given by

η(�k) ≡ |A2(L)|2
|A1(0)|2 = |κ|2

|κ|2 + (1
2�k)2

sin2 {[|κ|2 + (1
2�k

)2]1/2
L

}
. (8.4.33)

We see that for �k �= 0 the maximum efficiency is always less than 100%. Let
us examine the rate at which the efficiency decreases as the phase mismatch
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�k is increased. We expand η(�k) as a power series in �k as

η(�k) = η(0) + �k
dη

d(�k)

∣∣∣∣
�k=0

+ 1

2
(�k)2 d2η

d(�k)2

∣∣∣∣
�k=0

+ · · · . (8.4.34)

By calculating these derivatives, we find that, correct to second order in �k,
the efficiency is given by

η(�k) = η(0)

[
1 − (�k)2

4|κ|2
(

1 − |κ|K cos(|κ|L)

sin(|κ|L)

)]
, (8.4.35a)

where

η(0) = sin2(|κ|L)
. (8.4.35b)

One common use of the Bragg acoustooptic effect is to produce an
amplitude-modulated laser beam, as illustrated in Fig. 8.4.6. In such a device,
the frequency of the electrical signal that is fed to the acoustic transducer is
held fixed, but the amplitude of this wave is modulated. As a result, the depth
of modulation of the acoustic grating is varied, leading to a modulation of the
intensity of the scattered wave.

Another application of Bragg acoustooptic scattering is to produce a beam
deflector (Fig. 8.4.7). In such a device, the frequency � of the electrical signal
that is fed to the acoustic transducer is allowed to vary. As a result, the acoustic
wavelength � varies, and thus the diffraction angle θ2 given by Eq. (8.4.29b)
can be controlled. It should be noted that the diffraction efficiency given by
Eq. (8.4.33) decreases for diffraction at angles different from the Bragg angle,
and this effect places limitations on the range of deflection angles that are
achievable by means of this technique.

FIGURE 8.4.6 Acoustooptic amplitude modulator.
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FIGURE 8.4.7 Acoustooptic beam deflector. The angle θ2 depends on the frequency
of � of the electrical signal.

8.4.2. Raman–Nath Effect

The description of Bragg scattering given in the preceding subsection implic-
itly assumed that the width L of the interaction region was sufficiently large
that an incident ray of light would interact with a large number of acoustic
wavefronts. As illustrated in Fig. 8.4.8, this condition requires that

L tan θ1 � �, (8.4.36)

where � is the acoustic wavelength. However, the angle of incidence θ1 must
satisfy the Bragg condition

sin θ1 = λ

2�
(8.4.37)

if efficient scattering is to occur. In most cases of interest, θ1 is much smaller
than unity, and hence tan θ1 � θ1. Equation (8.4.37) can then be used to elim-
inate θ1 from Eq. (8.4.36), which becomes

λL

�2
� 1. (8.4.38)

If this condition is satisfied, Bragg scattering can occur. Scattering in the op-
posite limit is known as Raman–Nath scattering.

Raman–Nath scattering can be understood in terms of the diagram shown
in Fig. 8.4.9. A beam of light falls onto the scattering cell, typically at near-
normal incidence. Because of the presence of the acoustic wave, whose wave-
length is denoted �, the refractive index of the medium varies spatially with
period �. The incident light diffracts off this index grating; the characteristic
angular spread of the diffracted light is

δθ = λ

�
. (8.4.39)
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FIGURE 8.4.8 Illustration of the condition under which Bragg scattering occurs.

We now assume that the cell is sufficiently thin that multiple scattering
cannot occur. This condition can be stated as

δθL < �. (8.4.40)

If δθ is eliminated from this inequality through use of Eq. (8.4.39), we find
that

λL

�2
< 1. (8.4.41)

We note that this condition is the opposite of the inequality (8.4.38) for the
occurrence of Bragg scattering.

We now present a mathematical analysis of Raman–Nath scattering. We
assume that the acoustic wave within the scattering cell can be represented as
the density variation

�ρ̃ = �ρei(qz−�t) + c.c. (8.4.42)

A refractive index variation

�ñ = �nei(qz−�t) + c.c. (8.4.43)

is associated with this acoustic wave. We relate the complex amplitude �n of
the refractive index disturbance to the amplitude �ρ of the acoustic wave
as follows: We let ñ = n0 + �ñ, where ñ = ε̃1/2 with ε̃ = εb + �ε̃. We
thus find that n0 = ε

1/2
b and that �ñ = �ε̃/2n0. We now represent �ε̃ as

�ε̃ = (∂ε/∂ρ)�ρ̃ = γe�ρ̃/ρ0 and find that �ñ = γe�ρ̃/2n0ρ0, and thus that

�n = γe�ρ

2n0ρ0
. (8.4.44)

The ensuing analysis is simplified by representing �ñ using real quantities;
we assume that the phase conventions are chosen such that

�ñ(z, t) = 2�n sin(qz − �t). (8.4.45)
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FIGURE 8.4.9 Raman–Nath diffraction.

The electric field of the incident optical wave is represented as

Ẽ(r, t) = Aei(kx−ωt) + c.c. (8.4.46)

After passing through the acoustic wave, the optical field will have experi-
enced a phase shift

φ = �ñ
ω

c
L = 2�n

ω

c
L sin(qz − �t) ≡ δ sin(qz − �t), (8.4.47)

where the quantity

δ = 2�nωL/c (8.4.48)

is known as the modulation index. The transmitted field can hence be repre-
sented as Ẽ(r, t) = A exp[i(kx − ωt + φ)] + c.c., or as

Ẽ(r, t) = Aei[kx−ωt+δ sin(qz−�t)] + c.c. (8.4.49)

We see that the transmitted field is phase-modulated in time. To determine
the consequences of this form of modulation, we note that Eq. (8.4.49) can be
transformed through use of the Bessel function identity

eiδ siny =
∞∑

l=−∞
Jl(δ)e

ily (8.4.50)

so that the transmitted field can be expressed as

Ẽ(r, t) = A

∞∑
l=−∞

Jl(δ)e
i[(kx+lqz)−(ω+ l�)t] + c.c. (8.4.51)
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FIGURE 8.4.10

We see that the transmitted field is a linear superposition of plane wave
components with frequencies ω + l� and wavevectors k + lq. As shown in
Fig. 8.4.10 (for the case l = 2), the lth-order diffracted wave is emitted at
angle

θl = tan−1
(

lq

k

)
� lq

k
= lλ

�
. (8.4.52)

The intensity of the light in this diffraction order is

Il = |A|2Jl(δ)
2, (8.4.53)

where, as before, δ ≡ 2�n(ω/c)L. Equations (8.4.48) and (8.4.53) constitute
the Raman–Nath equations.

It is instructive to repeat this analysis for the case of a standing sound wave.
For convenience, we take the resulting modulation of the refractive index to
be of the form

ñ(z, t) = 2�n cos�t sinqz. (8.4.54)

The phase shift induced in the optical wave is then given by

φ = 2�n
ω

c
L cos�t sinqz

≡ δ cos�t sinqz, (8.4.55)

and the transmitted optical field is given by

Ẽ(r, t) = Aei(kx−ωt+δ cos�t sinqz) + c.c. (8.4.56)

We now use the Bessel function identity (8.4.50) to transform the factor
sinqz that appears in the exponent of this expression. We find that

Ẽ(r, t) = A

∞∑
l=−∞

Jl(δ cos�t) exp
[
i(kx + lqz) − iωt

] + c.c. (8.4.57)

We see that once again the transmitted field is composed of plane wave com-
ponents; the lth diffracted order makes an angle

θl � lq

k
= lλ

�
(8.4.58)



Problems 427

with the forward direction. The intensity of the lth order is now given by

Il = |A|2Jl(δ cos�t)2. (8.4.59)

We see that in this case each component is amplitude-modulated.

Problems

1. Light scattering in air. Estimate numerically, using the Lorentz model of
the atom, the value of the scattering cross section for molecular nitrogen
(N2) for visible light at a wavelength of 500 nm. Use this result to estimate
the value of the scattering coefficient R for air at STP. Compare this value
with that obtained using Eq. (8.2.22) and the known refractive index of air.
(The measured value for 90-degree scattering of unpolarized light, Ru

90, is
approximately 2×10−8 cm−1.) Also, estimate numerically the attenuation
distance of light in air—that is, the propagation distance through which the
intensity falls to 1/e of its initial value due to scattering losses.

[Ans.: α = (16π/3)Ru
90 = 3 × 10−7 cm−1 = (33 km)−1.]

2. Light scattering in water. Through use of Eq. (8.3.9b) and handbook values
of γe and CT , estimate numerically the value of the scattering coefficient
R for liquid water at room temperature for 90-degree scattering of visible
light at a wavelength of 500 nm. Use this result to estimate the attenuation
distance of light in water.

[Ans: Using the values CT = 4.5 × 10−11 cm2/dyne, n = 1.33, γe =
(n2 − 1)(n2 + 2)/3 = 0.98, and T = 300 K, we find that R = 2.8 ×
10−6 sin2 φ cm−1, and thus that for 90-degree scattering of unpolarized
light Ru

90 = 1.4 × 10−6 cm−1. Thus, the attenuation constant is given by
α = (16π/3)Ru

90 = 2.34 × 10−5 cm−1 = (426 m)−1.]
3. Polarizability of a dielectric sphere. Verify Eq. (8.2.12).
4. Acoustic attenuation in water. Estimate numerically the value of the

acoustic absorption coefficient αs for propagation through water at fre-
quencies of 103, 106, and 109 Hz.

[Ans.: The low-frequency shear viscosity coefficient of water is ηs =
0.01 dyne sec/cm2, and the Stokes relation tells us that ηd = −(2/3)ηs .
We find that �′ = 0.66 × 10−2 cm2/sec. Since αs = q2�′/v and q = �/v,
where v = 1.5×106 cm/sec, we find that αs = 7.7×10−14 cm−1 at 1 kHz
and αs = 7.7 × 10−2 cm−1 at 1 GHz.]

5. Inverse dielectric tensor. Verify Eq. (8.4.8).
6. Solution of the Bragg acoustooptics equations. Verify Eqs. (8.4.31a)

through (8.4.35b).
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7. Acoustooptic beam deflector. Consider an acoustooptic beam deflector. The
incidence angle θ1 remains fixed, while the acoustic frequency � is var-
ied to control the deflection angle θ2. Derive a formula that predicts the
maximum useful deflection angle, defined arbitrarily to be that deflection
angle for which the diffraction efficiency drops to 50% of its maximum
value. Evaluate this formula numerically for the case treated following
Eq. (8.4.26), where |κ|L = π/2, L = 1.1 cm, and � = 30 μm.
[Ans.: Starting with Eq. (8.4.25), and the readily derived relation �k =
−1

2qδθ , we find that the efficiency drops by 50% when the incidence angle
is increased by an amount

δθ = 2
√

2|κ|
q

[
1 − |κ|L cos |κ|L

sin |κ|L
]1/2

.

For the case |κ|L = π/2, where the efficiency for �k = 0 is 100%, this re-
sult simplifies to δθ = 2

√
2|κ|/q . For the numerical example, 2δθ = 0.22

degree.]
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Chapter 9

Stimulated Brillouin and Stimulated
Rayleigh Scattering

9.1. Stimulated Scattering Processes

We saw in Section 8.1 that light scattering can occur only as the result of
fluctuations in the optical properties of a material system. A light-scattering
process is said to be spontaneous if the fluctuations (typically in the dielectric
constant) that cause the light-scattering are excited by thermal or by quantum-
mechanical zero-point effects. In contrast, a light-scattering process is said
to be stimulated if the fluctuations are induced by the presence of the light
field. Stimulated light scattering is typically very much more efficient than
spontaneous light scattering. For example, approximately one part in 105 of
the power contained in a beam of visible light would be scattered out of the
beam by spontaneous scattering in passing through 1 cm of liquid water.∗
In this chapter, we shall see that when the intensity of the incident light is
sufficiently large, essentially 100% of a beam of light can be scattered in a
1-cm path as the result of stimulated scattering processes.

In the present chapter we study stimulated light scattering resulting from
induced density variations of a material system. The most important example
of such a process is stimulated Brillouin scattering (SBS), which is illustrated
schematically in Fig. 9.1.1. This figure shows an incident laser beam of fre-
quency ωL scattering from the refractive index variation associated with a
sound wave of frequency �. Since the acoustic wavefronts are moving away
from the incident laser wave, the scattered light is shifted downward in fre-
quency to the Stokes frequency ωS = ωL − �. The reason why this interac-
tion can lead to stimulated light scattering is that the interference of the laser

∗ Recall that the scattering coefficient R is of the order of 10−6 cm−1 for water.
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FIGURE 9.1.1 Stimulated Brillouin scattering.

and Stokes fields contains a frequency component at the difference frequency
ωL − ωS, which of course is equal to the frequency � of the sound wave. The
response of the material system to this interference term can act as a source
that tends to increase the amplitude of the sound wave. Thus the beating of the
laser wave with the sound wave tends to reinforce the Stokes wave, whereas
the beating of the laser wave and Stokes waves tends to reinforce the sound
wave. Under proper circumstances, the positive feedback described by these
two interactions leads to exponential growth of the amplitude of the Stokes
wave. SBS was first observed experimentally by Chiao et al. (1964).

There are two different physical mechanisms by which the interference of
the laser and Stokes waves can drive the acoustic wave. One mechanism is
electrostriction—that is, the tendency of materials to become more dense in
regions of high optical intensity; this process is described in detail in the next
section. The other mechanism is optical absorption. The heat evolved by ab-
sorption in regions of high optical intensity tends to cause the material to ex-
pand in those regions. The density variation induced by this effect can excite
an acoustic disturbance. Absorptive SBS is less commonly used than elec-
trostrictive SBS, since it can occur only in lossy optical media. For this reason
we shall treat the electrostrictive case first and return to the case of absorptive
coupling in Section 9.6.

There are two conceptually different configurations in which SBS can be
studied. One is the SBS generator shown in part (a) of Fig. 9.1.2. In this
configuration only the laser beam is applied externally, and both the Stokes
and acoustic fields grow from noise within the interaction region. The noise
process that initiates SBS is typically the scattering of laser light from ther-
mally generated phonons. For the generator configuration, the Stokes radia-
tion is created at frequencies near that for which the gain of the SBS process
is largest. We shall see in Section 9.3 how to calculate this frequency.

Part (b) of Fig. 9.1.2 shows an SBS amplifier. In this configuration both the
laser and Stokes fields are applied externally. Strong coupling occurs in this
case only if the frequency of the injected Stokes wave is approximately equal
to the frequency that would be created by an SBS generator.

In Figs. 9.1.1 and 9.1.2, we have assumed that the laser and Stokes waves
are counterpropagating. In fact, the SBS process leads to amplification of a
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FIGURE 9.1.2 (a) SBS generator; (b) SBS amplifier.

Stokes wave propagating in any direction except for the propagation direction
of the laser wave.∗ However, SBS is usually observed only in the backward
direction, because the spatial overlap of the laser and Stokes beams is largest
under these conditions.

9.2. Electrostriction

Electrostriction is the tendency of materials to become compressed in the pres-
ence of an electric field. Electrostriction is of interest both as a mechanism
leading to a third-order nonlinear optical response and as a coupling mecha-
nism that leads to stimulated Brillouin scattering.

The origin of the effect can be explained in terms of the behavior of a di-
electric slab placed in the fringing field of a plane-parallel capacitor. As illus-
trated in part (a) of Fig. 9.2.1, the slab will experience a force tending to pull
it into the region of maximum field strength. The nature of this force can be
understood either globally or locally.

We can understand the origin of the electrostrictive force from a global
point of view as being a consequence of the maximization of stored energy.
The potential energy per unit volume of a material located in an electric field
of field strength E is changed with respect to its value in the absence of the
field by the amount

u = 1
2εε0E

2, (9.2.1)

where ε is the relative dielectric constant of the material and ε0 is the per-
mittivity of free space. Consequently the total energy of the system,

∫
udV , is

∗ We shall see in Section 9.3 that copropagating laser and Stokes waves could interact only by
means of acoustic waves of infinite wavelength, which cannot occur in a medium of finite spatial
extent.
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FIGURE 9.2.1 Origin of electrostriction: (a) a dielectric slab near a parallel plate
capacitor; (b) a molecule near a parallel plate capacitor.

maximized by allowing the slab to move into the region between the capacitor
plates where the field strength is largest.

From a microscopic point of view, we can consider the force acting on an
individual molecule placed in the fringing field of the capacitor, as shown in
part (b) of Fig. 9.2.1. In the presence of the field E, the molecule develops the
dipole moment p = ε0αE, where α is the molecular polarizability. The energy
stored in the polarization of the molecule is given by

U = −
∫ E

0
p · dE′ = −

∫ E

0
ε0αE′ · dE′ = −1

2ε0αE · E ≡ −1
2ε0αE2.

(9.2.2)

The force acting on the molecule is then given by

F = −∇U = 1
2ε0α∇(

E2
)
. (9.2.3)

We see that each molecule is pulled into the region of increasing field strength.
Next we consider the situation illustrated in Fig. 9.2.2, in which the ca-

pacitor is immersed in the dielectric liquid. Molecules are pulled from the
surrounding medium into the region between the capacitor plates, thus in-
creasing the density in this region by an amount that we shall call �ρ. We
calculate the value of �ρ by means of the following argument: As a result of
the increase in density of the material, its dielectric constant changes from its
original value ε to the value ε + �ε, where

�ε =
(

∂ε

∂ρ

)
�ρ. (9.2.4)
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FIGURE 9.2.2 Capacitor immersed in a dielectric liquid.

Consequently, the field energy density changes by the amount

�u = 1
2ε0E

2�ε = 1
2ε0E

2
(

∂ε

∂ρ

)
�ρ. (9.2.5)

However, according to the first law of thermodynamics, this change in energy
�u must be equal to the work performed in compressing the material; the
work done per unit volume is given by

�w = pst
�V

V
= −pst

�ρ

ρ
. (9.2.6)

Here the strictive pressure pst is the contribution to the pressure of the ma-
terial that is due to the presence of the electric field. Since �u = �w, by
equating Eqs. (9.2.5) and (9.2.6), we find that the electrostrictive pressure is
given by

pst = −1
2ε0ρ

(
∂ε

∂ρ

)
E2 ≡ −1

2ε0γeE
2, (9.2.7)

where γe = ρ(∂ε/∂ρ) is known as the electrostrictive constant (see also
Eq. (8.3.6)). Since pst is negative, the total pressure is reduced in regions
of high field strength. The fluid tends to be drawn into these regions, and the
density increases. We calculate the change in density as �ρ = −(∂ρ/∂p)�p,
where we equate �p with the electrostrictive pressure of Eq. (9.2.7). We write
this result as

�ρ = −ρ

(
1

ρ

∂ρ

∂p

)
pst ≡ −ρCpst, (9.2.8)

where C = ρ−1(∂ρ/∂p) is the compressibility. Combining this result with
Eq. (9.2.7), we find that

�ρ = 1
2ε0ρCγeE

2. (9.2.9)
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This equation describes the change in material density �ρ induced by an
applied electric field of strength E.

The derivation of this expression for �ρ has implicitly assumed that the
electric field E is a static field. In such a case, the derivatives that appear in
the expressions for C and γe are to be performed with the temperature T held
constant. However, our primary interest is for the case in which E represents
an optical frequency field; in such a case Eq. (9.2.9) should be replaced by

�ρ = 1
2ε0ρCγe

〈
Ẽ · Ẽ

〉
, (9.2.10)

where the angular brackets denote a time average over an optical period. If
Ẽ(t) contains more than one frequency component so that 〈Ẽ · Ẽ〉 contains
both static components and hypersonic components (as in the case of SBS),
C and γe should be evaluated at constant entropy to determine the response
for the hypersonic components and at constant temperature to determine the
response for the static components.

Let us consider the modification of the optical properties of a material sys-
tem that occurs as a result of electrostriction. We represent the change in the
susceptibility in the presence of an optical field as �χ = �ε, where �ε is
calculated as (∂ε/∂ρ)�ρ, with �ρ given by Eq. (9.2.10). We thus find that

�χ = 1
2ε0Cγ 2

e

〈
Ẽ · Ẽ

〉
. (9.2.11)

For the present, let us consider the case of a monochromatic applied field

Ẽ(t) = Ee−iωt + c.c.; (9.2.12)

the case in which Ẽ(t) contains two frequency components that differ by ap-
proximately the Brillouin frequency is treated in the following section on SBS.
Then, since 〈Ẽ · Ẽ〉 = 2E · E∗, we see that

�χ = ε0CT γ 2
e E · E∗. (9.2.13)

The complex amplitude of the nonlinear polarization that results from this
change in the susceptibility can be represented as P = �χE—that is, as

P = ε0CT γ 2
e |E|2E. (9.2.14)

If we write this result in terms of a conventional third-order susceptibility,
defined through

P = 3ε0χ
(3)(ω = ω + ω − ω)|E|2E, (9.2.15)

we find that

χ(3)(ω = ω + ω − ω) = 1
3ε0CT γ 2

e . (9.2.16)
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For simplicity, we have suppressed the tensor nature of the nonlinear sus-
ceptibility in the foregoing discussion. However, we can see from the form of
Eq. (9.2.14) that, for an isotropic material, the nonlinear coefficients of Maker
and Terhune (see Eq. (4.2.10)) have the form A = CT γ 2

e and B = 0.
Let us estimate the numerical value of χ(3). We saw in Eq. (8.3.12) that for a

dilute gas the electrostrictive constant γe ≡ ρ(∂ε/∂ρ) is given by γe = n2 −1.
More generally, we can estimate γe through use of the Lorentz–Lorenz law
(Eq. (3.8.8a)), which leads to the prediction

γe = (
n2 − 1

)(
n2 + 2

)/
3. (9.2.17)

This result shows that γe is of the order of unity for condensed matter. The
compressibility CT = ρ−1(∂ρ/∂p) is approximately equal to 10−9 m2 Nt−1

for CS2 and is of the same order of magnitude for all condensed matter. We
thus find that χ(3)(ω = ω + ω − ω) is of the order of 3 × 10−21 m2 V−2 for
condensed matter. For ideal gases, the compressibility CT is equal to 1/p,
where at 1 atmosphere p = 105 Nt/m2. The electrostrictive constant γe =
n2 − 1 for air at 1 atmosphere is approximately equal to 6 × 10−4. We thus
find that χ(3)(ω = ω + ω − ω) is of the order of 1 × 10−23 m2 V−2 for gases
at 1 atmosphere of pressure.

A very useful, alternative expression for χ(3)(ω = ω + ω − ω) can be de-
duced from expression (9.2.16) by expressing the electrostrictive constant
through use of Eq. (9.2.17) and by expressing the compressibility in terms
of the material density and velocity of sound through use of Eq. (8.3.21),
such that Cs = 1/v2ρ. Similarly, the isothermal compressibility is given by
CT = γCs where γ is the usual thermodynamic adiabatic index. One thus
finds that

χ(3)(ω = ω + ω − ω) = ε0γ

3v2ρ

[
(n2 − 1)(n2 + 2)

3

]2

. (9.2.18)

For pulses sufficiently short that heat flow during the pulse is negligible, the
factor of γ in the numerator of this expression is to be replaced by unity. As
usual, the nonlinear refractive index coefficient n2 for electrostriction can be
deduced from this expression and the result n2 = (3/4n2

0ε0c)χ
(3) obtained

earlier (Eq. (4.1.19)).
In comparison with other types of optical nonlinearities, the value of χ(3)

resulting from electrostriction is not usually large. However, it can make
an appreciable contribution to total measured nonlinearity for certain opti-
cal materials. For the case of optical fibers, Buckland and Boyd (1996, 1997)
found that electrostriction can make an approximately 20% contribution to the
third-order susceptibility. Moreover, we shall see in the next section that elec-
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trostriction provides the nonlinear coupling that leads to stimulated Brillouin
scattering, which is often an extremely strong process.

9.3. Stimulated Brillouin Scattering (Induced by Electrostriction)

Our discussion of spontaneous Brillouin scattering in Chapter 8 presupposed
that the applied optical fields are sufficiently weak that they do not alter the
acoustic properties of the material system. Spontaneous Brillouin scattering
then results from the scattering of the incident radiation off the sound waves
that are thermally excited.∗

For an incident laser field of sufficient intensity, even the spontaneously
scattered light can become quite intense. The incident and scattered light fields
can then beat together, giving rise to density and pressure variations by means
of electrostriction. The incident laser field can then scatter off the refractive
index variation that accompanies these density variations. The scattered light
will be at the Stokes frequency and will add constructively with the Stokes
radiation that produced the acoustic disturbance. In this manner, the acoustic
and Stokes waves mutually reinforce each other’s growth, and each can grow
to a large amplitude. This circumstance is depicted in Fig. 9.3.1. Here an inci-
dent wave of amplitude E1, angular frequency ω1, and wavevector k1 scatters
off a retreating sound wave of amplitude ρ, frequency �, and wavevector q
to form a scattered wave of amplitude E2, frequency ω2, and wavevector k2.†

FIGURE 9.3.1 Schematic representation of the stimulated Brillouin scattering
process.

∗ Stimulated Brillouin scattering can also be induced by absorptive effects. This less commonly
studied case is examined in Section 9.6.

† We denote the field frequencies as ω1 and ω2 rather than ωL and ωS so that we can apply the
results of the present treatment to the case of anti-Stokes scattering by identifying ω1 with ωaS and
ω2 with ωL. The treatment of the present section assumes only that ω2 < ω1.
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Let us next deduce the frequency ω2 of the Stokes field that is created by the
SBS process for the case of an SBS generator (see also part (a) of Fig. 9.1.2).
Since the laser field at frequency ω1 is scattered from a retreating sound wave,
the scattered radiation will be shifted downward in frequency to

ω2 = ω1 − �B. (9.3.1)

Here �B is called the Brillouin frequency, and we shall now see how to de-
termine its value. The Brillouin frequency is related to the acoustic wavevector
qB by the phonon dispersion relation

�B = |qB|v, (9.3.2)

where v is the velocity of sound. By assumption, this sound wave is driven by
the beating of the laser and Stokes fields, and its wavevector is therefore given
by

qB = k1 − k2. (9.3.3)

Since the wavevectors and frequencies of the optical waves are related in
the usual manner, that is, by |ki | = nωi/c, we can use Eq. (9.3.3) and the
fact that the laser and Stokes waves are counterpropagating to express the
Brillouin frequency of Eq. (9.3.2) as

�B = v

c/n
(ω1 + ω2). (9.3.4)

Equations (9.3.1) and (9.3.4) are now solved simultaneously to obtain an ex-
pression for the Brillouin frequency in terms of the frequency ω1 of the ap-
plied field only—that is, we eliminate ω2 from these equations to obtain

�B =
2v
c/n

ω1

1 + v
c/n

. (9.3.5)

However, since v is very much smaller than c/n for all known materials, it is
an excellent approximation to take the Brillouin frequency to be simply

�B = 2v

c/n
ω1. (9.3.6)

At this same level of approximation, the acoustic wavevector is given by

qB = 2k1. (9.3.7)

For the case of the SBS amplifier configuration (see part (b) of Fig. 9.1.2),
the Stokes wave is imposed externally and its frequency ω2 is known a priori.
The frequency of the driven acoustic wave is then given by

� = ω1 − ω2, (9.3.8)
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which in general will be different from the Brillouin frequency of Eq. (9.3.6).
As we shall see below, the acoustic wave will be excited efficiently under
these circumstances only when ω2 is chosen such that the frequency differ-
ence |�−�B| is less than or of the order of the Brillouin linewidth �B, which
is defined in Eq. (9.3.14b).

Let us next see how to treat the nonlinear coupling among the three inter-
acting waves. We represent the optical field within the Brillouin medium as
Ẽ(z, t) = Ẽ1(z, t) + Ẽ2(z, t), where

Ẽ1(z, t) = A1(z, t)e
i(k1z−ω1t) + c.c. (9.3.9a)

and

Ẽ2(z, t) = A2(z, t)e
i(−k2z−ω2t) + c.c. (9.3.9b)

Similarly, we describe the acoustic field in terms of the material density dis-
tribution

ρ̃(z, t) = ρ0 + [
ρ(z, t)ei(qz−�t) + c.c.

]
, (9.3.10)

where � = ω1 −ω2, q = 2k1, and ρ0 denotes the mean density of the medium.
We assume that the material density obeys the acoustic wave equation (see

also Eq. (8.3.17))

∂2ρ̃

∂t2
− �′∇2 ∂ρ̃

∂t
− v2∇2ρ̃ = ∇ · f, (9.3.11)

where v is the velocity of sound and �′ is a damping parameter given by
Eq. (8.3.23). The source term on the right-hand side of this equation consists
of the divergence of the force per unit volume f, which is given explicitly by

f = ∇pst, pst = −1
2ε0γe

〈
Ẽ2

〉
. (9.3.12)

For the fields given by Eq. (9.3.9), this source term is given by

∇ · f = ε0γeq
2[A1A

∗
2e

i(qz−�t) + c.c.
]
. (9.3.13)

If we now introduce Eqs. (9.3.10) and (9.3.13) into the acoustic wave equation
(9.3.11) and assume that the acoustic amplitude varies slowly (if at all) in
space and time, we obtain the result

−2i�
∂ρ

∂t
+ (

�2
B − �2 − i��B

)
ρ − 2iqv2 ∂ρ

∂z
= ε0γeq

2A1A
∗
2, (9.3.14a)

where we have introduced the Brillouin linewidth

�B = q2�′; (9.3.14b)

its reciprocal τp = �−1
B gives the phonon lifetime.
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Equation (9.3.14a) can often be simplified substantially by omitting the last
term on its left-hand side. This term describes the propagation of phonons.
However, hypersonic phonons are strongly damped and thus propagate only
over very short distances before being absorbed.∗ Since the phonon propa-
gation distance is typically small compared to the distance over which the
source term on the right-hand side of Eq. (9.3.14a) varies significantly, it is
conventional to drop the term containing ∂ρ/∂z in describing SBS. This ap-
proximation can break down, however, as discussed by Chiao (1965) and by
Kroll and Kelley (1971). If we drop the spatial derivative term in Eq. (9.3.14a)
and assume steady-state conditions so that ∂ρ/∂t also vanishes, we find that
the acoustic amplitude is given by

ρ(z, t) = ε0γeq
2 A1A

∗
2

�2
B − �2 − i��B

. (9.3.15)

The spatial evolution of the optical fields is described by the wave equation

∂2Ẽi

∂z2
− 1

(c/n)2

∂2Ẽi

∂t2
= 1

ε0c2

∂2P̃i

∂t2
, i = 1,2. (9.3.16)

The total nonlinear polarization, which gives rise to the source term in this
equation, is given by

P̃ = ε0�χẼ = ε0�εẼ = ε0ρ
−1
0 γeρ̃Ẽ. (9.3.17)

We next determine those parts of P̃ that can act as phase-matched source
terms for the laser and Stokes fields. These contributions are given by

P̃1 = p1e
i(k1z−ω1t) + c.c., P̃2 = p2e

i(k2z−ω2t) + c.c., (9.3.18)

where
p1 = ε0γeρ

−1
0 ρA2, p2 = ε0γeρ

−1
0 ρ∗A1. (9.3.19)

We introduce Eqs. (9.3.9) into the wave equation (9.3.16) along with
Eqs. (9.3.18) and (9.3.19), make the slowly-varying amplitude approxima-
tion, and obtain the equations

∂A1

∂z
+ 1

c/n

∂A1

∂t
= iωγe

2ncρ0
ρA2, (9.3.20a)

−∂A2

∂z
+ 1

c/n

∂A2

∂t
= iωγe

2ncρ0
ρ∗A1. (9.3.20b)

∗ We can estimate this distance as follows: According to Eq. (8.3.30), the sound absorption coeffi-
cient is given by αs = �B/v, whereby in Eqs. (8.3.23) and (8.3.28) �B is of the order of ηsq

2/ρ0. For
the typical values v = 1×103 m/sec, ηs = 10−9 N m/sec2, q = 4π ×106 m−1, and ρ0 = 10 kg m−3,
we find that �B = 1.6 × 108 sec−1 and α−1

s = 6.3 µm.



440 9 ♦ Stimulated Brillouin and Stimulated Rayleigh Scattering

In these equations ρ is given by the solution to Eq. (9.3.14a). Furthermore,
we have dropped the distinction between ω1 and ω2 by setting ω = ω1 	 ω2.

Let us now consider steady-state conditions. In this case the time derivatives
appearing in Eqs. (9.3.20) can be dropped, and ρ is given by Eq. (9.3.15). The
coupled-amplitude equations then become

dA1

dz
= iε0ωq2γ 2

e

2ncρ0

|A2|2A1

�2
B − �2 − i��B

, (9.3.21a)

dA2

dz
= −iε0ωq2γ 2

e

2ncρ0

|A1|2A2

�2
B − �2 + i��B

. (9.3.21b)

We see from the form of these equations that SBS is a pure gain process, that
is, that the SBS process is automatically phase-matched. For this reason, it is
possible to introduce coupled equations for the intensities of the two interact-
ing optical waves. Defining the intensities as Ii = 2nε0cAiA

∗
i , we find from

Eqs. (9.3.21) that

dI1

dz
= −gI1I2 (9.3.22a)

and

dI2

dz
= −gI1I2. (9.3.22b)

In these equations g is the SBS gain factor, which to good approximation is
given by

g = g0
(�B/2)2

(�B − �)2 + (�B/2)2
, (9.3.23)

where the line-center gain factor is given by

g0 = γ 2
e ω2

nvc3ρ0�B
. (9.3.24)

The solution to Eqs. (9.3.22) under general conditions will be described be-
low. Note, however, that in the constant-pump limit I1 = constant, the solution
to Eq. (9.3.22b) is

I2(z) = I2(L)egI1(L−z). (9.3.25)

In this limit a Stokes wave injected into the medium at z = L experiences
exponential growth as it propagates through the medium. It should be noted
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TABLE 9.3.1 Properties of stimulated Brillouin scattering for a variety of
materials a

�B/2π �B/2π g0 ga
B(max)/α

Substance (MHz) (MHz) (m/GW) (cm2/MW)

CS2 5850 52.3 1.5 0.14
Acetone 4600 224 0.2 0.022
Toluene 5910 579 0.13
CCl4 4390 520 0.06 0.013
Methanol 4250 250 0.13 0.013
Ethanol 4550 353 0.12 0.010
Benzene 6470 289 0.18 0.024
H2O 5690 317 0.048 0.0008
Cyclohexane 5550 774 0.068
CH4 (1400 atm) 150 10 1
Optical glasses 15,000–26,000 10–106 0.04–0.25
SiO2 25,800 78 0.045

a Values are quoted for a wavelength of 0.694 μm. The quantity �B/2π is the full width at half
maximum in ordinary frequency units of the SBS gain spectrum. The last column gives a parameter
used to describe the process of absorptive SBS, which is discussed in Section 9.6. To convert to other
laser frequencies ω, recall that �B is proportional to ω, � is proportional to ω2, g0 is independent
of ω, and ga

B (max) is proportional to ω−3.

that the line-center gain factor g0 of Eq. (9.3.24) is independent of the laser
frequency ω, because the Brillouin linewidth �B is proportional to ω2 (recall
that, according to Eq. (8.3.28), �B is proportional to q2 and that q is propor-
tional to ω). An estimate of the size of g0 for the case of CS2 at a wavelength
of 1 μm can be made as follows: ω = 2π × 3 × 1014 rad/sec, n = 1.67,
v = 1.1 × 103 m/sec, ρ0 = 1.26 g/cm3 = 1.26 × 103 kg/m3, γe = 2.4, and
τp = �−1

B = 4 × 10−9 sec, giving g0 = 1.5 m/GW, which in conventional
laboratory units becomes g0 = 0.15 cm/MW. The Brillouin gain factors and
spontaneous linewidths �ν = �B/2π are listed in Table 9.3.1 for a variety of
materials.

The theoretical treatment just presented can also be used to describe the
propagation of a wave at the anti-Stokes frequency, ωaS = ωL + �B. Equa-
tions (9.3.22) were derived for the geometry of Fig. 9.3.1 under the assump-
tion that ω1 > ω2. We can treat anti-Stokes scattering by identifying ω1 with
ωaS and ω2 with ωS. We then find that the constant-pump approximation cor-
responds to the case I2(z) = constant and that the solution to Eq. (9.3.22a) is
I1(z) = I1(0)e−gI2z. Since the anti-Stokes wave at frequency ω1 propagates
in the positive z direction, we see that it experiences attenuation due to the
SBS process.
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9.3.1. Pump Depletion Effects in SBS

We have seen (Eq. (9.3.25)) that, in the approximation in which the pump
intensity is taken to be spatially invariant, the Stokes wave experiences expo-
nential growth as it propagates through the Brillouin medium. Once the Stokes
wave has grown to an intensity comparable to that of the pump wave, signif-
icant depletion of the pump wave must occur, and under these conditions we
must solve the coupled-intensity equations (9.3.22) simultaneously in order
to describe the SBS process. To find this simultaneous solution, we first note
that dI1/dz = dI2/dz and thus

I1(z) = I2(z) + C, (9.3.26)

where the value of the integration constant C depends on the boundary con-
ditions. Using this result, Eq. (9.3.22b) can be expressed as

dI2

I2(I2 + C)
= −g dz. (9.3.27)

This equation can be integrated formally as∫ I2(z)

I2(0)

dI2

I2(I2 + C)
= −

∫ z

0
g dz′, (9.3.28)

which implies that

ln

{
I2(z)[I2(0) + C]
I2(0)[I2(z) + C]

}
= −gCz. (9.3.29)

Since we have specified the value of I1 at z = 0, it is convenient to express
the constant C defined by Eq. (9.3.26) as C = I1(0)−I2(0). Equation (9.3.29)
is now solved algebraically for I2(z), yielding

I2(z) = I2(0)[I1(0) − I2(0)]
I1(0) exp{gz[I1(0) − I2(0)]} − I2(0)

. (9.3.30a)

According to Eq. (9.3.26), I1(z) can be found in terms of this expression as

I1(z) = I2(z) + I1(0) − I2(0). (9.3.30b)

Equations (9.3.30) give the spatial distribution of the field intensities in
terms of the boundary values I1(0) and I2(0). However, the boundary values
that are known physically are I1(0) and I2(L); see Fig. 9.3.2. In order to find
the unknown quantity I2(0) in terms of the known quantities I1(0) and I2(L),
we set z equal to L in Eq. (9.3.30a) and write the resulting expression as
follows:

I2(L) = I1(0)[I2(0)/I1(0)][1 − I2(0)/I1(0)]
exp{gI1(0)L[1 − I2(0)/I1(0)]} − I2(0)/I1(0)

. (9.3.31)
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FIGURE 9.3.2 Geometry of an SBS amplifier. The boundary values I1(0) and I2(L)

are known.

FIGURE 9.3.3 Intensity transfer characteristics of an SBS amplifier.

This expression is a transcendental equation giving the unknown quantity
I2(0)/I1(0) in terms of the known quantities I1(0) and I2(L).

The results given by Eqs. (9.3.30) and (9.3.31) can be used to analyze the
SBS amplifier shown in Fig. 9.3.2. The transfer characteristics of such an am-
plifier are illustrated in Fig. 9.3.3. Here the vertical axis gives the fraction of
the laser intensity that is transferred to the Stokes wave, and the horizontal
axis is the quantity G = gI1(0)L, which gives the exponential gain experi-
enced by a weak Stokes input. The various curves are labeled according to the
ratio of input intensities, I2(L)/I1(0). For sufficiently large values of the ex-
ponential gain, essentially complete transfer of the pump energy to the Stokes
beam is possible.

9.3.2. SBS Generator

For the case of an SBS generator, no Stokes field is injected externally into the
interaction region, and thus the value of the Stokes intensity near the Stokes
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input face z = L is not known a priori. In this case, the SBS process is ini-
tiated by Stokes photons that are created by spontaneous Brillouin scattering
involving the laser beam near its exit plane z = L. We therefore expect that the
effective Stokes input intensity I2(L) will be proportional to the local value
of the laser intensity I1(L); we designate the constant of proportionality as f

so that

I2(L) = f I1(L). (9.3.32)

We estimate the value of f as follows: We first consider the conditions that
apply below the threshold for the occurrence of SBS, such that the SBS reflec-
tivity R = I2(0)/I1(0) is much smaller than unity. Under these conditions the
laser intensity is essentially constant throughout the medium, and the Stokes
output intensity is related to the Stokes input intensity by I2(0) = I2(L)eG,
where G = gI1(0)L. However, since I2(L) = f I1(0) (because I1(z) is con-
stant), the SBS reflectivity can be expressed as

R ≡ I2(0)

I1(0)
= f eG. (9.3.33)

Laboratory experience has shown that the SBS process displays an apparent
threshold. One often defines the SBS threshold as the condition that the reflec-
tivity R reach some prescribed value Rth; the value Rth = 0.01 is a convenient
choice. This reflectivity occurs for the specific value Gth of the gain parame-
ter G = gI1(0)L. For a wide variety of materials and laser wavelengths, it is
found that Gth typically lies in the fairly narrow range of 25 to 30. The ac-
tual value of Gth for a particular situation can be deduced theoretically from
a consideration of the thermal fluctuations that initiate the SBS process; see,
for instance, Boyd et al. (1990) for details. Since Gth is approximately 25–30,
we see from Eq. (9.3.33) that f is of the order of exp(−Gth), or approxi-
mately 10−12 to 10−11. An order-of-magnitude estimate based on the proper-
ties of spontaneous scattering performed by Zel’dovich et al. (1985) reaches
the same conclusion.

We next calculate the SBS reflectivity R for the general case G > Gth (i.e.,
above threshold) through use of Eq. (9.3.31), which we write as

I2(L)

I1(0)
= R(1 − R)

exp[G(1 − R)] − R
. (9.3.34)

To good approximation, −R can be dropped from the denominator of the
right-hand side of this equation. In order to determine the ratio I2(L)/I1(0)

that appears on the left-hand side of Eq. (9.3.34), we express Eq. (9.3.30b) as

I1(L) − I2(L) = I1(0) − I2(0).
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FIGURE 9.3.4 Dependence of the SBS reflectivity on the weak-signal gain
G = gI1(0)L.

Through use of Eq. (9.3.32) and the smallness of f , we can replace the left-
hand side of this equation by f −1I2(L). We now multiply both sides of the
resulting equation by f/I1(0) to obtain the result I2(L)/I1(0) = f (1 − R).
This expression is substituted for the left-hand side of Eq. (9.3.34), which is
then solved for G, yielding the result

G

Gth
= G−1

th lnR + 1

1 − R
, (9.3.35)

where we have substituted Gth for − lnf .
The nature of this solution is illustrated in Fig. 9.3.4, where the SBS re-

flectivity R = I2(0)/I1(0) is shown plotted as a function of G = gI1(0)L for
the value Gth = 25. We see that essentially no Stokes light is created for G

less than Gth and that the reflectivity rises rapidly for laser intensities slightly
above this threshold value. In addition, for G 
 Gth the reflectivity asymptoti-
cally approaches 100%. Well above the threshold for SBS (i.e., for G � 3Gth),
Eq. (9.3.35) can be approximated as G/Gth 	 1/(1 − R), which shows that
the SBS reflectivity in this limit can be expressed as

R = 1 − 1

G/Gth
(for G 
 Gth). (9.3.36)

Since the intensity I1(L) of the transmitted laser beam is given by I1(L) =
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FIGURE 9.3.5 Distribution of the laser and Stokes intensities within the interaction
region of an SBS generator.

I1(0)(1 − R), in the limit of validity of Eq. (9.3.36) the intensity of the trans-
mitted beam is given by

I1(L) = Gth

gL
; (9.3.37)

here Gth/gL can be interpreted as the input laser intensity at the threshold for
SBS. Hence the transmitted intensity is “clamped” at the threshold value for
the occurrence of SBS.

Once the value of the Stokes intensity at the plane z = 0 is known from
Eq. (9.3.35), the distributions of the intensities within the interaction region
can be obtained from Eqs. (9.3.20). Figure 9.3.5 shows the distribution of
intensities within an SBS generator.∗

Let us estimate the minimum laser power Pth required to excite SBS un-
der optimum conditions. We assume that a laser beam having a gaussian
transverse profile is focused tightly into a cell containing a Brillouin-active
medium. The characteristic intensity of such a beam at the beam waist is given
by I = P/πw2

0, where w0 is the beam waist radius. The interaction length L

is limited to the characteristic diffraction length b = 2πw2
0/λ of the beam.

The product G = gIL is thus given by G = 2gP/λ, and by equating this ex-
pression with the threshold value Gth we find that the minimum laser power

∗ Figure 9.3.5 is plotted for the case Gth = 10. The physically realistic case of Gth = 25 produces

a much less interesting graph because the perceptible variation in intensities occurs in a small region

near z = 0.
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required to excite SBS is of the order of

Pth = Gthλ

2g
. (9.3.38)

For λ = 1.06 μm, Gth = 25, and g = 0.15 cm/MW (the value for CS2) we
find that Pth is equal to 9 kW. For other organic liquids the minimum power
is approximately 10 times larger.

9.3.3. Transient and Dynamical Features of SBS

The phonon lifetime for stimulated Brillouin scattering in liquids is of the
order of several nanoseconds. Since Q-switched laser pulses have a duration
of the order of several nanoseconds, and mode-locked laser pulses can be
much shorter, it is normal for experiments on SBS to be performed in the
transient regime. The nature of transient SBS has been treated by Kroll (1965),
Pohl et al. (1968), and Pohl and Kaiser (1970).

The SBS equations can be solved including the transient nature of the
phonon field. This was done first by Carman et al. (1970) and the results have
been summarized by Zel’dovich et al. (1985). One finds that

IS(L,T ) 	
{

IN exp(−2�BT + 2
√

2(gIL)(�BT ) �BT < gIL/2,

IN exp(gIL) �BT > gIL/2.

(9.3.39)

Here IN is the effective noise input that initiates the SBS process, gIL is the
usual single pass gain, �B is the phonon damping rate, and T is the laser pulse
duration.

We can use this result to predict how the SBS threshold intensity Ith is in-
creased through use of a short laser pulse. We require that in either limit given
above the single pass amplification must equal the threshold value, which we
take to be exp (25). We then find that

gIthl =
{

(12.5 + 2�BT )2/2�BT �BT < 12.5,

25 �BT > 12.5.
(9.3.40)

This functional dependence is illustrated in Fig. 9.3.6. Note that even for laser
pulses as long as twice the phonon lifetime, the threshold for SBS is raised by
a factor of approximately two.

The SBS process is characterized by several different time scales, includ-
ing the transit time of light through the interaction region, the laser pulse
duration, and the phonon lifetime. Consequently, the SBS process can display
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FIGURE 9.3.6 Dependence of the SBS threshold intensity Ith on the laser pulse du-
ration T .

quite rich dynamical effects. One of these effects is pulse compression, the
tendency of the SBS Stokes pulse to be shorter (at times very much shorter)
than the incident laser pulse. This process is described in Problem 5 at the
end of this chapter. When SBS is excited by a multi-longitudinal-mode laser,
new types of dynamical behavior can occur. Here the various laser modes beat
together leading to modulation in time of the laser intensity within the inter-
action region. This situation has been analyzed by Narum et al. (1986). In
addition, the stochastic properties of SBS have been studied in considerable
detail. SBS is initiated by noise in the form of thermally excited phonons.
Since the SBS process involves nonlinear amplification (nonlinear because of
pump depletion effects) in a medium with an effectively nonlocal response
(nonlocal because the Stokes and laser fields are counterpropagating), the sto-
chastic properties of the SBS output can be quite different from those of the
phonon noise field that initiates SBS. These properties have been studied, for
instance, by Gaeta and Boyd (1991). In addition, when SBS is excited by two
counterpropagating pump fields, it can display even more complex behavior,
including instability and chaos, as studied by Narum et al. (1988), Gaeta et al.
(1989), and Kulagin et al. (1991).

9.4. Phase Conjugation by Stimulated Brillouin Scattering

It was noted even in the earliest experiments on stimulated Brillouin scatter-
ing (SBS) that the Stokes radiation was emitted in a highly collimated beam
in the backward direction. In fact, the Stokes radiation was found to be so well
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FIGURE 9.4.1 Setup of first experiment on phase conjugation by stimulated Brillouin
scattering.

collimated that it was efficiently fed back into the exciting laser, often leading
to the generation of new spectral components in the output of the laser (Gold-
blatt and Hercher, 1968). These effects were initially explained as a purely
geometrical effect resulting from the long but thin shape of the interaction
region.

The first indication that the backscattered light was in fact the phase conju-
gate of the input was provided by an experiment of Zel’dovich et al. (1972).
The setup used in this experiment is shown in Fig. 9.4.1. The output of a
single-mode ruby laser was focused into a cell containing methane gas at
a pressure of 125 atmospheres. This cell was constructed in the shape of a
cylindrical, multimode waveguide and served to confine the radiation in the
transverse dimension. A strong SBS signal was generated from within this
cell. A glass plate that had been etched in hydrofluoric acid was placed in the
incident beam to serve as an aberrator. Two cameras were used to monitor the
transverse intensity distributions of the incident laser beam and of the Stokes
return.

The results of this experiment are summarized in the photographs taken by
V.V. Ragulsky that are reproduced in Fig. 9.4.2. Part (a) of this figure shows
the laser beam shape as recorded by camera 1, and part (b) shows the Stokes
beam shape as recorded by camera 2. The similarity of the spot sizes and
shapes indicates that the return beam is the phase conjugate of the incident
beam. These highly elongated beam shapes are a consequence of the unusual
mode pattern of the laser used in these experiments. Part (c) of the figure
shows the spot size recorded by camera 2 when the SBS cell had been re-
placed by a conventional mirror. The spot size in this case is very much larger
than that of the incident beam; this result shows the severity of the distortions
impressed on the beam by the aberrator. Part (d) of the figure shows the spot
size of the return beam when the aberrator was removed from the beam path.
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FIGURE 9.4.2 Results of the first experiment demonstrating SBS phase conjugation.

This spot size is larger than that shown in part (b). This result shows that SBS
forms a more accurate conjugate of the incident light when the beam is highly
distorted than when the beam is undistorted.∗

The results of the experiment of Zel’dovich et al. are somewhat surpris-
ing, because it is not clear from inspection of the coupled-amplitude equa-
tions that describe the SBS process why SBS should lead to phase conju-
gation. We recall that the reason why degenerate four-wave mixing leads to
phase conjugation is that the source term driving the output wave A4 in the
coupled-amplitude equations describing four-wave mixing (see, for example,
Eq. (7.2.31b)) is proportional to the complex conjugate of the input wave am-
plitude, that is, to A∗

3. However, for the case of SBS, Eq. (9.3.21b) shows that
the output wave amplitude A2 is driven by a term proportional to |A1|2A2,
which contains no information regarding the phase of the input wave A1.

The reason why SBS leads to the generation of a phase-conjugate wave is in
fact rather subtle (Zel’dovich et al., 1972; Sidorovich, 1976). As illustrated in
Fig. 9.4.3, we consider a badly aberrated optical wave that is focused into the
SBS interaction region. Since the wave is highly aberrated, a highly nonuni-
form intensity distribution (i.e., a volume speckle pattern) is created in the
focal region of the wave. Since the gain experienced by the Stokes wave de-
pends on the local value of the laser intensity (see, for example, Eq. (9.3.22b)),
a nonuniform gain distribution for the Stokes wave is therefore present in the

∗ The conclusion that SBS forms a better phase conjugate of an aberrated beam than of an unaber-
rated beam is not true in all cases, and appears to be a consequence of the details of the geometry of
the experiment of Zel’dovich et al.
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FIGURE 9.4.3 Origin of phase conjugation by SBS. The highly aberrated incident
wavefront produces a highly nonuniform intensity distribution (and thus a nonuniform
gain distribution) in the focal region of the lens.

focal volume. We recall that SBS is initiated by noise—that is, by sponta-
neously generated Stokes photons. The noise field that leads to SBS initially
contains all possible spatial Fourier components. However, the portion of the
noise field that experiences the maximum amplification is the portion whose
intensity distribution best matches the nonuniform gain distribution. This por-
tion of the noise field must have wavefronts that match those of the incident
laser beam, and thus corresponds to the phase conjugate of the incident laser
field.

In order to make this argument more precise, we consider the intensity
equation satisfied by the Stokes field (see also Eq. (9.3.22b)),

dIS

dz
= −gILIS. (9.4.1)

Since we are now considering the case where IL and IS possess nonuniform
transverse distributions, it is useful to consider the total power in each wave
(at fixed z), defined by

PL =
∫

IL dA, PS =
∫

IS dA, (9.4.2)

where the integrals are to be carried out over an area large enough to include
essentially all of the power contained in each beam. Equation (9.4.1) can then
be rewritten in the form

dPS

dz
= −g

PLPS

A
C, (9.4.3)

where A = ∫
dA and where

C = 〈ILIS〉
〈IL〉〈IS〉 (9.4.4)
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represents the normalized spatial cross-correlation function of the laser and
Stokes field intensity distributions. Here the angular brackets are defined so
that 〈x〉 = ∫

x dA/A, where x denotes IL, IS , or the product ILIS .
We see that the power gain experienced by the Stokes wave depends not

only on the total power of the laser wave, but also on the degree of correlation
between the laser and Stokes wave intensity distributions. If IL and IS are
completely uncorrelated, so that 〈ILIS〉 = 〈IL〉〈IS〉, the correlation function
C takes on the value unity. C is equal to unity also for the case in which
both IL and IS are spatially uniform. However, if IL and IS are correlated,
for example, because the laser and Stokes fields are phase conjugates of one
another, the correlation function can be greater than unity.

A limiting case is that in which the laser field is so badly aberrated that the
transverse variations in the complex field amplitude obey gaussian statistics.
In such a case, the probability density function for the laser intensity is given
by (see, for example, Goodman, 1985)

P(I) = 1

I0
e−I/I0 . (9.4.5)

The moments of this distribution are given in general by 〈In〉 = n〈I 〉n, and in
particular the second moment is given by〈

I 2〉 = 2〈I 〉2. (9.4.6)

For that portion of the Stokes field that is the phase conjugate of the laser field,
the intensity IS will be proportional to IL, and we see from Eqs. (9.4.4) and
(9.4.6) that C will be equal to 2. Hence, the exponential gain G ≡ gPLCL/A

experienced by the phase-conjugate portion of the noise field will be two times
larger than that experienced by any other mode of the noise field. Since the
threshold for SBS corresponds to G of the order of 30, the phase-conjugate
portion of the SBS signal at threshold will be approximately exp (15) times
larger than that of any other component.

On the basis of the argument just presented, we expect that high-quality
phase conjugation will occur only if a large number of speckles of the laser
intensity distribution are present within the interaction volume. We now de-
termine the conditions under which the number of speckles will be large. We
assume that in the focal region the incident laser field has transverse wave-
front irregularities on a distance scale as small as a. Each such region will
diffract the incident beam into a cone with a characteristic angular spread of
θ = λ/a. Hence, the speckle pattern will look appreciably different after the
beam has propagated through the longitudinal distance �z such that θ�z = a.
These considerations show that �z = a2/λ. We hence expect that SBS will
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lead to a high-quality phase-conjugate signal only if the transverse extent of
the interaction region is much larger than a and if the longitudinal extent
of the interaction region is much longer than �z. In addition, the quality of
the phase-conjugate signal can be degraded if there is poor spatial overlap
of the various spatial Fourier components of the laser beam. For example, a
highly aberrated beam will spread with a large angular divergence θ = λ/a.
If those components of the beam with large divergence angle θ fail to over-
lap the strong central portion of the beam, they will be reflected with low
efficiency, leading to a degradation of the quality of the phase-conjugation
process. To avoid the possibility of such effects, SBS phase conjugation is
often performed using the waveguide geometry shown in Fig. 9.4.1.

One of the applications of SBS phase conjugation is in the design of high-
power laser systems. Phase conjugation can be used to correct for aberrations
caused, for instance, by thermal stresses induced in the laser gain medium.
One example of a high-power laser system that makes use of SBS phase con-
jugation to maintain control of the polarization properties of the laser output
has been described by Bowers et al. (1997).

9.5. Stimulated Brillouin Scattering in Gases

We next consider stimulated Brillouin scattering (SBS) in gases. We saw
above (Eq. (9.3.24)) that the steady-state line-center gain factor for SBS is
given by

g0 = γ 2
e ω2

ρ0nvc3�B
, (9.5.1)

with the electrostrictive constant γe given by Eq. (8.3.12) and with the Bril-
louin linewidth given to good approximation by (see also Eqs. (8.3.23) and
(9.3.14b))

�B = (2ηs + ηd) q2/ρ0. (9.5.2)

For the case of an ideal gas, we can readily predict the values of the material
parameters appearing in these equations (Loeb, 1961). First, we can assume
the validity of the Stokes relation (see also the discussion in Appendix Sec-
tion 9.6.1), which states that the shear and dilation viscosity coefficients are
related by ηd = −2

3ηs , and we thus find that

�B = 4
3ηsq

2/ρ0. (9.5.3)
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The shear viscosity coefficient ηs can be shown from kinetic theory to be
given by

ηs = 1
3Nmv̄L, (9.5.4)

where N is the atomic number density, m is the molecular mass, v̄ is the
mean molecular velocity given by v̄ = (8kT/πm)1/2, and L is the mean free
path given by L = (

√
2πd2N)−1 with d denoting the molecular diameter. We

hence find that the shear viscosity coefficient is given by

ηs = 2

3π3/2

√
kT m

d2
. (9.5.5)

Note that the shear viscosity coefficient is independent of the molecular
number density N . The measured (and theoretical) value of the shear vis-
cosity coefficient for nitrogen gas at standard temperature and pressure is
ηs = 1.8 × 10−4 dyne sec/cm2.

By introducing expression (9.5.5) for the viscosity into Eq. (9.5.2) and re-
placing q by 2nω/c, we find that the Brillouin linewidth is given by

�B = 32

9π3/2

n2ω2

c2

√
kT /m

d2N
. (9.5.6)

If we assume that the incident optical radiation has a wavelength λ of
1.06 μm, we find that the Brillouin linewidth for nitrogen at standard tem-
perature and pressure is equal to �B = 2.77 × 109 rad/sec and thus that the
Brillouin linewidth in ordinary frequency units is given by δν(FWHM) =
�B/2π = 440 MHz.

The velocity of sound v, which appears in Eq. (9.5.1), is given for an ideal
gas by v = (γ kT/m)1/2, where γ , the ratio of specific heats, is equal to 5/3 for
a monatomic gas and 7/5 for a diatomic gas. In addition, the electrostrictive
constant γe can be estimated as γe = ρ(∂ε/∂ρ) with (∂ε/∂ρ) taken as the
essentially constant quantity (ε − 1)/ρ.

The dependence of g0 on material parameters can be determined by com-
bining these results with Eq. (9.5.1) to obtain

g0 = 9π3/2N2m2d2(∂ε/∂ρ)2

32γ 1/2n3ckT
. (9.5.7)

However, in order to obtain a numerical estimate of g0, it is often more con-
venient to evaluate the expression (9.5.1) for g0 directly with the numeri-
cal value of �B obtained from Eq. (9.5.6). For N2 gas at standard temper-
ature and pressure and for a wavelength of 1.06 μm, we take the values
ω = 1.8×1015 rad/sec, n = 1.0003, v = 330 m/sec, γe = n2 −1 = 6×10−4,



9.6. Stimulated Brillouin and Stimulated Rayleigh Scattering 455

TABLE 9.5.1 Gain factors, phonon lifetimes, and frequency shifts for some com-
pressed Brillouin-active gases at a wavelength of 249 nm a

p g0 τ �B/2π gR

Gas (atm) (m/GW) (nsec) (GHz) (m/GW)

SF6 15.5 2.5 × 10−1 1 0.9 3 × 10−3

10 0.9 × 10−1 0.6 2 × 10−3

Xe 39 4.4 × 10−1 2 1.4 0
10 1.8 × 10−2 0.4

Ar 10 1.5 × 10−3 0.1 3 0
N2 10 1.7 × 10−3 0.2 3 3 × 10−4

CH4 10 8 × 10−3 0.1 3 1 × 10−2

a For comparison, the gain factor gR for forward stimulated Raman scattering is also listed. (After
Damzen and Hutchinson, 1983.)

and we thereby obtain

g0 = 0.038
m

TW
. (9.5.8)

Note from Eq. (9.5.7) that g0 scales quadratically with molecular density.
Hence, at a pressure of 100 atmospheres the gain factor of N2 is equal to
g0 = 0.38 m/GW, which is comparable to that of typical organic liquids.

One advantage of the use of gases as the active medium for Brillouin scat-
tering is that the gain for SBS scales with molecular number density as N2,
whereas the gain for stimulated Raman scattering, which is often a competing
process, scales as N (see, for example, Eqs. (9.3.19a), (9.3.19b), and (9.3.20)).
At pressures greater than 10 atmospheres, the gain for SBS typically exceeds
that of stimulated Raman scattering. Moreover, through the use of rare gases
(which have no vibrational modes), it is possible to suppress the occurrence
of stimulated Raman scattering altogether.

Some parameters relevant to SBS at the 249 nm wavelength of the KrF laser
have been compiled by Damzen and Hutchinson (1983) and are presented in
Table 9.5.1.

9.6. General Theory of Stimulated Brillouin and Stimulated
Rayleigh Scattering

In this section we develop a theoretical model that can treat both stimulated
Brillouin and stimulated Rayleigh scattering. These two effects can conve-
niently be treated together because they both entail the scattering of light from
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inhomogeneities in thermodynamic quantities. For convenience, we choose
the temperature T and density ρ to be the independent thermodynamic vari-
ables. The theory that we present incorporates both electrostrictive and ab-
sorptive coupling of the radiation to the material system. Our analysis there-
fore describes the following four scattering processes:

1. Electrostrictive stimulated Brillouin scattering. The scattering of light
from sound waves that are driven by the interference of the laser and Stokes
fields through the process of electrostriction.

2. Thermal stimulated Brillouin scattering. The scattering of light from sound
waves that are driven by the absorption and subsequent thermalization of
the optical energy, leading to temperature and hence to density variations
within the medium.

3. Electrostrictive stimulated Rayleigh scattering. The scattering of light
from isobaric density fluctuations that are driven by the process of elec-
trostriction.

4. Thermal stimulated Rayleigh scattering. The scattering of light from iso-
baric density fluctuations that are driven by the process of optical absorp-
tion.

Our analysis is based on the three equations of hydrodynamics (Hunt, 1955;
Kaiser and Maier, 1972). The first of these equations is the equation of conti-
nuity

∂ρ̃t

∂t
+ ũt · ∇ρ̃t + ρ̃t∇ · ũt = 0, (9.6.1)

where ρ̃t is the mass density of the fluid and ũt is the velocity of some small
volume element of the fluid.∗ The second equation is the equation of momen-
tum transfer. It is a generalization of the Navier–Stokes equation and is given
by

ρ̃t

∂ũt

∂t
+ ρ̃t (ũt · ∇)ũt = f̃ − ∇p̃t + (2ηs + ηd)∇(∇ · ũt ) − ηs∇ × (∇ × ũt ).

(9.6.2)

Here f̃ represents the force per unit volume of any externally imposed forces;
for the case of electrostriction, f̃ is given by (see also Eq. (9.3.12))

f̃ = −1
2ε0γe∇

〈
Ẽ · Ẽ

〉
, (9.6.3)

∗ The subscript t stands for total; we shall later linearize these equations to find the equations
satisfied by the linearized quantities, which we shall designate by nonsubscripted symbols.



9.6. Stimulated Brillouin and Stimulated Rayleigh Scattering 457

where Ẽ denotes the instantaneous value of the time-varying applied total
electric field and γe represents the electrostrictive coupling constant

γe = ρ
∂ε

∂ρ
. (9.6.4)

The second term on the right-hand side of Eq. (9.6.2) denotes the force due
to the gradient of the pressure p̃t . In the third term, ηs denotes the shear vis-
cosity coefficient and ηd denotes the dilational viscosity coefficient. When the
Stokes relation is satisfied, as it is for example for an ideal gas, these coeffi-
cients are related by

ηd = −2
3ηs. (9.6.5)

The coefficients are defined in detail in the Appendix at the end of this section.
The last of three principal equations of hydrodynamics is the equation of

heat transport, given by

ρ̃tCv

∂T̃t

∂t
+ ρ̃t cv(ũ · ∇T̃t ) + ρ̃t cv

(
γ − 1

βp

)
(∇ · ũt ) = −∇ · Q̃ + φ̃η + φ̃ext.

(9.6.6)

Here T̃t denotes the local value of the temperature, cv the specific heat at
constant volume, γ = cp/cv the adiabatic index, βp = −ρ̃−1(∂ρ̃/∂T̃ )p the
thermal expansion coefficient, and Q̃ the heat flux vector. For heat flow due to
thermal conduction, Q̃ satisfies the equation

∇ · Q̃ = −κ∇2T̃t , (9.6.7)

where κ denotes the thermal conductivity. φ̃η denotes the viscous energy de-
posited within the medium per unit volume per unit time and is given by

φ̃η =
∑
ij

(2ηsdij dji + ηddiidjj ), (9.6.8a)

where

dij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(9.6.8b)

is the rate-of-dilation tensor. Finally, φ̃ext gives the energy per unit time per
unit volume delivered to the medium from external sources. Absorption of the
optical wave provides the contribution

φ̃ext = αnε0c
〈
Ẽ2〉, (9.6.9)

to this quantity, where α is the optical absorption coefficient.
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The acoustic equations are now derived by linearizing the hydrodynamic
equations about the nominal conditions of the medium. In particular, we take

ρ̃t = ρ0 + ρ̃ with |ρ̃| � ρ0, (9.6.10a)

T̃t = T0 + T̃ with |T̃ | � T0, (9.6.10b)

ũt = ũ with |ũ| � v, (9.6.10c)

where v denotes the velocity of sound. Note that we have assumed that the
medium is everywhere motionless in the absence of the acoustic disturbance.
We can reliably use the linearized form of the resulting equations so long as
the indicated inequalities are satisfied.

We substitute the expansions (9.6.10) into the hydrodynamic equations
(9.6.1), (9.6.2), and (9.6.6), drop any term that contains more than one small
quantity, and subtract the unperturbed, undriven solution containing only ρ̃0

and T̃0. The continuity equation (9.6.1) then becomes

∂ρ̃

∂t
+ ρ0∇ · ũ = 0. (9.6.11)

In order to linearize the momentum transport equation (9.6.2), we first ex-
press the total pressure p̃t as

p̃t = p0 + p̃ with |p̃| � p0. (9.6.12)

Since we have taken T and ρ as the independent thermodynamic variables,
we can express p̃ as

p̃ =
(

∂p

∂ρ

)
T

ρ̃ +
(

∂p

∂T

)
ρ

T̃ (9.6.13)

or as

p̃ = v2

γ
(ρ̃ + βpρ0T̃ ), (9.6.14)

where we have expressed (∂p/∂ρ)T as γ −1(∂p/∂ρ)s = v2/γ with v2 =
(∂p/∂ρ)s representing the square of the velocity of sound, and where we have
expressed (∂p/∂T )ρ as γ −1(∂p/∂ρ)s(∂ρ/∂T )p = v2βpρ0/γ with βp repre-
senting the thermal expansion coefficient at constant pressure. Through use of
Eq. (9.6.14), the linearized form of Eq. (9.6.2) becomes

ρ0
∂ũ
∂t

+ v2

γ
∇ρ̃ + v2βpρ0

γ
∇T̃ − (2ηs + ηd)∇(∇ · ũ) + ηs∇ × (∇ × ũ) = f̃.

(9.6.15)
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Finally, the linearized form of the energy transport equation, Eq. (9.6.6),
becomes

ρ0cv

∂T̃

∂t
+ ρ0cv(γ − 1)

βp

(∇ · ũ) − κ∇2T̃ = φ̃ext. (9.6.16)

Note that the viscous contribution to the heat input, φ̃η, does not contribute in
the linear approximation.

Equations (9.6.11), (9.6.15), and (9.6.16) constitute the three linearized
equations of hydrodynamics for the quantities ũ, ρ̃, and T̃ . The continuity
equation in its linearized form (Eq. (9.6.11)) can be used to eliminate the vari-
able ũ from the remaining two equations. To do so, we take the divergence of
the equation of momentum transfer (9.6.15) and use Eq. (9.6.11) to eliminate
the terms containing ∇ · ũ. We obtain

−∂2ρ̃

∂t2
+ v2

γ
∇2ρ̃ + v2βpρ0

γ
∇2T̃ + 2ηs + ηd

ρ0

∂

∂t

(∇2ρ̃
) = 1

2ε0γe∇2
〈
Ẽ2

〉
,

(9.6.17)

where we have explicitly introduced the form of f̃ from Eq. (9.6.3). Also,
the energy transport equation (9.6.16) can then be expressed through use of
Eqs. (9.6.9) and (9.6.11) as

ρ0cv

∂T̃

∂t
− cv(γ − 1)

βp

∂ρ̃

∂t
− κ∇2T̃ = nε0cα

〈
Ẽ2〉. (9.6.18)

Equations (9.6.17) and (9.6.18) constitute two coupled equations for the ther-
modynamic variables ρ̃ and T̃ , and they show how these quantities are cou-
pled to one another and are driven by the applied optical field.

In the absence of the driving terms appearing on their right-hand sides,
Eqs. (9.6.17) and (9.6.18) allow solutions of the form of damped, freely prop-
agating acoustic waves

F̃ (z, t) = Fe−i�(t−z/v)e−αsz + c.c., (9.6.19)

where F denotes either ρ or T , and where the sound absorption coefficient αs

is given for low frequencies (� � ρ0v
2/(2ηs + ηd)) by

αs = �2

2ρ0v3

[
(2ηs + ηd) + (γ − 1)

κ

cp

]
. (9.6.20)

For details, see the article by Sette (1961).
We next study the nature of the solution to Eqs. (9.6.17) and (9.6.18) in the

presence of their driving terms. We assume that the total optical field can be
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represented as

Ẽ(z, t) = A1e
i(k1z−ω1t) + A2e

i(−k2z−ω2t) + c.c. (9.6.21)

We first determine the response of the medium at the beat frequency between
these two applied field frequencies. This disturbance will have frequency

� = ω1 − ω2 (9.6.22)

and wavenumber

q = k1 + k2 (9.6.23)

and can be taken to be of the form

ρ̃(z, t) = ρei(qz−�t) + c.c., (9.6.24)

T̃ (z, t) = T ei(qz−�t) + c.c. (9.6.25)

For the present, we are interested only in the steady-state response of the
medium, and thus we assume that the amplitudes A1,A2, ρ, and T are time-
independent. We introduce the fields Ẽ, ρ̃, and T̃ given by Eqs. (9.6.21)
through (9.6.25) into the coupled acoustic equations (9.6.17) and (9.6.18).
The parts of these equations that oscillate at frequency � are given respec-
tively by

−
(

�2 + i��B − v2q2

γ

)
ρ + v2βpρ0q

2

γ
T = ε0γeq

2A1A
∗
2 (9.6.26)

and

−
(

i� − 1

2
γ�R

)
T + i(γ − 1)�

βpρ0
ρ = 2nε0cα

cvρ0
A1A

∗
2. (9.6.27)

Here we have introduced the Brillouin linewidth

�B = (2ηs + ηd)q2/ρ0, (9.6.28)

whose reciprocal τp = �−1
B is the phonon lifetime, and the Rayleigh linewidth

�R = 2κq2

ρ0cp

, (9.6.29)

whose reciprocal τR = �−1
R is characteristic decay time of the isobaric density

disturbances that give rise to Rayleigh scattering.
In deriving Eqs. (9.6.26) and (9.6.27) we have ignored those terms that

contain the spatial derivatives of ρ and T . This approximation is equivalent to
assuming that the material excitations are strongly damped and hence do not
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propagate over any appreciable distances. This approximation is valid so long
as

q 

∣∣∣∣ 1

ρ

∂ρ

∂z

∣∣∣∣
∣∣∣∣ 1

T

∂T

∂z

∣∣∣∣ and q2 

∣∣∣∣ 1

ρ

∂2ρ

∂z2

∣∣∣∣
∣∣∣∣ 1

T

∂2T

∂z2

∣∣∣∣.
These inequalities are usually satisfied. Recall that a similar approximation
was introduced in Section 9.3 in the derivation of Eq. (9.3.15).

We next solve Eq. (9.6.27) algebraically for T and introduce the resulting
expression into Eq. (9.6.26). We obtain the equation[

−
(

�2 + i��B − v2q2

γ

)
+ v2q2�(γ − 1)(

� + 1
2 iγ �R

)
γ

]
ρ

=
[
ε0γe − iγaqv

� + 1
2 iγ �R

]
q2A1A

∗
2, (9.6.30)

where we have introduced the absorptive coupling constant

γa = 8παnv2ε0cβp

cP �B
(9.6.31)

with �B = qv. Equation (9.6.30) shows how the amplitude ρ of the acoustic
disturbance depends on the amplitudes A1 and A2 of the two optical fields.
Both Brillouin and Rayleigh contributions to ρ are contained in Eq. (9.6.30).

It is an empirical fact (see, for example, Fig. 8.1.1) that the spectrum for
Brillouin scattering does not appreciably overlap that for Rayleigh scattering.
Equation (9.6.30) can thus be simplified by considering the resonant contri-
butions to the two processes separately. First, we consider the case of stim-
ulated Brillouin scattering (SBS). In this case �2 is approximately equal to
�2

B = v2q2, and thus the denominator � + 1
2 iγ �R is nonresonant. We can

thus drop the contribution 1
2 iγ �R in comparison with � in these denomina-

tors. Equation (9.6.30) then shows that the Brillouin contribution to ρ is given
by

ρB = −(ε0γe − iγa)q
2

4π(�2 + i��B − v2q2)
A1A

∗
2. (9.6.32)

The other resonance in Eq. (9.6.30) occurs at � = 0 and leads to stimu-
lated Rayleigh scattering (SRLS). For |�| � �R , the Brillouin denominator
�2 + i��B − v2q2/γ is nonresonant and can be approximated by −v2q2/γ .
Equation (9.6.30) thus becomes

ρR =
[
ε0γe(� + 1

2 iγ �R) − iγa�B

� + 1
2 i�R

]
1

4πv2
A1A

∗
2. (9.6.33)
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We next calculate the nonlinear polarization as

p̃NL = ε0�χẼ = ε0�εẼ = ε0

(
∂ε

∂ρ

)
T

ρ̃Ẽ = ε0γe

ρ0
ρ̃Ẽ, (9.6.34)

where ρ̃ and Ẽ are given by Eqs. (9.6.24) and (9.6.21), respectively. We rep-
resent the nonlinear polarization in terms of its complex amplitudes as

P̃ NL = p1e
i(k1z−ω1t) + p2e

i(−k2z−ω2t) + c.c. (9.6.35)

with

p1 = ε0γe

ρ0
ρA2, p2 = ε0γe

ρ0
ρ∗A1. (9.6.36)

This form of the nonlinear polarization is now introduced into the wave equa-
tion, which we write in the form (see also Eq. (2.1.22))

∇2[An(r) eikn·r] + ε(ωn)ω
2
n

c2
An(r)eikn·r = ω2

n

ε0c2
pn eikn·r. (9.6.37)

We next make the slowly-varying amplitude approximation and find that the
field amplitudes obey the equations(

d

dz
+ 1

2α

)
A1 = iω

2nε0c
p1, (9.6.38a)

(
d

dz
− 1

2α

)
A2 = −iω

2nε0c
p2, (9.6.38b)

where we have introduced the real part of the refractive index n = Re
√

ε and
the optical absorption coefficient α = (2ω/c) Im

√
ε. Equations (9.6.38) can

be used to describe either SBS or SRLS, depending on whether form (9.6.32)
or (9.6.33) is used to determine the factor ρ that appears in the expression
(9.3.36) for the nonlinear polarization. Since in either case ρ is proportional
to the product A1A

∗
2, Eqs. (9.6.38) can be written as

dA1

dz
= κ|A2|2A1 − 1

2αA1, (9.6.39a)

dA2

dz
= κ∗|A1|2A2 + 1

2αA2, (9.6.39b)

where for SBS κ is given by

κB = − q2ω

2ρ0nc

iγe(ε0γe − iγa)

(�2 + i��B − v2q2)
, (9.6.40a)
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and for SRLS is given by

κR = iγeω

2ρ0ncv2

[
γe

(
� + 1

2 iγ �R

) − iγa�B

� + 1
2 i�R

]
. (9.6.40b)

We now introduce the intensities

Ii = 2nε0c|Ai |2 (9.6.41)

of the two interacting optical waves and use Eqs. (9.6.39) to calculate the
spatial rate of change of the intensities as

dI1

dz
= −gI1I2 − αI1, (9.6.42a)

dI2

dz
= −gI1I2 + αI2, (9.6.42b)

where we have introduced the gain factor

g = − 1

nε0c
Reκ. (9.6.43)

For the case of SBS, we find that the gain factor can be expressed as

gB = ge
B + ga

B, (9.6.44a)

where

ge
B = ω2γ 2

e

ρ0nvc2�B

1

1 + (2��/�B)2
(9.6.44b)

and

ga
B = −ω2γeγa

2ρ0nvc2�B

4��/�B

1 + (2��/�B)2
(9.6.44c)

denote the electrostrictive and absorptive contributions to the SBS gain factor,
respectively. Here we have introduced the detuning from the Brillouin res-
onance given by �� = �B − �, where �B = qv = (k1 + k2)v and where
� = ω1 − ω2. The electrostrictive contribution is maximum for �� = 0,
where it attains the value

ge
B(max) = ω2γ 2

e

ρ0nvc3�B
. (9.6.45)

Since (according to Eq. (9.6.28)) �B is proportional to q2 and thus to ω2,
the gain for electrostrictive SBS is independent of the laser frequency. The
absorptive contribution is maximum for �� = −�B/2—that is, when the
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Stokes wave (at frequency ω2) is detuned by one-half the spontaneous Bril-
louin linewidth �B to the low-frequency side of resonance. The maximum
value of the gain for this process is

ga
B(max) = ω2γeγa

2ρ0nvc3�B
. (9.6.46)

Note that since �B is proportional to q2 and (according to Eq. (9.6.31)) γa

is proportional to q−1, the absorptive SBS gain factor is proportional to q3

and hence depends on the laser frequency as ω−3. Since the gain factor for
thermal SBS is linearly proportional to the optical absorption coefficient α

(by Eqs. (9.6.31) and (9.6.46)), the gain for thermal SBS can be made to
exceed that for electrostrictive SBS by adding an absorber such as a dye to the
Brillouin-active medium. As shown in Table 9.3.1, this effect occurs roughly
for absorption coefficients greater than 1 cm−1.∗

The spectral dependence of the two contributions to the SBS gain is shown
schematically in Fig. 9.6.1.

For the case of stimulated Rayleigh scattering, we can express the gain
factor appearing in Eqs. (9.6.42) through use of Eqs. (9.6.40b) and (9.6.43) as

gR = ge
R + ga

R, (9.6.47)

where

ge
R = −ωγ 2

e (γ − 1)

4ρ0n2c2v2

[
4�/�R

1 + (2�/�R)2

]
(9.6.48)

and

ga
R = ωγeγa�B

2ρ0n2c2v2�R

[
4�/�R

1 + (2�/�R)2

]
(9.6.49)

denote the electrostrictive and absorptive contributions to the gain factor,
respectively. The contribution ge

R gives rise to electrostrictive stimulated
Rayleigh scattering. The gain factor for this process is maximum for � =
−�R/2 and has the value

ge
R(max) = ωγ 2

e (γ − 1)

4ρ0n2c2v2
. (9.6.50)

Note that this quantity scales linearly with laser frequency. The absorptive

∗ The quantity ge
B (max) is designated g0 in Table 9.3.1.
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FIGURE 9.6.1 Gain spectra for stimulated Brillouin scattering and stimulated
Rayleigh scattering, showing their electrostrictive and absorptive contributions. For
comparison, the spectrum of spontaneous Brillouin and Rayleigh scattering is also
shown.

contribution ga
R gives rise to thermal SRLS. The gain for this process is max-

imum for � = �R/2 and has the value

ga
R(max) = ωγeγa�B

2ρ0n2c2v2�R

. (9.6.51)

Since �R scales with the laser frequency as ω2, γa scales as 1/ω, and �B

scales as ω, we see that the gain factor for thermal SRLS scales with the laser
frequency as 1/ω.

As can be seen from Table 9.6.1, �R is often of the order of 10 MHz, which
is much narrower than the linewidths of pulsed lasers. In such cases, laser
linewidth effects can often be treated in an approximate fashion by convolving
the gain predicted by Eqs. (9.6.48) and (9.6.49) with the laser lineshape. If the
laser linewidth �L is much broader than �R, the maximum gain for absorptive
SRLS is then given by Eq. (9.6.51) with �R replaced by �L. Under these
conditions ga

R (max) is independent of the laser frequency.
We note by inspection of Table 9.6.1 that ga

R(max) is very much larger than
ge

R(max) except for extremely small values of the absorption coefficient. The
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TABLE 9.6.1 Properties of stimulated Rayleigh scattering for a variety
of materials at a wavelength of 694 nm a

Substance Gain Factor Linewidth
ge(max) ga (max)/α δνR

(cm/MW) (cm2/MW) (MHz)

CCl4 2.6 × 10−4 0.82 17
Methanol 8.4 × 10−4 0.32 20
CS2 6.0 × 10−4 0.62 36
Benzene 2.2 × 10−4 0.57 24
Acetone 2.0 × 10−4 0.47 21
H2O 0.02 × 10−4 0.019 27.5
Ethanol 0.38 18

a After Kaiser and Maier (1972).

two gains become comparable for α 	 10−3 cm−1, which occurs only for
unusually pure materials.

We also see by comparison of Eqs. (9.6.51) and (9.6.46) that the ratio of the
two thermal gain factors is given by

ga
R(max)

ga
B(max)

= 2�B

�R
. (9.6.52)

Comparison of Tables 9.3.1 and 9.6.1 shows that for a given material the ratio
�B/�R is typically of the order of 100. Hence, when thermal stimulated scat-
tering occurs, the gain for thermal SRLS is much larger than that for thermal
SBS, and most of the energy is emitted by this process.

The frequency dependence of the gain for stimulated Rayleigh scattering
is shown in Fig. 9.6.1. Note that electrostrictive SRLS gives rise to gain for
Stokes shifted light but that thermal SRLS gives rise to gain for anti-Stokes
scattering (Herman and Gray, 1967). This result can be understood from the
point of view that n2 is positive for electrostriction but is negative for the
process of heating and subsequent thermal expansion. We saw in the discus-
sion of two-beam coupling presented in Section 7.4 that the lower-frequency
wave experiences gain for n2 positive and loss for n2 negative.

9.6.1. Appendix: Definition of the Viscosity Coefficients

The viscosity coefficients are defined as follows: The component tij of the
stress tensor gives the i component of the force per unit area on an area ele-
ment whose normal is in the j direction. We represent the stress tensor as

tij = −pδij + σij ,
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where p is the pressure and σij is the contribution to the stress tensor due
to viscosity. If we assume that σij is linearly proportional to the rate of defor-
mation

dij = 1

2

[
∂ũi

∂xj

+ ∂ũj

∂xj

]
,

we can represent σij as

σij = 2ηsdij + ηdδij

∑
k

dkk,

where ηs is the shear viscosity coefficient and ηd is the dilational viscosity
coefficient. The quantity

∑
k dkk can be interpreted as follows:

∑
k

dkk =
∑

k

∂ũk

∂xk

= ∇ · ũ.

In general, ηs and ηd are independent parameters. However, for certain
physical systems they are related to one another through a relationship first
formulated by Stokes. This relationship results from the assumption that the
viscous stress tensor σij is traceless. In this case the trace of tij is unaffected
by viscous effects; in other words, the mean pressure −1

3

∑
i tii is unaffected

by the effects of viscosity. Condition that σij is traceless implies that the com-
bination ∑

i

σii = 2ηs

∑
i

dii + 3ηd

∑
k

dkk = (2ηs + 3ηd)
∑

k

dkk

vanishes or that

ηd = −2
3ηs.

This result is known as the Stokes relation.
The viscosity coefficients ηs and ηd often appear in the combination

2ηs + ηd , as they do in Eq. (9.6.2). When the Stokes relation is satisfied,
this combination takes the value

2ηs + ηd = 4
3ηs (Stokes relation valid).

Under general conditions, such that the Stokes relation is not satisfied, one
often defines the bulk viscosity coefficient ηb by

ηb = 2
3ηs + ηd,

in terms of which the quantity 2ηs + ηd can be represented as

2ηs + ηd = 4
3ηs + ηb (in general).
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Note that ηB vanishes identically when the Stokes relation is valid, for exam-
ple, for the case of an ideal gas.

As an example of the use of these relations, we note that the Brillouin
linewidth �B introduced in Eqs. (8.3.23), (9.5.2), and (9.6.28) can be rep-
resented (ignoring the contribution due to thermal conduction) either as

�B = (2ηs + ηd)q2/ρ0

or as

�B = ( 4
3ηs + ηB

)
q2/ρ0.

Problems

1. Lorentz–Lorenz prediction of the electrostrictive constant. Verify Eq.
(9.2.17).

2. Angular dependence of SBS. Generalize the discussion of Section 9.3 to
allow the angle θ between the laser and Stokes propagation directions to
be arbitrary. In particular, determine how the Brillouin frequency �B, the
steady-state line-center gain factor g0, and the phonon lifetime τp depend
on the angle θ .

[Ans.:

�B(θ) = �B(θ = 180◦) sin
( 1

2θ
)

g0(θ) = g0(θ = 180◦)/ sin
(1

2θ
)

τp(θ) = τp(θ = 180◦)/ sin2( 1
2θ

)
.]

3. Transverse SBS. Consider the possibility of exciting SBS in the transverse
direction by a laser beam passing through a fused-silica window at near-
normal incidence. Assume conditions appropriate to a high-energy laser. In
particular, assume that the window is 70 cm in diameter and is uniformly
filled with a laser pulse of 10-nsec duration at a wavelength of 350 nm.
What is the minimum value of the laser pulse energy for which SBS can be
excited? (In fact, transverse SBS has been observed under such conditions
similar to those assumed in this problem; see, for example, Murray et al.,
1989.)

[Ans.: ∼2 kJ.]
4. Optical damage considerations and the study of SBS. The threshold inten-

sity for optical damage to fused silica is approximately 3 GW/cm2 and is
of the same order of magnitude for most optical materials. (See, for ex-
ample, Lowdermilk and Milam, 1981.) Use this fact and the value of the
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SBS gain factor at line center quoted in Table 9.3.1 to determine the min-
imum length of a cell utilizing fused-silica windows that can be used to
excite SBS in acetone with a collimated laser beam. Assume that the laser
intensity is restricted to 50% of the threshold intensity as a safety factor to
avoid damage to the windows. If the laser pulse length is 20 nsec, what is
the minimum value of the laser pulse energy per unit area that can be used
to excite SBS? (SBS is often excited by tightly focused laser beams rather
than by collimated beams to prevent optical damage to the windows of the
cell.)

5. Pulse compression by SBS. Explain qualitatively why the Stokes radiation
excited by SBS in the backward direction can be considerable shorter in
duration than the exciting radiation. How must the physical length of the
interaction region be related to the duration of the laser pulse in order to
observe this effect? Write down the coupled-amplitude equations that are
needed to describe this effect and, if you wish, solve these equations nu-
merically by computer. What determines the minimum value of the dura-
tion of the output pulse?

[Hint: Pulse compression by SBS is described in the scientific literature
by Hon (1980) and by Gulidov et al. (1988).]

6. Brillouin-enhanced four-wave mixing. In addition to SBS, light beams can
interact in a Brillouin medium by means of the process known as Brillouin-
enhanced four-wave mixing (BEFWM), which is illustrated in the follow-
ing figure.

In this process, the incoming signal wave A3 interferes with the
backward-going pump wave A2 to generate an acoustic wave propagating
in the forward direction. The forward-going pump wave scatters from the
acoustic wave to generate the phase-conjugate wave A4. Since A4 is at the
Stokes sideband of A1, it also undergoes amplification by the usual SBS
process. Phase-conjugate reflectivities much larger than 100% have been
observed in the BEFWM process. Using the general formalism outlined in
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Section 9.3, derive the form of the four coupled-amplitude equations that
describe BEFWM under steady-state conditions. Solve these equations an-
alytically in the constant-pump approximation.

[Hint: BEFWM has been discussed in the scientific literature. See, for
example, Skeldon et al. (1987).]
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Chapter 10

Stimulated Raman Scattering and
Stimulated Rayleigh-Wing Scattering

10.1. The Spontaneous Raman Effect

The spontaneous Raman effect was discovered by C.V. Raman in 1928. To
observe this effect, a beam of light illuminates a material sample (which can
be a solid, liquid, or gas), and the scattered light is observed spectroscopically,
as illustrated in Fig. 10.1.1. In general, the scattered light contains frequencies
different from those of the excitation source. Those new components shifted to
lower frequencies are called Stokes components, and those shifted to higher
frequencies are called anti-Stokes components. The Stokes components are
typically orders of magnitude more intense than the anti-Stokes components.

These properties of Raman scattering can be understood through use of the
energy level diagrams shown in Fig. 10.1.2. Raman Stokes scattering consists

FIGURE 10.1.1 Spontaneous Raman scattering.
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FIGURE 10.1.2 Energy level diagrams describing (a) Raman Stokes scattering and
(b) Raman anti-Stokes scattering.

of a transition from the ground state g to the final state n by means of a virtual
intermediate level associated with excited state n′. Raman anti-Stokes scatter-
ing entails a transition from level n to level g with n′ serving as the interme-
diate level. The anti-Stokes lines are typically much weaker than the Stokes
lines because, in thermal equilibrium, the population of level n is smaller than
the population in level g by the Boltzmann factor exp(−h̄ωng/kT ).

The Raman effect has important spectroscopic applications because transi-
tions that are one-photon forbidden can often be studied using Raman scat-
tering. For example, the Raman transitions illustrated in Fig. 10.1.2 can occur
only if the matrix elements 〈g|r̂|n′〉 and 〈n′|r̂|n〉 are both nonzero, and this
fact implies (for a material system that possesses inversion symmetry, so that
the energy eigenstates possess definite parity) that the states g and n must
possess the same parity. But under these conditions the g → n transition is
forbidden for single-photon electric dipole transitions because the matrix ele-
ment 〈g|r̂|n〉 must necessarily vanish.

10.2. Spontaneous versus Stimulated Raman Scattering

The spontaneous Raman scattering process described in the previous section
is typically a rather weak process. Even for condensed matter, the scattering
cross section per unit volume for Raman Stokes scattering is only approx-
imately 10−6 cm−1. Hence, in propagating through 1 cm of the scattering
medium, only approximately 1 part in 106 of the incident radiation will be
scattered into the Stokes frequency.

However, under excitation by an intense laser beam, highly efficient
scattering can occur as a result of the stimulated version of the Raman
scattering process. Stimulated Raman scattering is typically a very strong
scattering process: 10% or more of the energy of the incident laser beam is
often converted into the Stokes frequency. Another difference between spon-
taneous and stimulated Raman scattering is that the spontaneous process leads
to emission in the form of a dipole radiation pattern, whereas the stimulated
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process leads to emission in a narrow cone in the forward and backward di-
rections. Stimulated Raman scattering was discovered by Woodbury and Ng
(1962) and was described more fully by Eckhardt et al. (1962). The properties
of stimulated Raman scattering have been reviewed by Bloembergen (1967),
Kaiser and Maier (1972), Penzkofer et al. (1979), and Raymer and Walmsley
(1990).

The relation between spontaneous and stimulated Raman scattering can
be understood in terms of an argument (Hellwarth, 1963) that considers the
process from the point of view of the photon occupation numbers of the vari-
ous field modes. One postulates that the probability per unit time that a photon
will be emitted into Stokes mode S is given by

PS = DmL(mS + 1). (10.2.1)

Here mL is the mean number of photons per mode in the laser radiation, mS

is the mean number of photons in Stokes mode S, and D is a proportional-
ity constant whose value depends on the physical properties of the material
medium. This functional form is assumed because the factor mL leads to the
expected linear dependence of the transition rate on the laser intensity, and the
factor mS + 1 leads to stimulated scattering through the contribution mS and
to spontaneous scattering through the contribution of unity. This dependence
on the factor mS + 1 is reminiscent of the stimulated and spontaneous contri-
butions to the total emission rate for a single-photon transition of an atomic
system as treated by the Einstein A and B coefficients. Equation (10.2.1) can
be justified by more rigorous treatments; note, for example, that the results of
the present analysis are consistent with those of the fully quantum-mechanical
treatment of Raymer and Mostowski (1981).

By the definition of PS as a probability per unit time for emitting a pho-
ton into mode S, the time rate of change of the mean photon occupation
number for the Stokes mode is given by dmS/dt = PS or through the use
of Eq. (10.2.1) by

dmS

dt
= DmL(mS + 1). (10.2.2)

If we now assume that the Stokes mode corresponds to a wave traveling in
the positive z direction at the velocity c/n, as illustrated in Fig. 10.2.1, we
see that the time rate of change given by Eq. (10.2.2) corresponds to a spatial
growth rate given by

dmS

dz
= 1

c/n

dmS

dt
= 1

c/n
DmL(mS + 1). (10.2.3)
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FIGURE 10.2.1 Geometry describing stimulated Raman scattering.

For definiteness, Fig. 10.2.1 shows the laser and Stokes beams propagating in
the same direction; in fact, Eq. (10.2.3) applies even if the angle between the
propagation directions of the laser and Stokes waves is arbitrary, as long as z

is measured along the propagation direction of the Stokes wave.
It is instructive to consider Eq. (10.2.3) in the two opposite limits of mS � 1

and mS � 1. In the first limit, where the occupation number of the Stokes
mode is much less than unity, Eq. (10.2.3) becomes simply

dmS

dz
= 1

c/n
DmL (for mS � 1). (10.2.4)

The solution to this equation for the geometry of Fig. 10.2.1 under the as-
sumption that the laser field is unaffected by the interaction (and thus that mL

is independent of z) is

mS(z) = mS(0) + 1

c/n
DmLz (for mS � 1), (10.2.5)

where mS(0) denotes the photon occupation number associated with the
Stokes field at the input to the Raman medium. This limit corresponds to
spontaneous Raman scattering; the Stokes intensity increases in proportion to
the length of the Raman medium and thus to the total number of molecules
contained in the interaction region.

The opposite limiting case is that in which there are many photons in the
Stokes mode. In this case Eq. (10.2.3) becomes

dmS

dz
= 1

c/n
DmLmS (for mS � 1), (10.2.6)

whose solution (again under the assumption of an undepleted input field) is

mS(z) = mS(0)eGz (for mS � 1), (10.2.7)

where we have introduced the Raman gain coefficient

G = DmL

c/n
. (10.2.8)
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Again mS(0) denotes the photon occupation number associated with the
Stokes field at the input to the Raman medium. If no field is injected into
the Raman medium, mS(0) represents the quantum noise associated with
the vacuum state, which is equivalent to one photon per mode. Emission
of the sort described by Eq. (10.2.7) is called stimulated Raman scattering.
The Stokes intensity is seen to grow exponentially with propagation distance
through the medium, and large values of the Stokes intensity are routinely
observed at the output of the interaction region.

We see from Eq. (10.2.8) that the Raman gain coefficient can be related sim-
ply to the phenomenological constant D introduced in Eq. (10.2.1). However,
we see from Eq. (10.2.5) that the strength of spontaneous Raman scattering
is also proportional to D. Since the strength of spontaneous Raman scattering
is often described in terms of a scattering cross section, it is thus possible to
determine a relationship between the gain coefficient G for stimulated Ra-
man scattering and the cross section for spontaneous Raman scattering. This
relationship is derived as follows.

Since one laser photon is lost for each Stokes photon that is created, the
occupation number of the laser field changes as the result of spontaneous
scattering into one particular Stokes mode in accordance with the relation
dmL/dz = −dmS/dz, with dmS/dz given by Eq. (10.2.4). However, since
the system can radiate into a large number of Stokes modes, the total rate of
loss of laser photons is given by

dmL

dz
= −Mb

dmS

dz
= −DmLMb

c/n
, (10.2.9)

where M is the total number of modes into which the system can radiate and
where b is a geometrical factor that accounts for the fact that the angular distri-
bution of scattered radiation may be nonuniform and hence that the scattering
rate into different Stokes modes may be different. Explicitly, b is the ratio of
the angularly averaged Stokes emission rate to the rate in the direction of the
particular Stokes mode S for which D (and thus the Raman gain coefficient) is
to be determined. If |f (θ,φ)|2 denotes the angular distribution of the Stokes
radiation, b is then given by

b =
∫ |f (θ,φ)|2 d�/4π

|f (θS,φS)|2 , (10.2.10)

where (θS,φS) gives the direction of the particular Stokes mode for which D

is to be determined.
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The total number of Stokes modes into which the system can radiate is
given by the expression (see, for example, Boyd, 1983, Eq. (3.4.4))

M = V ω2
S�ω

π2(c/n)3
, (10.2.11)

where V denotes the volume of the region in which the modes are defined and
where �ω denotes the linewidth of the scattered Stokes radiation. The rate of
loss of laser photons is conventionally described by the cross section σ for
Raman scattering, which is defined by the relation

dmL

dz
= −NσmL, (10.2.12)

where N is the number density of molecules. By comparison of Eqs. (10.2.9)
and (10.2.12), we see that we can express the parameter D in terms of the
cross section σ by

D = Nσ(c/n)

Mb
. (10.2.13)

This expression for D, with M given by Eq. (10.2.11), is now substituted into
expression (10.2.8) for the Raman gain coefficient to give the result

G = Nσπ2c3mL

V ω2
S�ωbn3

≡ Nπ2c3mL

V ω2
Sbn3

(
∂σ

∂ω

)
0
, (10.2.14)

where in obtaining the second form we have used the definition of the spectral
density of the scattering cross section to express σ in terms of its line-center
value (∂σ/∂ω)0 as

σ =
(

∂σ

∂ω

)
0
�ω. (10.2.15)

Equation (10.2.14) gives the Raman gain coefficient in terms of the num-
ber of laser photons per mode, mL. In order to express the gain coefficient in
terms of the laser intensity, which can be measured directly, we assume the
geometry shown in Fig. 10.2.2. The laser intensity IL is equal to the num-
ber of photons contained in this region multiplied by the energy per photon
and divided by the cross-sectional area of the region and by the transit time
through the region—that is,

IL = mLh̄ωL

A(nL/c)
= mLh̄ωLc

V n
, (10.2.16)
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FIGURE 10.2.2 Geometry of the region within which the laser and Stokes modes are
defined.

where V = AL. Through use of this result, the Raman gain coefficient of
Eq. (10.2.14) can be expressed as

G = Nπ2c2

ω2
Sbn2h̄ωL

(
∂σ

∂ω

)
0
IL. (10.2.17)

It is sometimes convenient to express the Raman gain coefficient not in terms
of the spectral cross section (∂σ/∂ω)0 but in terms of the differential spectral
cross section (∂2σ/∂ω ∂�)0, where d� is an element of solid angle. These
quantities are related by (

∂σ

∂ω

)
0
= 4πb

(
∂2σ

∂ω∂�

)
0
, (10.2.18)

where b is the factor defined in Eq. (10.2.10) that accounts for the possible
nonuniform angular distribution of the scattered Stokes radiation. Through
use of this relation, Eq. (10.2.17) becomes

G = 4π3Nc2

ω2
Sh̄ωLn2

S

(
∂2σ

∂ω∂�

)
0
IL. (10.2.19)

Some of the parameters describing stimulated Raman scattering are listed
in Table 10.2.1 for a number of materials.

10.3. Stimulated Raman Scattering Described by the Nonlinear
Polarization

Here we develop a classical (that is, non-quantum-mechanical) model that de-
scribes stimulated Raman scattering (see also Garmire et al., 1963). For con-
ceptual clarity, our treatment is restricted to the scalar approximation. Treat-
ments that include the tensor properties of Raman interaction are cited in the
references listed at the end of this chapter.

We assume that the optical field interacts with a vibrational mode of a mole-
cule, as illustrated in Fig. 10.3.1. We assume that the vibrational mode can
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TABLE 10.2.1 Properties of stimulated Raman scattering for several
materials a

Substance Frequency
Shift v0
(cm−1)

Linewidth �ν

(cm−1)
Cross Section
N(dσ/d�)0
(10−6 m−1 sec−1)

Gain
Factor b

G/IL

(m/TW)Liquid O2 1552 0.117 0.48 ± 0.14 145 ± 40
Liquid N2 2326.5 0.067 0.29 ± 0.09 160 ± 50
Benzene 992 2.15 3.06 28
CS2 655.6 0.50 7.55 240
Nitrobenzene 1345 6.6 6.4 21
Bromobenzene 1000 1.9 1.5 15
Chlorobenzene 1002 1.6 1.5 19
Toluene 1003 1.94 1.1 12
NiNbO3 256 23 381 89

637 20 231 94
Ba2NaNb5O15 650 67
LiTaO3 201 22 238 44
SiO2 467 08
Methane gas 2916 (10 atm) c 6.6
H2 gas 4155 (>10 atm) 15
H2 gas (rotat.) 450 (>0.5 atm) 5
Deuterium gas 2991 (>10 atm) 11
N2 gas 2326 (10 atm) c 0.71
O2 gas 1555 (10 atm) c 0.16

a After Kaiser and Maier (1972) and Simon and Tittel (1994). All transitions are vibrational except
for the 450 cm−1 hydrogen transition which is rotational.

b Measured at 694 nm unless stated otherwise.
c Measured at 500 nm.

be described as a simple harmonic oscillator of resonance frequency ωv and
damping constant γ , and we denote by q̃(t) the deviation of the internuclear
distance from its equilibrium value q0. The equation of motion describing the
molecule vibration is thus

d2q̃

dt2
+ 2γ

dq̃

dt
+ ω2

vq̃ = F̃ (t)

m
, (10.3.1)

where F̃ (t) denotes any force that acts on the vibrational mode and where m

represents the reduced nuclear mass.
The key assumption of the theory is that the optical polarizability of the

molecule (which is typically predominantly electronic in origin) is not con-
stant, but depends on the internuclear separation q̃(t) according to the equa-
tion

α̃(t) = α0 +
(

∂α

∂q

)
0
q̃(t). (10.3.2)
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FIGURE 10.3.1 Molecular description of stimulated Raman scattering.

Here α0 is the polarizability of a molecule in which the internuclear distance
is held fixed at its equilibrium value. According to Eq. (10.3.2), when the
molecule is set into oscillation its polarizability will be modulated periodically
in time, and thus the refractive index of a collection of coherently oscillating
molecules will be modulated in time in accordance with the relations

ñ(t) =
√

ε̃(t) = [
1 + Nα̃(t)

]1/2
. (10.3.3)

The temporal modulation of the refractive index will modify a beam of light
as it passes through the medium. In particular, frequency sidebands separated
from the laser frequency by ±ωv will be impressed upon the transmitted laser
beam.

Next, we examine how molecular vibrations can be driven coherently by an
applied optical field. In the presence of the optical field Ẽ(z, t), each molecule
will become polarized, and the induced dipole moment of a molecule located
at coordinate z will be given by

p̃(z, t) = ε0αẼ(z, t). (10.3.4)

The energy required to establish this oscillating dipole moment is given by

W = 1
2

〈
p̃(z, t) · Ẽ(z, t)

〉 = 1
2ε0α

〈
Ẽ2(z, t)

〉
, (10.3.5)

where the angular brackets denote a time average over an optical period. The
applied optical field hence exerts a force given by

F̃ = dW

dq
= ε0

2

(
dα

dq

)
0

〈
Ẽ2(z, t)

〉
(10.3.6)

on the vibrational degree of freedom. In particular, if the applied field contains
two frequency components, Eq. (10.3.6) shows that the vibrational coordinate
will experience a time-varying force at the beat frequency between the two
field components.

The origin of stimulated Raman scattering can be understood schemati-
cally in terms of the interactions shown in Fig. 10.3.2. Part (a) of the figure
shows how molecular vibrations modulate the refractive index of the medium
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FIGURE 10.3.2 Stimulated Raman scattering.

at frequency ωv and thereby impress frequency sidebands onto the laser field.
Part (b) shows how the Stokes field at frequency ωS = ωL − ωv can beat with
the laser field to produce a modulation of the total intensity of the form

Ĩ (t) = I0 + I1 cos(ωL − ωS)t. (10.3.7)

This modulated intensity coherently excites the molecular oscillation at fre-
quency ωL − ωS = ωv . The two processes shown in parts (a) and (b) of the
figure reinforce one another in the sense that the interaction shown in part (b)
leads to a stronger molecular vibration, which by the interaction shown in
part (a) leads to a stronger Stokes field, which in turn leads to a stronger
molecular vibration.

To make these ideas quantitative, let us assume that the total optical field
can be represented as

Ẽ(z, t) = ALei(kLz−ωLt) + ASei(kSz−ωSt) + c.c. (10.3.8)

According to Eq. (10.3.6) the time-varying part of the applied force is then
given by

F̃ (z, t) = ε0

(
∂α

∂q

)
0

[
ALA∗

Sei(Kz−�t) + c.c.
]
, (10.3.9)

where we have introduced the notation

K = kL − kS and � = ωL − ωS. (10.3.10)

We next find the solution to Eq. (10.3.1) with a force term of the form of
Eq. (10.3.9). We adopt a trial solution of the form

q̃ = q(�)ei(Kz−�t) + c.c. (10.3.11)
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We insert Eqs. (10.3.9) and (10.3.11) into Eq. (10.3.1), which becomes

−ω2q(�) − 2iωγ q(�) + ω2
vq(�) = ε0

m

(
∂α

∂q

)
0
ALA∗

S,

and we thus find that the amplitude of the molecular vibration is given by

q(�) = (ε0/m)(∂α/∂q)0ALA∗
S

ω2
v − �2 − 2i�γ

. (10.3.12)

Since the polarization of the medium is given according to Eqs. (10.3.2) and
(10.3.4) by

P̃ (z, t) = Np̃(z, t) = ε0Nα̃(z, t)Ẽ(z, t)

= ε0N

[
α0 +

(
∂α

∂q

)
0
q̃(z, t)

]
Ẽ(z, t), (10.3.13)

the nonlinear part of the polarization is given by

P̃ NL(z, t) = ε0N

(
∂α

∂q

)
0

[
q(�)ei(Kz−�t) + c.c.

]

× [
ALei(kLz−ωLt) + ASei(kSz−ωSt) + c.c.

]
. (10.3.14)

The nonlinear polarization is thus seen to contain several different frequency
components. The part of this expression that oscillates at frequency ωS is
known as the Stokes polarization and is given by

P̃ NL
S (z, t) = P(ωS)e−iωs t + c.c. (10.3.15)

with a complex amplitude given by

P(ωS) = Nε0

(
∂α

∂q

)
0
q∗(�)ALeikSz. (10.3.16)

By introducing the expression (10.3.12) for q(�) into this equation, we find
that the complex amplitude of the Stokes polarization is given by

P(ωS) = (ε2
0N/m)(∂α/∂q)2

0|AL|2AS

ω2
v − �2 + 2i�γ

eikSz. (10.3.17)

We now define the Raman susceptibility through the expression

P(ωS) = 6ε0χR(ωS)|AL|2ASeikSz, (10.3.18)

where for notational convenience we have introduced χR(ωS) as a shortened
form of χ(3)(ωS = ωS + ωL − ωL). By comparison of Eqs. (10.3.17) and
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FIGURE 10.3.3 Resonance structure of the Raman susceptibility.

(10.3.18), we find that the Raman susceptibility is given by

χR(ωS) = ε0(N/6m)(∂α/∂q)2
0

ω2
v − (ωL − ωS)2 + 2i(ωL − ωS)γ

. (10.3.19a)

The real and imaginary parts of χR(ωS) ≡ χ ′
R(ωS) + iχ ′′

R(ωS) are illustrated
in Fig. 10.3.3. Near the Raman resonance, the Raman susceptibility can be
approximated as

χR(ωS) = (ε0N/12mωv)(∂α/∂q)2
0

[ωS − (ωL − ωv)] + iγ
. (10.3.19b)

Note that, at the exact Raman resonance (that is, for ωS = ωL − ωv), the
Raman susceptibility is negative imaginary. (We shall see below that conse-
quently the Stokes wave experiences amplification.)

In order to describe explicitly the spatial evolution of the Stokes wave, we
use Eqs. (10.3.8), (10.3.15), (10.3.18), and (9.3.19) for the nonlinear polar-
ization appearing in the driven wave equation (2.1.17). We then find that the
evolution of the field amplitude AS is given in the slowly varying amplitude
approximation by

dAS

dz
= −αSAS, (10.3.20)

where

αS = −3i
ωS

nSc
χR(ωS)|AL|2 (10.3.21)

is the Stokes wave “absorption” coefficient. Since the imaginary part of
χR(ωS) is negative, the real part of the absorption coefficient is negative, im-
plying that the Stokes wave actually experiences exponential growth. Note
that αS depends only on the modulus of the complex amplitude of the laser
field. Raman Stokes amplification is thus a process for which the phase-
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matching condition is automatically satisfied. Alternatively, Raman Stokes
amplification is said to be a pure gain process.

We can also predict the spatial evolution of a wave at the anti-Stokes fre-
quency through use of the results of the calculation just completed. In the
derivation of Eq. (10.3.19a), no assumptions were made regarding the sign of
ωL − ωS . We can thus deduce the form of the anti-Stokes susceptibility by
formally replacing ωS by ωa in Eq. (10.3.19a) to obtain the result

χR(ωa) = ε0(N/6m)(∂α/∂q)2
0

ω2
v − (ωL − ωa)2 + 2i(ωL − ωa)γ

. (10.3.22)

Since ωS and ωa are related through

ωL − ωS = −(ωL − ωa), (10.3.23)

we see that

χR(ωa) = χR(ωS)∗. (10.3.24)

The relation between the Stokes and anti-Stokes Raman susceptibilities is il-
lustrated in Fig. 10.3.4. Near the Raman resonance, Eq. (10.3.22) can be ap-
proximated by

χR(ωa) = −(ε0N/12mωv)(∂α/∂q)2
0

[ωa − (ωL + ωv)] + iγ
, (10.3.25)

and at the exact resonance the Raman susceptibility is positive imaginary. The
amplitude of the anti-Stokes wave hence obeys the propagation equation

dAa

dz
= −αaAa, (10.3.26)

FIGURE 10.3.4 Relation between Stokes and anti-Stokes Raman susceptibilities.
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where

αa = −3i
ωa

nac
χR(ωa)|AL|2. (10.3.27)

For a positive imaginary χR(ωa), αa is positive real, implying that the anti-
Stokes wave experiences attenuation.

However, it was found experimentally (Terhune, 1963) that the anti-Stokes
wave is generated with appreciable efficiency, at least in certain directions.
The origin of anti-Stokes generation is an additional contribution to the non-
linear polarization beyond that described by the Raman susceptibility of
Eq. (10.3.25). Inspection of Eq. (10.3.14) shows that there is a contribution
to the anti-Stokes polarization

P̃ NL
a (z, t) = P(ωa)e

−iωat + c.c. (10.3.28)

that depends on the Stokes amplitude and which is given by

P(ωa) = Nε0

(
∂α

∂q

)
0
q(�)AL = (Nε2

0/m)(∂α/∂q)2
0A

2
LA∗

S

ω2
v − �2 − 2i�γ

ei(2kL−kS)z.

(10.3.29)
(Recall that � ≡ ωL − ωS = ωa − ωL.) This contribution to the nonlinear
polarization can be described in terms of a four-wave mixing susceptibility
χF (ωa) ≡ χ(3)(ωa = ωL + ωL − ωS), which is defined by the relation

P(ωa) = 3ε0χF (ωa)A
2
LA∗

Sei(2kL−kS)z, (10.3.30)

and which is hence equal to

χF (ωa) = (Nε0/3m)(∂α/∂q)2
0

ω2
v − (ωL − ωa)2 + 2i(ωL − ωa)γ

. (10.3.31)

We can see by comparison with Eq. (10.3.22) that

χF (ωa) = 2χR(ωa). (10.3.32)

The total polarization at the anti-Stokes frequency is the sum of the contribu-
tions described by Eqs. (10.3.22) and (10.3.31) and is thus given by

P(ωa) = 6ε0χR(ωa)|AL|2Aae
ikaz + 3ε0χF (ωa)A

2
LA∗

Sei(2kL−ks)z. (10.3.33)

Similarly, there is a four-wave mixing contribution to the Stokes polarization
described by

χF (ωS) = (Nε0/3m)(∂α/∂q)2
0

ω2
v − (ωL − ωa)2 + 2i(ωL − ωS)γ

(10.3.34)
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so that the total polarization at the Stokes frequency is given by

P(ωS) = 6ε0χR(ωS)|AL|2ASeikSz + 3ε0χF (ωS)A2
LA∗

ae
i(2kL−ka)z.

(10.3.35)
The Stokes four-wave mixing susceptibility is related to the Raman Stokes
susceptibility by

χF (ωS) = 2χR(ωS) (10.3.36)

and to the anti-Stokes susceptibility through

χF (ωS) = χF (ωa)
∗. (10.3.37)

The spatial evolution of the Stokes and anti-Stokes fields is now obtained
by introducing Eqs. (10.3.33) and (10.3.35) into the driven wave Eq. (2.1.17).
We assume that the medium is optically isotropic and that the slowly varying
amplitude and constant-pump approximations are valid. We find that the field
amplitudes obey the set of coupled equations

dAS

dz
= −αSAS + κSA∗

ae
i�kz, (10.3.38a)

dAa

dz
= −αaAa + κaA

∗
Sei�kz, (10.3.38b)

where we have introduced nonlinear absorption and coupling coefficients

αj = −3iωj

nj c
χR(ωj )|AL|2, j = S,a, (10.3.39a)

κj = 3iωj

2njc
χF (ωj )A

2
L, j = S,a, (10.3.39b)

and have defined the wavevector mismatch

�k = �k · ẑ = (2kL − kS − ka) · ẑ. (10.3.40)

The form of Eqs. (10.3.38) shows that each of the Stokes and anti-Stokes
amplitudes is driven by a Raman gain or loss term (the first term on the right-
hand side) and by a phase-matched four-wave mixing term (the second). The
four-wave mixing term is an effective driving term only when the wavevector
mismatch �k is small. For a material with normal dispersion, the refractive
index experienced by the laser wave is always less than the mean of those
experienced by the Stokes and anti-Stokes waves, as illustrated in part (a) of
Fig. 10.3.5. For this reason, perfect phase matching (�k = 0) can always be
achieved if the Stokes wave propagates at some nonzero angle with respect to
the laser wave, as illustrated in part (b) of the figure. For angles appreciably
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FIGURE 10.3.5 Phase-matching relations for Stokes and anti-Stokes coupling in
stimulated Raman scattering.

different from this phase-matching angle, �k is large, and only the first term
on the right-hand side of each of Eqs. (10.3.38) is important. For these direc-
tions, the two equations decouple, and the Stokes sideband experiences gain
and the anti-Stokes sideband experiences lose. However, for directions such
that �k is small, both driving terms on the right-hand sides of Eqs. (10.3.38)
are important, and the two equations must be solved simultaneously. In the
next section, we shall see how to solve these equations and shall see that both
Stokes and anti-Stokes radiation can be generated in directions for which �k

is small.

10.4. Stokes–Anti-Stokes Coupling in Stimulated Raman
Scattering

In this section, we study the nature of the solution to the equations describing
the propagation of the Stokes and anti-Stokes waves. We have just seen that
these equations are of the form

dA1

dz
= −α1A1 + κ1A

∗
2e

i�kz, (10.4.1a)

dA∗
2

dz
= −α∗

2A∗
2 + κ∗

2 A1e
−i�kz. (10.4.1b)

In fact, equations of this form are commonly encountered in nonlinear optics
and also describe, for example, any forward four-wave mixing process in the
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constant-pump approximation. The ensuing discussion of the solution to these
equations is simplified by first rewriting Eqs. (10.4.1) as

e−i�kz/2
(

dA1

dz
+ α1A1

)
= κ1A

∗
2e

i�kz/2, (10.4.2a)

ei�kz/2
(

dA∗
2

dz
+ α∗

2A∗
2

)
= κ∗

2 A1e
−i�kz/2, (10.4.2b)

from which it follows that the equations can be expressed as(
d

dz
+ α1 + i�k

2

)
A1e

−i�kz/2 = κ1A
∗
2e

i�kz/2, (10.4.3a)

(
d

dz
+ α∗

2 − i�k

2

)
A∗

2e
i�kz/2 = κ∗

2 A1e
−i�kz/2. (10.4.3b)

The form of these equations suggests that we introduce the new variables
F1 and F2 defined by

F1 = A1e
−i�kz/2 and F ∗

2 = A∗
2e

i�kz/2, (10.4.4)

so that Eqs. (10.4.3) become(
d

dz
+ α1 + i

�k

2

)
F1 = κ1F

∗
2 , (10.4.5a)

(
d

dz
+ α∗

2 − i
�k

2

)
F ∗

2 = κ∗
2 F1. (10.4.5b)

We now eliminate F ∗
2 algebraically from this set of equations to obtain the

single equation(
d

dz
+ α∗

2 − i
�k

2

)(
d

dz
+ α1 + i

�k

2

)
F1 = κ1κ

∗
2 F1. (10.4.6)

We solve this equation by adopting a trial solution of the form

F1(z) = F1(0)egz, (10.4.7)

where g represents an unknown spatial growth rate. We substitute this form
into Eq. (10.4.6) and find that this equation is satisfied by the trial solution if
g satisfies the algebraic equation(

g + α∗
2 − i�k

2

)(
g + α1 + i�k

2

)
= κ1κ

∗
2 . (10.4.8)

In general, this equation possesses two solutions, which are given by

g± = −1
2 (α1 + α∗

2) ± 1
2

[(
α1 − α∗

2 + i�k
)2 + 4κ1κ

∗
2

]1/2
. (10.4.9)
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Except for special values of α1, α2, κ1, κ2, and �k, the two values of g given
by Eq. (10.4.9) are distinct. Whenever the two values of g are distinct, the
general solution for F is given by

F1 = F+
1 (0)eg+z + F−

1 (0)eg−z, (10.4.10)

and thus through the use of Eq. (10.4.4) we see that the general solution for
A1 is of the form

A1(z) = (
A+

1 eg+z + A−
1 eg−z

)
ei�kz/2. (10.4.11)

Here A+
1 and A−

1 are constants of integration whose values must be deter-
mined from the relevant boundary conditions. The general form of the solu-
tion for A∗

2(z) is readily found by substituting Eq. (10.4.11) into Eq. (10.4.3a),
which becomes(

g+ + α1 + i
�k

2

)
A+

1 eg+z +
(

g− + α1 + i
�k

2

)
A−

1 eg−z = κ1A
∗
2e

i�kz/2.

This equation is now solved for A∗
2(z) to obtain

A∗
2(z) =

[(
g+ + α1 + i�k/2

κ1

)
A+

1 eg+z

+
(

g− + α1 + i�k/2

κ1

)
A−

1 eg−z

]
e−i�kz/2. (10.4.12)

If we define constants A+
2 and A−

2 by means of the equation

A∗
2(z) = (

A+∗
2 eg+z + A−∗

2 eg−z
)
e−i�kz/2, (10.4.13)

we see that the amplitudes A±
1 and A±

2 are related by

A±∗
2

A±
1

= g± + α1 + i�k/2

κ1
. (10.4.14)

This equation shows how the amplitudes A+
2 and A+

1 are related in the part
of the solution that grows as exp(g+z), and similarly how the amplitudes A−

2
and A−

1 are related in the part of the solution that grows as exp(g−z). We
can think of Eq. (10.4.14) as specifying the eigenmodes of propagation of
the Stokes and anti-Stokes waves. As written, Eq. (10.4.14) appears to be
asymmetric with respect to the roles of the ω1 and ω2 fields. However, this
asymmetry occurs in appearance only. Since g± depends on α1, α2, κ1, κ2,
and �k, the right-hand side of Eq. (10.4.14) can be written in a variety of
equivalent ways, some of which display the symmetry of the interaction more
explicitly. We next rewrite Eq. (10.4.14) in such a manner.
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One can show by explicit calculation using Eq. (10.4.9) that the quantities
g+ and g− are related by(

g+ + α1 + i�k

2

)(
g− + α1 + i�k

2

)
= −κ1κ

∗
2 . (10.4.15)

In addition, one can see by inspection of Eq. (10.4.9) that their difference is
given by

g+ − g− = [(
α1 − α∗

2 + i�k
)2 + 4κ1κ

∗
2

]1/2
. (10.4.16a)

By substitution of Eq. (10.4.9) into this last equation, it follows that

g+ − g− = ±[
2g± + (

α1 + α∗
2

)]
, (10.4.16b)

where on the right-hand side either both pluses or both minuses must be used.
Furthermore, one can see from Eq. (10.4.9) that

g+ + g− = −(
α1 + α∗

2

)
. (10.4.16c)

By rearranging this equation and adding i�k/2 to each side, it follows that(
g± + α1 + i�k

2

)
= −

(
g∓ + α∗

2 − i�k

2

)
, (10.4.17a)

(
g± + α∗

2 + i�k

2

)
= −

(
g∓ + α1 + i�k

2

)
. (10.4.17b)

Through the use of Eqs. (10.4.15) and (10.4.17a), Eq. (10.4.14) can be ex-
pressed as

A±∗
2

A±
1

= g± + α1 + i�k/2

κ1
= −κ∗

2

g∓ + α1 + i�k/2
= κ∗

2

g± + α∗
2 − i�k/2

.

By taking the geometric mean of the last and third-last forms of this expres-
sion, we find that the ratio A±∗

2 /A±
1 can be written as

A±∗
2

A±
1

=
[
κ∗

2 (g± + α1 + i�k/2)

κ1(g± + α∗
2 − i�k/2)

]1/2

; (10.4.19)

this form shows explicitly the symmetry between the roles of the ω1 and ω2

fields.
Next, we find the form of the solution when the boundary conditions are

such that the input fields are known at the plane z = 0—that is, when A1(0)

and A∗
2(0) are given. We proceed by finding the values of the constants of

integration A+
1 and A−

1 . Equation (10.4.11) is evaluated at z = 0 to give the
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result

A1(0) = A+
1 + A−

1 , (10.4.20a)

and Eq. (10.4.12) is evaluated at z = 0 to give the result

A∗
2(0) =

(
g+ + α1 + i�k/2

κ1

)
A+

1 +
(

g− + α1 + i�k/2

κ1

)
A−

1 . (10.4.20b)

We rearrange Eq. (10.4.20a) to find that A−
1 = A1(0)−A+

1 , and we substitute
this form into Eq. (10.4.20b) to obtain

A∗
2(0) =

(
g+ − g−

κ1

)
A+

1 +
(

g− + α1 + i�k/2

κ1

)
A1(0).

We solve this equation for A+
1 to obtain

A+
1 =

(
κ1

g+ − g−

)
A∗

2(0) −
(

g− + α1 + i�k/2

g+ − g−

)
A1(0). (10.4.21a)

If instead we solve Eq. (10.4.20a) for A+
1 and substitute the result A+

1 =
A1(0) − A−

1 into Eq. (10.4.20b), we find that

A∗
2(0) =

(
g− − g+

κ1

)
A−

1 −
(

g+ + α1 + i�k/2

κ1

)
A1(0),

which can be solved for A−
1 to obtain

A−
1 = −

(
κ1

g+ − g−

)
A∗

2(0) +
(

g+ + α1 + i�k/2

g+ − g−

)
A1(0). (10.4.21b)

The expressions (10.4.21) for the constants A+
1 and A−

1 are now substituted
into Eqs. (10.4.11) and (10.4.12) to give the solution for the spatial evolution
of the two interacting fields in terms of their boundary values as

A1(z) = 1

g+ − g−

{[
κ1A

∗
2(0) −

(
g− + α1 + i�k

2

)
A1(0)

]
eg+z

−
[
κ1A

∗
2(0) −

(
g+ + α1 + i�k

2

)
A1(0)

]
eg−z

}
ei�kz/2

(10.4.22)
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and

A∗
2(z) = 1

g+ − g−

{[(
g+ + α1 + i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg+z

−
[(

g− + α1 + i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg−z

}
e−i�kz/2.

(10.4.23)

Through use of Eqs. (10.4.17), the second form can be written in terms of α2

instead of α1 as

A∗
2(z) = 1

g+ − g−

{[
−

(
g− + α∗

2 − i�k

2

)
A∗

2(0) + κ∗
2 A1(0)

]
eg+z

+
[(

g+ + α∗
2 − i�k

2

)
A∗

2(0) − κ∗
2 A1(0)

]
eg−z

}
e−i�kz/2.

(10.4.24)

Before applying the results of the derivation just performed to the case of
stimulated Raman scattering, let us make sure that the solution makes sense
by applying it to several specific limiting cases.

10.4.1. Dispersionless, Nonlinear Medium without Gain or Loss

For a medium without gain (or loss), we set α1 = α2 = 0. Also, for a medium
that is lossless and dispersionless, χ(3)(ω1 = 2ω0 −ω2) must equal χ(3)(ω2 =
2ω0 − ω1), and thus the product κ1κ

∗
2 that appears in the solution is equal to

κ1κ
∗
2 = 9ω1ω2

4n1n2c2

∣∣χ(3)(ω1 = 2ω0 − ω2)
∣∣2|A0|4, (10.4.25)

which is a real, positive quantity. We allow �k to be arbitrary. Under these
conditions, the coupled gain coefficient of Eq. (10.4.9) reduces to

g± = ±[
κ1κ

∗
2 − (�k/2)2]1/2

. (10.4.26)

We see that, so long as �k is not too large, the root g+ will be a positive real
number corresponding to amplification, whereas the root g− will be a neg-
ative real number corresponding to attenuation. However, if the wavevector
mismatch becomes so large that �k2 exceeds 4κ1κ

∗
2 , both roots will become

pure imaginary, indicating that each eigensolution shows oscillatory spatial
behavior. According to Eq. (10.4.14), the ratio of amplitudes corresponding
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to each eigensolution is given by

A±∗
2

A±
1

= g± + i�k/2

κ1
. (10.4.27)

The right-hand side of this expression simplifies considerably for the case
of perfect phase matching (�k = 0) and becomes ±(κ∗

2 /κ1)
1/2. If we also

choose our phase conventions so that A0 is purely real, we find that expression
reduces to

A±∗
2

A±
1

= ±i
(n1ω2

n2ω1

)1/2 � ±i, (10.4.28)

which shows that the two frequency sidebands are phased by ±π/2 radians in
each of the eigensolutions.

10.4.2. Medium without a Nonlinearity

One would expect on physical grounds that, for a medium in which χ(3) van-
ishes, the solution would reduce to the usual case of the free propagation of
the ω1 and ω2 waves. We now verify that our formal solution possesses this
property. By setting κ1 = κ2 = 0 in Eq. (10.4.9), and assuming for simplicity
that �k vanishes, we find that

g+ = −α∗
2 and g− = −α∗

1 . (10.4.29)

The eigenamplitudes are found most readily from Eq. (10.4.19). If we assume
that κ1 and κ2 approach zero in such a manner that κ∗

2 /κ1 remains finite, we
find from Eq. (10.4.19) that

A+∗
2

A+
1

= ∞,
A−∗

2

A−
1

= 0. (10.4.30)

Thus, the positive root corresponds to a wave at frequency ω2, which propa-
gates according to

A∗
2(z) = A∗

2(0)eg+z = A∗
2(0)e−α∗

2 (z), (10.4.31a)

whereas the negative root corresponds to a wave at frequency ω1, which prop-
agates according to

A1(z) = A1(0)eg−z = A1(0)e−α1z. (10.4.31b)

We thus see that each of the waves simply experiences free propagation.
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10.4.3. Stokes–Anti-Stokes Coupling in Stimulated Raman
Scattering

Let us now apply this analysis to the case of stimulated Raman scattering
(see also Bloembergen and Shen, 1964). For definiteness, we associate ω1

with the Stokes frequency ωS and ω2 with the anti-Stokes frequency ωa . The
nonlinear absorption coefficients αS and αa and coupling coefficients κS and
κa are given by Eqs. (10.3.39) with the nonlinear susceptibilities given by
Eqs. (10.3.19b), (10.3.25), (10.3.31), and (10.3.34). In light of the relations

χF (ωS) = χF (ωa)
∗ = 2χR(ωS) = 2χR(ωa)

∗ (10.4.32)

among the various elements of the susceptibility, we find that the absorption
and coupling coefficients can be related to each other as follows:

αa = −α∗
S

(
nSωa

naωS

)
, (10.4.33a)

κS = −αSe2iφL, (10.4.33b)

κa = α∗
S

(
nSωa

naωS

)
e2iφL, (10.4.33c)

where φL is the phase of the pump laser defined through

AL = |AL|eiφL, (10.4.34)

and where the Stokes amplitude absorption coefficient is given explicitly by

αS = −iωSNε2
0(∂α/∂q)2

0|AL|2
4mnScωv[ωS − (ωL − ωv) + iγ ] . (10.4.35)

If we now introduce the relations (10.4.33) into the expression (10.4.9) for the
coupled gain coefficient, we find the gain eigenvalues are given by

g± = −1
2αS

(
1 − nSωa

naωS

)

± 1

2

{[
αS

(
1 + nSωa

naωS

)
+ i�k

]2

− 4α2
S

nSωa

naωS

}1/2

. (10.4.36)

It is usually an extremely good approximation to set the factor nSωL/naωS

equal to unity. In this case Eq. (10.4.36) simplifies to

g± = ±[
iαS�k − (�k/2)2]1/2

. (10.4.37)
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FIGURE 10.4.1 Dependence of the coupled gain on the wavevector mismatch.

The dependence of g± on the phase mismatch is shown graphically in
Fig. 10.4.1.∗ Equation (10.4.37) leads to the perhaps surprising result that the
coupled gain g± vanishes in the limit of perfect phase matching. The reason
for this behavior is that, for sufficiently small �k, the anti-Stokes wave (which
normally experiences loss) is so strongly coupled to the Stokes wave (which
normally experiences gain) that it prevents the Stokes wave from experiencing
growth.

It is also instructive to study the expression (10.4.37) for the coupled gain in
the limit in which |�k| is very large. For |�k| � |αS |, Eq. (10.4.37) becomes

g± = ±i
�k

2

(
1 − 4iαS

�k

)
� ±(

αS + 1
2 i�k

)
. (10.4.38)

Through the use of Eq. (10.4.14), we find that the ratio of sidemode ampli-
tudes associated with each of these gain eigenvalues is given by

A+∗
a

A+
S

= −2 − i
�k

αS

� i
�k

αS

, (10.4.39a)

A−∗
a

A−
S

= 0. (10.4.39b)

Since we have assumed that |�k| is much larger than |αS |, we see that the +
mode is primarily anti-Stokes, whereas the − mode is primarily Stokes.†

Let us now examine more carefully the nature of the decreased gain that
occurs near �k = 0. By setting �k = 0 in the exact expression (10.4.36) for

∗ The graph has the same visual appearance whether the approximate form (10.4.37) or the exact
form (10.4.36) is plotted.

† Recall that at resonance αS is real and negative; hence g− = −αS − 1
2 i�k has a positive real

part and leads to amplification.
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the coupled gain, we find that the gain eigenvalues become

g+ = 0, g− = −αS

(
1 − nSωa

naωS

)
. (10.4.40)

Note that |g−| is much smaller than |αS | but does not vanish identically. Note
also that with the sign convention used here at resonance g− is a negative
quantity. We find from Eq. (10.4.14) that for a good approximation

A±∗
a

A±
S

= −1; (10.4.41)

thus, each eigensolution is seen to be an equal combination of Stokes and
anti-Stokes components, as mentioned in our discussion of Fig. 10.4.1.

Next, let us consider the spatial evolution of the field amplitudes under the
assumptions that �k = 0 and that their values are known at z = 0. We find
from Eqs. (10.4.22) and (10.4.23) that

AS(z) = −1

1 − nSωa/naωS

{[
A∗

a(0)e2iφL + nSωa

naωS

AS(0)

]

− [
A∗

a(0)e2iφL + AS(0)
]
eg−z

}
, (10.4.42a)

A∗
a(z) = 1

1 − nSωa/naωS

{[
A∗

a(0) + nSωa

naωS

AS(0)e−2iφL

]

− nSωa

naωS

[
A∗

a(0) + AS(0)e−2iφL
]
eg−z

}
. (10.4.42b)

Note that, since g− is negative, the second term in each expression expe-
riences exponential decay, and as z → ∞ the field amplitudes approach the
asymptotic values

AS(z → ∞) = −1

1 − nSωa/naωS

[
A∗

a(0)e2iφL + nSωa

naωS

AS(0)

]
,

(10.4.43a)

A∗
a(z → ∞) = 1

1 − nSωa/naωS

[
A∗

a(0) + nSωa

naωS

AS(0)e−2iφL

]
.

(10.4.43b)

Note that each field is amplified by the factor (1−nSωa/naωS)−1. The nature
of this amplification is illustrated in part (a) of Fig. 10.4.2. We see that after
propagating through a distance of several times 1/g−, the field amplitudes
attain constant values and no longer change with propagation distance.
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FIGURE 10.4.2 Nature of Raman amplification for the case of perfect phase matching
(�k = 0).

To see why field amplitudes remain constant, it is instructive to consider
the nature of the molecule vibration in the simultaneous presence of the laser,
Stokes, and anti-Stokes fields—that is, in the field

Ẽ(z, t) = ALei(kLz−ωLt) + ASei(kSz−ωSt) + Aae
i(kaz−ωat) + c.c., (10.4.44)

where kL − kS = ka − kL ≡ K and ωL − ωS = ωa − ωL ≡ �. The solution
to the equation of motion (10.3.1) for the molecular vibration with the force
term given by Eqs. (10.3.6) and (10.4.44) is given by

q̃(z, t) = q(�)ei(Kz−�t) + c.c.,

where

g(�) = (ε0/m)(∂α/∂q)0(ALA∗
S + AaA

∗
L)

ω2
v − �2 − 2i�γ

. (10.4.45)

We can see from Eqs. (10.4.43) that, once the field amplitudes have attained
their asymptotic values, the combination ALA∗

S + AaA
∗
L vanishes, implying

that the amplitude q(ω) of the molecular vibration also vanishes asymptoti-
cally, as illustrated in part (b) of Fig. 10.4.2.
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10.5. Coherent Anti-Stokes Raman Scattering

In the previous sections of this chapter, we have discussed spontaneous Raman
scattering and stimulated Raman scattering. These processes are represented
symbolically in parts (a) and (b) of Fig. 10.5.1. In the notation of Section 10.3,
stimulated Raman scattering is described by a nonlinear susceptibility of the
form χ

(3)
R (ωS = ωS +ωL −ωL). We also saw in that section (see, for example,

Eqs. (10.3.20) and (10.3.21)) that the Stokes wave at frequency ωS tends to
experience exponential growth, with a growth rate that scales as the product
of the laser intensity and the imaginary part of χ

(3)
R .

In the present section, we study two additional scattering processes, also
shown in Fig. 10.5.1, known as coherent anti-Stokes Raman scattering
(CARS) and coherent Stokes Raman scattering (CSRS). Our discussion will
concentrate on the first of these processes, as it is the one most often used
in laboratory investigations. In either of these processes, two laser beams at
frequencies ω1 and ω2 < ω1 are applied to the Raman medium, and a beam
at a new frequency is generated by the interaction. In the process of coherent
anti-Stokes Raman scattering (CARS), illustrated in part (c) of the figure, an
output is created at frequency 2ω1 −ω2 as a consequence of the susceptibility
χ

(3)
F (ωa = ω1 −ω2 +ω1). In the process of coherent Stokes Raman scattering

(CSRS), illustrated in part (d) of the figure, an output is created at frequency
2ω2 − ω1 as a consequence of the susceptibility χ

(3)
F (ωS = ω2 + ω2 − ω1).

Let us now analyze more carefully the process of coherent anti-Stokes Ra-
man scattering (CARS). We recall from Section 10.3 that the susceptibility
describing this process is given according to Eqs. (10.3.25) and (10.3.32) for
the current choice of frequencies by

χ
(3)
F (ωa = ω1 − ω2 + ω1) = −(ε0N/6mωv)(∂α/∂q)2

0

[(ω1 − ω2) − ωv)] + iγ
. (10.5.1)

FIGURE 10.5.1 Various Raman scattering processes: (a) spontaneous Raman scat-
tering; (b) stimulated Raman scattering; (c) coherent anti-Stokes Raman scattering
(CARS); and (d) coherent Stokes Raman scattering (CSRS).
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Note that the nonlinear response experiences a resonance whenever the input
frequencies ω1 and ω2 are selected so that ω1 − ω2 is equal to a vibrational
frequency ωv of the material system. It is for this reason that CARS is par-
ticularly useful as a diagnostic tool for determining the presence of chemical
species by means of their Raman vibrational modes. CARS is also useful as a
probe of molecular structure because the resonance frequency ωv and relax-
ation rate γ often depend sensitively upon the molecular environment.

The generation of the anti-Stokes wave is described by the coupled-
amplitude equation Eq. (10.3.38b), which for the current situation becomes

dAa

dz
= −αaAa + κaA

∗
2e

i�kz, (10.5.2)

where

αa = −3iωa

nac
χR(ωa)|A1|2, κa = 3iωa

2nac
χF (ωa)A

2
1, (10.5.3)

and

�k = �k · ẑ = (2k1 − k2 − ka) · ẑ. (10.5.4)

CARS is usually studied under conditions such that the generation of the
anti-Stokes signal is dominated by the second term on the right-hand side
of Eq. (10.5.2). This situation occurs whenever the gain of stimulated Raman
scattering is small. Under this assumption and that of perfect phase matching
(�k = 0), the growth of the anti-Stokes wave can be expressed as

Aa(z) = 3iωa

2nac
χF (ωa)A

2
1A

∗
2z. (10.5.5)

The spectral variation of the anti-Stokes generation as either of the two in-
put frequencies is varied is given by |χF (ωa)|2, and thus is expected to have
a Lorentzian line shape. However, it is found experimentally that the mea-
sured line shape is often highly distorted. An example of such a line shape is
shown in Fig. 10.5.2. The explanation for this behavior is that in addition to
the highly resonant molecular response described by Eq. 10.5.1 actual materi-
als also exhibit a nonresonant background susceptibility χ

(3)
NR due to electronic

response and to nonresonant vibrational modes. The total susceptibility is then
given by χ

(3)
NR + χ

(3)
F (ωa), and consequently the lineshape will be given by

|χ(3)
NR +χ

(3)
F (ωa)|2, which leads to a line shape of the sort shown in the figure.

The CARS effect was first observed experimentally by Maker and Terhune
(1965). Significant early studies were those of Levenson et al. (1972) and
Levenson and Bloembergen (1974). The subject of Raman spectroscopy is
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FIGURE 10.5.2 Typical CARS lineshape, such as that reported by Levenson and
Bloembergen (1974).

covered well in the book by Levenson and Kano (1988). The use of CARS for
imaging and for microscopy has been reviewed by Volkmer (2005).

10.6. Stimulated Rayleigh-Wing Scattering

Stimulated Rayleigh-wing scattering is the light-scattering process that results
from the tendency of anisotropic molecules to become aligned along the elec-
tric field vector of an optical wave. Stimulated Rayleigh-wing scattering was
described theoretically by Bloembergen and Lallemand (1966) and by Chiao
et al. (1966), and was observed experimentally by Mash et al. (1965) and Cho
et al. (1967). Other early studies were conducted by Denariez and Bret (1968)
and by Foltz et al. (1968).

The molecular orientation effect was described in Section 4.4 for the case in
which the applied optical field Ẽ(t) contains a single frequency component,
and it was found that the average molecular polarizability is modified by the
presence of the applied field. The molecular polarizability can be expressed
as

〈α〉 = α0 + αNL, (10.6.1)

where the usual, weak-field polarizability is given by

α0 = 1
3α‖ + 2

3α⊥, (10.6.2)

where α‖ and α⊥ denote the polarizabilities measured parallel to the perpen-
dicular to the symmetry axis of the molecule, respectively (see Fig. 10.6.1).
In addition, the lowest-order nonlinear contribution to the polarizability is
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FIGURE 10.6.1 Illustration of the polarizabilities of an anisotropic molecule for the
case α‖ > α⊥.

given by

αNL = ᾱ2
〈
Ẽ2〉, (10.6.3)

where

ᾱ2 = 2

45n0

(α‖ − α⊥)2

kT
. (10.6.4)

In order to describe stimulated Rayleigh-wing scattering, we need to de-
termine the response of the molecular system to an optical field that contains
both laser and Stokes components, which we describe by the equation

Ẽ(r, t) = ALei(kLz−ωLt) + ASei(−kSz−ωSt) + c.c. (10.6.5)

For the present, we assume that the laser and Stokes waves are linearly po-
larized in the same direction and are counterpropagating. The analysis for the
case in which the waves have arbitrary polarization and/or are copropagating
is somewhat more involved and is discussed briefly below.

Since the intensity, which is proportional to 〈Ẽ2〉, now contains a com-
ponent at the beat frequency ωL − ωS , the nonlinear contribution to the mean
polarizability 〈α〉 is no longer given by Eq. (10.6.3), which was derived for the
case of a monochromatic field. We assume that, in general, αNL is described
by the equation

τ
dαNL

dt
+ αNL = ᾱ2Ẽ2. (10.6.6)
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TABLE 10.6.1 Properties of SRWS for several materials

Substance G τ �ν = 1/2πτ

(m/TW) (psec) (GHz)

CS2 30 2 80
Nitrobenzene 30 48 3.3
Bromobenzene 14 15 10
Chlorobenzene 10 8 20
Toluene 10 2 80
Benzene 6 3 53

In this equation τ represents the molecular orientation relaxation time and
is the characteristic response time of the SRWS process; see Table 10.6.1 for
typical values of τ . Equation (10.6.6) has the form of a Debye relaxation equa-
tion; recall that we have studied equations of this sort in our general discussion
of two-beam coupling in Section 7.4.

If Eq. (10.6.6) is solved in steady state with Ẽ(t) given by Eq. (10.6.5), we
find that the nonlinear contribution to the polarizability of a molecule located
at position z is given by

αNL(z, t) = 2ᾱ2
(
ALA∗

L + ASA∗
S

) +
(

2ᾱ2ALA∗
Seiqz−�t

1 − i�τ

)
+ c.c., (10.6.7)

where we have introduced the wavevector magnitude q and frequency � as-
sociated with the material excitation, which are given by

q = kL + kS and � = ωL − ωS. (10.6.8)

Note that because the denominator of the second term in the expression for
αNL(z, t) is a complex quantity, the nonlinear response will in general be
shifted in phase with respect to the intensity distribution associated with
the interference of the laser and Stokes fields. We shall see below that this
phase shift is the origin of the gain of the stimulated Rayleigh-wing scattering
process.

We next derive the equation describing the propagation of the Stokes field.
This derivation is formally identical to that presented in Section 7.4 in our gen-
eral discussion of two-beam coupling. To apply that treatment to the present
case, we need to determine the values of the refractive indices n0 and n2 that
are relevant to the problem at hand. We find that n0 is obtained from the usual
Lorentz–Lorenz law (see also Eq. (3.8.8a)) as

n2
0 − 1

n2
0 + 2

= 1
3Nα0 (10.6.9a)
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and that the nonlinear refractive index is given (see also Eqs. (4.1.18) and
(4.4.26)) by

n2 =
(

n2
0 + 2

3

)4 1

2n2
0ε0c

Nᾱ2. (10.6.9b)

Then, as in Eq. (7.4.15), we find that the spatial evolution of the Stokes
wave is described by

dAS

dz
= 2in0n2ωS

c

(
ALA∗

L + ASA∗
S

)
AS + 2in0n2ωS

c

ALA∗
LAS

1 + i�τ
. (10.6.10)

Here the first term on the right-hand side leads to a spatial variation of the
phase of the Stokes, whereas the second term leads to both a phase variation
and to amplification of the Stokes wave. The gain associated with stimulated
Rayleigh-wing scattering can be seen more clearly in terms of the equation
relating the intensities of the two waves, which are defined by

Ij = 2n0ε0c|Aj |2, j = L,S. (10.6.11)

The spatial variation of the intensity of the Stokes wave is therefore described
by

dIS

dz
= 2n0ε0c

[
AS

dA∗
S

dz
+ A∗

S

dAS

dz

]
. (10.6.12)

Through use of Eq. (10.6.10), we can write this result as

dIS

dz
= gRWILIS, (10.6.13)

where we have introduced the gain factor gRW for estimated Raleigh-wing
scattering, which is given by

gRW = g
(max)
RW

(
2�τ

1 + �2τ 2

)
, (10.6.14a)

where g
(max)
RW denotes the maximum value of the gain factor, which is given

by

g
(max)
RW = n2ωS

c
=

(
n2

0 + 2

3

)4 2ωSN(α‖ − α⊥)2

45kT n2
0ε0c2

. (10.6.14b)

We have made use of Eqs. (10.6.4) and (10.6.9b) in obtaining the second form
of the expression for g

(max)
RW .

The frequency dependence of the gain factor for stimulated Rayleigh-wing
scattering as predicted by Eq. (10.6.14a) is illustrated in Fig. 10.6.2. We see
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FIGURE 10.6.2 Frequency dependence of the gain factor for stimulated
Rayleigh-wing scattering.

FIGURE 10.6.3 Nature of stimulated Rayleigh-wing scattering.

that amplification of the ωS wave occurs for ωS < ωL and that attenuation
occurs for ωS > ωL. The maximum gain occurs when � ≡ ωL − ωS is equal
to 1/τ .

The nature of the stimulated Rayleigh-wing scattering process is illustrated
schematically in Fig. 10.6.3. The interference of the forward-going wave of
frequency ωL and wavevector magnitude kL and the backward-going wave
of frequency ωS and wavevector magnitude kS produces a fringe pattern
that moves slowly through the medium in the forward direction with phase
velocity v = �/q . The tendency of the molecules to become aligned along
the electric field vector of the total optical wave leads to planes of maximum
molecular alignment alternating with planes of minimum molecular align-
ment. As mentioned above, these planes are shifted in phase with respect to
the maxima and minima of the intensity distributions. The scattering of the
laser field from this periodic array of aligned molecules leads to the genera-
tion of the Stokes wave. The scattered radiation is shifted to lower frequencies
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because the material disturbance causing the scattering is moving in the for-
ward direction. The scattering process shows gain because the generation of
Stokes radiation tends to reinforce the modulated portion of the interference
pattern, which leads to increased molecular alignment and thus to increased
scattering of Stokes radiation.

10.6.1. Polarization Properties of Stimulated Rayleigh-Wing
Scattering

A theoretical analysis of the polarization properties of stimulated Rayleigh-
wing scattering has been conducted by Chiao and Godine (1969). The details
of their analysis are quite complicated; here we shall simply quote some of
their principal results.

In order to treat the polarization properties of stimulated Rayleigh-wing
scattering, one must consider the tensor properties of the material response.
The analysis of Chiao and Godine presupposes that the nonlinear contribution
to the susceptibility obeys the equation of motion

τ
d

dt
�χik + �χik = C

(〈
ẼiẼk

〉 − 1
3δik

〈
Ẽ · Ẽ

〉)
, (10.6.15)

where, ignoring for the present local-field corrections, the proportionality con-
stant C is given by

C = Nε2
0(α‖ − α⊥)2

15kT
. (10.6.16)

Note that the trace of the right-hand side of Eq. (10.6.15) vanishes, as re-
quired by the fact that Rayleigh-wing scattering is described by a traceless,
symmetric permittivity tensor.

By requiring that the Stokes wave obey the wave equation with a suscepti-
bility given by the solution to Eq. (10.6.15), and taking account of rotation of
the pump laser polarization (see, for example, the discussion in Section 4.2),
Chiao and Godine calculate the gain factor for stimulated Rayleigh-wing scat-
tering for arbitrary polarization of the laser and Stokes fields. Some of their
results for special polarization cases are summarized in Table 10.6.2.

For any state of polarization of the pump wave, some particular polariza-
tion of the Stokes wave will experience maximum gain. As a consequence
of the large value of the gain required to observe stimulated light scattering
(gRWILL � 25), the light generated by stimulated Rayleigh-wing scattering
will have a polarization that is nearly equal to that for which the gain is maxi-
mum. The relation between the laser polarization and the Stokes polarization
for which the gain is maximum is illustrated in Table 10.6.3. Note that the
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TABLE 10.6.2 Dependence of the gain factor for stimulated Rayleigh-wing scat-
tering in the backward direction on the polarization of the laser and Stokes waves
for the cases of linear and circular polarization a

a The arrows on the circles denote the direction in which the electric field vector rotates in time at a
fixed position in space. The gain factors are given relative to that given by Eqs. (10.5.14) for the case
of linear and parallel polarization.

TABLE 10.6.3 Relation between laser polarization
and the Stokes polarization experiencing maximum
gain in backward stimulated Rayleigh-wing scatter-
ing

generated wave will be nearly, but not exactly, the polarization conjugate (in
the sense of vector phase conjugation, as discussed in Section 7.2) of the in-
cident laser wave. In particular, the polarization ellipse of the generated wave
will be rounder and tilted with respect to that of the laser wave.

Zel’dovich and Yakovleva (1980) have studied theoretically the polariza-
tion properties of stimulated Rayleigh-wing scattering for the case in which
the pump radiation is partially polarized. They predict that essentially per-
fect vector phase conjugation can be obtained by stimulated Rayleigh-wing
scattering for the case in which the pump radiation is completely depolar-
ized in the sense that the state of polarization varies randomly over the trans-
verse dimensions of the laser beam. The wavefront-reconstructing properties
of stimulated Rayleigh-wing scattering have been studied experimentally by
Kudriavtseva et al. (1978), and the vector phase conjugation properties have
been studied experimentally by Miller et al. (1990).
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The analysis of stimulated Rayleigh-wing scattering in the forward and
near-forward direction is much more complicated than that of backward stim-
ulated Rayleigh-wing scattering because the possibility of Stokes–anti-Stokes
coupling (as described in Section 10.4 for stimulated Raman scattering) must
be included in the analysis. This situation has been described by Chiao et al.
(1966) and by Chiao and Godine (1969).

Problems

1. Estimation of the properties of stimulated Raman scattering. By making
reasonable assumptions regarding the value of the parameter (dα/dq),
perform an order-of-magnitude estimate of the gain factor for stimulated
Raman scattering for condensed matter, and compare this value with the
measured values given in Table 10.2.1.

2. Polarization properties of stimulated Rayleigh-wing scattering. By car-
rying out the prescription described in the first full paragraph following
Eq. (10.6.16), verify that the entries in Table 10.6.2 are correct.
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Chapter 11

The Electrooptic and Photorefractive
Effects

11.1. Introduction to the Electrooptic Effect

The electrooptic effect is the change in refractive index of a material induced
by the presence of a static (or low-frequency) electric field.

In some materials, the change in refractive index depends linearly on the
strength of the applied electric field. This change is known as the linear elec-
trooptic effect or Pockels effect. The linear electrooptic effect can be described
in terms of a nonlinear polarization given by

Pi(ω) = 2ε0

∑
jk

χ
(2)
ijk (ω = ω + 0)Ej (ω)Ek(0). (11.1.1)

Since the linear electrooptic effect can be described by a second-order nonlin-
ear susceptibility, it follows from the general discussion of Section 1.5 that a
linear electrooptic effect can occur only for materials that are noncentrosym-
metric. Although the linear electrooptic effect can be described in terms of a
second-order nonlinear susceptibility, a very different mathematical formal-
ism has historically been used to describe the electrooptic effect; this formal-
ism is described in Section 11.2 of this chapter.

In centrosymmetric materials (such as liquids and glasses), the lowest-order
change in the refractive index depends quadratically on the strength of the
applied static (or low-frequency) field. This effect is known as the Kerr elec-
trooptic effect∗ or as the quadratic electrooptic effect. It can be described in

∗ The quadratic electrooptic effect is often referred to simply as the Kerr effect. More precisely, it
is called the Kerr electrooptic effect to distinguish it from the Kerr magnetooptic effect.
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terms of a nonlinear polarization given by

Pi(ω) = 3ε0

∑
jkl

χ
(3)
ijkl(ω = ω + 0 + 0)Ej (ω)Ek(0)El(0). (11.1.2)

11.2. Linear Electrooptic Effect

In this section we develop a mathematical formalism that describes the lin-
ear electrooptic effect. In an anisotropic material, the constitutive relation be-
tween the field vectors D and E has the form

Di = ε0

∑
j

εijEj (11.2.1a)

or explicitly, ⎡
⎣Dx

Dy

Dz

⎤
⎦ = ε0

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (11.2.1b)

For a lossless, non-optically active material, the dielectric permeability tensor
εij is represented by a real symmetric matrix, which therefore has six inde-
pendent elements—that is, εxx, εyy, εzz, εxy = εyx, εxz = εzx, and εyz = εzy .
A general mathematical result states that any real, symmetric matrix can
be expressed in diagonal form by means of an orthogonal transformation.
Physically, this result implies that there exists some new coordinate system
(X,Y,Z), related to the coordinate system x, y, z of Eq. (11.2.1b) by rotation
of the coordinate axes, in which Eq. (11.2.1b) has the much simpler form

⎡
⎣DX

DY

DZ

⎤
⎦ = ε0

⎡
⎣εXX 0 0

0 εYY 0
0 0 εZZ

⎤
⎦

⎡
⎣EX

EY

EZ

⎤
⎦ . (11.2.2)

This new coordinate system is known as the principal-axis system, because in
it the dielectric tensor is represented as a diagonal matrix.

We next consider the energy density per unit volume,

U = 1
2 D ·E = 1

2ε0
∑
ij

εijEiEj , (11.2.3)

associated with a wave propagating through the anisotropic medium. In the
principal-axis coordinate system, the energy density can be expressed in terms
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of the components of the displacement vector as

U = 1

2ε0

[
D2

X

εXX

+ D2
Y

εYY

+ D2
Z

εZZ

]
. (11.2.4)

This result shows that the surfaces of constant energy density in D space are
ellipsoids. The shapes of these ellipsoids can be described in terms of the
coordinates (X,Y,Z) themselves. If we let

X =
(

1

2ε0U

)1/2

DX, Y =
(

1

2ε0U

)1/2

DY , Z =
(

1

2ε0

)1/2

DZ,

(11.2.5)
Eq. (11.2.4) becomes

X2

εXX

+ Y 2

εYY

+ Z2

εZZ

= 1. (11.2.6)

The surface described by this equation is known as the optical indicatrix or
as the index ellipsoid. The equation describing the index ellipsoid takes on its
simplest form in the principal-axis system; in other coordinate systems it is
given by the general expression for an ellipsoid, which we write in the form(

1

n2

)
1
x2 +

(
1

n2

)
2
y2 +

(
1

n2

)
3
z2 + 2

(
1

n2

)
4
yz

+ 2

(
1

n2

)
5
xz + 2

(
1

n2

)
6
xy = 1. (11.2.7)

The coefficients (1/n2)i are optical constants that describe the optical indica-
trix in the new coordinate system; they can be expressed in terms of the coef-
ficients εXX , εYY , εZZ by means of the standard transformation laws for co-
ordinate transformations, but the exact nature of the relationship is not needed
for our present purposes.

The index ellipsoid can be used to describe the optical properties of an
anisotropic material by means of the following procedure (Born and Wolf,
1975). For any given direction of propagation within the crystal, a plane per-
pendicular to the propagation vector and passing through the center of the el-
lipsoid is constructed. The curve formed by the intersection of this plane with
the index ellipsoid forms an ellipse. The semimajor and semiminor axes of this
ellipse give the two allowed values of the refractive index for this particular
direction of propagation; the orientations of these axes give the polarization
directions of the D vector associated with these refractive indices.

We next consider how the optical indicatrix is modified when the material
system is subjected to a static or low-frequency electric field. This modifica-
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tion is conveniently described in terms of the impermeability tensor ηij , which
is defined by the relation

Ei = 1

ε0

∑
j

ηijDj . (11.2.8)

Note that this relation is the inverse of that given by Eq. (11.2.1a), and thus
that ηij is the matrix inverse of εij , that is, that ηij = (ε−1)ij . We can express
the optical indicatrix in terms of the elements of the impermeability tensor
by noting that the energy density is equal to U = (1/2ε0)

∑
ij ηijDiDj . If we

now define coordinates x, y, z by means of relations x = Dx/(2ε0U)1/2, and
so on, we find that the expression for U as a function of D becomes

1 = η11x
2 + η22y

2 + η33z
2 + 2η12xy + 2η23yz + 2η13xz. (11.2.9)

By comparison of this expression for the optical indicatrix with that given by
Eq. (11.2.7), we find that(

1

n2

)
1
= η11,

(
1

n2

)
2
= η22,

(
1

n2

)
3
= η33,

(
1

n2

)
4
= η23 = η32,

(
1

n2

)
5
= η13 = η31,

(
1

n2

)
6
= η12 = η21.

(11.2.10)

We next assume that ηij can be expressed as a power series in the strength
of the components Ek of the applied electric field as

ηij = η
(0)
ij +

∑
k

rijkEk +
∑
kl

sijklEkEl + · · · . (11.2.11)

Here rijk is the tensor that describes the linear electrooptic effect, sijkl is the
tensor that describes the quadratic electrooptic effect, etc. Since the dielectric
permeability tensor εij is real and symmetric, its inverse ηij must also be real
and symmetric, and consequently the electrooptic tensor rijk must be symmet-
ric in its first two indices. For this reason, it is often convenient to represent
the third-rank tensor rijk as a two-dimensional matrix rhk using contracted
notation according to the prescription

h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for ij = 11,

2 for ij = 22,

3 for ij = 33,

4 for ij = 23 or 32,

5 for ij = 13 or 31,

6 for ij = 12 or 21.

(11.2.12)
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In terms of this contracted notation, we can express the lowest-order modifi-
cation of the optical constants (1/n2)i that appears in expression (11.2.7) for
the optical indicatrix as

�

(
1

n2

)
i

=
∑
j

rijEj , (11.2.13a)

where we have made use of Eqs. (11.2.10) and (11.2.11). This relationship
can be written explicitly as

⎡
⎢⎢⎢⎢⎢⎢⎣

�(1/n2)1

�(1/n2)2

�(1/n2)3

�(1/n2)4

�(1/n2)5

�(1/n2)6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣Ex

Ey

Ez

⎤
⎦ . (11.2.13b)

The quantities rij are known as the electrooptic coefficients and give the rate at
which the coefficients (1/n2)i change with increasing electric field strength.

We remarked earlier that the linear electrooptic effect vanishes for materi-
als possessing inversion symmetry. Even for materials lacking inversion sym-
metry, where the coefficients do not necessarily vanish, the form of rij is
restricted by any rotational symmetry properties that the material may pos-
sess. For example, for any material (such as ADP and potassium dihydrogen
phosphate [KDP]) possessing the point group symmetry 4̄2m, the electrooptic
coefficients must be of the form

rij =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r63

⎤
⎥⎥⎥⎥⎥⎦

(for class 4̄2m), (11.2.14)

where we have expressed rij in the standard crystallographic coordinate sys-
tem, in which the Z direction represents the optic axis of the crystal. We see
from Eq. (11.2.14) that the form of the symmetry properties of the point group
4̄2m requires 15 of the electrooptic coefficients to vanish and two of the re-
maining coefficients to be equal. Hence, rij possesses only two independent
elements in this case.
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Similarly, the electrooptic coefficients of crystals of class 3m (such as
lithium niobate) must be of the form

rij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −r22 r13

0 r22 r13

0 0 r33

0 r42 0
r42 0 0
r22 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(for class 3m), (11.2.15)

and the electrooptic coefficients of crystals of the class 4mm (such as barium
titanate) must be of the form

rij =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 r13

0 0 r13

0 0 r33

0 r42 0
r42 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(for class 4mm). (11.2.16)

The properties of several electrooptic materials are summarized in Ta-
ble 11.2.1.

11.3. Electrooptic Modulators

As an example of the application of the formalism developed in the last sec-
tion, we now consider how to construct an electrooptic modulator using the
material KDP. Of course, the analysis is formally identical for any electrooptic
material of point group 4̄2m.

KDP is a uniaxial crystal, and hence in the absence of an applied electric
field the index ellipsoid is given in the standard crystallographic coordinate
system by the equation

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

= 1. (11.3.1)

Note that this (X,Y,Z) coordinate system is the principal-axis coordinate
system in the absence of an applied electric field. If an electric field is applied
to crystal, the index ellipsoid becomes modified according to Eqs. (11.2.13b)
and (11.2.14) and takes the form

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

+ 2r41EXYZ + 2r41EY XZ + 2r63EZXY = 1. (11.3.2)
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TABLE 11.2.1 Properties of several electrooptic materials a

Material Point Group Electrooptic
Coefficients
(10−12 m/V)

Refractive Index

Potassium dihydrogen phosphate, 4̄2m r41 = 8.77 n0 = 1.514
KH2PO4 (KDP) r63 = 10.5 ne = 1.472

(at 0.5461 μm)

Potassium dideuterium phosphate, 4̄2m r41 = 8.8 n0 = 1.508
KD2PO4 (KD∗P) r63 = 26.4 ne = 1.468

(at 0.5461 μm)

Lithium niobate, LiNbO3 3m r13 = 9.6 n0 = 2.3410
r22 = 6.8 ne = 2.2457
r33 = 30.9 (at 0.5 μm)
r42 = 32.6

Lithium tantalate, LiTaO3 3m r13 = 8.4 n0 = 2.176
r22 = −0.2 ne = 2.180
r33 = 30.5 (at 0.633 nm)
r51 = 20

Barium titanate, BaTiO3
b 4mm r13 = 19.5 n0 = 2.488

r33 = 97 ne = 2.424
r42 = 1640 (at 514 nm)

Strontium barium niobate, 4mm r13 = 55 n0 = 2.367
Sr0.6Ba0.4NbO6 (SBN:60) r33 = 224 ne = 2.337

r42 = 80 (at 514 nm)

Zinc telluride, ZnTe 4̄3m r41 = 4.0 n0 = 2.99
(at 0.633 μm)

a From a variety of sources. See, for example, Thompson and Hartfield (1978) and Cook and Jaffe
(1979). The electrooptic coefficients are given in the MKS units of m/V. To convert to the cgs units of
cm/statvolt each entry should be multiplied by 3 × 104.

b ε
‖
dc

= 135, ε⊥
dc

= 3700.

Note that (since cross terms containing YZ, XZ, and XY appear in this equa-
tion) the (X,Y,Z) coordinate system is not the principal-axis coordinate sys-
tem when an electric field is applied to the crystal. Note also that the crystal
will no longer necessarily be uniaxial in the presence of a dc electric field.

Let us now assume that the applied electric field has only a Z component,
so that Eq. (11.3.2) reduces to

X2

n2
0

+ Y 2

n2
0

+ Z2

n2
e

+ 2r63EZXY = 1. (11.3.3)

This special case is often encountered in device applications. The new
principal-axis coordinate system, which we designate (x, y, z), can now be
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found by inspection. If we let

X = x − y√
2

, Y = x + y√
2

, Z = z, (11.3.4)

we find that Eq. (11.3.3) becomes
(

1

n2
0

+ r63Ez

)
x2 +

(
1

n2
0

− r63Ez

)
y2 + z2

n2
e

= 1, (11.3.5)

which describes an ellipsoid in its principal-axis system. This ellipsoid can
alternatively be written as

x2

n2
x

+ y2

n2
y

+ z2

n2
e

= 1, (11.3.6)

where, in the physically realistic limit r63Ez � 1, the new principal values of
the refractive index are given by

nx = n0 − 1
2n3

0r63Ez, (11.3.7a)

ny = n0 + 1
2n3

0r63Ez. (11.3.7b)

Fig. 11.3.1 shows how to construct a modulator based on the electrooptic
effect in KDP. Part (a) shows a crystal that has been cut so that the optic axis
(Z axis) is perpendicular to the plane of the entrance face, which contains
the X and Y crystalline axes. Part (b) of the figure shows the same crystal
in the presence of a longitudinal (z-directed) electric field Ez = V/L, which
is established by applying a voltage V between the front and rear faces. The
principal axes (x, y, z) of the index ellipsoid in the presence of this field are
also indicated. In practice, the potential difference is applied by coating the
front and rear faces with a thin film of a conductive coating. Historically,
thin layers of gold have been used, although more recently the transparent
conducting material indium tin oxide has successfully been used.

Part (c) of Fig. 11.3.1 shows the curve formed by the intersection of the
plane perpendicular to the direction of propagation (i.e., the plane z = Z = 0)

with the index ellipsoid. For the case in which no static field is applied, the
curve has the form of a circle, showing that the refractive index has the value
n0 for any direction of polarization.∗ For the case in which a field is applied,
this curve has the form of an ellipse. In drawing the figure, we have arbi-
trarily assumed that the factor r63Ez is negative; consequently the semimajor

∗ The absence of birefringence effects in this situation is one of the primary motivations for orient-
ing the crystal for propagation along the z direction.
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FIGURE 11.3.1 The electrooptic effect in KDP. (a) Principal axes in the absence of an
applied field. (b) Principal axes in the presence of an applied field. (c) The intersection
of the index ellipsoid with the plane z = Z = 0.

and semiminor axes of this ellipse are along the x and y directions and have
lengths nx and ny < nx , respectively.

Let us next consider a beam of light propagating in the z = Z direction
through the modulator crystal shown in Fig. 11.3.1. A wave polarized in the x

direction propagates with a different phase velocity than a wave polarized in
the y direction. In propagating through the length L of the modulator crystal,
the x and y polarization components will thus acquire the phase difference

� = (ny − nx)
ωL

c
, (11.3.8)

which is known as the retardation. By introducing Eqs. (11.3.7) into this ex-
pression we find that

� = n3
0r63EzωL

c
.

Since Ez = V/L, this result shows that the retardation introduced by a longi-
tudinal electrooptic modulator depends only on the voltage V applied to the
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modulator and is independent of the length of the modulator. In particular, the
retardation can be represented as

� = n3
0r63ωV

c
. (11.3.9)

It is convenient to express this result in terms of the quantity

Vλ/2 = πc

ωn3
0r63

, (11.3.10)

which is known as the half-wave voltage. Eq. (11.3.9) then becomes

� = π
V

Vλ/2
. (11.3.11)

Note that a half-wave (π radians) of retardation is introduced when the applied
voltage is equal to the half-wave voltage. Half-wave voltages of longitudinal-
field electrooptic materials are typically of the order of 10 kV for visible light.

Since the x and y polarization components of a beam of light generally ex-
perience different phase shifts in propagating through an electrooptic crystal,
the state of polarization of the light leaving the modulator will generally be
different from that of the incident light. Figure 11.3.2 shows how the state of
polarization of the light leaving the modular depends on the value of the retar-
dation � for the case in which vertically (X) polarized light is incident on the

FIGURE 11.3.2 Polarization ellipses describing the light leaving the modulator of
Fig. 11.3.1 for various values of the retardation. In all cases, the input light is linearly
polarized in the vertical (X) direction.
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FIGURE 11.3.3 Construction of a voltage-controllable intensity modulator.

modulator. Note that light of any ellipticity can be produced by controlling
the voltage V applied to the modulator.

Fig. 11.3.3 shows one way of constructing an intensity modulator based on
the configuration shown in Fig. 11.3.1. The incident light is passed through
a linear polarizer whose transmission axis is oriented in the X direction. The
light then enters the modulator crystal, where its x and y polarization com-
ponents propagate with different velocities and acquire a phase difference,
whose value is given by Eq. (11.3.11). The light leaving the modulator then
passes through a quarter-wave plate oriented so that its fast and slow axes co-
incide with the x and y axes of the modulator crystal, respectively. The beam
of light thereby acquires the additional retardation �B = π/2. For reasons
that will become apparent later, �B is called the bias retardation. The total
retardation is then given by

� = π
V

Vλ/2
+ π

2
. (11.3.12)

In order to analyze the operation of this modulator, let us represent the
electric field of the incident radiation after passing through the initial polarizer
as

Ẽ = Eine
−iωt + c.c., (11.3.13a)

where

Ein = EinX̂ = Ein√
2
(x̂ + ŷ). (11.3.13b)

After the beam passes through the modulator crystal and quarter-wave plate,
the phase of the y polarization component will be shifted with respect to that
of the x polarization component by an amount �, so that (to within an unim-
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portant overall phase factor) the complex field amplitude becomes

E = Ein√
2

(
x̂ + ei� ŷ

)
. (11.3.14)

Only the Ŷ = (−x̂ + ŷ)/
√

2 component of this field will be transmitted by
the final polarizer. The field amplitude measured after this polarizer is hence
given by Eout = (E · Ŷ)Ŷ, or by

Eout = Ein

2

(−1 + ei�
)
Ŷ. (11.3.15)

If we now define the transmission T of the modulator of Fig. 11.3.3 as

T = |Eout|2
|Ein|2 , (11.3.16)

we find through use of Eq. (11.3.15) that the transmission is given by

T = sin2(�/2). (11.3.17)

The functional form of these transfer characteristics is shown in Fig. 11.3.4.
We see that the transmission can be made to vary from zero to one by varying
the total retardation between zero and π radians. We can also see the motiva-
tion for inserting the quarter-wave plate into the setup of Fig. 11.3.3 in order
to establish the bias retardation �B = π/2. For the case in which the applied
voltage V vanishes, the total retardation will be equal to the bias retardation,
and the transmission of the modulator will be 50%. Since the transmission
T varies approximately linearly with the retardation � for retardations near

FIGURE 11.3.4 Transmission characteristics of the electrooptic modulator shown in
Fig. 11.3.3.
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� = π/2, the transmission will vary nearly linearly with the value V of the
applied voltage. For example, if the applied voltage is given by

V (t) = Vm sinωmt, (11.3.18)

the retardation will be given by

� = π

2
+ πVm

Vλ/2
sinωmt. (11.3.19)

The transmission predicted by Eq. (11.3.17) is hence given by

T = sin2
(

π

4
+ πVm

2Vλ/2
sinωmt

)

= 1

2

[
1 + sin

(
πVm

Vλ/2
sinωmt

)]
,

which, for πVm/Vλ/2 � 1, becomes

T = 1

2

(
1 + πVm

Vλ/2
sinωmt

)
. (11.3.20)

The electrooptic effect can also be used to construct a phase modulator
for light. For example, if the light incident on the electrooptic crystal of
Fig. 11.3.1 is linearly polarized along the x (or the y) axis of the crystal,
the light will propagate with its state of polarization unchanged but with its
phase shifted by an amount that depends on the value of the applied voltage.
The voltage-dependent part of the phase shift is hence given by

φ = (nx − n0)
ωL

c
= −n3

0r63EzωL

2c
= n3

0r63V ω

2c
. (11.3.21)

11.4. Introduction to the Photorefractive Effect

The photorefractive effect∗ is the change in refractive index of an optical ma-
terial that results from the optically induced redistribution of electrons and
holes. The photorefractive effect is quite different from most of the other
nonlinear-optical effects described in this book in that it cannot be described

∗ Within the context of this book, we use the term photorefractive effect in the specific sense de-
scribed in this section. Many workers in the field of nonlinear optics follow this convention. It should
be noted that within certain communities, the term photorefractive effect is used to describe any light-
induced change in refractive index.



524 11 ♦ The Electrooptic and Photorefractive Effects

by a nonlinear susceptibility χ(n) for any value of n. The reason for this be-
havior is that, under a wide range of conditions, the change in refractive index
in steady state is independent of the intensity of the light that induces the
change. Because the photorefractive effect cannot be described by means of
a nonlinear susceptibility, special methods must be employed to describe it;
these methods are described in the next several sections. The photorefractive
effect tends to give rise to a strong optical nonlinearity; experiments are rou-
tinely performed using milliwatts of laser power. However, the effect tends to
be rather slow, with response times of 0.1 sec being typical.

The origin of the photorefractive effect is illustrated schematically in
Fig. 11.4.1. We imagine that a photorefractive crystal is illuminated by two
intersecting beams of light of the same frequency. These beams interfere to
produce the spatially modulated intensity distribution I (x) shown in the upper
graph. Free charge carriers, which we assume to be electrons, are generated
through photoionization at a rate that is proportional to the local value of the
optical intensity.

FIGURE 11.4.1 Origin of the photorefractive effect. (a) Two light beams form an
interference pattern within a photorefractive crystal. (b) The resulting distributions of
intensity I (x), charge density ρ(x), induced static field amplitude E(x), and induced
refractive index change �n(x) are illustrated.
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TABLE 11.4.1 Properties of some photorefractive crystals a

Material Useful
Wavelength
Range (μm)

Carrier Drift
Length μτE at
E = 2 kV/cm
(μm)

τd (sec) n3reff
(pm/V)

n3reff/εdc

(pm/V)

InP:Fe 0.85–1.3 3 10−4 52 4.1
GaAs:Cr 0.8–1.8 3 10−4 43 3.3
LiNbO3:Fe3+ 0.4–0.7 <10−4 300 320 11
Bi12SiO20 0.4–0.7 3 105 82 1.8
Sr0.4Ba0.6Nb2O6 0.4–0.6 – 102 2460 4.0
BaTiO3 0.4–0.9 0.1 102 11,300 4.9
KNbBO3 0.4–0.7 0.3 10−3 690 14

a τ is the carrier recombination time; τd is the dielectric relaxation time in the dark. Adapted from
Glass et al. (1984).

These carriers can diffuse through the crystal or can drift in response to
a static electric field. Both processes are observed experimentally. In draw-
ing the figure we have assumed that diffusion is the dominant process, in
which case the electron density is smallest in the regions of maximum opti-
cal intensity, because electrons have preferentially diffused away from these
regions. The spatially varying charge distribution ρ(x) gives rise to a spa-
tially varying electric field distribution, whose form is shown in the third
graph. Note that the maxima of the field E(x) are shifted by 90 degrees
with respect to those of the charge density distribution ρ(x). The reason
for this behavior is that the Maxwell equation ∇ ·D = ρ when applied to
the present situation implies that dE/dx = ρ/ε, and the spatial derivative
that appears in this equation leads to a 90-degree phase shift between E(x)

and ρ(x). The last graph in the figure shows the refractive index variation
�n(x) that is produced through the linear electrooptic effect (Pockels ef-
fect) by the field E(x).∗ Note that �n(x) is shifted by 90 degrees with
respect to the intensity distribution I (x) that produces it. This phase shift
has the important consequence that it can lead to the transfer of energy be-
tween the two incident beams. This transfer of energy is described in Sec-
tion 11.6.

The properties of some photorefractive crystals are summarized in Ta-
ble 11.4.1.

∗ In drawing the figure, we have assumed that the electrooptic coefficient is positive. Note that the

relation �(1/n2) = reffE implies that �n = − 1
2 n3reffE.
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FIGURE 11.5.1 Energy levels and populations of the model of the photorefractive
effect due to Kukhtarev et al.

11.5. Photorefractive Equations of Kukhtarev et al.

In this section we see how to describe the photorefractive effect by means
of a model (Fig. 11.5.1) due to Kukhtarev and co-workers.∗ This model pre-
supposes that the photorefractive effect is due solely to one type of charge
carrier, which for definiteness we assume to be the electron. As illustrated
in part (a) of the figure, we assume that the crystal contains NA acceptors
and N0

D donors per unit volume, with NA � N0
D . We assume that the accep-

tor levels are completely filled with electrons that have fallen from the donor
levels and that these filled acceptor levels cannot be ionized by thermal or
optical effects. Thus, at temperature T = 0 and in the absence of an optical
field, each unit volume of the crystal contains NA ionized donors, NA elec-
trons bound to acceptor impurities, and N0

D −NA neutral donor levels that can
participate in the photorefractive effect. We further assume that electrons can
be excited thermally or optically from the donor levels into the conduction
band, as illustrated in part (b) of the figure. We let ne, N+

D , and ND denote
the number densities of conduction band electrons, ionized donors, and un-
ionized donors, respectively. Note that ND + N+

D must equal N0
D , but that

N+
D is not necessarily equal to ne, because some donors lose their electrons to

the acceptors and because electrons can migrate within the crystal, leading to
regions that are not electrically neutral.

∗ See Kukhtarev et al. (1977, 1979). This model is also described in several of the chapters of the

book edited by Günter and Huignard (1988).
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We next assume that the variation in level populations can be described by
the rate equations

∂N+
D

∂t
= (sI + β)

(
N0

D − N+
D

) − γ neN
+
D, (11.5.1)

∂ne

∂t
= ∂N+

D

∂t
+ 1

e
(∇ · j), (11.5.2)

where s is a constant proportional to the photoionization cross section of a
donor, β is the thermal generation rate, γ is the recombination coefficient,
−e is the charge of the electron, and j is the electrical current density. Equa-
tion (11.5.1) states that the ionized donor concentration can increase by ther-
mal ionization or photoionization of unionized donors and can decrease by
recombination. Equation (11.5.2) states that the mobile electron concentra-
tion can increase in any small region either because of the ionization of donor
atoms or because of the flow of electrons into the local region. The flow of
current is described by the equation

j = neeμE + eD∇ne + jph, (11.5.3)

where μ is the electron mobility, D is the diffusion constant (which by the
Einstein relation is equal to kBT μ/e), and jph is the photovoltaic (also known
as the photogalvanic) contribution to the current. The last contribution results
from the tendency of the photoionization process to eject the electron in a
preferred direction in anisotropic crystals. For some materials (such as barium
titanate and bismuth silicon oxide) this contribution to j is negligible, although
for others (such as lithium niobate) it is very important. For lithium niobate jph

has the form jph = pI ĉ, where ĉ is a unit vector in the direction of the optic
axis of the crystal and p is a constant. The importance of the photovoltaic
current has been discussed by Glass (1978) and Glass et al. (1974).

The field E appearing in Eq. (11.5.3) is the static (or possibly low-
frequency) electric field appearing within the crystal due to any applied volt-
age or to any charge separation within the crystal. It must satisfy the Maxwell
equation

εdc∇ · E = −e
(
ne + NA − N+

D

)
, (11.5.4)

where εdc is the static dielectric constant of the crystal. The modification of
the optical properties is described by assuming that the optical-frequency di-
electric constant is changed by an amount

�ε = −ε2reff|E|. (11.5.5)



528 11 ♦ The Electrooptic and Photorefractive Effects

For simplicity, here we are treating the dielectric properties in the scalar ap-
proximation; the tensor properties can be treated explicitly using the formal-
ism developed in Section 11.2.∗ Note that the scalar form of Eq. (11.2.13a) is
�(1/ε) = reff|E|, from which Eq. (11.5.5) follows directly. The optical field
Ẽopt is assumed to obey the wave equation

∇2Ẽopt + 1

c2

∂2

∂t2
(ε + �ε)Ẽopt = 0. (11.5.6)

Equations (11.5.1) through (11.5.6) constitute the photorefractive equations
of Kukhtarev et al. They have been solved in a variety of special cases and
have been found to provide an adequate description of most photorefractive
phenomena. We shall consider their solution in special cases in the next two
sections.

11.6. Two-Beam Coupling in Photorefractive Materials

Under certain circumstances, two beams of light can interact in a photorefrac-
tive crystal in such a manner that energy is transferred from one beam to
the other. This process, which is often known as two-beam coupling, can be
used, for example, to amplify a weak, image-bearing signal beam by means of
an intense pump beam. Exponential gains of 10 per centimeter are routinely
observed.

A typical geometry for studying two-beam coupling is shown in Fig. 11.6.1.
Signal and pump waves, of amplitudes As and Ap , respectively, interfere to
form a nonuniform intensity distribution within the crystal. Because of the
nonlinear response of the crystal, this nonuniform intensity distribution pro-
duces a refractive index grating within the material. However, this grating is
displaced from the intensity distribution in the direction of the positive (or
negative, depending on the sign of the dominant charge carrier and the sign
of the effective electrooptic coefficient) crystalline c axis. As a result of this
phase shift, the light scattered from Ap and As interferes constructively with
As , whereas the light scattered from As into Ap interferes destructively with
Ap , and consequently the signal wave is amplified whereas the pump wave is
attenuated.

In order to describe this process mathematically, we assume that the optical
field within the crystal can be represented as

Ẽopt(r, t) = [
Ap(z)eikp·r + As(z)e

iks·r]e−iωt + c.c. (11.6.1)

∗ See also the calculation of reff for one particular case in Eq. (11.6.14b) in the next section.
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FIGURE 11.6.1 Typical geometry for studying two-beam coupling in a photorefrac-
tive crystal.

We assume that Ap(z) and As(z) are slowly varying functions of the coor-
dinate z. The intensity distribution of the light within the crystal can be ex-
pressed as I = n0ε0c〈Ẽ2

opt〉 or as

I = I0 + (
I1e

iqx + c.c.
)
, (11.6.2a)

where

I0 = 2n0ε0c
(|Ap|2 + |As |2

)
,

I1 = 2n0ε0c
(
ApA∗

s

)
(êp · ês), and q ≡ qx̂ = kp − ks. (11.6.2b)

Here êp and ês are the polarization unit vectors of the pump and signal waves,
which are assumed to be linearly polarized. The quantity q is known as the
grating wavevector. Note that the intensity distribution can also be described
by the expression

I = I0
[
1 + m cos(qx + φ)

]
, (11.6.3)

where m = 2|I1|/I0 is known as the modulation index and where φ =
tan−1(Im I1/Re I1).

In order to determine how the optical properties of the photorefractive ma-
terial are modified by the presence of the pump and signal fields, we first
solve Eqs. (11.5.1) through (11.5.4) of Kukhtarev et al. to find the static elec-
tric field E induced by the intensity distribution of Eqs. (11.6.2). This static
electric field can then be used to calculate the change in the optical-frequency
dielectric constant through use of Eq. (11.5.5). Since Eqs. (11.5.1) through
(11.5.4) are nonlinear (i.e., they contain products of the unknown quantities
ne, N+

D , j, and E), they cannot easily be solved exactly. For this reason, we
assume that the depth of modulation m is small (i.e., |I1| � I0) and seek an
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approximate steady-state solution of Eqs. (11.5.1) through (11.5.4) in the form

E = E0 + (
E1e

iqx + c.c.
)
, j = j0 + (

j1e
iqx + c.c.

)
,

ne = ne0 + (
ne1e

iqx + c.c.
)
, N+

D = N+
D0 + (

N+
D1d

iqx + c.c.
)
,

(11.6.4)

where E = Ex̂ and j = j x̂. We assume that the quantities E1, j1, ne1, and ND1

are small in the sense that the product of any two of them can be neglected.
We next introduce Eq. (11.6.4) into Eqs. (11.5.1) through (11.5.4) and

equate terms with common x dependences. We thereby find several sets
of equations. The set that is independent of the x coordinate depends only
on the large quantities (subscript zero) and is given (in the same order as
Eqs. (11.5.1) through (11.5.4)) by

(sI0 + β)
(
N0

D − N+
D0

) = γ ne0N
+
D0, (11.6.5a)

j0 = constant, (11.6.5b)

j0 = ne0eμE0 + jph,0, (11.6.5c)

N+
D0 = ne0 + NA. (11.6.5d)

Equations (11.6.5a) and (11.6.5d) can be solved directly to determine the
mean electron density ne0 and mean ionized donor density N+

D0. Since in most
realistic cases the inequality ne0 � NA is satisfied, the densities are given sim-
ply by

N+
D0 = NA, (11.6.6a)

ne0 = (sI0 + β)
(
N0

D − NA

)
γNA

. (11.6.6b)

The two remaining equations, (11.6.5b) and (11.6.5c), determine the mean
current density j0 and mean field E0. Let us assume for simplicity that the
photovoltaic contribution jph is negligible for the material under considera-
tion. The value of E0 then depends on the properties of any external electric
circuit to which the crystal is connected. In the common situation in which no
voltage is externally applied to the crystal, E0 and hence j0 vanish.

We next consider the equation for the first-order quantities (quantities with
the subscript 1) by considering the portions of Eqs. (11.5.1) through (11.5.4)
with the spatial dependence eiqx . The resulting equations are (we assume
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that E0 = 0):

sI1
(
N0

D − NA

) − (sI0 + β)N+
D1 = γ ne0N

+
D1 + γ ne1NA, (11.6.7a)

j1 = 0, (11.6.7b)

−ne0eE1 = iqkBT ne1, (11.6.7c)

iqε0εdcE1 = −e
(
ne1 − N+

D1

)
. (11.6.7d)

We solve these equations algebraically (again assuming that ne0 � NA) to
find that the amplitude of the spatially varying part of the static electric field
is given by

E1 = −i

(
sI1

sI0 + β

)(
ED

1 + ED/Eq

)
, (11.6.8)

where we have introduced the characteristic field strengths

ED = qkBT

e
, Eq = e

ε0εdeq
Neff, (11.6.9)

where Neff = NA(N0
D − NA)/N0

D can be interpreted as an effective trap den-
sity. Note that in the common circumstance where NA � N0

D , Neff is given
approximately by Neff � NA. The quantity ED is called the diffusion field
strength and is a measure of the field strength required to inhibit the separa-
tion of charge due to thermal agitation. The quantity Eq is called the maxi-
mum space charge field and is a measure of the maximum electric field that
can be created by redistributing charge of mean density eNeff over the charac-
teristic distance 2π/q . Note from Eq. (11.6.8) that E1 is shifted in phase with
respect to the intensity distribution I1 and that E1 is proportional to the depth
of modulation m in the common case of β � sI0.

Recall that the change in the optical-frequency dielectric constant is propor-
tional to the amplitude E1 of the spatially modulated component of the static
electric field. For this reason, it is often of practical interest to maximize the
value of E1. We see from Eq. (11.6.8) that E1 is proportional to the product
of the factor sI1/(sI0 + β), which can be maximized by increasing the depth
of modulation m = 2|I1|/I0,∗ with the factor ED/(1+ED/Eq ). Since each of
the characteristic field strengths ED and Eq depends on the grating wavevec-
tor, this second factor can be maximized by using the optimum value of q . To
show the dependence of E1 on q , we can rewrite Eq. (11.6.8) as

E1 = −i

(
sI1

sI0 + β

)
Eopt

2(q/qopt)

1 + (q/qopt)2
, (11.6.10a)

∗ Recall, however, that the present derivation is valid only if m � 1.
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FIGURE 11.6.2 Dependence of the modulated component of the space charge field
on the magnitude q of the grating wavevector.

where

qopt =
(

Neffe
2

kBT ε0εdc

)1/2

, Eopt =
(

NeffkBT

4ε0εdc

)1/2

. (11.6.10b)

Note that qopt is of the order of magnitude of the inverse of the Debye screen-
ing distance.

The dependence of E1 on q is shown in Fig. 11.6.2. Note that the grating
wavevector q can be varied experimentally by controlling the angle between
the pump and signal beams, since (see Fig. 11.6.1) q is given by the formula

q = 2n
ω

c
sin θ. (11.6.11)

Through an experimental determination of the optimum value of the magni-
tude of the grating wavevector, the value of the effective trap density Neff can
be obtained through use of Eq. (11.6.10b).

Let us next calculate the spatial growth rate that the signal wave experiences
as the result of two-beam coupling in photorefractive materials. For simplicity,
we assume that the photoionization rate sI0 is much greater than the thermal
ionization rate β (which is the usual case in practice), so the field amplitude
E1 of Eq. (11.6.8) can be expressed through use of Eqs. (11.6.2) as

E1 = −i
ApA∗

s

|As |2 + |Ap|2 (êp · ês)Em, (11.6.12a)

where

Em = ED

1 + ED/Eq

. (11.6.12b)

According to Eq. (11.5.5), this field produces a change in the dielectric
constant of amplitude �ε = −ε2reffE1. For the particular geometry of
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Fig. 11.6.1, the product ε2reff has the form (Feinberg et al., 1980; see also
Feinberg and MacDonald, 1989)

ε2reff =
∑
ijklm

rijk

(
εil ê

s
l

)(
εjmê

p
m

)
q̂k, (11.6.13)

where ês
l and ê

p
m denote the l and m cartesian components of the polarization

unit vectors of the signal and pump waves, respectively, and q̂k denotes the
k cartesian component of a unit vector in the direction of the grating vector.
For crystals of point group 4mm (such as barium titanate), one finds that for
ordinary waves

reff = r13 sin
(αs + αp

2

)
(11.6.14a)

and that for extraordinary waves

reff = n−4[n4
0r13 cosαs cosαp + 2n2

en
2
0r42 cos 1

2 (αs + αp)

+ n4
er33 sinαs sinαp

]
sin 1

2 (αs + αp). (11.6.14b)

Here αs and αp denote the angles between the propagation vectors of the
signal and pump waves and the positive crystalline c axis, respectively, and n

is the refractive index experienced by the beam that scatters off the grating.
Note from Table 11.2.1 that for barium titanate the electrooptic coefficient

r42 is much larger than either r13 or r33. We see from Eqs. (11.6.14) that only
through the use of light of extraordinary polarization can one utilize this large
component of the electrooptic tensor.

The change in the dielectric constant �ε = −ε2reffE1 produces a nonlinear
polarization given by

P NL = (
�ε eiq·r + c.c.

)(
Ase

iks·r + Apeikp·r). (11.6.15)

Recall that q = kp − ks. The part of the nonlinear polarization having the spa-
tial variation exp(iks ·r) can act as a phase-matched source term for the signal
wave and is given by

P NL
s = �ε∗Apeiks·r = −iε2reffEm

|Ap|2As

|Ap|2 + |As |2 eiks·r. (11.6.16a)

Likewise, the portion of P NL that can act as a phase-matched source term for
the pump wave is given by

P NL
p = �εAse

ikp·r = iε2reffEm

|As |2Ap

|Ap|2 + |As |2 eikp·r. (11.6.16b)
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We next derive coupled-amplitude equations for the pump and signal fields
using the formalism described in Section 2.1. We define zs and zp to be
distances measured along the signal and pump propagation directions. We
find that in the slowly varying amplitude approximation the signal amplitude
varies as

2ik
dAs

dzs

eiks·r = −ω2

c2
P NL

s , (11.6.17a)

which through use of Eq. (11.6.16a) becomes

dAs

dzs

= ω

2c
n3reffEm

|Ap|2As

|Ap|2 + |As |2 . (11.6.17b)

We find that the intensity Is = 2nε0c|As |2 of the signal wave varies spatially
as dIs/dzs = nε0c(A

∗
s dAs/dzs + c.c.), or as

dIs

dzs

= �
IsIp

Is + Ip

, (11.6.18a)

where∗

� = ω

c
n3reffEm. (11.6.18b)

A similar derivation shows that the pump intensity varies spatially as

dIp

dzp

= −�
IsIp

Is + Ip

. (11.6.18c)

Note that Eq. (11.6.18a) predicts that the signal intensity grows exponentially
with propagation distance in the common limit Is � Ip.† The strong amplifi-
cation available from photorefractive two-beam coupling allows this process
to be used for various practical applications. For the application of photore-
fractive two-beam coupling to the design of efficient polarizers, see Heebner
et al. (2000).

∗ Following convention, we use the same symbol � to denote the photorefractive gain coefficient
and the retardation of Section 11.3.

† Here we implicitly assume that � is a positive quantity. If � is negative, the wave that we have
been calling the pump wave will be amplified and the wave that we have been calling the signal wave
will be attenuated. The sign of � depends on the sign of reff, which can be either positive or negative,
and on the sign of Em. Note that, according to Eqs. (11.6.9) and (11.6.12b), the sign of Em depends
on the sign of the dominant charge carrier (our derivation has assumed the case of an electron) and
on the sign of q , which is the x component of kp − ks. For the case of barium titanate, the dominant
charge carriers are usually holes, and the wave whose wavevector has a positive component along the
crystalline c axis is amplified.
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The treatment of two-beam coupling given above has assumed that the sys-
tem is in steady state. Two-beam coupling under transient conditions can also
be treated using the material equations of Kukhtarev et al. It has been shown
(Kukhtarev et al., 1977; Refrégier et al., 1985; Valley, 1987) that, under the
assumption that ne � N+

D,N+
D � N0

D , and β � sI0, the electric field ampli-
tude E1 obeys the equation

τ
∂E1

∂t
+ E1 = −iEm

ApA∗
s

|Ap|2 + |As |2 (êp · ês) (11.6.19)

with Em given by Eq. (11.6.12b) and with the response time τ given by

τ = τd

1 + ED/EM

1 + ED/Eq

, (11.6.20a)

where

τd = ε0εdc

eμne0
, EM = γNA

qμ
. (11.6.20b)

Here, as in Section 11.5, γ denotes the recombination coefficient and μ de-
notes the carrier mobility. Note that the photorefractive response time τ scales
linearly with the dielectric relaxation time τd .∗ Since the mean electron den-
sity ne0 increases linearly with optical intensity (see Eq. (11.6.6b)), we see
that the photorefractive response time becomes faster when the crystal is ex-
cited using high optical intensities.

We next write the coupled-amplitude equations for the pump and signal
fields in terms of the field amplitude E1 as

∂Ap

∂xp

= −ω

2npc
reffAsE1, (11.6.21a)

∂As

∂xs

= −ω

2nsc
reffApE1. (11.6.21b)

Equations (11.6.19) through (11.6.21) describe the transient behavior of two-
beam coupling.

∗ The dielectric relaxation time is the characteristic time in which charge imbalances neutralize

in a conducting material. The expression for the dielectric relaxation time is derived by combining

the equation of continuity ∂ρ/∂t = −∇ · j with Ohm’s law in the form j = σE to find that ∂ρ/∂t =
−σ∇ · E = −(σ/ε0εdc)∇ · D = −(σ/ε0εdc)ρ ≡ −ρ/τd . By equating the electrical conductivity σ

with the product ne0eμ, where μ is the carrier mobility, we obtain the expression for τd quoted in the

text.
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FIGURE 11.7.1 Geometry of four-wave mixing in a photorefractive material.

11.7. Four-Wave Mixing in Photorefractive Materials

Next we consider the mutual interaction of four beams of light in a photore-
fractive crystal. We assume the geometry of Fig. 11.7.1. Note that the pump
beams 1 and 2 are counterpropagating, as are beams 3 and 4. Thus the interac-
tion shown in the figure can be used to generate beam 4 as the phase conjugate
of beam 3.

The general problem of the interaction of four beams of light in a photore-
fractive material is very complicated, because the material response consists
of four distinct gratings – namely, one grating due to the interference of beams
1 and 3 and of 2 and 4, one grating due to the interference of beams 1 and 4
and of 2 and 3, one grating due to the inference of beams 1 and 2, and one
grating due to the interference of beams 3 and 4. However, under certain ex-
perimental situations, only one of these gratings leads to appreciable nonlinear
coupling among the beams. If one assumes that the polarizations, propagation
directions, and coherence properties of the input beams are selected so that
only the grating due to the interference of beams 1 and 3 and beams 2 and 4
is important, the coupled-amplitude equations describing the propagation of
the four beams become (Cronin-Golomb et al., 1984; see also Fischer et al.,
1981)

dA1

dz
= − γ

S0

(
A1A

∗
3 + A∗

2A4
)
A3 − αA1, (11.7.1a)

dA2

dz
= − γ

S0

(
A∗

1A3 + A2A
∗
4

)
A4 + αA2, (11.7.1b)
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dA3

dz
= γ

S0

(
A∗

1A3 + A2A
∗
4

)
A1 − αA3, (11.7.1c)

dA4

dz
= γ

S0

(
A1A

∗
3 + A∗

2A4
)
A2 + αA4. (11.7.1d)

In these equations, we have introduced the following quantities:

γ = ωreffn
3
0Em

2c cos θ
(11.7.2a)

with Em given by Eq. (11.6.12b),

S0 =
4∑

i=1

|Ai |2, (11.7.2b)

and α = 1
2α0/ cos θ , where α0 is the intensity absorption coefficient of the

material and where for simplicity we have assumed that θ = θ1 = θ4.
Cronin-Golomb et al. (1984) have shown that Eqs. (11.7.1) can be solved

for a large number of cases of interest. The solutions show a variety of inter-
esting features, including amplified reflection, self-oscillation, and bistability.

11.7.1. Externally Self-Pumped Phase-Conjugate Mirror

One interesting feature of four-wave mixing in photorefractive materials is
that it can be used to construct a self-pumped phase-conjugate mirror of the
sort illustrated in Fig. 11.7.2. In such a device, only the signal wave A3 is
applied externally. Waves A1 and A2 grow from noise within the resonator
that surrounds the photorefractive crystal. Oscillation occurs because wave A1

is amplified at the expense of wave A3 by the process of two-beam coupling.
The output wave A4 is generated by four-wave mixing involving waves A1,

FIGURE 11.7.2 Geometry of the externally self-pumped phase-conjugate mirror.
Only the A3 wave is applied externally; this wave excites the oscillation of the waves
A1 and A2, which act as pump waves for the four-wave mixing process that generates
the conjugate wave A4.



538 11 ♦ The Electrooptic and Photorefractive Effects

A2, and A3. Such a device was constructed by White et al. (1982) and is
described further by Cronin-Golomb et al. (1984).

11.7.2. Internally Self-Pumped Phase-Conjugate Mirror

Even more remarkable than the device just described is the internally self-
pumped phase conjugate mirror, which is illustrated in Fig. 11.7.3. Once
again, only the signal wave A3 is applied externally. By means of a compli-
cated nonlinear process analogous to self-focusing, beams A1 and A2 are cre-
ated. Reflection of these waves at the corner of the crystal feeds these waves
back into the path of the applied wave A3. Four-wave mixing processes in-
volving waves A1, A2, and A3 then create the output wave A4 as the phase
conjugate of A3. This device was first demonstrated by Feinberg (1982) and
analyzed theoretically by MacDonald and Feinberg (1983). Because of the
complicated nature of the coupling that occurs in this device, it can produce
complicated dynamical behavior including deterministic chaos, as demon-
strated by Gauthier et al. (1987). Because of the ease with which a phase-
conjugate signal can be produced, such devices lend themselves to practical
applications such as the construction of new types of interferometers (Gau-
thier et al., 1989).

11.7.3. Double Phase-Conjugate Mirror

Another application of four-wave mixing in photorefractive crystals is the
double phase-conjugate mirror of Fig. 11.7.4. In such a device the waves A2

and A3 are applied externally; these waves are assumed to be mutually in-
coherent, so that no gratings are formed by their interference. The nonlinear
interaction leads to the generation of the output wave A1, which is the phase

FIGURE 11.7.3 Geometry of the internally self-pumped phase conjugate mirror. Only
the A3 wave is applied externally; this wave excites the oscillation of the waves A1
and A2, which act as pump waves for the four-wave mixing process that generates the
conjugate wave A4.
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FIGURE 11.7.4 Geometry of the double phase-conjugate mirror. Waves A2 and A3
are applied externally and need not be phase-coherent. The generated wave A1 is the
phase conjugate of A2, and the generated wave A4 is the phase conjugate of A3.

conjugate of A2, and to the output wave A4, which is the phase conjugate
of A3. However, A1 is phase-coherent with A3, whereas A4 is phase-coherent
with A2. The double phase-conjugate mirror possesses the remarkable prop-
erty that one of the output waves can be an amplified phase-conjugate wave,
even though the two input waves are mutually incoherent.

The nature of the nonlinear coupling that produces the double phase-
conjugate mirror can be understood from the coupled-amplitude equa-
tions (11.7.1). For simplicity, we consider the limit in which α is negligible
and in which the input waves A2 and A3 are not modified by the nonlinear in-
teraction, so that only Eqs. (11.7.1a) and (11.7.1d) need to be considered. We
see that each output wave is driven by two terms, one of which is a two-beam-
coupling term that tends to amplify the output wave, and the other of which
is a four-wave-mixing term that causes each output to be the phase conjugate
of its input wave. It has been shown by Cronin-Golomb et al. (1984) and by
Weiss et al. (1987) that the requirement for the generation of the two output
waves is that |γ |l be greater than 2. Operation of the double phase-conjugate
mirror has been demonstrated experimentally by Weiss et al. (1987).

11.7.4. Other Applications of Photorefractive Nonlinear Optics

Because the photorefractive effect leads to a large nonlinear response, it lends
itself to a variety of applications. Certain of these have applications have been
reviewed by Günter and Huignard (1988; 1989) and by Boyd and Grynberg
(1992). The use of the photorefractive effect to support spatial solitons has
been reviewed by Królikowski et al. (2003).
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Problems

1. Numerical evaluation of photorefractive quantities. Consider the process
of two-beam coupling in barium titanate in the geometry of Fig. 11.6.1.
Estimate the numerical values of the physical quantities ED , Eq , Eopt, E1,
reff, �ε, and �. Assume that the effective trap density Neff is equal to
1012 cm−3, that the thermal generation rate is negligible, that the modula-
tion index m is 10−3, and that θs = θp = 5 degrees.

2. Transient two-beam coupling. Verify Eq. (11.6.19).
3. Relation between electrooptic and nonlinear optics tensors. Determine

the mathematical relationship between the second-order susceptibility χ
(2)
ijk

and the linear electrooptic coefficient rijk . Similarly, determine the math-

ematical relationship between the third-order susceptibility χ
(3)
ijkl and the

quadratic electrooptic coefficient sijkl .
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Chapter 12

Optically Induced Damage and
Multiphoton Absorption

12.1. Introduction to Optical Damage

A topic of great practical importance is optically induced damage of opti-
cal components. Optical damage is important because it ultimately limits the
maximum amount of power that can be transmitted through a particular op-
tical material. Optical damage thus imposes a constraint on the efficiency of
many nonlinear optical processes by limiting the maximum field strength E

that can be used to excite the nonlinear response without the occurrence of
optical damage. In this context, it is worth pointing out that present laser tech-
nology can produce laser beams of sufficient intensity to exceed the damage
thresholds of all known materials.

There are several different physical mechanisms that can lead to optically
induced damage. These mechanisms, and an approximate statement of the
conditions under which each might be observed, are as follows:

• Linear absorption, leading to localized heating and cracking of the optical
material. This is the dominant damage mechanism for continuous-wave and
long-pulse (� 1 μsec) laser beams.

• Avalanche breakdown, which is the dominant mechanism for pulsed lasers
(shorter than �1 μsec) for intensities in the range of 109 W/cm2 to
1012 W/cm2.

• Multiphoton ionization or multiphoton dissociation of the optical mate-
rial, which is the dominant mechanism for intensities in the range 1012

to 1016 W/cm2.
• Direct (single cycle) field ionization, which is the dominant mechanism for

intensities >1020 W/cm2.

543
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FIGURE 12.1.1 For a collimated laser beam, optical damage tends to occur at the
exiting surface of an optical material, because the boundary conditions on the electric
field vector lead to an enhancement at the exiting surface and a deenhancement at the
entering surface.

We next present a more detailed description of several of these mechanisms.
We begin by briefly summarizing some of the basic empirical observations

regarding optical damage. When a collimated laser beam interacts with an
optical material, optical damage usually occurs at a lower threshold on the
surfaces than in the interior. This observation suggests that cracks and other
imperfections on an optical surface can serve to initiate the process of opti-
cal damage, either by enhancing the local field strength in regions near the
cracks or by providing a source of nearly free electrons needed to initiate the
avalanche breakdown process. It is also observed (Lowdermilk and Milam,
1981) that surface damage occurs with a lower threshold at the exiting surface
than at the entering surface of an optical material. One mechanism leading
to this behavior results from the nature of the electromagnetic boundary con-
ditions at a dielectric/air interface, which lead to a deenhancement in field
strength at the entering surface and an enhancement at the exiting surface.
This process is illustrated pictorially in Fig. 12.1.1. Another physical mecha-
nism that leads to the same sort of front/back asymmetry is diffraction from
defects at the front surface which can lead to significant intensity variation
(hot spots) at the exiting surface. This effect has been described, for instance,
by Genin et al. (2000).

12.2. Avalanche-Breakdown Model

The avalanche-breakdown mechanism is believed to be the dominant dam-
age mechanism for most pulsed lasers. The nature of this mechanism is that
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a small number N0 of free electrons initially present within the optical ma-
terial are accelerated to high energies through their interaction with the laser
field. These electrons can then impact-ionize other atoms within the material,
thereby producing additional electrons which are subsequently accelerated by
the laser field and which eventually produce still more electrons. Some frac-
tion of the energy imparted to each electron will lead to a localized heating
of the material, which can eventually lead to damage of the material due to
cracking or melting. The few electrons initially present within the material
are created by one of several processes, including thermal excitation, quan-
tum mechanical tunneling by means of the Keldysh mechanism (Ammosov
et al., 1986), multiphoton excitation, or free electrons resulting from crystal
defects.

Let us next describe the avalanche-breakdown model in a more quantitative
manner. We note that the energy Q imparted to an electron initially at rest and
subjected to an electric field Ẽ (assumed quasistatic for present) for a time
duration t is given by

Q = eẼd where d = 1
2at2 = 1

2

(
eẼ/m

)
t2 (12.2.1)

or

Q = e2Ẽ2t2/2m for t � τ. (12.2.2)

This result holds for times t � τ , where τ is the mean time between collisions.
For longer time durations, the total energy imparted to the electron will be
given approximately by the energy imparted to the electron in time interval τ

(that is, by e2Ẽ2τ 2/2m) multiplied by the number of such time intervals (that
is, by t/τ ), giving

Q = e2Ẽ2tτ/2m for t > τ. (12.2.3)

The rate at which the electron gains energy is given in this limit by∗

P = dQ

dt
= e2Ẽ2τ/2m. (12.2.4)

∗ This result can also be deduced by noting that the rate of Joule heating of a conducting material
is given by

NP = 1
2 σẼ2,

where N is the number density of electrons and σ is the electrical conductivity, which, according to
the standard Drude formula, is given by

σ = (Ne2/m)τ

1 + ω2τ2
.

This result constitutes a generalization of that of Eq. (12.2.4) and reduces to it in the limit ωτ � 1.
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We next assume that the number density of free electrons N(t) changes in
time according to

dN

dt
= f NP

W
, (12.2.5)

where W is the ionization threshold of the material under consideration, P is
the absorbed power given by Eq. (12.2.4), and f is the fraction of the absorbed
power that leads to further ionization so that 1 −f represents the fraction that
leads to heating. The solution to Eq. (12.2.5) is thus

N(t) = N0e
gt where g = f e2Ẽ2τ

2Wm
. (12.2.6)

We next introduce the assumption that optical damage will occur if the elec-
tron density N(Tp) at the end of the laser pulse of duration Tp exceeds
some damage threshold value Nth, which is often assumed to be of the or-
der of 1018 cm−3. The condition for the occurrence of laser damage can thus
be expressed as

f e2Ẽ2τTp

2mW
> ln(Nth/N0). (12.2.7)

The right-hand side of this equality depends only weakly on the assumed val-
ues of Nth and N0 and can be taken to have a value of the order of 30. This
result can be used to find that the threshold intensity for producing laser dam-
age is given by

Ith = nε0c
〈
Ẽ2〉 = 2nε0c

Wm

f e2τTp

ln(Nth/N0). (12.2.8)

If we evaluate this expression under the assumption that n ≈ 1, W = 5 eV,
τ ≈ 10−15 s, Tp ≈ 10−9 s, and f ≈ 0.01, we find that Ith � 40 GW/cm2, in
reasonable agreement with measured values.

12.3. Influence of Laser Pulse Duration

There is a well-established scaling law that relates the laser damage threshold
to the laser pulse duration Tp for pulse durations in the approximate range of
10 ps to 10 ns. In particular, this scaling law states that the fluence (energy per
unit area) required to produce damage increases with pulse duration as T

1/2
p ,

and correspondingly the intensity required to produce laser damage decreases
with pulse duration as T

−1/2
p . This scaling law can be interpreted as a state-

ment that (for this range of pulse durations) optical damage depends not solely
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FIGURE 12.3.1 Measured dependence of laser damage threshold on laser pulse du-
ration (Stuart et al., 1995).

on laser fluence or on laser intensity but rather upon their geometrical mean.
It should be noted that this observed scaling law is inconsistent with the pre-
dictions given by the simple model that leads to Eq. (12.2.8), which implies
that laser damage should depend only on the laser intensity. Some possible
physical processes that could account for this discrepancy are described be-
low. Data illustrating the observed scaling law are shown in Fig. 12.3.1, and
more information regarding this law can be found in Lowdermilk and Milam
(1981) and Du et al. (1994).

The T
1/2
p scaling law can be understood, at least in general terms, by noting

that the avalanche-breakdown model ascribes the actual damage mechanism
to rapid localized heating of the optical material. The local temperature distri-
bution T (r, t) obeys the heat transport equation (see also Eq. (4.5.2))

(ρC)
∂T̃

∂t
− κ∇2T̃ = N(1 − f )P̃ , (12.3.1)

where f , N , and P have the same meanings as in the previous section, κ is
the thermal conductivity, and (ρC) is the heat capacity per unit volume. Let
us temporarily ignore the source term on the right-hand side of this equation,
and estimate the distance L over which a temperature rise 	T will diffuse in
a time interval Tp . Replacing derivatives with ratios and assuming diffusion
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FIGURE 12.3.2 Illustration of the diffusion of heat following absorption of an intense
laser pulse.

in only one dimension, as indicated symbolically in Fig. 12.3.2, we find that

(ρC)
	T

Tp

= κ
	T

L2
, (12.3.2)

or that

L = (DTp)1/2 where D = κ/ρc is the diffusion constant. (12.3.3)

The heat deposited by the laser pulse is thus spread out over a region of dimen-
sion L that is proportional to T

1/2
p , and the threshold for optical damage will

be raised by this same factor. Although this explanation for the T
1/2
p depen-

dence is widely quoted, and although it leads to the observed dependence on
the pulse duration Tp , some doubt has been expressed (Bloembergen, 1997)
regarding whether values of D for typical materials are sufficiently large for
thermal diffusion to be important. Nonetheless, detailed numerical calcula-
tions (Stuart et al., 1995, 1996) that include the effects of multiphoton ion-
ization, Joule heating, and avalanche ionization are in good agreement with
experimental results.

12.4. Direct Photoionization

In this process the laser field strength is large enough to rip electrons away
from the atomic nucleus. This process is expected to become dominant if the
peak laser field strength exceeds the atomic field strength Eat = e/4πε0a

2
0 =

5 × 1011 V/m. Fields this large are obtained at intensities of

Iat = 1
2nε0cE

2
at ≈ 4 × 1016 W/cm2 = 4 × 1020 W/m2.
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For laser pulses of duration 100 fsec or longer, laser damage can occur at
much lower intensities by means of the other processes described above. Di-
rect photoionization is described in more detail in Chapter 13.

12.5. Multiphoton Absorption and Multiphoton Ionization

In this section we calculate the rate at which multiphoton absorption processes
occur. Some examples of multiphoton absorption processes are shown
schematically in Fig. 12.5.1. Two-photon absorption was first reported ex-
perimentally by Kaiser and Garrett (1961).

Some of the reasons for current interest in the field of multiphoton absorp-
tion include the following:

1. Multiphoton spectroscopy can be used to study high-lying electronic states
and states not accessible from the ground state because of selection rules.

2. Two-photon microscopy (Denk et al., 1990 and Xu and Webb, 1997) has
been used to eliminate much of the background associated with imaging
through highly scattering materials, both because most materials scatter
less strongly at longer wavelengths and because two-photon excitation pro-
vides sensitivity only in the focal volume of the incident laser beam. Such
behavior is shown in Fig. 12.5.2.

3. Multiphoton absorption and multiphoton ionization can lead to laser dam-
age of optical materials and be used to write permanent refractive index
structures into the interior of optical materials. See for instance the articles
listed at the end of this chapter under the heading Optical Damage with
Femtosecond Laser Pulses.

FIGURE 12.5.1 Several examples of multiphoton absorption processes.
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FIGURE 12.5.2 Fluorescence from a dye solution (20 μM solution of fluoresce in
water) under (a) one-photon excitation and (b) two-photon excitation. Note that under
two-photon excitation, fluorescence is excited only at the focal spot of the incident
laser beam. Photographs courtesy of W. Webb.

4. Multiphoton absorption constitutes a nonlinear loss mechanism that can
limit the efficiency of nonlinear optical devices such as optical switches
(see also the discussion in Section 7.3).

In principle, we already know how to calculate multiphoton absorption rates
by means of the formulas presented earlier in Chapter 3. For instance, the lin-
ear absorption rate is proportional to Imχ(1)(ω). Similarly, the two-photon
absorption rate is proportional to Im χ(3)(ω = ω + ω − ω). We have already
seen how to calculate these quantities. However, the method we used to cal-
culate χ(3) becomes tedious to apply to higher-order processes (e.g., χ(5) for
three-photon absorption, etc.). For this reason, we now develop a simpler ap-
proach that generalizes more easily to N -photon absorption for arbitrary N .

12.5.1. Theory of Single- and Multiphoton Absorption and
Fermi’s Golden Rule

Let us next see how to use the laws of quantum mechanics to calculate single
and multiphoton absorption rates. We begin by deriving the standard result
for the single-photon absorption rate, and we then generalize this result to
higher-order processes.

The calculation uses procedures similar to those used in Section 3.2 to cal-
culate the nonlinear optical susceptibility. We assume that the atomic wave-
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function ψ(r, t) obeys the time-dependent Schrödinger equation

ih̄
∂ψ(r, t)

∂t
= Ĥψ(r, t), (12.5.1)

where the Hamiltonian Ĥ is represented as

Ĥ = Ĥ0 + V̂ (t). (12.5.2)

Here Ĥ0 is the Hamiltonian for a free atom and

V̂ (t) = −μ̂Ẽ(t), (12.5.3)

where μ̂ = −er̂ , is the interaction energy with the applied optical field. For
simplicity we take this field as a monochromatic wave of the form

Ẽ(t) = Ee−iωt + c.c. (12.5.4)

that is switched on suddenly at time t = 0.
We assume that the solutions to Schrödinger’s equation for a free atom are

known, and that the wavefunctions associated with the energy eigenstates can
be represented as

ψn(r, t) = un(r)e−iωnt , where ωn = En/h̄. (12.5.5)

We see that expression (12.5.5) will satisfy Eq. (12.5.1) (with Ĥ set equal
to Ĥ0) if un(r ) satisfies the eigenvalue equation

Ĥ0un(r) = Enun(r). (12.5.6)

We return now to the general problem of solving Schrödinger’s equation in
the presence of a time-dependent interaction potential V̂ (t):

ih̄
∂ψ(r, t)

∂t
= (

Ĥ0 + V̂ (t)
)
ψ(r, t). (12.5.7)

Since the energy eigenstates of Ĥ0 form a complete set, we can express the
solution to Eq. (12.5.7) as a linear combination of these eigenstates—that is,
as

ψ(r, t) =
∑

l

al(t)ul(r)e−iωl t . (12.5.8)

We introduce Eq. (12.5.8) into Eq. (12.5.7) and find that

ih̄
∑

l

dal

dt
ul(r)e−iωl t + ih̄

∑
l

(−iωl)al(t)ul(r)e−iωl t

=
∑

l

al(t)Elul(r)e−iωl t +
∑

l

al(t)V̂ ul(r)e−iωl t , (12.5.9)
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where (since El = h̄ωl) clearly the second and third terms cancel. To simplify
this expression further, we multiply both sides (from the left) by u∗

m(r) and
integrate over all space. Making use of the orthonormality condition∫

u ∗
m(r)ul(r) d3r = δml, (12.5.10)

we obtain

ih̄
dam

dt
=

∑
l

al(t)Vmle
−iωlmt , (12.5.11)

where ωlm = ωl − ωm and where

Vml =
∫

u ∗
m(r)V̂ ul(r) d3r (12.5.12)

are the matrix elements of the interaction Hamiltonian V̂ . Equation (12.5.11)
is a matrix form of the Schrödinger equation.

Oftentimes, as in the case at hand, Eq. (12.5.11) cannot be solved exactly
and must be solved using perturbation techniques. To this end, we introduce
an expansion parameter λ which is assumed to vary continuously between
zero and one; the value λ = 1 is taken to correspond to the physical situation
at hand. We replace Vml by λVml in Eq. (12.5.11) and expand am(t) in powers
of the interaction as

am(t) = a (0)
m (t) + λa (1)

m (t) + λ2a (2)
m (t) + · · · . (12.5.13)

By equating powers of λ on each side of the resulting form of Eq. (12.5.11)
we obtain the set of equations

da
(N)

m

dt
= (ih̄)−1

∑
l

a
(N−1)
l Vmle

−iωlmt , N = 1,2,3, . . . . (12.5.14)

12.5.2. Linear Absorption

Let us first see how to use Eq. (12.5.14) to describe linear absorption. We set
N = 1 to correspond to an interaction first-order in the field. We also assume
that in the absence of the applied laser field the atom is in the state g (typically
the ground state) so that

a (0)
g (t) = 1, a

(0)
l (t) = 0 for l �= g (12.5.15)

for all times t . Through use of Eqs. (12.5.3) and (12.5.4), we represent Vmg as

Vmg = −μmg

(
Ee−iωt + E∗eiωt

)
. (12.5.16)
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FIGURE 12.5.3 (a) The first term in Eq. (12.5.17) describes the process of one-photon
absorption, whereas (b) the second term describes the process of stimulated emission.

Equation (12.5.14) then becomes

da
(1)

m

dt
= −(ih̄)−1μmg

[
Eei(ωmg−ω)t + E∗ei(ωmg+ω)t

]
.

This equation can be integrated to give

a (1)
m (t) = −(ih̄)−1μmg

∫ t

0
dt ′

[
Eei(ωmg−ω)t ′ + E∗ei(ωmg+ω)t ′]

= μmgE

h̄(ωmg − ω)

[
ei(ωmg−ω)t − 1

] + μmgE
∗

h̄(ωmg + ω)

[
ei(ωmg+ω)t − 1

]
.

(12.5.17)

The resonance structure of this expression is illustrated schematically in
Fig. 12.5.3. Note that the first term in this expression can become resonant for
the process of one-photon absorption, and that (if state m lies below state g)
the second term can become resonant for the process of stimulated emission.
As our present interest is in the process of one-photon absorption, we drop the
second term from consideration. The neglect of the second term is known as
the rotating wave approximation. Since a

(1)
m (t) is a probability amplitude, the

probability p
(1)
m (t) that the atom is in state m at time t is given by

p(1)
m (t) = ∣∣a (1)

m (t)
∣∣2 = |μmgE|2

h̄2

∣∣∣∣e
i(ωmg−ω)t − 1

ωmg − ω

∣∣∣∣
2

= |μmgE|2
h̄2

4 sin2[(ωmg − ω)t/2]
(ωmg − ω)2

≡ |μmgE|2
h̄2

f (t), (12.5.18)

where

f (t) = 4 sin2[(ωmg − ω)t/2]
(ωmg − ω)2

. (12.5.19)
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FIGURE 12.5.4 Approximation of f (t) of Eq. (12.5.20) as a Dirac delta function.

Let us examine the time dependence of this expression for large values of the
interaction time t . Note that we can express f (t) as

f (t) = t2
(

sin2 x

x2

)
where x ≡ (ωmg − ω)t/2. (12.5.20)

Note further (see also Fig. 12.5.4) that the peak value of f (t) is t2, but
the width of the central peak is of the order of 2π/t . Thus, the area under the
central peak is of the order of 2πt , and for large t the function becomes highly
peaked. These facts suggest that, for large t , f (t) is proportional to t times a
Dirac delta function. In fact, it can be shown that

lim
t→∞f (t) = 2πtδ(ωmg − ω). (12.5.21)

Thus, for large t the probability to be in the upper level m can be represented,
at least formally, by

p(1)
m (t) = |μmgE|2t

h̄2
2πδ(ωmg − ω). (12.5.22)

This result is somewhat unphysical because of the presence of the delta func-
tion on the right-hand side. In physically realistic situations, the transition
frequency ωmg is not perfectly well defined but is spread into a continuous
distribution by various line-broadening mechanisms (Fig. 12.5.5). One often
expresses this thought by saying that the final state m is spread into a density
of final states ρf (ωmg), defined such that ρf (ωmg)dωmg is the probability that
the transition frequency lies between ωmg and ωmg + dωmg . In the context of
atomic physics, ρf (ωmg) is often known as the atomic lineshape function.
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FIGURE 12.5.5 Level m is spread into a density of states described by the function
ρf (ωmg).

The density of final states is normalized such that

∫ ∞

0
ρf (ωmg) dωmg = 1. (12.5.23)

A well-known example of a density of final states is the Lorentzian lineshape
function

ρf (ωmg) = 1

π

�/2

(ω̄mg − ωmg)2 + (�/2)2
(12.5.24)

where ω̄mg is the line-center transition frequency and � is the full-width at
half maximum of the distribution in angular frequency units. For a transition
broadened by the finite lifetime of its upper level, � is the population decay
rate of the upper level.

For a transition characterized by a density of final states, the probabil-
ity p

(1)
m (t) to be in the upper level given by Eq. (12.5.22) must be averaged

over all possible values of the transition frequency. One obtains

p(1)
m (t) = |μmgE|2t

h̄2

∫ ∞

0
ρf (ωmg)2πδ(ωmg − ω)dωmg

= 2π |μmgE|2t
h̄2

ρf (ωmg = ω). (12.5.25)

The notation ρf (ωmg = ω) means that the density of final states is to be eval-
uated at the frequency ω of the incident laser light. Since the probability for
the atom to be in the upper level is seen to increase linearly with time, we can
define a transition rate for linear absorption by

R(1)
mg = p

(1)
m (t)

t
= 2π |μmgE|2

h̄2
ρf (ωmg = ω). (12.5.26)
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This result is a special case of Fermi’s golden rule. Linear absorption is often
described in terms of an absorption cross section σ

(1)
mg (ω), defined such that

R(1)
mg = σ (1)

mg (ω)I, (12.5.27)

where I = 2nε0c|E|2. By comparison with Eq. (12.5.26) we find that

σ (1)
mg (ω) = π

nε0c

|μmg|2
h̄2

ρf (ωmg = ω). (12.5.28)

12.5.3. Two-Photon Absorption

Let us next treat the case of two-photon absorption. To do so, we need to solve
the set of equations (12.5.14) for N = 1 and N = 2 to obtain the probability
amplitude a

(2)
n (t) for the atom to be in level n at time t . The conventions for

labeling the various levels are shown in Fig. 12.5.6. Our strategy is to solve
Eq. (12.5.14) first for N = 1 to obtain a

(1)
m (t), which is then used on the

right-hand side of Eq. (12.5.14) with N = 2. In fact, the expression we obtain
for a

(1)
m (t) is identical to that of Eq. (12.5.17), obtained in our treatment of

linear absorption. We again drop the second term (which does not lead to
two-photon absorption). In addition, we express Vnm as follows:

Vnm = −μnm

(
Ee−iωt + E∗eiωt

)
� −μnmEe−iωt . (12.5.29)

Here we have dropped the negative-frequency contribution to Vnm for
reasons analogous to those described above in connection with Eq. (12.5.17).

FIGURE 12.5.6 Definition of energy levels used in the calculation of the two-photon
transition rate.
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We thus obtain

d

dt
a (2)
n (t) = (ih̄)−1

∑
m

a (1)
m (t)Vnme−iωmnt

= −(ih̄)−1
∑
m

μnmμmgE
2

h̄(ωmg − ω)

[
ei(ωng−2ω)t − ei(ωnm−ω)t

]
.

(12.5.30)

We next drop the second term in square brackets, which describes the tran-
sient response of the system but does not lead to two-photon absorption. The
resulting equation can be integrated directly to obtain

a (2)
n (t) =

∑
m

μnmμmgE
2

h̄2(ωmg − ω)

[
ei(ωmg−2ω)t − 1

ωng − 2ω

]
. (12.5.31)

The calculation now proceeds analogously to that for the linear absorption.
The probability to be in level n is given by

p(2)
n (t) = ∣∣a (2)

n (t)
∣∣2 =

∣∣∣∣
∑
m

μnmμmgE
2

h̄2(ωmg − ω)

∣∣∣∣
2∣∣∣∣e

i(ωmg−2ω)t − 1

ωng − 2ω

∣∣∣∣
2

. (12.5.32)

For large t , the expression becomes (see Eqs. (12.5.18)–(12.5.22))

p(2)
n (t) =

∣∣∣∣
∑
m

μnmμmgE
2

h̄2(ωmg − ω)

∣∣∣∣
2

2πtδ(ωng − 2ω), (12.5.33)

and if we assume that level n is smeared into a density of states we obtain

p(2)
n (t) =

∣∣∣∣
∑
m

μnmμmgE
2

h̄2(ωmg − ω)

∣∣∣∣
2

2πtρf (ωng = 2ω). (12.5.34)

Since the probability for the atom to be in the upper level is seen to increase
linearly with time, we can define a transition rate for two-photon absorption
given by

R(2)
ng = p

(2)
n (t)

t
. (12.5.35)

It is convenient to recast this result in terms of a two-photon cross section
defined by

R(2)
ng = σ (2)

ng (ω)I 2, (12.5.36)
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where I = 2nε0c|E|2 is the intensity of the incident light beam. We find that

σ (2)
ng (ω) = 1

4n2ε2
0c2

∣∣∣∣
∑
m

μnmμmg

h̄2(ωmg − ω)

∣∣∣∣
2

2πρf (ωng = 2ω). (12.5.37)

Experimentally, two-photon cross sections are often quoted with intensities
measured in photons cm−2 sec−1. With this convention, Eqs. (12.5.36) and
(12.5.37) must be replaced by

R(2)
ng = σ̄ (2)

ng (ω)Ī 2 where Ī = 2nε0c

h̄ω
|E|2 (12.5.38)

and where

σ̄ (2)
ng (ω) = ω2

4n2ε2
0c2

∣∣∣∣
∑
m

μnmμmg

h̄(ωmg − ω)

∣∣∣∣
2

2πρf (ωng = 2ω). (12.5.39)

We can perform a numerical estimate of σ̄ (2) by assuming that a single level
dominates the sum in Eq. (12.5.39) and assuming that the one-photon tran-
sition is highly nonresonant so that ωmg − ω ≈ ω. We also assume that the
laser frequency is tuned to the peak of the two photon resonance, so that
ρf (ωng = 2ω) ≈ (2π�n)

−1, where �n is the width of level n. We then obtain

σ̄ (2)
ng ≈ |μnmμmg|2

4ε2
0 h̄2c2�n

. (12.5.40)

To evaluate this expression, we assume that both μnm and μmg are of the order
of ea0 = 8 × 10−30 Cm and that �n = 2π(1 × 1013) rad/sec. We then obtain

σ̄ (2)
ng ≈ 2.5 × 10−58 m4 s

photon2
. (12.5.41)

This value is in good order-of-magnitude agreement with those measured by
Xu and Webb (1996) for a variety of molecular fluorophores. There can be
considerable variation in the values of molecular two-photon cross sections.
Drobizhev et al. (2001) report a two-photon cross section as large as 1.1 ×
10−54 m4 sec/photon2 in a dendrimer molecule.



Problems 559

12.5.4. Multiphoton Absorption

The results of this section are readily generalized to higher-order processes.
One obtains, for instance, the following set of relations:

R(1)
mg =

∣∣∣∣μmgE

h̄

∣∣∣∣
2

2πρf (ωmg − ω),

R(2)
ng =

∣∣∣∣
∑
m

μnmμmgE
2

h̄2(ωmg − ω)

∣∣∣∣
2

2πρf (ωng − 2ω),

R(3)
og =

∣∣∣∣
∑
mn

μonμnmμmgE
3

h̄3(ωng − 2ω)(ωmg − ω)

∣∣∣∣
2

2πρf (ωog − 3ω),

R(4)
pg =

∣∣∣∣
∑
omn

μpoμonμnmμmgE
4

h̄4(ωog − 3ω)(ωng − 2ω)(ωmg − ω)

∣∣∣∣
2

2πρf (ωpg − 4ω),

and so on.

Problems

1. Relation between the two-photon absorption cross section and χ(3). De-
rive an expression relating the two-photon absorption cross section σ (2) to
the third-order susceptibility χ(3). Be sure to indicate the frequency depen-
dence of χ(3).

2. Multiphoton absorption coefficients. Starting with the expressions for the
rates of one-, two-, and three-photon absorption quoted above, deduce ex-
pressions for the one-, two-, and three-photon absorption coefficients α, β ,
and γ defined by the equation

dI

dz
= −αI − βI 2 − γ I 3.

Make order-of-magnitude estimates of β and γ for condensed matter,
and compare them to typical measured values as tabulated in the scientific
literature.
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Chapter 13

Ultrafast and Intense-Field Nonlinear
Optics

13.1. Introduction

There is currently great interest in the physics of ultrashort laser pulses.
Recent advances have led to the generation of laser pulses with durations of
the order of 1 attosecond. Ultrashort pulses can be used to probe the proper-
ties of matter on extremely short time scales. Within the context of nonlinear
optics, ultrashort laser pulses are of interest for two separate reasons. The first
reason is that the nature of nonlinear optical interactions is often profoundly
modified through the use of ultrashort laser pulses. The next two sections of
this chapter treat various aspects of the resulting modifications of the nature
of nonlinear optical interactions. The second reason is that ultrashort laser
pulses tend to possess extremely high peak intensities, because laser pulse en-
ergies tend to be established by the energy-storage capabilities of laser gain
media, and thus short laser pulses tend to have much higher peak powers than
longer pulses. The second half of this chapter is devoted to a survey of the
sorts of nonlinear optical processes that can be excited by extremely intense
laser fields.

13.2. Ultrashort Pulse Propagation Equation

In this and the following section we treat aspects of the propagation of ultra-
short laser pulses through optical systems. Some physical processes that will
be included in this analysis include self-steepening leading to optical shock-
wave formation, the influence of higher-order dispersion, and space-time cou-
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pling effects. In the present section we derive a form of the pulse propagation
equation relevant to the propagation of an ultrashort laser pulse through a
nonlinear, dispersive nonlinear optical medium. In many ways, this equation
can be considered to be a generalization of the pulse propagation equation
(the so-called nonlinear Schrödinger equation) of Section 7.5. We begin with
the wave equation in the time domain (see, for instance, Eq. (2.1.15)) which
we express as

−∇2Ẽ + 1

c2

∂2D̃(1)

∂t2
= − 1

ε0c2

∂2P̃

∂t2
. (13.2.1)

We express the field quantities is terms of their Fourier transforms as

Ẽ(r, t) =
∫

E(r,ω)e−iωt dω/2π, (13.2.2a)

D̃(1)(r, t) =
∫

D(1)(r,ω)e−iωt dω/2π, (13.2.2b)

P̃ (r, t) =
∫

P(r,ω)e−iωt dω/2π, (13.2.2c)

where all of the integrals are to be performed over the range −∞ to ∞. We
assume that D(1)(r,ω) and E(r,ω) are related by the usual linear dispersion
relation as

D(1)(r,ω) = ε0ε
(1)(ω)E(r,ω) (13.2.3)

and that P̃ represents the nonlinear part of the material response. By introduc-
ing these forms into Eq. (13.2.1), we obtain a relation that can be regarded as
the wave equation in the frequency domain and that is given by

∇2E(r,ω) + ε0ε
(1)(ω)

(
ω2/c2)E(r,ω) = −(

ω2/ε0c
2)P(r,ω). (13.2.4)

Our goal is to derive a wave equation for the slowly varying field amplitude
Ã(r, t) defined by

Ẽ(r, t) = Ã(r, t) ei(k0z−ω0t) + c.c., (13.2.5)

where ω0 is the carrier frequency and k0 is the linear part of the wavevector at
the carrier frequency. We represent Ã(r, t) in terms of its spectral content as

Ã(r, t) =
∫

A(r,ω)e−iωt dω/2π. (13.2.6)

Note that E(r,ω) and A(r,ω) are related as in Eq. (7.5.16) by

E(r,ω) � A(r,ω − ω0)e
ik0z. (13.2.7)
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In terms of the quantity A(r,ω) (the slowly varying field amplitude in the
frequency domain) the wave equation (13.2.4) becomes

∇2⊥A + ∂2A

∂z2
+ 2ik0

∂A

∂z
+ [

k2(ω) − k2
0

]
A = − ω2

ε0c2
P(r,ω)e−ik0z, (13.2.8)

where

k2(ω) = ε(ω)
(
ω2/c2). (13.2.9)

We next approximate k(ω) as a power series in the frequency difference
ω − ω0 as

k(ω) = k0 +k1(ω−ω0)+D where D =
∞∑

n=2

1

n!kn(ω−ω0)
n (13.2.10)

so that k2(ω) can be expressed as

k2(ω) = k2
0 + 2k0k1(ω − ω0)

+ 2k0D + 2k1D(ω − ω0) + k2
1(ω − ω0)

2 + D2. (13.2.11)

Here D represents high-order dispersion. We have displayed explicitly the
linear term k1(ω − ω0) in the power series expansion because k1 has a direct
physical interpretation as the inverse of the group velocity. We now introduce
this expression into the wave equation in the form of Eq. (13.2.8), which then
becomes

∇2⊥A + ∂2A

∂z2
+ 2ik0

∂A

∂z
+ 2k0k1(ω − ω0)A + 2k0DA + 2k1D(ω − ω0)A

+ k2
1(ω − ω0)

2A = (
ω2/ε0c

2)P(z,ω)e−ik0z, (13.2.12)

where we have dropped the contribution D2 because it is invariably small. We
now convert this equation back to the time domain. To do so, we multiply this
equation by exp[−i(ω − ω0)t] and integrate over all values of ω − ω0. We
obtain[

∇2⊥ + ∂2

∂z2
+ 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2ik1D̃

∂

∂t
+ 2k0D̃ − k1

∂2

∂t2

]
Ã(r, t)

= 1

ε0c2

∂2P̃

∂t2
e−i(k0z−ω0t), (13.2.13)

where D̃ represents the differential operator

D̃ =
∞∑

n=2

1

n
kn

(
i
∂

∂t

)n

= −1

2
k2

∂2

∂t2
+ · · · . (13.2.14)
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We now represent the polarization in terms of its slowly varying amplitude
p̃(r, t) as

P̃ (r, t) = p̃(r, t)ei(k0z−ω0t) + c.c. (13.2.15)

For example, for the case of a material with an instantaneous third-order re-
sponse, the polarization amplitude is given by

p̃(r, t) = 3ε0χ
(3)

∣∣Ã(r, t)
∣∣2

Ã(r, t). (13.2.16)

We thus find that

∂P̃

∂t
=

(
− iω0p̃ + ∂p̃

∂t

)
ei(k0z−ω0t) + c.c.

= −iω0

[(
1 + i

ω0

∂

∂t

)
p̃

]
ei(k0z−ω0t) + c.c. (13.2.17a)

and

∂2P̃

∂t2
= −ω2

0

[(
1 + i

ω0

∂

∂t

)2

p̃

]
ei(k0z−ω0t) + c.c. (13.2.17b)

By introducing this expression into the wave equation in the form (13.2.13),
we obtain

[
∇2⊥ + ∂2

∂z2
+ 2ik0

(
∂

∂z
+ k1

∂

∂t

)
+ 2k0D̃ + 2ik1D̃

∂

∂t
− k2

1
∂2

∂t2

]
Ã(r, t)

= −4πω2
0

c2

(
1 + i

ω0

∂

∂t

)2

p̃. (13.2.18)

Next we convert this equation to a retarded time frame specified by the coor-
dinates z′ and τ defined by

z′ = z and τ = t − 1

vg

z = t − k1z, (13.2.19)

so that

∂

∂z
= ∂

∂z′ − k1
∂

∂τ
and

∂

∂t
= ∂

∂τ
. (13.2.20)
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The wave equation then becomes

[
∇2⊥ + ∂2

∂z′2
− 2k1

∂

∂z′
∂

∂τ
+ k2

1
∂2

∂τ 2
+ 2ik0

(
∂

∂z′ − k1
∂

∂τ
+ k1

∂

∂τ

)

+ 2k0D̃ + 2ik1D̃
∂

∂τ
− k2

1
∂2

∂τ 2

]
Ã(r, t) = − ω2

0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃.

(13.2.21)

We now make the slowly varying amplitude approximation (that is, we drop
the term ∂2/∂z′2) and simplify this expression to obtain

[
∇2⊥ − 2k1

∂

∂z′
∂

∂τ
+ 2ik0

∂

∂z′ + 2k0D̃ + 2ik1D̃
∂

∂τ

]
Ã(r, t)

= − ω2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃. (13.2.22)

This equation can alternatively be written as
[
∇2⊥ + 2ik0

∂

∂z′

(
1 + ik1

k0

∂

∂τ

)
+ 2k0D̃

(
1 + ik1

k0

∂

∂τ

)]
Ã(r, t)

= − ω2
0

ε0c2

(
1 + 1

ω0

∂

∂τ

)2

p̃. (13.2.23)

Note that two of the terms in this equation depend upon the ratio k1/k0. This
ratio can be approximated as follows: k1/k0 = v−1

g /(nω0/c) = ng/(nω0). Ig-
noring dispersion, ng = n, so that k1/k0 = 1/ω0. In this approximation the
wave equation becomes

[
∇2⊥ + 2ik0

∂

∂z′

(
1 + i

ω0

∂

∂τ

)
+ 2k0D̃

(
1 + i

ω0

∂

∂τ

)]
Ã(r, t)

= − ω 2
0

ε0c2

(
1 + i

ω0

∂

∂τ

)2

p̃, (13.2.24)

which can also be expressed as

[(
1 + i

ω0

∂

∂τ

)−1

∇2⊥ + 2ik0
∂

∂z′ + 2k0D̃

]
Ã(r, t) = − ω2

0

ε0c2

(
1 + i

ω0

∂

∂τ

)
p̃.

(13.2.25)
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This equation can be considered to be a generalization of the nonlinear
Schrödinger equation. It includes the effects of higher-order dispersion
(through the term that includes D̃), space–time coupling (through the pres-
ence of the differential operator on the left-hand side of the equation), and
self-steepening (through the presence of the differential operator on the right-
hand side). This form of the pulse propagation equation has been obtained by
Brabec and Krausz (1997). It can be used to treat many types of nonlinear
response. For instance, for a material displaying an instantaneous third- and
fifth-order nonlinearity, p̃ is given by p̃ = 3ε0χ

(3)|Ã|2Ã + 10ε0χ
(5)|Ã|4Ã.

This equation can also be used to treat a dispersive nonlinear material. For
ultrashort laser pulses, the value of χ(3) can vary appreciably for different
frequency components of the pulse. The effects of the dispersion of χ(3) can
be modeled in lowest approximation (see for instance Diels and Rudolph,
1996, p. 139) by representing χ(3)(ω) ≡ χ(3)(ω = ω + ω − ω) as

χ(3)(ω) = χ(3)(ω0) + (ω − ω0)
dχ(3)

dω
, (13.2.26)

where the derivative is to be evaluated at frequency ω0. Thus, p(ω) can be
expressed as

p(ω) = 3ε0

[
χ(3)(ω0) + (ω − ω0)

dχ(3)

dω

]∣∣A(ω)
∣∣2

A(ω). (13.2.27)

This relation can be converted to the time domain using the same procedure
as that used in going from Eq. (13.2.12) to Eq. (13.2.13). One finds that

p̃(τ ) = 3ε0

[
χ(3)(ω0) + dχ(3)

dω
i

∂

∂τ

]∣∣Ã∣∣2
Ã. (13.2.28)

This expression for p̃ can be used directly in Eq. (13.2.24) or (13.2.25). How-
ever, since Eq. (13.2.26) contains only a linear correction term in (ω − ω0),
and consequently Eq. (13.2.28) contains only a contribution first-order in
∂/∂τ , for reasons of consistency one wants to include in the resulting pulse
propagation equation only contributions first-order in ∂/∂τ . Noting that

(
1 + i

ω0

∂

∂τ

)2

=
(

1 + 2i

ω0

∂

∂τ
− 1

ω2
0

∂2

∂τ 2

)
≈

(
1 + 2i

ω0

∂

∂τ

)
, (13.2.29)
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one finds that in this approximation the pulse propagation equation is given
by

∇2⊥ + 2ik0
∂

∂z′

[(
1 + i

ω0

∂

∂τ

)
+ 2k0D̃

(
1 + i

ω0

∂

∂τ

)]
Ã(r, t)

= (−3/c2)ω2
0χ

(3)(ω0)

[
1 +

(
2 + ω0

χ(3)(ω0)

dχ(3)

dω

)
i

ω0

∂

∂τ

]∣∣Ã∣∣2
Ã.

(13.2.30)

Procedures for incorporating other sorts of nonlinearities into the present for-
malism have been described by Gaeta (2000).

13.3. Interpretation of the Ultrashort-Pulse Propagation Equation

Let us next attempt to obtain some level of intuitive understanding of the var-
ious physical processes described in Eq. (13.2.24). As a first step, we study a
simplified version of this equation obtained by ignoring the correction terms
(i/ω0)∂/∂τ by replacing the factors [1 + (i/ω0)(∂/∂τ)] by unity and by in-
cluding only the lowest-order contribution (known as second-order disper-
sion) to D̃. One obtains

∂A(r, t)
∂z′ =

[
i

2k0
∇2⊥ − i

2
k2

∂2

∂τ 2
+ 3iω0

2n0c
χ(3)(ω0)

∣∣Ã∣∣2
]
Ã. (13.3.1)

Written in this form, the equation leads to the interpretation that the field am-
plitude A varies with propagation distance z′ (the left-hand side) because of
three physical effects (the three terms on the right-hand side). The term in-
volving the transverse laplacian describes the spreading of the beam due to
diffraction, the term involving the second time derivative describes the tem-
poral spreading of the pulse due to group velocity dispersion, and the third
term describes the nonlinear acquisition of phase. It is useful to introduce dis-
tance scales over which each of the terms becomes appreciable. We define
these scales as follows:

Ldif = 1
2 k0w

2
0 (diffraction length), (13.3.2a)

Ldis = T 2/|k2| (dispersion length), (13.3.2b)

LNL = 2n0c

3ω0χ(3)|A|2 = 1

(ω0/c)n2I
(nonlinear length). (13.3.2c)

In these equations w0 is a measure of the characteristic beam radius, and T

is a measure of the characteristic pulse duration. The significance of these
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distance scales is that for a given physical situation the process with the
shortest distance scales is expected to be dominant. For reference, note that
for fused silica at a wavelength of 800 nm n2 = 3.5 × 10−20 m2/W and
k2 = 446 fsec2/cm. Through use of Eq. (13.3.2b) we see that, for a 20-fsec
pulse propagating through fused silica, Ldis is approximately 0.9 cm. Thus,
in propagating through 0.9 cm of fused silica a 20-fsec pulse approximately
doubles in pulse duration as a consequence of group velocity dispersion.

13.3.1. Self-Steepening

Let us next examine the influence of the correction factor [1 + (i/ω0)(∂/∂τ)]
on the nonlinear source term of Eq. (13.2.25). To isolate this influence, we
drop the correction factor in other places in the equation. Also, for generality,
we use the propagation equation in the form given by (13.2.30), which allows
the nonlinear response to be dispersive. We also transform back to the labo-
ratory reference frame z, t (not the z′, τ frame in which the pulse is nearly
stationary) so that the factor k1∂Ã/∂t = (1/vg)∂Ã/∂t = (n

(g)

0 /c)∂Ã/∂t ap-
pears explicitly in the wave equation, which takes the form

∂Ã

∂z
− n

(g)

0

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ i6πω0

n0c
χ(3)(ω0)

∣∣Ã∣∣2
Ã

+ i3ω0

2n0c
χ(3)(ω0)

(
2 + ω0

χ(3)(ω0)

dχ(3)

dω

)
i

ω0

∂

∂t

∣∣Ã∣∣2
A. (13.3.3)

We now introduce nonlinear coefficients γ1 and γ2 defined by

γ1 = 3ω0

2n0c
χ(3)(ω0) and γ2 = 3ω0

2n0c
χ(3)(ω0)

(
1 + 1

2

ω0

χ(3)

dχ(3)

dω

)
.

(13.3.4)

Note that in the absence of dispersion γ1 = γ2. In terms of these quantities,
Eq. (13.3.3) can be expressed more concisely as

∂Ã

∂z
− n

(g)

0

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ iγ1|A|2A − 2γ2

1

ω0

∂

∂t

(∣∣Ã∣∣2
A

)
.

(13.3.5)
Next note that the time derivative in the last term can be written as

∂

∂t

(∣∣Ã∣∣2
Ã

) = ∂

∂t

(
Ã2Ã∗) = Ã2 ∂Ã∗

∂t
+ 2Ã∗Ã∂Ã

∂t

= 2
∣∣Ã∣∣2 ∂Ã

∂t
+ Ã2 ∂Ã∗

∂t
. (13.3.6)
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The first contribution to the last form can be identified as an intensity-
dependent contribution to the group velocity. The second contribution does
not have a simple physical interpretation, but can be considered to represent a
dispersive four-wave mixing term. To proceed we make use of Eq. (13.3.6) to
express Eq. (13.3.4) as

∂Ã

∂z
− n

(g)

eff

c

∂Ã

∂t
= i

2k0
∇2⊥Ã − i

2
k2

∂2Ã

∂t2
+ iγ1|A|2A − 2γ2

ω0
Ã2 ∂Ã∗

∂t
,

(13.3.7)

where

n
(g)

eff = n
(g)

0 + 4γ2c

ω0

∣∣Ã∣∣2 ≡ n
(g)

0 + n
(g)

2 I. (13.3.8)

In the last form of this relation, we have introduced the coefficient of the
intensity dependence of the group index as

n
(g)

2 = 48π2

n2
0c

χ(3)(ω0)

[
1 + 1

2

ω0

χ(3)(ω0)

dχ(3)

dω

]
. (13.3.9)

We thus see that the last term in Eq. (13.3.4) leads to an intensity dependence
of the group index ng as well as to the last term of Eq. (13.3.7), which as just
mentioned is a dispersive four-wave mixing contribution. We also see from
Eq. (13.3.9) that the intensity dependence of the group index depends both on
the susceptibility and on its dispersion.

The intensity dependence of the group velocity leads to the phenomena of
self-steepening and optical shock wave formation. These phenomena are illus-
trated in Fig. 13.3.1. Note that for the usual situation in which n

(g)

2 is positive,
the peak of the pulse is slowed down more than the edges of the pulse, leading
to steepening of the trailing edge of the pulse. If this edge becomes infinitely
steep, it is said to form an optical shock wave. Self-steepening has been de-

FIGURE 13.3.1 Self-steepening and optical shock formation. (a) The incident optical
pulse is assumed to have a gaussian time evolution. (b) After propagation through a
nonlinear medium, the pulse displays self-steepening, typically of the trailing edge.
(c) If the self-steepening becomes sufficiently pronounced that the intensity changes
instantaneously, an optical shock wave is formed.
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scribed by DeMartini et al. (1967), Yang and Shen (1984), and Gaeta (2000).
Note also that we can define a self-steepening distance scale analogous to
these of Eqs. (13.3.2) by

Lss = cT

n
(g)

2 I
. (13.3.10)

For the usual situation in which n
(g)

2 ≈ n2, Lss is much larger than LNL

(because, except for extremely short pulses, cT � 1/k0), and thus self-
steepening tends to be difficult to observe.

13.3.2. Space-Time Coupling

Let us now examine the influence of space-time coupling, that is, the influ-
ence of the differential operator [1 + (i/ω0) ∂/∂τ ]−1 on the left-hand side
of Eq. (13.2.25). We can see the significance of this effect most simply by
considering propagation through a dispersionless, linear material so that the
wave equation becomes

(
1 + i

ω0

∂

∂τ

)−1

∇2⊥Ã(r, t) + 2ik0
∂

∂z′ Ã(r, t) = 0. (13.3.11)

The first term is said to represent space-time coupling because it involves both
temporal and spatial derivatives of the field amplitude. To examine the signif-
icance of this mathematical form, it is convenient to rewrite this equation as

∇2⊥Ã(r, t) +
(

1 + i

ω0

∂

∂τ

)
2ik0

∂

∂z′ Ã(r, t) = 0. (13.3.12)

Let us first consider the somewhat artificial example of a field of the form
Ã(r, t) = a(r)e−iδωt ; such a field is a monochromatic field at frequency ω0 +
δω. We substitute this form into Eq. (13.3.12) and obtain

∇2⊥a(r) +
(

1 + δω

ω0

)
2ik0

∂

∂z′ a(r) = 0, (13.3.13)

which can alternatively be expressed as

∇2⊥a(r) + 2i(k0 + δk)
∂

∂z′ a(r) = 0, (13.3.14)

where δk = k0(δω/ω0). This wave thus diffracts as a wave of frequency ω0 +
δω rather than a wave of frequency ω0. More generally, for the case of an
ultrashort pulse, the operator [1+(i/ω0)∂/∂τ ] describes the fact that different
frequency components of the pulse diffract into different cone angles. Thus,
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after propagation different frequency components will have different radial
dependences. These effects and their implications for self-focusing have been
described by Rothenberg (1992).

13.3.3. Supercontinuum Generation

When a short intense pulse propagates through a nonlinear optical medium, it
often undergoes significant spectral broadening. This effect was first reported
by Alfano and Shapiro (1970). The amount of broadening can be very signi-
ficant. For instance, using an 80-fsec pulse of peak intensity ∼1014 W/cm2

propagating through 0.5 mm of ethylene glycol, Fork et al. (1983) observed a
broadened spectrum extending from 0.4ω0 to 3.3ω0, where ω0 is the central
frequency of the input laser pulse. Supercontinuum generation has also been
observed in gases (Corkum et al., 1986). Many models have been introduced
over the years in attempts to explain supercontinuum generation. At present,
it appears that pulse self-steepening (Yang and Shen, 1984) leading to optical
shock-wave formation (Gaeta, 2000) is the physical mechanism leading to
supercontinuum generation.

13.4. Intense-Field Nonlinear Optics

Most nonlinear optical phenomena∗ can be described by assuming that the
material polarization can be expanded as a power series in the applied electric
field amplitude. This relation in its simplest form is given by

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ(t)2 + χ(3)Ẽ(t)3 + · · · . (13.4.1)

However, for sufficiently large field strengths, this power series expansion
need not converge. We saw in Chapter 6 that under resonant conditions this
power-series description breaks down if the Rabi frequency 
 = μbaE/h̄ as-
sociated with the interaction of the laser field with the atom becomes compa-
rable to 1/T1, where T1 is the atomic excited-state lifetime. Even under highly
nonresonant conditions, Eq. (13.4.1) can become invalid. This breakdown will
certainly occur if the laser field amplitude E becomes comparable to or larger
than the atomic field strength

Eat = e/4πε0

a2
0

= e/4πε0

(4πε0h̄
2/me2)2

= 6 × 1011 V/m, (13.4.2)

∗ The photorefractive effect of Chapter 11 being an obvious exception.
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which corresponds to an intensity of∗

Iat = 1
2ε0cE

2
at = 4 × 1016 W/cm2 = 4 × 1020 W/m2. (13.4.3)

In fact, lasers that can produce intensities larger than 1020 W/cm2 are
presently available (Mourou et al., 1998). In this chapter we explore some
of the physical phenomena that can occur through use of fields this intense.

Let us begin by considering briefly the conceptual framework one might use
to describe intense-field nonlinear optics. Recall that the quantum-mechanical
calculation of the nonlinear optical susceptibility presented in Chapter 3 pre-
supposes that the Hamiltonian of an atom in the presence of a laser field is of
the form

Ĥ = Ĥ0 + V̂ (t), (13.4.4)

where Ĥ0 is the Hamiltonian of an isolated atom and V̂ (t) = −μẼ(t)

represents the interaction energy of the atom with the laser field. Schrödinger’s
equation is then solved for this Hamiltonian through use of perturbation theory
under the assumption V (t) 
 H0. For the case of intense-field nonlinear op-
tics, the nature of this inequality is the reverse—that is, the interaction energy
V (t) is much larger than H0. This observation suggests that it should prove
useful to begin our study of intense-field nonlinear optics by considering the
motion of a free electron in an intense laser field.

13.5. Motion of a Free Electron in a Laser Field

Let us initially ignore both relativistic effects and the influence of the magnetic
field associated with the laser beam. We assume the laser beam to be linearly
polarized and of the form Ẽ(t) = Ẽ(t)x̂, where Ẽ(t) = Ee−iωt + c.c. The
equation of motion of the electron is then given by

m ¨̃x = −eẼ(t) or m ¨̃x = −eEe−iωt + c.c., (13.5.1)

which leads to the solution

x̃(t) = xe−iωt + c.c., (13.5.2)

where

x = eE/mω2. (13.5.3)

∗ Here we take the peak field strength of the optical wave, which we assume to be linearly polar-
ized, to be Eat.



13.5. Motion of a Free Electron in a Laser Field 573

The time-averaged kinetic energy associated with this motion is given by K =
1
2m〈 ˙̃x(t)2〉 or, since

˙̃x(t) = (−iωx)eiωt + c.c., (13.5.4)

by

K = e2E2

mω2
= e2E2

peak

4mω2
. (13.5.5)

This energy is known as the jitter energy (as it is associated with the oscillation
of the electron about its equilibrium position) or as the ponderomotive energy
(Kibble, 1966). This energy can be appreciable. By way of example, consider
a laser field of wavelength 1.06 μm. One finds by numerical evaluation that
the ponderomotive energy is equal to 13.6 eV (a typical atomic energy) for
I = 1.3 × 1014 W/cm2 = 1.3 × 1018 W/m2, is equal to 4.2 keV for I = Iat

(which is given by Eq. (13.4.3)), and is equal to mc2 = 500 keV for I =
4.8 × 1018 W/cm2 = 4.8 × 1022 W/m2.

The equation of motion (13.5.1) and its solution (13.5.2) are linear in the
laser field amplitude. Both magnetic and relativistic effects can induce non-
linearity in the electronic response. Let us consider briefly the influence of
magnetic effects; see also Problem 1 at the end of this chapter for a more
detailed analysis. The electric field of Eq. (13.5.1) has a magnetic field as-
sociated with it. Assuming propagation in the z direction, this magnetic field
is of the form B̃(t) = B̃(t)ŷ, where B̃(t) = Beiωt + c.c. and where, assuming
propagation in vacuum, B = E/c. Since according to Eq. (13.5.4) the electron
has a velocity in the x direction, it will experience a magnetic force F = v×B
in the z direction. The equation of motion for the z component of the velocity
is thus

m ¨̃z =
[(

− ieE

mω

)
e−iωt + c.c.

][
Be−iωt + c.c.

]
. (13.5.6)

The right-hand side of this equation consists of terms at zero frequency and at
frequencies ±2ω. When Eq. (13.5.6) is solved, one finds that the z-component
of the electron motion consists of oscillations at frequency 2ω and amplitude
eEB/m2ω3 superposed on a uniform drift velocity. The velocity associated
with this motion leads to a magnetic force in the x direction at frequency 3ω.
In similar manner, all harmonics of the laser frequency appear in the atomic
motion.∗

As just noted, relativistic effects also lead to nonlinearities in the atomic
response. The origin of this effect is the relativistic change in electron mass

∗ This conclusion arises, for instance, as a generalization of the results of Problem 7 of Chapter 4.
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that occurs when the electron velocity becomes comparable to the speed of
light c. The resulting motion can be described in a relatively straightforward
manner. Landau and Lifshitz (1960) show that for a linearly polarized laser
beam of peak field strength E0, i.e., Ẽ = E0 cos(ωt − ωz/c), the electron
moves in a figure-8 pattern superposed on a uniform translational motion in
the z-direction. In the reference frame moving with the uniform translational
velocity, the electron motion can be described the equations

x = βc

ω
cosη, y = 0, z = β2c

8ω
sin 2η, (13.5.7)

where

η = ω(t − z/c), (13.5.8a)

β = eE0/γ
′ω, (13.5.8b)

γ ′2 = m2c2 + e2E2
0/2ω2. (13.5.8c)

For circularly polarized radiation described by Ey = E0 cos(ωt − ωz/c),
Ex = E0 sin(ωt −ωz/c), the electron moves with uniform angular velocity in
a circle of radius ecE0/γω2; this motion can be described by the equations

x = βc

ω
cosωt, y = βc

ω
sinωt, z = 0, (13.5.9)

where β has the same definition as above. These conclusions are summarized
in Fig. 13.5.1. More detailed treatments of the motion of a free electron in
a laser field can be found in Sarachik and Schappert (1970) and in Castillo-
Herrara and Johnston (1993).

It is convenient to introduce a dimensionless parameter a to quantify the
strength of the applied laser field. This parameter can be interpreted as the
Lorentz-invariant, dimensionless vector potential and is defined by the rela-
tion

a2 = K

mc2
= e2E2

m2c2ω2
. (13.5.10)

This relation can also be expressed as

a2 = 2

π

Ir0λ
2

mc3
, (13.5.11)

where r0 = e2/4πε0 mc2 is the classical electron radius, λ = 2πc/ω is the
vacuum wavelength of the laser radiation, and I = 1

2ε0cE
2 is the laser inten-

sity. The interpretation of the parameter a is that a2 
 1 is the nonrelativistic
regime, a2 � 1 is the relativistic regime, and a2 � 1 is the ultrarelativistic
regime.
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FIGURE 13.5.1 Motion of a free electron in (a) a linearly polarized laser field and (b)
a circularly polarized field. Note that for linearly polarized light the motion is in the
xz plane and that for circularly polarized light is in the xy plane.

13.6. High-Harmonic Generation

High-harmonic generation is a dramatic process in which an intense laser
beam∗ illuminates an atomic medium and all odd harmonics qω of the laser
frequency ω up to some cutoff order qmax are emitted in the forward direction.
It is found that most of the harmonics are emitted with comparable efficiency.
This observation demonstrates that high-harmonic generation is not a pertur-
bative (i.e., is not a χ(q)) process. For a perturbative process each successively
higher order would be expected to be emitted with a smaller efficiency. Har-
monic orders as large as q = 221 have been observed (Chang et al., 1999).
High-harmonic generation is typically observed using laser intensities in the
range 1014–1016 W/cm2.

Many of the features of high-harmonic generation can be understood in
terms of a model due to Corkum (1993). One imagines an atom in the pres-
ence of a linearly polarized laser field sufficiently intense to ionize the atom.
Even though the electron kinetic energy K might greatly exceed the ionization
potential IP of the atom, because of the oscillatory nature of the optical field
the electron will follow an oscillatory trajectory that returns it to the atomic
nucleus once each optical period, as illustrated in Fig. 13.6.1. Because of the
1/r2 nature of the nuclear Coulomb potential, the electron will feel an appre-
ciable force and thus an acceleration only when it is very close to the nucleus.
The radiated field is proportional to the instantaneous acceleration, and the

∗ Intense in the sense that the ponderomotive energy K is much larger than the ionization
potential IP .
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FIGURE 13.6.1 (a) Trajectory of an electron immediately following ionization. The
electron experiences the intense laser field and thus oscillates at frequency ω. It emits
a brief pulse of radiation each time it passes near the atomic core. The radiation from
a collection of such electrons thus has the form shown in (b). The spectrum of the
emitted radiation is determined by the square of the Fourier transform of the pulse
train, and thus has the form shown in (c).

field radiated by any individual electron will thus consist of a sequence of
pulses separated by the optical period of the fundamental laser field. How-
ever, in a collection of atoms, roughly half of the ejected electrons will be
emitted near the positive maximum of the oscillating laser field and half near
the negative maximum, and consequently the emitted radiation will consist of
a sequence of pulses separated by half the optical period of the fundamen-
tal laser field. These pulses are mutually coherent, and thus the spectrum of
the emitted radiation is the Fourier transform of this pulse train, which is a
series of components separated by twice the laser frequency. Thus only odd
harmonics are emitted, in consistency with the general symmetry properties
of centrosymmetric material media, as described in Section 1.5.
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FIGURE 13.6.2 Schematic representation of the empirical relation h̄ωqmax =
3.17K + IP . The numerical factor of 3.17 is a consequence of detailed analysis of
the dynamics of an electron interacting simultaneously with an external laser field and
the atomic core.

Arguments based on energetics can be used to estimate the maximum har-
monic order qmax. The process of high-harmonic generation is illustrated sym-
bolically in Fig. 13.6.2. The energy available to the emitted photon is the sum
of the available kinetic energy of the electron less the (negative) ionization
energy of the atom. This line of reasoning might suggest qmaxh̄ω = K + IP ,
but detailed calculations show that the coefficient of the kinetic energy term
is in fact 3.17, so

qmaxh̄ω = 3.17K + IP . (13.6.1)

This prediction is in good agreement with laboratory data.
We conclude this section with a brief historical summary of progress in the

field of intense-field nonlinear optics and high-harmonic generation. Agos-
tini et al. (1979) reported the observation of a phenomenon that has come to
be called above-threshold ionization (ATI). This group measured the energy
spectra of electrons produced by photoionization and observed multiple peaks
separated by the photon energy h̄ω. This observation attracted great theoret-
ical interest because, according to then-current theoretical models based on
lowest-order perturbation theory, only one peak associated with the minimum
number of photons needed to produce ionization was expected to be present.
More recent work has included the possibility of double ionization in which
two electrons are ejected as part of the photoionization process (Walker et al.,
1994). One of the earliest observations of high-harmonic generation was that
of Ferray et al. (1988), who observed up to the 33rd harmonic with laser inten-
sities as large as 1013 W/cm2 using Ar, Kr, and Xe gases (Fig. 13.6.3). Kulan-



578 13 ♦ Ultrafast and Intense-Field Nonlinear Optics

FIGURE 13.6.3 Experimental data of Ferray et al. (1988) illustrating high-harmonic
generation.

der and Shore (1989) presented one of the first successful computer models
of high-harmonic generation. L’Huillier and Balcou (1993) observed HHG
using pulses of 1 psec duration and intensities as large as 1015 W/cm2, and
observed harmonics up to the 135th order in Ne. Corkum (1993) presented the
theoretical model of HHG described in the previous two paragraphs. Nearly
simultaneously, Schafer et al. (1993) presented similar ideas along with exper-
imental data. Lewenstein et al. (1994) presented a fully quantum-mechanical
theory of HHG that clarified the underlying physics and produced quantitative
predictions. Chang et al. (1997) reported HHG in He excited by 26-fsec laser
pulses from a Ti : sapphire laser system operating at 800 nm. They observed
harmonic peaks up to a maximum of the 221st order and unresolved structure
up to an energy (460 eV or 2.7 nm wavelength) corresponding to the 297th
order. Slightly shorter wavelengths (λ = 2.5 nm, hν = 500 eV) have been
observed by Schnürer et al. (1998). Durfee et al. (1999) have shown how to
phase match the process of HHG by propagating the laser beam through a
gas-filled capillary waveguide.
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13.7. Nonlinear Optics of Plasmas and Relativistic
Nonlinear Optics

A plasma is a partially or fully ionized gas. Plasmas play an important role in
nonlinear optics in two different ways: (1) Nonlinear optical processes such as
multiphoton ionization can create a plasma. The optical properties of the ma-
terial system are thereby modified even by the linear response of the plasma.
(2) A plasma (no matter how it is generated) can respond in an intrinsically
nonlinear manner to an applied optical field. In the present section we briefly
survey both sorts of nonlinear optical response.

Let us first consider the process of plasma formation. We let Ne denote the
number of free electrons per unit volume and Ni the corresponding number
of positive ions. We also let NT denote the total number of atoms present,
both ionized and un-ionized. We assume that these quantities obey the rate
equation

dNe

dt
= dNi

dt
= (NT − Ni)σ

(N)IN − rNeNi. (13.7.1)

Here σ (N) is the N -photon absorption cross section (see also Section 12.5)
and r is the electron–ion recombination rate. For short laser pulses of the sort
often used to study plasma nonlinearities, recombination is an unlikely event
and the last term in this equation can usually be ignored. In this case, the
electron density increases monotonically during the laser pulse.

Let us next consider the (linear) optical properties of a plasma. We found
above (Eqs. (13.5.2) and (13.5.3)) that the position of an electron in the field
Ẽ(t) = Ee−iωt + c.c. will vary according to x̃(t) = xe−iωt + c.c. where
x = eE/mω2. The dipole moment associated with this response is p̃(t) ≡
pe−iωt + c.c. = −ex̃(t). The polarizability α(ω) defined by p = ε0α(ω)E is
thus given by

α(ω) = − e2

ε0mω2
. (13.7.2)

The dielectric constant of a collection of such electrons is thus given by

ε = 1 + Nα(ω) = 1 − Ne2

ε0mω2
, (13.7.3)

which is often expressed as

ε = 1 − ω2
p

ω2
, where ω2

p = Ne2

ε0m
(13.7.4)
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and where ωp is known as the plasma frequency. For N sufficiently small that
ω2

p < ω2 (an underdense plasma), the dielectric constant is positive, n = √
ε

is real, and light waves can propagate. Conversely, for N sufficiently large that
ω2

p > ω2 (an overdense plasma), the dielectric constant is negative, n = √
ε is

imaginary, and light waves cannot propagate.
By way of comparison we recall that for a bound electron the linear polar-

izability is given (see Eq. (1.4.17) and note that χ(1)(ω) = Nε0α(ω)) by

α(ω) = e2/mε0

ω2
0 − ω2 − 2iωγ

, (13.7.5)

which in the highly nonresonant limit ω 
 ω0 reduces to

αbound = e2

ε0mω2
0

. (13.7.6)

Note that the polarizability of a free electron is opposite in sign and (for the
common situation ω 
 ω0) much larger in magnitude than that of a bound
electron. Thus the process of plasma formation makes a large negative contri-
bution to the refractive index. Note also that we have ignored the contribution
of the ionic core to the polarizability because it is very much smaller than the
electronic contribution because the mass of the ion is much larger than that of
the electron.

Let us next consider nonlinear optical effects that occur within a plasma.
There are two primary mechanisms of nonlinearity: (1) ponderomotive effects
and (2) relativistic effects.

Ponderomotive effects result from the tendency of charged particles such as
electrons to be expelled from regions of high field strength. These effects are
important only for laser pulses sufficiently long in duration for particle motion
to be important. Ponderomotive effects share an identical origin with the elec-
trostrictive effects described in Section 9.2; the effect is simply given a dif-
ferent name in the context of plasma nonlinearities. Despite the fact that α(ω)

is negative for a free electron (the ponderomotive case) but positive for bulk
matter (the electrostrictive case), both effects lead to an increase in refractive
index. In the ponderomotive case, the electron, which makes a negative con-
tribution to the refractive index, is expelled from the laser beam, leading to an
increase in refractive index.

Another mechanism of nonlinearity in plasmas is relativistic effects (Wag-
ner et al., 1997). In a sufficiently intense laser beam (I � 1018 W/cm2) a free
electron can be accelerated to relativistic velocities in a half optical period.
This conclusion can be reached by equating the ponderomotive energy K of
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Section 13.5 with the value mc2, or can be reached in a more intuitive fashion
by noting that a field of strength

Erel = 2mc2/λe (13.7.7)

will accelerate an electron to relativistic velocities in a half optical period
(because λ/2 is the distance traveled by a relativistic particle in a time 1/2ν),
and further noting that the corresponding intensity I = 1

2ε0cE
2
rel is of the order

of 1018 W/cm2.
Even when the electron velocity is considerably less than velocity of light

in vacuum c, appreciable nonlinear effects can be induced by the relativistic
change in the electron mass, that is, the change in electron mass from m to
γm where

γ = 1√
1 − v2/c2

. (13.7.8)

The value of the plasma frequency and consequently the refractive index of
the plasma is thereby modified such that

n2 = 1 − ω2
p

γω2
, (13.7.9)

where as before ω2
p = Ne2/ε0m. Detailed analysis (Max et al., 1974; Sprangle

et al., 1987) shows that the value of the relativistic factor γ to be used in
Eq. (13.7.9) is given in general (that is, even in the strongly relativistic limit)
by the expression

γ 2 = 1 + e2E2
0

m2ω2c2
, (13.7.10)

where E0 is the peak field amplitude of the incident laser field. In writing this
result in the form shown, we have assumed that the transverse contribution
to the velocity is much larger than the longitudinal component. Note that (by
comparison of Eq. (13.7.10) with Eqs. (13.5.4), (13.5.3), and (13.7.8)) the
correct expression for the dielectric constant is obtained if the peak electron
velocity is used in conjunction with Eq. (13.7.8) to determine the value of γ

to be used in Eq. (13.7.9).
We next calculate the nonlinear coefficient n2 by determining the lowest-

order change in refractive index. The relativistic factor γ is given by the
square root of expression (13.7.10), which to lowest order becomes

γ = 1 + 1

2

e2E2
0

m2ω2c2
≡ 1 + x, (13.7.11)
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where the parameter x has been introduced for future convenience. We can
thus write Eq. (13.7.9 ) as

n2 = 1 − ω2
p

ω2(1 + x)
� 1 − ω2

p

ω2
(1 − x)

= n2
0 + ω2

p

ω2
x, (13.7.12)

where n2
0 = 1 − ω2

p/ω2. We can thus express n as

n � n0 + 1

2n0

ω2
p

ω2
x ≡ n0 + n2I. (13.7.13)

Setting I = 1
2n0ε0cE

2
0 , we find that

n2 = ω2
pe2

2n2
0ε0m2c3ω4

. (13.7.14)

This expression gives the relativistic contribution to the nonlinear refractive
index. Note that this process is purely relativistic: Planck’s constant does not
appear in this expression. Note further that expression (13.7.14) can be rewrit-
ten in the intuitively revealing form

n2 = 1

2πn2
0

(
ωp

ω

)2[
λ2

(mc2)/(r0/c)

]
, (13.7.15)

where λ = 2πc/ω and r0 = e2/4πε0mc2 = 2.6 × 10−15 m is the classical
electron radius. The term in square brackets can be interpreted as the fun-
damental relativistic unit of nonlinear refractive index, that is, an area (λ2)

divided by the fundamental unit of power Prel (the electron rest mass mc2 di-
vided by the transit time of light across the classical radius of the electron).
Numerically we find that

Prel = mc2

(r0/c)
= (0.5 × 106)(1.6 × 10−19)

(2.6 × 10−15/3 × 108)
= 9.2 × 109 W. (13.7.16)

At a wavelength of λ = 1 μm, one thus finds that

n2 = 1

2πn2
0

(
ωp

ω

)2( 10−12

9.2 × 109

)
= 1

2πn2
0

(
ω0

ω

)2

1.1 × 10−22 m2

W
.

(13.7.17)

On the basis of the expression for n2 just derived, one can calculate the
critical power for self-focusing in a plasma. Since in general the expression
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for the critical power is given by Eq. (7.1.10) as

Pcr = (0.61)2πλ2

8n0n2
� λ2

8n0n2
, (13.7.18)

we find through use of Eq. (13.7.14) that

Pcr = π

4
n0c

(
mc2

e

)2(
ω

ωp

)2

= 6.7

(
ω

ωp

)2

GW. (13.7.19)

An expression for the critical power was first derived by Sprangle et al. (1987)
using slightly different assumptions, yielding a similar expression but with the
factor (π/4) in the first form replaced by 2 and thus the numerical factor 6.7 in
the second form replaced by 17. Relativistic self-focusing has been observed
experimentally by Monot et al. (1995). Note further that Eq. (13.7.19) can be
reexpressed in the suggestive form

Pcr = π

4
n0

(
ω

ωp

)2(
mc2

r0/c

)
. (13.7.20)

Here, as in Eq. (13.7.16), the last factor denotes the relativistic unit of optical
power.

13.8. Nonlinear Quantum Electrodynamics

We saw in the last section that there is a characteristic field strength Erel =
2mc2/eλ at which relativistic effects become important. There is another field
strength EQED at which effects associated with the quantum vacuum become
important. This field strength is defined by the relations

EQED = mc2

eλ̄c

, where λ̄c = h̄

mc
. (13.8.1)

Here λ̄c = 3.6 × 10−11 cm is the (reduced) Compton wavelength of the elec-
tron. The Compton wavelength is one measure of the size of the electron in
the sense that the position of the electron cannot be localized to an accuracy
better than λ̄c.∗ The QED field strength is thus a measure of the field strength

∗ This conclusion follows as a consequence of the time–energy uncertainty relation, which we take
in the form �E�t � h̄. We take the energy uncertainty to be the rest energy of an electron �E = mc2,
and we set the time uncertainty to �t = �x/c. We thus find that the minimum uncertainty in position
is �x = h̄/mc; we take this length as the definition of the reduced Compton wavelength λ̄c . This
result can be understood more intuitively by noting that a photon of wavelength shorter than ∼ λ̄c

would have an energy sufficiently large to create an electron–positron pair, thus rendering moot the
question of the location of the original electron.
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required to accelerate an electron to relativistic velocities in a distance of the
order of the size of the electron. Consequently a field of this magnitude is
large enough to lead to the spontaneous creation of electron–positron pairs.

The QED field strength is numerically given by

EQED = 1.32 × 1016 V/cm = 1.32 × 1020 V/m. (13.8.2)

The intensity of a wave whose peak field amplitude is equal to EQED is con-
sequently

IQED = 1
2ε0cE

2
QED = 4 × 1029 W/cm2. (13.8.3)

This value exceeds the intensity that can be produced by the most powerful
lasers currently available. From a different perspective, IQED designates the
largest laser intensity that could possibly be produced, in that a laser field
of any larger intensity would essentially be instantaneously absorbed as the
result of electron–positron creation. Nonetheless, in the rest frame of a rela-
tivistic electron of energy E, produced, for example, by a particle accelerator,
the intensity of a laser beam is greatly increased by relativistic effects. This
increase occurs because the electric field strength in the electron rest frame is
larger than the field in the laboratory frame by the factor γ = E/mc2. In fact,
electron–positron pair creation resulting from the interaction of a relativistic
electron with a laser beam has been observed experimentally (Burke et al.,
1997).

Nonlinear quantum electrodynamic effects have been predicted even for
field strengths considerably smaller than EQED. Euler and Kockel (1935) have
shown that there is an intrinsic nonlinearity to the electromagnetic vacuum
that leads to a field-dependent dielectric tensor of the form

εik = δik + e4h̄

45πm4c7

[
2
(
E2 − B2)δik + 7BiBk

]
. (13.8.4)

In this equation and in the remainder of this section gaussian units are used.
Note that the term containing (E2 − B2) vanishes for electromagnetic plane
waves in vacuum, because of the relation |E| = |B|. The dielectric response
relevant to plane-wave laser beams is thus

εik = δik + 7e4h̄

45πm4c7
BiBk, (13.8.5)

which can be expressed as

εik = δik + 7

45π

e2

h̄c

BiBk

E2
QED

. (13.8.6)
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This form of the expression shows that indeed the nonlinear response of the
vacuum becomes appreciable only for B � EQED.

Since the magnetic field (rather than the electric field) appears in the ex-
pression for the dielectric response, the tensor properties of the nonlinearity
of the vacuum are different from those of most other optical nonlinearities.
Nonetheless, by suppressing the tensor nature of the response, one can de-
scribe the nonlinearity in terms of a standard third-order susceptibility, and
such a description is useful for comparing the size of this effect with that
of other nonlinear optical processes. Since D = εE = E + 4πP , we see
that DNL = 4πP NL or that (working in the time domain, making use of
Eq. (13.8.6), and now explicitly indicating time-dependent quantities by a
tilde)

7

45π

e2

h̄c

B̃2Ẽ

E2
QED

= 4πχ(3)Ẽ3. (13.8.7)

Since B̃ = Ẽ, we find that

χ(3) = 7

180π2

e2

h̄c

1

E2
QED

= 1.44 × 10−32 esu. (13.8.8)

Recall for comparison that, for CS2, χ(3) = 1.9 × 10−12 esu. Alternatively,
the nonlinear refractive index coefficient is given by n2 = (12π2/c)χ(3) or by

n2 = 5.6 × 10−34 cm2/W. (13.8.9)

We saw in Chapter 7 that strong self-action effects are expected only if the
power of a laser beam exceeds the critical power for self-focusing

Pcr = λ2

8n0n2
. (13.8.10)

We find by combining Eqs. (13.8.9) and (13.8.10) that at a wavelength of
1 μm,

Pcr = 4.4 × 1024 W, (13.8.11)

which is considerably larger than the power of any laser source currently con-
templated.
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Problem

1. Consider the nonrelativistic motion of a free electron in the laser field
Ẽ(z, t) = E0 cosωt x̂, B̃(z, t) = B0 cosωt ŷ with B0 = E0. Assume that the
electron is injected into the field at rest at position x = 0, y = 0 at time t0.
(a) Solve the equation of motion for the electron and thereby determine

x(t), y(t), z(t), vx(t), vy(t), and vz(t) for all t > t0. Plot the trajectory
of the electron of the electron motion, both in the laboratory frame and
in a reference frame in which the electron is on average at rest (specify
what frame this is). Note that some of these results depend on the value
of t0; for those that do, show plots for several different values of t .

(b) Ignoring the magnetic contribution, calculate the peak and time-
averaged kinetic energy of the electron.

(c) Repeat for circular polarization.
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Appendices

Appendix A. The SI System of Units

In this appendix we review briefly the basic equations of electromagnetism
when written in the SI (System International, or rationalized mksa) system of
units. Conversion between the SI and gaussian systems of units is summarized
in an additional appendix. The intent of this appendix is to establish notation
and not to present a rigorous exposition of electromagnetic theory.

In the SI system, mechanical properties are measured in mks units, that is,
distance is measured in meters (m), mass in kilograms (kg), and time in sec-
onds (s). The unit of force is thus the kg m/sec2, known as a newton (N), and
the unit of energy is the kg m2/sec2, known as the joule (J). The fundamental
electrical unit is a unit of charge, known as the coulomb (C). It is defined such
that the force between two charged point particles, each containing 1 coulomb
of charge and separated by a distance of 1 meter, is 1 newton. More generally,
the force between two charged particles of charges q1 and q2 separated by the
directed distance r = r r̂, where r̂ is a unit vector in the r direction, is given by

F = q1q2

4πε0r2
r̂. (A.1)

This result is known as Coulomb’s law. The parameter ε0 that appears in this
equation is known as the permittivity of free space and has the value ε0 =
8.85 × 10−12 F/m. Here F is the abbreviation for the farad, which is defined
as 1 coulomb/volt. The unit of electrical current is the ampere (A), which is
1 coulomb/sec. The unit of electrical potential (i.e., potential energy per unit
charge) is the volt, which is 1 joule/coulomb.

In the SI system, Maxwell’s equations have the form∗

∇ × E = −∂B
∂t

, (A.2a)

∇ × H = ∂D
∂t

+ J, (A.2b)

∗ In this appendix, we dispense with our usual notation of using a tilde to denote time-varying
quantities.
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∇ · D = ρ, (A.2c)

∇ · B = 0. (A.2d)

The units and names of the field vectors are as follows:

[E] = V/m (electric field), (A.3a)

[D] = C/m2 (electric displacement), (A.3b)

[B] = T (magnetic field, or magnetic induction), (A.3c)

[H] = A/m (magnetic intensity), (A.3d)

[P] = C/m2 (polarization), (A.3e)

[M] = A/m (magnetization). (A.3f)

In Eq. (A.3c), T notes the tesla, the unit of magnetic field strength. The tesla is
equivalent to the Wb/m2, where Wb denotes the weber, the unit of magnetic
flux, which is equivalent to 1 joule/ampere or to 1 volt second.

The vectors P and M are known as the polarization and magnetization,
respectively. The polarization P represents the electric dipole moment per unit
volume that may be present in a material. The magnetization M denotes the
magnetic dipole moment per unit volume that may be present in the material.
These quantities are discussed further in the discussion given below.

The two additional quantities appearing in Maxwell’s equations are the free
charge density ρ, measured in units of coulombs/m3, and the free current
density J, measured in units of amperes/m2. Under many circumstances, J is
given by the expression

J = σE, (A.4)

which can be considered to be a microscopic form of Ohm’s law. Here σ is
the electrical conductivity, whose units are ohm−1 m−1. The ohm is the unit
of electrical resistance and has units of volt/ampere.

The relationships that exist among the four electromagnetic field vectors
because of purely material properties are known as the constitutive relations.
These relations, even in the presence of nonlinearities, have the form

D = ε0E + P, (A.5a)

H = μ−1
0 B − M. (A.5b)

Here μ0 is the magnetic permeability of free space, which has the value μ0 =
1.26 × 10−6 H/m. Here H is the abbreviation for the henry, which is defined
as 1 weber/ampere or as 1 volt second/ampere.
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The manner in which the response of a material medium can lead to a non-
linear dependence of P upon E is of course the subject of this book. For the
limiting case of a purely linear response, the relationships can be expressed
(assuming an isotropic medium for notational simplicity) as

P = ε0χ
(1)E, (A.6a)

M = χ(1)
m H. (A.6b)

Note that the linear electric susceptibility χ(1) and the linear magnetic suscep-
tibility χ

(1)
m are dimensionless quantities. We now introduce the linear relative

dielectric constant ε(1) and the linear relative magnetic permeability μ(1), both
of which are dimensionless and are defined by

D = ε0ε
(1)E, (A.7a)

B = μ0μ
(1)
m H. (A.7b)

We then find by consistency of Eqs. (A.5a), (A.6a), and (A.7a) and of (A.5b),
(A.6b), and (A.7b) that

ε(1) = 1 + χ(1), (A.8a)

μ(1) = 1 + χ(1)
m . (A.8b)

The fields E and B (rather than D and H) are usually taken to constitute
the fundamental electromagnetic fields. For example, the force on a particle
of charge q moving at velocity v through an electromagnetic field is given by
the Lorentz force law in the form

F = q
[
E + (v × B)

]
. (A.9)

A.1. Energy Relations and Poynting’s Theorem

Poynting’s theorem can be derived from Maxwell’s equations in the following
manner. We begin with the vector identity

∇ · (E × H) = H · (∇ × E) − E · (∇ × H) (A.10)

and introduce expressions for ∇ × E and ∇ × H from the Maxwell equations
(A.2a) and (A.2b) to obtain

∇ · (E × H) +
[

H · ∂B
∂t

+ E · ∂D
∂t

]
= −J · E. (A.11)
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Assuming for simplicity the case of a purely linear response, the second term
on the left-hand side of this equation can be expressed as ∂u/∂t , where

u = 1
2 (E · D + B · H) (A.12)

represents the energy density of the electromagnetic field. We also introduce
the Poynting vector

S = E × H, (A.13)

which gives the rate at which electromagnetic energy passes through a unit
area whose normal is in the direction of S. Equation (A.11) can then be written
as

∇ · S + ∂u

∂t
= −J · E, (A.14)

where J · E gives the rate per unit volume at which energy is lost to the field
through Joule heating.

A.2. The Wave Equation

A wave equation for the electric field can be derived from Maxwell’s equa-
tions, as described in greater detail in Section 2.1. We assume the case of a
linear, isotropic, nonmagnetic (i.e., μ = 1) medium that is free of sources (i.e.,
ρ = 0 and J = 0). We first take the curl of the first Maxwell equation (A.2a),
reverse the order of differentiation on the right-hand side, replace B by μ0H,
and use the second Maxwell equation (A.2b) to replace ∇ × H by ∂D/∂t to
obtain

∇ × ∇ × E = −μ0
∂2D
∂t2 . (A.15)

On the left-hand side of this equation, we make use of the vector identity

∇ × ∇ × E = ∇(∇ · E) − ∇2E, (A.16)

and drop the first term because ∇ · E must vanish whenever ρ vanishes in an
isotropic medium because of the Maxwell equation (A.2c). On the right-hand
side, we replace D by ε0ε

(1)E, and set μ0ε0 equal to 1/c2. We thus obtain the
wave equation in the form

−∇2E + ε(1)

c2

∂2E
∂t2

= 0. (A.17)

This equation possesses solutions in the form of infinite plane waves—that is,

E = E0e
i(k·r−ωt) + c.c., (A.18)



Appendix A. The SI System of Units 593

where k and ω must be related by

k = nω/c where n =
√

ε(1) and k = |k|.
The magnetic intensity associated with this wave has the form

H = H0e
i(k·r−ωt) + c.c. (A.19)

Note that, in accordance with the convention followed in this book, factors
of 1

2 are not included in these expressions. From Maxwell’s equations, one can
deduce that E0,H0, and k are mutually orthogonal and that the magnitudes of
E0 and H0 are related by

n|E0| =
√

μ0/ε0 |H0|. (A.20)

The quantity
√

μ0/ε0 is known as the impedance of free space and has the
value 377 ohms. Since ε0μ0 = 1/c2, the impedance of free space can alterna-
tively be written as

√
μ0/ε0 = 1/ε0c.

In considerations of the energy relations associated with a time-varying
field, it is useful to introduce a time-averaged Poynting vector 〈S〉 and a
time-averaged energy density 〈u〉. Through use of Eqs. (A.18)–(A.20) and the
defining relations (A.12) and (A.13), we find that these quantities are given
by

〈S〉 = 2n
√

ε0/μ0 |E0|2k̂ = 2nε0c|E0|2k̂, (A.21a)

〈u〉 = 2n2ε0|E0|2, (A.21b)

where k̂ is a unit vector in the k direction. In this book the magnitude of the
time-averaged Poynting vector is called the intensity I = |〈S〉| and is given by

I = 2n
√

ε0/μ0 |E0|2 = 2nε0c|E0|2. (A.22)

A.3. Boundary Conditions

There are many situations in electromagnetic theory in which one needs to
calculate the fields in the vicinity of a boundary between two regions of space
with different optical properties. The way in which the fields are related on the
opposite sides of the boundary constitutes the topic of boundary conditions.

To treat this topic, we first express the Maxwell equations in their integral
rather than differential forms. We recall the divergence theorem, which states
that, for any well-behaved vector field A, the following identity holds:∫

V

∇ · AdV =
∫

S

A · nda. (A.23)
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The integral on the left-hand side is to be performed over a closed three-
dimensional volume V and the integral on the right-hand side is to be per-
formed over the surface S that encloses this volume. The quantity n repre-
sents a unit vector pointing in the outward normal direction. If the divergence
theorem is applied to Maxwell’s equations (A.2c) and (A.2d), one obtains∫

S

D · nda =
∫

V

ρ dV, (A.24)

∫
S

B · nda = 0. (A.25)

The first of these equations expresses Gauss’s law, and the second the absence
of magnetic monopoles.

We can similarly express the two “curl” Maxwell equations in integral form
through use of Stokes’s theorem, which states that for any well-behaved vector
field A ∫

S

(∇ × A) · nda =
∫

C

A · dl. (A.26)

Here S is any open surface, C is a curve that bounds it, and dl is a directed
line element along this curve. When this theorem is applied to Maxwell’s
equations (A.2a) and (A.2b), one obtains∫

C

E · dl = −
∫

S

∂B
∂t

· nda, (A.27)

∫
C

H · dl =
∫

S

(
∂D
∂t

+ J
)

· nda. (A.28)

The first of these equations expresses Faraday’s law, and the second expresses
Ampere’s law with the inclusion of Maxwell’s displacement current.

We are now in a position to determine the nature of the boundary conditions
on the electromagnetic fields. We refer to Fig. A.1, which shows the interface
between regions 1 and 2. We first imagine placing a small cylindrical pill box
near the interface so that one circular side extends into region 1 and the other
into region 2. We apply Eq. (A.24) to this situation. We next imagine shrinking
the height of the pill box while keeping the areas of the two surfaces fixed. By
such a limiting procedure, we are assured that the value of the surface integral
is dominated by the fields on the two circular surfaces. We further assume that
the pill box is sufficiently small that the fields are essentially constant over
these surfaces. Even though the surface integrals then remain appreciable, the
volume integral will vanish so long as ρ remains finite, because the volume
over which the integration is performed will tend to zero as the height of
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FIGURE A.1 Constructions used to determine the boundary conditions of the electro-
magnetic fields at the interface (surface S) between regions 1 and 2.

the pill box is shrunk. The only situation in which the volume integral can
be nonvanishing is that in which ρ diverges somewhere within the region of
integration, for example, if there is charge located on the surface separating
regions 1 and 2. If we let 	 denote the surface charge density—that is, the
charge per unit area located on the surface, we find that the boundary condition
on D is given by

(D2 − D1) · n = 	. (A.29)

The boundary condition on B is found much more simply. Since the right-
hand side of Eq. A.25 vanishes, we find immediately that

(B2 − B1) · n = 0. (A.30)

Equation (A.30) tells us that the normal component of the B field must be con-
tinuous at the boundary. Equation (A.29) tells us that the normal component
of the D field can be discontinuous but only by an amount equal to the charge
density accumulated on the surface. This free-charge density can be appre-
ciable for the case of metallic surfaces. However, the surface charge density
vanishes at the interface between two dielectric materials.

The boundary conditions for E and H can be determined by considering the
path integral shown at right-hand side of the figure. We assume that the long
sides of the path lie parallel to the surface, one on each side of the interface.
We further assume the limiting situation in which the short sides and very
much shorter than the long sides. In this situation the line integrals are dom-
inated by the long sides of the paths, and the surface integrals tend to vanish
because the area of the region of integration tends to zero. The surface inte-
grals of ∂B/∂t and ∂D/∂t always vanish for this reason. However, the surface
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integral of J can be nonvanishing if J diverges anywhere within the region
of integration. This can occur if there is a surface current density js , of units
A/m, at the boundary between the two materials. As a consequence of these
considerations, Eqs. (A.27) and (A.28) become

(E2 − E1) × n = 0, (A.31)

(H2 − H1) × n = js . (A.32)

The first of these equations states that the tangential component of E is al-
ways continuous at an interface, whereas the second states that the tangential
components of H is discontinuous by an amount equal to the surface current
density js . Again, the surface current density must vanish for the interface
between two dielectric media.

Further reading

Jackson, J.D., 1999. Classical Electrodynamics, Third Edition. Wiley, New York.
Stratton, J.A., 1941. Electromagnetic Theory. McGraw–Hill, New York.

Appendix B. The Gaussian System of Units

In this appendix we review briefly the basic equations of electromagnetism
when written in the gaussian system of units. Our treatment is a bit more
abbreviated than that of Appendix A on the SI system.

In the gaussian system, mechanical properties are measured in cgs units,
that is, distance is measured in centimeters (cm), mass in grams (g), and time
in seconds (s). The unit of force is thus the g cm/sec2, known as a dyne,
and the unit of energy is the g cm2/sec2, known as the erg. The fundamental
electrical unit is a unit of charge, known either as the statcoulomb or sim-
ply as the electrostatic unit of charge. It is defined such that the force be-
tween two charged point particles, each containing 1 statcoulomb of charge
and separated by 1 centimeter, is 1 dyne. More generally, the force between
two charged particles of charges q1 and q2 separated by the directed distance
r = r r̂ where r̂ is a unit vector in the r direction is given by

F = q1q2

r2
r̂. (B.1)

The unit of current is thus the statcoulomb/sec, which is known as the statam-
pere, or simply as the electrostatic unit of current. The unit of electrical poten-
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tial (i.e., potential energy per unit charge) is the erg/statcoulomb, also known
as the statvolt.

In the gaussian system, Maxwell’s equations have the form

∇ × E = −1

c

∂B
∂t

, (B.2a)

∇ × H = 1

c

∂D
∂t

+ 4π

c
J, (B.2b)

∇ · B = 0, (B.2c)

∇ · D = 4πρ. (B.2d)

A remarkable feature of the gaussian system is that the four primary field
vectors (i.e., the electric field E, the electric displacement field D, the mag-
netic induction B, and the magnetic intensity H, as well as the polarization
vector P and the magnetization vector M, which will be introduced shortly)
all have the same dimensions—that is,

[E] = [D] = [B] = [H] = [D] = [M]

= statvolt

cm
= statcoulomb

cm2
= gauss = oersted =

(
erg

cm3

)1/2

. (B.3)

By convention the name gauss is used only in reference to the field B
and oersted only with the field H. The two additional quantities appearing
in Maxwell’s equations are the free charge density ρ, measured in units
of statcoulomb/cm3, and the free current density J, measured in units of
statampere/cm2. Under many circumstances J is given by the expression

J = σE, (B.4)

which can be considered to be a microscopic form of Ohm’s law, where σ is
the electrical conductivity, whose units are inverse seconds.

The relationships among the four electromagnetic field vectors are known
as the constitutive relations. These relations, even in the presence of nonlin-
earities, have the form

D = E + 4πP, (B.5a)

H = B − 4πM. (B.5b)

The manner in which the response of a material medium can lead to a non-
linear dependence of P upon E is of course the subject of this book. For the
limiting case of a purely linear response, the relationships can be expressed
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(assuming an isotropic medium for notational simplicity) as

P = χ(1)E, (B.6a)

M = χ(1)
m H. (B.6b)

Note that the linear electric susceptibility χ(1) and the linear magnetic suscep-
tibility χ

(1)
m are dimensionless quantities. If we now introduce the linear di-

electric constant ε(1) (also known as the dielectric permittivity) and the linear
magnetic permeability μ(1), both of which are dimensionless and are defined
by

D = ε(1)E, (B.7a)

B = μ(1)
m H, (B.7b)

we find by consistency of Eqs. (B.5a)–(B.7a) and (B.5b)–(B.7b) that

ε(1) = 1 + 4πχ(1), (B.8a)

μ(1) = 1 + 4πχ(1)
m . (B.8b)

The fields E and B (rather than D and H) are usually taken to constitute
the fundamental electromagnetic fields. For example, the force on a particle
of charge q moving at velocity v through an electromagnetic field is given by

F = q
(

E + v
c

× B
)
. (B.9)

Poynting’s theorem can be derived from Maxwell’s equations in the follow-
ing manner. We begin with the vector identity

∇ · (E × H) = H · (∇ × E) − E · (∇ × H) (B.10)

and introduce expressions for ∇ × E and ∇ × H from the Maxwell equations
(B.2a) and (B.2b), to obtain

c

4π
∇ · (E × H) + 1

4π

[
H · ∂B

∂t
+ E · ∂D

∂t

]
= −J · E. (B.11)

Assuming for simplicity the case of a purely linear response, the second term
on the left-hand side of this equation can be expressed as ∂u/∂t , where

u = 1

8π
(E · D + B · H) (B.12)

represents the energy density of the electromagnetic field. We also introduce
the Poynting vector

S = c

4π
E × H, (B.13)
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which gives the rate at which electromagnetic energy passes through a unit
area whose normal is in the direction of S. Equation (B.11) can then be written
as

∇ · S + ∂u

∂t
= −J · E, (B.14)

where J · E gives the rate per unit volume at which energy is lost to the field
through Joule heating.

A wave equation for the electric field can be derived from Maxwell’s equa-
tions, as described in Section 2.1, and for a linear, isotropic nonmagnetic (i.e.,
μ = 1) medium that is free of sources has the form

−∇2E + ε(1)

c2

∂2E
∂t2

= 0. (B.15)

This equation possesses solutions in the form of infinite plane waves—that is,

E = E0e
i(k·r−ωt) + c.c., (B.16)

where k and ω must be related by

k = nω/c, where n =
√

ε(1) and k = |k|.
The magnetic field associated with this wave has the form

B = B0e
i(k·r−ωt) + c.c. (B.17)

Note that, in accordance with the convention followed in the book, factors
of 1

2 are not included in these expressions. From Maxwell’s equations, one can
deduce that E0,B0, and k are mutually orthogonal and that the magnitudes of
E0 and B0 are related by

n|E0| = |B0|. (B.18)

In considering the energy relations associated with a time-varying field, it is
useful to introduce a time-averaged Poynting vector 〈S〉 and a time-averaged
energy density 〈u〉. Through use of Eqs. (B.16)–(B.18), we find that these
quantities are given by

〈S〉 = nc

2π
|E0|2k̂, (B.19a)

〈u〉 = n2

2π
|E0|2, (B.19b)

where k̂ is a unit vector in the k direction. In this book the magnitude of the
time-averaged Poynting vector is called the intensity I = |〈S〉| and is given by
I = (nc/2π)|E0|2.
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Further reading

Jackson, J.D., 1975. Classical Electrodynamics, Second Edition. Wiley, New York.
Marion, J.B., Heald, M.A., 1980. Classical Electromagnetic Radiation. Academic Press,

New York.
Purcell, E.M., 1965. Electricity and Magnetism. McGraw-Hill, New York.

Appendix C. Systems of Units in Nonlinear Optics

There are several different systems of units that are commonly used in nonlin-
ear optics. In this appendix we describe these different systems and show how
to convert among them. For simplicity we restrict the discussion to a medium
with instantaneous response so that the nonlinear susceptibilities can be taken
to be dispersionless. Clearly the rules derived here for conversion among the
systems of units are the same for a dispersive medium.

In the gaussian system of units, the polarization P̃ (t) is related to the field
strength Ẽ(t) by the equation

P̃ (t) = χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · . (C.1)

In the gaussian system, all of the fields Ẽ, P̃ , D̃, B̃ , H̃ , and M̃ have the same
units; in particular, the units of P̃ and Ẽ are given by

[
P̃

] = [
Ẽ

] = statvolt

cm
= statcoulomb

cm2
=

(
erg

cm3

)1/2

. (C.2)

Consequently, we see from Eq. (C.1) that the dimensions of the susceptibili-
ties are as follows:

χ(1) is dimensionless, (C.3a)

[
χ(2)

] =
[

1

Ẽ

]
= cm

statvolt
=

(
erg

cm3

)−1/2

, (C.3b)

[
χ(3)

] =
[

1

Ẽ2

]
= cm2

statvolt2
=

(
erg

cm3

)−1

. (C.3c)

The units of the nonlinear susceptibilities are often not stated explicitly in the
gaussian system of units; one rather simply states that the value is given in
electrostatic units (esu).

While there are various conventions in use regarding the units of the sus-
ceptibilities in the SI system, by far the most common convention is to replace
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Eq. (C.1) by

P̃ (t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · · ], (C.4)

where

ε0 = 8.85 × 10−12 F/m (C.5)

denotes the permittivity of free space. Since the units of P̃ and Ẽ in the MKS
system are

[
P̃

] = C

m2
, (C.6a)

[
Ẽ

] = V

m
, (C.6b)

and since 1 farad is equal to 1 coulomb per volt, it follows that the units of the
susceptibilities are as follows:

χ(1) is dimensionless, (C.7a)

[
χ(2)

] =
[

1

Ẽ

]
= m

V
, (C.7b)

[
χ(3)

] =
[

1

Ẽ2

]
= m2

V2
. (C.7c)

C.1. Conversion between the Systems

In order to facilitate conversion between the two systems just introduced, we
express the two defining relations (C.1) and (C.4) in the following forms:

P̃ (t) = χ(1)Ẽ(t)

[
1 + χ(2)Ẽ(t)

χ(1)
+ χ(3)Ẽ2(t)

χ(1)
+ · · ·

]
(gaussian), (C.1′)

P̃ (t) = ε0χ
(1)Ẽ(t)

[
1 + χ(2)Ẽ(t)

χ(1)
+ χ(3)Ẽ2(t)

χ(1)
+ · · ·

]
(MKS). (C.4′)

The power series shown in square brackets must be identical in each of these
equations. However, the values of Ẽ, χ(1), χ(2), and χ(3) are different in
different systems. In particular, from Eqs. (C.2) and (C.5) and the fact that
1 statvolt = 300 V, we find that

Ẽ (MKS) = 3 × 104Ẽ (gaussian). (C.8)

To determine how the linear susceptibilities in the gaussian and MKS systems
are related, we make use of the fact that for a linear medium the displacement



602 Appendices

is given in the gaussian system by

D̃ = Ẽ + 4πP̃ = Ẽ
(
1 + 4πχ(1)

)
, (C.9a)

and in the MKS system by

D̃ = ε0Ẽ + P̃ = ε0Ẽ
(
1 + χ(1)

)
. (C.9b)

We thus find that

χ(1) (MKS) = 4πχ(1) (gaussian). (C.10)

Using Eqs. (C.8) and (C.9a)–(C.9b), and requiring that the power series of
Eqs. (C.1′) and (C.4′) be identical, we find that the nonlinear susceptibilities
in our two systems of unit are related by

χ(2) (MKS) = 4π

3 × 104
χ(2) (gaussian)

= 4.189 × 10−4χ(2) (gaussian), (C.11)

χ(3) (MKS) = 4π

(3 × 104)2
χ(3) (gaussian)

= 1.40 × 10−8χ(3) (gaussian). (C.12)

Appendix D. Relationship between Intensity and Field Strength

In the gaussian system of units, the intensity associated with the field

Ẽ(t) = Ee−iωt + c.c. (D.1)

is

I = nc

2π
|E|2, (D.2)

where n is the refractive index, c = 3 × 1010 cm/sec is the speed of light in
vacuum, I is measured in erg/cm2 sec, and E is measured in statvolts/cm.

In the MKS system, the intensity of the field described by Eq. (D.1) is given
by

I = 2n
( ε0

μ0

)1/2|E|2 = 2n

Z0
|E|2 = 2nε0c|E|2, (D.3)

where ε0 = 8.85 × 10−12 F/m, μ0 = 4π × 10−7 H/m, and Z0 = 377 
. I is
measured in W/m2, and E is measured in V/m. Using these relations we can
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TABLE D.1 Relation between field strength and intensity

Conventional Gaussian (cgs) SI (mks)

I I E I E

(erg/cm2 sec) (statvolt/cm) (W/m2) (V/m)
1 kW/m2 106 0.0145 103 4.34×102

1 W/cm2 107 0.0458 104 1.37×103

1 MW/m2 109 0.458 106 1.37×104

1 kW/cm2 1010 1.45 107 4.34×104

1 GW/m2 1012 1.45 × 10 109 4.34×105

1 MW/cm2 1013 45.8 1010 1.37×106

1 TW/m2 1015 4.58×102 1012 1.37×107

1 GM/cm2 1016 1.45×103 1013 4.34×107

1 ZW/m2 1018 1.45×104 1015 4.34×108

1 TW/cm2 1019 4.85×104 1016 1.37×109

obtain the results shown in Table D.1. As a numerical example, a pulsed laser
of modest energy might produce a pulse energy or Q = 1 mJ with a pulse
duration of T = 10 nsec. The peak laser power would then be of the order of
P = Q/T = 100 kW. If this beam is focused to a spot size of w0 = 100 µm,
the pulse intensity will be I = P/πw2

0 � 0.3 GW/cm2.

Appendix E. Physical Constants

TABLE E.1 Physical constants in the cgs and SI systems

Constant Symbol Value Gaussian (cgs) a SI (mks) a

Speed of light in vacuum c 2.998 1010 cm/sec 108 m/sec
Elementary charge e 4.803 10−10 esu

1.602 10−19 C
Avogadro number NA 6.023 1023 mol 1023 mol
Electron rest mass m = me 9.109 10−28 g 10−31 kg
Proton rest mass mp 1.673 10−24 g 10−27 kg
Planck constant h 6.626 10−27 erg sec 10−34 J sec

h = h/2π 1.054 10−27 erg sec 10−34 J sec
Fine structure constant b α = e2/ hc 1/137 – –
Compton wavelength of

electron λC = h/mc 2.426 10−10 cm 10−12 m
Rydberg constant R∞ = me4/2 h2 1.09737 105 cm−1 107 m−1

Bohr radius a0 =h2/me2 5.292 10−9 cm 10−11 m
Electron radius b re = e2/mc2 2.818 10−13 cm 10−15 m
Bohr magneton b μS = eh/2mec 9.273 10−21 erg/G 10−24 J/T

⇒ 1.4 MHz/G

(continued on next page)
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TABLE E.1 (Continued)

Constant Symbol Value Gaussian (cgs) a SI (mks) a

Nuclear magneton b μN = e h/2mpc 5.051 10−24 erg/G 10−27 J/T
Gas constant R 8.314 107 erg/K m 100 J/K mole
Volume, mole of ideal gas V0 2.241 104 cm3 10−2 m3

Boltzmann constant kB 1.381 10−16 erg/K 10−23 J/K
Stefan–Boltzmann constant σ 5.670 10−5 erg/cm2 sec K4 10−8 W/m2 K4

Gravitational constant G 6.670 10−8 dyne cm2/g2 10−11 N m2/kg2

Electron volt eV 1.602 10−12 erg 10−19 J

a Abbreviations: C, coulombs; mol, molecules; g, grams; J, joules; N, newtons; G, gauss; T, teslas.
b Defining equation is shown in the gaussian CGS system of units.

TABLE E.2 Physical constants specific to the SI system

Constant Symbol a Value a

Permittivity of free space ε0 8.85 × 10−12 F/m
Permeability of free space μ0 4π × 10−7 H/m
Velocity of light in free space (ε0μ0)−1/2 = c 2.997 × 108 m/sec
Impedance of free space (μ0/ε0)1/2 = Z0 = ε0c 377 


a Abbreviations: F, farad = coulomb/volt, H, henry = weber/ampere.

TABLE E.3 Conversion between the systems

1 m = 100 cm
1 kg = 1000 g
1 newton = 105 dynes
1 joule = 107 erg
1 coulomb = 2.998 × 109 statcoulomb
1 volt = 1/299.8 statvolt
1 ohm = 1.139 × 10−12 sec/cm
1 tesla = 104 gauss a

1 farad = 0.899 × 1012 cm
1 henry = 1.113 × 10−12 sec2/cm

a Here, 1 tesla = 1 weber/m2; 1 gauss = 1 oersted.
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induced 295, 307, 310, 312, 313, 397

operator, matrix representation of 157

Dipoles 69, 77
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570
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Dispersive medium 73, 600

Dissipative medium 74
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Doppler broadening 293
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325–327
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E
Effective susceptibility 216
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264, 295, 551
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370, 374
Equation of state (thermodynamics) 404,
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Ethanol 212, 237, 407, 441, 466
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141, 152, 154
Exponential growth 107, 110, 388, 430,

440, 442, 484, 499
Extraordinary polarization 81, 82, 533

F
Fabry–Perot interferometer 360, 386
Fast light 325
Feedback 108, 111, 430
Fermat’s principle 331
Fermi’s golden rule 550, 556
Ferroelectric materials 51, 85
Feynman diagrams 177–179, 183, 185
Filamentation 330, 336, 338, 383
Fluctuations 113, 326, 392–394, 400–406,

412, 429, 444, 456
adiabatic and isobaric fluctuations 406,

412, 456
entropy fluctuations 392
relation to light scattering 393, 394

Fluence 238, 248, 546, 547
Foreign-gas broadening 283
Four-wave mixing 314, 326, 327, 346–348,

352–355, 357, 358, 384, 385, 450,
486–488, 536–539

Brillouin-enhanced 469
contribution to stimulated Raman

scattering 324
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degenerate 346–348, 352–355, 357,
358, 385, 450

forward 314, 324, 327, 330, 339, 340,
348, 355, 358, 488

photorefractive 536–539
Fourier transform 56, 61, 378, 380, 576
Frequency domain 52, 56, 57, 379, 563
Full permutation symmetry 35–38, 49, 76,

90, 91, 96, 145, 180, 202

G
Gain factor 504

for stimulated Brillouin scattering 440,
453, 463, 464, 469

for stimulated Rayleigh scattering 464
for stimulated Rayleigh-wing scattering

504–507
process 440, 485

Gallium arsenide 49, 50, 84
Gauss (unit of magnetic field) 597, 604
Gaussian laser beams 129, 130

focused 130
Gaussian system of units 128, 596, 597,

599, 600, 602
Generator (stimulated Brillouin scattering)

430, 431, 437, 443, 446
contrasted with amplifier 430, 431

Grating wavevector 370, 529, 531, 532
Group index and group velocity 129, 325
Group theory 42, 64, 66
Group velocity dispersion 379–382, 567,

568

H
Half-wave voltage 520
Hamiltonian (quantum mechanical operator)

138, 152, 153, 155, 158, 159, 161,
278–280, 286, 302, 303, 551, 552

Harmonic generation 5–8, 96, 97,
101–105, 118–123, 129–132, 135,
136, 147–150, 575, 577, 578

Harmonic oscillator form of density matrix
equations 297

Heat capacity 236, 237, 547
Heat transport equation 239, 547
Hermitian operator 152
Hexagonal (crystal) 43, 53, 82

High-harmonic generation 575, 577, 578,
586

Homeotropic alignment 272
Hydrogen 254, 255, 273, 480
Hyperbolic secant pulse 388
Hyperpolarizability 200, 259, 264

bond 264
Hysteresis 363

I
Ideal gas 237, 401, 402, 404–406, 453,

454, 468, 604
Idler wave 107, 108
Impurity-doped solid 326
Index ellipsoid 513, 516, 518, 519
Instantaneous frequency 376, 377
Instantaneous response 386, 600
Intense-field nonlinear optics 561, 571,

572, 577, 586
Intensity modulator 521
Intensity-dependent refractive index 11,

12, 207, 209, 210, 213, 230, 242, 329,
369, 377

basic properties of 11, 207
Interaction picture 159, 187, 190, 192
Interfaces, nonlinear optics of 122
Interference 348, 371, 372, 393, 414, 429,

430, 456, 503, 505, 506, 536
destructive 393

Intrinsic permutation symmetry 20, 32, 34,
35, 48, 143, 172, 173, 214

Inversion symmetry 3, 21, 44, 46, 48, 51,
104, 123, 515

Isotropic materials 43, 53, 165, 211, 216,
435

nonlinear, propagation through 217

J
Jacobi elliptic functions 91, 100
Jitter energy 573
Joule heating 545, 548, 592, 599

K
KDP 50, 515–519
Keldysh mechanism 545
Kerr effect 208, 373

electrooptic 208
optical 207, 208, 373
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Kleinman symmetry 39, 40, 46, 227, 267,
270

Kramers–Kronig relations 2, 58, 59,
61–65, 67, 243, 325

KTP 115, 116
Kurtosis 258, 260

L
Landau–Placzek relation 413
Laplacian differential operator 346

transverse laplacian 346, 567
Lasing without inversion 185
Levorotatory 270
Lifetime 156, 281, 408, 438, 447, 455,

460, 468, 555
Linewidth (of OPO) 115
Liquid crystals 253, 271–273, 275
Liquids 29, 43, 66, 195, 211, 212, 228,

237, 252, 447
Lithium niobate 84, 88, 115, 116, 516,

517, 527
Lorentz local field 194–197
Lorentz model (of atom) 21, 166, 222, 398,

427
Lorentz–Lorenz law 197, 201, 260
Lorentzian lineshape 400, 555
Lossless medium 5, 35, 36, 38, 49, 76, 89,

90, 145

M
Mach–Zehnder interferometer 366
Magnetic permeability 590, 591, 598
Maker and Terhune (A and B) notation

215, 222, 226, 227, 235
Manley–Rowe relations 88, 90, 98, 130
Maxwell field 195
Maxwell–Boltzmann distribution 242
Maxwell’s equations 69, 70, 194, 589–594,

597–599
Mean-field approximation 359, 360
Methanol 212, 441, 466
Microscopy, nonlinear optical 104
Miller’s rule 27, 259, 260
Mobility 527, 535
Mode structure (of OPO) 112, 113
Modulation index 425, 529, 540
Modulational instability 388

Molecular orientation effect 234, 235, 249,
342, 501

Molecular vibrations 481
Monoclinic (crystal) 43, 47, 82
Moving focus model (of self focusing) 342
Multiphoton absorption 543, 549–551,

553, 555, 557, 559, 560
Multiphoton ionization and dissociation

543, 579

N
Negative-frequency components 34
Nematic phase 271
Nitrogen 427, 454
Noncentrosymmetric media 3, 22, 23
Nonlinear Schrödinger equation 381, 388,

562, 566
Nonlocal response 448
Nonresonant excitation 32, 144, 147, 179,

184, 223
Normal dispersion 79, 81

O
Octopole moment 259
Oersted (unit of magnetic field) 597, 604
Ohm’s law 535, 590, 597
Optical activity 220, 268, 269
Optical bistability 15, 16, 359–363, 365,

367, 385, 386, 389
absorptive 359, 360, 385
refractive 15, 359, 360, 386

Optical damage 12, 368, 468, 469, 543,
544, 546, 548, 549, 559, 560

threshold for 548
Optical indicatrix 513–515
Optical parametric oscillation 10, 110
Optical phase conjugation 186, 343–345,

347, 349, 351–353, 355, 357, 384,
385, 389

Optical rectification 5, 7, 27
Optical shock waves 569, 571
Optical switching 359, 361, 363, 365,

367–369, 386
Optimum focusing (in SHG) 131
Ordinary polarization 82
Orthogonal transformation 512
Orthonormality condition 139, 552
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Orthorhombic (crystal) 43, 47, 55, 82
Oscillator strength 166, 260

sum rule for 166

P
Parametric amplification 9, 105, 107–109,

112
Parametric and nonparametric processes 14
Parametric fluorescence 10
Paraxial wave equation 116, 117, 130, 335
Parity, definite or fixed 257, 279
Pauli principle 244
Permittivity 2, 72, 73, 431, 589, 598, 601,

604
Perturbation theory 137, 138, 145, 176,

256, 314, 315
Perturbation theory, time-independent 253
Perturbation theory of atomic wave function

137, 180
Phase conjugation 186, 342–347, 349,

351–358, 384, 385, 389, 390,
448–453, 470, 471, 507

aberration correction by 344, 345
by stimulated Brillouin scattering 448,

449, 451
polarization properties of 355, 356, 385,

389, 453, 507
vector 343, 344, 355–358, 507

Phase of focused Gaussian beam 250
Phase shift (as origin of two-beam coupling)

369
Phase-matching 8, 10, 69, 77, 79, 81–84,

131, 413, 414, 488
and Stokes–anti-Stokes coupling in

stimulated Raman scattering 488
as the Bragg condition 416
methods of achieving 81
quasi-phase-matching 84, 85, 87, 88,

116, 129
Phonon lifetime 408, 438, 447, 460, 468
Photon energy-level 9
Photon occupation number 475–477
Photonic switching 186, 389
Photorefractive effect 52, 211, 374,

523–526, 539, 540, 571
Photovoltaic current 527, 530
Physical constants 3, 420, 603, 604

Planar alignment (of liquid crystal) 272
Plasma frequency 241, 580, 581
Plasma nonlinearities 579, 580
Plasma screening effects 242, 243
Pockels effect 511, 525
Point groups 43, 51, 64
Poisson probability distribution 401
Polar crystals 51, 52
Polarizability 3, 167–169, 195, 196, 228,

230, 233, 234, 264–266, 399, 480
Polarization 1, 2, 4, 5, 37, 41–44, 81, 269,

408, 409, 506, 507, 590
ellipse 217, 220, 507, 520
nonlinear 5–13, 19, 20, 33, 34, 37–41,

124, 208, 209, 214–216, 347, 348,
356–358

second-order 5, 57, 143, 269
Polarization, third-order 10, 28, 57, 65,

235, 263
Polarization unit vector 217, 249, 343,

344, 355, 357, 529, 533
Polydiacetylene 212, 221
Ponderomotive effects 573, 580
Ponderomotive energy 573, 575, 580
Population decay rate 141, 156, 169, 320
Population inversion 282, 294, 312, 315
Power broadening 278, 289
Power series expansion 4, 24, 37, 254, 291,

379, 563
Poynting theorem 36, 130, 591, 598
Poynting vector 77, 84, 397, 592, 593, 598,

599
Probability amplitude 139, 140, 151, 157,

296, 306, 309, 553, 556
Pulse compression (by stimulated Brillouin

scattering) 448, 469
Pulse duration, laser damage dependence on

546, 547
Pulse propagation 375, 377, 379, 381, 382,

386, 387, 390, 561–563, 565, 567
for ultrashort pulses 561

Pump depletion (in stimulated Brillouin
scattering) 442, 448

Q
Quadrupole moment 258, 259
Quantum electrodynamics, nonlinear 583
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Quantum mechanics 66, 91, 135, 137, 141,
150–153, 155, 204, 274

Quartz 50, 79, 270

Quasi-phase-matching 85, 87, 132

R
Rabi frequency 188, 191, 288, 292, 304,

306, 311–313, 315, 324

Rabi oscillations 278, 301, 303, 305–307,
309, 311–313, 327

damped 312, 313

Rabi sidebands 324

Racemic mixtures 269, 270

Raman anti-Stokes scattering 474

Raman scattering 17, 455, 478, 493

spontaneous 17

stimulated 17, 455, 479, 493

Raman–Nath scattering (in acoustooptics)
423, 424

Raman Stokes scattering 473, 474

Raman susceptibility 483–486

Rate equation 527, 579

Rate-of-dilation tensor 457

Rayleigh resonance 325, 326

Rayleigh scattering 464, 465

spontaneous 465

stimulated 464, 465

Rayleigh-wing scattering 392, 394, 473,
501–509

polarization properties of 506–508

spontaneous 392, 393, 473

stimulated 392, 473, 501–509

Reality of physical fields 48

Recombination, electron-hole 241, 579

Reflection, nonlinear optics in 122, 123

Refractive index, calculated quantum
mechanically 223

Relativistic effects 572, 573, 580, 583, 584

relativistic change in mass 573, 581

Relaxation processes 137, 280, 281, 284,
285, 296, 327

Relaxation time 282, 392, 503, 525, 535

Residue theorem 59

Resonance, one-, two-, and three-photon
22, 136, 149, 173, 204, 325, 326, 357

Resonance enhancement 135, 136, 149

Resonant excitation 4, 137, 168, 169, 222,
279, 293, 353

Response time 211, 221, 237, 239, 241,
272, 327, 503, 535

Retardation 210, 519–523, 534
Retarded time 381, 564
Rotating wave approximation 553
Rotation of the polarization ellipse 219,

220, 249
Rydberg constant 150, 243
Rydberg levels of atom 150

S
Sapphire 228, 578
Saturable absorption 15, 105, 277
Saturation 1, 4, 15, 226, 244, 247, 277,

278, 289–291, 313, 314
effects 1, 4, 244, 247, 278
intensity 15, 277, 290, 291, 293, 361
spectroscopy 313, 314

Scattering of light 391–394, 396, 397,
400–402, 404, 405, 427, 429, 506

cross section 395–400, 427, 474, 477,
478

from moving grating 373
scalar 394
spontaneous 429
tensor 394

Scattering of light, scattering coefficient
394–396, 402, 404, 405, 427, 429

Schrödinger picture 159
Second-harmonic generation 1, 5–8, 20,

25, 26, 39–41, 96, 97, 101–105,
120–123, 129–132

Self-action effects 209, 329–331, 333, 335,
337, 339, 341, 388, 585

Self-broadening (of atomic resonance) 283
Self-focusing 12, 329–333, 335, 337,

339–342, 383, 388, 538, 582, 583
critical power for 329, 340, 582, 585
self focusing angle 331, 332
transient 342

Self-induced transparency 387
Self-phase modulation 375–377, 381, 382,

386
Self-steepening 561, 568–571
Self-trapping 329, 330, 332–336
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Semiconductor nonlinearities 240, 241,
243, 245, 252

Sidebands 324, 388, 481, 482, 494
Silica, fused 212, 228, 237, 238, 249, 383,

407, 468, 568
Silicon 527
Simultaneous equations 94
Singly resonant optical parametric oscillator

108, 111–113
Slow light 186, 325
Slowly-varying amplitude approximation

439, 462
Sodium vapor 150
Solitons 336, 375, 381–383, 387, 539

spatial 336, 383, 539
Sound, velocity of 406, 407, 414, 416, 419,

435, 437, 438, 454, 458
Sound absorption coefficient 408, 439, 459
Space-time coupling 570
Spatial symmetry 42, 46, 52, 211
Specific heat 412
Speckle 450, 452
Spontaneous and stimulated light scattering

contrasted 429
Spontaneous emission 169, 281
Square-well potential 273, 274
Stark effect 226, 254, 326
Statcoulomb 596, 597, 600, 604
Stimulated emission 553
Stimulated emission depletion 105
Stimulated Rayleigh scattering 17, 325,

429, 455–457, 459, 461, 463–467
Stochastic properties of stimulated Brillouin

scattering 448
Stokes relation 367, 467, 468

for viscosity 427, 453, 467
Stokes scattering 409, 411, 412, 436, 441,

466, 473, 474
Stokes–anti-Stokes coupling 324, 488,

495, 508
Strain-optic tensor 416
Sum-frequency generation 7–9, 19, 20, 40,

41, 69, 70, 74, 78–80, 91–93, 128, 186
Supercontinuum generation 571
Surface nonlinear optics 104
Susceptibility 22, 27, 31, 32, 34, 37, 123,

135, 142, 143, 511

in quasi-static limit 255
linear 32, 37, 142, 143, 288, 511

calculated using density matrix 161
nonlinear 22, 31, 32, 34, 37, 122, 123,

135, 211, 212, 214, 511
of two-level atom 291
Raman 483–486
second-order 34, 122, 123, 142, 147,

511
third-order 22, 27, 32, 147, 212, 214,

227, 322, 434
Systems of units 3, 128, 589, 600, 601

T
Tensor properties 28, 63, 64, 234, 249,

270, 479, 506, 528, 585
of isotropic materials 249
of the molecular orientation effect 249

Tetragonal crystals 43, 55, 82
Thermal conductivity 236, 237, 407, 412,

547
Thermal equilibrium 156, 169, 202, 203,

231, 234, 241, 282, 405, 474
Thermal nonlinear optical effects 235–239,

252
Thermal stimulated Brillouin and Rayleigh

scattering 456
Thermodynamics, first law of 433
Third-harmonic generation 11, 62, 105,

120–122, 130, 135, 136, 147–150,
200, 214

Thomas–Fermi screening 266
Thompson scattering 400
Three-photon resonance 136, 149, 325,

326
Threshold condition 110, 111
Time-domain description 52, 53, 55, 57
Titanium dioxide 212
Tomography 105
Total internal reflection 333, 334
Trap density 531, 532, 540
Trap level 284
Triclinic crystal 43, 55, 82
Trigonal crystal 43, 54, 82
Two-beam coupling 528

photorefractive 528, 534
transient 535, 540
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Two-level approximation 277, 278
Two-level atom 157, 158, 245, 278–281,

283–285, 293, 301, 302, 312, 313,
315, 326, 327

density matrix treatment of 158
Two-photon absorption 16, 17, 131, 203,

213, 246, 368, 369, 549, 550, 556,
557, 559

Type I and type II phase matching 81

U
Ultrafast nonlinear optics 586
Ultrashort laser pulses 561, 566
Undepleted-pump approximation 93, 96,

98
Underdense plasma 580
Uniaxial crystals 43, 82, 516
Upconversion 91, 128

V
Valence band 241, 243, 244
Vector potential, dimensionless 574

Vibrations, molecular 481

Virtual transitions 241, 245

Viscosity 407, 427, 453, 454, 466, 467

W
Water 212, 237, 395, 407, 413, 420, 427,

429, 550

Wave equation 4, 5, 69–75, 116, 117, 323,
324, 335, 338, 407, 562–565, 592

acoustic 438

Wavefront radius of curvature 118, 384

Wavefunction 137–139, 151, 152, 157,
180, 184, 187, 192, 302, 307, 308

Wavelength tuning of optical parametric
oscillator 111

Wavevector mismatch 78, 79, 85–87, 103,
121, 131, 323, 324, 350, 420, 487

Z
Z-scan 383, 384

Zincblende structure 49, 51
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