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PREFACE 

Systems that can be modeled by nonlinear algebraic and/or nonlin- 
ear differential equations are called nonlinear systems. Examples of 
such systems occur in many disciplines of engineering and science. In 
this book, we deal with the dynamics of nonlinear systems. PoincarC 
(1899) studied nonlinear dynamics in the context of the n-body prob- 
lem in celestial mechanics. Besides developing and illustrating the use 
of perturbation methods, PoincarC presented a geometrically inspired 
qualitative point of view. 

In the nineteenth and twentieth centuries, many pioneering contri- 
butions were made to nonlinear dynamics. A partial list includes those 
due to Rayleigh, Duffing, van der Pol, Lyapunov, Birkhoff, Krylov, 
Bogoliubov, Mitropolski, Levinson, Kolomogorov, Andronov, Arnold, 
Pontryagin, Cartwright, Littlewood, Smale, Bowen, Piexoto, Ruelle, 
Takens, Hale, Moser, and Lorenz. While studying forced oscillations of 
the van der Pol oscillator, Cartwright and Littlewood (1945) observed 
a constrained random-like behavior, which is now called chaos. Sub- 
sequently, Lorenz (1963) studied a deterministic, third-order system in 
the context of weather dynamics and showed through numerical simu- 
lations that this deterministic system displayed random-like behavior 
too. Unaware of Lorenz’s work, Smale (19G7) introduced the horseshoe 
map as an abstract prototype to explain chaos-like behavior. No doubt 
PoincarC knew about chaos too, but it is only through numerical simula- 
tions on modern computers and experiments with physical system that 
the presence of chaos has been discovered to be pervasive in many dy- 
namical systems of physical interest. The observation of Poincar6 that 
small differences in the initial conditions may produce great changes in 
the final phenomena is now known to be a characteristic of systems that 

xiii 



xiv PREFACE 

exhibit chaotic behavior. The phenomenon of chaos, which has become 
very popular now, rejuvenated interest in nonlinear dynamics. The 
growing numbers of books and research papers published in the last two 
decades reflect a strong interest in nonlinear dynamics at the present 
time. The many important contributions that have been made through 
analytical, experimental, and numerical studies have been documented 
through many books, including those by Collet and Eckmann (1980), 
Mees (1981), Sparrow (1982), Guckenheimer and Holmes (1983), Licht- 
enberg and Lieberman (1983, 1992), Bergd, Pomeau, and Vidal (1984), 
Holden (1986), Kaneko (1986), Thompson and Stewart (1986), Moon 
(1987, 1992), Arnold (1988), Barnsley (1988), Schuster (1988), Seydel 
(1988), Wiggins (1988, 1990), Devaney (1989), Jackson (1989, 1990), 
Nicolis and Prigogine (1989), Parker and Chua (1989), Ruelle (1989a, 
1989b), Tabor (1989), Arrowsmith and Place (1990), Baker and Gollub 
(1990), El Naschie (1990), Rasband (1990), Hale and Kocak (1991), 
Schroeder (1991), Troger and Steindl (1991), Drazin (1992), Kim and 
Stringer (1992), Medvdd (1992), Tufillaro, Abbott, and Reilly (1992), 
Ueda (1992), Mullin (1993), Ott (1993), Palis and Takens (1993), and 
Ott ,  Sauer, and Yorke (1994). 

We are of the opinion that the books on nonlinear dynamics pub- 
lished thus far have a strong bias toward analytical methods, or exper- 
imental methods, or numerical methods. As these methods are com- 
plementary to each other, a person being taught nonlinear dynamics 
should be provided with a flavor of all the different methods. This is 
one of the intentions in writing this book. Another intention was to 
include some of the recent developments in the area of control of non- 
linear dynamics of systems. In Chapter 1 ,  we introduce dynamical sys- 
tems. In Chapters 2-5, we address equilibrium solutions, periodic and 
quasiperiodic solutions, and chaos. We present some relevant theorems 
and their implications in Chapters 2 and 3. Proofs are not provided 
in this book, but references that provide them are included. Further, 
these chapters are not written within a mathematically rigorous frame- 
work. Continuation methods for equilibrium and periodic solutions are 
also presented in some detail in Chapter 6. We examine the different 
tools that can be used to characterize nonlinear motions in Chapter 7. 
In Chapter 8, w e  discuss methods for bifurcation control, chaos control, 
and synchronization to chaos. 
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Chapter 1 

INTRODUCTION 

A dynamical system is one whose state evolves (changes) with time 
t. The evolution is governed by a set of rules (not necessarily equations) 
that specifies the state of the system for either discrete or continuous 
values of t .  A discrete-time evolution is usually described by 
a system of algebraic equations (map), while a continuous-time 
evolution is usually described by a system of differential equations. 

The asymptotic behavior of a dynamical system as t -+ 00 is 
called the steady state of the system. Often, this steady state may 
correspond to a bounded set, which may be either a static solution 
or a dynamic solution. The behavior of the dynamical system prior 
to reaching the steady state is called the transient state, and the 
corresponding solution of the dynamical system is called the transient 
solution. 

A solution of a dynamical system can be either constant or time 
varying. Fixed points, equilibrium solutions, and stationary 
solutions are other names for constant solutions, while dynamic 
solutions is another name for time-varying solutions. We explore 
equilibrium solutions in Chapter 2 and dynamic solutions in Chapters 
3-5. In Sections 1.1 and 1.2, we explain the notion of a dynamical 
system. In Section 1.3, we discuss attracting sets, and in Sections 1.4 
and 1.5, we examine the concepts of stability and attractors. 

1 



2 INTRODUCTION 

1.1 DISCRETE-TIME SYSTEMS 

A discrete-time evolution is governed by 

Xktl = F ( X k )  (1.1.1) 

where x is a finitedimensional vector. At the discrete times t k  and t k t l l  
xk and xktl represent the states of the system, respectively. Let the 
dimension of the finite-dimensional state vector be n. Then, we need 
n real numbers to specify the state of the system. Formally, the state 
vector x E R" and the time t E R, where the symbol E means belongs 
to and the symbol R" refers to an n-dimensional Euclidean space; 
that is, a real-number space equipped with the Euclidean norm 

where the 2; are the scalar components of x. If the discrete values 
of time correspond to integers rather than real numbers, we say that 
t E 2, where 2 is the set of all integers. We note that the evolution 
of a dynamical system may also be studied in other spaces, such as 
cylindrical, toroidal, and spherical spaces. In these cases, one or 
more state variables are angular coordinates. However, according to 
topological concepts, local regions of these spaces have the structure of 
a Euclidean space. 

Equation (1.1.1) is a transformation or a map that transforms 
the current state of the system to the subsequent state. In the 
literature, the words map, mapping, and function are often used 
interchangeably. To a certain extent, the words set and space are also 
used interchangeably. Formally, a map F from points in a region M to 
points in a region N is represented by F : A4 --t N. We note that M 
and N are contained in R". Formally, M c R" and N c R", where the 
symbol c is called the subset operator and means inclusion. The 
map F is said to map M onto N if for every point y E N there exists 
at least one point x E M that is mapped to y by F. Furthermore, F is 
said to be one-to-one if no two points in M map to the same point in 
N. A map that is oneto-one and onto is invertible (e.g., Dugundji, 
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1966, Chapter I); that is, given xk+l, we can solve (1.1.1) to determine 
xk uniquely. Denoting the inverse of F in (1.1.1) by F-', we have 

The map F-' is also onto and one-to-one. A map F that is not 
invertible is called a noninvertible map. 

When each of the scalar components of F is r times continuously 
differentiable with respect to the scalar components of x, F is said 
to be a C' function. When each of the scalar components of F is 
continuous with respect to the scalar components of x , F  is said to be 
a Co function. For r 2 1, the map F is called a differentiable map. 
The map F is called a homeomorphism if it is invertible and both 
F and F-' are continuous; that is, F is Co. If both F and F-' are C' 
functions where r 2 1, then we call the map a C' diffeomorphism. 
In subsequent chapters, we discuss what are called Poincare maps. 
These maps, which are discretized versions of associated systems of 
ordinary-differential equations, are diffeomorphisms. In one discretized 
version, a Poincari map describes the evolution of a system for discrete 
values of time. The other cases are discussed in detail in Chapters 3, 
4, 5 ,  and 7. 

An orbit of an invertible map initiated at x = xg is made up of 
the discrete points 

where rn E 2+ and 2+ is the set of all positive integers. When k > 0, 
Fk means the kth successive application of the map F. Similarly, when 
k < 0, Fk means the kth successive application of the map F-'. An 
orbit of a noninvertible map initiated at  x = x,-, is made up of the 
discrete points 

Successive applications of F are also referred to as the forward 
iterates of the corresponding map. 
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With reference to ( l . l . l ) ,  we note that F is also called an evolution 
operator. Sometimes, we wish to study the evolution as we change or 
control a certain set of parameters M. To make this explicit, we write 
the map as 

xk+i = F(w; M) (1.1.3) 

where M is the vector of control parameters. 

Example 1.1. For illustration, we consider the one-dimensional map 

where 0 5 fk 5 1 and 0 < a 5 1.  For a = 0.50, the orbit of the map 
initiated at xo = 0.25 is 

(0.25, 0.375, 0.46875, * * a }  

Equation (1.1.4) is the famous logistic map, which has been the 
subject of many studies (e.g., May, 1976). This map is a noninvertible 
map because it is not a one-to-one map. In fact, this map is a two- 
to-one map because it maps the two points x and ( 1  -x) to the same 
point 4 0 4  1 -x). Further, (1.1.4) is an example of a differentiable map. 

Example 1.2. We consider the HCnon map (Hdnon, 1976) 

xk+i = 1 + Yk - (1.1.5) 
Yk+l  = Pxk (1.1.6) 

where a and p are scalar parameters. When /3 = 0, (1.1.5) and (1.1.6) 
reduce to the one-dimensional map 

Zk+l = 1 - ask 2 

which is noninvertible. It is called the quadratic map. However, when 
/3 # 0, the map (1.1.5) and (1.1.6) is invertible. The inverse is 
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a 2  
Yk = Zktl - 1 + ,Yk+, 

We note that (28 yt}= uniquely determines {zk+l yktl}T and vice 
versa. Further, because both F and F-’ are differentiable, the H6non 
map is a difftmmorphisrn when p # 0. For a = 0.2 and f l  = 0.3, the 
orbit of the map initiated at  

{ ;: } = { ::: } 
is 

0.97 { :::}’{ :::}){ ::;:}’{ 0 . 3 5 } ’ * * ‘ }  

In Figure 1.1.1, we show some of the discrete points that make up the 
orbit of (20, yo). 

Figure 1.1.1: Some of the discrete points that make up the orbit of ( 1 , O )  of 
the HQnon map for a = 0.2 and /3 = 0.3. The index k associated with each 
point is also shown. 
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We note that the dynamics of many PoincarC maps show qualitative 
similarities to the dynamics of the logistic and HCnon maps. 

1.2 CONTINUOUS-TIME SYSTEMS 

For continuous values of time, the evolution of a system is governed 
by either an autonomous or a nonautonomous system of differential 
equations. 

1.2.1 Nonautonomous Systems 
In the nonautonomous case, the equations are of the form 

x = F(x, t )  (1.2.1) 

where x is finite dimensional, x E R", 2 E R, and F explicitly depends 
on t. The vector F is often referred to as vector field, the vector x is 
called a state vector because it describes the state of the system, and 
the space 72" in which x evolves is called a state space. A state space 
is called a phase space when one-half of the states are displacements 
and the other one-half are velocities. The (n + 1)-dimensional space 
R" x R', where the additional dimension corresponds to t ,  is often 
referred to as an extended state space. In (1.2.1), if F is a linear 
function of x it is called a linear vector field, and if F is a nonlinear 
function of x it is called a nonlinear vector field. 

Let the initial state of the system at time to be a, and let I 
represent a time interval that includes to. Then one can think of a 
solution of (1.2.1) as a map from different points in I into different 
points in the n-dimensional state space R". A graph of a solution of 
(1.2.1) in the extended state space is known as an integral curve. On 
an integral curve, the vector function F specifies the tangent vector 
(velocity vector) at every point (x, t). A geometric interpretation of a 
vector field is that it is a collection of tangent vectors on different 
integral curves. 

In general, a projection of a solution x(2, t o , % )  of (1.2.1) onto the 
n-dimensional state space is referred to as a t ra jectory or an orbit  



CONTINUOUS-TIME SYSTEMS 7 

of the system through the point x = xo. In other words, the solution 
could be thought of as a point that  moves along a trajectory, occupying 
different positions a t  different times similar to the way a planet moves 
through space. We use the symbol r(xo) or r to denote an orbit. The 
orbit obtained for times t 2 0 passing through the point xo a t  t = 0 is 
called a positive orbit and is denoted by yt(xo); the orbit obtained 
for times t 5 0 is called a negative orbit and is denoted by y-(xo). 
Also, r = y(xo) = -y+(xo) Uy-(xo), where the symbol U stands for the 
union operator. 

Example 1.3. For illustration, we consider the following periodically 
forced linear oscillator: 

x + 2 p i  -t w2x = Fcos(Rt)  

Letting 2 = 21 and j. = 5 2 ,  we express this second-order equation as 
a system of two first-order equations in terms of the state variables 5 1  

and x 2 .  The result is 

5 1  = 5 2  (1.2.2) 
i 2  = --w 5 1  - 2px2 + Fcos(Rt) (1.2.3) 2 

For w2 = 8, p = 2, F = 10, and R = 2, the solution of (1.2.2) and 
(1.2.3) is 

x1 = ebPt  [acos(2t) + bsin(2t)J + 0.5cos(2t) + sin(2t) 

x 2  = -2e-2' [(u - 6) cos(2t) + ( u  + 6) sin(2t)l - sin(2t) + 2 cos(2t) 

where the constants a and b are determined by the initial condition 
(x10,z20). We note that as t -t 00, the exponential term decays 
to zero. Therefore, the steady state does not depend oil the initial 
condition. In Figure 1.2.la, we show an integral curve initiated at  
( Z I O , Z Z O , ~ O )  = (1,0,0) in the ( 5 1 , 2 2 , t )  space for 0 5 t 5 10. The 
arrows on the curve indicate the direction of evolution for positive 
times. The tangent vector is also shown a t  two different locations on 
the integral curve. It should be noted that the apparent intersections 
in Figure 1.2.la are a consequence of the chosen viewing angle. In 
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Figure 1.2.1: Solution of (1.2.2) and (1.2.3) initiated from (1 ,O)  at t = 0 for 
w2 = 8, p = 2, F = 10, and st = 2: (a) integral curve and (b) positive orbit. 

Figure 1.2.lb, we show a projection of the integral curve onto the 
two-dimensional (q, z2) space. This projection is a positive orbit of 

Again, we remind the reader that besides Euclidean state spaces 
there are other state spaces, such as cylindrical, toroidal, axid spherical 
spaces. In Figure 1.2.2a, we show a cylindrical space. A motion 
evolving in this space is described by two Cartesian coordinates arid 
an angular coordinate 8. One of the Cartesian coordinates is defined 
along the cylinder's axis, while the other one is defined along the 
radius of its cross-section. This cylindrical space is represented by 
R2 x S'. The variable 8 belongs to the space S and is such that 
0 5 8 .c 27r; formally, 8 E [0,27r). A toroidal space is shown in Figure 
1.2.2b. Specifically, we call this object a two-torus, and a dynamical 
system evolving in this space is described by two angular coordinates 
O1 and 192. We represent this space by S' x S'. One would require n 
angular coordinates to describe the motion evolving on an n-torus. 
A spherical space is shown in Figure 1.2.2~. We need two angular 
coordinates to describe a motion evolving on the spherical surface. 

A local region of the cylindrical, toroidal, or spherical surface of 
Figure 1.2.2 has the appearance of a flat surface and can be treated as 
a two-dimensional Euclidean space. Smooth and continuous surfaces, 
such as those shown in Figure 1.2.2, are called manifolds. Manifolds 
can be thought of as generalized surfaces. (The reader is referred to 

(x10,x20) = ( L O ) .  
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C 

Figure 1.2.2: Different spaces: (a) cylindrical space, (b) toroidal space, and 
(c) spherical space. 

Guillemin and Pollack (1974) for a precise description of a manifold.) 
In a two-dimensional space, a smooth object, such as a circle, is an 
example of a manifold, but an object with sharp corners, such as a 
rectangle, is not an example of a manifold. Locally, the circle may be 
approximated by a tangent line. Similarly, local regions of toroidal and 
spherical surfaces can be approximated by tangent planes. We note 
that an open flat surface is also a manifold. 

Returning to (1.2.1), we note that this equation is also referred to 
as an evolution equation. Let the evolution of the system described 
by this equation be controlled by a set of parameters M. To make this 
parameter dependence explicit, we describe the evolution by 

X = F(x, t ;  M) (1.2.4) 

where M is a vector of control parameters. Formally, M E R", and 
the vector function F can be represented as F : R" x R' x R" --+ R". 

Next, we state some facts from the theory of ordinary-differential 
equations. If the scalar components of F are Co (i.e., continuous) in 
a domain D of (x,t) space, then a solution x(t,xo,to) satisfying the 
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condition x = xo at t = t o  exists in a small time interval around to in D. 
Moreover, if the scalar components of F are C' in D, then the solution 
x( t ,  xo, t o )  is unique in a small time interval around to .  The uniqueness 
of solutions is also assured in certain cases where F is Co (Coddington 
and Levinson, 1955, Chapter 1; Arnold, 1973, 1992, Chapters 2 and 
4). If the existence and uniqueness of solutions of a system of the form 
(1.2.4) are ensured, then this system is deterministic. This means 
that two integral curves starting from two different initial conditions 
cannot intersect each other in  the extended state space. However, the 
corresponding orbits may intersect each other in the corresponding state 
space. 

If the scalar components of F are C' functions of t and the scalar 
components of x and M, then a solution of (1.2.4) satisfying the initial 
condition x = ~0 at t = to is also a C' function of t ,  to,  xo, and M in a 
small interval around to. Moreover, if a solution of (1.2.4) originating 
at a certain initial condition exists for all times, then this solution can 
be extended indefinitely. If a solution exists and is defined only over a 
finite interval of time, then this solution starting from a location in  this 
interval can be extended up to the boundaries of this interval (A,!iold, 
1973, 1992, Chapters 2 and 4). 

Example 1.4. This system is an example of a deterministic dynamical 
system. The parameter values used to generate Figure 1.2.3 are the 
same as those used to generate Figure 1.2.1. In Figuxe 1.2.3, we 
graphically show the solutions of (1.2.2) and (1.2.3) initiated at t = 0 
from (1.0, 0.0) and (1.5, 0.0). From Figure 1.2.3a, we note that the 
corresponding integral curves do not intersect each other anywhere in 
the (z1,x2,t) space. As in Figure 1.2.1, the apparent intersections in 
Figure 1.2.3a are a consequence of the chosen viewing angle. From the 
previous discussion of Example 1.3, it is clear that as t -+ 00, both 
integral curves converge to the steady state 

q = 0.5 COS(2t) 4- sin(2t) 
21 = - sin(%!) + 2 cos(2t) 

Although the two integral curves coincide only at t = 00, on the scales of 
Figure 1.2.3a they are not distinguishable after about t = 2.5 units. In 
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Figure 1.2.3: Solutions of (1.2.2) and (1.2.3) initiated from (1.0,O.O) and 
(1.5,O.O) at 2 = 0 for u2 = 8, p = 2, F = 10, and R = 2: (a) integral curves 
and (b) positive orbits. I'l and r2 are the positive orbits of (1.0,O.O) and 
(1.5,0.0), respectively. 

Figure 1.2.3b, the positive orbits initiated from (1.0,O.O) and (1.5, 0.0) 
are shown. We note the presence of a transverse intersection close to 
(0.7, -2.0) in Figure 1.2.3b. 

1.2.2 Autonomous Systems 

In the case of an autoiiomous system, the equations are of the form 

X = F(x; M) (1.2.5) 

where x, F, and M are as defined before. Here, F does not explicitly 
depend on the independent variable t and can be represented by the 
map F : R" x R" -+ R". Hence, the system (1.2.5) is time invariant, 
time independent, or stationary. This means that if X(t) is a 
solution of (1.2.5)) then X(t + T )  is also a solution of (1.2.5) for any 
arbitrary 7 .  If the scalar components of F have continuous and bounded 
first partial derivatives with respect to the scalar components of x, then 
the system (1.2.5) has a unique solution for a given initial condition 
xo. As a consequence, no two trajectories or orbits of an autonomous 
system can intersect each other in the n-dimensional state space of the 
system. Moreover, if the vector field F is a C' function of x and M, 
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Figure 1.2.4: Positive orbits of (1.2.6) and (1.2.7) initiated at t = 0 from 
(l.O,l.O), (0.0,-1.2), (-1.0,-l.O), and (0.0,1.2) for w2 = 8 and p = 2. All 
four orbits approach the origin as 1 -+ 00. 

then the associated solution of (1.2.5) is also a C' function of t ,  x, and 
M (Arnold, 1973, 1992, Chapters 2 and 4).  

Example 1.5. We consider the following autonomous system: 

2 1  = 5 2  (1.2.6) 
x1=  -w 1 2 1  - 2px2 (1.2.7) 

In Figure 1.2.4, we show positive orbits of (1.2.G) and (1.2.7) initiated 
from four different initial conditions when w2 = 8 and p = 2. These 
orbits do not intersect each other anywhere in the plane as they 
approach the origin, where they all meet. The direction of the orbits 
in the (xl,za) space is given by 

-- dza -(w2z1 t 2 ~ x 2 )  
dz1 5 2  

- 

which is well defined everywhere except at the origin. Hence, we call 
(0,O) a singular point of (1.2.6) and (1.2.7). Such solutions are 
discussed at length in Chapter 2. 
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It  should be noted that nonautonomous systems with time-periodic 
coefficients can be converted into higher-dimensional autonomous sys- 
tems. As an example, let us consider 

G l  i- 4 . 1  = f i ( .1 ,Zjl l212, ir2)  t g1 cos(Rt) (1.2.8) 
6 2  t 4 . 2  = f 2 ( . 1 , k 2 ) 2 , i r 2 )  (1.2.9) 

By using the four variables vl, irl, 212, and ir2, we can rewrite (1.2.8) 
and (1.2.9) as a system of four first-order equations. This fourth-order 
system is nonautonomous due to the presence of a time-periodic term. 
Now, we consider an additional variable 9 which is defined such that 
9 = Rt rnod 27r ( A  mod B yields the remainder after A is divided 
by B; for example, 7 mod 3 is equal to 1). Introducing this variable 
into the fourth-order nonautonomous system and supplementing this 
system with the equation 0 = R,  we obtain a fifth-order autonomous 
system. Formally, 9 E S ' ,  and the space to which the five state variables 
211, 212, ir1, ir2, and 0 belong is written as R4 x S'. This space is a 
cylindrical space. 

Equations (1.2.8) and (1.2.9) can also be converted into a five- 
dimensional autonomous system by considering the five state variables 
v l ,  v2,  V l ,  V2,  and u3, where v3 = t and I jg = 1. In this case, the five 
stmate variables belong to a five-dimensional Euclidean space; that is, 
R5. 

1.2.3 Phase Portraits and Flows 
One often examines the evolution of a set of trajectories emanating from 
various initial conditions in the state space. As t -+ 00, the evolutions 
may approach different (asymptotic) solutions of the given system of 
nonlinear equations. A phase portrait is a collection of trajectories 
that represent the solutions of these equations in the phase space. For 
instance, Figure 1.2.4 is an example of a phase portrait of (1.2.6) and 
(1.2.7). In general, a phase portrait contains information about both 
the transient and the asymptotic behaviors of the solutions of a system. 
By drawing an analogy to pathlines in fluid mechanics (i.e., lines that 
trace the movement of different fluid particles in a fluid flow), the orbits 
starting from different initial conditions are said to describe the flow 
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under the given system of equations. In this book, unless otherwise 
stated, the flow is defined for both positive and negative times. The 
reader may come across situations in other books or literature where 
the flow is defined only for either positive or negative times starting 
from t = 0. Such a flow is called a semiflow. 

Example 1.6. To illustrate the meaning of flow under a given 
system of equations, we consider (1.2.6) and (1.2.7) when uz = 8 and 
p = 2. In Figure 1.2.5, we show positive orbits of (1.2.6) and (1.2.7) 
initiated at t = 0.0 from (-1.00,1.00), (-1.25,1.00), (-1.25,1.25), and 
(-1.00,1.25). These four points have been marked xi A, B ,  C, and D, 
respectively. After 0.5 units of t, these four points are transported to 
the points A', B', C', and D' by their respective orbits. Any point in  
the region ABCD is transported to a particular location in the region 
A'B'C'D' under the flow of (1.2.6) and (1.2.7). 

- 

x2 

1.4 

1 
C @ ..... . . . .  . . . .  A' D' 
B A 

0.d - 
-1.4 -1 4.6 0 

XI 

Figure 1.2.5: Four positive orbits of (1.2.6) and (1.2.7) initiated at 1 = 0 
when p > 0. The orbits are shown for 0 5 t 5 0.5. The area A'B'C'D' 
occupied by the find states is less than the area ABCD occupied by the 
initial states. hrthermore, the orientation of the corners of the initid area 
is preserved. 
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1.3 ATTRACTING SETS 

Before introducing the notion of an attracting set, we first explain what 
is meant by dissipation in a flow. Revisiting Figure 1.2.5, we note 
that the area of the region A‘B’C’D’ in phase space at a later time 
is smaller than the area of the initial region ABCD in phase space. 
In other words, the flow is such that a set of final states occupies a 
region smaller in  size than that occupied by the corresponding initial 
states. Hence, areas in the phase space of (1.2.6) and (1.2.7) are not 
conserved but contracted when p = 2. This phenomenon is called 
dissipation. 

In Figure 1.3.1, we illustrate the flow under (1.2.6) and (1.2.7) 
when w 2  = 8 and p = 0. Four positive orbits initiated at  t = 0 
from (-l.OO,l.OO), (-1.25,1.00),(-1.25,1.25), and (-1.00,1.25) are 
considered, and these four initial points have been marked as A, B, 
C, and D, respectively. After 0.5 units of t ,  these four points are 
transported to the points A’, B‘, C’, and D‘ by their respective orbits. 
Again, any point in the region ABCD is transported to a particular 
location in the region A’B’C‘D’ under the flow of (1.2.6) and (1.2.7). 
However, unlike the situation in Figure 1.2.5, the set of final states 
occupies a region equal in size to that occupied by the corresponding 
initial states. Hence, the flow is said to conserve areas in the phase 
space when p = 0 in (1.2.6) and (1.2.7). 

For dissipation in a general setting, we consider the flow under 
(1.2.5). At an initial time t = t o ,  let the volume occupied by a given set 
of initial conditions (states) be Vo. After a time t f ,  the orbits initiated 
at these conditions reach certain locations (states) in the state space. 
At t = t j ,  let the volume occupied by the set of these states be V,. 
Then, flows are classified into conservative or dissipative, depending 
upon whether V, is equal to or less than Vo; that is, depending upon 
whether the (local) volumes in the state space stay constant or contract 
with time. 

For dynamical systems governed by (1.2.4) or (1.2.5), we appeal 
to concepts of fluid mechanics (e.g., Karamcheti, 1976) to determine 
whether a flow is conservative or dissipative. At an instant in time t ,  
we consider a set of points occupying a small region with volume V and 
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Figure 1.3.1: Four positive orbits of (1.2.6) and (1.2.7) initiated at 1 = 0 
when p = 0. The orbits are shown for 0 5 t 5 0.5. The area A‘B’C’D’ 
occupied by the final states is equal to the area ABCD occupied by the 
initial states. Furthermore, the orientation of the corners of the initial area 
is preserved. 

surface S in the associated n-dimensional state space. (As  the set of 
points are transported in the state space under the considered flow, V 
and S change with time.) Considering a small elemental area AS, the 
associated change in the volume V over a time interval At is given by 

VAt . l lAS (1.3.1) 

where v = x = F is the velocity vector and n is the outward unit 
normal on S. To determine the total change in V, we let AS --+ 0 and 
integrate (1.3.1) over the surface S. The result is 

From the divergence theorem (e.g., Karamcheti, 1976), we have 

(1.3.2) 

( 1.3.3) 

But, for an infinitesimally small V, the right-hand side of (1.3.3) can 
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be approximated by (V - F)V.  Therefore, (1.3.2) and (1.3.3) lead to 

(1 -3.4) 

Consequently, a flow is conservative or dissipative, depending on whether 
the divergence of its vector field is zero or negative. In other words, in 
conservative svstems 

-- 2 m ( X )  - 0  
i=l axi 

and in dissipative systems (e.g., systems with damping) 

(1.3.5) 

(1.3.6) 

where the F, and 2; are the scalar components of F and x in (1.2.5), 
respectively. In this book, we shall mainly be interested in dissipative 
sys tems. 

In mechanics, there are systems called Hamiltonian systems, 
which are governed by 

(1.3.7) 

(1.3.8) 

for i = 1,2,..*,n and H = H(q~,q~,...,~~,p~,p2,...,p,,t). (The 
function H is called the Hamiltonian.) The divergence of the vector 
field of the system governed by (1.3.7) and (1.3.8) is 

if H is twice continuously differentiable. Therefore, volumes in state 
space are conserved in Hamiltonian systems and hence they form a 
subset of the set of conservative systems. The statement about the 
preservation of volumes in state space of Hamiltonian systems is called 
the Liouville theorem (e.g., Arnold, 1973, Chapter 3; Lichtenberg 
and Lieberman, 1992, Chapter 1). 
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In summary, the the flow in conservative systems is said to 
preserve volume (locally) in the state space. Furthermore, as 
t + 00, the motion takes place in the full n-dimensional space. For 
dissipative systems, V, < V, and V, -+ 0 as t = t i  -+ 00. This means 
that trajectories initiated from different conditions are attracted to a 
subspace of the state space. This phenomenon is called attraction, 
and the set to which the trajectories are attracted as t -+ 00 is called 
an attracting set. 

Before we consider the notion of an attracting set in detail, we 
first explain what is meant by an invariant set. A set P C R" is 
called an invariant set if for any initial condition x( t  = t o )  E P we 
have x ( t )  E P for -m < t < 00. If this condition is satisfied only 
for t 2 0 or t 5 0, P is called a positive or negative invariant 
set, respectively. An attracting set is an invariant set. Further, it 
has an open neighborhood such that positive orbits initiated in this 
neighborhood are attracted to this set. As explained in Section 1.5, a 
special type of an attracting set is called an attractor. 

Example 1.7. For the system (1.2.6) and (1.2.7), the divergence of 
the vector field is -2p. Hence, if p > 0 this system is dissipative, arid 
if p = 0 this system is conservative. Figure 1.3.1 is illustrative of the 
conservative nature of this system when p = 0, while Figures 1.2.4 and 
1.2.5 are illustrative of the dissipation in this system when p > 0. In 
the case of Figure 1.2.4, all four positive orbits are attracted to the 
origin of the state space. 

Example 1.8. We convert the system (1.2.2) and (1.2.3) into a three- 
dimensional autonomous system by defining an additional state 0 such 
that e = R. Thus, we have 

2 1  = 2 2  

X 2  = --w2x, - 2p22 + Fcos (e )  
e=n 
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and the divergence of the vector field is 

a;, a;, ai - + - + - = -2p ax, ax2 ae 
So, local volumes in the ( x 1 , x 2 , 0 )  space are conserved when = 0 
and contracted when p > 0. To construct Figure 1.3.2, we used the 
following parameter values: u2 = 8, p = 2, F = 10, and R = 2. We 
show three positive orbits initiated from (0, l ) ,  (0,4), and (0 ,5) .  All 
three orbits are attracted to the closed orbit r encircling the origin 
as t -+ 00 because of the dissipation in the system. In Figure 1.3.2, 
the area of initial conditions marked A contracts to the area marked B 
after one unit of time. 

Figure 1.3.2: Three positive orbits of (1.2.2) and (1.2.3) initiated at 1 = 0. 

In Figures 1.2.4, 1.2.5, and 1.3.2, we observe the presence of 
attraction and attracting sets. The origin of the 22 - x1 space is the 
attracting set in Figure 1.2.4, and the closed orbit I' is the attracting 
set in Figure 1.3.2. Such sets occur only in dissipative systems. 

We note that the concepts of dissipation, invariant sets, attracting 
sets, and attractors also apply to the maps discussed in Section 1.1.  
The map (1.1.3) is said to be dissipative at xk = ~0 if 

I det D,,F I< 1 at Xk = ~0 (1.3.10) 
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where det D,,F is the determinant of the n x ri  matrix of first partial 
derivatives of the scalar components of F with respect to the scalar 
components of xk. 

Example 1.9. 
have 

Hence, when I 

In the c u e  of the HCnon map (1.1,5) and (1.1.6), we 

p I <  1, the Hhon  map is dissipative at all xk. 
Consequently, any area is contracted by the factor I p I after each 
iterate. 

1.4 CONCEPTS OF STABILITY 

In this section, we discuss various types of stability and the concept 
of attractors. We note that all of the notions of stability discussed 
below are made in the context of finite-dimensional systems. Structural 
stability, which deals with the stability of the orbit structure of a 
dynamical system to small perturbations, is discussed in Section 2.3.7. 

1.4.1 Lyapunov Stability 
Maps 

A solution {uk} of a map is said to be Lyapunov stable if, given a 
small number c > 0, there exists a number 6 = 6(c) > 0 such that 
any other solution {vk} for which 11 uk - vk II< 6 at k = rn satisfies 
11 uk - vk It< c for all k > m, where k and m E 2+. For Lyapunov 
stability, two orbits of a map initiated from two neighboring points at 
a certain time have to remain “close” to each other for all future times 
(ie., k > m). 

Example 1.10. For illustration, we consider the Lyapunov stability 
of a solution of the map (1.1.4). When a = 0.5, xk = 0.5 is a solution 
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of this map for all k E 2+. Such a solution is an example of a fixed 
point of a map. We consider fixed points of a map in more detail in 
Sections 2.2 and 2.4. An orbit of (1.1.4) initiated at uo = 0.5 is 

(0.5, 0.5, 0.5, 0.5, 0.5, * * a ,  0.5) 

An orbit of (1.1.4) initiated at  uo = 0.4 is 

(0.4, 0.48, 0.4992, 0.49999872, 0.5, * * * , 0.5) 

Thus, given an c > 0, one can find a a(€) > 0 satisfying the conditions of 
the Lyapunov stability. Hence, Zk = 0.5 is a Lyapunov stable solution 
of (1.1.4). 

Continuous-Time Systems 

A solution u(t) of either an autonomous or a nonautonomous system 
of differential equations is said to be Lyapunov stable if, g’ iven a 
small number c > 0, there exists a number 6 = a(€) > 0 such that 
any other solution v(t) for which 11 u - v II< 6 at time t = to satisfies 
11 u - v ] I <  e for all t > to.  In nonautonomous systems, 6 will also be a 
function of the initial time to .  If u is Lyapunov stable, then any other 
solution that is “close” to it initially remains so and is confined to a 
tube formed by the union of spheres of radius c centered on points along 
the trajectory u(t), the so-called c tube. For a nonautonomous system, 
we will have an c tube in the extended state space. In Figure 1.4.1, we 
illustrate the concept of Lyapunov stability for two solutions u1 and 
u2 of a nonautonomous system. In autonomous systems, Lyapunov 

Figure 1.4.1: 
nonau tonomous continuous-time sys tern. 

Illustration of Lyapunov stability for a solution ui of a 
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stabil i ty is also known as uniform stabil i ty because S is independent 
of the initial time t o .  

Example 1.11. Here, we consider the Lyapunov stability of some of 
the solutions of the Duffing oscillator given by 

2 1  = 22 (1.4.1) 

x 2  = - 21 + x; - 2 p x 2  (1.4.2) 

We first examine the solutions of (1.4.1) and (1.4.2) when p ,  the 
damping coefficient, is zero. The points ( O , O ) , ( - l , O ) ,  and (1,O) in 
the x 2  - x1 plane satisfy (1.4.1) and (1.4.2) for all times and are 
three solutions of the system. These solutions are called equilibrium 
solutions. The states corresponding to an equilibrium solution are 
constant in time. More details on them are provided in Section 2.1. 
In the 22 - x1 plane, the orbits of solutions in the neighborhood of 
(0,O) are closed curves surrouuding it. These solutions, called periodic 
solutions, are extensively treated in Chapter 3. 

We consider the Lyapunov stability of the solution (0,O) arid use 
Figure 1.4.2a in this regard. The solid curve waa obtained by numeri- 
cally integrating the equations from the initial condition (0.0,0.3). Let 
(z10,x20) represent the initial condition at time t = to for one of the 

Figure 1.4.2: illustrations for determining the Lyapunov stability of the 
following solutions of (1.4.1) and (1.4.2) when p = 0: (a) (0,O) and ( b )  
( 1 1  0). 
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periodic solutions surrounding (0,O). If 

then the corresponding periodic solution is confined to the e tube 
(whose cross-section has a radius c as shown in Fig. 1.4.2a) for all 
times. In other words, for the solution (O,O), given a number e > 0, one 
can always find a number 6 > 0 satisfying the conditions for Lyapunov 
stability. (If we want the motion to remain in an e-neighborhood of 
(0, 0), one can find a &neighborhood for the initial condition.) So, the 
solution (0 ,O) is uniformly stable. 

Next, we consider the Lyapunov stability of the solution (1,O). 
The trajectories I'z, I'3, and r4, shown in Figure 1.4.2b, are positive 
orbits associated with the initial conditions (0.9, -O. l ) ,  (1 .l, -O . l ) ,  
and (0.95, -O. l ) ,  respectively. All three initial conditions are chosen 
in a neighborhood of (1,O).  The positive orbit rz is periodic and 
bounded. The positive orbits r3 and r4 are not bounded and grow 
indefinitely. All the orbits of Figure 1.4.2b were obtained through 
numerical integrations. It is not possible to find an e tube arouiid 
(1,O) within which I'3 and r 4  will remain confined for all times. Hence, 
numerical simulations indicate that (1.0) is not uniformly stable or 
stable in the Lyapunov sense. 

1.4.2 Asymptotic Stability 
Maps 

A solution { u k }  of a map is said to be asymptotically stable if it is 
Lyapunov stable and 

Example 1.12. When cr = 0.5, the solution x k  = 0.5 of (1.1.4) is 
asymptotically stable. This is so because X k  = 0.5 is Lyapunov stable 
and the separation between the orbits initiated at uo = 0.5 and uo = 0.4 
or any other starting point in a small neighborhood of uo is very small 
for k 2 4. 
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Continuous-Time Systems 

A solution u(t)  of an autonomous or nonautonornous system of differ- 
ential equations is said to be asymptotically stable if it is Lyapunov 
stable and 

lim 11 u - v 11- 0 
t+oo 

Example 1.13. We consider (1.4.1) and (1.4.2) when p > 0, so that 
we have a dissipative system. In Figure 1.4.3, we show two positive 
orbits rl and I'l of this system initiated from (0.0,0.6) and (0.0, -0.6), 
respectively. Let u represent the solution (0,O).  As shown in Figure 
1.4.3, any solution v started from an initial condition in a neighborhood 
of (0,O) tends toward (0,O) or is attracted to it as t --+ 00. The 
separation between the solutions u and v goes to zero it9 t -+ 00. 

Hence, by definition, (0 ,O)  is asymptotically stable. The presence of 
damping in (1.4.1) and (1.4.2) makes (0,O) an asymptotically stable 
solution. 

-2 0 2 
XI 

Figure 1.4.3: Illustration of the aaymptotic stability of the solution ( 0 , O )  of 
(1.4.1) and (1.4.2) when p = 0.1. The positive orbits rl and I'z are initiated 
from (0.0,0.6) and (0.0, -0.6), respectively. 
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1.4.3 Poincar6 Stability 
This notion of stability is commonly applied to solutions of autonomous 
or nonautonomous systems of differential equations. The notions 
described in Sections 1.4.1 and 1.4.2 are typically used to study the 
stability of equilibrium solutions of (1.2.5). These solutions satisfy the 
condition F(x;M) = 0. In Sections 1.4.1 and 1.4.2, we compared 
how “close” two integral curves started from two different initial 
conditions are at  the same instant t .  This approach is restrictive, and 
according to it even a periodic solution of a nonlinear autonomous 
system is unstable. To understand why this is so, let us consider 
the stability of periodic solutions of the two-dimensional undamped 
nonlinear autonomous system (1.4.1) and (1.4.2). When p = 0, using 
the method of multiple scales, one finds the following approximate 
solution of (1.4.1) and (1.4.2) for small but finite amplitudes (e.g., 
Nayfeh, 1981): - .  

3 
21 x ucos [(l - p 2 )  t + p] 

It is clear that the frequency of oscillation w = 1 - 3.’ depends on the 
amplitude a of oscillation, which in turn is determined by the initial 
condition. Hence, solutions started from two slightly different initial 
conditions evolve with two different periods and may not be “close” to 
each other at a specific large value of t .  

For a graphical illustration, we consider two periodic solutions of the 
undamped system obtained from (1.4.1) and (1.4.2) by setting p = 0. 
We are interested in the stability of the periodic solution u whose orbit 
is rl of Figure 1.4.4. This orbit was obtained by numerically integrating 
(1.4.1) and (1.4.2) from the initial condition (0.0000,0.5000). Another 
solution v of the system corresponds to the orbit I’2 in Figure 1.4.4. 
This orbit was obtained by numerically integrating (1.4.1) and (1.4.2) 
from the initial condition (0.0000,0.6000). Due to the different initial 
conditions, the periods of oscillation of these orbits are different. At 
the initial time t = 0, the separation between the two solutions is 

After t = 30 units, we move to point y on rl and point t on rZ. 
The coordinates of y are (0.5263,0.1068) and of z are (-0.6369,0.1914). 
The separation between these two solutions is 11 u - v 11 = 1.1663 and 

11 u - v 11 = 0.1. 
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-2 0 2 
XI 

Figure 1.4.4: Periodic solutions of (1.4.1) and (1.4.2) when p = 0. 

is much larger than the initial separation. We may choose two closer 
initial conditions, but large separations between the respective integral 
curves in the ( z 1 , z 2 , t )  space will eventually occur after a certain 
number of cycles due to the differences in the associated periods. One 
cannot make such separations between the integral curves arbitrarily 
small by choosing initial conditions “close” to each other. Although 
the two orbits are “close” to each other, according to the definition 
of Lyapunov stability, the solution u is unstable because the integral 
curves are not “close” to each other. To remedy this situation, PoiIicar6 
introduced the notion of orbital  stability. For dynamic solutions, 
such as periodic solutions of (1.2.5), one uses the notion of orbital  or 
PoincarC stability. 

Let rl represent the orbit of u and r2 represent the orbit of v for all 
times. The periodic solutions u and v have different periods 7’1 and T2 
and, hence, the corresponding motions evolve on different time scales. 
The orbit rl is said to be orbitally stable if, given a small number 
6 > 0, there exists a 6 = 6( c) > 0 such that if 11 u( t = 0) - v( 1 = T )  11 < 6 
for some T ,  then there exist t l  and t3  for which 11 u(tl) - v(t2) II< c. 
Further, if r, tends to rl as t + 00, then we say I’l is asymptotically 
stable. For Poincarb stability, we examine how “close” orbits are in the 
state space. 
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1.4.4 Lagrange Stability (Bounded Stability) 
Maps 

A solution {Uk}  of a map is said to be boundedly stable if 11 Uk 11 5 L 
for all k E 2, where L is a finite positive quantity. 

Continuous-Time Systems 

A solution u(t) of a continuous-time system is said to be boundedly 
stable if )I u 11 5 L for all t ,  where L is a finite positive quantity. 

1.4.5 Stability Through Lyapunov Function 
The concept of Lyapunov stability discussed in Section 1.4.1 and the 
asymptotic stability discussed in Section 1.4.2 are typically used to 
study the stability of equilibrium solutions of x = F(x;M). Let us 
designate the equilibrium solutions for some given value Mo of M as 
x = a. Further, we assume that there exists a C' scalar function 
V(x;M) defined in a neighborhood of xo such that V(x0;Mo) = 0 
and V(x;M) > 0 if x # xo. The function V is called a Lyapunov 
function. The derivative of V along the solution curves of (1.2.5) 
is V = vV From the associated stability theorems 
(Lyapunov, 1947)) we have the following: 

F = vVTF. 

(a) If V 5 0 in the chosen neighborhood of xo, then xo is stable. 

(b) If V < 0 in the chosen neighborhood of a, then xo is asymptot- 
ically stable. 

There are theorems that address the existence of Lyapunov functions 
(Krasovskii, 1963). For mechanical and structural systems, one can of- 
ten use the energy as the Lyapunov function. In the context of electrical 
power systems, some methods have been used to determine Lyapunov 
functions (e.g., Pai, 1981; Michel, Miller, and Nam, 1982; Michel, Nam, 
and Vittal, 1984). For Hamiltonian systems, the Hamiltonian can be 
taken to be the Lyapunov function. However, for other systems, there 
are no general methods for determining this function. 
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Example 1.14. For illustration, we consider the stability of the 
solution (0,O) of (1.4.1) and (1.4.2). We choose the expression for 
energy as the Lyapunov function and obtain 

We note that V(0,O) = 0 and V(xl,x2) > 0 in a region 
In this case, the gradient of V ,  given by vV, is 

and thus 

around (0,O). 

where the F, are the scalar components of F. Hence, the derivative of 
V along the solutions of (1.4.1) and (1.4.2) is given by 

2 v = -2px2 

Because p is positive in a dissipative system, V 5 0 in any chosen 
neighborhood of the equilibrium solution (xl, x2)  = (0,O). IIence, this 
solution is stable according to Lyapunov’s first stability theorem. 

Example 1.14 also serves to illustrate a shortcoming of Lyapunov’s 
second stability theorem. Using a number of techniques, such as 
numerical a.nd perturbation methods, one can show that the origin is an 
asymptotically stable solution of (1.4.1) and (1.4.2). However, because 

v = -2px; 5 0 

in every neighborhood of the origin (V  = 0 all along the x1  axis; that 
is, 5 2  = 0), Lyapunov’s second stability theorem cannot be used to 
conclude that the origin is asymptotically stable. In fact, the condition 
provided by Lyapunov’s second theorem is sufficient but not necessary. 
This shortcoming can be overcome by using Krasovskii’s theorem 
(Krasovskii, 1963). Let V(x) be a C’ scalar function, V(x,) = 0, and 
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V ( x )  > 0 for xe Dt and x # xo 

V ( X )  5 o for x c D( 
If there is no solution x * ( t )  for x = F(x; Mo), other than G, which lies 
completely in Dt and for which V ( x * ( t ) )  0, then every solution that 
starts in Dt tends to xo and is asymptotically stable. By finding the 
largest possible region for which the conditions of Krasovskii's theorem 
are satisfied, one can determine the domain of attraction of XO; that 
is, the region in state space such that a trajectory started at any point 
inside it will tend to ~0 as t t 00. For example, using the Lyapunov 
function 

1 2  1 2  1 4  V ( q ,  5 2 )  = - 5 2  + - 5 1  - - 5 1  
2 2 4 

and taking Dt to be the region 

;xi + fx: - 45' 1 4  < - 1 
4 

one can show that all the conditions of Krasovskii's theorem are satisfied 
and hence the origin is an asymptotically stable equilibrium of (1.4.1) 
and (1.4.2) and that Dt is the domain of attraction of the origin. 

1.5 ATTRACTORS 

Earlier, in the context of Figure 1.2.4, we noted that the positive orbits 
of (1.2.6) and (1.2.7) are attracted to the origin of the state space as 
t --+ 00. By using a Lyapunov function, one can show that the origin 
is an asymptotically stable solution of (1.2.G) and (1.2.7) when p > 0. 
Such asymptotically stable solutions are attractive and examples of 
attractors. 

In a general setting, let Tt  represent an evolution operator that acts 
on initial conditions ~0 in R" such that Ttxo = x(x0, t ) ,  where x E R". 
Repeated applications of T t  may take one to a subspace of 72" called 
an attractor, which is defined by the following properties (Eckmann, 
1981): 

1. Invariance: An attractor X is an invariant set of the flow of the 
system. Formally, T'X E X. 
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2. Attractivity: There exists a neighborhood U of the attractor 
(i.e., X c U )  such that evolutions initiated in U remain in U 
and approach X as t -+ 00. Formally, T'U C U for t 2 0 
and T'U -+ X as t + 00. The symbol C stands for the subset 
operator and X c U means that X is included in U .  

3. Recurrence: Trajectories initiated from a state in an open 
subset of X repeatedly come arbitrarily close to this initial state 
for arbitrarily large values of time. 

4.  Indecomposability: An attractor cannot be split up into two 
nontrivial pieces. 

Property 3 rules out unstable solutions and transient solutions from 
being attractors. Property 4, also referred to as irreducibility, implies 
that an attractor cannot be decomposed into distinct smaller attractors. 
We note that all attracting sets possess Properties 1 and 2, but only 
some attracting sets, namely, attractors, possess Properties 3 arid 4.  
Because some unstable solutions can be part of an attracting set, 
Property 3 can be violated. Further, because more than one attractor 
can be part of an attracting set, Property 4 can be violated. We note 
that to verify Property 2 one needs to use a suitable distance measure. 

Going back to the origin of Figure 1.2.4, we note that it satisfies 
Property 1 because it is a solution of (1.2.6) and (1.2.7) for all t .  
Further, it satisfies Properties 2 and 3 because it is asymptotically 
stable. In addition, (0,O) satisfies Property 4 because it cannot 
be split into any smaller sets that satisfy (1.2.6) and (1.2.7). The 
asymptotically stable equilibrium solution (0,O) of (1.2.6) and (1.2.7) 
is an example of a point attractor. The orbit r of Figure 1.3.2 is 
an attractor of (1.2.2) and (1.2.3). To be specific, it is a periodic 
attractor. Unlike a point attractor, this attractor is a dynamic 
solution because the corresponding state variables are functions of 
time. Two other attractors, which are characterized by timevarying 
states, are quasiperiodic and chaotic attractors. In Chapter 2, we 
address point attractors, and in Chapters 3, 4 ,  and 5,  we address 
periodic, quasiperiodic, and chaotic attractors, respectively. 

The domain D C R" that includes all the initial conditions x g  such 
that T'xo --t X as t -+ 00 is called the basin or domain of attraction 
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or stability region of X .  Thus, all evolutions in a basin of attraction 
of X are attracted to it. 

In the literature (e.g., Seydel, 1988), a counter notion of an attractor 
called a repellor is also used. An attractor attracts positive orbits but 
repels negative orbits, and a repellor repels positive orbits but attracts 
negative orbits. We noted earlier that the solution (0 ,O) of (1.2.6) and 
(1.2.7) is an attractor when p > 0. This solution is a repellor when 
p < 0. 

1.6 COMMENTS 

In the literature, the method employing Lyapunov functions to deter- 
mine the stability of a fixed point is also called Lyapunov’s second 
method. The existence of Lyapunov functions and applications of Lya- 
punov’s second method are discussed at length by Krasovskii (1963). 
A detailed exposition of Lyapunov stability theory is also provided by 
Hagedorn (1988). We note that all the notions of stability discussed 
above do not provide any explicit schemes to determine the stability 
of a solution. Explicit schemes for determining the stability of fixed 
points of a map or an autonomous system of differential equations are 
discussed in the next chapter, and explicit schemes for determining the 
stability of periodic and quasiperiodic solutions of a system of differen- 
tial equations are discussed in Chapters 3 and 4. 

1.7 EXERCISES 

1.1. Lorenz (1963) used the following equations to study thermally 
induced fluid convection in the atmosphere: 

x = o(y - .) 
y = px - y - 5 2  
i = -pz  + xy 

Determine when this system is dissipative and when it is conservative. 
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1.2. Consider the Rossler system (Rossler, 197Ga): 

x = -(y + 2) 
l j = x + a y  
i. = 6 +  (3 - C)Z  

Determine when this system is dissipative and when it is conservative. 

1.3. Consider the following two-dimensional map: 

Determine the conditions for which this map is dissipative. 

1.4. Consider the solutions of (1.4.1) and (1.4.2) for small but finite 
values of x1 and xz. Use a perturbation method to show that 

x1 M a ( t )  cos(t + P ( t ) )  and xz NN -a(t)sin(t t P ( t ) )  

where 
a = -pa 

* 3 3  a/3 = - -a  
8 

Hence, show that the origin is an asymptotically stable equilibrium 
solution of (1.4.1) and (1.4.2). 

1.5. Determine the exact solution of 

X I  = 5 2  

x, = -XI - 2pxz 

and show that the origin is asymptotically stable. Let 

1 v = $x: + xi) 
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Show that V = -2pxCg along the solutions of this system and hence 
one cannot use Lyapunov’s second theorem to show that the origin is 
asymptotically stable. Use Krasovskii’s theorem to show that the origin 
is asymptotically stable and that the whole state space is its domain of 
attraction. 

1.6. Consider the system 

Use a perturbation method to show that, near the origin, 

z1 M a ( t )  cos(t + p ( t ) )  and x2 = - a ( t )  sin(t + P ( t ) )  

where 

Hence, show that the origin is asymptotically stable. Let 

and use Krasovskii’s theorem to show that the origin is asymptotically 
stable and determine its domain of attraction. 

1.7. Consider the sys tem 

Using a perturbation method show that, near the origin, 

z1 x a ( t )  cos(l + p(t ) )  and 52 x -a(t)sin(t + P ( t ) )  
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where 

. 4P 2 

* 3 3  

a = - - - a  
3n 

ap = -a 
8 

INTRODUCTION 

Hence, show that the origin is asymptotically stable. Let 

Use Krasovskii’s theorem to show that the origin is asymptotically 
stable and determine its domain of attraction. 
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Chapter 2 

EQUILIBRIUM SOLUTIONS 

An important class of solutions of a map, such as xk+l = F ( x ~ ;  M), or a 
system of differential equations, such as x = F(x; M), are fixed-point 
solutions or equilibrium solutions. By and large, in the literature, 
only fixed-point solutions of a system of differential equations are 
called equilibrium solutions. In Section 2.1, we consider fixed points 
of continuous-time systems and their stability in detail. The fixed 
points of maps and their stability are considered in Section 2.2. In 
Section 2.3, we present the notions of local and global bifurcations, 
bifurcation diagram, bifurcation set, and structural stability and discuss 
local bifurcations of equilibrium solutions in the context of differential 
equations. Many examples are used to explain the different concepts. 
Furthermore, in Section 2.3, we illustrate how the methods of center- 
manifold reduction and multiple scales can be used aa simplification 
methods for bifurcation analysis. Local bifurcations of fixed points of 
maps and their consequences are examined in Section 2.4. 

2.1 CONTINUOUS-TIME SYSTEMS 

In the case of the autonomous system 

X = F(x; M) (2.1 . l )  

F(x; M) = 0 (2.1.2) 

the fixed points are defined by the vanishing of the vector field; that is, 

35 
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A location in the state space where this condition is satisfied is 
called a singular point. At such a point, the integral curve of 
the vector field F corresponds to the point itself. Also, an orbit 
of a fixed point is the fixed point itself. Fixed points are also 
called stationary solutions, critical points, constant solutions, 
and sometimes steady-state solutions. Physically, a fixed point 
corresponds to an equilibrium position of a system. Further, 
fixed points are examples of invariant sets of (2.1.1). 

2.1.1 Linearization Near an Equilibrium Solution 

Let the solution of (2.1.2) for M = Mo be xo, where xo E Rn and 
Mo E R". To determine the stability of this equilibrium solution, we 
superimpose on it a small disturbance y and obtain 

x(t) = xo + Y(t)  (2.1.3) 

Substituting (2.1.3) into (2.1.1) yields 

Y = F(X0 t Y; Mo) (2.1.4) 

We note that the fixed point x = xo of (2.1.1) has been transformed 
into the fixed point y = 0 of (2.1.4). Assuming that F is at  least Cz, 
expanding (2.1.4) in a Taylor series about xo, and retaining only linear 
terms in the disturbance leads to 

where A, the matrix of first partial derivatives, is called the Jacobian 
matrix. If the components of F are 
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D =  

then 

A =  

- 
A 1 0  * . *  0 -  
0 X 2 ' "  0 
. . . . . .  
, . . . . .  

- 0 0 * . *  An - 

Next, we show that the eigenvalues of the constant matrix A provide 
information about the local stability of the fixed point xo. We say 
local because we have considered a small disturbance and linearized 
the vector field. 

The solution of (2.1.5) that passes through the initial condition 
yo E Rn at  time to E R can be expressed as 

(2.1.6) 

where 
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J =  

Consequently, 
D = P-'AP 

Introducing the transformation y = P v  into (2.1.5), we obtain 

r J 1  4 * * * 4 -  
4 J 2 - * 4  
. . . . . .  
. . . . . .  
. . . . . .  

- 4  4 . * *  Jk 

Pv = APv or v = Dv 

J,= 

Hence, 
VO v = e( ' - to)D 

where vo = v(t0) = P-lyo.  In t e r m  of y, this solution becomes 

- - 
A , 1  0 * *  - 0  
0 A m l  * .  . o  
0 0 A, * * .  * 

. . . .  
- 0 0 0 * * .  Am - 

y ( t )  = Pe('-fO)DP-'yo (2.1.7) 
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P are the generalized eigenvectors corresponding to the eigenvalues 
A, of the matrix A. There are nm generalized eigenvectors corresponding 
to the eigenvalue A,. These vectors are the nonzero solutions of 

For an n x n matrix with n distinct eigenvalues, the generalized 
eigenvectors are also the eigenvectors of the matrix. The components 
of v have terms of the form tke ( t - to )A l ,  where the integer k depends on 
the multiplicity ni of the eigenvalue A,. 

2.1.2 Classification and Stability of Equilibrium 
Solutions 

When all of the eigenvalues of A have nonzero real parts, the corre- 
sponding fixed point is called a hyperbolic Axed point, irrespective 
of the values of the imaginary parts; otherwise, it is called a nonhy- 
perbolic fixed point. 

There are three types of hyperbolic fixed points: sinks, sources, 
and saddle points. If all of the eigenvalues of A have negative 
real parts, then all of the components of the disturbance y decay 
in time, and hence x approaches the fixed point % of (2.1.1) as 
t --+ 00. Therefore, the fixed point % of (2.1.1) is asymptotically 
stable according to Section 1.4.2. An asymptotically stable fixed point 
is called a sink. If the matrix A associated with a sink has complex 
eigenvalues, the sink is also called a stable focus. On the other hand, 
if all of the eigenvalues of the matrix A associated with a sink are real, 
the sink is also called a stable node. A sink is stable in forward time 
(i.e., t -+ cx) but unstable in reverse time (i.e., t -+ -00). Further, all 
sinks qualify as attractors. 

If one or more of the eigenvalues of A have positive real parts, some 
of the components of y grow in time, and x moves away from the fixed 
point xg of (2.1.1) as t increases. In this case, the fixed point ~0 is 
said to be unstable. When all of the eigenvalues of A have positive real 
parts, xo is said to be a source. If the matrix A associated with a source 
has complex eigenvalues, the source is also called an unstable focus. 
On the other hand, if all of the eigenvalues of the matrix A associated 
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with a source are real, the source is also called an unstable  node. A 
source is unstable in forward time but stable in reverse time. Because 
trajectories move away from a source in forward time, the source is an 
example of a repellor. 

When some, but not all, of the eigenvalues have positive real parts 
while the rest of the eigenvalues have negative real parts, the associated 
fixed point is called a saddle  point. Because a saddle point is unstable 
in both forward and reverse times, some authors call it a nonstable 
fixed point (e.g., Parker and Chua, 1989). 

Next, we address nonhyperbolic fixed points. A nonhyperbolic fixed 
point is unstable if one or more of the eigenvalues of A have positive 
real parts. If some of the eigenvalues of A have negative real parts while 
the rest of the eigenvalues have zero real parts, the fixed point x = xo 
of (2.1.1) is said to be neutrally or marginally stable.  If all of the 
eigenvalues of A are purely imaginary and nonzero, the corresponding 
fixed point is called a center. 

Example 2.1. For illustration, we consider the classification of 
the fixed points ( O , O ) , ( - l , O ) ,  and ( 1 , O )  of (1.4.1) and (1.4.2). In 
the vicinity of a fixed point, we obtain the following system after 

(2.1.8) 

Hence, the eigenvalues of the Jacobian matrix are 

A1 = - p  - 4- and A2 = - p  + d m  (2.1.9) 

For all three fixed points, both of the eigenvalues have nonzero real 
parts when p # 0. Hence, all three fixed points are hyperbolic fixed 
points. 

In the vicinity of the fixed point (O,O), (2.1.8) and (2.1.9) become 

Y = [  -1  O -2p ] Y  (2.1.10) 

and 
= - p  - d F  and A 2  = - p  + d z  (2.1.11) 
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respectively. We conclude from (2.1.11) that the fixed point (0 ,O)  is 
a center when p = 0, an unstable node when p 5 -1, an unstable 
focus when -1 < p < 0, a stable focus when 0 < p < 1, and a stable 
node when p 2 1. In Figures 2.1.la-c, we show phase portraits in the 
vicinity of the origin of the x2 - x1 space when the origin is an unstable 
focus, a center, and a stable focus, respectively. A positive orbit spirals 
away from a neighborhood of the unstable focus in Figure 2.1.la) and a 
positive orbit spirals into the stable focus in Figure 2.1.1~. The orbit of 
Figure 2.1.lb, which corresponds to a periodic solution, closes on itself. 

-1 0 1 
XI 

Figure 2.1.1: Phase portraits in the vicinity of the origin of (1.4.1) and 
(1.4.2): (a) p = -0.4, (b) p = 0, and (c) p = 0.4. 

In the vicinity of either the fixed point (-1)O) or the fixed point 
( l , O ) ,  (2.1.8) and (2.1.9) become 

Y = [ O  2 -2p 1. (2.1.12) 

and 
A1 = - p  - J/z and Xz = -p  t (2.1.13) 

respectively. We conclude from (2.1.13) that the fixed points (-1,O) 
and (1,O) are saddles for any value of p because there is always one 
eigenvalue that is a positive real number and another eigenvalue that 
is a negative real number. In Figures 2.1.2a and 2.1.2b1 we show the 
flow in the vicinity of (0,O) of (2.1.12) and the flow in the vicinity of 
( 1 , O )  of (1.4.1) and (1.4.2), respectively. In both of these figures, we 
note that the saddle point attracts two positive orbits and repels two 
positive orbits. 
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Y2 

Figure 2.1.2: (a) Flow in the vicinity of the saddle point (0,O) of the linear 
system (2.1.12) and (b) flow in the vicinity of the saddle point (1,O) of the 
nonlinear system (1.4.1) and (1.4.2). Both the flows are qualitatively similar. 

Many theorems provide precise statements on what the stability 
of fixed-point solutions of the linearized system (2.1.5) imply for the 
stability of fixed-point solutions of the full nonlinear system (2.1.1). 
The Hartman-Grobman theorem (e.g., Arnold, 1988, Chapter 3; 
Wiggins, 1990, Chapter 2) is applicable to hyperbolic fixed points, 
whereas the Shoshitaishvili theorem (e.g., Arnold, 1988, Chapter 
6) is applicable t o  nonhyperbolic fixed points. From these theorems, it 
follows that (a) the fixed point x = ~0 of the nonlinear system (2.1.1) 
is stable when the fixed point y = 0 of the linear system (2.1.5) is 
asymptotically stable; (b) the fixed point x = xo of the nonlinear 
system (2.1.1) is unstable when the fixed point y = 0 of the linear 
system (2.1.5) is unstable; and (c) linearization cannot determine the 
stability of neutrally stable fixed points (including centers) of (2.1.1). In 
the case of neutrally stable fixed points, a nonlinear analysis is necessary 
to determine the stability of xo. It will be necessary to  retain quadratic 
and, sometimes, higher-order terms in the disturbance y in the Taylor- 
series expansion of (2.1.4). 

In a topological setting, the Hartman-Grobman theorem im- 
plies that  the trajectories in the vicinity of a hyperbolic fixed point 
x = xo of (2.1,l) are qualitatively similar t o  those in the vicinity of 
the hyperbolic fixed point y = 0 of (2.1.5). In other words, the local 
nonlinear dynamics near x = xg is qualitatively similar to the linear 
dynamics near y = 0 ,  and a qualitative change in the local nonlinear 
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dynamics can be detected by examining the associated linear dynam- 
ics. In Figure 2.1.2, we observe qualitative similarities between the 
flow near the hyperbolic fixed point (0,O) of the linear system (2.1.12) 
and the flow near the hyperbolic fixed point (1,O) of the corresponding 
nonlinear system (1.4.1) and (1.4.2). 

According to the Hartman-Grobman theorem, there exists a con- 
tinuous coordinate transformation (i.e., a homeomorpliism) that trails- 
forms the nonlinear flow into the linear flow in the vicinity of a hyper- 
bolic fixed point. In some cases, the method of normal forms (Nayfeh, 
1993) may be used to generate a coordiuate traiisforniation to trans- 
form the nonlinear flow into the linear flow (e.g., Arnold, 1988; Guck- 
eriheimer and Iiolmes, 1983; Nayfeh, 1993). Further, such a coordinate 
transformation would be a differentiable one because the method of 
normal forms yields transformations in the form of power-series expan- 
sions. Next, we consider an example to  illustrate the situations in which 
the method of normal forms cannot be used to produce a coordinate 
transformation. 

Example 2.2. We coiisider the planar system 

where X1 arid Xz are different from zero, 6 is a small positive parameter, 
and the ai are independent of c .  The system (2.1.14) has a hyperbolic 
fixed point a t  (z1,zz) = (0,O). In the vicinity of this fixed point, the 
method of normal 
1993, Chapter 2) 

forms can be used to transform (2.1.14) into (Nayfeh, 

by using the coordinate transformation 

(2.1.1 5 )  
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and the I'i are given by 

Ql Q2 Q3 rl = -, rz = -, r3 = 
A1 A2 2x2 - A' 

Q4 Q5 a6 r4 = , ra = -, re = - 
2A' - A 2  A1 1 2  

(2.1.18) 

We note from (2.1.17) and (2.1.18) that the transformation (2.1.16) 
breaks down when either Az M 2X1 or A1 M 2Xz. These two relation- 
ships are examples of resonances. Hence, in the presence of either 
of these resonances, the method of normal forms cannot be used to 
transform (2.1.14) into (2.1.15). 

Coddington and Levinson (1955, Chapter 13) present theorems for 
the stability of fixed points of the system 

X = AX + F(x, t )  (2.1.19) 

where A is an n x n constant matrix and the vector function F is 
continuous in x and t and Lipschitz continuous in x and is such that 
F is x 11) as 11 x 11- 0. [The vector function F(x, t )  is said to be 
Lipschita continuous in x and to satisfy a Lipschitz condition in 
the (n +- 1)-dimensional space 72" x R' of (x, t )  if there exists a positive 
constant I( such that 

II F(Y, t )  - F(z, t )  115 II Y - a II (2.1 20)  

for all (y,t)  and (z,t) in the (n + 1)-dimensional space. The constant 
I< is called a Lipschitz constant for F. If the scalar components of 
F have continuous and bounded first partial derivatives with respect 
to the scalar components of x in D C R" x R', it can be shown that 
the function F satisfies a Lipschitz condition in D (Coddington and 
Levinson, 1955).] The autonomous system (2.1.1) is a special case of 
(2.1.19). 

The Poincard-Lyapunov theorem (e.g., Sanders and Verhulst, 
1985, Chapter 1) is concerned with the stability of the fixed point x = 0 
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Although (2.1.19) is nonautonornous, the above assumption about g 
ensures that x = 0 is a fixed point of (2.1.19). For a general F, x = 0 
is riot a fixed point of (2.1.19). According to the PoincarkLyapunov 
theorem, if all of the eigenvalues of the matrix A have negative real 
parts, then the fixed point x = 0 of (2.1.19) is asymptotically stable. 

Example 2.3. We consider the stability of the fixed point x = 0 of 
the system 

X] = 22 

x2 = -2px2 - sirircl 

where p > 0. To verify i f  the conditions for applying the Poincari- 
Lyapunov theorem are satisfied, we rewrite this planar system in the 
following form: 

In this case, the eigenvalues of the 2 x 2 matrix A are 

A1 = - p  - d z  and A 2  = - p  t d G  
Because both of the eigenvalues have negative real parts, according to 
the PoincarkLyapunov theorem, the fixed point x = 0 of the planar 
system is asymptotically stable. 

We note that although linearization helps in determining 
whether a hyperbolic fixed point of (2.1.1) is stable, it does 
not provide any information regarding the size of the domain 
around the fixed point of (2.1.1) where the conclusion of stabil- 
ity holds. As noted earlier, this domain is called the stability region 
of the fixed point. If it is possible to  construct a Lyapunov function for 
a given problem, then this function can be used to determine the whole 
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x2 

stability region or a subset of this region (e.g., Michel, Miller, and Narn, 
1982; Michel, Narn, and Vittal, 1984). Chiang, Hirsch, and Wu (1988) 
provide analytical results for determining the stability regioris of fixed 
points of autonomous systems satisfying certain generic conditions. The 
stability region of a fixed point can also be numerically determined by 
conducting simulations of (2.1 . l) for different initial conditions. 

Next, we present two examples to illustrate why a nonlinear analysis 
is necessary to determine the stability of neutrally stable fixed points 
and centers. 

b - + = = 1  

Example 2.4. We consider the stability of the fixed point x = 0 of 
the system 

{ ;i:}=[ -1 0 1  o ] {  :;}-{ p : ; }  (2.1.21) 

The fixed point x = 0 is a center i n  the linearization of (2.1.21) because 
the associated eigenvalues are + i  arid - 2 .  The influence of the nonlinear 
term on the stability of this fixed point is depicted in Figures 2.1.3a 
and 2.1.31 for p > 0 and p < 0, respectively. The origin in Figure 
2.1.3a attracts positive orbits whereas the origin in Figure 2.1.3b repels 
positive orbits. Hence, the fixed point x = 0 of (2.1.21) is stable when 
p > 0 arid unstable when p < 0. 

Figure 2.1.3: Phase portraits of (2.1.21): (a) p > 0 and (b) p < 0. 
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Example 2.5. We consider the system 

The fixed point ( 0 , O )  is a neutrally stable fixed point in the linearization 
of (2.1.22) because the associated eigenvalues are 0 and -1. In Figures 
2.1.4a and 2.1.4b, we show the flow in the vicinity of this fixed point 
for k = 1 and k = -1, respectively. In both figures, positive orbits 
initiated on the line 2 = 0 are attracted to the origin. However, in 
Figure 2.1.4a, some positive orbits initiated in the neighborhood of the 
origin are repelled, indicating that the origin is an unstable fixed point 
of (2.1.22) when k > 0. All the positive orbits shown in Figure 2.1.4b 
are attracted to the origin, indicating that the origin is a stable fixed 
point of (2.1.22) when k < 0. 

Figure 2.1.4: Phase portraits of (2.1.22): (a) k = 1 and (b) k = -1. 

We determined the orbits shown in Figures 2.1.3 and 2.1.4 through 
numerical integrations of (2.1.21) and (2.1.22)) respectively. 

2.1.3 Eigenspaces and Invariant Manifolds 
Let the Jacobian matrix corresponding to a fixed point of an n- 
dimensional autonomous system have s eigenvalues with negative real 
parts, u eigenvalues with positive real parts, and c eigenvalues with 
zero real parts. Considering the eigenvectors associated with these 
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eigenvalues, we can represent the space R" as the direct sum of the 
three subspaces E', E",  and E" defined by 

where p1, p2, , ps are the s (generalized) eigenvectors whose corre- 
sponding eigenvalues have negative real parts; pstl, pst2,. . * ,  pstu are 
the u (genemlized) eigenvectors whose corresponding eigenvalues have 
positive real parts; and pstutl, pstut2,. . . , pstUtc are the c (general- 
ized) eigenvectors whose corresponding eigenvalues have zero real parts. 

Of each s eigenvalues with negative real parts, let 2& eigenvalues be 
complex conjugates of each other. The  eigerivectors corresponding to 
the 21 complex eigenvalues will be complex and will lie in a complex 
subspace. However, the real and imaginary parts of each complex 
eigenvector lie in a real subspace and can be used in forming the 
basis of this space (e.g., Arnold, 1973). A pair of complex conjugate 
eigenvectors would correspond to two real vectors, one formed from the 
real part and the other from the imaginary part. Hence, for the 2& 
eigenvalues, we have 21 real vectors. These vectors and the generalized 
eigenvectors corresponding to the real eigenvalues form the basis of E'. 

The spaces E s ,  E", and E' are invariant subspaces of the 
corresponding linear system. A solution of the linear system initiated 
in an invariant subspace remains in this subspace for all times. Thus, 
solutions initiated in E" approach the fixed point as t -+ 00, solutions 
initiated in E" approach the fixed point as t --t -00, and solutions 
initiated in E" neither grow nor decay in time. The subspaces E', 
E", and E" are called stable, unstable, and center subspaces or 
manifolds, respectively, of the considered fixed point of the linear 
system. 

Example 2.6. For illustration, we consider the linear system (2.1.10) 
obtained through a linearization of (1.4.1) and (1.4.2) in the vicinity 
of its fixed point (0,O). From (2.1.10) and (2.1.11), we fiiid that the 
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eigenvectors of the Jacobian matrix are 

(2.1.23) 

and the solution of (2.1.10) can be expressed as 

y = C1eXltpl + c2eX'tp2 (2.1.24) 

where the c, are determined by the initial condition. 
When p = 0, the eigenspace E" of (0,O) is the space spanned 

by p1 and p2, and the eigenspaces E" and E" of (0,O) are empty. 
We conclude from (2.1.24) that a solution of (2.1.10) initiated in the 
center eigenspace of (0,O) remains in this subspace for all times. The 
y2 - y1 plane is the center eigenspace E" of (0,O). Similarly, we can 
also determine the different invariant subspaces of the fixed point (0 ,O) 
of (2.1.10) when p # 0. When p < 0, the y2 - y1 plane is the unstable 
eigenspace of (0,O) and the other eigenspaces of (0,O) are empty. When 
p > 0, the y2 - y1 plane is the stable eigenspace of (0,O) and the other 
eigenspaces of (0,O) are empty. 

Next, we consider (2.1.12) obtained through alinearization of (1.4.1) 
and (1.4.2) in the vicinity of its fixed point (1,O). When p = 0, we find 
from (2.1.12) and (2.1.13) that the eigenvalues and eigenvectors of the 
Jacobian matrix are 

The solution of (2.1.12) is given by (2.1.24), where the A; and pi are 
specified by (2.1.25). 

Here, the eigenspace E" of (0,O) is spanned by p1 and is a one- 
dimensional manifold, the eigenspace E" of (0,O) is spanned by p2 and 
is a one-dimensional manifold, and the eigenspace E" of (0,O) is empty. 
If we start from an initial condition in E", then c2 = 0 in (2.1.24) and we 
remain in E" for all times. Similarly, if we start from an initial condition 
in E", then c1 = 0 in (2.1.24) and we remain in E" for all times. In 
Figure 2.1.5a, the subspaces E" and E" associated with the fixed point 
(0,O) of (2.1.12) are depicted as broken lines in the y2 - yl space. The 
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* 2  

Figure 2.1.5: (a) Stable and unstable eigenspaces of the fixed point (0,O) 
of (2.1.12) and (b) stable and unstable manifolds of tlie fixed point (1,O) of 
(1.4.1) and (1.4.2). 

arrows on E3 and E" indicate tlie direction of evolution in forward time. 
In Figure 2.1.5b, the solid lines are riunierically detcrrniiied solutioris 
of (1.4.1) and (1.4.2) when p = 0. These solutions approacli the fixed 
point (1,O) in either forward or reverse time. At (1 ,0 ) ,  we note that the 
curves W" and W" intersect each otlier and are tangent to the subspaces 
E3 and E", respectively. We note that the union of tlie trajectories 1 
and 2 of Figure 2.1.5b constitutes the curve W".  Similarly, tlie uiiiori of 
the trajectories 3 and 4 of Figure 2.1.5b constitutes the curve W".  The 
curves W" and W" are called the stable and uns t ab le  manifolds  of 
the fixed point ( 1 , O )  of (1.4.1) and (1.4.2),  respectively. 

The stable manifold of a fixed point of (2.1 . l )  is the set of all initial 
conditions such that the flow initiated at  these points asyniptotically 
approaches the fixed point as t -i 00, whereas the unstable manifold 
of a fixed point of (2.1.1) is the set of all initial conditioIis such that 
the flow initiated at these points asymptotically approaches the fixed 
point as t -+ -00. In a nonlinear system, a stable manifold is denoted 
by W " ,  an unstable manifold is denoted by W",  and a center manifold 
is denoted by W'. 

Let the vector field of a nonlinear system described by (2 .1 .1)  be 
C', where r 2 2. Then, there are existence theorems that state 
that if the fixed point y = 0 of the linear system (2.1.5) lias s- 
dimensional stable, u-dimensional unstable, and c-dimensional center 
manifolds, then the fixed point x = xo of (2.1.1) also has s-dimensional 



CONTINUOUS-TIME SYSTEMS 51 

stable, u-dimensional unstable, and c-dimensional center manifolds in 
a neighborhood of the fixed point. At  x = xo, the manifolds associated 
with the nonlinear system intersect each other and are tangent to 
their respective invariant subspaces of y = 0 of (2.1.5) (Kelley, 1967; 
Carr, 1981; Guckenheimer and Hc!mes, '1983). Because these theorems 
guarantee the existence of manifolds only in a neighborhood of ~ 0 ,  these 
manifolds are local invariant manifolds. Further, the manifolds W' 
and W" of x = xo of (2.1.1) have the asymptotic properties of E" and 
E" of y = 0,  respectively, in the neighborhood of xo. 

In Figure 2.1.5b1 as mentioned earlier, we show numerically deter- 
mined stable and unstable manifolds of the saddle point (1 , 0) of the 
nonlinear system (1.4.1) and (1.4.2). The stable manifold W" of (1,O) 
is one-dimensional, and the unstable manifold W" of ( 1 , O )  is also one- 
dimensional. At the saddle, these manifolds are tangent to their corre- 
sponding eigenvectors of the linearized system. As we move away from 
the saddle, the manifolds are no longer tangent to these eigenvectors. 
Here, to determine the unstable manifold, we chose initial conditions on 
E" "close" to the saddle point and computed the positive orbits labeled 
1 and 2 in Figure 2.1.5b through numerical integrations. Similarly, to 
determine the stable manifold of the saddle point, we chose initial con- 
ditions on E" "close" to the considered saddle point and computed 
the negative orbits labeled 3 and 4 in Figure 2.1.5b through numerical 
integrations. 

Example 2.7. We consider the manifolds of the fixed point (0,O) 
of (2.1.22). The center and stable eigenspaces of this fixed point are 
the one-dimensional manifolds y = 0 and z = 0, respectively. The 
numerical results displayed in Figure 2.1.4 indicate that the line z = 0 
is also the global stable manifold Wa. The global center manifold W",  
which is one-dimensional and tangent to the 2 axis at  the origin, is 
addressed in Section 2.3.4. 

In the next two examples, we introduce some new notions and 
further discuss the notions of global stable and unstable manifolds of a 
fixed point. 
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Example 2.8. We consider the two-dimensional system 

Equations (2.1.26) and (2.1.27) have beer1 used to study the roll 
motions of a ship by Wright and Marshfield (1979), Nayfeh and Khdeir 
(1986a,b), Nayfeh and Sanchez (1990), Falzarano (1990), Kreider 
(1992), Bikdash, Balachandran, and Nayfeh (1994), and in some of 
the references provided therein. In this system, the a,  are nonlinear 
coefficients, p1 is the linear damping coefficient, and p3 is the iionlinear 
damping coefficient. 

Each fixed point (x10,x20) of this system satisfies xz0  = 0 and 

3 (2.1.28) 2 
WOZlO t @3%10 + a 5 2 : O  = 0 

The solutions of (2.1.28) are 

-a3 f - 4w&5 

2% 
(2.1.29) 2 

510 = 0, xl0 = 

If (0; - 4u;a5) < 0, (2.1.29) admits only the real root xl0 = 0. 
Otherwise, there are either three or five real roots depending on the 
signs of the ai in (2.1.29). The stability of a fixed point of (2.1.26) and 
(2.1.27) depends on tlie eigenvalues of the matrix 

The eigenvalues X i  are given by 
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We infer from (2.1.32) that the eigenvalues do not depend on p3 .  
For the parameter values 

(2.1.29) admits five real solutions. Consequently, we obtain the five 
fixed points (-2.0782,0.0), (-0.9243,0.0), (O.O,O.O),  (0.9243,0.0), and 
(2.0872,O.O). For convenience, we refer t o  these fixed points as A ,  
B ,  C, D ,  and E ,  respectively. 

A few numerically determined trajectories of the undamped system 
(i.e., pi = 0) are plotted in Figure 2.1.6a, and a few numerically 
determined trajectories of the damped system when p1 > 0 and p3 > 0 
are plotted in Figure 2.1.6b. Using (2.1.31), we find that the fixed 
points A ,  C ,  and E are centers in the undamped case and stable foci 
in the damped case. Further, the fixed points B and D are saddle 
points in both the undamped and damped cases. The trajectories do 
not approach the centers in the undamped case, but they spiral into the 
stable foci in the damped case. Each saddle repels two positive orbits 
and attracts two positive orbits, and the global manifolds of each saddle 
are determined by these orbits, as shown in Figure 2.1.6. 

In Figures 2.1.5b, 2.1.Ga, and 2.1.6b, the stable and unstable 
manifolds of each saddle point intersect transversely a t  the saddle 
point. At a transversal intersection of manifolds, the union of 
the tangent spaces of the intersecting manifolds span the whole space 
(Guillemin and Pollack, 1974). Here, at  each saddle point, the tangent 
space to each manifold is a one-dimensional space, and the tangent 
spaces to the stable and unstable manifolds taken together span the 
two-dimensional space. In Figure 2.1.Ga, we note that the global 
unstable manifold of the saddle point B intersects the global stable 
manifold of the saddle point D on orbit r l .  Such an intersection is an 
example of a nontransversal intersection. 

In Figure 2.1.6a, we note that one of the ends of the global stable 
manifold of the saddle B merges with one of the ends of the global 
unstable manifold of B to form the closed orbit r3. Similarly, one of 
the ends of the global stable manifold of the saddle D merges with one 
of the ends of the global unstable manifold of D to form the closed orbit 
I'd. Closed orbits, such as I'3 and r4, which lead to the same saddle 
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Figure 2.1.6: Phase portraits for the system (2.1.26) and (2.1.27) when 
Wo = 5.278,~3 = - 1 . 4 0 2 ~ ; ~  and a5 = 0.271~:: (a) p1 = p3 = 0 and 
(b) p1 = 0.086 and p3 = 0.108. 
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point in forward and reverse times, are called homoclinic orbits. We 
observe that the trajectories rl and rl run between the saddle points 
B and D. Such trajectories that run toward different saddle points 
in forward and reverse times are called heteroclinic half-orbits. A 
closed orbit, such as that formed by the union of I'l and I'z, is called a 
heteroclinic orbit. 

The heteroclinic and homoclinic orbits of Figure 2.1 .Ga separate 
the regions of qualitatively different oscillations. The heteroclinic orbit 
separates the region where oscillations occur only about C from the 
other regions. The homoclinic orbit rs separates the region where 
oscillations occur only about A from the other regions. Similarly, the 
homoclinic orbit r4 separates the region where oscillations occur only 
about E from the other regions. Hence, the heteroclinic and homoclinic 
orbits of Figure 2.1.6a are called separatrices. In general, we use the 
word separatrices for curves and surfaces that separate regions of 
qualitatively different motions. 

In the phase portrait of the damped system shown in Figure 2.1.Gb, 
we do not have any homoclinic or heteroclinic orbits. The inclusion 
of damping breaks up the homoclinic and heteroclinic orbits of Figure 
2.1.6a. In Figure 2.1.6b, the global stable manifolds of the saddles B 
and D separate the basins of attraction of the point attractors A, C, 
and E. In other words, the stable manifolds of B and D define the 
boundaries of basins of attraction or stability boundaries of 
A, C, and E. The region to the right of the stable manifold of the 
saddle D is the basin of attraction of El the region to the left of the 
stable manifold of the saddle B is the basin of attraction of A, and 
the region bounded by the stable manifolds of the saddles B and D is 
the basin of attraction of C. The global stable manifolds of the saddle 
points in Figure 2.1.6b are also examples of separatrices. According 
to the analytical results of Chiang, Hirsch, and Wu (1988), in many 
autonomous systems one can determine the global stable manifolds of 
the unstable fixed points to define the stability boundaries of the stable 
fixed points of the system, as seen in Figure 2.1.6. 

Before we proceed to the next example, we make some general 
remarks. We note that there is attraction along a stable manifold of a 
fixed point. Hence, it follows that saddle points and stable nodes can 
be part of an attracting set and an unstable node cannot be part of an 
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attracting set. The stable and unstable manifolds of a fixed point and 
homoclinic and heteroclinic orbits are all examples of invariant sets. 
However, these invariant sets are formed by the union of many orbits 
unlike a fixed point or a periodic orbit each of which corresponds to a 
unique orbit. 

In the next example, we illustrate the influence of damping on the 
stability boundary of a fixed point of a planar system. 

Example 2.9. We consider the following second-order sys tem called 
the swing equation in power systems (Anderson and Fouad, 1977): 

'cV' sin(8 - e,)  (2.1.33) 2 H  *- - 8 +  D8 = P, - - 
W R  xc 

In (2.1.33), 8 represents the position of the generator rotor, W R  repre- 
sents the angular velocity, H represents the inertia constant of the rotor, 
D represents the damping, P, represents the input mechanical power, 
and the second term on the right-hand side represents the generated 
electrical power. The swing equation has been studied by Tamura and 
Yorino (1987), Nayfeh, Hamdan, and Nayfeh (1990, 1991), and sev- 
eral others. We mention that the equation governing a driven planar 
pendulum is similar to (2.1.33). 

Defining z1 = 8 and x 2  = 8, we rewrite (2.1.33) as the following 
system of first-order equations: 

where 
c1 = 

For free oscillations of 

VB 

C1 - and c3 = - 
2 H  XG 
W R  VC VB 

the rotor, we have 

(2.1.34) 

(2.1.35) 

(2.1.36) 

where VBO and 8eo are constants. We substitute (2.1.36) into (2.1.34) 
and find that each fixed point (z10,z20) of (2.1.34) satisfies 2 2 0  = 0 and 

(2.1.37) sin(zl0 - OBo) = - Pmcl  
c3 
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If one assumes that the different parameters are such that I I 5 1, 
then there are an infinite number of solutions for z10. Here, we consider 
only the following three solutions for z10: 

The stability of a fixed point of (2.1.34) is determined by the eigenvalues 
of the matrix 

0 
-c3 cos(z10 - OBO) -DC1 

DxF = (2.1.39) 

The eigenvalues A; of this matrix are given by 

1 
2 A ~ , ~  = - { - D ~ ~  f , /DZ~:  - 4c3cos(z10 - Beo) }  (2.1.40) 

For the parameter values (Nayfeh, Hamdan, and Nayfeh, 1990) 

H = 2.37, vB0 = 1, vG = 1.27, eBo = 0, 
(2.1.41) 

P, = 1, X G  = 0.645, WR = 120n 

we find that the three fixed points are (-3.G743,0.0), (0.5327,0.0), and 
(2.6089,O.O) and denote them as B, A, and C ,  respectively. For D = 0, 
B and C are saddles while A is a center. For D > 0, B and C are 
saddles while A is a stable focus. 

In Figures 2.1 .7a-el we have plotted the numerically determined 
global manifolds of the saddles B and C for different values of D. As 
seen in Figure 2.1.7a, there is a homoclinic orbit in the undamped 
case. However, this orbit is destroyed when damping is included. In 
Figure 2.1.7b1 the stability boundary of A is determined only by the 
stable manifold of C. As damping is increased, the stable manifold 
of C and the unstable manifold of B approach each other, as seen in 
Figure 2.1.7~. However, the stability boundary of A is still determined 
only by the stable manifold of C. In Figure 2.1.7d1 one of the ends of 
the unstable manifold of B merges with one of the ends of the stable 
manifold of C,  resulting in the creation of a heteroclinic half-orbit. 
The increase in damping has led to the creation of a heteroclinic half- 
orbit. In this case, the stability boundary of A is determined by the 
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Figure 2.1.7: Phase portraits for the system (2.1.33) when H = 2.37, 
Veo = 1,vG = 1 .27 ,8~0  = 0, P,,, = I , &  = 0.645, and W R  = 1207~: (a) 
D = 0, (b) D = 0.008, (c) D = 0.060, (d) D = 0.065573, and (e) D = 0.07. 

stable manifolds of B and C and the unstable manifold of B. There is a 
nontransversal intersection of the manifolds of B and C OII the stability 
boundary of A. As damping is further increased, the heteroclinic half- 
orbit of Figure 2.1.7d is destroyed, resulting in the scenario shown in 
Figure 2.1.7e. In this case, the stability boundary of A is determined 
by the stable manifolds of B and C. From Figures 2.1.7a-e, we note 
that damping can destroy as well as create nontransversal intersections. 
Further, as the damping is increased, the stability region of A also 
increases in size. 

2.1.4 Analytical Construction of Stable and Un- 
stable Manifolds 

Here, we illustrate analytical construction of stable and unstable mani- 
folds of the saddle point (1,O) of (1.4.1) and (1.4.2). The corresponding 
linearization and eigenvalues are given by (2.1.12) and (2.1.13). The 
eigenvalues A1 and A2 have negative and positive real parts, respectively. 
We first use the transformation 

z1 = 1 + v1 and x2 = v2 
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and shift the fixed point ( 1 , O )  to the origin. The result is 

(2.1.42) { :;}=[; - & I {  ::}+{ 3v:+v:}  0 

In the second step, we construct the matrix P = (pl p2], where p1 
and p2 are the eigenvectors associated with the eigenvalues X1 and X2 
of (2.1.13), respectively. The matrix P has the form 

P = [  A1 A 2  1 1  (2.1.43) 

In the third step, we introduce the transformation v = P z  into 
(2.1.42) and obtain 

z =  [; , Y l z + P - I  { 0 
3(21 + 22)2 t (a + z ~ ) ~  

or 

In (2.1.44), the states 21 and 3 2  are linearly uncoupled but  nonlin- 
early coupled. In the linearization of (2.1.44), there is a fixed point 
at (0,O) whose stable and unstable subspaces are given by 22 = 0 and 
z1 = 0, respectively. It follows from the existence theorem on sta- 
ble and unstable manifolds that there exist corresponding local stable 
and unstable manifolds of the fixed point (0,O) of the nonlinear systetn 
(2.1.44). Hence, there is a local stable manifold 2 2  = h ( q )  such that 

(2.1.45) 
dh 
dzl 

ds 
d32 

h(z1 = 0) = 0 and -(z1 = 0) = 0 

Similarly, there is a local unstable manifold z1 = g(z2) such that 

(2.1.46) 

Substituting 2 2  = h(z1) into the second equation in (2.1.44), we 

g(z2 = 0) = 0 and -(z2 = 0) = 0 

obtain 
dh 1 

-21 = X 2 h  + - {3(Zi + h)2  + (21 + h)3} 
dz1 A 2  - A1 
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which, upon substituting for i l  from tthe first equation in (2.1.44),  
becomes 

dh f .  1 r -  , 

To solve (2.1.47), we assume that h(zl) has the form 

h ( ~ 1 )  = bo + 6121 + b2tT + 632; + . . . (2.1.48) 

Because of (2.1.45), the coefficients 60 and bl turn out to be zero. Thus, 
substituting (2.1.48) into (2.1.47) and equating t,he coefficients of 2:  and 
2: on both sides, we obtain the following equations for 62 and b3: 

(2.1.49) 

Solving (2.1.49) and (2.1.50), we obtain 

Hence, the local stable manifold of the fixed point (0,O) of (2. I .44) can 
be represenked by 

where 62 and b3 are given by (2.1.51) provided that A 2  is away from 
A1, 2A1, and 3A1. 

Similarly, the local unstable manifold of the fixed point (0,O) of 
(2.1.44) can be determined and represented as 

~2 = 622: + b 3 ~ ;  + . * * 

2 3 
21 = c2z2 + c3z2 + * * 

where c2 arid c3 are given by 

3 
c2 = - 

(A,  - A,) ( A 1  - 2x2) 
1 

c3 = - (1 t 1 2 4  
( A 1  - A,) ( A 1  - 3 A 2 )  



FIXED POINTS OF MAPS 61 

provided that A 2  is away from A1 i A 1 ,  and 5x1. 

The above-described procedure is commonly used to construct local 
invariant manifolds of a fixed point (e.g., Hassard, 1980). A similar 
procedure is used in Section 2.3 to construct local center manifolds of 
fixed points. 

In general, analytical techniques can be used to determine local 
invariant manifolds of a fixed point, and numerical techniques are 
needed to determine global manifolds of a fixed point. However, at 
the present time, there are no established numerical techniques for 
determining two- or higher-dimensional manifolds of a fixed point. We 
provide a brief discussion for numerically determining manifolds of fixed 
points in Section 5.7. Parker and Chua (1989, Cha.pter 6) describe 
numerical algorithms for determining one-dimensional manifolds of 
fixed points. Guckenheimer and Worfolk (1993) discuss algorithms 
based on geodesics for computing stable manifolds of fixed points. 

’ 2. 

2.2 FIXED POINTS OF MAPS 

Here, we consider fixed points of the map 

X k t l  = F(xk;M) (2.2.1) 

(2.2.2) 

A fixed point xo of this map satisfies the condition 

a = Fm(xo; Mo) for all m E 2 

where M = Mo is the value of the vector of control parameters. We 
note that an orbit of a ma.p initiated at a fixed point of the map is the 
fixed point itself. Moreover, the fixed points of a map are examples of 
invariant sets. 

To determine the stability of the fixed point x o ,  we superimpose on 
it a disturbance y and find from (2.2.1) that 

Xo 4- Yk+i = F(X0 4- Yk; Mo) (2.2.3) 

where k E 2. Expanding F in a Taylor series around xo, using (2.2.2), 
and linearizing in yk, we obtain 

(2.2.4) 
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where D,F is the matrix of the first partial derivatives of F evaluated 
at (Q; Mo). Next, we introduce the linear transformation 

y = P z  (2.2.5) 

into (2.2.4) and obtain 
Pzk+l = APZk (2.2.6) 

Assuming that P is nonsingular, we multiply (2.2.6) from the left by 
P-' and arrive at 

We choose P as in the preceding section so that J has a Jordan 
canonical form. If the eigenvalues p; of A are distinct, J is a diagonal 
matrix with entries p1, pp, . - .  , ,on. Then, (2.2.7) can be rewritten as 

(2.2.8) 

where ztm) is the mth component of z. It follows from (2.2.8) that as 
k --+ 00, 

zp' -+ 0 if I ~ m 1 < 1  

if pm = 1 

$' = (m) If  * pm = -1 ZO 

Therefore, to ascertain the stability of the fixed point xo, we 
examine the location of the eigenvalues of A in the complex plane 
with respect to the unit circle shown in Figure 2.2.1. If all of the 
eigenvalues of A are such that they are either inside the unit circle 
or outside the unit circle, the corresponding fixed point is called a 
hyperbolic fixed point. A hyperbolic fixed point is called a saddle 
point if some eigenvalues are within the unit circle and the rest of 
them are outside the unit circle. A hyperbolic fixed point is called a 
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Re 

Figure 2.2.1: Unit circle in the complex plane. 

sink if all of the eigenvalues are within the unit circle. Similarly, a 
source corresponds to the case where all of the eigenvalues are outside 
the unit circle. If one or more eigenvalues of A lie on the unit circle, 
the corresponding fixed point is called a nonhyperbolic fixed point. 
The Hartman-Grobman theorem is also applicable to fixed points 
of maps. From this theorem, it follows that linearization of a map is 
sufficient to determine the stability of a hyperbolic fixed point. If all of 
the eigenvalues of A lie within the unit circle, the fixed point xo is said 
to be asymptotically stable. If at least one eigenvalue of A lies outside 
the unit circle, the fixed point xo is unstable, as depicted in Figure 
2.2.1. If none of the eigenvalues of A lie outside the unit circle, a linear 
analysis is not sufficient to determine the stability of a nonhyperbolic 
fixed point and nonlinear terms have to be included on the right-hand 
side of (2.2.4). 

There are also invariant linear subspaces E", E", and E' associated 
with a fixed point of a map. The subspace E" is spanned by the 
eigenvectors corresponding to the eigenvalues pa, where I pa I < 1. 
The subspace E" is spanned by the eigenvectors corresponding to the 
eigenvalues p,,, where I pu I > 1. The subspace E" is spanned by the 
eigenvectors corresponding to the eigenvalues pc, where 1 pc I = 1. 
For hyperbolic fixed points, the subspace E" is empty. There are also 
invariant manifolds associated with a fixed point of a map. A stable 
manifold of a fixed point of a map is the set of all initial conditions 
such that the orbits initiated at these points asymptotically approach 
the fixed point as the iterate number k --t 00. On the other hand, 
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an unstable manifold of a fixed point of a map is the set of all initial 
conditions such that the orbits initiated at  these points asymptotically 
approach the fixed point as the iterate number k + -m. Ushiki (1980) 
obtained analytical expressions for local manifolds of hyperbolic fixed 
points of maps. For certain special casea, Parker and Chua (1989, 
Chapter 6) provide numerical algorithms to determine manifolds of 
fixed points of a map. 

A solution q that satisfies the condition 

xo = Fk(%; Mo) (2.2.9) 

where k 2 1 is called a period-k point or periodic point of order 
k of the map F. This point is a fixed point of the map G, which is 
formed by k successive iterations of F; that is, 

G(x; M) = Fk(x; M) 

Thus, the stability of period-k points of F can be studied by investi- 
gating the stability of the fixed points of Fk. 

Example 2.10. A fixed point of the logistic map (1.1.4) is I = 0. It 
is stable for 0.0 < a < 0.25 because I F’(z = 0) I < 1. For a > 0.25, 
there exists a nontrivial fixed point at 10 = 1 - 0.25/a. Because 
F’(zO) = 2 - 4a, this fixed point is stable when 0.25 < a < 0.75. 
At a = 0.75, this nontrivial fixed point is nonliyperbolic. In Figure 
2.2.2a, we have plotted F(z) versus I when Q = 0.8. The intersections 
of the line y = z with the curve F ( z )  give the fixed points of F ( z ) .  
They occur at  z = 0 and z = 0.6875. The fixed point I = 0.6875 is 
unstable because I F’(I = 0.6875) I > 1. 

Next, we investigate the fixed points of F2(z), which are given by 

FZ(s) = F(F(z)] = F[4a1(l - I)] 

or 

Hence, the fixed points of F 2 ( z )  are given by the solutions of 

F 2 ( z )  = 16a2z(l  - Z) [l - 4a1(l - z)] 

16a2z( 1 - Z) [ 1 - 4az( 1 - I)] = 2 
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X 

Figure 2.2.2: Graphs to determine solutions of (1.1.4) at a! = 0.8: (a) fixed 
points and (b) period-two points. 

which are 

1 
4 a  

x = O ,  1--,  and 

The first two fixed points are also fixed points of F ( z ) .  In Figure 2.2.2b, 
we have plotted F’(x) versus x when a = 0.8. The intersections of the 
curve F 2 ( x )  with the curve y = z give the fixed points of F2(x ) .  We 
note that there are four intersections. The dot corresponds to the fixed 
point x = 1 - 0.25/(r of F Z ( x ) ,  which is also a fixed point of F ( x ) .  The 
other three fixed points are x = 0, x = 0.5130, and x = 0.7795. We 
note that 

E’(0.5130) = 0.7795 and F’(0.5130) = 0.5130 

and that 

F(0.7795) = 0.5130 and F2(0.7795) = 0.7795 

Hence, x = 0.5130 and z = 0.7795 are period-two points of F ( s ) .  

its Jacobian; that is, 
To determine the stability of the fixed points of F’(s), we calculate 

d 
dx p = - [ F 2 ( z ) ]  = 16a2(1 - 22) [l - 8 a z ( l  - z)] 

For the fixed points x = 0 and x = 0.6875, p = 10.24 and p = 1.44, 
respectively. Hence, these fixed points are unstable. This is expected 
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because these fixed points are unstable fixed points of F ( x ) ;  F'(x = 
0) = 3.2 and F'(x = 0.6875) = 1.2. For the fixed points z = 0.5130 
and x = 0.7795 of F 2 ( r ) ,  p = 0.159 and p = 0.573, respectively. Hence, 
both of the period-two points of F ( x )  are stable. 

Example 2.11. Each fixed point ( x o , y o )  of the Hdnon map (1.1.5) 
and (1.1.6) is a solution of 

(2.2.10) 
(2.2.1 1) 

From (2.2.10) and (2.2.11), we  obtain 

a x ;  t (1 - P ) X O  - 1 = 0 (2.2.12) 

whose solutions are 

x o =  L { ( P - l ) k J m }  2a (2.2.13) 

When (I! > -(1 - /?)2/4, (2.2.13) has two real solutions. The corre- 
sponding fixed points of (1.1.5) and (1.1.6) are 

(510 ,  Y l O )  = (A { (P - 1) - d-p)lt4cr) ) P X 1 0 )  

( 0 0 ,  Y20) = (2- 2 a  { ( P  - 1) t JmjG} , PQ") 
(2.2.14) 

The stability of (x j0 , ' y jO)  depends on the eigenvalues of the matrix 

D.F=[  - 2 a x j o  ;] 
The two eigenvalues are 

(2.2.15) 

(2.2 .lG) 
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When a = 0.08 and p = 0.3, we obtain the fixed points 

(s lo ,ylo)  = (-10.0, -3.0) and (szo,yl0) = (1.25,0.375) 

The eigenvalues corresponding to (zl0, ylo) are -0.1695 and 1.7695, 
and the eigenvalues corresponding to (q0, yz0) are -0.6568 and 0.4568. 
Therefore, (zlo,ylo) is a saddle point while (zzo,yzo) is a stable fixed 
point. 

In Figure 2.2.3, we show some of the discrete points that make up 
the stable and unstable manifolds of the saddle point (-10.0, -3.0). 
One of the ends of the unstable manifold W" of the saddle is attracted 
to the stable fixed point (1.25,0.375). To determine the stable and 
unstable manifolds, we first determined the eigenvectors p1 and p2 
of (2.2.15) corresponding to the eigenvalues p1 = -0.1695 and pz = 
1.7695, respectively. Then, we used the eigenvector p1 to choose initial 
conditions "close" to (-10.0, -3.0). Successive applications of the 
map F-' to these initial conditions yielded the discrete points on W". 
Similarly, we used the eigenvector pz to chooFe initial conditions "close)' 
to (-10.0, -3.0). Successive applications of the map F to these initial 
conditions yielded the discrete points on W". 

.. '. .. 

Wa 

.' .. 

-91 
-12 4 4 0 

xk+ 1 

Figure 2.2.3: Stable manifold W" and unstable manifold W" of the saddle 
point (-10,-3) of (1.1.5) and (1.1.6) when a = 0.08 and p = 0.3. 



68 EQUILIBRIUM SOLUTIONS 

2.3 BIFURCATIONS OF 
CONTINUOUS SYSTEMS 

In this section, we present the concepts of local and global bifurcations, 
continuous and discontinuous or catastrophic bifurcations, bifurcation 
diagrams, bifurcation sets, codimension of a bifurcation, structural sta- 
bility, and simplification methods. Bifurcation, a French word in- 
troduced into nonlinear dynamics by Poincard, is used to indicate a 
qualitative change in the features of a system, such as the number and 
type of solutions, under the variation of one or more parameters on 
which the considered system depends. By the terminology local bi- 
furcation, we mean a qualitative change occurring in the neighborhood 
of a fixed point or a periodic solution of the system. We consider any 
other qualitative change to be a global bifurcation. 

In bifurcation problems, it is useful to consider a space formed 
by using the state variables and the control parameters, called the 
state-control space. In this space, locations at which bifurcations 
occur are called bifurcation points. Many branches of similar and/or 
different solutions merge or emerge from local bifurcation pints .  A 
bifurcation that requires at least rn control parameters to occur is 
called a codimension-rn bifurcation. Here, unless otherwise stated, 
it should be understood that the control parameters are varied in a 
stationary sense; that is, the control parameters are varied very slowly 
so that their instantaneous values can be considered constants. 

Shilnikov (1976), Zeeman (1982), Abraham (1985)) Thompson and 
Stewart (1986)) and Thompson, Stewart, and Ueda (1994) classify 
bifurcations into continuous and discontinuous or catastrophic 
bifurcations, depending on whether the states of the system vary 
continuously or discontinuously as the control parameter is varied 
gradually through its critical value. Discontinuous or catastrophic 
bifurcations can be further subdivided into dangerous and explosive 
bifurcations, depending on whether the system response jumps to a 
remote disconnected attractor or explodes into a larger attractor, with 
the new attractor including the old (ghost or phantom) attractor as a 
proper subset. 
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In an explosive bifurcation, the system response does not jump to 
a remote attractor. The outcome of such a bifurcation is determinant, 
independent of the rate of control sweep, and insensitive to the presence 
of noise. Consequently, upon reversal of the control sweep in a 
quasistationary manner, the new large attractor implodes to the old 
small attractor at the same critical bifurcation value, with no hysteresis. 
The new large attractor may or may not be chaotic. When the new 
attractor is chaotic, an orbit on it spends long stretches of time near 
the fixed point with chaotic or turbulent outbreaks and excursions away 
from the fixed point. The consequence of the explosive bifurcation is 
an on-off internittent transition to chaos, as discussed in Section 5.4. 

In a dangerous bifurcation, the current attractor suddenly disap- 
pears from the state space of the considered system. This event is 
also known as blue sky catastrophe (Abraham, 1985; Thompson 
and Stewart, 1986; Abraham and Shaw, 1992). The postbifurcation 
response jumps to a remote attractor, which may be bounded or un- 
bounded. Bounded responses include point, periodic, quasiperiodic, 
and chaotic attractors. (The unbounded responses have disastrous 
consequences; examples include capsizing of ships and voltage collapse 
in power systems.) Typically, upon reversal of the control sweep, a 
bounded response remains on the path of the new attractor, resulting 
in hysteresis. The outcome of a dangerous bifurcation may be determi- 
nant or indeterminant, depending on whether the system has only one 
attractor past the critical control value or not. When the system has 
multiple attractors, the postbifurcation response depends on the rate 
of control sweep and the presence of noise. 

Here, we consider local bifurcations of fixed points of an autonomous 
system of differential equations as a scalar control parameter is varied. 
Bifurcations of fixed points under the variation of two control param- 
eters are also briefly addressed. Further, we also discuss methods to 
simplify a dynamical system in the vicinity of a bifurcation point. Local 
bifurcations of periodic solutions under the variation of a scalar con- 
trol parameter are addressed in Chapter 3. Local bifurcations of fixed 
points of maps are discussed in Section 2.4. 
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2.3.1 Local Bifurcations of Fixed Points 
From Section 2.1, we know that the matrix A in (2.1.5) and the 
associated eigenvalues are functions of the control parameter vector 
M. Let us suppose that as one or more control parameters are slowly 
varied, a fixed point becomes nonhyperbolic at a certain location in 
the state-control space. Then, if the state-space portraits before and 
after this location are qualitatively different, this location is called a 
bifurcation point, and the accompanying qualitative change is called 
a bifurcation. Furthermore, a bifurcation that requires at least na 
independent control parameters to occur is called a codimension-rn 
bifurcation. 

If we start with control parameters corresponding to a stable fixed 
point of a continuous-time system, such as (2.1.1), and then slowly vary 
one of the control parameters, this fixed point can lose stability through 
one of the following bifurcations (e.g., Arnold, 1988): (a) saddle-node 
bifurcation, (b) pitchfork or symmetry-breaking bifurcation, (c) trans- 
critical bifurcation, or (d) Hopf bifurcation. At bifurcation points asso- 
ciated with saddle-node, pitchfork, and transcritical bifurcations only 
branches of fixed points or static solutions meet. Hence, these three bi- 
furcations are classified as static bifurcations. In contrast, branches 
of fixed points and periodic solutions meet at a Hopf bifurcation poilit. 
Hence, a Hopf bifurcation is classified as a dynamic bifurcation. 

Static Bifurcations 

We consider the static bifurcations of the fixed points of (2.1.1) under 
the influence of a scalar control parameter a. In the x - a state-control 
space, a simple static bifurcation of a fixed point of (2.1.1) is said to 
occur at  (xo; a,) if the following conditions are satisfied: 

1. F(x~; a,) = 0,  

2. D,F has a zero eigenvalue while all of its other eigenvalues have 
nonzero real parts at (xg; a,). 

The first condition ensures that the considered solution is a fixed 
point of (2.1.1), and the second condition implies that this fixed point 
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is a nonhyperbolic fixed point. One should note that these conditions 
are necessary but not sufficient. However, in the event a static 
bifurcation does occur, one can distinguish saddle-node bifurcation 
points from other static bifurcation points. We let F, represent the 
n x 1 vector of first partial derivatives of the components of F with 
respect to the control parameter (Y and construct the n x ( n  + 1 )  
matrix [D,F I F,]. At a saddle-node bifurcation point, F, does 
not belong to the range of the matrix D,F. On the other hand, at 
pitchfork and transcritical bifurcation points, Fa belongs to the 
range of the matrix D,F. (The range of an n x n matrix A consists 
of all vectors Az, where z E R".) Hence, the matrix [D,F I F,] has 
a rank of n at  saddlenode bifurcation points and a rank of (n - 1 )  
at other static bifurcation points. In the state-control space, all of the 
branches of fixed points that meet at  a saddle-node bifurcation point 
have the same tangent. This is not so at  pitchfork and transcritical 
bifurcation points. Next, we consider many one-dimensional systems 
to illustrate the different bifurcations. 

Example 2.12. We consider the system 

x = F ( x ; p )  = p - x2 (2.3.1) 

where p is a scalar coritrol parameter. Here, we have a two-dimensional 
state-control space. For p < 0, (2.3.1) does not have any fixed points. 
However, for p > 0, (2.3.1) has the two nontrivial fixed points 

x = ,/ji and x = --& 
In this case, the Jacobian matrix has a single eigenvalue given by 

X = -2x 

The fixed point z = Ji7 is a stable node because X < 0, and the fixed 
point x = -fl is an unstable node because X > 0. In Figure 2.3.1, we 
display the different fixed-point solutions of (2.3.1) and their stability 
in the z - p space. We use broken and solid lines to depict branches of 
unstable and stable fixed points, respectively. We note the following at 
(0,O): (a) F ( s ;  p )  = 0 and (b) D,F has a zero eigenvalue. Hence, there 
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Figure 2.3.1: Scenario in the vicinity of a saddle-node bifurcation. 

is a nonhyperbolic fixed point at p = 0. Further, we note that there 
is a change in the number of fixed-point solutions as we pass through 
p = 0. Hence, the origin of the x - p space is a static-bifurcation point. 
At this bifurcation point, F,, = 1 and D,F is a scalar equal to zero. So, 
F,, does not belong to the range of D,F, and the rank of [D,F I F,,] 
is one. Therefore, the origin of the x - p space is a saddle-node 
bifurcation point. In Figure 2.3.1, both of the branches that meet at 
the bifurcation point have the same tangent. Moreover, we observe that 
branches of stable nodes and unstable nodes meet at  the saddle-node 
bifurcation point of the one-dimensional system (2.3.1). Typically, in 
higher-dimensional systems, branches of saddle points and stable nodes 
meet at a saddle-node bifurcation point. 

Diagrams such as Figure 2.3.1 in which the variation of solutions 
and their stability are displayed in the state-control space are called 
bifurcation diagrams. In the bifurcation diagram, a branch of stable 
solutions is called a stable branch and a branch of unstable solutions 
is called an unstable branch. In most situations, a branch of solutions 
either ends or begins at  a bifurcation point. 

Example 2.13. We consider the system 

(2.3.2) 
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where p is again the scalar control parameter. There are three fixed 
points: 

x = 0; 
x = 

trivial fixed point 
JT; nontrivial fixed points 

In this case, the Jacobian matrix 

D,F = p + 3ax2 

has the single eigerivalue 

A = p  a t x = O  
A = -2p  at x = f JT 

Consequeritly, the trivial fixed point is stable when p < 0 and unstable 
when p > 0. On the other hand, when a < 0, nontrivial fixed points 
exist only when p > 0 and they are stable. However, when a > 0, 
nontrivial fixed points exist only when p < 0 and they are unstable. 
The bifurcation diagrams of Figures 2.3.2a and 2.3.213 correspond to 
(Y = -1 and a = 1, respectively. In both cases, we note the following 
at  (0,O): (a) F ( z , p )  = 0,  (b) D,F has a zero eigenvalue, (c) the number 
of fixed-point solutions for p < 0 is different from that for p > 0, and 
(d) there is a change in the stability of the trivial fixed point as we 
pass through p = 0. Hence, the origin of the state-control space is a 
bifurcation point. 

Figure 2.3.2: Local scenarios: (a) supercritical pitchfork bifurcation and (b) 
subcritical pitchfork bifurcation. 
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When a = -1, two stable branches of fixed points x = fi 
and x = -Jji bifurcate from the bifurcation point, as shown in 
Figure 2.3.2a. When a = 1, two unstable branches of fixed points 
z = fi and z = -& bifurcate from the bifurcation point, aa shown 
in Figure 2.3.213. For both a = 1 and a = -1, the bifurcation 
point is not a saddle-node bifurcation point because both of the 
scalars F,, and D,F are zero there. The bifurcations observed in 
Figures 2.3.2a and 2.3.2b are called pitchfork bifurcations because 
the bifurcating nontrivial branches have the geometry of a pitchfork 
at (0,O). Specifically, the bifurcation in Figure 2.3.2a is called a 
supercritical pitchfork bifurcation, and the bifurcation in Figure 
2.3.2b is called a subcritical or reverse pitchfork bifurcation. In 
the case of a supercritical pitchfork bifurcation, locally we have a branch 
of stable fixed points on one side of the bifurcation point and two 
branches of stable fixed points and a branch of unstable fixed points 
on the other side of the bifurcation point. In the case of a subcritical 
pitchfork bifurcation, locally we have two branches of unstable fixed 
points and a branch of stable fixed points on one side of the bifurcation 
point and a branch of unstable fixed points on the other side of the 
bifurcation point. Unlike Figure 2.3.1, all of the branches that meet 
at the bifurcation points in Figures 2.3.2a and 2.3.2b do not have the 
same tangent. 

Example 2.14. We consider the onedimensional system 

x = p x - x  1 (2.3.3) 

There are two fixed points: 

x = 0; trivial fixed point 
x = p;  nontrivial fixed point 

The Jacobian matrix 
D,F = p - 2~ 

has the single eigenvalue 

A = p  a t x = O  
A = - p  a t x = p  
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Figure 2.3.3: Scenario in the vicinity of a transcritical bifurcation. 

In the corresponding bifurcation diagram shown in Figure 2.3.3, the 
fixed point x = 0 is a nonhyperbolic fixed point at p = 0. At 
this point, a static bifurcation occurs because there is an exchange 
of stability between the trivial and nontrivial branches. We note that 
the bifurcation point is not a saddle-node bifurcation point because the 
scalars F’ and D,F are both zero a t  (0,O). The bifurcation point in 
Figure 2.3.3 is an example of a transcritical bifurcation point. We 
point out that all of the branches that meet at  this bifurcation point 
do not have the same tangent. 

Example 2.15. We consider 
5 i = F ( x , p )  = p - x  (2.3.4) 

We have only one fixed point, namely, 

This solution is depicted in Figure 2.3.4. At the origin of the x-p space, 
F(x,p) = 0 and D,F has a zero eigenvalue, implying that x = 0 is a 
nonhyperbolic fixed point at p = 0. However, (0,O) is not a bifurcation 
point because there is no qualitative change either in the number of 
fixed-point solutions or in the stability of the fixed-point solutions as 
we pass through p = 0 in the state-control space. 
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0 
P 

Figure 2.3.4: Fixed-point solutions of (2.3.4). 

Hopf Bifurcations 

When a scalar control parameter a is varied, a Hopf bifurcatioii of a 
fixed point of a system such as (2.1.1) is said to occur at  Q = ac if the 
following conditions (Marsden and McCracken, 1976) are satisfied: 

1. F ( x ~ ;  Q,) = 0 ,  

2. The matrix D,F has a pair of purely imaginary eigenvalues 
f i w h  while all of its other eigenvalues have nonzero real parts 
at  ( x o ; a c ) ,  

3. For Q N a,, let the analytic continuation of the pair of imaginary 
eigenvalues be i f iw. Then Real ( d i l d a )  # 0 at a = ac. This 
condition implies a transversal or nonzero speed crossing of the 
imaginary axis and hence is called a transversality condition. 

Again, the first two conditions imply that the fixed point undergoing 
the bifurcation is a nonhyperbolic fixed point. When all of the above 
three conditions are satisfied, a periodic solution of period 27r/uh is 
born at  (Q; aC); bifurcating periodic solutions can also occur when the 
transversality condition is not satisfied (e.g., Marsden and McCracken, 
1976). It is to be noted that bifurcating periodic solutions can 
also occur under certain other degenerate conditions (e.g., Golubitsky 
and Schaeffer, 1985). In such cases, we have degenerate Hopf 
bifurcations. 
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The Hopf bifurcation is also called the Poincarb-Andronov- 
Hopf bifurcation (e.g., Wiggins, 1990) to give credit to the works of 
Poincard and Andronov that preceded the work of Hopf. As pointed out 
in the literature (e.g., Arnold, 1988, Chapter 6 ;  Abed, 1994), Poincard 
(1899) was aware of the conditions for this bifurcation to occur. 
(Poincard studied such bifurcations in the context of lunar orbital 
dynamics.) Andronov and his co-workers studied Hopf bifurcations 
in planar systems before Hopf studied such bifurcations in general 
n-dimensional systems (Andronov and Chaikin, 1949; Arnold, 1988). 
In aeroelasticity, the consequence of a Hopf bifurcation is known as 
galloping or flutter. 

Example 2.16. We consider the planar system 

j. = pz - w y  + ((Yz - Py)(z2 + $2) 
$ = w z  t py t (P. t "y)(.cz + y') 

( 2.3.5) 
(2 .3 .6)  

where z and y are the states and p is the scalar control parameter. The 
fixed point (0 ,O) is a solution of (2 .3 .5)  and (2.3.6) for all values of p.  
The eigenvalues of the corresponding Jacobian matrix there are 

X I  = p - iw and A 2  = p +iw 

From these eigenvalues, we note that (0 ,O) is a nonhyperbolic fixed 
point of (2 .3 .5)  and (2 .3 .6)  when p = 0. Further, at (.,y,p) = ( O , O , O ) ,  
we note that 

- 1  1 and - - dA2 dX 1 

dP dP 
- =  

Hence, the three conditions required for a Hopf bifurcation are satisfied, 
and a Hopf bifurcation of the fixed point (0 ,O)  of (2 .3 .5)  and (2.3.6) 
occurs at p = 0. The period of the bifurcating periodic solution at 
( O , O , O )  is 2 n / w .  

By using the transformation 

= r c o s 9  and y = rs in9 

we transform (2 .3 .5)  and (2 .3 .6)  into 
3 1: = pr + ar (2 .3 .7)  
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i = w + pr2 (2.3.8) 

The trivial fixed point of (2.3.7) corresponds to the fixed point (0,O) of 
(2.3.5) and (2.3.6), and a nontrivial fixed point (i.e., r # 0) of (2.3.7) 
corresponds to a periodic solution of (2.3.5) and (2.3.G). In the latter 
case, r is the amplitude and i is the frequency of the periodic solution 
that is created due to the Hopf bifurcation. A stable nontrivial fixed 
point of (2.3.7) corresponds to a stable periodic solution of (2.3.5) 
and (2.3.6). Likewise, an unstable nontrivial fixed point of (2.3.7) 
corresponds to an unstable periodic solution of (2.3.5) and (2.3.6). 

We note that (2.3.7) is identical to (2.3.2), so the Hopf bifurcation 
at ( O , O ,  0) in the 2 - y - p space is equivalent to a pitchfork bifurcation 
at (0,O) in the r - p space. When a = -1, we have a supercritical 
pitchfork bifurcation in the T - p space and, hence, a supercritical 
Hopf bifurcation in the 5 - y - p space. When (Y = 1, we have 
a subcritical pitchfork bifurcation in the r - p space and, hence, a 
subcritical Hopf bifurcation in the 5 - y - p space. The bifurcation 
diagrams for a = -1 and a = 1 are shown in Figures 2.3.5a and 2.3.5b1 
respectively. In the upper half of Figure 2.3.5, the bifurcating periodic 
solutions in the z - y - p space are depicted as parabolic surfaces. In 
the case of a supercritical Hopf bifurcation, locally we have a branch of 
stable fixed points on one side of the bifurcation point and a branch of 
unstable fixed points and a branch of stable periodic solutions on the 
other side of the bifurcation point. In the case of a subcritical Hopf 
bifurcation, locally we have a branch of unstable periodic solutions and 
a branch of stable fixed points on one side of the bifurcation point and 
a branch of unstable fixed points on the other side of the bifurcation 
point. 

When a = 0 in (2.3.5) and (2.3.G), although the conditions for a 
Hopf bifurcation are satisfied there are no periodic orbits in the vicinity 
of the bifurcation point. This case is degenerate. 

Example 2.17. The following system is a model of a centrifugal 
governor, which probably is one of the first mechanical systems in which 
the consequences of a Hopf bifurcation were observed (Pontryagin, 
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D,F = 
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- 
0 1 0 - 

p?-l P -P 2 f i m  (2.3.1 3) 

- - k J m  O 0 

P 0 

Figure 2.3.5: Local scenarios: (a) supercritical Hopf bifurcation and (b) 
subcritical Hopf bifurcation. 

1962, Chapter 5; Hassard, Kazarinoff, and Wan, 1981, Chapter 3): 

2 1  = 22 (2.3.9) 
x z  = (sin z1 cos z1)x3 2 - sin 21 - px2  (2.3.10) 
X3 = k(cOs~1 - p )  (2.3.11) 

In this system, the control parameter of interest is p,  which is a measure 
of friction. Further, p > 0, k > 0, and 0 < p < 1. The fixed points of 
(2.3.9)-(2.3.11) are given by 

( X I O , ~ Z O ,  230) = (arccosp, 0, f I/&) (2.3.12) 

The Jacobian matrix evaluated a t  the fixed point (arccos p, O,l / f i )  is 
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Hence, the eigenvalues of this matrix are given by 

1 -p '  
A3  t pA' i- -A + 2kJi3(1- p') = 0 (2.3.1 4) 

The necessary and sufficient conditions that none of the roots of 
this equation has a positive real part is provided by the Routh- 
Hurwitz criterion (e.g., Meirovitch, 1970, Chapter 6), which in this 
case translates to 

P 

1 -p'  > 0, - ( p  - 2kP3l2) > 0, ~ c f i ( i  - pz) > o (2.3.1 5) 
P 

The first condition is always satisfied because p > 0. The last condition 
is always satisfied because k is positive and 0 < p < 1. However, the 
second condition is violated when p < 2kp3/'. This violation implies 
the existence of a pair of complex conjugate roots with a positive real 
part. Hence, the critical value is 

= pc = 2kP3l2 (2.3.16) 

Alternatively, this critical value can be determined as follows. At 
criticality, let the three eigenvalues of (2.3.13) be 

-zwo, iw,, and A3 (2.3.1 7) 

Then, we have 

Comparing (2.3.18) with (2.3.14), we find that 

x3 - A3A2 t w;A - x3w; = 0 (2.3.18) 

1 -p '  
A3 = -p ,  w; = - , x3w; = -2k&(l - p2)  

P 
(2.3.19) 

Eliminating A3 and wo from the relations in (2.3.19), we obtain (2.3.16). 
Now, we need to check if the transversality condition required for 

a Hopf bifurcation is satisfied at p = pc,  For p N p c )  we let the 
analytic continuation of the eigenvalues -iwo and iwo be A1 and A', 
respectively. We differentiate all the terms in (2.3.14) with respect to 
the control parameter p,  use (2.3.19), and arrive at 

-- - -  1 dA 
dp [3 t -t (?)'I (2.3.20) 
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D,F = 

Then, at p = pc, (2.3.20) leads to 

r 0 1 0 

-P  - 2 f i m  pz-l 
P 

- - - k J i = - i 7  0 0 

Because the real parts of dX,/dp and dXz/dp are nonzero, the transver- 
sality condition is satisfied. Hence, the fixed point (arccos p,  O , l / & )  
of (2.3.9)-(2.3.11) experiences a Hopf bifurcation at  p = pc. 

Next, we examine if the fixed point (arccos p,  0, -l/fi) of (2.3.9)- 
(2.3.11) can experience a Hopf bifurcation. The corresponding Jacobian 
matrix is 

Hence, the eigenvalues of this matrix are given by 

1 - p 2  x3 + PA2 + (--) A - 2k&(l -  P Z )  = 0 

The necessary and sufficient conditions that none of the roots of this 
equation has a positive real part is provided again by the h u t h -  
Hurwitz criterion, which in this case translates to 

1 - p* 
P > 0, - ( p  + 2kP3") > 0, -k&(l - p 2 )  > 0 (2.3.21) 

P 

Because p > 0, k > 0, and 0 < p < 1 ,  the first and second conditions 
are always satisfied while the third condition is riot satisfied. Hence, 
the fixed point (arccos p ,  0, - l / f i )  is unstable in the parameter range 
of interest. 

2.3.2 Normal Forms for Bifurcations 
The normal form of a bifurcation is a simplified system of equations 
that approximates the dynamics of the system in the vicinity of a 
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bifurcation point. The simplification can be achieved by using one 
of the methods described in Sections 2.3.4-2.3.6. The dimension of the 
normal form is generally lower than the dimension of the full system of 
equations that describes the dynamics of the system. Here, we present 
the normal forms for generic bifurcations of fixed points that occur 
when a single control parameter is varied. For static bifurcations, the 
normal form is a one-dimensional autonomous system, and for the Hopf 
bifurcation, the normal form is a two-dimensional autonomous system. 

The normal form for a generic saddle-node bifurcation of a 
fixed point is 

x = p + a x 2  (2.3.22) 

where 2 is the state variable and p is the scalar control parameter. The 
bifurcation diagram of Figure 2.3.1 corresponds to a = -1. 

The normal  form for a generic transcritical bifurcation of a 
fixed point is 

(2.3.23) 

where p is again the control parameter. The bifurcation diagram of 
Figure 2.3.3 corresponds to a = 1. 

The normal form for a generic pitchfork bifurcation of a 
fixed point is 

x = px -+ ax 3 (2.3 -24) 

The bifurcation diagrams of Figures 2.3.2a and 2.3.2b correspond to 
a = -1 and a = 1, respectively. 

The normal form for a generic Hopf bifurcation of a fixed 
point is 

x = p x  - ax 2 

x = px - wy + (ax - Py)(x2 + y2) 

y = w. + py + (P. t ay)(z2 t y2)  

(2.3.25) 
(2.3.26) 

and its corresponding polar form is 

(2.3.27) 
(2.3.28) 

The bifurcation diagrams of Figures 2.3.5a and 2.3.5b correspond to 
a = -1 and a = 1, respectively. 
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2.3.3 Bifurcation Diagrams and Sets 
In Section 2.3.1, we presented many bifurcation diagrams each display- 
ing the dynamics near a bifurcation point of the corresponding system. 
We call such diagrams displaying a local bifurcation as local bifurca- 
tion diagrams. To construct a local bifurcation diagram for a given 
n-dimensional autonomous system, one first simplifies the considered 
system to its normal form in the vicinity of a bifurcation point and then 
uses this normal form to construct the bifurcation diagram. 

Here, we construct bifurcation diagrams for two examples. In each 
case, we display a collection of the different local bifurcations that take 
place in a given range of the chosen control parameter. Further, we 
explain what is meant by a bifurcation set. 

Example 2.18. We consider the forced Duffing oscillator (Nayfeh and 
Mook, 1979, Chapter 4)  

ii t 21 t c (2piL + au3) = 2ckcos(Rt) (2.3.29) 

for the case of primary resonance. In (2.3.29), c is a small positive 
parameter, p is the damping coefficient and a positive parameter, a is 
the coefficient of the cubic nonlinearity, 2ck is the amplitude of forcing, 
and R is the excitation frequency. The parameters p ,  a, and k are 
independent of c. Further, the excitation frequency is such that 

R = l + € C 7  (2.3.30) 

where the parameter o is called the external detuning. 

obtains a first-order approximation for the solution of (2.3.29) as 
By using the method of multiple scales (Nayfeh, 1973, 1981), one 

u = acos(flt - 7) t O(€) (2.3.3 1 )  

where the amplitude a and phase 7 are governed by 

a' = -pa t k sin y (2.3.32) 

( 2.3.33) 
3 
8 

a+ oa - --*a3 t kcosy 
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The primes in (2.3.32) and (2.3.33) indicate derivatives with respect to 
the time scale 7, where 7 = d. 

The system (2.3.32) and (2.3.33) is a planar autonomous dynarnical 
system. The fixed points ( u ~ , ~ ~ )  of this system are given by 

-pao t Icsin-yo = 0 (2.3.34) 

(2.3.35) uao - -aa ,  3 3  t Iccosy, = 0 

From (2.3.34) and (2.3.35), we obtain the so-called frequency-respon- 

8 

(2.3 -36) 

Equation (2.3.36) is an implicit equation for the amplitude of the 
response a. as a function of the external detuning u (i.e., the excitation 
frequency) and the amplitude of the excitation k. 

The stability of (ao,-yo) is determined by the eigenvalues of the 
Jacobian matrix 

(2.3.37) 1 -P -ao (u  - :.a:) 

D,F = I.. 1 (u - p a ; )  - P  

The corresponding eigenvalues A; are the roots of 

3 9 
8 

A’ t 2 p ~  t p2 + (u - i a a i )  (u - -eta;) = o (2.3.38) 

From (2.3.38), we find that the sum of the eigenvalues is -2p. This 
sum is negative because /I > 0. Consequently, at least one of the two 
eigenvalues will always have a negative real part. This fact eliminates 
the possibility of a pair of purely imaginary eigenvalues and, hence, a 
Hopf bifurcation. However, static bifurcations can occur. To this end, 
we find that one of the eigenvalues is zero when 

(2.3.39) 

For fixed p > 0, u > 0, and Q > 0, we show the variation of a. with 
Ic in Figure 2.3.6. In this bifurcation diagram, the solid and broken 



BIFURCATIONS OF CONTINUOUS SYSTEMS 85 

t 
I D' 

C'/ 

5' 

Figure 2.3.6: Response amplitude a0 versus the amplitude of the forcing k. 

lines correspond to the stable and unstable fixed points of (2.3.32) and 
(2.3.33), respectively. As the control parameter k is gradually increased 
from a zero value, a0 follows the curve A'H'B' until the critical value 
k = k2 is reached. At k = k2, a saddle-node bifurcation occurs, and, 
locally, there are no other solutions for k > k2. 

If we start from the point D' and decrease k gradually, a0 follows the 
curve D'C'E'. At the critical point k = kl, a saddle-node bifurcation 
occurs, and, locally, there are no other solutions for k < kl. We note 
that points B' and E' are points of vertical tangencies. To this end, we 
find from (2.3.36) that 

which is zero by virtue of (2.3.39). Because saddle-node bifurcation 
points are locations of vertical tangencies, they are called tangent 
bifurcations. Further, because of the geometry at such points, they 
are also called turning points and folds. Yet another name for these 
bifurcation points is limit points (e.g., Kubicek and Marek, 1983; 
Keller, 1987). 

Bifurcation diagrams, such as Figure 2.3.6, are known as force- 
response curves because they show the variation of the response 
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amplitude as a function of the forcing amplitude. Let us suppose that 
an experiment is conducted to construct Figure 2.3.6. Then, as k is 
gradually increased from a zero value, a. follows the curve A’H’B’ until 
the critical value k = kz is reached. Here, a jump occurs from the stable 
branch A’H‘B’ to the stable branch E’C’D’. As k is increased beyond 
kz, 00 follows the curve C’D’. Consequently, as k is slowly increased, 
the state of the system (e.g., ao) evolves continuously except at k = kz, 
where it experiences a discontirruous (jump) or catastrophic change. 
Therefore, saddle-node bifurcations are examples of discontinuous or 
catastrophic bifurcations (Shilnikov, 1976; Zeeman, 1982; Abraham 
and Shaw, 1992). If we start from the point D‘ and decrease k gradually, 
a0 follows the curve D’C’E’. At k = kl, a jump occurs from point E‘ to 
point H‘. As k is decreased below kl, a. follows the curve H’A’. Again, 
there is a discontinuous or catastrophic bifurcation at the saddle-node 
value k = kl at which the state-control function is discontinuous. We 
note that in the range kl < k < k g ,  the realized response depends on 
the direction of sweep of the control parameter. This phenomenon is 
called the hysteresis phenomenon. 

In Figure 2.3.6, for all values of k < kl, there is only one stable 
fixed point of (2.3.32) and (2.3.33) in the a - 7 space. Hence, all 
evolutions in this space are attracted to the stable fixed point. Again, 
for all values of k > k2, there is only one stable fixed point in the 
a - 7 space. In the interval kl < k < kz, two stable branches of 
solutions coexist. Therefore, this interval is referred to as an interval 
of bistability. In the bistability interval, there are two stable and one 
unstable fixed points for each value of k. We let the fixed points on 
the branches A’H’B’, B‘E‘, and E‘C’D‘ be A , B ,  and C, respectively. 
Then, evolutions in the a - 7 space approach either A or C as time 
1 + 00, depending on the initial condition. In Figure 2.3.7, we show 
a qualitative sketch of the global stable and unstable manifolds of B. 
One end of the unstable manifold of B is attracted to A, while the 
other end is attracted to C. The stable manifold partitions the a - 7 
plane into two regions. The evolutions initiated in the region to the 
left of the stable manifold of B are attracted to A, while the evolutions 
initiated in the region to the right of the stable manifold are attracted 
to c. 

We note that the state-space portraits for k < kl and Icl < k < k2 
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Figure 2.3.7: Basins of attraction of the stable fixed points A and C in the 
a - 7 space. The stable manifold of the saddle point B divides this space 
into two regions. 

are structurally different because there is only one stable fixed point 
in one case and two stable and one unstable fixed points in the other 
case. Similarly, the state-space portraits for L > Lz and Ll < L < kz 
are structurally different. 

Next, we consider the bifurcation diagrams when 0 is used as a 
control parameter for L > 0 and p > 0. Figures 2.3.8a and 2.3.8b 
correspond to a < 0 and a > 0, respectively. Again, the solid and 
broken lines correspond to the stable and unstable fixed points of 
(2.3.32) and (2.3.33), respectively. For both a < 0 and a > 0, saddle- 
node bifurcations occur at  &) and &). 

To verify if these bifurcation points are points of vertical tangencies, 
we determine from (2.3.36) that 

(2.3.40) 

Because (2.3.39) is satisfied at the bifurcation points, we substitute for 
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Figure 2.3.8: Bifurcation diagram constructed by using LT as a control 
parameter: (a) a < 0 and (b) a > 0. In each case, saddle-node bifurcations 
occur at B’ and El. 

pz from (2.3.39) into (2.3.40). After simplifying, we find that 

da a=o 
Bifurcation diagrams such as Figures 2.3.8a and 2.3.8b are called 
frequency-response curves. Further, the response displayed in 
Figure 2.3.8a for a < 0 is called a softening-type response, while the 
response displayed in Figure 2.3.8b for a > 0 is called a hardening- 
type response. If experiments were conducted to construct the 
frequency-response curves, jumps would be observed at  the saddle- 
node bifurcation points, which are catastrophic bifurcations. 

Example 2.19. Here, we consider the parametrically excited Duffing 
oscillator 

u + u + 6 [ 2 p i  + au3 + 2ku cos(Qt)] = 0 (2.3.41) 

The parameters p ,  a, and k are all independent of e ,  while the 
parameter R is such that 

R = 2 + m  (2.3.42) 
This type of resonance, where the frequency of the parametric excita- 
tion is close to twice the natural frequency of the system, is called a 
principal parametric resonance (e.g., Nayfeh and Mook, 1979). 



BIFURCATIONS OF CONTINUOUS SYSTEMS 89 

By using the method of multiple scales, one obtains the following 
first-order approximation for the solution of (2.3.41): 

1 
u = acos (f.t - p) -4- O(€)  (2.3.43) 

where the amplitude a and phase 7 are governed by 

(2.3.44) 

(2.3.45) 

and the prime indicates the derivative with respect to the time scale 
T = ct .  The first-order approximation can alternatively be expressed 
in the form 

u = pcos ( f ~ )  + q sin ( to t )  t o ( C )  (2.3.46) 

where 
(2.3.4 7) 

(2.3.48) 

3 
8 t k ) q  - - a q ( p Z  t q z ) }  

It follows from (2.3.43) and (2.3.46) that 

p = a cos (iy) and q = a sin (ky) (2.3.49) 

Equations (2.3.44) and (2.3.45) represent the so-called polar form of 
the modulation equations, while (2.3.47) and (2.3.48) represent the so- 
called Cartesian form of the modulation equations. We also observe 
that (2.3.44) and (2.3.45) are invariant under the transformation 

while (2.3.47) and (2.3.48) are invariant under the transformation 
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Next, we examine the fixed points (ao ,ro)  of (2.3.44) and (2.3.45). 
They are solutions of the algebraic system 

(2.3.52) pao + -kao sin 70 = 0 

- uao + -aao 3 3  t kao cos 70 = 0 (2.3.53) 

There are two types of fixed points: (a) trivial fixed points correspond- 
ing to a. = 0 and (b) nontrivial fixed points correspondirig to a.  # 0. 
The corresponding fixed points ( p o , q o )  of (2.3.47) and (2.3.48) can be 
found by using (2.3.49). We find from (2.3.52) and (2.3.53) that the 
nontrivial fixed points are given by 

1 
2 

4 

a: = 4 { (T f d-.} and yo = arcsin(--) 2p (2.3.54) 

It is also obvious that the trivial fixed points share the symmetry 
property of the equations while the nontrivial fixed points do not share 
this symmetry property. Hence, we call the trivial and nontrivial fixed 
points symmetric and asymmetric solutions, respectively. 

Next, we consider the stability of the trivial and nontrivial fixed 
points. For a trivial fixed point, we note that (2.3.52) and (2.3.53) 
become identities. In such cases, where one or more of the state 
variables of the system assume a zero value and cause one or more 
of the fixed-point equations to become identities, it is not convenient 
to determine the stability of the fixed point from the polar form of the 
modulation equations (e.g., Nayfeh and Mook, 1979; Nayfeh and Asfar, 
1988; see also Section 4.5). In these and other cases, the stability of a 
fixed point can be conveniently determined from the Cartesian form of 
the modulation equations. From (2.3.47) and (2.3.48), we find that the 
Jacobian matrix associated with ( p o ,  qo)  is given by 

3 a  k 

1 -P + Qapoqo 

i((T - k) - 3 4 3 p ;  + q;) 

- q o  2 t k) t + ( p i  + 3q3  

3 
-P - p p o q o  

(2.3.55) 
We note from (2.3.55) that the sum of the two eigenvalues is -2p, which 
is negative. Hence, at least one of the two eigenvalues will always have 

i D,F = 
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a negative real part. This fact eliminates the possibility of a pair of 
purely imaginary eigenvalues and, hence, a Hopf bifurcation. However, 
static bifurcations can occur. When k is used as a control parameter, 
the rank of the augmented matrix [D,F I Fk] can be used to decide if 
a static bifurcation is a saddle-node bifurcation. To this end, we find 
from (2.3.47) and (2.3.48) that 

(2.3.5G) 

For the trivial fixed point (~0,'~) = ( O , O ) ,  (2.3.55) reduces to 

1 - p  - i ( . + k )  
! j (~-  k )  -p 

D,F = 

and its corresponding eigenvalues are the roots of 

(2.3.57) 

1 
Xz -+ 2pX + pz + -(d - k z )  = 0 (2.3.58) 

4 

One of these eigenvalues is zero when 

k = kz = 44pZ + uZ (2.3.59) 

At k = k z ,  (2.3.56) becomes 

and the rank of the augmented matrix [D,F I Fk] is one. Hence, the 
associated static bifurcation is not a saddle-node bifurcation. 

For a > 0 and CJ < 0, it follows from (2.3.54) that nontrivial fixed 
points are possible only when k > k z .  They are given by 

where a: and 70 are defined by (2.3.54). The corresponding fixed points 
of (2.3.47) and (2.3.48) are 
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k 

Figure 2.3.9: Bifurcation diagram constructed by using k as a control 
parameter for a > 0 and B < 0. 

In Figure 2.3.9, we show the bifurcation diagram when k is used as a 
control parameter for Q > 0 and 0 < 0. In this and following figures, the 
solid and broken lines correspond to the stable and unstable fixed points 
of (2.3.47) and (2.3.48), respectively. As k is gradually increased from 
zero, the trivial fixed point remains stable until the critical value k = kz 
is reached. Here, a static bifurcation of the trivial fixed point occurs. 
For k > kz, the trivial fixed point is a saddle point, and the stable 
nontrivial fixed points (alo,ylo) and (azo,rzo)  are created. The fixed 
point (azo,720) is not shown in Figure 2.3.9. Both of the newly created 
fixed points are asymmetric solutions. Because the static bifurcation 
at k = ICZ leads to the creation of asymmetric solutions, it is called a 
syrnrnetry-breaking bifurcation. Specifically, this bifurcation is a 
supercritical pitchfork bifurcation. In Sections 2.3.4 and 2.3.6, we derive 
the normal form for (2.3.47) and (2.3.48) in the vicinity of k = kz using 
two different methods and verify that we have a supercritical pitchfork 
bifurcation. 

If an experiment were to be conducted to construct Figure 2.3.9, a 
gradual transition from a trivial response amplitude to a nontrivial 
response amplitude would be observed at k = kz. Consequently, 
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supercritical pitchfork bifurcations are continuous or safe bifurcations 
(Abraham and Shaw, 1992; Thompson, Stewart, and Ueda, 1994). 

For a > 0 and u > 0, it follows from (2.3.54) that nontrivial fixed 
points are possible for 

(2.3.6 2) k > k1 = 2p 

At k = kl,  (2.3.60) and (2.3.61) become 

and 

(2.3.63) 

(2.3.64) 

For (plo, qlo), (2.3.55) reduces to 

(2.3.65) 1 - ( p  t +u) - p  t ;u 

- ( p  t fu) - p  t fu 
DxF = 

which obviously has a zero eigenvalue. Further, (2.3.56) becomes 

(2.3.66) 

Because Fk does not belong to the range of DxFt the rank of the 
matrix [DxF I Fk] is two. Hence, at k = kl ,  the fixed point (p10,qlo) 
experiences a saddle-node bifurcation. Due to symmetry, the fixed 
point ( ~ 2 ~ ,  qZ0) also experiences a saddle-node bifurcation. 

In Figure 2.3.10, we show the bifurcation diagram when k is used 
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I \ 

---- I A' H' \B' 
0 

Figure 2.3.10: Bifurcation diagram constructed by using k as a control 
parameter for a > 0 and cr > 0. 

as a control parameter for a > 0 and o > 0. Again, as k is gradually 
increased from zero, the trivial fixed point loses stability at k = kz due 
to a symmetry-breaking bifurcation. Here, locally, there are no other 
stable solutions for k > k z ,  forcing the system to jutnp in a fast dynamic 
transient to C'. Therefore, we have a subcritical pitchfork bifurcation, 
which is another example of a discontinuous or catastrophic bifurcation. 

Next, let us suppose that we are on the stable branch of nontrivial 
fixed points at a point where k > k z .  Then, as the control parameter 
k is decreased gradually, the nontrivial fixed point remains stable until 
the critical value k = kl is reached. Here, a saddle-node bifurcation 
occurs. To verify that this point is a point of vertical tangency, we find 
from (2.3.54) that 

dk2  3a  3a a = -j- (4% - o) 
which is zero at  k = kl because 

2 4 0  a, = - 
3cr 

(2.3.67) 

In Sections 2.3.4 and 2.3.6, we derive the normal form for (2.3.47) and 
(2.3.48) in the vicinity of the static-bifurcation points a t  k = kl and 
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k = kz and verify that they are saddle-node and subcritical pitchfork 
bifurcation points, respectively. We point out that in Figures 2.3.9 
and 2.3.10, branches with different tangents meet at the pitchfork 
bifurcation points. This situation also occurs at transcritical bifurcation 
points. Hence, we refer to transcritical and pitchfork bifurcation points 
as branch points. Our usage of this terminology is consistent with 
that of Parker and Chua (1989) and not consistent with that of Seydel 
(1979a, 1988) and Kubicek and Marek (1983), who refer to all static 
bifurcation points as branch points. 

If an experiment were to be conducted for constructing Figure 
2.3.10, jumps would be observed at  k = kz during a forward sweep 
of the control parameter and at k = kl during a reverse sweep of the 
control parameter. Therefore, the bifurcations at k = kl and ICZ are 
catastrophic bifurcations. Thus, subcritical pitchfork bifurcations are 
also catastrophic bifurcations. 

In Figure 2.3.11, we show the loci of the possible bifurcation points 
of (2.3.47) and (2.3.48) in the space of the control parameters k and 
u for k > 0 and p = 0.1. The broken and solid lines correspond to 
pitchfork and saddle-node bifurcation points, respectively. Here, we do 
not have any transcritical or Hopf bifurcation poiiits. 

U 

Figure 2.3.11: Bifurcation set in the k - n plane. 
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The pitchfork bifurcation points fall on the curve 

The saddle-node bifurcation points occur only for u > 0, and they fall 
on the line 

k = 2p 

When (r = 0, the pitchfork and saddle-node bifurcation points coalesce. 
Sets, such as Figure 2.3.11, that consist of the different bifurcation 
points in the control-parameter space are called bifurcation sets. In 
other systems, one may need to use the numerical schemes described 
in Chapter 6 to determine the loci of static and dynamic bifurcation 
points. 

In the above example, it was possible to determine the fixed points of 
the given dynamical system in closed form. However, it may not always 
be possible to find the fixed points of a given dynamical system in closed 
form. One must then resort to algorithms such as the Newton-Raphson 
algorithm (e.g., Stoer and Bulirsch, 1980) and homotopy algorithms 
(Watson, Billups, and Morgan, 1987; Watson, 1990) to determine 
the fixed points numerically. Many software packages, such as the 
IMSL MATH/LIBRARY (1989) and HOMPACK (Watson, Billups, and 
Morgan, 1987), are available for determining the real solutions of a given 
system of nonlinear equations. Furthermore, to trace branches of fixed 
points systematically in a state-control space of a general system, one 
may need to use the continuation schemes described in Chapter 6. 

2.3.4 Center Manifold Reduction 
In studies of dynamical systems, simplification methods are often used 
to reduce the order of the system of equations and/or eliminate as many 
nonlinearities as possible in the system of equations. Perturbation 
methods, such as the methods of multiple scales and averaging, may be 
perceived as simplification methods because there is a reduction in the 
dimension as one goes from the original system to the averaged system. 
Here, three methods are considered for conducting local bifurcation 
analysis in the vicinity of a fixed point of a system such as (2.1.1). 
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We discuss center manifold reduction in this section, the Lyapunov- 
Schmidt method in Section 2.3.5, and the method of multiple scales in 
Section 2.3.6. 

Recalling the concept of the center manifold of a fixed point, we 
note that there is a center manifold associated with the fixed point 
undergoing the bifurcation. This manifold is a curved nt-dimensional 
surface that is tangent a t  the bifurcation point to the subspace spanned 
by the m eigenvectors pl, p2, ,pm corresponding to the m 
eigenvalues A l ,  A2, ,A, with zero real parts. The dimension m 
is less than the dimension n of the full system. In center manifold 
analyses (Carr, 1981; Arnold, 1988), based on the Shoshitaishvili 
theorem, one effectively reduces the dynamics of the considered n- 
dimensional system to the dynamics on the rn-dimensional center 
manifold. Commonly, in local bifurcation analysis, a center manifold 
reduction is used to reduce the order of the dynamical system first, and 
then the method of normal forms is used to simplify the (nonlinear) 
structure of the reduced system. 

To determine the center manifold associated with a fixed point 
x = xo of (2.1.1) at M = Mo, we first use the transformation (2.1.3) to 
shift the fixed point in question to the origin and obtain (2.1.4). Next, 
assuming that F in (2.1.4) is sufficiently smooth (i.e., C', where r is as 
large as needed), we expand (2.1.4) in a Taylor series for small 11 y 11 
and obtain 

j .  = AY + F,(Y) + F,(Y) + o( II Y it4) (2.3.68) 
where A = D,F(xo; Mo) is the n x n matrix of first partial derivatives 
of F evaluated at  (xo; Mo) and the scalar components of the 11 x 1 vector 
F N ( ~ )  are polynomials of degree N in the components y1, y2, . . + ,  yn 

, Am are 
the rn eigenvalues with zero real parts, and we let p1, p2, - .  a ,  pm be 
their corresponding generalized eigenvectors. Moreover, we let Am+, , 
Am+*, . . , A, be the ( n  - rn) eigenvalues with nonzero real parts and 
P m + l ,  Pm+z, - * * , Pn be their corresponding generalized eigenvectors. 

Third, we introduce the linear transformation y = Pv, where 
P = [pl p2 

of y. 
Second, we arrange the eigenvalues of A so that Al, A2 ,  

p,] , in (2.3.68) and obtain 

( 2.3.6 9) 
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where J = P-lAP.  We note that J can be rewritten as 

J = [  0 Jc J,  ] (2.3.70) 

where J, is an rn x rn matrix whose eigenvalues are A1, A2, * - - , Am and 
J,  is an (n-m)x(n-rn)  matrix whose eigenvalues are Am+l ,  Am+2, . - , 
ha. 

Fourth, we let vc be the rn-dimensional vector with the components 
u1, v2, a + - ,  v, and v, be the ( n  - rn)-dimensional vector with the 
components vm+2, - ' . ,  v,. In terms of v, and v,, we rewrite 
(2.3.69) as 

+, = Jcv, + G2(vc, v,) + G~(v , ,  v,) + * * * (2.3.7 1) 

and 
(2.3 -72) 

We note that v, and v, are linearly uncoupled but nonlinearly coupled. 
Further, HN(O,O) = 0, G,v(O,O) = 0, and the Jacobian matrices 
DHN(O,O) and DGN(O,O) are matrices with zero entries. Because 
HN and GN are polynomials and hence infinitely differentiable, there 
exists a local center manifold of the form (Carr, 1981) 

i .8 = Java + H~(v, ,  va) + H ~ ( v ~ , v , )  + * * - 

v, = h(vc) 

where h is a polynomial function of vc. Because h satisfies (2.3.71) 
and (2.3.72) for only small 11 v, 11, it is a local invariant manifold. 
(We recall that a solution of (2.3.711 and [2.3.72] initiated on the local 
invariant manifold is likely to remain on this manifold only for a finite 
length of time.) Further, this manifold is a local center  manifold 
because 

(2.3.73) 
where the hi are the scalar components of h. 

Fifth, we determine the (n - rn)-dimensional function h by con- 
straining the center manifold to be m-dimensional in the n-dimensional 
space. Substituting for v, in (2.3.72) and using (2.3.71), we arrive at 

h(O) = O and D V c h i ( 0 )  = O 

D,,h(vc){Jcvc+Gi[vc,h(vc)J +G3[vC,h(vc)] + * . * }  
= Jh(vc) + H2[vc, h(vc)] + &[VC, h(vc)] + - * - (2.3.74) 
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To solve (2.3.74), one approximates the components of h(vc) with 
polynomials. The polynomial approximations are usually taken to be 
quadratic to the first approximation and do not contain constant and 
linear terms so that the conditions (2.3.73) are satisfied. Substituting 
the assumed quadratic polynomial approximations into (2.3.74) and 
equating the coefficients of the different terms in the polynomials on 
both sides, one obtains a system of algebraic equations for the coeffi- 
cients of the polynomials. Solving these equations, we obtain a first 
approximation to the center manifold v, = h(v,). Finally, substituting 
this approximation into (2.3.71), we obtain the rn-dimensional system 
of equations 

(2.3.75) 

describing the dynamics of the system (2.1.1) on the center manifold. 
Thus, with this process, one reduces the number of equations from n to 
rn. Later, (2.3.75) is transformed by using the method of normal forms 
to a “simpler” form, which is not necessarily unique. 

There are stability theorems (Carr, 1981) that imply that if the triv- 
ial fixed point of (2.3.75) is stable (unstable), then the corresponding 
fixed point of (2.1.1) is stable (unstable). Carr (1981) has also dis- 
cussed center manifold analysis in the context of infinitedimensional 
systems. There is also some work on construction of center manifolds 
in a nonlocal scenario (e.g., Knobloch, 1990). Next, we consider three 
examples. 

Example 2.20. Here, we construct a center manifold for the fixed 
point (0,O) of (2.1.22). The eigenvalues of the associated linearization 
are 0 and -1. In Figure 2.3.12, the corresponding onedimensional 
center and stable eigenspaces are depicted by broken lines. Now, we 
determine the local center manifold for the nonlinear system by using 
the steps outlined above. It is not necessary to carry out the first three 
steps because (2.1.22) is already in the form of (2.3.71) and (2.3.72). 
The local center manifold of (0,O) is tangent to the z-axis at  the origin. 
Hence, we assume that it is given by 

y = h ( z )  = ..* + h3 + . * *  (2.3.76) 
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2 
X 

-2 0 

Figure 2.3.12: Center manifold W" and stable manifold W" of the fixed point 
(0,O) of (2.1.22). 

Substituting (2.3.76) into the second equation in (2.1.22) yields 

(2az + 3623)i = x 2  - ax2 - bz3 

But, it follows from the first equation in (2.1.22) that 

i = h y  = kz(as2 + bx3)  

Consequently, 

( ~ U Z  -+ 36x2 + * * * ) ~ z ( u z ~  -+ bx3 + * * * )  = ( 1  - U ) X '  - bs3 + . * (2.3.77) 

Equating the coefficients of x 2  and x3 on both sides of (2.3.7r1), we 
obtain 

a = 1 and b = 0 (2.3.78) 
Therefore, (2.3.76) has the form 

y = 5' + . . . (2.3.79) 

This local center manifold is depicted by using a solid line in Figure 
2.3.12. We substitute (2.3.79) into the first equation of (2.1.22) and 
find that the dynamics on this local center manifold is governed by 

i = k x 3  + .  . (2.3.80) 
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Thus, (2.1.22) is reduced to (2.3.80) in the vicinity of the fixed point 
(0,O). It follows from (2.3.80) that the flow on the center manifold is 
attracted to the fixed point 5 = 0 when k < 0 and repelled away from 
it when k > 0, in agreement with the numerical results shown in Figure 
2.1.4. 

Example 2.21. We simplify the dynamical system (2.3.47) and 
(2.3.48) to its normal form in the vicinity of the bifurcation point at 
k = kz in Figures 2.3.9 and 2.3.10. To this end, we rewrite (2.3.47) and 
(2.3.48) in the form 

(2.3.8 1) 1 p p  + :(a + kz)q  + iiq - &(p2 + q 2 )  

pq - !j(c - k z ) p  + i i p  + i a p ( p 2  + q 2 )  

k2 = JW and I = k - kz 
The fixed point (po ,  qo) = (0,O) experiences a static bifurcation at 

k = k2 or k = 0. The associated Jacobian matrix is given by (2.3.57), 
whose eigenvalues and eigenvectors are 

{ $ } = - {  
where 

and A2 = -2p, 2 2  = (2.3.82) 

where 
g = - -  2P 21.1 (2.3.83) 

a + k z - ~ + J v '  
By using the eigenvectors, we construct the matrix 

2 = [Zl 221 = [ ] -9 17 
(2.3.84) 

(2.3.85) 

Next, we introduce the transformation 

(2.3.86) 
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into (2.3.81) and multiply throughout from the left with the matrix 
2-'. This results in the following equations: 

l l  
5' = - -k { 'I(y - z) - $5 + y) 1 .  

4 

B 3 y' = - 2py - - E  1 { V(Y - 5) t -(. + Y) 
4 

(2.3.87) 

(2.3.88) 

- 3" { '(5 + y) [(z + Y)' + B2(Y - x)']} 
16 'I 

Now, the system (2.3.87) and (2.3.88) has the form of (2.3.71) and 
(2.3.72). To determine the dependence of the center manifold on 
the parameter I ,  we need to augment (2.3.87) and (2.3.88) with the 
additional equation 

I' = 0 (2.3 3 9 )  

This augmentation, suggested by Carr (1981), is called the suspension 
trick because the two-dimensional system (2.3.87) and (2.3.88) is 
suspended in the three-dimensional (z, y, I )  space. In (2.3.87)-(2.3.89), 
terms such as kz and ky are treated i ~ s  nonlinear terms. 

The center eigenspace of the fixed point (z,y,I) = ( O , O , O )  of 
(2.3.87)-(2.3.89) is spanned by the generalized eigenvectors 

(1 O O } T  and ( 0 0  l }T 

The center manifold of ( O , O ,  0) is tangent to this center eigenspace at 
the fixed point. For small I z I and I I, the center manifold is described 

y = h ( x , k )  (2.3.90) 
by 
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where the function h is such that, at  the fixed point ( O , O , O ) ,  

a h  dh 
d X  dk 

h = 0 ,  - = O ,  and - = O  (2.3.91) 

Therefore, we represent the local center manifold by the polynomial 
expansion 

y = biz2 + b2x3 + b 3 k ~  + O(x4) (2.3.92) 

is O(z2). The reason for this assumption 

Substituting (2.3.92) into (2.3.88) and using (2.3.87) and (2.3.89), 

where it is assumed that 
will become clear as we proceed further. 

we arrive at 

Equating each of the coefficients of x2, x3, and ix to zero, we find that 

(2.3.94) 

Then, substituting (2.3.94) into (2.3.92), we obtain 

( ~ + v ) x  2 3  + a * *  (2.3.95) 

Next, substituting (2.3.95) into (2.3.87) and (2.3.89), we find that the 
dynamics on the center manifold is governed by 

( 2.3.96) 
3a  

4 l a (  i) 16 
x'=-k: q + -  2 - - ( q 2 + 1 )  

I ' = O  (2.3.97) 
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Finally, substituting (2.3.83) into (2.3.96), we obtain 

4p2 ] 5 3  + . . .  
4P 5 + - [ 1 +  1% 
i k 2  3au  

(. + k 2 y  
2' = - (2.3.98) 

We note that the first and second terms on the right-hand side 
of (2.3.98) are of the same order when i is O(z2), thus justifying the 
assumption made earlier. If we did not have any prior knowledge of the 
bifurcation, we would have assumed that i is O(z) and carried out the 
analysis. Furthermore, here it was not necessary to use the method of 
normal forms to simplify (2.3.98). In general, this may not be the case. 

Equation (2.3.98) has the same form as (2.3.2); that is, the normal 
form for a pitchfork bifurcation. This bifurcation is supercritical when 
ay(~ c 0 and subcritical when au > 0. Hence, we have supercritical 
and subcritical pitchfork bifurcations at k = k2 in Figures 2.3.9 and 
2.3.10, respectively. When u = 0, the coefficient of x3 in (2.3.98) is 
zero, and there may be a degenerate bifurcation. In this case, it will be 
necessary to determine higher-order terms for describing the dynamics 
on the center manifold. 

Example 2.21 (continued). We simplify (2.3.47) and (2.3.48) in the 
vicinity of the saddlenode bifurcation that takes place at  k = k1 in 
Figure 2.3.10. We rewrite (2.3.47) and (2.3.48) as 

where 

kl = 2p and k =  k -  kl 

The fixed points ( p l o , q l o )  and (pzo ,q20)  of (2.3.99) at k = Icl or 
k = 0 are given by (2.3.64). Here, we restrict our attention to the 
bifurcation experienced by ( ~ 1 0 ,  q l o ) .  As a first step, we use the linear 
transformation 
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p = p m  t v = gt v 

q = Q l O  t w = -g t w (2.3.100) 

to shift the fixed point (p10,qlo) of (2.3.99) to the origin. The result is 

(2.3.101) 
3 a  2u 3a -+ 8 3a (v’ - 2vw t 3w2) t 8 (v2w t w3) 

3a  (2.3.102) 
3a  2a 
8 3a  

--F (3v2 - 2vw + w’> - - 8 (v3 t vw2) 

At = 0, the associated Jacobian matrix is given by (2.3.65), and 
its corresponding eigenvalues and eigenvectors are 

Xi = 0, z1 = { ;t } and X2 = -2p, z2 = { } (2.3.103) 

where 
1 1 

2 2 
(2.3.104) 71 = - p  t -u and 72 = p -I- -u 

By using the eigenvectors, we construct the matrix 

(2.3.105) 

whose inverse is 

(2.3.10G) 1 
z-l = [ -i2 -;*I 
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Next, we introduce the transformation 

(2.3.107) 

into the system (2.3.101) and (2.3.102) and multiply it throughout from 
the left with the matrix 2-’. This results in the following equations: 

(2.3.108) 
3a  

--(V + W)(V’ + w’) 
16P 

1 .  
--k [712(722 + y) - 71(q1a: + y)] 4P 

(2.3.109) 

We augment (2.3.108) and (2.3.109) with the equation 

= 0 (2.3.110) 

to capture the dependence of the center manifold on the parameter k .  
In the three-dimensional system (2.3.108)-(2.3.110), terms such as kz 
and ky are treated as nonlinear terms. 

The center eigenspace of ( O , O ,  0) of (2.3.108)-(2.3.110) is spanned 
by the generalized eigerivectors 

T 

and { O  p- 3a 8p2 1 )  



BIFURCATIONS OF CONTINUOUS SYSTEMS 107 

The center manifold of ( O , O , O )  is tangent to this eigenspace at  the 
fixed point. For small 1 z I and I k 1, we describe the manifold by the 
polynomial expansion 

y = blL + 632’ t * .  * (2.3.111) 

where k is assumed to be O(z2). Substituting (2.3.111) into (2.3.108)- 
(2.3.110), we arrive at 

9a /2a, 

Equating the coefficients of z2 and k on both sides of (2.3.1 12), we find 
that 

Therefore, the local center manifold is described by (2.3.111), where bl 

and bz are given by (2.3.113). Substituting (2.3.111) into (2.3.108) and 
(2.3.110) and using (2.3.104) and (2.3.113), we find that the dynamics 
on the center manifold is governed by 

(2.3.1 14) 

i‘ = 0 (2.3.115) 

It is clear that the first and second terms on the right-hand side 
of (2.3.114) are of the same order when k is O ( x 2 ) ,  as assumed earlier. 
Equation (2.3.114) has the normal form for a saddle-node bifurcation. 
When aa > 0, fixed points of (2.3.114) exist only for k > 0, in 
agreement with the results shown in Figure 2.3.10. 
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2.3.5 The Lyapunov-Schmidt Method 

The Lyapunov-Schmidt method can also be used to simplify a dynam- 
ical system in the vicinity of a static bifurcation point. We consider 
the autonomous system (2.1.1) and let (xo,Mo) be a static bifurca- 
tion point. In the vicinity of this point, the system F(x;M) = 0 is 
simplified to a “simpler” system of algebraic equations after carrying 
out projections onto the range and null spaces associated with the ma- 
trix D,F(x,; Mo). Subsequently, the system of equations in the range 
space is solved, and then the system of equations in the null space is 
treated. The “simple” system of algebraic equations obtained by using 
the Lyapunov-Schmidt method is essentially the one obtained by set- 
ting the time derivatives equal to zero in the normal form associated 
with the considered bifurcation. We note that the Lyapunov-Schmidt 
method is also applicable to infinite-dimensional systems. The reader 
is referred to Vainberg and Trenogin (19G2, 1974) for more information 
on the Lyapunov-Schmidt method. 

2.3.6 The Method of Multiple Scales 

In this section, we use two examples to illustrate how the method of 
multiple scales can be used as a simplification method in the vicinity 
of a static bifurcation point. 

Example 2.22. We consider the bifurcation that occurs at  k = kz in 
Figures 2.3.9 and 2.3.10. In the vicinity of these bifurcation points, we 
expand the states in (2.3.47) and (2.3.48) according to 

where 
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and the time scales T, are defined by 

T, = Z"T (2.3.11 9) 

Further, Z is a small positive dimensionless parameter that is artificially 
introduced to establish the different orders of magnitude. The results 
obtained are independent of this parameter, and it is ultimately ab- 
sorbed back into the solution, which is equivalent to setting it equal to 
unity at the end. The transformation of the time derivative is given by 

where D, = a/aT,. To express the nearness of the control parameter to 
the bifurcation value k2 ,  we introduce a detuning parameter k according 
to 

k = kz + Z2& (2.3.121) 

The deviation of k from k2 is ordered at 0 ( Z 2 )  so that its influence and 
that of the cubic nonlinearities in (2.3.47) and (2.3.48) are realized at 
the same order in the perturbation analysis. 

We substitute (2.3.116)-(2.3.121) into (2.3.47) and (2.3.48), expand 
the results, equate coefficients of like powers of t, and obtain the 
following hierarchy of equations: 

O(t) : 

(2.3.122) 

(2.3.123) 



110 EQUILIBRIUM SOLUTIONS 

I n  (2.3.122)-(2.3.124), DxF is given by (2.3.57), and the corresponding 
eigenvalues and eigenvectors are given by (2.3.82). 

The solution of the linear system (2.3.122) is 

{ ;; } = 4T1, T2)ZI t Y(T1,T2)z2e-2fi*0 

Because the decaying part of this solution goes to zero as To -+ 00, we 
retain only the nondecaying part and obtain 

(2.3.125) 

where 77 is defined in (2.3.83). The function 3 in (2.3.125) is determined 
by imposing the solvability conditions at the subsequent levels of 
approxi mat ion. 

Because pl and q1 given by (2.3.125) are independent of To, the 
higher-order terms in (2.3.116) and (2.3.117) a.re also independent of 
this time scale. Then, the solvability condition for (2.3.123) amounts 
to finding the solvability condition for 

where 

= { :;;: } 

(2.3.126) 

(2.3.127) 

The system (2.3.126) is solvable if c is in the range of the matrix DxF. If 
we recall from linear algebra that the range of DxF forms an orthogonal 
complement to the null space associated with the adjoint system, the 
solvability condition is (e.g., Nayfeh, 1981) 

cT+ = 0 (2.3.128) 
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for every nonzero solution v of the adjoint system 

(2.3.129) -T DxF v = O  

where the overbar denotes the complex conjugate. Here, we have only 
one nonzero solution for (2.3.129). This is given by 

1 
(2.3.130) 

Then, the solvability condition (2.3.128) translates to 

Dlx = 0 (2.3.131) 

which implies that x = x(Tz). Therefore, the solution of (2.3.123) is 

(2.3.132) 

Because t is still an undetermined function, we proceed to the 
equations at 0(C3). After substituting (2.3.132) into (2.3.124), we find 
that the solvability condition for (2.3.124) is 

bTV = O (2.3.133) 

where v is given by (2.3.130) and 

We substitute for v and b in (2.3.133), use (2.3.83), set E' = 1, carry 
out algebraic manipulations, and obtain 

(2.3.135) 

We note that (2.3.135) is the same as (2.3.98) obtained by using 
center manifold reduction. After determining 5 from (2.3.135), we 
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can determine third-order expansions for the states p and q by using 
(2.3.116)-(2.3.118), (2.3.125), and (2.3.132). 

In this example, a prior knowledge of the normal form for the 
bifurcation guided us in ordering the deviation of k from k at 0(C2) 
in (2.3.121). Let us suppose that we did not have this prior knowledge 
and that the following expansion was used instead of (2.3.121): 

Then, the solvability condition for the system of equations at 0(Z2) 
would have dictated that k = 0. 

Example 2.22 (continued). Here, we simplify (2.3.47) and (2.3.48) 
in the vicinity of the bifurcation point k = k1 in Figure 2.3.10. The 
fixed point undergoing the bifurcation is 

(2.3.136) 

We use the linear transformation (2.3.100) and rewrite the system 
(2.3.47) and (2.3.48) as 

1 
21' = ( i k  - p )  {g - ( p  + f.> 21 + -(. 2 - k)w 

(2.3.137) 
- q q v 2  - 2vw 4- 3w2} + - 3a  (w2w t w3} 

8 3a  8 

W' = - ( i k  - p) - :(u + k ) ~  + ( ;o - p )  w 
(2.3.138) 

At k = kl = 2p, the fixed point (0,O) of (2.3.137) and (2.3.138) 
experiences a saddle-node bifurcation. 
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In the neighborhood of the bifurcation point, we seek expansions of 
the form 

n=l 

(2.3.141) 

Again, t is an artificially introduced bookkeeping parameter and the 
time scales T,, are defined by (2.3.119). The transformation of the time 
derivative is given by (2.3.120). The nearness of the control parameter 
k to kl is expressed by 

k = kl + Z2k (2.3.142) 

We substitute (2.3.139)-(2.3.142) and (2.3.120) into (2.3.137) and 
(2.3.138), expand the results, equate coefficients of like powers of Z, and 
obtain the following hierarchy of equations: 

O(Z) : 

(2.3.143) 

In (2.3.143) and (2.3.144), DxF is given by (2.3.65), and the corre- 
sponding eigenvalues and eigenvectors are given by (2.3.103). 
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The nondecaying solution of (2.3.143) is 

(2.3.145) 

where the q, are specified by (2.3.104). The function z is determined by 
imposing the solvability condition at the next level of approximation. 

Because v1 and 201 given by (2.3.145) are independent of To, the 
higher-order terms in (2.3.139) arid (2.3.140) are also independent of 
this time scale. Then, the solvability condition for (2.3.144) amourits 
to  finding the solvability condition for 

D ~ F {  :2 } = c  (2.3.146) 

where 

(2.3.147) 
DlVl - ;k@ + YE(": - 2VlWl 4- 3 4 )  

D l W l  + &/g+ 9@(3V; - 2VlWl -t w: )  

c =  { 
The solvability condition is 

C T V  = 0 (2.3.148) 

for every nonzero solution v of the adjoint system 

- 
(2.3.149) 

T DxF v = O  

In this case, we have only one nonzero solution for (2.3.149), namely, 

.={ -;} (2.3.150) 

We substitute for c and v i n  (2.3.148), use (2.3.104) and (2.3.145), set 
Z = 1, carry out algebraic manipulations, and obtain 

x , = --F+ i 2a &x 3 a a  2a 
2p 3a 

(2.3.151) 
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We note that (2.3.151) is the same as (2.3.114) obtained by using 
center manifold reduction. After determining z from (2.3.151), we can 
determine second-order approximations for the states v and 20 by using 
(2.3.139)-(2.3.151), and (2.3.145). 

The method of multiple scales has been used as a simplification 
method in many studies (e.g., Nayfeh, 1970; Moroz, 1986). With this 
method, it is only necessary to determine the eigenvectors associated 
with the zero eigenvalues at the bifurcation point. Further, one effec- 
tively determines the dynamics on the center manifold with- 
out determining this manifold. By contrast, in the case of center 
manifold reduction, it is necessary to determine all the eigenvectors 
at the bifurcation point and the inverse of the matrix of eigenvectors. 
Here, we determine the center manifold before determining the dynam- 
ics on this manifold. Hence, from a computational point of view, the 
method of multiple scales may be more appealing for systems with large 
dimensions. 

Many software packages, such as MACSYMA (1988), IMSL MATH/ 
LIBRARY (1989), and MATLAB (1989), are available for symboli- 
cally/numerically determining eigenvalues and eigenvectors. 

2.3.7 Structural Stability 

In Section 1.4, we discussed various types of stability of solutions of a 
given system. Here, we study the stability of the orbit structure of 
a dynamical system to perturbations. By orbit structure, we mean 
the different orbits of the considered system and their number and 
stability for a given set of parameter values. The term orbits includes 
fixed points, periodic orbits, quasiperiodic orbits, and homoclinic and 
heteroclinic orbits. 

The Hartman-Grobman theorem, discussed earlier in this chapter, 
states that vector fields are structurally stable in the vicinity of 
hyperbolic fixed points. On the other hand, in the vicinity of a 
bifurcation point, the orbit structure is unstable and the associated 
vector field is structurally unstable. For illustration, we consider 
the following examples: 



110 EQUILIBRIUM SOLUTIONS 

Example 2.23. We consider the bifurcation diagram of Figure 2.3.9 for 
the dynamical system (2.3.44) and (2.3.45). A static bifurcation occurs 
at k = k2. For k < kz, there is only one stable fixed point in the ( a , 7 )  
space. This fixed point corresponds to a. = 0. For k > kz, we have three 
fixed points in the (a, 7) space. Two of these fixed points correspond to 
a0 # 0 and are stable, while the other fixed point corresponds to a0 = 0 
and is unstable. Hence, the portraits in the ( a , ~ )  space for k < k2 
and k > k2 are s t ructural ly  different because there are differences 
in the number and stability of the orbits of the system. However, the 
state-space portraits for all Ic < k2 or k > k2 are similar. Because 
there is a qualitative change in the solution structure as k is increased 
or decreased through kz, the vector field of (2.3.44) and (2.3.45) is said 
to be structurally unstable for k = k2. This vector field is structurally 
stable for all k # k2. 

Example 2.24. Here, we examine the phase portraits shown in Figure 
2.1.6. At each saddle point of Figure 2.1.6a, the respective stable and 
unstable manifolds intersect transversely. Further, on the homoclinic 
and heteroclinic orbits of Figure 2.1.6a1 the corresponding stable and 
unstable manifolds intersect nontransversely. Comparing Figures 2.1.6a 
and 2.1.6b, we note that the transversal intersections at the saddle 
points B and D are stable to the damping perturbation, whereas 
the nontransversal intersections are not stable to this perturbation. 
In general, a vector field with nontransversal iritersections is riot 
structurally stable to all perturbations. 

The discussions in this section clearly show that the subject of 
structural stability relies on geometric concepts. It  is quite complex 
in n-dimensional spaces, where n is greater than two. An interesting 
and detailed exposition of structural stability is provided by Arnold 
(1988, Chapter 3). 

2.3.8 Stability of Bifurcations to Perturbations 
Although presented it9 a separate topic, this topic comes under the 
domain of structural stability. We state that a bifurcation is stable 
to a perturbation if there are no qualitative differences between the 
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bifurcation diagrams in the perturbed and unperturbed systems. In 
the following examples, we consider the stability of pitchfork, saddle- 
node, and transcritical bifurcations t o  perturbations: 

Example 2.25. We consider the stability of the saddle-node bifurca- 
tion in (2.3.1). The perturbed system has the form 

x = p - x  2 + e x  (2.3.152) 

where c = 0 yields the unperturbed system (2.3.1). In Figures 2.3.13a- 
c, we show the bifurcation diagrams for c < 0, e = 0, and c > 0, 
respectively. Although the location of the saddle-node bifurcation point 
for e # 0 differs from that for e = 0, the qualitative character of all three 
bifurcation diagrams is the same. Hence, the saddle-node bifurcation 
in (2.3.1) is stable to the perturbation a. 

2 
P 

-2 

-.... iLi .._. 

2 
P 

-2 -2 2 

Figure 2.3.13: Stability of saddle-node bifurcation: (a) E = -1, (b) c = 0, 
and (c) c = 1.  

Example 2.26. We consider the stability of the transcritical bifurca- 
tion in (2.3.3). The perturbed system has the form 

x = p x - x  2 + e  (2.3.153) 

where e is the perturbation added to  the normal form (2.3.3). In Figures 
2.3.14a-c, we show the bifurcation diagrams for e < 0, e = 0, and 
c > 0, respectively. When E < 0, the transcritical bifurcation in Figure 
2.3.14b is replaced by a pair of saddle-node bifurcations, as seen in 
Figure 2.3.14a. When c > 0, there are isolated branches of stable 
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2 xD -2 ,,*' 2 

P 
-2 

Figure 2.3.14: Stability of transcritical bifurcation: (a) E = -0.25, (b) c = 0, 
and (c) c = 0.25. 

and unstable solutions and no bifurcations, as seen in Figure 2.3.14~. 
Because there are qualitative differences between Figures 2.3.14a and 
2.3.14b and Figures 2.3.14~ and 2.3.14b, the transcritical bifurcation in 
(2.3.3) is not stable to the considered perturbation. 

Example 2.27. We consider the stability of the supercritical pitchfork 
bifurcation in (2.3.2). The  perturbed system is 

x = p x - x  3 + €  (2.3.154) 

In Figures 2.3.15a-c, we show the bifurcation diagrams for c < 0, c = 0, 
and E > 0, respectively. In each of the Figures 2.3.15a and 2.3.15c, there 
is a saddle-node bifurcation point a t  

p = (27~' /4) ' /~  

---..- x2E4 -2 -2 P 2 
m < 2 

P 
-2 

Figure 2.3.15: Stability of supercritical pitchfork bifurcation: (a) c = -0.25, 
(b) c = 0, and (c) c = 0.25. 
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a 

Figure 2.3.16: Buckling under a static loading: (a) perfect beam and (b) 
imperfect beam. 

and two isolated branches of solutions. From Figure 2.3.15, we conclude 
that the supercritical pitchfork bifurcation in (2.3.2) is not stable 
to the considered perturbation. In Figures 2.3.1Ga and 2.3.16b, we 
show perfect and slightly bent beams subjected to a static loading p ,  
respectively. The variable x provides a measure of the displacement of 
the center of the beam. In Figure 2.3.16b, the beam has an imperfection 
in the direction z < 0. As p is varied, the static buckling of a 
straight and perfect beam from the upright position to the buckled 
positions can be explained in terms of the pitchfork bifurcation shown in 
Figure 2.3.15b. In this diagram, the trivial and nontrivial fixed points 
correspond to the upright and buckled positions, respectively. If the 
imperfection in Figure 2.3.16b is small, the corresponding bifurcation 
diagram would resemble that shown in Figure 2.3.15b. However, when 
the imperfection is large, as the beam is loaded, the beam will deform 
in the direction z < 0 of the initial bending and there would not be 
any buckling. In this case, we can use (2.3.154) and consider the 
parameter t as a measure of the imperfection. Then, Figure 2.3.15a 
would correspond to the imperfect beam of Figure 2.3.16b. 

2.3.9 Codimension of a Bifurcation 
Let us assume that we have a pdimensional surface contained in an n- 
dimensional space. The codimension of this surface is (n - p), and it 
represents the number of independent equations required to constrain 
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the surface to be pdirnensional in the n-dimensional space. The bifur- 
cations described thus far occur as a single control parameter is varied 
in the state-control space. In other words, these bifurcations depend 
on a single parameter. Because the associated bifurcation points lie 
on a surface whose codimension is one, the corresponding bifurcations 
are called codimension-one bifurcations. Extending this concept, a 
codimension-k bifurcation depends on k (independent) control pa- 
rameters, and the associated bifurcation points lie on a surface whose 
codimension is k. 

The structure of the Jacobian matrix associated with the fixed point 
depends on the codimension of a bifurcation. At a codimension-one 
bifurcation point, all the eigenvalues of the Jacobian matrix have 
nonzero real parts except that either one eigenvalue is zero or the real 
part of a pair of complex conjugate eigenvalues is zero (i.e., there are 
two purely imaginary eigenvalues). At a codimension-rn bifurcation 
point, the Jacobian matrix has k zero eigenvalues and (rn - k)  pairs of 
purely imaginary eigenvalues, where 0 5 k 5 m. To determine all the 
possible codirnension-m bifurcations a fixed point can experience, one 
can examine the associated bifurcation set. For example, the locations 
in the bifurcation set, where the loci of two codirnension-one bifurcation 
points intersect, are usually codimension-two bifurcation points. 

As was noted earlier in Section 2.3.2, the normal form for a bifurca- 
tion depends on the codimension of a bifurcation. For a codirnension- 
one bifurcation, one of the terms in each of the equations of the as- 
sociated normal form vanishes at the bifurcation point. For example, 
in the normal form for a transcritical bifurcation; that is, (2.3.23), the 
linear term vanishes at the bifurcation point. If the quadratic term also 
vanishes, there is a codimension-two bifurcation. However, in this case, 
the associated normal form will have higher-order terms. 

Example 2.28. In the context of (2.3.44) and (2.3.45) or (2.3.47) 
and (2.3.48), the sum of the eigenvalues X i  of the 2 x 2 Jacobian 
matrix is -2p, which is always negative. Hence, at least one of the 
two eigenvalues always has a negative real part. Therefore, it is not 
possible to have codimension-two bifurcations in this system. 

To understand the consequences of some codimension-two bifurca- 
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tions of fixed points, one needs to carry out a nonlocal analysis. For a 
thorough consideration of different possible codimension-two bifurca- 
tions of fixed points and their consequences, the reader is referred to 
Guckenheimer and Holmes (1983, Chapter 7) and Arnold (1988, Chap- 
ter 6). 

2.3.10 Global Bifurcations 
Global bifurcations are nonlocal bifurcations. They are associated 
with global changes in the state space and can occur as a control 
parameter is gradually varied. To go from the state of the system 
preceding the bifurcation to that subsequent to the bifurcation, a global 
change in the state variables is necessary. 

To give an idea of what is meant by a global bifurcation, we 
return to Figure 2.1.6. When damping is included, the homoclinic 
and heteroclinic orbits of Figure 2.1.6a are destroyed. A global change 
occurs in the state space when the damping coefficients assume positive 
values, as illustrated in Figure 2.1.6b. In Figure 2.1.7, we examined 
how the stability region of a fixed point varied with damping. Here, 
a global bifurcation takes place as we go from Figure 2.1.7~ to Figure 
2.1.7e. In Figure 2.1.7d1 which represents the state-space scenario at 
the bifurcation point, there is a heteroclinic half-orbit. 

Typically, at a global bifurcation point, there is either a homoclinic 
or a heteroclinic orbit. We call a bifurcation that leads to the destruc- 
tion of a homoclinic (heteroclinic) orbit as a homoclinic (hetero- 
clinic) bifurcation. Global bifurcations are of considerable interest 
because they can result in the creation of chaotic orbits, as discussed 
in Chapter 5. 

2.4 BIFURCATIONS OF MAPS 

As a single control parameter is varied, a fixed point of a map can 
experience a bifurcation if it is nonhyperbolic. From Section 2.2, we 
recall that there are three conditions in which a fixed point x = xo of 
the map (2.2.1) can be nonhyperbolic at M = Mo. These conditioiis 
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are 

1. D,F(%;M,) has one eigenvalue equal to 1, with the remaining 
( n  - 1) eigenvalues being within the unit circle, 

2. D,F(xo; M,) has one eigenvalue equal to -1, with the remaining 
(n - 1) eigenvalues being within the unit circle, 

3. D,F(xo; M,) has a pair of complex conjugate eigenvalues on the 
unit circle, with the remaining ( n  - 2) eigenvalues being within 
the unit circle. 

As illustrated in the next three examples, under the first of the above 
three conditions, the bifurcations of fixed points of maps are analogous 
to codimension-one static bifurcations of fixed points of continuous- 
time systems. 

Example 2.29. We consider the one-dimensional map 

where p is a scalar control parameter. When p > 0, it is clear from 
Figure 2.4.la that this map intersects the identity map X k + l  = xk in 
two points. In other words, for p > 0, (2.4.1) has the nontrivial fixed 
points 

210 = fi and x2, = -,/ji 

The Jacobian matrix associated with the fixed point xjo has the single 
eigenvalue 

p = 1 - 2xj0 

The fixed point 22, is an unstable node for all p > 0 because 
I p I > 1. On the other hand, the fixed point 210 is a stable node 
for 0 < p < 1 because I p I < 1. When p is decreased to zero, the two 
fixed points approach each other and coalesce at the single fixed point 
z = 0, a.s shown in Figure 2.4.lb. The map (2.4.1) is tangent to the 
identity map and, hence, the associated bifurcation is called tangent 
bifurcation. When p < 0, the map (2.4.1) does not intersect the 
identity map, as shown in Figure 2.4.lc, and hence for p < 0, (2.4.1) 
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Figure 2.4.1: The functions f(z) = p + z - z2 and z for (a) p = 0.1, (b) 
p = 0.0, and (c) p = -0.1. 
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does not have any fixed points. In Figure 2.4.2, we show the different 
fixed points of (2.4.1) and their stability in the vicinity of the origin of 
the x - p space. Broken and solid lines are used to represent branches 
of unstable and stable fixed points, respectively. A saddle-node or 
tangent bifurcation occurs a t  (2, p )  = (0,O). The scenario is identical 
to that shown in Figure 2.3.1 for a continuous-time system. 

Example 2.30. We consider the onedimensional map 

where p is again a scalar control parameter. This map has the two 
fixed points 

2 1 0  = 0 : 

220 = p : 

trivial fixed point 
nontrivial fixed point 

For the fixed point xjo, the Jacobian matrix has the single eigenvalue 

p = 1 + p - 2xjo 

Hence, it follows that the trivial fixed point is stable for -2 < p < 0 
arid unstable for all p > 0. On the other hand, the nontrivial fixed point 
is unstable for all p < 0 and stable for 0 < p < 2. The scenario in the 
vicinity of ( 2 , ~ )  = (0,O) is illustrated in Figure 2.4.3. A transcritical 
bifurcation occurs at  the origin. The scenario is identical to that 
depicted in Figure 2.3.3 for a continuous-time system. 

Example 2.31. As the third example, we consider the one-dimensional 
map 

(2.4.3) xk+1 = xk + pzk + 
where p is a scalar control parameter. This map has the fixed points 

2 1 0  = o :  trivial fixed point 

xZ0,30 = 4q/z : nontrivial fixed points 
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P 

Figure 2.4.3: Scenario in the vicinity of a transcritical bifurcation. 

The Jacobian matrix associated with the fixed point z j o  has the single 
eigenvalue 

Therefore, the trivial fixed point is stable for -2 < p < 0 and unstable 
for all p > 0. For a < 0, nontrivial fixed points exist only for p > 0, and 
they are stable for 0 < p < 1. For a > 0, nontrivial fixed points exist 
only for p < 0, and they are unstable. The scenarios for a = -1 and 
Q = 1 near the origin (z ,p)  = (0,O) are shown in Figures 2.4.4a and 
2.4.4b, respectively. There is a supercritical pitchfork bifurcation 
at the origin in Figure 2.4.4a and a subcritical pitchfork bifurcation 

p = 1 -+ p + 3 a 4  

Figure 2.4.4: Local scenarios: (a) supercritical pitchfork bifurcation and (b) 
subcritical pitchfork bifurcation. 
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at the origin in Figure 2.4.4b. The scenarios are identical to those 
shown in Figures 2.3.2a and 2.3.2b for a continuous-time system. 

When a fixed point of (2.2.1) is nonhyperbolic because an eigenvalue 
is at -1, the associated bifurcation does not have any analog with a 
bifurcation of a fixed point of a continuous-time system. To illustrate 
this bifurcation, we consider the following example. 

Example 2.32. We consider the logistic map 

2 k + 1  = F ( l k )  = 4a~k(l - 5 k )  

From Section 2.2, we know that for cr > 0.25 this map has the fixed 
point 

210 = 1 - - 1 
4a 

The associated eigenvalue is 

P1 = 2 - 401 
Hence, the fixed point 510 of F is nonhyperbolic at Q = 0.75 because 
p1 = -1. For a > 0.75, the fixed point 210 is unstable, and we have 
the following two new period-two points of F :  

These period-two points of F are fixed points of 

or 
F 2 ( z k )  = 160’~k(l - ~ k ) [ l  - 4azk(1 - ~ k ) ]  

The eigenvalue associated with a fixed point zjo of this map is 

pz = 16a2( 1 - 22jo)(l - 8azjO( l - s ~ o ) ]  

We numerically determined that the fixed points 220 and 530 of F2 
or equivalently the period-two points of F are stable for a < 0.85. In 
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Figure 2.4.5: Scenario in the vicinity of a period-doubling bifurcation of the 
fixed point of (1.1.4). 

Figure 2.4.5, we show the different solutions of F and their stability 
for 0.65 < Q < 0.85. The branches of stable and unstable solutions 
are depicted by solid and broken lines, respectively. The fixed point 
zl0 of F experiences a period-doubling bifurcation a t  a = 0.75. 
As a consequence, two branches of period-two points emerge from this 
bifurcation point. We note that an iterate of F initiated at either of 
the two period-two points flips back and forth between them because 

For this reason, the period-doubling bifurcation of a fixed point of a 
map is also called a flip bifurcation. The fixed point s10 and the 
period-two points 220 and 530 of the map F are all fixed points of 
the map F2.  At Q = 0.75, the fixed point z10 of F2 is nonhyperbolic 
because p2 = 1. Hence, from Figure 2.4.5, we infer that this fixed point 
of F2 experiences a pitchfork bifurcation at  Q = 0.75. In this case, 
the pitchfork bifurcation is supercritical. In other cases, it is possible 
that a period-doubling bifurcation of F can correspond to a subcritical 
pitchfork bifurcation of the map F'. The associated period-two points 
that arise due to this bifurcation will be unstable. 

When a fixed point of (2.2.1) is nonhyperbolic with a pair of complex 
conjugate eigenvalues on the unit circle, the fixed point of the map 
can experience what is called the Neimark-Sacker bifurcation or 
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Hopf bifurcation (Iooss, 1979, Chapter 111; Wiggins, 1990, Chapter 
3). This bifurcation can occur in two- and higher-dimensional maps. 
We note that center manifold analysis can be used to simplify maps in 
the vicinity of bifurcation points (Carr, 1981). For more information 
on bifurcation analyses for maps, the reader is referred to the books 
of Iooss (1979), Guckenheimer and Holmes (1983), Arnold (1988), and 
Wiggins (1990). 

2.5 EXERCISES 

2.1. Consider the following map over the interval [0,1]: 

2a2,; 0 I X n L 4  

zn+l = { 2 4 1  - 2,); ; 5 2, 5 1 

This map, which is called the tent map, is a piece-wise linear map. 

Verify that this map is a noninvertible map. 

For a = 5 and a = 9,  determine the period-one and period-two 

For a = 9 ,  check if this map has any per iod4 points, where k is 

3 

points and discuss their stability. 

odd. 

Show that the fixed points for the tent map are 5;) = 0 and, for 
a > :,2; = 2 4 1  + 2 4 .  

Show that 2; is always unstable and 2: is asymptotically stable 
when 0 < a < 3. 

2.2. Consider the logistic map 

5,+1 = ~QZ,( 1 - 2,) 

Use the transformation 
2, = ClYn t co 

to show that this map can be written as 
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and as 
2 (b) Yn+l = a - Yn 

1 1 
2 4 0  ' if co = -,cl = - and a = 2 4 2 a  - 1). 

2.3. Show that the logistic map 

~ , + 1  = 4az,( 1 - 2,) 

can be transformed into 

On+, = 28, mod (1) 

when a = -; by using the transformation 

1 
2 

xn = - + cos2Ten 

2.4. For each of the following maps, examine the stability of z = 0 and 
show that it is a nonhyperbolic fixed point: 

2.5. 
undergoes a transcritical bifurcation at A = 0. 

Show that a fixed point of the map f(z;  A) = (1 + A)z + 1' 

2.6. Show that the map f(z;X) = e" - X undergoes a saddle-node 
bifurcation at A = 1. 
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2.7. Determine the fixed points of the following cubic map and discuss 
their stability: 

For what value of X does the first period-doubling bifurcation occur? 

x,+1 = ( 1  - X)xn + Ax; 

2.8. Consider the one-dimensional map 
3 x,+1 = 5, - ax, 

Show that x = 0 is the only fixed point and that this fixed point is 
stable when a > 0 and unstable when a < 0. 

2.9. 
stability : 

Determine the fixed points of the following maps and their 

3 (a) xn+1 = ax, - zn 

(b) xn+1 = Qxn + 2; 

2.10. Consider the one-dimensional map 

Show that if p < 0, this map has a stable fixed point x = 0, and if 
p > 0, this map has an unstable fixed point at  z = 0 and two stable 
fixed points at x = k,/ji. 

2.1 1. Consider the one-dimensional map 

zn+1 = az;t + 2b2, + c 

in the complex plane when a # 0. Let 20, = az, i- 6 and reduce this 
map to 

where d = b2 - ac - b. 
~ , + 1  = W: - d 

2.12. Consider the following one-dimensional systems: 
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(a) x = px + z2 

(b) = - p  + X’ 
(c) x = -px -+ x3 
(d) X = -1.12 - x3 
( e )  k=p--2 3 

In each case, I is the state variable and p is the control parameter. 
Construct the bifurcation diagrams for all cases and discuss them. 

2.13. Consider the following system (Drazin, 1992, p. 64): 

2 x =x3+6x - p x  

Determine the fixed points of this system and study the bifurcations 
in the (x,p) plane for zero and nonzero values of 6. Show that 
the pitchfork bifurcation at  (0,O) for 6 = 0 becomes a transcritical 
bifurcation for small 6 and that there is a turning point at  (-:a, -is’). 
Sketch the bifurcation diagram in the (2, p )  plane for 6 > 0. 

2.14. Consider the one-dimensional system (Drazin, 1992, p. 64) 

x = x3 - 2U12 - ( 6  - 3). + c 

for real a, b, and c. 

(a) Show that if c = 0, then there is a transcritical bifurcation, but if 
c # 0, there are two (nonbifurcating) branches of equilibria. 

(b) Show that the loci of the bifurcation points is given by the curve 

(27~ - 18b + 38)’ = 4(36 - 5 ) 3  

which has a cusp at  6 = 3 and c = -5. 
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2.15. Consider the system 

i = x4 + a x 2  -+ 6x -+ c 

Sketch the intersection of the bifurcation set and three planes a = 
constant for a < 0, a = 0, and a > 0 (Thorn, 1975). 

2.16. Consider the one-dimensional system 

x = a5 -+ 6 2  t cs5 

Determine the fixed points and their stability. 

2.17. Sketch the bifurcation diagram of 

x = -x(x’ - 26s - a )  

in the ( a ,  x) plane for a given positive 6, indicating which solutions are 
stable. 

2.18. Sketch the bifurcation diagram of 

j .  = 2(a2 - x’) - (aZ + s’)’ 

in the ( a ,  x) plane, indicating which equilibrium solutions are stable, 
and identifying two turning points and a transcritical bifurcation. 

2.19. Sketch the bifurcation diagram of 
3 x = z + a3 - 3ax 

in the ( a ,  x) plane, indicating wliicli equilibrium solutions are stable 
and identifying a turning point and a pitchfork bifurcation. 

2.20. Consider the following map analyzed by Holmes (1979): 

xk+1 = Y k  

Y k + l  = - b x k  t d y k  - y i  

This map was proposed by Holrnes as an approximation to the PoincarC 
map of a periodically forced Duffing oscillator. 
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(a) Verify that this map is a diffeomorphism when b # 0. 

(b) Assume that d > 0 and b > 0. Determine the fixed points of 
this map and their stability in each of the following cases: (i) 
d < (1  + b) and (ii) d > (1 + b) .  

(c) Is d = 2( 1 + b) a bifurcation point? 

(d) Set b = f and examine the bifurcations that take place as d is 
varied in the range [2,4]. 

2.21. 
Assume that /3 # 0 and a > 0. 

Consider the H h o n  map described by (1.1.5) and (1.1.6). 

Verify that this map has a stable fixed point and an unstable fixed 
point when 

3 
a < z(1- p)' 

Is the map dissipative for p = 0.3? For this case, determine 
the period-one and period-two points of this map for a = 0.1, 
Q = 0.5, and Q = 1.3. Discuss their stability. 

For the above values of a, plot the iterates of this map. 

Examine the bifurcation that takes place at 

2.22. Consider the two one-dimensional maps 

xn+l = ez" - X 
1 

yn+l = --X tan-' yn 
2 
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Find the fixed points and their stability. Show that z undergoes 
a saddle-node bifurcation at X = 1 whereas y undergoes a period- 
doubling bifurcation a t  X = 2. 

2.23. Consider the following three-dimensional map of Klein, Baier, 
and Rossler (1991): 

2 
zn+1 = a - ayn + dzn 
Yn+l = z n  + P + yzn 
zntl  = Yn 

(a) Examine if this map is dissipative in each of the following cases: 
(i) d < 1, (ii) d = 1, and (ii i)  d > 1. 

(b) Determine the fixed points of this map and discuss their stability. 

2.24. Determine the fixed points and their types for the following 
systems, and for each case sketch the trajectories and the separatrices 
in the phase plane: 

(a) x + 2 X + z + z 3 = 0  

(b) 2 + 2 i + z - z 3 = 0  

(c) X + 2 X - z + z 3 = 0  

(d) X + ~ X - X - Z ~ = O  

( e )  X - a + z z  = 0 for a > 0 , a  = 0, and a < 0 

2.25. 
Fallside and Pate1 (1965): 

Consider the following speed-control system investigated by 
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(a) For I'd = -1 and G = 6, determine the fixed points and their 
stability. 

(b) Plot the stable manifolds of the unstable fixed points and a few 
other trajectories in the (x1,22) space. 

(c) Discuss the phase portrait. 

2.26. Consider the following single-degree-of-freedom system with 
quadratic and cubic nonlinearities: 

x + x + 6x2 + ax3 = 0 

Sketch the potential energy V(x) for the system and the associated 
phase portrait for each of the following cases: (i) 6 = 3 and cr = 4, (i i)  
6 = Q = 4, and (iii) 6 = 5 and Q = 4. 

It is common to refer to the first case as a single-well potential 
system because there is a well in the graph of V(x) versus x. The 
third case is referred to as a two-well potential system. From the 
phase portraits, one can discern a qualitative change as one goes from 
the first case to the third case. 

2.27. Consider the system 

Discuss the bifurcations of the fixed points of this system as a function 
of the control parameter X. Sketch the state space for X = 0, X > 0, and 
X < 0. 

2.28. Consider the system 

22 = -51 
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Show that the origin is the orily equilibrium point. 
stability as a function of A. 

Determine its 

2.29. Show that the origin is an unstable equilibrium point for each of 
the two systems 

2.30. Show that the origin is a saddle point for each of the two systems 

(a) x1 = - 9 2 ,  iz = 2 2  +xi 

(b) S1 = 2 2 ,  22 = 5 1  + X: 
Determine the stable and u stable ma ifolds of the origin for the 
linearized as well as the nonlinear systems. 

2.31. Determine an approximation to the stable and unstable mani- 
folds of the saddles of the system 

2.32. Consider the system 

il = X + 2 q q  
iz = 1 + 2; - 3; 

Show that there are two saddles when X = 0 and that the s2-axis is 
invariant. Hence, show that there is a heteroclinic connection. Sketch 
the phase plane. Show that, when I X I # 0 arid is small, there are 
still two saddle points but the saddle connection is no longer present. 
Sketch the phase plane for 1 >> X > 0 and -1 << X < 0. 



EXERCISES 137 

2.33. Show that the trivial solution is the only equilibrium solution of 

j = xyz + xzy + x3 and y = y3 - x 3 

and that it is unstable. 

2.34. Show that the trivial solution of the system 

x = 2 x y 2  - x 3  and y = 5 x  2 2  y - y  3 

is asymptotically stable. 

2.35. Show that the origin is a stable equilibrium point of the system 

x = y - x 3  and y = - x  2 

2.36. 
point of the system 

Show that the origin is an asymptotically stable equilibrium 

2.37. The origin of each of the following system is a degenerate 
saddle point. 

(a) x = x2, y =  -y 

(b) X = x 2 - y2, y = 2 ~ y  

Sketch the phase portrait for each case. 

2.38. Show that the origin is an unstable equilibrium point of the 
system 

2 2 x = 22 y and y = -2xy 

Hint: Show that xy is constant on each orbit. 
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2.39. Consider the system 

x = x y  and y = 2 - x - y  

Find the fixed points and determine their stability. 

2.40. Consider the planar system 

1 3 x = -(-x -t- x ) 
2 

y = -  2y + €  
1 - 222 

where E << 1. Sliow that there are three saddle points. For E = 0 
and E # 0, sketch the phase portrait and indicate any heterocliiiic 
connections. 

2.41. The free oscillation about the upriglit position of an inverted 
pendulum constrained to oscillate between two closely spaced rigid 
barriers is described by (e.g., Shaw and Rand, 1989) 

where 2 describes the position of the pendulum; the locations of the 
rigid barriers are I = -1 and z = 1; p is a measure of the friction; and 
r 5 1 is a reflection coefficient representing energy loss during impact 
with either of the rigid barriers. 

Assuming elastic impact (i.e., r = l ) ,  construct and discuss the 
phase portraits for the following two cases: ( i )  p = 0 and ( i i )  p > 0. 

2.42. In studying the forced response of a van der Pol oscillator with 
delayed amplitude limiting, Nayfeh (1968) encountered the following 
system of equations: 

2 F 
x 2 = ~ + ~ x , - - s i n x 2  

5 1  
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(a) Show that the fixed points ( q o , ~ 2 0 )  of this system satisfy 

p ((1 - p)' + (a + up)']  = F Z  

where p = xio. 

(b) For v = -0.15, plot the loci of fixed points in the p - a plane for 
F2 = 1, 5 ,  &, and h. What is the significance of the value $? 

(c) Show that the interior points of the ellipse defined by 

(1 - p)(l - 3p) + (a + v p ) ( a  t 3vp) = 0 

are saddle points and hence unstable. Also, show that the exterior 
points are nodes if D 2 0 and foci if D < 0, where 

1 D = 4 [ (1 - 3u2)p' - 4vpo - o2 

(d) Finally, show that the exterior points are stable if p > f and 
unstable if p < i. 

2.43. Elzebda, Nayfeh, and Mook (1989) used the following planar 
system to model the subsonic wingrock phenomenon of slender delta 
wings: 

51 = z2 
2 

i 2  = -w 51 + p52 + 61 I 5 1  I 52 + 62 I 52 1 52 t 6 3 4  

The state 5 1  represents the roll angle. The coefficients w ,  p ,  61, bz ,  and 
63 are functions of the angle of attack a of the wing. For one particular 
wing, at a = a l ,  

w2 = 0.00362949; /L = -0.00858295; 
61 = 0.02020694; b2 = -0.0219083; 63 = -0.051880962 

For the same wing, at an angle of attack a2 > at, we have 

w2 = 0.01477963; p = 0.004170843; 
61 = -0.02381943; 6 2  = 0.02977157; b3 = 0.016297021 
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(a) Determine the equilibrium positions and their stability for cr = a1 
and a = crz. 

(b) Construct the phase portraits numerically for both angles of attack 
and discuss them. 

At a critical angle of attack a,, the equilibrium position a t  the origin 
loses stability due to a Hopf bifurcation. The ensuing oscillatory motion 
about the origin is called wingrock. Here, crl < a, < crz. 

2.44. Mingori and Harrison (1974) studied the following system for 
analyzing the motion of a particle constrained to move on a circular 
path that is spinning and coning: 

Let p1 = 0.1 and p2 = 2.0. Then, as 113 is varied from zero, bifur- 
cations take place at 0.0502, 0.3, and 2.265. Examine the qualitative 
changes that take place in the (u ,  v) space due to these bifurcations. 

2.45. A bead of mass m sliding on a rotating circular hoop of radius 
R is described by 

9 
R lit 2 4  t -sine - wZsin8cose = 0 

Here, 8 describes the angular position of the bead on the hoop, g is the 
acceleration due to gravity, p is a measure of the friction experienced 
by the bead, and w is the angular velocity of the hoop. 

(a) For p = 0, determine the fixed points (equilibrium positions) of 
the system and sketch the phase portrait in each of the following 
cases: ( i )  wz < g/R,  (ii) w2 = g/R,  and (iii) w2 > g / R .  

(b) For p > 0, choose w as a control parameter and examine the 
different local bifurcations of fixed points that occur as w is 
increased from zero. Construct appropriate bifurcation diagrams. 
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2.46. Consider the Rossler (1976a) equations: 

x = -(y + 2) 
j l = x + u y  
i = 6 + (Z - C ) Z  

Assume that the parameters a,  b, and c are positive. 

(a) When a is used as a control parameter, verify that a fixed point of 
this system experiences a saddlenode bifurcation at 

(b) Simplify the three-dimensional system to the normal form for a 
saddle-node bifurcation in the vicinity of the bifurcation point. 

2.47. Consider the Lorenz equations (Lorenz, 1963): 

x = o(y - 4 

i = -pz + xy 
y = px - y - xz 

Assume that the parameters o, /3, and p are positive. 

(a) Choose p as the control parameter and examine the different local 
bifurcations experienced by the different fixed points. Verify that 
a Hopf bifurcation of a fixed point occurs at 

+ + P + 3 )  
0 - p - 1  p c  = 

(b) Construct the bifurcation diagram for 0 < p 5 pc. 

(c) Simplify the three-dimensional system to the normal form for a 
pitchfork bifurcation in the vicinity of (z, y, t ,  p )  = ( O , O ,  0 , l )  and 
obtain 
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2.48. Consider the system 

$1 = - 2 1  + h ( 2 3 )  

x, = -h(23)  

X3 = --a21 -+ b s z  - ~ h ( 2 3 )  

where a, b, and c are positive constants and h(0)  = 0 and 

yh(y )  > 0 for 0 < I y I < k for some k > 0 

(a) Show that the origin is an isolated equilibrium point. 

(b) Is the origin an asymptotically stable equilibrium point? 

(c) Suppose that yh(y) > 0. Is the origin globally asymptotically 
stable? 

2.49. Consider the nonlinear oscillator 

ii + 21 + € [2p1i + p,u I u I -I- au3 + 2Kucos(nl)] = 0 

where c is a small, positive parameter. Further, the parameters p1, p2, 
and K are all independent of c while the parameter R is such that 

A first approximation obtained for this system has the form 

u = p cos (:of) + q sin (;at) + ~ ( c )  

where 

In the above equations, the prime denotes the derivative with respect 
to the time scale T = e t .  
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(a) Simplify the dynarnical system governing p and q to the normal 
form for a transcritical bifurcation in tlie vicinity of 

(b) What happens to the bifurcation at  the above-mentioned bifurca- 
tion point when p2 = O? 

(c) Construct the frequency-response curves wlien pz = 0 and discuss 
them. 

2.50. Consider tlie map (2.4.1) arid examine the bifurcation that occurs 
at ( $ k , P )  = (1 , l ) .  

2.51. Consider the map (2.4.2) arid study the bifurcation that takes 
place at  (2, p )  = (0, -2) .  

2.52. Consider the followiiig map: 

Z k t l  = c1 + 4 
Examine the bifurcation that takes place at  ( x , p )  = (fl i)? 

2.53. Consider the following map: 

s k + l  = p x k  -/- x i  

Examine the bifurcation that takes place at  ( x , p )  = (0, l )?  

2.54. Consider the following map: 

Verify that tlie period-doubled solutions bifurcating from the point 
(z, p )  = (0,O) are stable. (The associated period-doubling bifurcation 
is supercritical.) 
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2.55. Consider the following system: 

Show that if 0 < xo < 1 then zn - 1/n as n -, 00. 

2.56. Consider the following system (Bender and Orszag, 1978): 

x,+1 = 2s,(l - 5,) for n = 0,1,  * * * 

Show that if yn = 1 - 2x,, then yntl = y i .  Hence show that 

1 
2 

t, = - [l - (1  - 2 z p ]  

Deduce that lirn,,+m 5, = if and only if 0 < 20 < 1. 

2.57. Consider the following system: 

If t, # 2, show that 
11 - (n  - 1)q) 
n + 1 - 7220 x, = 

and therefore limn-roo t n  = 1. 

2.58. The free oscillations of a planar peridulum are described by 

The origin ( 0 , O )  is a center for p = 0 and an asymptotically stable 
fixed point for p > 0. Use central-difference schemes to approximate 
the time derivatives at t ,  = nh as 
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where h is the size of the time step. Set 5, = On and y, = Bn-l and 
obtain the map 

Examine the stability of the fixed point (0,O) of this map and discuss if 
this numerical scheme preserves the stability properties for p = 0 and 
p > 0. In the context of this exercise, the interesting discussion of Hale 
and Kocak (1991, Section 15.3) on numerical algorithms and maps is 
worth noting. 

2.59. Consider the two-dimensional map 

xn+1 = A + 2, + A p n  + z: 
1 
2 Y n t l  = - ~ n  + A z n  + 5: 

Determine the fixed points and then show that the origin undergoes a 
saddle-node bifurcation at X = 0. 

2.60. Consider the two-dimensional map 

5,tl =?/n 

2 

Determine the fixed points. Show that the origin undergoes a pitchfork 
bifurcation at X = 4. Analyze the bifurcation at X = 3. 

1 3 
Yn+l = --zn + XYn - Y, 
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Chapter 3 

PERIODIC SOLUTIONS 

In this chapter, we consider periodic solutions of dynamical systems, 
especially continuous-time systems. Unlike equilibrium solutions, pe- 
riodic solutions are characterized by time-varying states. A periodic 
solution is a dynamic solution that is characterized by one basic fre- 
quency f. The spectrum of a periodic signal consists of a spike at  the 
frequency 0 and spikes at  integer multiples of f .  The amplitudes of 
some of the frequency coniponents may be zero. After defining peri- 
odic solutions in Section 3.1, we study their stability by using Floquet 
theory in Section 3.2 and Poincari maps in Section 3.3. We examine 
different local bifurcations of periodic solutions and their consequences 
in Section 3.4. Again, bifurcations of the periodic solutions of dissi- 
pative systems can be classified into continuous and discontinuous or 
catastrophic bifurcations, depending on whether the states of the sys- 
tem vary continuously or discontinuously as the control parameter is 
varied through its critical value. In Section 3.5, the methods of center 
manifold reduction and multiple scales are used to construct periodic 
solutions analytically in the vicinity of a Hopf bifurcation point. 

3.1 PERIODIC SOLUTIONS 

A solution x = X(i) of a continuous-time system is periodic with 
least period T if X ( t  + 2') = X(t) and X ( t  t T )  # X ( t )  for 0 < T < T.  

147 
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3.1.1 Autonomous Systems 
A periodic solution X of least finite period T > 0 of the system 

X = F(x; M) (3 .1 , l )  

corresponds to a closed orbit I' in R" and is such that X(t0) = X ( t o + T )  
and X(t0 t 7) # X ( t 0 )  for 0 < 7 < T. By specifying the initial time 
to,  one specifies a location x = xo on the orbit. For a periodic solution 
initiated at x = a, the positive and negative orbits -yt(%) and y - ( ~ )  
are such that r+(a) = 7-(x,-,) = I?. As explained later, a periodic 
solution of (3.1.1) can be treated as a fixed point of an  appropriately 
defined map called the Poincarh map. We note that periodic solutions 
of an autonomous system are examples of invariant sets. 

A periodic solution of (3.1.1) is called a limit cycle if there are no 
other periodic solutions sufficiently close to it. In other words, a limit 
cycle is an isolated periodic solution and corresponds to an isolated 
closed orbit in the state space. Every trajectory initiated near a limit 
cycle approaches it either as t --+ 00 or as t + -m. 

Example 3.1. We consider the system 

i = p. - w y  t (a. - py)(.'+y 2 ) 
y = wz + py t ( P .  t "Y)(.' + Y2) 

(3.1.2) 
(3.1.3) 

where 2 and y are the states and p ,  w ,  a, and p are constants. As 
illustrated in Section 2.3.1, this system takes the simple form 

3 7: = p r  + crr 
Q = w + pr2 

(3.1.4) 
(3.1.5) 

under the transformation 

x=rcostI '  and y = r s i n O  (3.1.6) 

Multiplying (3.1.4) with 2r yields 

(3.1.7) 
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Assuming that p # 0 and using separation of variables, we integrate 
(3.1.7) and obtain 

(3.1.8) 

where ro # 0 is the value of r at t = 0. Letting 8 = wt  + 4 in (3.1.5) 
gives 

4 = prz (3.1.9) 

Then, it follows from (3.1.7) and (3.1.9) that 

P - d4 -- 
dr2 2p + 2 0 r 2  

when r2 # - p / a .  Hence, for a # 0, 

4 = -In(2p P + 2 0 ~ ' )  t c (3.1 .lo) 
2 a  

where c is a constant. Substituting for r and 0 i i i  (3.1.G), we obtain a 
closed-form solution of (3.1.2) and (3.1.3). 

When p > 0 and a < 0, it follows from (3.1.8) that 

irrespective of the value of ro as long as it is different from zero. 
Consequently, it follows from (3.1.5) that 

Iim ci = w - @ p / a  
t-bm 

Therefore, we have 

where 00 is the initial value of 8. Equations (3.1.11) represent a closed 
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Figure 3.1.1: Periodic solution and adjacent orbits of (3.1.2) and (3.1.3): (a) 
p = 1, a = -1, w = 1, and p = 1; and (b) p = -1, cy = 1, w = 1 ,  and p = 1. 

orbit in the z - y plane. ‘rhis orbit is a circle whose cent,er is at  the 
origin and radius is J-; that is, 

x2 + y2 = -p/a ( 3 .  I .  12) 

IIA Figure 3.1.la, tlie closed orbit corresponds to the periodic solution of 
(3.1.2) and (3.1.3) when p > 0 and a < 0. We also display four positive 
orbits in the figure, with the arrow on each orbit indicating the direction 
of evolution. Because there are no closed orbits sufficiently near this 
periodic solution (in fact, there are no other closed orbits in  the entire 
planar space), the closed orbit of Figure 3.1.la is a limit cycle. It is also 
an invariant set because an orbit initiated from any point on the closed 
trajectory remains on this orbit for all times. Further, we observe that 
positive orbits initiated from different points in the state space 5 - y, 
other than the origin, are attracted to the limit cycle. I-Ieirce, it is a 
s t a b l e  l imit  cycle or a per iodic  attractor. Its basin of attraction is 
the entire 5 - y space excluding the origin, which is an unstable fixed 
point of (3.1.2) arid (3.1.3). 

When p < 0 and a > 0, we infer from (3.1.8) that 

Then, (3.1.12) still describes the corresponding closed orbit in the x - y  
plane. In Figure 3.1.1b1 we show some orbits of (3.1.2) and (3.1.3) 
when p < 0 and Q > 0. Here, the closed orbit is depicted by broken 
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lines. Again, because there are no other closed trajectories sufficiently 
near this periodic solution, it is a limit cycle. Further, it is also an 
invariant set. Moreover, this limit cycle is said to be unstable because 
all positive orbits initiated from nearby points spiral away from it as 
1 ---t 00 while all negative orbits initiated from nearby points spiral 
toward it as t -+ -ax Such an unstable limit cycle is an example of a 
repellor. In Figure 3.1.lb, the origin is a point attractor of (3.1.2) 
and (3.1.3), and its basin of attraction is bound by the closed orbit. 

Example 3.2. We consider the system 

x + x t 2x3 = 0 (3.1.1 3) 

Multiplying (3.1.13) with 2 i  and integrating, we obtain 

i2  + x2 + x4 = H = X: + 20 2 t X: (3.1.14) 

where H is a constant that represents the total energy of the system 
and xo = x(0) and xo = i(0). Thus, for any initial condition ( x o , i o ) ,  
(3.1.14) represents a closed trajectory in the x - x plane and, hence, 
a periodic solution. In Figure 3.1.2, we show four closed orbits of 
(3.1.13) obtained by choosing four different initial conditions. We note 
that the periodic solutions in Figure 3.1.2 are not isolated but form a 
continuum. Because there exist an infinite number of closed trajectories 
in the vicinity of any closed trajectory, a periodic solution of (3.1.13) 
is not a limit cycle. 

There is a large body of theoretical work on periodic solutions of 
two-dimensional or planar autonomous systems of the form 

i 1  = J ; ( X I , X Z )  and kz = h ( x 1 , ~ )  (3.1.1 5) 

where fl and f i  are C'. Let D c R2 represent a simply connected 
domain in the x 2  - x1 space. (A simply connected domain does not 
contain any holes or disjoint regions.) According to Bendixson's 
criterion, if  the divergence 

?fl af2 

ax, ax2 -+-  
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Figure 3.1.2: Periodic solutions of (3.1.13). 

of the vector field does not change sign or does not vanish ideritically in 
some region of D, then periodic solutions are not possible in D. Thus, 
Bendixson’s criterion can be used as a tool to exclude the existence of 
periodic solutions of systems like (3.1.15). This criterion can be proved 
by using Green’s theorem. Let us assume that there exists a closed 
orbit I’ in D that encloses a certain region S. Then, 

Because the last integral in (3.1.1G) is zero on account of (3.1.15), the 
divergence of the vector field should either change sign or be zero in S 
for the double integral to vanish, thereby provirig the criterion. Next, 
we present four examples to illustrate the use of Bendixson’s criterion. 

Example 3.3. We again consider the system of equations (3.1.2) and 
(3.1.3). The divergence of their vector field is given by 

ax ay 2 2  - + - - - 2 p + 4 a ( x  + Y  1 ax a y  
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Hence, according to Bendixson’s criterion, periodic solutions are pos- 
sible only when a = p = 0 or a p  < 0. As illustrated in Figure 3.1.1, 
periodic solutions exist when p > 0 and a < 0 arid when p < 0 and 
a > 0, in agreement with Bendixson’s criterion. 

Example 3.4. We consider the system 

x 1  = 52 (3.1.1 7) 
(3.1.18) 3 

x 2  = - X I  + x1 - 2px2 

The divergence of this planar vector field is -2p, which is a real 
constant. Hence, according to Bendixson’s criterion, periodic solutions 
are only possible when p = 0. In Figure 1.4.2b) the orbit r 2  corresponds 
to a periodic solution of (3.1.17) and (3.1.18) when p = 0. 

Example 3.5. Next, we consider the system of equations 

51 = 22 (3.1.19) 

xz = -ui (11 - 1.402s; + 0.2712:) - (2111x2 t p 3 4 )  (3.1.20) 

where wo = 5.278. The divergence of this vector field is 

ai l  a;, 
ax, ax, + - = -2p1 - 3p3x; - 

Hence, according to Bendixson’s criterion, periodic solutioris are possi- 
ble only when either p1 = p3 = 0 or pip3 < 0. 

In Figure 2.1.6a, we show some of the numerically computed orbits 
of (3.1.19) and (3.1.20) when p1 = p3 = 0. One can numerically 
verify that inside the heteroclinic orbit (and, similarly, within the 
homoclinic orbits) there is a continuum of periodic orbits whose periods 
increase monotonically and approach infinity as the heteroclinic orbit 
is approached. Therefore, homoclinic and heteroclinic orbits are called 
infinite-period orbits in the literature. 

In Figure 2.1.6b, we show some of the computed trajectories when 
p1 > 0 and p3 > 0. The divergence of the corresponding vector 
field is negative definite and, hence, periodic solutions are not possible 
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according to Bendixson’s criterion. The introduction of damping 
transformed the centers at (-2.0782,0.0), (O.O,O.O), and (2.0782,O.O) in 
Figure 2.1.6a into stable foci in Figure 2.1.Gb and destroyed all closed 
orbits, including the homoclinic and heteroclinic orbits. The stable foci 
of Figure 2.1.6b are point attractors, and their basins of attraction are 
separated by the stable manifolds of the saddles at (-0.9243,O.O) and 
(0.9243,O.O). 

In Figure 3.1.3, we show some of the computed trajectories when 
pl < 0 and p3 > 0. Here, 2p1q  and p 3 4  can be thought of as negative 
and positive damping terms, respectively. Because the divergence of 
the vector field changes sign, periodic solutions may be possible. The 
introduction of linear negative damping transformed the centers at 
(-2.0782,0.0), (O.O,O.O), and (2.0782,O.O) in Figure 2.1.6a into unstable 
foci in Figure 3.1.3 and destroyed the homoclinic and heteroclinic 
orbits. However, the positive nonlinear damping limits the growth of 
disturbances initiated near the foci, resulting in the limit cycles seen in 

10 
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Figure 3.1.3: Phase portraits of (3.1.19) and (3.1.20) for pi = -0.086 and 
p3 = 0.108. 
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Figure 3.1.3. Again, the stable manifolds of the saddles (-0.9243,O.O) 
and (0.9243,O.O) separate the basins of attraction of the three limit 
cycles. 

We consider the next example to point out that the Bendixson 
criterion is a necessary bu t  no t  sufficient condition for the 
existence of periodic solutions in a planar system. 

Example 3.6. We consider the two-dimensional system (Hale and 
Kocak, 1991) 

i1 = - 5 2  + x1 2 - 5 1 5 2  

i 2  = 5 1  + 5 1 5 2  

(3.1.21) 
(3.1.22) 

In this case, the divergence of the vector field is 3x1 - 2 2 ,  which changes 
sign whenever the line 5 2  = 351 in the 5 2 - 2 1  space is crossed. However, 
as shown in Figure 3.1.4, there are no periodic solutions in the z2 - z1 
space. 

Figure 3.1.4: Phase portrait of (3.1.21) and (3.1.22). 

The PoincarC-Bendixson theorem (e.g., Coddington and Levin- 
son, 1955, Chapter 16; Hale, 1969, Chapter II), which is formulated in a 
topological setting, provides precise statements on when an asymptotic 
state of a two-dimensional autonomous system is a periodic solution. 
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However, the Poincark-Bendixson theorem is not applicable to three- 
and higher-di mensional sys terns. 

Recently, Li and Muldowney (1993) generalized Bendixson's crite- 
rion for precluding the existence of periodic orbits in three- and higher- 
dimensional systems. To ascertain the presence of periodic solutions in 
planar and higher-dimensional autonomous systems, one can use nu- 
merical and perturbation methods. The relevant numerical methods 
are discussed in Chapter 6. 

3.1.2 Nonautonomous Systems 
A periodic solution X of least period T of the n-dimensional nonau- 
tonomous system 

X = F(x, t ;  M) (3.1.23) 
also describes a closed orbit r in 72". If we assume that x = xo on 
this orbit at t = to ,  then the periodicity of the solution implies that 
X(x0; t o )  = X(%; to + T ) .  A T-periodic solution can also be expressed 
in terms of a map T', such that TTxo = xo and T'xo # ~0 for 
t o  < t < to+T. Then, the orbit I' = (T*% : to  5 t 5 to + T ) .  We note 
that Tt maps R" into R" and that the periodic solution X corresponds 
to a fixed point of the map TT. Any point on the orbit I' is a fixed 
point of this map, which depends on the parameters to,  T ,  and xo. 

Example 3.7. In the case of (1.2.2) and (1.2.3), the closed orbit of 
Figure 1.2.1 b corresponds to a periodic solution. 

We note that a closed orbit in the state space of a nonautonomous 
system does not always represent a periodic solution, as illustrated in 
Example 3.8. 

Example 3.8. We consider the system 

x = ntn-ly 
y = -ntn-'x 

where n > 1 .  Its solution is 

(3.1.24) 
(3.1.25) 

x = asint" + bcost" and y = acost" - bsint" (3.1.26) 
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where a and b are constants. Although this solution is not periodic, it 
corresponds to the following closed orbit in the y - 2 plane: 

There are theorems that state that periodic solutions exist for n- 
dimensional weakly nonlinear systems of the form (Hale, 1963, Chapter 

X = AX + €G(X, t ;  C )  (3.1.27) 

where x E R"; t E R'; 6 E R'; A is a constant matrix with some zero 
eigenvalues; G is periodic in t with finite period T; G is continuous 
in x, t ,  and 6; G has a continuous first partial derivative with respect 
to e;  and G has continuous first and second partial derivatives with 
respect to x in the domain of interest in the (n + 2)-dimensional space 

Often, as illustrated by the following example, the equations ob- 
tained in standard form by using the method of variation of parameters 
form a special case of (3.1.27), with all of the entries of the matrix A 
being zero. 

6) 

of (x, t; €). 

Example 3.9. We consider a forced Duffiiig oscillator governed by 

5 1  = 5 2  (3.1.28) 
xz = -51 - 4.m t ax; - F cos Rt)  (3.1.29) 

where the parameters p,  a, and F are all independent of the small 
parameter e and 

R2 = 1 + €U 

We are interested in ascertaining the existence of periodic solutions of 
period 27r/Cl of (3.1.28) and (3.1.29). Following the method of variation 
of parameters, we introduce the transformation 

5 1  = pcosRt + qsinRt 
5 2  = R( - p  sin Rt + q cos at) 

(3.1.30) 
(3.1.31) 
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into (3.1.28) and (3.1.29) and obtain 

€ p = -- (ox, - p x 2  - ax; + ~ c o s  ~ t )  sin ~t n (3.1.32) 

€ = - [oxl - pz-2 - az; + F cos at] cos Rt  (3.1.33) R 

The system (3.1.32) and (3.1.33) is in the form (3.1.27) if we identify 
x with the two-dimensional vector {p ( I } ~ .  Further, the corresponding 
matrix A is a 2 x 2 matrix with zero entries. Because the right- 
hand sides of (3.1.32) and (3.1.33) satisfy all the required smoothness 
conditions, periodic solutions of this system do exist. 

3.1.3 Comments 
There are fixed-point theorems, such as the contraction mapping 
theorem and the Brouwer fixed-point theorem, that provide the 
conditions under which a map from R" to R" has at least one fixed 
point (e.g., Hale, 1969; Arnold, 1973). When this map is associated 
with a continuous-time system, S U C ~ A  as x = F(x, t ;  M) or x = F(x; M), 
there is a periodic solution of the differential system corresponding to 
the fixed point of the map. We note that fixed-point theorems are useful 
in determining the existence of periodic solutions in R". However, the 
use of all of the theorems mentioned thus far is limited because they do 
not provide much information on the location and number of periodic 
solutions of an n-dimensional system. In practice, one often has to 
use numerical and perturbation methods to ascertain the existence of 
periodic solutions and their number and location in an n-dimensional 
space. 

3.2 FLOQUET THEORY 

From the stability concepts discussed in Section 1.4, we recall that 
periodic solutions of a nonlinear continuous-time system can be stable 
in the sense of PoincarC but unstable in the sense of Lyapunov. 
However, these concepts do not provide any explicit schemes for 
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determining the stability of periodic solutions. Next, we discuss explicit 
schemes based on Floquet theory (Floquet, 1883) in this section and 
Poincard maps in Section 3.3. 

3.2.1 Autonomous Systems 
We consider the stability of periodic solutions of the autonomous system 

X = F(x; M) (3.2.1) 

where x is an n-dimensional state vector and M is an m-dimensional 
parameter vector. We let the periodic solution of (3.2.1) at M = Mo be 
denoted by Xo(2) and have the minimal period T. Then, a disturbance 
y is superimposed on Xo, resulting in 

Substituting (3.2.2) into (3.2.1), assuming that F is at least twice 
continuously differentiable (i.e., C’), expanding the result in a Taylor 
series about Xo, and retaining only linear terms in the disturbance, we 
obtain 

where A is the matrix of first partial derivatives of F. The stability 
analysis is local, because we linearized in the disturbance y. The matrix 
A is periodic in time and has a period T, which is the period of the 
periodic solution X o ( t ) .  However, T may not be the minimal period 
of A. For instance, when F has only odd nonlinearities, the minimal 
period of A is i T .  Floquet theory deals with linear systems, such as 
(3.2.3), with periodic coefficients. 

The n-dimensional linear system (3.2.3) has n linearly independent 
solutions y,, where i = 1 ,2 , .  . . , n. These solutions are usually called 
a fundamental set of solutions. This fundamental set can be 
expressed in the form of an n x n matrix called a fundamental matrix 
solution as 

y ( t )  = [ Y l M  Y d t )  * * * Y d O l  (3.2.4) 
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Clearly, Y satisfies the matrix equation 

Y = A ( t ;  Mo)Y (3.2.5) 

Changing the dependent variable in (3.2.5) from t to T = t t T, we 

(3.2.6) 
arrive at  

dY 
dr 
- = A(T - T ;  Mo)Y = A ( T ; M ~ ) Y  

on account of the fact that A ( .  - T;Mo) = A(7;Mo). Hence, if 

Y ( t )  = [ Y l W  YzU) . . - Y&)l 

is a fundamental matrix solution, then 

is also a fundamental matrix solution. Because (3.2.3) has at most n 
linearly independent solutions and because the y ; ( t )  are such n linearly 
independent solutions, the y; ( t  t 2') must be linear combinations of 
Y I ( ~ ) ,  ~ 2 ( t ) ,  * , yn(t); that is, 

Y( t  t T )  = Y ( t ) @  (3.2.7) 

where @ is an n x n constant matrix. We note that @ depends on the 
chosen fundamental matrix solution and is not unique. This matrix 
may be thought of as a map or a transformation that maps an initial 
vector in Rn at t = 0 to another vector in R" at t = T. Specifying the 
initial condition 

Y ( 0 )  = I (3.2.8) 

where I is the n x n identity matrix and setting t = 0 in (3.2.7), we 
obtain 

(D = Y ( T )  ( 3.2.9) 

The matrix @, defined by (3.2.7)-(3.2.9)) is called the monodromy 
matrix. 

Introducing the transformation Y ( t )  = V(t)P- ' ,  where P is a 
nonsingular n x n constant matrix and P-' is the inverse of P ,  we 
rewrite (3.2.7) ils 

V( t  t T )  = V ( t ) J  (3.2.10) 
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D =  

where 
J = P-'@P 

-p1  0 . * 0 '  
0 P 2 ' "  0 
. . . . .  . 

(3.2.1 5) . . . . .  . 
. . . . .  . 

- 0  0 - * .  Pn - 

(3.2.1 1 )  

We choose P such that J has the simplest possible form. This form 
depends on the eigenvalues and eigenvectors of the matrix a. 

As discussed in Section 2.1.1, when the eigenvalues pm of the 
monodromy matrix @ are distinct, one can choose the matxix P 
such that its columns pl,  p2, * . - ,  pn are the right eigenvectors of @ 
corresponding to the eigenvalues pl,  p2, . . a ,  pn ; that is, 

@Pm = PmPm (3.2.12) 

Thus, 
p = [Pl P2 * * ' Pn] (3.2.13) 

With this choice, 
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Figure 3.2.1: Closed orbit r of a three-dimensional autonomous system. At 
a point on I', the three directions are marked 1, 2, and 3. 

autonomous system. A point has been marked on this orbit, and three 
directions labeled 1 , 2 ,  and 3 are shown. The three directions 1 , 2 ,  and 
3 correspond to the three associated Floquet multipliers p l ,  p z ,  and 
p3, respectively. Along a direction j, the characteristic multiplier pi 
describes locally the convergence or divergence of nearby orbits with 
respect to  I'. 

When the Floquet multipliers are distinct, (3.2.10) can be written 
in component form as 

It follows from (3.2.16) that 

where N is an integer. Hence, as t + oo (i,e., N -+ oo), 

(3.2.17) 
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When pm = 1 ,  vm(t) is periodic with the period T, and when pm = - 1 ,  
vm(t) has the period 2T. 

The case where the Floquet multipliers are not distinct is treated 
by Nayfeh and Mook (1979, Chapter 5). 

It is important to note that one of the Floquet multipliers 
associated with a periodic solution Xo(t) of an autonomous 
system of equations, such as (3.2.1), is always unity. To show 
this, we differentiate (3.2.1) once with respect to t and obtain 

x = D,F(x,M)X (3.2.18) 

Consequently, if x is a solution of (3.2.1), then x is a solution of (3.2.18) 
and hence of (3.2.3). Because Xo(t) is a solution of (3.2.1), Xo( t )  
is a solution of (3.2.3). Moreover, because Xo(t) = Xo(t + 7') then 
X o ( t )  = X0(t  + T) and hence 

X o ( 0 )  = XO(T) (3.2.19) 

Furthermore, because X o ( t )  is a solution of (3.2.3), it must be a linear 
combination of y l ( t ) ,  yz(t), . . - , y,(t); that is, 

X o ( t )  = Y( t )a  (3.2.20) 

where a is a constant vector. Evaluating (3.2.20) at t = 0 and t = T 
yields 

X o ( 0 )  = Y(0)a and Xo(T) = Y(T)a  (3.2.21) 

Considering (3.2.19) and (3.2.21), we obtain 

Y(T)a = Y(0)a (3.2.22) 

Using (3.2.8) and (3.2.9), we rewrite (3.2.22) as 

@a = a (3.2.23) 

Therefore, one is an eigenvalue of @ corresponding to the eigenvector 

Alternatively, one can show that one of the Floquet multipliers is 
unity as follows. Because (3.2.1) is autonornous, if x ( t )  is a solution, 

= Xo(0) = F[Xo(O); Mo]. 
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then x( t  +- T) for any T is also a solution. Hence, if X o ( t )  is a periodic 
solution, then Xo(t  + T )  is also a periodic solution. Letting 

Y(t)  = Xo(t t 7) - XO(t) (3.2.24) 

we conclude that 
y(0) = XO(7) - XO(0) (3.2.25) 

is an initial disturbance provided along the orbit of the periodic solution 
Xo(t). It follows from (3.2.24) that 

~ ( t  + N T )  = Xo(t  -+ NT + 7) - Xo(t t N T )  
(3.2.26) 

= Xo(t t 7 )  - Xo(t) 

Hence, 
Y(t  t N T )  = Y(t) (3.2.27) 

Therefore, for any integer N, the Floquet multiplier associated with 
this disturbance is unity and, hence, a disturbance provided along a 
direction tangent to the periodic orbit neither grows nor decays. In 
Figure 3.2.2, we show a planar projection of the orbit of a periodic 
solution X o ( t )  of (3.2.1) and two points c = Xo(0) and d = XO(7) on 
this orbit. Due to the periodicity of X o ( t ) ,  starting from points c and 
d, one returns back to c and d after a time NT for any integer N. 
Consequently, the separation between points c and d remains the same 
after any N periods of oscillation. 

Figure 3.2.2: Planar projection of a closed orbit of an n-dimensional 
autonomous system. Two nearby points on this orbit are labeled c and 
d. 

A periodic solution of (3.2.1) is known as a hyperbolic periodic 
solution if only one Floquet multiplier is located on the unit circle in 
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the complex plane. A hyperbolic periodic solution is either stable or 
unstable. We infer from (3.2.17) that a hyperbolic periodic solution 
is asymptotically stable if there are no Floquet multipliers outside 
the unit circle. In all of the directions not tangent to an asymptotically 
stable periodic orbit, neighboring positive orbits are attracted toward 
the periodic orbit. Hence, this solution is called a stable limit cycle 
or a periodic attractor. A hyperbolic periodic solution is unstable if 
one or more of the Floquet multipliers lie outside the unit circle. In this 
case, if all of the Floquet niultipliers other than the one that is unity lie 
outside the unit circle, then all neighboring trajectories of the periodic 
solution are repelled from it in positive times. Hence, this solution is 
called an unstable limit cycle or a periodic repellor. When some of 
the Floquet multipliers associated with an unstable hyperbolic solution 
lie inRide the unit circle, the periodic solution is called an unstable 
limit cycle of the saddle type. 

If two or more Floquet multipliers are located on the unit circle, 
the periodic solution is called a nonhyperbolic periodic solution. 
A nonhyperbolic periodic solution is unstable if one or more of the 
associated Floquet multipliers lie outside the unit circle. If none of the 
Floquet multipliers lies outside the unit circle, a nonlinear analysis 
is necessary to determine the stability of a nonhyperbolic periodic 
solution. In the nonlinear analysis, one must retain higher-order terms 
in (3.2.3). 

Multiplying (3.2.1G) with e-rm(f+T) yields 

Defining rm such that 

(3.2.28) 

( 3.2.29) 

we rewrite (3.2.28) as 

e-rm(t+T)v,(t -+ T) = e-rm*vm(t)  (3.2.3 0) 

Consequently, e-rm'vm(t)  is a periodic vector with the period T. Hence, 
if Pm # 0, every v, can be expressed in the normal or Floquet form 

(3.2.31) 
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where +,,,(t + T) = +,(t). The ym are called characteristic expo- 
nents; they are unique to within an integer multiple of 27ri/T, where 
i = m, according to (3.2.29). It follows from (3.2.31) that 

vm(t) -+ 0 as t + 00 

if the real part of T,,, is negative and 

vm(t) 4 00 as t -t 00 

if the real part of ym is positive. 

of (3.2.3). To this end, one seeks a solution of the form 
The Floquet form (3.2.31) can be used to determine the solutions 

where +(t + 7') = & ( t ) ,  substitutes (3.2.32) into (3.2.3), and obtains 

4 = [A( t ;  Mo) - TI]  4 (3.2.33) 

Then, expanding + in a Fourier series according to 

2ikst k=m 

& = akexp (F)  
k=-w 

(3.2.34) 

substituting the result into (3.2.33), and equating the coefficients of 
each harmonic on both sides, we obtain an infinite-dimensional eigen- 
value problem for 7 and a k .  The determinant of the coefficient matrix 
is called Hill's determinant. In practice, one truncates the series 
in (3.2.34) to a finite number of terms. When the coefficients of the 
time-varying terms in A(t;Mo) are small, one can use a perturbation 
method, such as the method of multiple scales or averaging (Nayfeh, 
1973, 1981), to determine an approximate solution of (3.2.3) and hence 
determine the behavior of y as t --t 00. 

Example 3.10. We consider the stability of the periodic solution 
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of (3.1.2) and (3 .1.3) .  Substituting 

~ ( t )  = & ( t )  + ( ~ ( t )  and y(t)  = % ( t )  t C 2 ( t )  (3.2.36) 

into (3 .1.2)  and (3 .1.3) ,  expanding the result for small 
and linearizing in the disturbance, we obtain 

I and I C 2  I ,  

c = A(e)c (3.2.3 7 )  

where C is a two-dimensional vector with the components C1 and (2, 

and 
~ ( 2 8 )  = cos(28) and ~ ( 2 8 )  z sin(28) 

Clearly, the components of the matrix A are periodic with the period 
T = 27r / (w-Pp/a) ,  the period of the limit cycle. However, we note that 
the minimal period of A is fT because there are only odd nonlinearities 
in (3 .1.2)  and (3.1.3).  Replacing the independent variable t by 8 and 
recalling that 8 = w - p p / a ,  we rewrite (3 .2.37)  aa 

(3.2.39) 
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Consequently, the problem of determining the stability of the periodic 
solution (3.2.35) of (3.1.2) and (3.1.3) has been replaced with the 
problem of determining the behavior of the solutions of (3.2.39) as 
8 + 00. To accomplish this, we calculate two linearly independent 
solutions C(” (8 )  and ((”(0) of (3.2.39) by integrating this system from 
8 = 0 with the initial conditions 

Then, we form the monodromy matrix 

9 = [c‘”(27r) C‘2’(27r)] 

(3.2.40) 

(3.2.4 1) 

The fact that one of the two eigenvalues of must be unity provides 
a check for the calculations. If the modulus of the other eigenvalue is 
less than unity, the periodic solution is stable. On the other hand, if 
the modulus of the other eigenvalue is greater than unity, the periodic 
solution is unstable. 

When w = 1.0, /3 = 1.0, p = 1.0, and a = -1.0, 

0.00187 0.00085 ] 
= [ 0.99813 1.00000 

whose eigenvalues are 1.00085 and 0.00102. Hence, the corresponding 
periodic solution is stable. When w = 1.0, /3 = 1.0, p = -1.0, and 
a = 1.0, 

535.49200 0.00000 
534.49200 1 .OOOOO 

whose eigenvalues are 1 .OOOOO and 535.49200. Hence, the corresponding 
periodic solution is unstable. These results are in agreement with those 
presented in Figure 3.1.1. 

Example 3.11. We consider the system of equations 

i~ = 22 and x2 = -xl - 22: (3.2.42) 

For the solution initiated from ( O . l , O ) ,  we use the method of multiple 
scales and obtain the analytical approximation 



FLOQUET THEORY 169 

~ l o ( t )  N 0.1 cos (1.0075t) 
(3.2.43) 

zzo ( t )  21 -0.10075sin (1.0075t) 

To study the stability of this periodic solution, we substitute 

into (3.2.42), expand the result for small I C1 I and I CZ 1, linearize in 
the disturbance, and obtain 

(3.2.45) 

To determine the stability of the periodic solution (3.2.43) of 
(3.2.42), we numerically determine two linearly independent solutions 
@ ‘ ) ( t )  and C( ’ ) ( t )  of (3.2.45) by using the initial conditions (3.2.40) 
from t = 0 to t = 2n/1.0075 and form the monodromy matrix. The 
result is 

1.00000 -0.00009 
= [ -0.09380 1.00000 

The eigenvalues of this matrix are both very close to 1.00000. Hence, 
the corresponding periodic solution is nonhyperbolic, and a nonlinear 
analysis is necessary to determine its stability. 

For a general autonomous system, as described in Chapter 6, we 
numerically integrate (3.2.1) and the matrix equation (3.2.5) simulta- 
neously to determine periodic solutions and their stability. Alterna- 
tively, when one has a weakly nonlinear system, one can determine an 
approximation to a periodic solution of (3.2.1) by using a perturbation 
method (Nayfeh, 1973, 1981) and then solve (3.2.5) either analytically 
by using a perturbation method or numerically. 

I 

3.2.2 Nonautonomous Systems 
We consider the stability of periodic solutions of the noriautonomous 
sys tern 

X = F(x, t ;  M) (3.2.4 6) 
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where x E R", t E R', M E R", and F is a periodic function. Again, 
we let the periodic solution of (3.2.46) at M = Mo be denoted by 
Xo(t) and have a period 2'. This period is related to the period of F. 
We superimpose a disturbance z ( t )  on X o ( t )  and obtain 

x ( t )  = XO(t) t z ( t )  (3.2.47) 

Substituting (3.2.47) into (3.2.46), assuming that F is sufficiently 
smooth (i.e., at least C'), expanding F in a Taylor series about Xo, 
and retaining only linear terms in the disturbance leads to 

i = D,F(Xo, t;Mo)z t O(ll z 11') or i = A ( t ;  Mo)z (3.2.48) 

where A is the matrix of first partial derivatives of F. This matrix is 
periodic in time with period T. Proceeding along the lines discussed 
earlier, we use Floquet theory to treat (3.2.48) and determine the 
monodromy matrix @ associated with a periodic solution of (3.2.46). 

Then, the eigenvalues of the monodromy matrix provide informa- 
tion on the stability of the periodic solution. In contrast with the au- 
tonomous case for which one of the Floquet multipliers is always unity, 
in the nonautonomous case, such a condition is not satisfied. If none of 
the Floquet multipliers lies on the unit circle, the periodic solution is 
called hyperbolic ; otherwise, it is called nonhyperbolic. If all of the 
n Floquet multipliers are within the unit circle, then the corresponding 
solution is asymptotically stable and is called a s table  limit cycle 
or a periodic a t t rac tor .  If at  least one of the Floquet multipliers is 
outside the unit circle, the associated solution is unstable. If all of the 
Floquet multipliers are outside the unit circle, the periodic solution is 
called a repellor. If some but not all of the Floquet multipliers are out- 
side the unit circle, the periodic solution is of the saddle type.  If none 
of the Floquet multipliers associated with a nonhyperbolic solution of 
(3.2.46) lies outside the unit circle, a nonlinear analysis is necessary to 
determine the stability. 

Example 3.12. We consider the stability of a periodic solution Xo 
of the system (3.1.28) and (3.1.29). In this case, the matrix equation 



FLOQUET THEORY 171 

corresponding to (3.2.48) takes the form 

1. i = [  -1  - 3€Crx;, -€/A 

0 ( 3.2.4 9) 

where Xio is the ith scalar component of Xo. Once Xo is known, one 
can numerically integrate (3.2.49) from t = 0 to t = T with the initial 
condition Z(t = 0) = I, where I is the identity matrix, and determine 
the monodromy matrix Z(T) .  

For a general nonautonomous system, as described in Chapter 6, we 
numerically integrate (3.2.46) and the matrix equation corresponding 
to (3.2.48) simultaneously to determine periodic solutions and their 
stability. Alternatively, when the nonlinearities are weak, one can 
determine an approximation to a periodic solution of (3.2.46) by 
using a perturbation method (Nayfeh, 1973, 1981) and then solve the 
matrix equation corresponding to (3.2.48) either analytically by using 
a perturbation method or numerically. 

3.2.3 
When the minimal period of the matrix A in (3.2.5) is i T ,  we change 
the dependent variable from t to .i = t + i T  and obtain 

Comments on the Monodromy Matrix 

dY 
= A(+; Mo)Y (3.2.50) 

because A(+ + ST; Mo) = A(+;  Mo). Thus, if 

Y ( t )  = [ Y l ( t )  Y&) . . Yn(i ) l  

is a fundamental matrix solution, then 
1 1 1 1 

Y ( t  + ST)  = [Yl(t + ZT) y2(t + -T)  2 * ' ' y , ( t  + ?T)]  

is also a fundamental matrix solution. Because (3.2.50) has at most n 
linearly independent solutions and because the y , ( t )  are such n linearly 
independent solutions, the y; ( t  + i T )  must be linear combinations of 
Yl ( t ) ,  Y d t ) ,  * * * , y n ( t ) ;  that is, 

(3.2.51) 
1 
2 

Y( t  + - T )  = Y( t )Q  



172 PERIODIC SOLUTIONS 

where & is an n x n constant matrix. If we specify 

Y ( t  = 0) = I 
we obtain 

1 
2 

& = Y (  -T)  

It follows from (3.2.51) that 
1 Y(t  t T )  = Y ( t  + p 

Hence, 

(3.2.52) 

(3.2.53) 

(3.2.54) 

(3.2.55) 

because Y ( T )  = a, according to (3.2.9). Therefore, the eigenvalues of 
CP are the squares of the corresponding eigenvalues of 8 .  Proceeding 
along the same lines, we can also construct a matrix 4 for a periodic 
solution of the nonautonomous system (3.2.46). 

3.2.4 Manifolds of a Periodic Solution 
As in the case of a fixed point, there are also sets called stable, 
unstable, and center manifolds of a periodic solution (e.g., Medvdd, 
1992). The stable manifold of a periodic solution is the set 
of all initial conditions such that evolutions initiated at these initial 
conditions approach the periodic solution as t + 00. This manifold 
is associated with the Floquet multipliers that lie inside the unit 
circle. The unstable manifold of a periodic solution is the set 
of all initial conditions such that evolutions initiated at these initial 
conditions approach the periodic solution as t 3 -w. This manifold 
is associated with the Floquet multipliers that lie outside the uni t  circle. 
The center manifold of a periodic solution is associated with the 
Floquet multipliers that lie on the unit circle. 

3.3 POINCARE MAPS 

Before addressing how a Poincard map can be used to determine the 
stability of a periodic solution, we define and discuss Poincard sections 
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and maps. 
A Poincark section is a hypersurface in the state space that 

is transverse to the flow of a given system of equations. (In an n- 
dimensional space, a hypersurface is a surface whose dimension is less 
than n.) In the context of (3.2.1), by transverse to the flow, we 
mean 

n(x).  F(x) # 0 or nT(x)F(x) # 0 

where n(x) is a vector normal to the section located at x, F(x) is the 
vector field describing the flow, and the dot indicates the dot product. 
Similarly, in the context of (3.2.46), by transverse to the flow, we 
mean 

nT[x(t)lF(x; t )  # 0 

Example 3.13. We consider the construction of a Poincari: section for 
orbits of the following system: 

A trajectory of this system in the x - y - z space and a two-dimensional 
section C transverse to it are shown in Figure 3.3.la. This section is 
defined by 

The normal n to C is given by 

c = {(x,y,z) E R' x R' x R' I y =yo} 

n = [  H] 
The section C is transverse to the trajectories of the three-dimensional 
autonomous system whenever 
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X X 

Figure 3.3.1: Poincare section of a three-dimensional orbit: (a) two-sided 
section C and (b) one-sided section Ct. 

In Figure 3.3.la, there are three intersections: Two of them correspond 
to F2 > 0, and one of them corresponds to Fz < 0. Sections, such as C, 
where nT F does not have the same sign for all intersections, are called 
two-sided sections. In Figure 3.3.lb, the section C+ is defined by 

Ct = {(z, y, Z )  E R' x R' x R' I y = yo, F2 > 0} 

The first and second intersections of the trajectory with C+ have been 
marked as X1 and X2, respectively, in Figure 3.3.lb. Sections, such 
as C+, where nT F has the same sign for all intersections, are called 
one-sided sections. 

It is worth noting that the time interval between two successive 
intersections of a trajectory with a chosen Poincard section is not a 
constant in all situations. 

In a general setting, let the successive intersections of a trajectory of 
an autonomous system with a one-sided PoincarC section be XI, X2, 
XJ, and so on. If the trajectory evolves in an n-dimensional space, 
i t  follows that the Poincark section is an ( n  - 1)-dimensional surface 
and that each point on this section is specified by (n - 1) coordinates. 
The transformation or map that maps the current intersection to the 
subsequent intersection on a Poincard section is called a Poincard 
map. This map, which is (n  - 1)-dimensional, is described by 
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where rn E 2. (For an n-dimensional nonautonomous system, the 
Poincark section is an n-dimensional surface and the associated map P 
is n-dimensional.) The iterates of P are given by 

Because Xj+l uniquely specifies Xj and vice versa, a Poincark map is 
an invertible map. So, we have 

Furthermore, a Poincare map shares the different properties of the flow 
described by the associated continuous-time system. Consequently, 
this map is an orientation preserving diffeomorphism (e.g., Arnold, 
1988). The orientation preservation property implies that the determi- 
nant of the Jacobian matrix DP is always positive. In addition, if the 
flow is dissipative, the determinant of DP has a ma.gnitude less than 1. 

The Poincard map P for Figure 3.3.lb is two-dimensional and is 
such that 

P : c+ + ct 
and 

XZ = P(X1) and X1 = P-'(X,) 

In Figures 3.3.2a and 3.3.2b, we show periodic orbits of an autonomous 
system in the corresponding state space. The periodic orbit of Figure 

Figure 3.3.2: Poincark sections of periodic orbits: (a) one intersection with 
C and (b) two intersections with C. 
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3.3.2a intersects the hypersurface C transversely once at the point 
X = X,, before closing on itself. On the other hand, the periodic 
orbit of Figure 3.3.2b intersects the hypersurface C twice before closing 
on itself. Thus, the periodic orbit of Figure 3.3.2a is reduced to a point 
on the chosen Poincari section, whereas the periodic orbit of Figure 
3.3.213 is reduced to two poirits on the chosen section. In the case of 
Figure 3.3.2a, the point X = X,, is a fixed point of the associated 
Poincark map P; that is, 

In the case of Figure 3.3.2b, each point on the section C is a period-two 
point of the associated Poincarh ma.p P and a fixed point of the map 
P2. In a general setting, a periodic orbit of a continuous-time system 
may intersect a PoincarC section k times before closing on itself. Let 
one of these k intersections be Xeq. Then, the corresponding PoincarC 
map P is such that 

implying that X,, is a period-k point of P or a fixed point of Pk. 
Hence, the stability of a periodic orbit of a continuous-time system 
may be determined by examining the stability of the fixed point of an 
associated map. 

From Figure 3.3.2, we note that one can construct Poincark sections 
at different locations on the periodic orbit. Consequently, one can 
obtain different Poincari maps for the considered orbit. However, in 
most cases, there exists a differentiable coordinate transformation from 
one Poincari map to another, and the maps on the different sections 
exhibit the same qualitative dynamics; that is, the same number of 
fixed points, similar stability properties of fixed points, and so forth 
(e.g., Wiggins, 1988, 1990; Medvkd, 1992). 

Xeq = pk(Xeq) 

3.3.1 Nonautonomous Systems 
In nonautonomous systems, the period associated with a periodic orbit 
is usually explicitly known. If we let the vector field F in (3.2.46) be 
periodic in time with period T ,  then a periodic solution of (3.2.46) has 
a period that is either an integer multiple or integer submultiple of the 
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period T. This period can be used to construct a Poincard section as 
illustrated in the next example. 

Example 3.14. The system of interest has the form 

where Fz is a periodic function of time. Starting at an initial time t = to,  
we can collect the points on the Poincari section by stroboscopically 
monitoring the state variables at intervals of the period T ,  as illustrated 
in Figure 3.3.3a. The above system of equations can be posed as the 
following three-dimensional autonomous system: 

where 8 = 27rt/T (mod 27r). Next, as shown in Figure 3.3.3b1 we 

XI /- 
Figure 3.3.3: Poincar6 section C of an orbit of a two-dimensional nonau- 
tonomous system with time-periodic terms: (a) (21, z2,t) space and (b) 
( 2 1 9 ~ 2 ,  e) space. 
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construct the PoincarC sect ion 

1 2 4  t - t o )  
(111od 2n) 

?' c = ( q , z 2 , 0 )  € R' x R' x s' 10 = 00 = { 
The normal n to C is given by 

and the section C is transverse to the flow everywhere in the cyliiidrical 
state space because 

A section, such as the one above, that is transverse to the flow 
everywhere i n  the state space is called a global section. On the other 
hand, a section that is transverse to the flow only locally i n  the state 
space is called a local section. 

Example 3.15. We consider (1.2.2) and (1.2.3) arid set uz = 8, p = 2, 
F = 10, and R = 2. The corresponding solution initiated froiii (0, 0) is 
given by 

x1 = e-" (acos(2t) + bsin(2t)l + 0.5cos(2t) + sin(%) 
x2 = -2e-2t [ ( a  - b )  cos(2t) -t ( a  -t b )  sin(2t)l - sin(2t) + zcos(2t) 

where a = -0.5 and 6 = -1.5. To construct a Poincarb section C, 
we start at time t = 0 and collect discrete points at time intervals of 
2n/fl = n. Formally, the section is defined as 

c = {(Xl,X2,0) E R' x R' x S' 10 = 80 = 0) 

On C,  at t ,  = 2nn/R = nr ,  we have 

xln = 0.5 (1 - eMZnn) 

x z n  = 2 (1 - e-zrbn) 
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Hence, it follows that 

For the given parameters, the flow described by (1.2.2) and (1.2.3) is 
attracted to the periodic orbit 

x1 = 0.5 cos(2t) 4- sin(2t) 
z2 = - sin(2i) + 2cos(2t) 

while the iterates on the chosen PoincarC section are attra.cted to the 
point (0.5,2) on this orbit. 

Returning back to (3.2.46), we consider a periodic solution with 
period T and let xo = q,, represent a point on the periodic orbit. Then, 
a trajectory initiated from qo at t = to  is represented by x(9,,, t ,  t o ) .  To 
construct a Poincar6 section, we collect discrete points at intervals of 
the period T. Then, if 17 represents a point on this section, the Poincard 
map P is defined by 

For the periodic solution, we have 

and consequently 
P(90) = 770 (3.3.3) 

It follows from (3.3.3) that the periodic orbit of (3.2.46) corresponds to 
the fixed point of the map P(q), 

In a neighborhood of the fixed point of the map, we have 

P(770 + v) = P(770) + DqP(770) " + O(1l v It') (3.3.4) 

where 11 v 11 is the norm of the deviation from the fixed point on the 
Poincar6 section. Information on the stability of the fixed point 'lo 
can be obtained by studying the eigenvalues of the Jacobian matrix 
DqP(qo), which is determined by using (3.2.46) and (3.3.2) as follows. 
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Differentiating the scalar components of x in (3.2.46) with respect to 
the scalar components of q leads to 

or Y = ( D , F ) Y  (3.3.5) 

where Y = D q x .  From the initial condition x( to )  = q, w e  find after 
differentiation with respect to q that Y(t0) = I, where I is the identity 
matrix. Solving (3.3.5) subject to the initial condition Y ( t o )  = I, we 
obtain Dvx(q0,  t o  i- T, t o ) .  Then, we note from (3.3.1) that 

DqP(q0) = Dqx(q0, to + T ,  t o )  (3.3.6) 

The Jacobian matrix DVP can only be obtained by generating a 
fundamental matrix solution of (3.3.5) either analytically or numer- 
ically. For a general system, determining an analytical solution of 
(3.3.5) requires perturbation methods or the use of special functions 
or the method of harmonic balance and is difficult. Hence, one usually 
has to integrate (3.3.5) numerically from t = to to t = to + T with the 
initial condition Y(t0) = I to obtain the matrix Y(t0 f T) whose eigen- 
values determine the stability of the fixed point of P and, consequently, 
the stability of the associated periodic solution. 

If all of the n eigenvalues of DqP are within the unit circle, the 
corresponding fixed point of P is asymptotically stable. Hence, the as- 
sociated periodic orbit of the nonautonomous system is asymptotically 
stable and is an attracting limit cycle. If all of the n eigenvalues of 
DqP are outside the unit circle, the corresponding fixed point of P is 
unstable. Therefore, the associated periodic orbit is an unstable limit 
cycle and a repellor. If some but not all of the eigenvalues of DqP 
are outside the unit circle, then the corresponding fixed point of P is a 
saddle. Hence, the corresponding periodic solution of (3.2.46) is c7r 'in- 

stable limit cycle of the saddle type. In all of the above cases, \ 
none of the eigenvalues of DqP lie on the unit circle, the correspoidirig 
fixed points of P are hyperbolic fixed points. The corresponding solu- 
tions of (3.2.46) are also hyperbolic. If one or more of the eigenvalues 
of DqP lie on the unit circle, the corresponding fixed point of P is non- 
hyperbolic. Therefore, the corresponding periodic solution of (3.2.46) 
is also nonhyperbolic. In this case, a linearization of the Poincard map 
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P may not be sufficient for determining the stability and a nonlinear 
analysis of (3.3.4) with higher-order terms may be necessary. 

Example 3.16. We consider a Poincari map P associated with a 
periodic orbit of (3.1.28) and (3.1.29) initiated at  time t = 0. In this 
case, the map P is two-dimensional and the vector 17 in (3.3.1) has the 
components q1 and q2. Then, equation (3.3.5) takes the form 

1. 0 Y =  [ -1 - 3 m x :  -cp 

where the matrix Y is given by 

(3.3.7) 

(3.3.8) 

We note that (3.3.7) is identical to (3.2.49), and hence their solutions 
should be the same. 

To determine the stability of a periodic solution of (3.1.28) and 
(3.1.29), we first compute the periodic solution by using either a nu- 
merical scheme or a perturbation method. Then, we either numerically 
or analytically solve (3.3.7) subject to Y(0)  = I and determine Y ( T ) .  
Then, the eigenvalues of Y(T) provide information on the stability of 
the periodic orbit. 

3.3.2 Autonomous Systems 
In autonomous systems, the period associated wi th  a periodic orbit is 
not usually explicitly known. Hence, the construction of a Poincark 
section differs from that described in the previous section for nonau- 
tonomous systems. A Poincark section for an orbit of the autonomous 
system (3.2.1) is usually taken to be the hyperplane 

T x n = c  

where c is a constant and n is the normal vector to this hyperplane 
chosen so that 

FT(x) n # 0 
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at the location of interest. In some cases, we may be able to choose the 
hyperplane x k  = q k ,  where 7)k is a constant and X k  is the kth component 
of the state vector x. 

Next, we consider the stability of a periodic orbit x = x ( t , q )  with 
least period T of the autonomous system (3.2.1) initiated at  x = q at 
time t = 0. This orbit is denoted as I' in Figure 3.3.4. As illustrated, 
we construct an (n  - 1)-dimensional oriented hypersurface C in the n- 
dimensional state space that is transverse to the vector field F(x; M) at 
9. Let C denote a point on this hypersurface. In a small neighborhood 
of 9, the trajectory initiated from 6 at t = 0 returns to the location C 
on this section after a unique time T ( C ) ;  that is, 

1 = P(C) = X I d C ) , C l ,  c E c (3.3.9) 

where P is the return or PoincarC map. We note that ~ ( 1 1 )  = T. The 
existence of the unique real-valued function t = T ( C )  is a consequence 
of the implicit function theorem (Hirsch and Smale, 1974). 

Figure 3.3.4: Poincarh section X of the periodic orbit I' and an adjacent 
trajectory. 

It is clear that q is a fixed point of the map P and that the stability 
of this fixed point reflects the stability of the periodic orbit initiated 
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at 7) .  The stability of the fixed point of P in turn depends on the 
eigenvalues of the matrix DcP(C) I c = ~ .  

To compute DCp(C), we note that 

P(C) = X"lCl1 C E C (3.3.10) 

Differentiating (3.3.10) with respect to C, we obtain 

ax ar 
DCP = q x  + (3.3.11) 

Differentiating the scalar components of x in (3.2.1) with respect to the 
scalar components of C yields 

(3.3.12) 

and differentiating x(0) = C with respect to C yields 

DCX(0) = I (3.3.1 3) 

where I is the n x n identity matrix. Evaluating the solution of (3.3.12) 
at t = T subject to the initial condition (3.3.13) yields the first term 
on the right-hand side of (3.3.11). 

In the second term on the right-hand side of (3.3.11), the vector 
ax/at is determined by evaluating the vector field F at 7).  The 
evaluation of the vector &/a( is not straightforward and depends on 
how C is constructed. For example, if the Poincard section is defined 
by (Curry, 1980) 

c = ( ( X 1 , X 2 , .  - ,x , ,)  E R' x 72'. * * x R' 12, = 4 
where c is a constant, then the nth component P,, of the map (3.3.9) is 
given by 

Consequently, it follows that 

pn(C) = Cn = c 
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for j # n. Thus, we find that 

In this scheme, all of the elements of the nth row of DcP are zero 
except the diagonal element, which is unity. Consequently, one of the 
eigenvalues of DcP is unity. Now, let J represent the ( n  - 1) x ( n  - 1 )  
matrix obtained from D P by deleting the nth row and the rzth column. 
Then, if all of the (n - 1 )  eigenvalues of J are inside the unit circle, 
the fixed point of P is asymptotically stable and, consequently, the 
corresponding solution of (3.2.1) is an attracting limit cycle. If all of 
the eigenvalues of J are outside the unit circle, the fixed point of P is 
a repellor and, hence, the associated solution of (3.2.1) is a repelling 
limit cycle. If some but not all of the eigenvalues of J are outside the 
unit circle, the fixed point of P is a saddle point and, therefore, the 
corresponding solution of (3.2.1) is a saddle limit cycle. If one or more 
of the eigenvalues of J are on the unit circle while the rest of them are 
inside the unit circle, a nonlinear analysis is necessary to determine the 
stability of the fixed point of P.  

In general, it is not possible to determine explicitly the PoiricarC 
map P associated with a periodic solution of (3.2.1). Hence, one 
will have to resort to numerical methods (HCnon, 1982) or analytical 
approximations to construct P. Even if such a map is constructed, the 
evaluation of DP is not straightforward for all Poincari sections (see 
Parker and Chua, 1989, Appendix D). 

c 

Example 3.17. We consider the stability of a periodic solution of the 
autonomous system (3.1.2) and (3.1.3) when p = 0. The corresponding 
equations are 

x = px - wy + a x ( x 2  + y2) (3.3.14) 

y = 02 + py + a y ( 2  + y2) (3.3.15) 

Using the transformation (2, y) = ( T  cos 8 ,  T sin 0) in (3.3.14) and 
(3.3.15), we obtain 

+ = pr + a r  3 (3.3.16) 
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e = w  (3.3.17) 

When p a  < 0, there is a periodic orbit in the x - y plane 
corresponding to the nontrivial fixed point r = J-/n of (3.3.16). 
Equations (3.3.16) and (3.3.17) have the closed-form solution 

(3.3.18) 

e = w(t  - t o )  + eo (3.3.19) 

where ( r ,  0) = (ro,  Bo) a t  t = to .  
We define an associated Poincard section by 

c = {(rle) E R' x s1 I e = e,,} 
A trajectory described by (3.3.18) and (3.3.19) initiated at ( T o ,  d o )  
intersects the Poincard section C at the times t k  = to + 2k7r/w1 where 
k is an integer. In other words, the time of flight from one intersection 
to the subsequent intersection on the section is 2?r/w. The associated 
one-dimensional Poincard map is given by 

which is equivalent to 

-112 

P ( r )  = [ (g + f) e - 4 7 4 w  - ;] (3.3.20) 

The fixed point of (3.3.20) is 

T o  = 4-d" (3.3.21) 

which corresponds to the periodic orbit of interest. 
To determine the stability of this fixed point, we need to compute 

the eigenvalue of the Jacobian matrix associated with this fixed point. 
Differentiating (3.3.20) with respect to r yields 
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1 

Y 

0 

Hence, at the fixed point given by (3.3.21), we have 

; & :  

(3.3.23) 

When p > 0, the fixed point of the Poincard map (3.3.20) is asymptot- 
ically stable because I d P / d r  I < 1 .  Hence, the corresponding periodic 
solution of (3.3.14) and (3.3.15) is asymptotically stable. On the other 
hand, when p < 0, the fixed point of the Poincard map (3.3.20) is un- 
stable because I d P / d r  I > 1 .  Consequently, the corresponding periodic 
solution is unstable. 

In Figure 3.3.5, we show a periodic orbit of (3.3.14) and (3.3.15) in 
the z - y  plane when p > 0 and a < 0. The Poincard section is specified 
by do = fr. The trajectory initiated at (0.0, 0.8) intersects this section 
first at  location 1, then at location 2, and so on, as it approaches the 
stable periodic orbit. This closed orbit iritersects the section at (0.0, 
0.3162), which is marked by a dot. This point is a fixed point of the 
associated Poincark map. 

-1 ! 
4.8 0 0.8 

X 

Figure 3.3.5: Periodic orbit of (3.3.14) and (3.3.15) realized for p = 0.1, 
a = -1.0, and w = 1.0, along with a trajectory initiated from (0.0,0.8). The 
chosen Poincare section is displayed as a broken line. 
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3.4 BIFURCATIONS 

From Section 3.2, we know that the matrix A in either (3.2.3) or (3.2.48) 
is a function of the control parameter vector M. Consequently, the 
monodromy matrix 4~ and the associated Floquet multipliers depend 
on M. Let us suppose that as one or more control parameters are 
varied, a periodic solution becomes nonhyperbolic at a certain location 
in the state-control space. Then, if the state-space portraits before and 
after this location are qualitatively different, this location is called a 
bifurcation point and the accompanying qualitative change is called 
a bifurcation. Furthermore, a bifurcation that requires at least m 
independent control parameters to occur is called a codimension-m 
bifurcation. 

If we start with control parameters corresponding to a stable 
periodic solution of a continuous-time system and then vary one 
of the control parameters until this periodic solution loses stability, 
the resulting solution depends on the manner in which the Floquet 
multipliers leave the unit circle. (It is useful to remember that one 
of the Floquet multipliers associated with a periodic solution of an 
autonomous system is always unity.) There are three possible scenarios, 
as depicted in Figure 3.4.1 (e.g., Arnold, 1988). First, a Floquet 
multiplier leaves the unit circle through t1, resulting in one of the 

Figure 3.4.1: Scenarios depicting how the Floquet multipliers leave the 
unit circle for different local bifurcations: (a) transcritical, symmetry- 
breaking, and cyclic-fold bifurcations; (b) period-doubling bifurcation; and 
(c) secondary Hopf or Neimark bifurcation. 
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following three bifurcations: transcritical, symmetry-breaking, 
and cyclic-fold bifurcations. Second, a Floquet multiplier leaves the 
unit circle through - 1, resulting in a period-doubling bifurcation. 
Third, two complex conjugate Floquet multipliers leave the unit circle 
away from the real axis, resulting in a secondary Hopf or Neimark 
bifurcation. These bifurcations are discussed in Sections 3.4.1-3.4.5. 

Because the Floquet multipliers are the eigenvalues of the mon- 
odromy matrix, which is obtained by solving a linearized system of 
equations around the periodic solution whose stability is being investi- 
gated, the associated bifurcations of the periodic solution are all local 
bifurcations. These local considerations may not be sufficient for 
determining the postbifurcation state of the system, and global consid- 
erations may be necessary. In the context of continuous-time systems, 
the transcri tical, symmetry-breaking, cyclic-fold, and Hopf bifurca- 
tions of periodic solutions are analogous to the transcritical, symrnetry- 
breaking, saddle-node, and Hopf bifurcatioris of fixed points, respec- 
tively. We note that the three scenarios of Figure 3.4.1 are similar to 
those encountered in the context of local bifurcations of fixed points 
of maps. If a PoincarC map associated with a periodic solution can be 
constructed, the local bifurcation of the considered periodic solution 
can be studied by examining the local bifurcation of the fixed point of 
the map. 

As in the case of bifurcations of fixed points, bifurcations of limit 
cycles can be classified into continuous and discontinuous or catas- 
trophic bifurcations. In the case of continuous bifurcatioris, the mo- 
tion of the system evolves continuously onto another motion as a control 
parameter is varied in a quasi-stationary manner. As in the case of fixed 
points, discontinuous or catastrophic bifurcations may be dangerous or 
explosive. In a dangerous bifurcation, the system response jumps to a 
remote attractor which may be infinity, as a control parameter is var- 
ied in a quasi-stationary manner. Dangerous bifurcations are typically 
accompanied by hysteresis. The outcome of these bifurcations may be 
determinant or indeterminant, depending on whether the system has 
a single attractor past the bifurcation value or not. In an explosive 
bifurcation, the old attractor explodes into a larger attractor, with the 
old attractor being a proper subset of the new attractor. Again, the 
new attractor may or may not be chaotic. 
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3.4.1 S y mmet r y-B reak ing B ifur cat io n 
When a Floquet multiplier leaves the unit circle through +I ,  as shown 
in Figure 3.4.la) the associated bifurcation depends on the nature of 
the periodic solution prior to the bifurcation. Let us suppose that the 
periodic solution prior to the bifurcation is a symmetric solution; 
that is, it possesses a symmetry property. Then, if the bifurcation 
breaks the symmetry of the periodic solution, it is called a symmetry- 
breaking bifurcation. 

The scenarios near supercritical and subcritical symmetry- 
breaking bifurcation points are shown in Figures 3.4.2a and 3.4.2b) 
respectively. In each of these figures, we show the amplitude r of 
the periodic solution versus the scalar control parameter a. We use 
solid and broken lines to denote branches of stable and unstable 
periodic solutions, respectively. At each bifurcation point, branches 
of symmetric and asymmetric periodic solutions meet. In both Figures 
3.4.2a and 3.4.2b, the stable branch of symmetric periodic solutions 
that exists prior to the bifurcation continues as an unstable branch 
of symmetric periodic solutions after the bifurcation. Further, in the 
case of a supercritical bifurcation, locally stable asymmetric periodic 
solutions coexist with unstable symmetric periodic solutions on one side 
of the bifurcation point. In the case of a subcritical bifurcation, locally 
unstable asymmetric periodic solutions coexist with stable 

I 

m 
a 

b 

- 
a 

Figure 3.4.2: Local scenarios: (a) supercritical symmetry-breaking bifurca- 
tion and (b) subcritical symmetry-breaking bifurcation. 
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symmetric periodic solutions on one side of the bifurcation point. We 
note that the local scenarios depicted in Figure 3.4.2 are similar to 
those depicted for symmetry-breaking bifurcations of fixed points of a 
continuous-time system in Figure 2.3.2. We note that supercritical and 
subcritical symmetry-breaking bifurcations are examples of continuous 
and discontinuous bifurcations, respectively. 

Example 3.18. Following Moon and Rand (1985), Rand (1989), and 
Nayfeh and Balachandran (1990a), we consider the following three- 
dimensional model of a feedback control system: 

x = px - y -xz 
i = p y + x  
i = -2 + y2 + x2t 

(3.4.1) 
( 3.4.2) 
(3.4.3) 

In (3.4.1)-(3.4.3), x, y, and z are the states and p is the control param- 
eter. We note that this system is invariant under the transformation 

Therefore, if (z, y ,  z )  is a solution of (3.4.1)-(3.4.3), then (-z, -y, z )  
is also a solution. Hence, all solutions occur in pairs because of the 
transformation. A solution of (3.4.1)-(3.4.3) that is invariant under 
this transformation is called a symmetric solution. The projections 
of symmetric solutions onto the x - y plane remain invariant under a 
180" rotation about the origin. The fixed point (O,O,  0) is an obvious 
symmetric solution. If a solution of (3.4.1)-(3.4.3) is not invariant under 
the transformation, it is called an asymmetric solution. 

A two-dimensional projection of the limit-cycle solution realized 
at p = 0.2 is shown in Figure 3.4.3a; this solution is symmetric. 
Furthermore, it is an attractor because one of the associated Floquet 
multipliers is +1 and the other two lie inside the unit circle. As p 
is gradually increased, the symmetric limit cycle deforms smoothly, 
with two of the Floquet multipliers remaining inside the unit circle 
until we reach the critical value p( ' )  = 0.300. At this critical point, the 
symmetric periodic solution is nonhyperbolic with two of the associated 
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Floquet multipliers at +l. For values of p > p ( I ) ,  we find that the 
stable periodic solutions are no longer invariant under the symmetry 
transformation, implying that the symmetry has been broken through 
the bifurcation. Here, this bifurcation is a supercritical symmetry- 
breaking bifurcation. In Figures 3.4.3b and 3.4.3c, we show the two 
asymmetric limit cycles realized at p = 0.350. The stable symmetric 
solutions that exist for p c p ( ' )  continue as unstable symmetric 
solutions for p > p( ' ) .  

X 

b 

-2 0 2 
X 

-2 0 2 
X 

Figure 3.4.3: Two-dimensional projections of the periodic attractors of 
(3.4.1)-(3.4.3): (a) symmetric solution at p = 0.2, (b) one of the asymmetric 
solutions at p = 0.35, and (c) the other asymmetric solution at p = 0.35. 
Reprinted with permission from Nayfeh and Balachandran (1990a). 

Example 3.19. We consider the following four-dimensional system 
treated in the context of surface waves in a closed basin (Nayfeh and 
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Nayfeh, 1990): 

(3.4.4) 

(3.4.5) 

1 

1 
4 
1 

Pi = - q ( 2 0 1 +  U2)Ql - PlPl + P2Ql - P l Q 2  

9; = --Pa1 + C2)Pl  - PlQl t P l P 2  + QlQ2 

P'Z = - 2 0 2 ~ 1 -  ~ 2 ~ 2  - 2pi q i  - f 92 

t 1  

(3.4.6) 

(3.4.7) 92  = 3 7 2 P 2  - PZ92 + Pi - 9: - f P 2  

In this four-dimensional system, the pi and q; are the states while the 
u;, Pi1 and f are the control parameters. This system is invariant under 
the transformations 

(Pll Q13 P 2 , 9 2 )  * (Q1, -p1, -p2 ,  -Q2) -e+ ( -Q1,  p1, - p 2 ,  -q2) - (-P11-Q11P2rQ2) 

A solution of (3.4.4)-(3.4.7) that is invariant under the above four trans- 
formations is called a symmetric solution; otherwise, the solution is 
called an asymmetric solution. Consequently, for a specified set of 
control parameters, if an asymmetric solution is found, three other so- 
lutions can be obtained by applying the above transformations. 

In Figure 3.4.4, we show the projection of a limit-cycle solution 
onto the three-dimensional pl - p2 - q2 space and the two-dimensional 
p 2  - q2 space. This periodic solution is a symmetric solution. In fact, 
the two-dimensional projection does reveal the symmetry (pz, q z )  
( - p 2 , - ~ 2 ) .  Further, this solution is an attractor because one of the 
associated Floquet multipliers is at +1 and the other three multipliers 
are inside the unit circle. As u2 is gradually increased while holding 
the other control parameters fixed, this limit cycle deforms smoothly 
and remains symmetric and stable until we reach the critical value 
0 2  = -1.6897. Here, the symmetric periodic solution is nonhyperbolic 
with two of the associated Floquet multipliers at + 1 .  This symmetric 
solution is unstable for u > u2. Furthermore, Nayfeh and Nayfeh (1990) 
numerically found that there are four stable asymmetric solutions of 
(3.4.4)-(3.4.7). Hence, a supercritical symmetry-breaking bifurcation 
occurs at  u = 02. In Figure 3.4.5, three-dimensional projections of 
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PI 
p 2 : F  

4 0 

3 92 

Figure 3.4.4: Symmetric periodic attractor of (3.4.4)-(3.4.7) realized for 
f = 1.0, p1 = pz = 0.02, 61 = 0.266, and u2 = -1.80. Reprinted with 
permission from Nayfeh and Nayfeh (1990). 

the quadruple limit cycles onto the p1 - q1 - qz space are shown when 
u2 = -1.68 and the other parameters are the same as before. For 
these parameter values, there also exist unstable fixed points of (3.4.4)- 
(3.4.7). They are indicated by the plus signs in Figure 3.4.5. The 
apparent intersections seen in Figures 3.4.4 and 3.4.5 are a consequence 
of the projection of the four-dimensional trajectories onto a three- 
dimensional space. All of the periodic solutions shown in Figures 3.4.3- 
3.4.5 were numerically determined by using the shooting method of 
Section 6.5. 

In certain continuous-time systems with odd nonlinearities, an 
example of which is (3.1.28) and (3.1.29), a solution possesses the 
symmetry 

x(t) = -x ( t  + i T )  

where T is the period of the solution. This symmetry property is called 
inversion symmetry. The spectra of the scalar components of x 
contain only odd harmonics of the frequency 27r/T. However, this 
symmetry is broken when a bifurcation introduces a zero frequency 
component and/or an even harmonic of the frequency 2n/T. The 
occurrence of the associated symmetry-breaking bifurcation can be 
determined by examining the eigenvaluea of the matrix 6 in (3.2.53). 
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C d 

92 92 

Figure 3.4.5: Four asymmetric periodic attractors of (3.4.4)-(3.4.7) realized 
for f = 1.0, 111 = p2 = 0.02, (TI = 0.266, and 02 = -1.68. Reprinted with 
permission from Nayfeh and Nayfeh (1990). 

We note that one of the eigenvalues of &J associated with a symmetric 
periodic solution of an autonomous system is always - 1 .  When an 
eigenvalue of 6 leaves the unit circle through t1, a symmetry-breaking 
bifurcation occurs, and usually this bifurcation precedes a period- 
doubling bifurcation (Swift and Wiesenfeld, 1984).  In tlie next example 
(Nayfeh and Sanchez, 1989), we illustrate a supercritical syriinietry- 
breaking bifurcation in a two-dimensional nonaut.onomous system with 
an odd nonlinearity. 

Example 3.20. The system of interest is 

X + 0.4i + z - z3 = F cos(Rt) (3 .4 .8)  

In Figure 3.4.6a, the periodic attractor realized a t  F’ = 0.350 arid 
R = 0.8 is shown along with the associated power spectrum of the 
state z. (A  power spectrum provides a measure of the energy of a 
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Figure 3.4.6: Phase portraits and power spectra for periodic attractors of 
(3.4.8): (a) before symmetry-breaking bifurcation and (b) after symmetry- 
breaking bifurcation. 

system at different frequencies.) Both the phase portrait and power 
spectrum of Figure 3.4.6a are indicative of the inversion symmetry 
of the periodic solution. As R is held constant and F is gradually 
increased, the symmetric periodic solution experiences a supercritical 
symmetry-breaking bifurcation, resulting in a pair of stable asymmetric 
solutions. In Figure 3.4.6b, the phase portrait and power spectrum 
associated with one of these asymmetric attractors at  F = 0.380 and 
R = 0.8 are shown. We note the presence of even harmonics of R and 
a zero-frequency component. 

3.4.2 Cyclic-Fold Bifurcation 
In Figure 3.4.7, we illustrate the scenario near a cyclic-fold bifurca- 
tion point. Again, r is the amplitude of the periodic solution, and a 
is the scalar control parameter. A branch of stable periodic solutions 
and a branch of unstable periodic solutions, which exist for a < a=, 
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coalesce and obliterate each other at  the bifurcation point a,. Typi- 
cally, the unstable periodic solutions are of the saddle type. In Figure 
3.4.7, we note that locally there are no other solutions in the vicinity 
of the bifurcation point on one side (i.e., a > ac).  Therefore, cyclic- 
fold bifurcations are discontinuous or catastrophic bifurcations. The 
scenario of Figure 3.4.7 is similar to the scenario of Figure 2.3.1, where 
a saddle-node bifurcation of a fixed point of a continuous-time system 
is illustrated. (In an associated one-dimensional map, this bifurcation 
is called a tangent  bifurcation because the map is tangent to the 
identity map at  the bifurcation value.) In the continuation literature 
(e.g., Holodniok and Kubicek, 1984a), cyclic-fold bifurcation points are 
also called turn ing  points. 

Figure 3.4.7: Scenario in  the vicinity of a cyclic-fold bifurcation point. 

When a dynamical system undergoes a cyclic-fold bifurcation, the 
system will be in a state corresponding to an attracting limit cycle 
for a < a,. For a > a,, the system behavior cannot be determined 
from local considerations alone; global considerations are necessary. 
The postbifurcation state is usually determilied through numerical 
simulations. There are two possibilities. First, the system evolution 
may be attracted to a distant solution, which is either bounded or 
unbounded. The bounded solution may be a point attractor, or 
a periodic attractor, or an aperiodic attractor. The bifurcation is 
dangerous and its outcome may be determinant or indeterminant. 
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Second, the old attractor may explode into a new larger attractor with 
the old attractor being a proper subset of the new attractor. Such 
a bifurcation is an example of an explosive bifurcation. An orbit on 
this attractor spends long stretches of time near the destroyed limit 
cycle (ghost or phantom limit cycle), with interruptions in the form 
of excursions or outbreaks away from the ghost limit cycle. When the 
attractor is chaotic or strange, the stretches of time spent near the ghost 
limit cycle are called laminar phases, and the excursions away from 
the ghost limit cycle are called turbulent or chaotic bursts. As a is 
varied to approach a, from above, the mean time between the irregular 
bursts approaches infinity and the chaotic attractor implodes to the old 
limit cycle at a=. The above described transition from periodicity to 
chaotic behavior following a cyclic-fold bifurcation has been termed 
intermittent transition of type I to chaos by Manneville and 
Pomeau (1979, 1980) and Pomeau and Manneville (1980). This 
transition, which is described in more detail in Section 5.4, is one 
of the experimentally and analytically established transitions to chaos 
(Swinney, 1983; Birge, Pomeau, and Vidal, 1984). 

Example 3.21. For the system given by (3.4.4)-(3.4.7), the stable 
periodic solutions I and I1 coexist with the unstable limit cycle 111 
when f = 1.0, p1 = 0.02, pz = 0.02, u1 = 0.266, and uz = -1.9980. 
Projections of these three solutions onto the p z  - qz plane are shown 
in Figure 3.4.8. The orbit shown in the inset corresponds to solution 
I ,  the orbit depicted by broken lines corresponds to solution 111, and 
the remaining orbit corresponds to solution 11. All three solutions 
continue to exist as u2 is gradually increased to -1.9978. At this 
critical value, periodic solution I becomes nonhyperbolic with two of the 
associated Floquet multipliers at +1. At this critical point, a cyclic-fold 
bifurcation occurs. As a consequence, for u > -1.9978, the periodic 
solution I does not exist. However, the periodic solution I1 continues to 
exist. In the state-conttrol space, if one is 011 the branch corresponding 
to periodic solution I, there is a jump from this branch to the branch 
corresponding to periodic solution I1 after the bifurcation takes place. 
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Figure 3.4.8: Three periodic solutions of (3.4.4)-(3.4.7) realized at 6 2  = 
-1.998. The two stable solutions are depicted by solid lines, while the 
unstable solution is depicted by broken lines. Reprinted with permission 
from Nayfeh and Nayfeh (1990). 

As noted earlier in this section, a cyclic-fold bifurcation of a periodic 
solution can lead to a chaotic solution. Returning to  the quadruple 
solutions of Figure 3.4.5, we find that a oz is gradually increased 
beyond -1.68, the asymmetric quadruple solutions deform smoothly 
until the critical value 02 = -1.6543 is reached. At this value, each of 
the quadruple solutions loses stability through a cyclic-fold bifurcation 
with a Floquet multiplier leaving the unit circle through +1, resulting 
in a jump to another solution of this system. Nayfeh and Nayfeh (1990) 
numerically ascertained this solution to be chaotic by using the tools 
discussed in Chapter 7. 
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1 .o n 0.0 

Figure 3.4.9: Bifurcation set for (3.4.8). Each of the curves y, is the loci of 
either cyclic-fold or pitchfork bifurcation points of periodic solutions with 
period 2a/R. The periodic attractors in regions A ,  B ,  and C are shown i n  
the insets. 

Example 3.22. The bifurcation set numerically generated by Nayfeh 
and Sanchez (1989) for (3.4.8) in the F -0 control space is displayed in 
Figure 3.4.9. The region below the curve y2 is marked as A; the region 
below the curve y1 is marked as B; the region enclosed by the curves 
91, y2, and y4 is marked as C; and the region enclosed by the curves 
y1 and y2 above their intersection point is marked as D. In region D, 
apart from a narrow strip along y2 where we have bounded solutions, we 
do not have any bounded solutions of (3.4.8). We display the different 
periodic attractors of (3.4.8) found in regions A, B, and C in insets (a), 
(b), and (c), respectively. The attractor found in region A is larger in 
size than that found in region B.  Both the small and large attractors 
coexist in region C, indicating bistability. 

The curve y1 is the locus of the cyclic-fold bifurcation points 
corresponding to the small attractor of region B;  the curve yz is the 
locus of the pitchfork bifurcation points corresponding to the large 
attractor of region A; and the curve y4 is the locus of the cyclic-fold 
bifurcation points corresponding to the large attractor of region A. 

If one were to start from the small attractor in region C and 
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gradually vary one of the control parameters while holding the other 
parameter constant so as to cross y1 into region A, a cyclic-fold 
bifurcation occurs, leading to a jump to the large attractor of region A. 
On the other hand, if one were to start from the large attractor in region 
C and gradually vary one of the control parameters so as to cross y4, a 
cyclic-fold bifurcation occurs, leading to a jump to the small attractor 
of region B .  If one were to start from the small attractor in region B 
and gradually vary one of the control parameters so as to cross yl, a 
cyclic-fold bifurcation occurs, leading to a jump to the large attractor of 
region A if the crossing is into region A and to an unbounded solution 
if the crossing is into region D. If one were to start from the large 
attractor of region A and gradually vary one of the control parameters 
so as to cross the curve y2 at a location above yl, a pitchfork bifurcation 
occurs, leading to a bounded asymmetric solution that exists all along 
a small strip adjacent to y2. 

The Y-shaped s t ruc ture  seen in the bifurcation set of Figure 
3.4.9 in the context of the continuous-time system (3.4.8) has also 
been observed in the bifurcation sets of other dynamical systems (e.g., 
Abraham, Gollub, and Swinney, 1984). We also note from this section 
that a cyclic-fold bifurcation of a periodic solution of a dynamical 
system may lead to a chaotic solution of the considered dynamical 
system. 

3.4.3 Period-Doubling or Flip Bifurcation 
When a Floquet multiplier leaves the unit circle through -1 (Fig. 
3.4.lb), a period-doubling bifurcation takes place and the branch 
of stable periodic solutions that exists before the bifurcation (say 
a < a,) continues as an unstable branch of periodic solutions after the 
bifurcation (at a = ac) ,  A branch of stable period-doubled solutions is 
created if the bifurcation is supercritical, while a branch of unstable 
period-doubled solutions is destroyed if the bifurcation is subcritical. 
These scenarios are similar to those discussed in Section 2.4 in the 
context of period-doubling bifurcations of fixed points of maps. 

Local considerations are sufficient to understand the consequences 
of a supercritical bifurcation, which is a continuous bifurcation, while 
global considerations are necessary to understand the consequences of 
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a subcritical bifurcation, which is a catastrophic bifurcation. In the 
subcritical case, an unstable limit cycle (period-two cycle) collides with 
a stable limit cycle of one-half its period, and the two are replaced 
with an unstable limit cycle of the lower period. When a system 
undergoes a subcritical period-doubling bifurcation, the local state of 
the dynamical system will be an attracting limit cycle for a < a,. 
However, for a > a,, the postbifurcation state of the system cannot 
be determined by local considerations alone; global considerations are 
necessary. There are two possibilities. First, the system evolution may 
be attracted to a remote solution, which is either bounded (fixed point, 
periodic solution, quasiperiodic solution, chaos) or unbounded. Such a 
bifurcation is dangerous and is typically accompanied by a hysteresis. 
The outcome of the bifurcation may be determinant or indeterminant. 
In the latter case, the postbifurcation response depends on the rate of 
control sweep and is sensitive to the presence of noise. Second, the 
system response may explode into a new attractor when a is slowly 
varied past a,, with the old attractor being a proper subset of the new 
attractor. The outcome of the bifurcation is determinant, independent 
of the rate of control sweep, and insensitive to the presence of noise. 
An orbit on this attractor may spend long stretches of time near the 
destroyed period-two limit cycle (ghost or phantom limit cycle), with 
interruptions in the form of outbreaks or excursions away from the 
ghost limit cycle. When the new attractor is chaotic or strange, the 
stretches of time near the ghost limit cycle are called laminar phases 
and the excursions away from the ghost attractor are called turbulent 
or chaotic bursts. As a is varied to approach a, from above, the bursts 
become more and more infrequent, with the mean time between bursts 
approaching infinity, and the large attractor implodes to the small 
attractor at a,. The abovedescribed transition from a periodic state 
to a chaotic state following a subcritical period-doubling bifurcation 
has been termed intermittent transition of type I11 to chaos by 
Pomeau and Manneville (1980) and Manneville and Pomeau (1980). 
This scenario is addressed in more detail in Section 5.4. 

In Figure 3.4.10a, we show a periodic orbit of a continuous- 
time system and its intersection with a one-sided Poincark section 
C. The scenario after this periodic orbit undergoes a period-doubling 
bifurcation is depicted in Figure 3.4.10b. The period-doubled orbit 
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b 

Figure 3.4.10: Periodic orbit and associated Poincard section: (a) before 
period-doubling bifurcation and (b) after period-doubling bifurcation. 

intersects the PoincarC section two times, once at the point labeled 1 
and another time at the point labeled 2. During the course of evolution 
on the period-doubled orbit, we successively flip between points 1 
and 2 on C. Therefore, a period-doubling bifurcation is also called 
a flip bifurcation. A second period-doubling bifurcation would mean 
four points on the corresponding Poincard section and so 011 .  After k 
successive period-doubling bifurcations, we would have 2k points on 
the corresponding Poincari section. 

Example 3.23. In the autonomous system (3.4.1)-(3.4.3), as p 
is gradually increased beyond p = 0.35, the two asymmetric limit 
cycles, shown in Figure 3.4.3, deform smoothly and remain stable 
until p = 0.4405. At this critical value, the limit cycles lose stability 
with one of the Floquet multipliers leaving the unit circle through -1, 
resulting in a doubling of the periods of these limit cycles. The period- 
doubling bifurcation was numerically ascertained to be a supercritical 
bifurcation. One of these period-doubled limit cycles is shown in Figure 
3.4.11 when p = 0.445. The apparent intersection seen in this plot is 
a consequence of the projection of the three-dimensional orbit onto a 
two-dimensional plane. 
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Figure 3.4.11: Stable period-doubled orbit of (3.4.1)-(3.4.3) realized at 
p = 0.445. Reprinted with permission from Nayfeh and Balachandran 
(1990a). 

Example 3.24. In the nonautonomous system (3.4.8), a period- 
doubling bifurcation occurs as F is gradually increased beyond F = 
0.380, keeping R fixed at 0.8. The asymmetric periodic solution at 
F = 0.380 is shown in Figure 3.4.12a. This periodic solution deforms 
smoothly under the variation of F until a period-doubling bifurcation 
occurs, leading to the periodic solution shown in Figure 3.4.12b at 
F = 0.386. In the corresponding power spectrum, we note the presence 
of a peak at  iR, indicating that the basic frequency of the state z is 
one-half of the excitation frequency. The broken lines in Figures 3.4.12a 
and 3.4.12b represent Poincard sections. There is one intersection with 
the PoincarC section in Figure 3.4.12a, while there are two intersections 
with the PoincarC section in Figure 3.4.12b. 

In many studies (e.g., Feigenbaum, 1978; Novak and Frelich, 1982; 
Swinney, 1983; BCrge, Pomeau, and Vidal, 1984; Raty, Isomaki, and von 
Boehm, 1984; Nayfeh and Sanchez, 1989; Nayfeh, Hamdan, and Nayfeh, 
1990), a periodic solution of a dynamical system experiences 
an infinite sequence of period-doubling bifurcations under 
the variation of a single control parameter, culminating in 
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Figure 3.4.12: Phase portraits and power spectra for periodic attractors of 
(3.4.8): (a) before period-doubling bifurcation and (b) after period-doubling 
bifurcation. We note the appearance of subharmonics after the period- 
doubling bifurcation. 

a chaotic solution. This route, which is another experimentally 
and analytically well-established mechanism of transition to chaos, is 
discussed in Section 5.3. 

3.4.4 Transcrit ical Bifurcation 
A transcritical bifurcation of a periodic solution may occur when a 
Floquet multiplier leaves the unit circle through +1, as shown in Fig- 
ure 3.4.la. In each of Figures 3.4.13a and 3.4.13b) we have plotted 
the amplitude r of the periodic solution of a dynamical system ver- 
sus the scalar control parameter a in the vicinity of a transcritical 
bifurcation point. Again, the solid and broken lines correspond to 
stable and unstable periodic solutions, respectively. The branches of 
stable and unstable periodic solutions that exist before the transcrit- 
ical bifurcation continue as branches of unstable and stable periodic 
solutions, respectively, after the bifurcation. Hence, a transcritical bi- 
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Figure 3.4.13: Two possible local scenarios for a transcritical bifurcation. 

furcation leads to an exchange of stability. Figure 3.4.13b is similar 
to Figure 2.3.3 in which a transcritical bifurcation of a fixed point of a 
continuous-time system is depicted. 

3.4.5 Secondary Hopf or Neimark Bifurcation 
In Section 2.3.1, we noted that a Hopf bifurcation of a fixed point of a 
continuous-time system leads to a periodic solution of this system. So, 
essentially, a Hopf bifurcation introduces a new frequency (possibly 
incommensurate) with the first one in the bifurcating solution. A 
Hopf bifurcation of a periodic solution is called a secondary Hopf 
or Neimark bifurcation, and it occurs when two complex conjugate 
eigenvalues exit the unit circle away from the real axis, as shown 
in Figure 3.4.1~. The bifurcating solution may be periodic or two- 
period quasiperiodic, depending on the relationship between the newly 
introduced frequency and the frequency of the periodic solution that 
exists prior to the bifurcation. Similar to subcritical and supercritical 
Hopf bifurcations of fixed points, there are subcritical and supercritical 
Neimark bifurcations of periodic solutions. In both bifurcations, the 
branch of stable periodic solutions that exists prior to the Neimark 
bifurcation continues as a branch of unstable periodic solutions after 
the bifurcation. A branch of stable quasiperiodic solutions is created 
if the bifurcation is supercritical. This bifurcation is an example of 
a continuous bifurcation. On the other hand, a branch of unstable 
quasiperiodic solutions is destroyed if the bifurcation is subcritical; this 
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bifurcation is another example of a catastrophic bifurcation. When the 
system undergoes a subcritical Hopf bifurcation as a control parameter 
a exceeds the threshold value a,, the state of the system is periodic for 
a < ac. For a > ac, the postbifurcation state of the system cannot 
be determined by local considerations alone; global considerations are 
necessary. There are two possibilities. First, the system evolution 
may be attracted to a distant solution, which is either bounded 
(point, periodic, quasiperiodic, or chaotic attractor) or unbounded. 
Again, such a bifurcation is dangerous and is typically accompanied 
by hysteresis. Second, the state of the system may explode into a 
larger attractor, with the old attractor being a proper subset of the 
new attractor. An orbit on this attractor may spend a long time on 
the destroyed quasiperiodic (ghost or phantom) solution before i t  is 
interrupted by outbreaks or excursions on the attractor far away from 
the ghost quasiperiodic solution. Again, if the new attractor is strange 
or chaotic, the time stretches that the attractor spends near the ghost 
quasiperiodic attractor are called laminar phases, and the outbreaks 
away from the ghost attractor are called turbulent or chaotic bursts. 
The transition from periodicity to chaos following a subcritical Hopf 
bifurcation has been termed intermittent transition of type I1 to 
chaos by Pomeau and Manneville (1980) and Manneville and Porneau 
(1980). We discuss this scenario at length in Section 5.4. 

Example 3.25. We consider the following sixth-order system (Nayfeh, 
Asrar, and Nayfeh, 1992): 

Pl' = -P1P1 - V l Q l  - PlQZ t PZQl (3.4.9) 

Ql' = - p l q l  t V l P l  t PIP2 t QlQZ 

PZ' = -PZp2 - b q Z  - 2 p l q 1  - pZq3  t p3qZ 

~ 2 '  = -pzqz t vzpz t p: - 
P3' = - P 3 P 3  - V3Q3 - 2 r p z q z  
43' = - p 3 q 3  + v 3 p 3  t q p ;  t 4;) + F 

( 3  -4.10) 
(3.4.1 1 )  
(3.4.12) 
(3.4.13) 
(3.4.14) 

Here, the states are p i  and q,, and the parameters are r, F, pi ,  and 
Via For I? = 0.625, p i  = 0.5, pa = 0.5, p 3  = 0.1, ~1 = 0.375, 
u2 = 0.25, v 3  = 0.5, and F = 0.533, the system (3.4.9)-(3.4.14) 

t p z p 3  + 4243  
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Figure 3.4.14: Two-dimensional projections of the periodic attractor of 
(3.4.9)-(3.4.14) at F = 0.533. Reprinted with permission from Nayfeh, 
Asrar, and Nayfeh (1992). 

has a limit-cycle solution. This solution is depicted in Figure 3.4.14. 
When F is used as a control parameter and gradually increased beyond 
0.5330, this limit cycle deforms smoothly and remains stable until 
the critical value F = 0.5366 is reached. At this value, a complex- 
conjugate pair of Floquet multipliers crosses the unit circle away from 
the real axis, resulting in a Neimark bifurcation. Because the 
bifurcating solution is a stable two-period quasiperiodic solution, this 
Neimark bifurcation is supercritical. Here, the bifurcating solution is a 
quasi periodic at tractor. 

In Figure 3.4.15a, we show a two-dimensional projection of the 
quasiperiodic solution of (3.4.9)-(3.4.14) realized at F = 0.537. (We 
note that, unlike a periodic orbit, a quasiperiodic orbit of an autonomous 
system does not close on itself because of the aperiodicity.) Nayfeh, As- 
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Figure 3.4.15: Quasiperiodic attractor of (3.4.9)-(3.4.14) realized at F = 
0.537: (a) two-dimensional projection of orbit and (b)  two-sided PoincarC 
section. Reprinted with permission from Nayfeh, Asrar, and Nayfeh (1992). 

Tar, and Nayfeh (1992) chose the hyperplane 

to define a two-sided Poincar6 section after ascertaining through nu- 
merical simulations that this section is locally transverse to the flow; 
that is, after ascertaining that the quasiperiodic orbit passes through 
the chosen plane. A two-dimensional projection of the collection of 
points on the five-dimensional PoincarC section is shown in r'g 4 1  ure 
3.4.15b. We note the presence of two dense collections of points on 
two closed loops in Figure 3.4.15b. Such dense collections of points 
on closed loops of a Poincard section are characteristic of two-period 
quasiperiodic solutions. 

3.5 ANALYTICAL CONSTRUCTIONS 

In this section, we describe how the methods of multiple scales and 
center manifold reduction can be used to obtain analytical approxima- 
tions for a periodic solution arising through a Hopf bifurcation of a fixed 
point of an autonomous system of differential equations. For algebraic 
ease, we use the system (3.4.1)-(3.4.3) as an example in Sections 3.5.1 
and 3.5.2 and state the results for the general case in Section 3.5.3. 
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3.5.1 Method of Multiple Scales 
Here, we follow Nayfeh and Balachandran (1990a) in the treatment of 
the system (3.4.1)-(3.4.3). The procedure is identical to that carried 
out in Section 2.3.6. 

Example 3.26. 
solution (xo, yo, zo) = ( O , O ,  0). The associated Jacobian matrix is 

Equations (3.4.1)-(3.4.3) possess the fixed-point 

whose eigenvalues are 

X = p f i  and -1 

In the x - y - z - p space, a Hopf bifurcation occurs at (2, y, z ,  p )  = 
( O , O , O ,  0). Consequently, the system (3.4.1)-(3.4.3) is expected to 
possess limit-cycle solutions close to the bifurcation point. At the 
bifurcation point, the complex-conjugate eigenvalues are A = f i and 
hence the period of the limit cycle is 2n. As we move away from the 
bifurcation point, the period of the limit cycle is given by ~ A / w , ,  where 
w, is one plus a frequency correction. We determine the radius and 
period of the bifurcating limit cycle through the following analysis. 

To determine an approximation to this limit cycle, we seek an 
expansion of the form 

(3.5.1) 

(3.5.3) 
n= 1 

where T n  = cnt  and c is a small positive nondimensional parameter that 
is artificially introduced to serve as a bookkeeping device and will be 
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set equal to unity in the final analysis. In terms of the T,, the time 
derivative becomes 

d 
dt 
- = Do + d 1 - t  2D2 +- * * ' (3.5.4) 

where D, = a/aT,,. Also, the control parameter is ordered as 

c1= +2 (3.5.5) 

so that the influence of the nonlinear terms and the control parameter 
p are realized a t  the same order. 

Substituting (3.5.1)-(3.5.5) into (3.4.1)-(3.4.3), recalling that xo = 
yo = zo = 0, and equating coefficients of like powers of 6 ,  we obtain the 
following hierarchy of equations: 
O(E) : 

(3.5.6) 
(3.5.7) 
(3.5.8) 

O(2) : 

Do% + yz = -Dl51 - 5121 (3.5.9) 
Doyz - 5 2  = -a!/* 
Do22 + 2 2  = -Dl21 + y; 

(3.5.10) 
(3.5.11) 

The riondecaying solution of (3.5.6)-(3.5.8) is 

5 1  = ZA(T1, TZ)eiT0 + cc (3.5.15) 
y1 = A(T1, T2)eiTo + cc (3.5.1 6) 
21 = 0 (3.5.1 7) 
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where cc is the complex conjugate of the preceding terms and A is 
determined by imposing the solvability conditions at the next levels of 
approximation. 

Substituting (3.5.15)-(3.5.17) into (3.5.9)-(3.5.11) and eliminating 
the source of secular terms, we have 

D I A Z O  oc A = A ( T 2 )  

Then, the solution of the system (3.5.9)-(3.5.11) is 

5 2  = y2 = 0 (3.5.18) 

(3.5.19) 

where A is the complex conjugate of A. 

nating the terms that produce secular terms, we obtain 
Substituting (3.5.15)-(3.5.19) into (3.5.12) and (3.5.13) and elimi- 

(3.5.20) 

where the prime denotes the derivative with respect to TZ. Substituting 
A = +a exp(i/?), where a and /? are real quantities, into (3.5.20), 
separating real and imaginary parts, and setting c = 1,  we obtain 

9 
40 

a = p2a - -a3 

1 
20 

p = --a2 

(3.5.21) 

(3.5.22) 

Referring to Section 2.3.2, we note that the system (3.5.21) and (3.5.22) 
is in the normal form for a Hopf bifurcation of a fixed point. Further, 
this system is equivalent to that obtained by Rand (1989) using center 
manifold reduction and the method of normal forms. In the next 
section, we illustrate the procedure based on center manifold reduction. 

When p2 < 0, (3.5.21) has the stable fixed point a = 0. On the 
other hand, when p2 > 0, (3.5.21) has the fixed points 

a = O ,  a = - lop  , and a = -- lop  26 3 2G 3 
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The zero fixed point is unstable, while the nonzero fixed points are 
stable. Therefore, the Hopf bifurcation is supercritical because the 
bifurcating periodic solutions are stable. The approximation for the 
limit-cycle solution of (3.4.1)-(3.4.3) is 

[ 1 + ; cos(2wmt 4- 2Po) Z = Z a  

1 2 
t 5 - sin(2wmt + 2p0) 

(3.5.23) 
(3.5 -24) 

$- O ( a 3 )  (3.5.25) 

where Po is a constant, 

a = "& 
3 

and 
(3.5.26) 

1 
= (1 + 8) + q a 3 )  = (1 - + 0 ( ~ 3 )  

It should be borne in mind that expansions (3.5.23)-(3.5.26) are 
determined for small values of p and, hence, their accuracy is expected 
to deteriorate as p becomes large. In Figure 3.5.1, we compare the 
analytical approximation (broken lines) with the numerical solutions 
(solid lines) of equations (3.4.1)-(3.4.3) for different values of p .  The 
numerical solutions are obtained by using the shooting scheme of 
Section 65.2. It is evident from the figure that the approximation 
deteriorates as p increases to 0.2 and beyond. In fact, a t  p = 0.3, the 
analytical approximation is not even close to the numerical solution in 
either form or magnitude. For p > 0.3, the analytical approximation is 
not shown. 

3.5.2 Center Manifold Reduction 
At a Hopf bifurcation point, the fixed point typically has rionempty 
stable and center manifolds and an empty unstable manifold, as 
illustrated in Figure 3.5.2. The basic idea underlying this approach 
is to restrict attention to the dynamics on the center manifold W c ,  
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Figure 3.5.1: Periodic solutions of (3.4.1)-(3.4.3): (a) p = 0.05, (b) p = 0.2, 
(c) p = 0.3, (d) p = 0.35, (e) p = 0.44, and (d) p = 0.445. Reprinted with 
permission from Nayfeh and Balachandran (1990a). 

thereby reducing the order of the dynamical system while retaining the 
essential features of the dynamic behavior near the bifurcation point. 
The procedure used in this section is identical to that described in 
Section 2.3.4. 

Example 3.27. We reduce the system (3.4.1)-(3.4.3) to its normal 
form in the vicinity of the Hopf bifurcation that takes place a t  ( O , O ,  0 , O ) .  
To capture the dependence of the center manifold on the parameter p ,  
we use the suspension trick; that  is, we augment (3.4.1)-(3.4.3) with 
the equation 

/ i = O  (3.5.2 7) 

In the augmented system, the terms px and py are treated as nonlinear 
terms. 

At the bifurcation point, the linear part of (3.4.1)-(3.4.3) and 
(3.5.27) is in normal form. The 2 - y - p space is the center eigenspace, 
while the z axis is the stable eigenspace. Noting that the local 
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Figure 3.5.2: Illustration of stable and center manifolds of a fixed point at 
Hopf bifurcation. 

center manifold is tangent to the center eigenspace at the origin (i.e., 
&/ax = az/dy = & / 3 p  = 0 at ( s , y , p )  = ( O , O , O ) ) ,  we approximate 
the manifold by the following polynomial: 

Z ( Z ,  y ,  p )  = biz2  + 6 2 ~ ~  + 639' + * (3.5.28) 

We have assumed that z and 3 are of the same order and p is 
9(z2).  Equation (3.5.28) constrains the center manifold to be three- 
dimensional in the four-dimensional 5 - y - z - p space. 

We first choose the constants 6; in (3.5.28) such that (3.4.3) is 
satisfied and then use (3.5.28) to obtain the projection of the system 
(3.4.1)-(3.4.3) onto the center manifold. To this end, we substitute 
(3.5.28) into (3.4.1) and obtain 

j. = pz - Y - biz3 - 6 2 ~ ' ~  - 6 3 ~ ~  2 + . * * (3.5 -29) 

Then, substituting (3.5.28) into (3.4.3) yields 
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Substituting for x and y from (3.5.29) and (3.4.2) into (3.5.30) and 
keeping up to second-order terms only, we obtain 

-261x1~ - b2Y2 +b2x2 + 263x1~ 
(3.5.31) 

Equating the coefficients of z2, zy, and y2 on both sides of (3.5.31), we 
arrive a t  

= -61x2 - bzxy - h3y2 + y2 + * * - 

62  + 61 = 0, 261 - 62 - 263 = 0, 62 - 63 = -1 

Hence. 
2 2 3 

61 = -, 62 = --, and 6 - 
5 5 "-s 

Substituting for tlie 6i in (3.5.29) results in  

j. = px - y - -x 2 3  t -x 2 2  y - -xy 3 2 t . . *  (3.5.32) 
5 5 5 

Thus, the four-dimensional system (3.4.1)-(3.4.3) and (3.5.27) is re- 
duced to tlie three-dimensional system (3.5.32), (3.4.2), and (3.5.27) in 
the vicinity of the bifurcation point. 

Periodic solutions of (3.5.32) and (3.4.2) near the origin can be 
constructed using either t,he method of multiple scales or t,he method 
of normal forms (Nayfeh, 1973, 1981, 1993). Since we  used the 
method of multiple scales to construct periodic solutions of the three- 
dimensional system in the preceding sect.ion, we use the method of 
normal forms in this section. To apply the method of normal forms, we 
find it convenient to combine the two first-order real-valued equations 
(3.4.2) and (3.5.32) into a single complex-valued equation using tlie 
transformation - 

( = a. + i y  and ( = z - i y  (3.5.33) 
Consequently, 

1 1 .  
2 2 

5 = -(( + <) and y = - - z ( (  - <) (3.5.34) 

Using lliis transformalion, we combine (3.4.2) and (3.5.32) into 
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To determine the normal form of (3.5.35), we introduce the near- 

c = t t h ( t , t )  (3.5.36) 

and choose h so that the transformed equation takes on the simplest 
possible form. Substituting (3.5.36) into (3.5.35) yields 

identity transformation 

It follows from (3.5.37) that, to the first approximation, 

t = i t  (3.5.38) 

from the right-hand side of (3.5.37), Using (3.5.38) to eliminate ( and 
we obtain 

1 
40 

- - ((-1 + 2 i ) t 3  + (9 -+ 2i ) t2C -t (9 - 2 i ) t c 2  (3.5.39) 

- (1 + 2 i )  (31 

The form of the t e r m  on the right-hand side of (3.5.39) suggests 
seeking h in the form 

Substituting (3.5.40) into (3.5.39) yields 

40 
(3.5.4 1) 

9 t 2i ( = i t t  p t  - -t2( - @id2  - 40 

9 - 2i 1 t 2 2  -3 
t ( 2 2 4  - 7) t? t ( l i d s  t --) 40 ( 

It follows from (3.5.41) that we can choose dZrd4, and d5 so as to 
eliminate the terms proportional to t3, tt2, and t3, thereby producing 
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the normal form 
9 + 2i 
40 i = i t  t p t  - -t2t (3.5.42) 

To compare the present solution obtained by using the method of 
normal forms with that obtained in the preceding section by using the 
method of multiple scales, we let 

t = iae i(tt0) (3.5.43) 

where a and p are functions of t .  Substituting (3.5.43) into (3.5.42) 
and separating real and imaginary parts, we obtain 

9 3  a = pa - -a 
40 

(3.5.44) 

(3.5.45) 
1 

20 
p = --a2 

in agreement with (3.5.21) and (3.5.22) obtained by using the method 
of multiple scales. 

Hassard, Kazarinoff, and Wan (1981) present a FORTRAN code 
called BIFOR2 for constructing periodic solutions through center man- 
ifold reduction in Hopf bifurcation problems. 

3.5.3 General Case 
In this section, we use the method of multiple scales to coiistruct 
periodic solutions of the general system 

X = F(x; a )  (3.5.46) 

near a Hopf bifurcation point ( x c ; a c ) .  First, we introduce the trans- 
formation 

x - x, = cy and a - a, = E 2 p (3.5.47) 
where t is a small nondimensional quantity that is used as a bookkeep- 
ing device. Substituting (3.5.47) into (3.5.46)) expanding the right- 
hand side in a Taylor series for small 11 y 11 and small I p 1, and using 
the fact that  F(x,; a,) = 0, we obtain 

Y =  JY + ~ Q ( Y , Y )  t f 2 C ( ~ , ~ , ~ ) + E 2 p B Y  + * * a  ( 3.5.4 8) 
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where J is the n x n Jacobian matrix of F evaluated at ( x c ; a c ) ,  B is 
an n x n constant matrix, Q(y ,y)  is generated by a vector-valued 
symmetric bilinear form Q(u,v), and C ( y , y , y )  is generated by a 
vector-valued symmetric trilinear form C(u,v,w).  At a = a,, the 
Jacobian matrix J has a pair of purely imaginary eigenvalues f i w ,  
with all of the remaining eigenvalues being in the open left-half of the 
complex plane. 

Using the method of multiple scales, we seek an expansion in the 
form 

Y = Yl(T0, T2) + VZ(T0, T2) t c2y3(To, T2) t ' a * (3.5.49) 

where To = t and T2 = e2t. Substituting (3.5.49) into (3.5.48) and 
equating coefficients of like powers of e, we obtain 

The nondecaying solution of (3.5.50) can be expressed as 

where p is the right eigenvector of J corresponding to the eigenvalue 
iw; that is, 

We let q be the left eigenvector of J corresponding to iw; that is, 

J p  = iwp (3.5.54) 

q T J = i w q  T (3.5.55) 

We assume that p and q have been normalized so that 

qTp = 1 (3.5.56) 

Substituting (3.5.53) into (3.5.51) yields 

Doy2 - J Y ,  = Q(P, P)AA t Q(P, P)A 2 e 2iwTo + cc (3.5.57) 
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The solution of (3.5.57) can be expressed it5 

yz = 2zoAA + 2z2A2eZiWT0 + cc 

1 

(3.5.58) 

where 
( 3.5.59) Jzo = - s Q ( P l  P) 

and 

Substituting (3.5.53) and (3.5.58) into (3.5.52) yields 

Doy3 - Jy3 = -A'peiwTo -t pBpAe'"*O 
t [8Q(p ,  ZO) t 4Q(p, Zz) t 3C(p,  p, p)] AzAeiwTo (3.5.61) 
+ cc + NST 

where A' = DzA and NST stands for t e r m  that do not produce secular 
terms. Eliminating the terms that lead to secular terms from (3.5.61), 
we have 

A' = p P I A  + 4p2AzA (3.5.62) 
where 

P1 = q'BP (3.5.63) 
3 

Pz = 2qTQ(p, 20) + qTQ(P, 2 2 )  + qqTC(P, p1 P) (3.5.64) 

Letting A = iaexp(i8) and separating real and imaginary parts in 
(3.5.62) yields 

(3.5.G5) 
(3.5.66) 

where = PIr + 
obtained by Howard (1979) and Abed and Fu (1986). 

and Pz = PZr + z&.  Equivalent results were first 

3.6 EXERCISES 

3.1. Consider the periodically forced linear system: 

a: + W Z Z  = F cos( nt) 

. 
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(a) Determine the solution of this system subject to the initial condi- 
tions x ( 0 )  = xo and i (0 )  = 0. 

(b) Discuss the nature of this solution in each of the following cases: 
(i) R = w and (ii) R # w.  

3.2. A planar autonomous system is described by 

x = y - x  3 +a: 

y = - z - y 3  tY 

(a) Apply Bendixson’s criterion and discuss if periodic solutions are 
possible. 

(b) Verify that there is a stable limit cycle in the plane. 

3.3. The following system is called the Mathieu oscillator (e.g., 
Nayfeh and Mook, 1979, Chapter 5): 

ii + 2 p i  t (6 t 2ccos2t)u = 0 

(a) Use the transformation u = ve-Pt and obtain the standard form 

ii -t- (6 - p2 t 2 e c o s 2 t )  21 = 0 

Such equations with periodic coefficients are called Hill’s equa- 
tions. 

(b) Use Floquet theory to study the stability of periodic solutioris in 
the following cases: (i) p = 0, 6 = 1.0, and e = 0.1; ( i i )  /I = 0.2, 
6 = 1.0, and c = 0.1; and (ii i)  p = 0.2, 6 = 1.0, and e = 0.8. 

3.4. The van der Pol oscillator is described by 

x, = 2 2  

32 = -p(xl - 1)xz - 2 1  2 
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(a) Apply Bendixson’s criterion and discuss if periodic solutions are 
possible in the following cases: ( i )  p = 0 and (ii) p # 0. 

(b) Use the method of multiple scales to construct analytically a 
periodic solution for small I p I .  For p = 0.05, conduct a stability 
analysis by using Floquet theory. 

(c) Use the shooting method of Section 6.5.2 to determine the periodic 
solutions in the following cases: ( i )  p = -1 a.nd ( i i )  p = 1. 
Conduct a stability analysis using Floquet theory. 

The van der Pol oscillator has been extensively studied because of its 
relevance to  many applications. A partial list of examples includes 
lasers (Lamb, 19G4), Q machines (Lashinsky, 1969), arc discharge (Keen 
and Fletcher, 1970), beain-plasma systems (Deneef and Lashinsky, 
1973; Nakamura, 1971), oil-film journal bearings (Jain and Srinivasan, 
1975), flutter of plates arid shells (Fung, 1955; Dowell, 1975; Ilolmes, 
1977; Nayfeh and Mook, 1979), vehicle dynamics (Bea.man and Hedrick, 
1980; Cooperrider, 1980), and electrical activity in gastrointestinal 
tracts of humans arid animals (Linkens, 1974, 1976). 

3.5. A planar system is described by 

Construct the phase portrait for this system and discuss if  there are 
any limit cycles. 

3.6. A planar system is described by 

Show that there are no equilibrium points. Construct the phase portrait 
for this system and discuss if there are any limit cycles. 
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3.7. Use the methods of multiple scales and normal forms to simplify 
the system in the vicinity of the origin 

U = V  

2 j =  -u+au2+puv 

3.8. Consider the system 

i1 = - 2 2  + $1 [A + pc.: + 4) - (.: + .:)2] 

x2 = 51 + 2 2  [A t /A(.: + xi) - (.: + .;)"I 
Transform these equations into polar coordinates and discuss the 
bifurcations of periodic orbits as a function of X and p. 

3.9. Consider the system 

i = - y + z z  
? j = x + y z  
i = -2 - (z2 + y2) + z 

z = - 2 2  - y 2  t . . . 

x = -y - .(z2 + y2) 
?j=.-y(.  + y )  

2 

Show that the center manifold of the origin is 

Then, show that this system can be reduced near the origin to 

2 2  

Use polar coordinates to determine the exact solution of the reduced 
system. 

3.10. Show that none of the following systems has a limit cycle: 

(4 
XI = 2 2  

x 2  = d.1) + a22, a # 0 
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(b) 
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i, = - 2 1  t 2; + 2,222 
x 2  = -22 + 2; + 2;22  

3.11. Consider the following system (Nemytskii and Stepanov, 1960, 
p. 24): 

i = -y + z ( l  - 2 - y2))/(.’ + y2)’/2 

y = 5 + y(1 - zz - y’)/(z’ + y 2 ) 1/2 

Show that z ( t )  = cos(t + d o ) ,  y ( t )  = sin(t + 00) represents a stable limit 
cycle of the system. 

3.12. Consider the following system (Nemytskii and Stepanov, 1960, 
p. 25): 

x = -y t 2(1 - z2 - y2)2 

y = 2 + y ( l  - z2 - y2)2 

Show that ~ ( t )  = cos(t + d o ) , y ( t )  = sin(t + 00) represents a semistable 
limit cycle of the system; that is, it is a periodic solution that is stable 
on one side and unstable on the other (and thus is unstable). 

3.13. Consider the following system (Nemytskii and Stepanov, 1960, 
p. 26): 
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Here, f is defined as f ( r )  = (rZ - 1)sin [ l / (rz  - l)] for r # 1 and 
f(k1) = 0, then limit cycles are given by ~ ( t )  = rI cos(t + O O ) ,  y(t) = 
rj sin(t + 8,) for j = 0,1, - , where ro = 1 and rj = ( I  t l/jr)'/' for 
j = 1,2,... , Which of these limit cycles are stable? 

3.14. Given that z = r cos8 ,y  = r s i n 8  for r 2 0, and 

for a > 0 and f is a continuous function, show that 

7: = [I - f ( r  cos 8, r sin O)/u] r ,  8 = 1 

Deduce that the trivial solution is stable if a < f(0,O) and unstable if 
0 < f(0,O) < a. Show that, if 0 < a < f ( z , y )  for all z,y, then the 
solution (z,y) + (0,O) as t --t 00 for all initial conditions. 

Verify that, if f (z ,y)  = g ( r )  and a = g(ro )  for some positive 
differentiable function g and some positive constant ro, then there exist 
solutions of the form 

z ( t )  = ro cos(t + do),  y ( t )  = ro sin(t + 80)  

Show that the orbit of these periodic solutions is stable if g'(r0) = 0 
and unstable if g'(ro) < 0. 

Further, given that g ( r )  = 1 + 1/ [l + ( r  - l)'], sketch the bifurca- 
tion diagram in tlie first quadrant of the (a, T O )  plane, and sketch the 
phase portraits in the ( 5 ,  y)  plane for each of tlie qualitatively different 
cases that arise (Drazin, 1992, pp. 41-42). 

3.15. Consider the following system (Nayfeh and Mook, 1979): 

3 :+z--cz = o  
show that there are oscillations of amplitude a with period 

4 K  [&(2 - €a')] 
( 1  - $ € a y z  

T =  
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where K is the complete elliptic integral of the first kind defined by 

3.16. Consider the equation (Drazin, 1992, pp. 66-67) 

2 i = ( u  - I z  I ) Z + €  

where z is a complex function of the real variable t but a and 6 are real 
constants. Expressing z = reie for non-negative modulus T and real 
phase 0, show that 

Investigate the equilibrium solutions and their stability. 
bifurcation curves in the ( a ,  r )  plane for fixed c > 0, c = 0, and 6 < 0. 

Sketch the 

3.17. Consider the following periodically forced oscillator: 

5 1  = 5 2  

x 2  = - 5 1  - 0 . 4 2 2  - 2: + COS( 1.05t) 

Use the shooting method of Section 6.5.2 to  determine the periodic 
solution of this system arid examine its stability by using Floquet 
theory. 

3.18. Consider the following autonomous system: 

i = p 5 - - 3 w y + a z  - + y  (: 2 ,  

(; 2, 

W 
y = ~ X + p y + c r y  - + y  
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Determine the periodic solution of this system, construct a Poincard 
map, and carry out a stability analysis for each of the following cases: 
(i) p = 1, o = -1, and w = 1; and (ii) p = -1, o = 1, and w = 1. 

3.19. Consider the following autonomous system: 

x = 5 - y - x  ( '  x + y  '> 
y = x + y  - y  (x2 + Y') 
i = 7 2  

(a) Verify that (cos t ,  sin t ,  0) is a periodic solution of this system. 

(b) Construct a PoincarC map and carry out a stability analysis for 
each of the following cases: ( i )  7 = 1 and (i i )  7 = -1. 

3.20. Consider the planar autonomous system: 

X = y  

y = -5 - by (9' -+ 5' - a') 

Determine the periodic solution of this system, construct a Poincar6 
map, and carry out a stability analysis for each of the following cases: 
(i) 6 = -1 and (ii)  6 = 1. 

3.21. Shaw and Rand (1989) used the following system to study forced 
oscillations of an inverted pendulum constrained to oscillate between 
two closely spaced rigid barriers: 

: t 2 p i  - 5 = Fcos(wt)  15 I < 1 
x --+ -rx I x I = 1  

where z describes the position of the pendulum; the locations of the 
rigid barriers are x = 1 and 2 = -1; p is a measure of the friction; r 5 1 
provides a measure of energy loss during impact; F is the amplitude of 
forcing; and w is the forcing frequency. 
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(a) Rewrite this system as a third-order autonomous system by using 
the variables 5 ,  y = x, arid 0 = wt(mod2.n). 

(b) Discuss the motions for which the following section can be used as 
a Poincark section: 

c = { ( z , y , 0 )  E I x R x s 1 z = 1 ,y  < 0) 

The interval I = [-I, 11. 

(c) Examine tlie periodic motions of period 27r/w for the following 
cases: (i) r = 1.0, p = 0.1, F = O . G ,  and w = 4.0; and (i i )  r = 1.0, 
p = 0.1, F = 2.3, and w = 1.95. Explore how these motions can 
be studied by using the Poincard map associated with the section 
defined in part (b). 

3.22. Consider the two-dirnensional system 

when p << 1. Use the methods of multiple scales and normal forms to 
simplify this system. Under what conditions is the Hopf bifurcation 
subcritical, and under what conditions is it supercritical? 

3.23. Consider the following autonomous system: 

j. = pz - y - z ( 2  t y2) - yz 

j ,  = z + py - y ( z 2  + y2) + 2.2 
i = - z + z  + y  2 2  

where 2, y ,  and z are the states and p is the control parameter. 
Construct an analytical approximation for the bifurcating periodic 
solutions in the vicinity of the Hopf bifurcation point (z,y,z,p) = 
( O , O , O ,  0) using (i)  the method of multiple scales and (ii) a combination 
of center manifold reduction and the method of normal forms. 
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3.24. Corisider the system 

where the a i ,p ,w,  and T are constants and T is positive and away 
from zero. Use the method of multiple scales and a combination of 
center manifold reduction and the method of normal forms to  construct 
periodic solutions of this system for small p.  

3.25. Consider the system 

ii + w2u = ( €  - az)U 
2 t + 7 2 = u  

w and (Y are constants, T is a positive constant that is away from zero, 
and t is a small positive parameter. Use the method of multiple scales 
and show that, t o  the first approximation, 

u x acos(wt t p )  

where 

. 1  c ~ ( T '  t 8w2) 
u = -€U  - 

2 ST(T2 + 4 w y  

3.26. Consider the system in the preceding exercise. Let u = x1 arid 
u = x 2  and rewrite the system as 

5 1  = 5 2  
2 

i 2  = -w 2 1  4- ( €  - (Yz)x2 
i = - T 2  +- XI 2 
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Show that the center manifold of the origin is given by 

Then, show that the dynamics on the manifold is governed by 

a 
x 2  = -w 2 2 1  + €22 - [(r' + 2 w 2 ) 4  - 27x122 + 2 4  2 2  

T(T2 -l- 4w2) 
+ . . .  

Use the method of multiple scales and normal forms to simplify the 
dynamics on the center manifold and compare the results with those 
obtained in Exercise 3.25. 

3.27. 
u = iw(C - () and transform the system into 

Consider the system in Exercise 3.25. Lel u = c + ( and 

i = -r2 + C 2  t 2c( + c2 
Show that the center manifold of the origin can be approximated by 

c2 +-+-+... 2cJ  c2 z =  
r + 2iw r r - 2iw 

Then, show that the dynamics on the center manifold is governed by 

Use the method of normal forms to simplify the dynamics on the center 
manifold into 

1 ] r ' F t  . . *  2 [ 2  r r +2 iw  
1 
2 

[ = iW( + -€[ - -a - - - 

Let 6 = iaexp(ip)  and then determine u and the equations governing 
a and p. Compare the result with that obtained in Exercise 3.25. 
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3.28. Consider the following set of coupled van der Pol oscillators used 
by Linkens (1974) to study electrical activity in gastrointestinal tracts 
of humans and animals: 

$1 + w:(z1+ 7 2 2 )  - 6 [l - (21 + 7x2)2] x 1  = 0 

5 2  + wz(22 + 7x1) - € [l - ( 2 2  + y21)2] x2 = 0 2 

For w2 2~ w1 and 6 = 0.1, analytically construct the pliase-locked 
solutions of this system a id  examine their stability. 

3.29. Consider the following periodically forced oscillator: 

+ 0.05i -t z + 0 . 0 0 5 ~ ~  = 0.1 cost t 0.3cos(0.115t) 

(a) Construct a first approximation for the periodic solution of this 
system by using the method of harmonic balance. You will iieed 
to assume a solution of the forni 

2 2 PI cost + q1 sin 1 t p2 cos(0.1151) t q2 sin(0.1151) 

(b) Use the shooting method of Section 6.5.2 to determine tliis periodic 
solution. (You are likely to experience difficulties because of the 
large period of the solution.) 
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Chapter 4 

QUASIPERIODIC SOLUTIONS 

A quasiperiodic solution is a dynamic solution characterized by two 
or more incommensurate frequencies. Two frequencies w1 and wz 
are said to be incommensurate if w1/w2 is an irrational number. 
Extending this notion, we say that rn frequencies w1, u2, - . , w, are 
incommensurate if the equation 

is satisfied only when each of the n, is zero, where the ni are integers. 
A quasiperiodic solution is called a k-period quasiperiodic solution 
if it is characterized by k incommensurate frequencies wl,wzl - . . ,wk. 

In general, a k-period quasiperiodic function has the form 

5 = X(Wlt,WZt,"',Wkt) 

where z is periodic of period one separately in its k arguments and w l ,  
wz ,  . - . , and wk are k incommensurate frequencies. The fuiiction z can 
be represented by a multiple Fourier series of the form 

00 

x = c an, n1 ... 

where 
w = [wl 0 4  wklT ; n = [nl nz 

and the n, are integers. Therefore, the spectrum of z consists of 
spikes at I nlwl 4- nzw2 + * - + nkwk 1, where some of these frequency 

n k l T  
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components may have zero amplitude. Thus, although the waveform 
of a quasiperiodic signal may look complex because of the presence of 
many sinusoids in it, calculating its spectrum would reveal its simplicity. 
In principle, one can use the spectrum to distinguish a quasiperiodic 
function from a periodic function in that the spikes in the spectrum of a 
quasiperiodic function are not spaced a t  integer multiples of a particular 
frequency. However, in practice, due to the difficulty of determining 
whether the ratio of two measured values is rational or irrational, a 
spectrum that appears t o  be that of a quasiperiodic fuiiction may be 
that of a periodic function with a very long period. 

fi-period quasiperiodic functions fall under the class of almost 
periodic functions, which are defined as follows (Hale, 1963, Chapter 
12). Let F(s,t) represent afunction where x E R" and t E 72'. Further, 
let D represent a region in the ( n  t 1)-dimensional space (x, t ) .  Then, 
in D, the function F is said to be almost periodic in t uniformly in x if 
F is Co in D and if, for any 6 < 0, there exists a number T(6)  > 0 such 
that the condition 

( 1  F(x, 2 t T )  - F(x, t )  [I 5 6 for some T E [0, T(6)]  

is satisfied for all (x,t) in D. The above condition may be viewed as 
a type of recurrence property for orbits described by almost periodic 
functions. There are existence and stability theorems for almost 
periodic solutions of nonlinear systems (Hale, 1963, Part 111; Urabe, 
1974). These theorems can be used to ascertain analytically the 
existence of quasiperiodic solutions. 

Example 4.1. We consider the system 

2 1  = 52 
x 2  = --w 2 z1 + F cos (Rt)  

When wz = 8, F = 10, and R = 2, the solution of this system is 

x1 = acos(2fit)  t bsin(2fit) t 2.5cos(21) 

22 = 2 h  [ - a s i n ( 2 h t )  t 6cos(2d?k)] - 5.0sin(2t) 
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where the constants a and b are determined by the initial condition 
(zlO, qO). When a and/or b are nonzero, the solution is characterized 
by the two incommensurate frequencies 2 f i  and 2. Hence, the solution 
(zl, z2) is two-period quasiperiodic. 

In Section 4.1, we discuss PoincarC maps of quasiperiodic solutions. 
In Section 4.2, we discuss the circle map. In Section 4.3, we describe 
methods for constructing quasiperiodic solutions. In Section 4.4, we 
discuss the stability of quasiperiodic solutions. Finally, in Section 4.5, 
we discuss synchronized or mode-locked solutions. 

4.1 POINCARE MAPS 

Like other solutions of an autonomous system, quasiperiodic solutions 
are invariant under time shifts. On the other hand, quasiperiodic 
solutions of nonautonomous systems are not invariant under time 
shifts. However, in both autonomous and nonautonomous systems, 
a quasiperiodic orbit does not close on itself. 

Example 4.2. We consider the dissipative autonomous system (3.4.9)- 
(3.4.14). The asymptotic solution of this system is two-period quasiperi- 
odic when I' = 0.625, pl = 0.5, p2 = 0.5, p3 = 0.1, vl = 0.375, 
u2 = 0.25, u3 = 0.5, and F = 0.537. The orbit of this solution, which 
is shown in Figure 3.4.15a1 does not close on itself. On an associated 
two-sided Poincark section, the discrete points collect on two loops, 
as seen in Figure 3.4.15b. Here, the quasiperiodic solution arises as 
a consequence of a Neimark bifurcation of a periodic solution. We 
note that a two-period quasiperiodic solution can also arise due to a 
codimension-two bifurcation of a fixed point. In this case, Hopf and 
static bifurcations occur simultaneously (Langford, 1979, 1983; Spirig, 
1983). 

Example 4.3. For w2 = 8, p = 0, F = 10, and 0 = 2, the solution of 
(1.2.2) and (1.2.3) initiated from (3.5, 0) is given by 

2 1  = Cos(2fit) + 2.5 COS(2t) 
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5 2  = - 2 h s i n ( 2 & )  - 5.0sin(2t) 

To construct a Poincark section of this quasiperiodic orbit, w e  start a t  
t = 0 anc! sample the orbit a t  intervals of 27r/R = 7r. Then, a t  t ,  = nr ,  
we collect the discrete points 

XI,, = cos(2J2nn) + 2.5 
x2,, = -2JZsin(2JZna)  (4.1.1) 

From (4.1.1), we find that the discrete points fall on the closed curve 

(4.1.2) 

Here, it is possible to define explicitly the Poincarh map P.  Before we 
define this map, we use the following coordinat,e transformation 

XI,, = 2.5 + cos 8,, and x2,, = - 2 h s i n  0 ,  

t o  reduce (4.1.1) to 

This enables us to define the Poincarh map as 

On+, = 6, + 2 J Z n  (4.1.3) 

Equation (4.1.3), which maps the circumference of a circle orito itself, 
does riot, have any fixed points or periodic poiiits. If the map (4.1.3) 
did, thexi 8,+j = 8, (mod 27r) will admit a solution. Then, it follows 
from (4.1.3) that  2 f i j 7 r  = 0 (mod 27r) or j &  = 0 (mod 1 ) ,  which is 
not true because fi is an irrational number arid j is a nonzero integer. 
All the iterates of (4.1.3) are densely packed 0 1 1  a circle. 

Example 4.4. We consider the nonautonoinous system 

5 1  = 5 2  

x 2  = - 5 1  - 2x2 - x3 t cost t cos J Z t  
(4.1.4) 

After the transients die out,  the solutiori of this system settles 0 1 1  a 
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I 

*2 

-1 

b 

i .- 
I XI -1 1 -1 

Figure 4.1.1: Two-period quasiperiodic attractor of (4.1.4): (a) orbit and 
(b) PoincarPl section. 

two-period quasiperiodic orbit characterized by the incommensurate 
frequencies 1 and a. A portion of this quasiperiodic orbit obtained 
through numerical integrations is shown in Figure 4.l.la. To construct 
a Poincari section, we rewrite (4.1.4) as the following four-dimensional 
system: 

i2 = 
el = 1 

- 2x2 - x; + cos el + cose2 
(4.1.5) 

9, = fi 
Then, we define the global section 

c = {(x1,z2,e1,e2) E ~1 x R' x s1 x s1 I el = el0 = 0) (4.1.6) 

shown in Figure 4.1.lb. Again, the discrete points fall on a closed curve. 
In general, a two-period quasiperiodic orbit can be better visualized 

on the surface of a torus (see Chapter 1) in a three-dimensional space. 
Before we deal with a quasiperiodic orbit, let us start with the periodic 
orbit shown on the surface of a torus in Figure 4.1.2a. Here, the angular 
coordinates 81 and 02  are defined by 

el = wlt  (mod 2n) and & = w2t (mod 2n) (4.1.7) 

where w4w1 = 4. The coordinates 81 and 82 correspond to the large and 
small diameters of the torus, respectively. The periodic orbit unfolds 
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Figure 4.1.2: (a) Illustration of periodic solution of (4.1.7) 011 the surface 
of a torus when w2 = 4wl and (b) development of the torus. The arrows 
indicate directions of evolution for positive times. 

along a helix on the surface of the two-torus. When this torus is cut 
and developed, we obtain the 02 - 01 plane shown in Figure 4.1.2b. 
From (4.1.7), we obtain 

do2 - w2 

de1 w1 

which is the equation for a straight line in the d2 - O1 plane. On this 
plane, when any of the angular coordiiiates reaches a value of 27r it falls 
back to 0 before the evolution continues. The finite number of parallel 
lines on the plane indicates that the corresponding orbit closes on itself 
or repeats and is periodic. To understand why these lines are parallel, 
let us recall from Section 1.2 that two trajectories of a deterministic 
system initiated from two different initial conditions cannot intersect 
each other. If the lines on the developed slieet are not parallel, two 
trajectories initiated from two different initial conditions will intersect 
each other. For this reason, the lines on the developed sheet have to be 
parallel to each other. 

If the frequencies w1 and w2 in (4.1.7) are incommensurate, then the 
corresponding orbit is two-period quasiperiodic. Like a periodic orbit, 
this orbit also unfolds along a helix on the surface of a torus. However, 
this orbit does not close on itself and meanders over the whole surface 

- -  - 
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of the torus. Consequently, when the torus is developed into a plane 
sheet, there is a dense set of parallel lines after a finite time and an 
infinite number of parallel lines as 1 4 00. 

To define a Poincarb section for the quasiperiodic orbit, we choose 
the plane B1 = Bl0, as shown in Figure 4.1.3. Starting at the time 
10 = 810/wl, we sample the quasiperiodic orbit at intervals of 27r/wl. 
If we use i& to denote B2 at the kth intersection of the orbit with the 
section, it follows from (4.1.7) that 

Therefore, the associated PoincarC map 

(mod 27r) 

P is given by 

(4.1.8) 

This map, which maps a circle onto itself, does not have any fixed points 
or periodic points when w1 and w2 are incommensurate. Furthermore, 
the iterates of this map are densely packed on a circle. There is an 
infinite number of intersections with the PoincarC section because the 
quasiperiodic orbit does not close on itself. Although the closed curve 
is densely packed with intersection points, successive intersections with 

Figure 4.1.3: Portion of a two-period quasiperiodic orbit on a torus and the 
chosen Poincarh section. 
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Figure 4.1.4: Poincark section of a two-period quasiperiodic orbit. The 
iterates P"(X) and P1*(x) bracket the initial point i. 

the Poincard section do not sequentially traverse the closed curve. 
As noted earlier, when the frequencies w1 and w2 in (4.1.7) are 

commensurate, the corresponding orbit on the torus closes on itself 
and is periodic. If the frequencies w1 and w2 are equal, (4.1.8) has a 
fixed point. On the other hand, if the ratio w2/wI is a rational number 
p / q  with p and q relatively prime, (4.1.8) has a period-q point. 

4.1.1 Winding Time and Rotation Number 

In general, the discrete points on a Poincar6 section of a two-period 
quasiperiodic orbit fall on a closed curve, which is not necessarily 
circular, as depicted in Figure 4.1.4. On the two-dimensional section, 
ii represents the initial point and P'(k) represents the discrete point 
obtained after the ith iterate of the Poincard map P. On the Poincard 
section, the tenth and eleventh iterates bracket j ,  after we go once 
around the closed loop. Let the ik-lth and ikth iterates bracket 2 after 
we go k times around the closed loop. Then, the limit 

ak 

k-ca k T, = lim - (4.1.9) 
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is called the winding time (e.g., Kaas-Petersen, 1987). So, T, 
represents the average number of iterates of P required to get back 
to 2. This time is a real number for a two-period quasiperiodic orbit 
and an integer for a periodic orbit. For the quasiperiodic orbit of Figure 
4.1.4, T, is close to 11.  

The inverse of the winding time is called the rotation or winding 
number p ;  that is, 

1 
p =  - (4.1.10) 

An alternate definition for the rotation number is as follows. In 
Figure 4.1.4, let us choose a reference point x, inside the closed loop 
and denote the angle between the vectors P'(2) - x, arid P'-'(k) - x, 
by a,. Then, assuming that 0 < a, < 27r, the rotation number is defined 
as (e.g., Arnold, 1988; Kaas-Petersen, 1987) 

Ttu 

k 1 a1 
p = -  I i m C -  2n k + m .  k 

t= 1 

(4.1.11) 

There is a rigorous body of theory underlying the statements made 
in the context of (4.1.7) and (4.1.8). Some of the related theorems 
are due to PoincarC, Denjoy, Arnold, Moser, and Herman (Arnold, 
1988, Chapter 3). According to Arnold, a Poincard map describing a 
transformation from a circle onto itself can be written in the form 

P(e)  = e + g ( e )  ; g(e  + 2 ~ )  = g(e) and g'(0)  > -1 (4.1.12) 

The condition g ' (0 )  > -1 ensures that P'(0) > 0, as a result of which 
P is an orientation preserving map. 

Example 4.5. For w2 = 8, p = 0, F = 10, and 0 = 2, (4.1.3) 
represents the PoincarC map for the quasiperiodic orbit of (1.2.2) and 
(1.2.3) initiated from (3.5,O). We note that this map is in the form 
(4.1.12). By using (4.1.11), we find that the associated rotation number 
is Jz. 

Example 4.6. We consider the system (4.1.4) for the section shown 
in Figure 4.1.lb. The rotation number is 4, and the winding time is 
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a/2. Therefore, if one starts from the point labeled A on the orbit, it 
will take on the average f i /2  iterates of the PoincarC map to get back 
to this point. 

From the above examples, it is clear that if we have a two-period 
quasiperiodic solution characterized by the incommensurate frequencies 
w1 and w2, the rotation number is either wI/w2 or w2/wl, depending on 
the chosen PoincarC section. 

4.1.2 Second-Order Poincarh Map 
As discussed earlier in this section, a two-period quasiperiodic orbit is 
reduced to a closed loop of densely filled points on a Poincarb section. 
By constructing another section, one can further reduce this closed loop 
of points to a single point (Kaas-Petersen, 1987; Parker arid Chua, 
1989). This point is a fixed point of what is called a second-order 
PoincarC map, which is a transformation from the current intersection 
to the next intersection on the second PoincarC section. Because Lorenz 
(1984) was one of the first to use second Poincarb sections, these sections 
are sometimes called Lorenz sections (e.g., Abraham and Shaw, 1992, 
Chapter 9). 

In Figure 4.1.5, we illustrate a Poincark section CI of a three- 
dimensional two-period quasiperiodic orbit. A portion of the quasiperi- 
odic orbit is also shown. The intersection points lie on the closed loop 
rl. The section C1 is spanned by the vectors el and ez, while the second 
PoincarC section Cz is oriented along the vector e2. The points close to 
the intersection of I'l with Cz lie on the curve r2. At the intersection 
point, the vector el is tangential to I'z while the vector ez is normal to 
this curve. The intersection of rl with C2 is the fixed point of the map 
associated with Cz. 

To extend the concept illustrated in Figure 4.1.5 to higher dimen- 
sions, let the section C1 be n-dimensional. Further, let the n vectors 
el, e l , .  - ,en span El. Then, we define the second section C2 such that 
C2 C C1. An example of such a section is the space spanned by the 
( n  - 1 )  vectors ez, e3,. 

Let us suppose that the orbit associated with Figure 4.1.5 is 
described by (4.1.7). Then, constructing a second PoincarC section 
for this orbit amounts to determining the locations on the orbit where 

,en. 
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Figure 4.1.5: Illustration of first and second Poincarh sections for a two- 
period quasiperiodic orbit evolving in a three-dimensional space. 

B1 and e2 simultaneously assume prechosen values. However, 81 and 
e2 do not simultaneously assume prechosen values for quasiperiodic 
orbits. Hence, approximations have to be made in determining the 
intersections with the second Poincari: section. For further information 
on construction of second Poincari: sections, we refer the reader to 
Kaas-Petersen (1987) and Parker and Chua (1989). 

4.1.3 Comments 

In this section, we explained how a two-period quasiperiodic solution 
can be studied on the surface of a two-torus. Extending this notion, 
one can study an n-period quasiperiodic solution on the surface of an 
n-torus. Each point on the n-torus is described by a set of n angular 
coordinates. Further, there are (n - 1) rotation numbers associated 
with an n-period quasiperiodic solution. 
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4.2 CIRCLE MAP 

The circle map, also known as the sine map, is given by 

K 
2n Xn+1 = F ( x n )  = 2, t R - - sin(2n2,) (mod 1 )  (4.2.1) 

This map is a special case of the two-dimensional standard map (e.g., 
Lichtenberg and Lieberman, 1992, Chapter 7). When the state 2, is 
restricted to the interval ( 0 , l )  by using the mod 1 function, (4.2.1) 
maps the interval [0,1) onto itself. In most studies, R is restricted to 
the interval [0,1]. The circle map is linear when I( = 0 and nonlinear 
when I( # 0. At I( = 0, (4.2.1) reduces to (4.1.8) if we set zn = On/27r 
and identify R as w2/wI .  

For 0 5 I( < 1, we have F ( z  + 1 )  = F ( z )  and F ' ( z )  > 0. Hence, 
the circle map is an orientation preserving diffeomorphism. At K = 1, 
this map is a homeomorphism. For K > 1, this map is noriinvertible 
because it is not one-to-one. There is a great deal of interest in the 
range 0 5 K < 1 because (4.2.1) satisfies the requirements of the 
PoincarC map (4.1.12). Using (4.1.11), we find that the rotation or 
winding number for the circle map is given by 

(51 - 20) t ( 2 2  - 21)  + * ' .  + (2, - zn-I) 
p =  lim 

(4.2.2) n n+w 

Xn - 20 = lim - 
n-w n 

where the 2; are the values obtained by suspending the mod 1 action. 
For I( = 0, the rotation number is R.  For I( # 0, the rotation number 
is a function of fl and I<. In practice, one uses a finite value of n. This 
value needs to be sufficiently large ( n  > 500 is suggested) to obtain 
accurate values for p.  

For 0 5 I( < 1 ,  the results of many theorems (Arnold, 1988, 
Chapter 3) are applicable to the circle map. On the basis of these 
theoreins, the following statements can be made. For invertible maps, 
the rotation number p is independent of the initial value 20.  When p 
is a rational number, (4.2.1) has periodic points. On the other hand, 
when pis an irrational number, the iterates of (4.2.1) are densely packed 
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on a circle and the associated dynamics is quasiperiodic. The winding 
number is a continuous function of the map F ( z )  and hence also of any 
continuous parameters characterizing F. 

Regions of R in which p is rational are called mode-locking or 
phase locking  or frequency-locking regions. The rotation number 
p = p / q ,  where p and 9 are prime integers, if and only if (Arrowsmith 
and Place, 1990) 

F'(z)  - (z +p)  = 0 (4.2.3) 

for some z E R as shown below. If (4.2.3) is satisfied for some z = zo, 
then 

FQ(z0) = 2 0  + p (4.2.4) 

and 
Fmq(zo) = zo i- m p  (4.2.5) 

If we let n = mq, then 

(4.2.6) Fmq (zo) - xo P - _  = lim - F"(z0) - 20 p =  lim 
m9 9 m-ww n n+m 

Next, we show that, if (4.2.3) is not satisfied, then p # p / q .  To this 
end, we note that 

(4.2.7) 
K 
2n 

F"z) = z + RR - - - F k ( K , R , Z )  

where 
k- 1 

Fk(l<, R, z) = C sin[2n~'(z)] (4.2.8) 
I=O 

and 
s i n [ 2 n ~ ~ ( z  + 111 = s i n [ 2 ? r ~ ~ ( s ) ]  (4.2.9) 

for any R .  Letting R = p / q  + p, we find from (4.2.7)-(4.2.9) that 

(4.2.10) P 
9 

G ( K , p  + P , z )  = g P - t F q ( 1 ( , ~ + B , . )  (4.2.11) 

F q ( z )  = z + p + G(I{ ,  - + P, z) 

where 

9 9 
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We observe that, because F9 is periodic in z, then G is periodic in 5, 
and attains its maximum and minimum on [0, I], and hence is bounded. 

If (4.2.3) is not satisfied for some z E R, then 

for all z E R, and hence G is bounded away from zero. Therefore, 

(4.2.12) 

Consequently, p = p / q  if and only if (4.2.3) is satisfied. 
Equation (4.2.3) can be used to determine the boundaries of the 

Arnold tongues. For small I ( ,  one can use a perturbation scheme, as 
in Exercises 4.10-4.13, but, for a general value of I<, one may have to 
use a numerical scheme. 

Example 4.7. We use (4.2.3) to determine the boundaries of the 
Arnold tongues when q = 1 and p = 0 or 1 .  When q = 1, it follows 
from (4.2.1) and (4.2.3) that p = p if and only if 

I( 
2K 

z + R - -sin2az = z -t p 

for some z E R. Consequently, 

I( R = p +  -sin27ra: 
2n 

(4.2.13) 

(4 -2.14) 

for some 5 E [0,1). Equation (4.2.14) is satisfied for some z E [0,1] 
provided that R - p 5 fK/27r. Therefore, p = 0 in the wedge 
R = f K / 2 n  and p = 1 in the wedge fl = 1 f K/27r. 

Example 4.8. We use (4.2.3) to determine the boundaries of the 
Arnold tongue when p = i. When p = 1 and q = 2, it follows from 
(4.2.3) that p = if and only if 

F 2 ( z )  = 2 + 1 (4.2.15) 
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for some x E [O, l ] .  Moreover, it follows from (4.2.1) that 

F2(x) = x + 2R - csin27rx - csin[27r(x + R - esin2rx)) (4.2.16) 

where c = 1</27r. Combining (4.2.15) and (4.2.16) and letting R = i + P ,  
we conclude that p = 3 if and only if 

(4.2.1 7) 1 
2P - csin27rx - csin + p  - esin27rx 

2p -  csin27rx + csin 27r x + p - csin27rz)]= o (4 -2.18) I (  
or 

Expanding the last term in (4.2.18) for small t and p yields 

2~-csin27rx+csin27rx+~7rc(~-csin2nx) cos2nxtO(e3, cp2, e2@) = o 

1 
2 

or 
/I - -c27rsin4nz + 7rc~cos2ra: + = O 

Hence, 
(4.2.19) 1 /I = -e2r sin47rx + O(c3) 

2 
Equation (4.2.19) is satisfied for some x E [0,1] provided that 

(4.2.20) 
1 I P I 5  s e 2 *  

Consequently, p = f in the Arnold tongue given by 

or 

R = - f - c n + * *  1 1 2  

1 * K 2  

2 2  

R = -  -+...  
2 87r 

For 0 < I( < 1, we schematically depict the mode-locking regions 
in Figure 4.2.1 following Jensen, Bak, and Bohr (1983, 1984). These 
regions are known aa Arnold's tongues. Each mode-locked region 
appears as a distorted triangle with its apex at a rational number on 
the R axis. Within each region, the rotation number is this constant 
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0.0 0.2 0.4 0.6 n 0.8 1 .o 

Figure 4.2.1: A few dominant Arnold tongues. Reprinted with permission 
from Jensen, Bak, and Bohr (1984). 

rational number. When I( is close to zero, all of the modelocking 
regions are quite small. Hence, for a random value of R ,  the probability 
that the winding number is rational is almost zero. As the strength 
of the nonlinearity K increases, the width of each tongue increases. 
For Ii' N 1, the probability that the rotation number is rational for a 
random value of R is almost one. At  I( = 1, the set of mode-locking 
regions is fractal. For K > 1, the mode-locking motions overlap, 
implying the coexistence of different periodic oscillations. Moreover, 
the rotation number is no longer unique because it depends on the 
initial condition; that is, xo in (4.2.2). 

The graph of p versus 0 has a very curious appearance. It  resembles 
a staircase with nonuniform horizontal steps (plateaus), aa is evident 
from Figure 4.2.2. Each time p takes on the value of a rational number, 
the graph of p(R) has a horizontal step because it is constant in an 
open interval of 0. Therefore, in each of these steps, p assumes the 
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Figure 4.2.2: The devil’s staircase for the circle map at I( = 1. 

value of a particular rational number, the corresponding motion is 
periodic and, hence, there is mode locking. In between two steps, p 
varies continuously with R, assuming values of all irrational numbers 
between the two rational numbers corresponding to these steps, and 
the corresponding motions are quasiperiodic. (For each irrational 
number, there is a unique value of 0.) If a portion of Figure 4.2.2 
is magnified, we see a similar structure at  the new scale with the 
presence of more horizontal steps becoming evident. Because there 
are an infinite number of rational numbers distributed between any 
two rational numbers, a similar structure is observed at all scales. The 
graph p(R) is said to be self-similar. This interesting structure in the 
p - R plane is known aa devil’s staircase. 

The concept of Farey tree from arithmetic8 (Allen, 1983; Schroeder, 
1986) is useful for understanding the structure of the mode-locking re- 
gions in Figures 4.2.1 and 4.2.2. This tree provides a hierarchical ar- 
rangement of rational numbers on the unit interval. According to this 
arrangement, between two mode-locked regions with rotation numbers 
p1/q1 and p l / q z ,  there is a mode-locked region with the rotation number 
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E < - < -  f i  Pz 
Q1 4 Qz 

For example, if we consider the mode-locking regions corresponding 
to the ratios 5 and i, we find that there is a mode-locking region 
corresponding to the ratio f in between these two regions. Between 
the regions 5 and there is a mode-locking region corresponding to 
9 ,  and between the regions 5 and f there is a mode-locking region 
corresponding to 5. In the context of Figure 4.2.2, continuing the 
process, we find that there is an infinite number of steps between any 
two steps, giving rise to the devil’s staircase description. Because there 
is an infinite number of steps on a bounded interval, the widths of most 
of these steps must be infinitesimal. The steps having non-negligible 
widths correspond to simple rational numbers; that is, rational numbers 
p / q ,  where the integers p and q are small, as in :, i, i, etc. 

In many applications, two or more oscillators with independent nat- 
ural frequencies influence each other in such a way as to produce a syn- 
chronization of these oscillators. In the synchronized or frequency- 
locked state, the oscillators exhibit periodic oscillations. To understand 
such frequency lockings and transitions from periodic to quasiperiodic 
oscillations, circle maps have been frequently used. The study of Choi 
and Noah (1992a) on a rotating machinery provides one example. An  
extensive list of other examples can be found in the review article 
of Glazier and Libchaber (1988). Other relevant references include 
Franceschini (1983), Bohr, Bak, and Jensen (1984), Jensen, Kadanoff, 
Libchaber, Procaccia, and Stavans (1985), and Stavans, Heslot, and 
Libchaber (1985). 

4.3 CONSTRUCTIONS 

Quasiperiodic solutions of continuous-time systems have been con- 
structed by using a number of methods. These include the method of 
averaging, the method of multiple scales, the spectral balance method, 
and the PoincarC map method. 
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4.3.1 Method of Multiple Scales 
We illustrate this method by constructing quasiperiodic solutions of the 
following weakly nonlinear system (Hale, 1963, Chapter 18): 

Example 4.9. We consider the system 

21 + W l L l  2 = €( 1 - z; - 6Zq) i l  (4.3.1) 
(4.3.2) 

When c = 0, we have a set of linear oscillators. When t # 0 and 
6 = Q = 0, we have a set of uncoupled van der Pol oscillators. When 
c # 0, a # 0, and 6 # 0, (4.3.1) and (4.3.2) represent two coupled van 
der Pol oscillators. 

Here, we consider the case where e is small and positive, CY # 0, 
6 # 0, and the frequencies w1 and w 2  are away from each other. First, 
we expand the states according to 

2 2 2  
x 2  + w252 = t(1 - CYz1 - z a ) i 2  

zj = z j o ( ~ 0 ,  TI) + €zjl(To, TI) + O(e2) for j = 1,2  (4.3.3) 

where T, = ~ " t .  The transformation of the time derivative is given 
by (3.5.4). Substituting (4.3.3) into (4.3.1) and (4.3.2), using (3.5.4), 
and equating coefficients of like powers of t, we obtain the following 
hierarchy of equations: 

O(C0) : 

(4.3.4) 
(4.3.5) 

2 
D,2ZlO + qz10 = 0 
DoZx20 t w ~ x ~ O  = 0 

O ( 2 )  : 

DiZ11 +w:zll = -200&210 t (1 - zt0 - 6 ~ ~ ~ ) D o z l o  (4.3.6) 

m 2 1  +4z2, = -2DoD1Z20 t (1  - - Z 3 D O Z 2 0  (4.3.7) 

The solutions of (4.3.4) and (4.3.5) can be expressed as 

510 = A1(Tl)e'wlTo + cc (4.3.8) 
ZU) = A2(T1)eiwT0 + cc (4.3.9) 
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where cc stands for the complex conjugate of the preceding terms and 
the A, are complex-valued functions, which will be determined by 
imposing the solvability conditions at the next level of approximation. 

Substituting (4.3.8) and (4.3.9) into (4.3.6) and (4.3.7), recalling 
that w2 is away from w1, and eliminating the terms that produce secular 
terms, we obtain 

-2Ai + A1 - A;Ai - 26AzAzA1 = 0 
-2Ai + A2 - AiA2 - 2~AlA1A2 = 0 

(4.3.10) 
(4.3.1 1) 

where the prime denotes the derivative with respect to Tl. Substituting 
Aj = ;a, exp(i&) into (4.3.10) and (4.3.11) and separating real and 
imaginary parts, we obtain 

1 1 
a; = -a1 1 - -a; - -6a:) 

2 7 4 2 

a, = ?a, 1 - -au1 - -a2 ' Y i 2 1 2 )  4 

(4.3.12) 

(4.3.13) 

p; = 0 (4.3.14) 

p; = 0 (4.3.1 5 )  

To obtain the first approximation, we substitute (4.3.8) and (4.3.9) into 
(4.3.3) after expressing the A j  in polar form. The result is 

x1 N a1 cos(w1t + 8) and 2 2  N a2 cos(w2t + Pz)  (4.3.1 G) 

where the a j  and pj are described by (4.3.12)-(4.3.15). These equations 
are equivalent to those obtained by Hale (1963, Chapter 18) using the 
method of averaging. 

When 01 and w2 are incommensurate, a nontrivial fixed point of 
(4.3.12) and (4.3.13) corresponds to the quaaiperiodic solution (4.3.16) 
of (4.3.1) and (4.3.2). This fixed point is given by 

a10 = 2J" 1 - 406 and = 2J" 1 -4Q6 
(4.3.17) 

We note that real solutions of (4.3.17) exist only in the following two 
regions of the Q - 6 plane: (i) Q < and 6 < i and (ii) a > 3 and 
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6 > f .  The stability of the fixed point (u1o,a20) can be determined 
by examining the eigenvalues of the Jacobian matrix associated with 
(4.3.12) and (4.3.13); that is, the eigenvalues of 

1 1 -26  264(1 - 2a)(l  - 26) 
1 - 4Cd 2 4 1  - 2a)(l - 26) 1 - 2 a  

(4.3.18) 
-l [ A =  

The eigenvalues are given by 

1 - a - 6  
4a6 - 1 h 2  = 

[( 1 - a - 6)l - (1 - 4ab)( 1 - 26)( 1 - Za)]’” 
4a6 - 1 

(4.3.19) f 

Both of the eigenvalues have negative real parts in region (i)  of the 
a - 6 plane. On the other hand, one of the eigenvalues is positive and 
the other is negative in region (ii). Hence, the fixed point is stable in 
region (i)  and unstable in region (ii). Consequently, the quasiperiodic 
solutions of (4.3.1) and (4.3.2) are stable in region (i)  and unstable in 
region (ii). 

The quasiperiodic solution (4.3.16) corresponding to the fixed point 
(4.3.17) can be visualized on the surface of a two-torus. For this 
torus, the diameters are 2ulO and 2uZo, and the angular coordinates 
are O1 = wlt + plo and d2 = w2t + pz0, respectively. 

The method described in this section can be used to construct 
quasiperiodic solutions of many weakly nonlinear systems. The studies 
of Neu (1979), Rand and Holmes (1980), and Storti and R.and (1982) 
provide a few examples. Gilsinn (1993) used a series expansion to 
construct a higher-order approximation for a quasiperiodic solution of 
a weakly nonlinear system. 

4.3.2 Spectral Balance Method 
We note that the method of harmonic balance can be used to obtain 
periodic solutions of a continuous-time system. In this method, the 
problem of determining a periodic solution of a continuous-time system 
is converted into the problem of determining a solution of an algebraic 
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system of equations. The solution of the algebraic system provides the 
amplitudes of the sinusoidal components that make up the periodic 
solution. 

An extension of the method of harmonic balance, called the spec- 
tral balance method, can be used to construct quasiperiodic solu- 
tions of a continuous-time system. In the spectral balance method, the 
solution is represented by a multidimensioiial Fourier series, and the 
problem of determining a quasiperiodic solution is converted into the 
problem of determining a solution of an  algebraic system of equations 
(Chua and Ushida, 1981; Ushida and Chua, 1984). The solution of this 
system provides the amplitudes associated with the different spectral 
peaks in the assumed series. We outline the spectral balance method 
below by using an example. 

Example 4.10. To construct an approximate two-period quasiperi- 
odic solution of (4.3.1) and (4.3.2), we expand the variables in the 
multiple Fourier series 

00 

= C anlnzei(nlw+nzwz)l 

where a is a complex-valued vector function. If we only keep the 
terms that correspond to n l , n 2  = 0, f l ,  the components of x are 
approximated by 

n~ m 

z j  s? Xjo t Xi l  cos(wjt) t Xj2 sin(wjt), j = 1 , 2  (4.3.20) 

where the real quantities Xjo, Xj1, and X j ,  are the unknowns that need 
to be determined. 

Substituting (4.3.20) into (4.3.1) and (4.3.2) and matching the 
coefficients of the different spectral peaks on both sides of the equations, 
we obtain the following system of algebraic equations to determine the 
spectral coefficients Xjo, Xjl, and Xj , :  

XI0 = 0 
x20 = 0 
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1 6 
2 
1 

2 4 

XI2 1 - x;, - $x;l t x;,) - sx;, - -(X,: + Xi2)] = 0 [ 
x,, [l - ax;, - "x:, t x,',) - xi, - -(Xi1 + xi2,] = 0 

ff 1 
2 

x2, [l - ax;, - -<x;, + x:,) - xi, - ,(Xil t X i 2 ) ]  = 0 

Solving these equations, we obtain 

XI, = xz, = 0 (4.3.21) 

Xll = X12 = {- and X21 = XzZ = /- 1 - 4ff6 (4.3.22) 
1 - 4a6 

Substituting (4.3.21) and (4.3.22) into (4.3.20), we fi2d that the results 
agree with those obtained by using the method of multiple scales. 
However, unlike the method of multiple scales, the spectral balance 
method does not provide the transient solution. 

In larger systems, a Newton-Raphson method may be used to solve 
the algebraic system of equations for the spectral coefficients. Fur- 
thermore, for systems with arbitrary nonlinearities, it will be neces- 
sary to compute forward and inverse Fourier transforms of two-period 
quasiperiodic functions. An efficient and accurate algorithm for this 
purpose has been proposed by Kundert, Sorkin, and Sangiovanni-Vin- 
centelli (1983). 

4.3.3 Poincar6 Map Method 
In one version of this method, Kevrekidis, Ark, Schmidt, and Pelikan 
(1985) reduced the problem of determining a two-period quasiperiodic 
solution of a continuous-time system to the problem of determining the 
closed curve on an associated Poincard section. The scheme proposed 
by Kevrekidis et al. is only applicable to periodically forced systems. 

In another version, Kaas-Petersen (1985a, 1985b, 1987) reduced 
the problem of determining quasiperiodic solutions to the problem of 
finding a fixed point of a second-order Poincard map. His approach 
is applicable to all continuous-time systems. Kaas-Petersen (1987) 
also described a continuation scheme for two-period quasiperiodic 
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solutions baaed on the second-order Poincar6 map. In this scheme, an 
analytical approximation is used to initiate the continuation scheme. 
For periodically forced systems, Choi and Noah (1992a) proposed a 
modified scheme and successfully applied it to a rotating machinery 
problem. For quasiperiodically forced systems, Ling (199 1) improved 
on Kaas-Petersen’s method and developed a shooting scheme for 
constructing solutions. 

The reader is referred to the above-mentioned references for more 
information on Poincard map methods. 

4.4 STABILITY 

When one constructs a quasiperiodic solution of a weakly nonlinear sys- 
tem by using either the method of averaging or the method of multiple 
scales, one can obtain information on the stability of the quasiperiodic 
solution by studying the stability of the corresponding fixed point of 
the averaged equations. According to the theorems provided by Hale 
(1963, Part 111), a quasiperiodic solution is stable (unstable) if the cor- 
responding hyperbolic fixed point is stable (unstable). 

When one constructs a quasiperiodic solution by using the method 
proposed by Kaas-Petersen, the stability of the constructed solution 
depends on the stability of the fixed point of the second-order Poincard 
map. Iooss and Joseph (1980, Chapter X) discuss how the stability 
of a two-period quasiperiodic solution can be determined through 
an associated Poincard map. The concept of Lyapunov exponents, 
discussed in Section 7.8, is useful in ascertaining if an asymptotic state 
is a (stable) quasiperiodic solution. 

Next, we consider the structural stability of the system (4.1.8). 
When the corresponding rotation number p is irrational, we have a 
two-period quasiperiodic flow. This two-period quasiperiodic flow is 
replaced by a periodic flow if a perturbation added to (4.1.8) makes 
p a rational number. According to a theorem due to Arnold (1988, 
Chapter 3), (4.1.8) is structurally stable if and only if p is a rational 
number and the corresponding periodic solutions are hyperbolic. This 
example gives the impression that the realization of a quasiperiodic 
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solution is an unlikely prospect. However, this is not so. Using the 
circle map as an example, Arnold (1988) showed that it is possible to 
realize two-period quasiperiodic flows. 

The structural stability of systems associated with n-period quasi- 
periodic flows for n 2 3 was studied theoretically by Ruelle, Takens, and 
Newhouse (Ruelle and Takens, 1971; Newhouse, Ruelle, and Takens, 
1978) and numerically by Grebogi, Ott, and Yorke (1985). The 
results of Ruelle, Takens, and Newhouse indicate that three- and four- 
period quasiperiodic flows can be destroyed by providing appropriate 
perturbations to the considered system. 

4.5 SYNCHRONIZATION 

In many coupled oscillators, as a parameter is varied the periodic so- 
lution that exists during a synchronized or mode-locked state loses 
stability, giving rise to a quasiperiodic solution. This loss of synchro- 
nism is of interest in many applications (e.g., Choi and Noah, 1992a; 
Linkens, 1974, 1976; Storti and Rand, 1982). Linkens used the method 
of harmonic balance, while Storti and Rand used the method of multiple 
scales. 

Example 4.11. We consider the case where w2 is close to w1 in (4.3.1) 
and (4.3.2). When c = 0, the set of linear oscillators is characterized 
by the frequencies w1 and w2. However, when c is small and positive, it 
may be possible for the two oscillators to be synchronized to one basic 
frequency due to the nonlinear coupling. This is investigated in the 
multiple-scale analysis that follows. 

We seek an expansion of the form (4.3.3) for the states z1 and 
z2. Further, to describe quantitatively the nearness of w2 to w l ,  we 
introduce the detuning parameter u defined as 

w2 = w1+ €U (4.5.1) 

Substituting (4.3.3) into (4.3.1) and (4.3.2) and equating coefficients of 
like powers of c, we obtain (4.3.4)-(4.3.7). 
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The solution of (4.3.4) and (4.3.5) is given by (4.3.8) and (4.3.9). 
Next, substituting (4.3.8) and (4.3.9) into (4.3.6) and (4.3.7), using 
(4.5.1), and eliminating the terms that produce secular terms in zll  
and x211 we obtain 

Expressing the Aj in the polar form Aj = aaj exp(zpj) and separat- 
ing real and imaginary parts in (4.5.2) and (4.5.3) yields 

(4.5.4) + -6ala; cos y 

+ -cra;a2cosy (4.5.5) 

1 
8 
1 
8 

alP; = -6ala2 1 2  sin y 

8 

(4.5.6) 
8 

a2pi = - -aa1a2 1 2  sin y (4.5.7) 

where 
y = 2aT1 t 2p2 - 2p, (4.5.8) 

Eliminating and from (4.5.6)-(4.5.8), we arrive at 

1 
4 

(2, - -((.a: + 6.;) sin y] ( 4.5.9) a1a2y' = (11612 

Substituting (4.3.8) and (4.3.9) into (4.3.3), expressing the Aj in polar 
form, and using (4.5.1) and (4.5.8), we obtain to the first approxirriation 

z1 = a1 cos(w1t + p1) (4.5.10) 

(4.5.11) 
1 
2 

22 = a2 cos(o1t + p1 t -7) 

where al,a2, and 7 are given by (4.5.4), (4.5.5), and (4.5.9). 
The fixed points ( ~ l o , a ~ ~ ,  yo) of (4.5.4), (4.5.5), and (4.5.9), which 

correspond to a: = 0, ui = 0, and 7' = 0, can be classified into four 
types: (1) alo = 0 and a20 = 0; (2) a10 = 2 and a20 = 0; (3) a10 = 0 
and azo = 2; and (4) ul0 # 0 and a20 # 0. The first type of fixed points 
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corresponds to trivial solutions of (4.3.1) and (4.3.2), while the second, 
third, and fourth types of fixed points correspond to periodic solutions 
of (4.3.1) and (4.3.2). However, only the fourth type of fixed points 
corresponds to synchronized solutions; that is, solutions where 51 and 
z2 are synchronized. These fixed points are solutions of 

,alo 1 2  t f 6 ~ ; o  - -6a2,cosyo 1 2  = 1 (4.5.12) 4 

- a q o  1 2  t ,az0 1 2  - -aa1,cosyo 1 2 = 1 (4.5.1 3) 
2 4 

(4.5.14) 
1 
- ( a ~ : ~  + 6ai0) sin yo = 2a  
4 

From (4.5.6), (4.5.10), and (4.5.11), we deduce that the synchronization 
frequency is 

1 
a w1 + = w1 + -da& sin yo 

Next, a stability analysis along the lines of Nayfeh and Mook (1979, 
Section 7.5.3) is conducted. We superimpose a disturbance (hl,  h2, +) on 
the fixed point (ale, a20,yO); carry out the corresponding substitutions 
in (4.5.4), (4.5.5), and (4.5.9); linearize in the disturbance terms; arid 
obtain 

(4.5.15) 
1 

t ( --6aloaio a sin yo) + 

t (f - - t faa:o cos yo) ii2 
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For the first type of fixed points, we substitute alo = 0 and azo = 0 
into (4.5.15)-(4.5.17). Then, (4.5.15) and (4.5.16) reduce to 

(4.5.18) 

while (4.5.17) reduces to an identity. It is clear from (4.5.18) that a 
fixed point of the first type is always unstable. Consequently, the trivial 
solution of (4.3.1) and (4.3.2) is unstable too. 

For the second type of fixed points, we substitute a10 = 2 and 
azo = 0 into (4.5.15)-(4.5.17) and obtain 

;I; = -61 (4.5.19) 

(4.5.20) 

(4.5.21) 

Equation (4.5.21) is always satisfied if 

2u 
sinTo = - 

a 
(4.5.22) 

Consequently, the second type of fixed points is possible only if I a / a  I 
- < %. We infer from (4.5.19) and (4.5.20) that a fixed point of the second 
type is stable if 

1 1 
A=:- -  a+ :ac0s.yo < 0 2 2 

(4.5.23) 
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where 

(4.5.24) 

For the third type of fixed points, we substitute a10 = 0 and (120 = 2 
into (4.5.15)-(4.5.17) and obtain 

(4.5.25) 

6; = -it2 (4.5.26) 

(4.5.27) 

ii: = (- 1 - 6 + -6cos70) 1 iil 2 2 

Equation (4.5.27) is always satisfied if 

2a 
sin70 = - 

6 (4.5.28) 

Therefore, the third type of fixed points is possible only if I 6/a I 6 f .  
We infer from (4.5.25) and (4.5.26) that a fixed point of the third type 

(4.5.29) 
1 

is stable if 
1 
2 2 

COS 70 = &/- (4.5.30) 

To determine the stability of a fixed point of the fourtli type, we 

x = - - 6+ -6cosro < 0 

where 

need to determine the eigenvalues of the Jacobian matrix 

2 4 0  26%oa20(2 - C O S 7 0 )  

A = - A [  2aalOa20(2 - cos70) 2 4 0  
4cra10 sin 70 46~20  sin 70 8 

(4.5.3 1) 

1 6 a l o ~ ~ ~  sin 70 
aa:,a20 sin 70 

2(aa:O t 6af) cos 7 0  

If (ale, a20, 70) is stable (unstable), the corresponding synchronized 
state of (4.3.1) and (4.3.2) is stable (unstable). 
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Figure 4.5.1: Response curves for (4.5.4), (4.5.5), and (4.5.9). 

In Figure 4.5.1, we show the bifurcation diagram when u is used 
as a control parameter while a = 6 = 1. The branches of stable and 
unstable fixed points of (4.5.4), (4.5.5), and (4.5.9) are represented by 
solid and broken lines, respectively. The different curves are symmetric 
with respect to the vertical axis. The fixed points of the fourth type, 
which were numerically found to exist for u < IT, N 0.353553, are 
saddle points. Consequently, the corresponding synchronized solutions 
of (4.3.1) and (4.3.2) are of the saddle type and unstable. The fixed 
points of the second and third types that exist for I u I 5 0.5 are all 
stable, and the corresponding periodic solutions of (4.3.1) and (4.3.2) 
are stable. For a value of u < u,, the stable manifold of the fixed point 
of the fourth type is two-dimensional, while the unstable manifold is 
one-dimensional. In the (al ,  a2, 7) space, the stable manifold separates 
the basins of attraction of the fixed points (alo,alo) = (0,2) and 
(ale, azo) = (2,O). Numerical simulations conducted with (4.3.1) and 
(4.3.2) for c = 0.001, w1 = 1, 6 = 1,  and a = 1 confirm the presence of 
unstable synchronized solutions and other stable periodic solutions in 
agreement with the predictions of the perturbation analysis. 

In another case, we set u = 0.35 and CY = 1 and varied 6 in the range 
1 5 6 < 5. The fixed points of the fourth type are found to be unstable, 
and the corrbponding synchronized solutions of (4.3.1) and (4.3.2) are 
unstable as well. To gain a deeper understanding of the solutions of 
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(4.3.1) and (4.3.2) requires further simulations and global analyses. 

Example 4.12. We consider a primary resonance excitation of the 
Rayleigh oscillator; that is, 

(4.5.32) 
1 
3 

u + w;u = c( l i  - 4 3 )  + I5FcosRt 

where c is a small positive parameter and R M wo. To describe the 
nearness of R to wo, we introduce the detuning parameter u defined by 

0 = wo + €U (4.5.33) 

We use the method of multiple scales and seek a first-order uniform 
expansion of (4.5.32) in the form 

where To = t and TI = d .  Substituting (4.5.34) and (3.5.4) into (4.5.32) 
and equating coefficients of like powers of c, we obtain 

O(c0) : 

O(€) : 

(4.5.35) 

1 
Diul +wiu1 = -2DoDlu0 + DOUO - - ( D o u o ) ~  t FcosRTo (4.5.3G) 3 

where D, = a/aT,. 
The solution of (4.5.35) can be expressed as 

uo = A(Tl)eiWoTo + A(Tl)e-iwoTo (4.5.37) 

where the function A(T1) is determined by eliminating the secular terms 
from u1. 

Substituting (4.5.37) into (4.5.36) yields 
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where cc stands for the complex conjugate of the preceding terms, and 
the prime indicates the derivative with respect to 7'1. Using (4.5.33) in 
eliminating the terms that lead to secular terms in u1 froin (4.5.38), we 
obtain 

(4.5.39) 

Expressing A in the polar form A = +a exp[i(P + aT,)], where a and p 
are functions of T1, and separating real and imaginary parts in (4.5.39), 
we have 

(4.5.40) 

F 
2WQ 

apt = -aa - - cos p (4.5.4 1) 

Substituting the polar form of A into (4.5.37) and then substituting the 
result into (4.5.34), we find that, to the first approximation, u is given 
by 

u = acos(wot + €ot t p)  t * * -  

or 
11 = acos(Rt + p)  + .  . a  (4.5.42) 

on account of (4.5.33), where a and p are defined by (4.5.40) and 
(4.5.41). 

In the case of free oscillations, F = 0 and (4.5.40) and (4.5.41) 
reduce to 

a' = i a  1 - -woa 1 2 3  (4.5.43) 

u p  = -ua (4.5.44) 

8 

For nontrivial solutions, a # 0, and it follows from (4.5.44) that 

p = -aT1 + po = -€at + po (4.5.45) 



SY NCHRONIZ AT10 N 263 

where p0 is a constant. Substituting (4.5.45) into (4.5.42), we find that, 
to the first approximation, the free oscillations of (4.5.32) are given by 

u = a cos(u0t + P o )  + ' * * (4.5.46) 

where a is given by (4.5.43), which has the normal form of a supercritical 
pitchfork bifurcation. Using separation of variables, we find that the 
solution of (4.5.43) is 

where iio # 0 is the iiiitial value of a. Consequently, to the first 
approximation, the free oscillations of (4.5.32) are given by 

It follows from (4.5.47) that, as t + 00, 

L 
u 4 - cos(wot + Po) + * * .  

WO 
(4.5.48) 

for all values of iio # 0. In other words, when F = 0, (4.5.32) represents 
a self-excited oscillator. 

When F # 0, one would expect the response to contain the basic 
frequencies and wo; that is, the excitation frequency and the self- 
excited frequency. As shown below, this is so when 0 is not close to wo 
(i.e., u is not small). In this case, if R and wo are not commensurate, 
the response is two-period quasiperiodic. However, when u is small, the 
response is periodic and is characterized by the frequency 0. In other 
words, the free-oscillation component of the response is entrained 
by the forced component, resulting in a synchronized response. Such 
periodic responses correspond to the fixed points (ao,Po) of (4.5.40) 
and (4.5.41). Setting a' = 0 and /3' = 0 in (4.5.40) and (4.5.41), we find 
that their fixed points are given by 

(4.5.49) 

(4.5.50) 
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Squaring and adding (4.5.49) and (4.5.50) yield the frequency-response 
equation 

(4.5.51) 

The stability of the fixed points depends on the eigenvalues of the 
Jacobian matrix of (4.5.40) and (4.5.41); that is, the eigenvalues of 

They are given by 
X2 - (1 - 2p)X + A = 0 (4.5.53) 

where 
1 A = -(1 - 4p + 3p’) + a’ 
4 

(4.5.54) 

When A < 0, the roots of (4.5.53) are real and have different signs; 
hence, the fixed point is a saddle. When A = 0, one of the eigenvalues 
is zero and hence the fixed point is nonhyperbolic. When A > 0, 

(4.5.55) 

Hence, the fixed point is a stable node if p2 2 4u2 and p > f and is an 
unstable node if p2 2 4u2 and p < f .  On the other hand, the fixed point 
is a focus if p2 < 4u2, which is stable if p > and unstable if p < i. 
When p’ < 4a’ and p = f ,  the two eigenvalues are purely imaginary 
and the fixed point is a center. 

In Figure 4.5.2, we display the regions of the different fixed points 
in the p - u plane. The broken lines A = 0 and p = f represent the 
loci of the nonhyperbolic fixed points, while the solid line p = 2u has 
been included to demarcate the different regions. Next, we examine if 
these nonhyperbolic fixed points are bifurcation points when a is used 
as a control parameter. By using (4.5.51) and (4.5.53), we find that 

(4.5.5G) 
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Figure 4.5.2: Classificatioii of fixed points of (4.5.40) and (4.5.41). 
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- 
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From (4.5.56)) we deduce that the curve A = 0 is the locus of tangent 
bifurcation points. When p2 < 402, it follows from (4.5.55) that 

X , = p  1 

Therefore) 
dAr dAr dp dp 2op 
da dp do da  A 

= -  - = -- = -- 

which, at p = 3, becomes 

# O  
161s - -  dAr 

do 16~' - 1 
-- 

Consequently, p = f represents the locus of Hopf bifurcation points. 
The point ( a , p )  = (0.25,0.5), where the loci of tangent and Hopf 
bifurcation points meet, represents a codimension-two bifurcation point 
because both roots of (4.5.53) are zero. 
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Figure 4.5.3: Response curves for (4.5.40) and (4.5.41). 

In Figure 4.5.3, we show a family of frequency-response curves. 
These curves are symmetric with respect to the p-axis. The solid and 
broken lines represent stable and unstable fixed points, respectively. 
For free oscillations, we set F = 0 and find that the response curve 
is made up of the lines p = 0 and p = 1. As F is increased, the 
frequency-response curve consists of two branches: an unstable branch 
running near the a-axis and a closed oval formed by stable and unstable 
branches. This oval can be approximated by an ellipse whose center is 
at  ( a , p )  = (0 , l ) .  This structure can be seen for F2 = a in the figure. 
As F is increased further, the oval expands while the branch near the 
a-axis moves away from the axis. When F2 reaches the critical value 
g, there is a double point or cusp at (a, p )  = (0,:). For F2 = 5 ,  
we note that the response curve has two turning points. At one of 
them, an unstable branch and a stable branch meet. Consequently, 
this turning point is a saddle-node bifurcation point. At the other 
turning point, two unstable branches meet. This turning point is also 
a bifurcation point because locally there are no solutions on one side 
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Figure 4.5.4: Orbits and Poincarh sections of attractors of (4.5.32): (a) 
wo = 1, c = 0.1, FZ = a ,  u = 0.120 and (b) wo = 1, c = 0.1, FZ = 1, 
0 = 0.122. 

of the bifurcation point. However, the associated bifurcation is not a 
saddle-node bifurcation. As F is increased further, the response curve 
continues to be multivalued until F2 exceeds the second critical value 
g, beyond which the frequency-response curve becomes single-valued. 
Further, there is a Hopf bifurcation point on this response curve. The 
frequency-response curve for F2 = 1, which is not shown in Figure 
4.5.3, passes through the degenerate point (a, p )  = (0.25,0.5). 

For F2 = i, let us start from the point ( a , p )  = (0,1.2258) on the 
stable branch of fixed points and gradually increase u. Then, the fixed 
point of (4.5.40) and (4.5.41) experiences a saddle-node bifurcation 



268 QUASIPERIODIC SOLUTIONS 

I I 

Figure 4.5.5: Orbits and power spectra for attractors of (4.5.32): (a) wo = 1, 
c = 0.1, F2 = 2, u = 0.41; and (b)  wo = 1, E = 0.1, F2 = 2, D = 0.45. 

at the critical value uc N 0.126. The corresponding phase-locked 
solution of (4.5.32) experiences a cyclic-fold bifurcation. To examine 
the consequence of this bifurcation, we conducted numerical simulations 
of (4.5.32) for wo = 1, e = 0.1, and F2 = i. For these parameter 
values, a cyclic-fold bifurcation occurs at about uc N- 0.121. In 
Figures 4.5.4a and 4.5.4b, we show the attractors realized a t  cr = 0.120 
and (T = 0.122, respectively. The corresponding PoiiicarC sections 
obtained by using the excitation frequency aa the clock frequency are 
also shown. The attractor preceding the bifurcation is periodic, while 
the attractor subsequent to the bifurcation is two-period quasiperiodic. 
Consequently, synchronism is lost due to a cyclic-fold bifurcation. 

For F2 = 2, when u is gradually increased from zero, the perturba- 
tion analysis predicts that a loss of synchronism will occur at u, N 0.43. 
Numerical simulations conducted for e = 0.1, uo = 1 , and F2 = 2 con- 
firm this prediction and reveal that the phase-locked solution loses 
stability due to a supercritical Neimark bifurcation. In Figures 4.5.5a 
and 4.5.5b1 we show the periodic and two-period quasiperiodic attrac- 
tors realized at u = 0.41 and a = 0.45, respectively. The corresponding 
power spectra are also shown. In Figure 4.5.5b1 there is a dominant 
peak at w = 1.045 with uniformly spaced sidebands surrounding it. 
This structure is indicative of a modulated motion, as discussed in 
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Section 7.5. Here, the basic frequencies are 1.045 and the modulation 
frequency. The latter frequency, which is given by the sideband spacing, 
is produced by the Neimark bifurcation. 

In the context of forced oscillations of the van der Pol oscillator, 
the classic analytical studies of Cartwright and Littlewood (1945) and 
Levinson (1949) are worth noting. Further, Nayfeh and Mook (1979, 
Chapter 4) conducted an extensive study of synchronized oscillations 
of the forced Rayleigh oscillator for different excitation conditions. A 
partial list of other studies on the forced van der Pol oscillator includes 
Holmes and Rand (1978), Levi (1981), Shaw (1981), Guckenheimer and 
Holmes (1983), Abraham and Scott (1985), Abraham and Simo (1986), 
and Thompson and Stewart (1986). 

4.6 EXERCISES 

4.1. Consider the three-dimensional system (Langford, 1985) 

kl = ( A  - 6 ) ~ l  - C X ~  + 21x3 + dzl(1 - z:) 
k2 = cz1 t ( A  - b ) z s  + 52x3 t dz2(1 - 2;) 
i 3  = A 2 3  - (z; + z; + z;> 

when 6 = 3.0, c = 0.25, and d = 0.2. 

(a) Show that for X > 0 and small, there is an asymptotically stable 
equilibrium point, with a positive z3 near the origin. 

(b) Show that at A M 1.68 the equilibrium point undergoes a super- 
critical Hopf bifurcation, resulting in the birth of a stable limit 
cycle. 

( c )  Show that for X > 2.0 the limit cycle undergoes a secondary Hopf 
bifurcation, resulting in the birth of a two-period quasiperiodic 
solution. 

4.2. Consider the following set of coupled van der Pol oscillators 

iil + W:U, = C(QI - Q Z U ; ) ~ ; ~  + 
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2 i i 2  + w2u2 = €(a1 - (12u3i2 + c(14u4 

where w2 = w1 + cu and c is a small parameter. Show that to the first 
approximation 

u1 x Al(Tl)eiWITo + cc and u2 w A2(T1)eiYTo + cc 

where 

2iwlA', = i w l ( a l  - a2A1AI)A1 t a3A2eiuT1 

2iw2Ah = iw2(a1 - a2A2A2)A2 + a4Ale-i"T1 

Use the modulation equations to determine the synchronized solutions 
and their stability. 

4.3. Consider the following set of coupled van der Pol oscillators used 
by Linkens (1974) to study electrical activity in gastrointestirial tracts 
of humans and animals: 

31 + w:(z1 t 7 x 2 )  - € [I - ( 2 1  + 7 4 2 1  i 1  = 0 

32 + +2 + 721) - f. [l - ( 2 2  + 721)2] x 2  = 0 

For w2 N w1 and c = 0.1, analytically construct the phase-locked 
solutions of this system and examine their stability. 

4.4. Consider the sinusoidally forced Rayleigh oscillator 

Analytically construct the synchronized solutions and determine their 
stability when fl NN 3w and when $I M i w .  

4.5. The response of a van der Pol oscillator with delayed amplitude 
limiting to a sinusoidal excitation is governed by 

ii + w2u = 2 e  [(I - 2); - iu] - 2ckR sin(ntT) 
i + z = u  2 
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where w, t, $2, and T are constants with T being positive and away from 
zero. For the case of primary resonance (i.e., R = w + cu,) show that 
to the first approximation (Nayfeh, 1968) 

u M ucos(wt -t p)  

where 

1 
4 

a = €( l  - -aru2)a -t € k C O S ( € U t  - p)  
1 2 €lc  

/3 = - - m i u  t - s i n ( d  - p)  

and a = a, t i a ,  is a function of w and T.  Use the modulation equations 
to determine the synchronized motions and their stability. 

4 U 

4.6. Consider the periodically forced van der Pol oscillator: 

5 ,  = 2 2  

2 x 2  = - (XI - 1 ) 2 2  - 21 -t cos(J3t) 

Numerically verify that the solution of this system settles on a two- 
period quasiperiodic orbit after transients die out. Construct a Poincar6 
section for this orbit, and determine the corresponding rotation number. 

4.7. Consider the following quasiperiodically forced oscillator: 

Numerically verify that the solution of this system settles on a two- 
period quasiperiodic orbit after transients die out. Construct a Poincar6 
section for this orbit, and determine the corresponding rotation number. 

4.8. A damped and driven pendulum is governed by 

9 -t 2pi f sin0 = F 
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Use central-difference schemes to approximate the time derivatives as 
in Exercise 2.58 and examine the resulting system in the context of the 
circle map (4.2.1). 

4.9. Consider the following linearization obtained near a Hopf bifurca- 
tion point of a two-dimensional map: 

where ,/- = 1. Note that this map is an orientation preserving 
map. 

(a) Show that a circle of a given radius is invariant under the action 
of this map. 

(b) Discuss when periodic and nonperiodic solutions of this map are 
possible. 

4.10. Consider the circle map (4.2.1). Show that the boundaries of the 
Arnold tongue within which p = is given by 

where c = K/2?r. 
Hint: It follows from (4.2.3) that p = 5 if and only if 

F3(z )  - (z + 1) = 0 

It follows from (4.2.7) and (4.2.8) that 

~ ~ ( 2 )  = 2 t 30 - esin 27rx - esin[2r(x + R - csin2nz)] 
- e  sin (27r [z + 252 - L sin 2nz - e sin 27r(z + R - c sin 2nz)]} 



EXERCISES 273 

Let R = 5 + p arid show that 

3p- 6 sin 27rx - c sin t p - c sin 2nx 

2 

Let p = e'pz(x) t c3p3(x) t " a ,  expand for small e ,  and determine 
P4x)  and @ 3 ( x ) .  Find the infimum and supremum of /?Z(z) and p3(x) 
to determine the boundaries of the tongue. 

4.11. If 
71 = exp [ 71 

where p and q are positive integers with no  common factors, show that 

a-1 

k = l  

Then, show that 

sin [2a (x + :)] = - sin 27rx 
k = l  

4.12. If 
11 = exp [ T] 

where p and y are positive integers without common factors aiid q 2 3, 
show that 

q-1 

k= 1 

k k  C 9 ( ' 1 - 1 > = 0  
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4.13. Consider the circle map (4.2.1). Show that the boundaries of the 
Arnold tongue within which p = p / g  is given by 

where c = K/2n. Then, show that 

Hint: Show that 

where s1 = + p. Then, show that 

Fq(x)  = x + p + P g  - c 

k-1 

Expand for small c and p and obtain 

~ ( z )  = z + p + p q  - csin2az - c 

k = l  
(I- 1 
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Then use Exercise 4.11 to show that 

Finally, use Exercise 4.12 to determine the summations. 
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Chapter 5 

CHAOS 

In this chapter, we explore chaotic solutions of maps and continuous- 
time systems. These solutions are also bounded like equilibrium, pe- 
riodic, and quasiperiodic solutions. There is no precise definition for 
a chaotic solution because it cannot be represented through standard 
mathematical functions. However, a chaotic solution is an aperiodic so- 
lution, which is endowed with some special identifiable characteristics. 
From a practical point of view, chaos can be defined as a bounded 
steady-state behavior that is not an equilibrium solution or a periodic 
solution or a quasiperiodic solution. The attractor associated with a 
chaotic motion in state space is not a simple geometrical object like a 
finite number of points, a closed curve, or a torus. In fact, it is not 
even a smooth surface; that is, it is not a manifold. Chaotic attractors 
are complicated geometrical objects that possess fractal dimensions. 

In contrast with the spectra of periodic and quasiperiodic attractors, 
which consist of a number of sharp spikes, the spectrum of a chaotic 
signal has a continuous broadband character. In addition to the 
broadband component, the spectrum of a chaotic signal often contains 
spikes that indicate the predominant frequencies of the signal. A 
chaotic motion is the superposition of a very large number of unstable 
periodic motions. Thus, a chaotic system may dwell for a brief time on 
a motion that is very nearly periodic and then may change to another 
periodic motion with a period that is k times that of the preceding 
motion. This constant evolution from one periodic motion to another 
produces a long-time impression of randomness while showing short- 
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term glimpses of order. 
Chaotic systems are also characterized by sensitivity to initial 

conditions; that is, tiny differences in the input can be quickly amplified 
to create overwhelming differences in the output. This is the so-called 
butterfly effect. A small perturbation created by the wings of a 
butterfly today in Beijing, China, can produce a torrential rainstorm 
next month in California. 

In Section 5.1, we discuss chaotic solutions of maps, and in Section 
5.2 we discuss chaotic solutions of continuous-time systems. In Sections 
5.3-5.5 we discuss the period-doubling, intermittency, and quasiperi- 
odic routes to chaos. In Section 5.6 we discuss crises, in Section 5.7 
we discuss the Melnikov theory of homoclinic and heteroclinic tangles, 
and in Section 5.8 we discuss bifurcations of homoclinic orbits. 

5.1 MAPS 

We have discussed so far three classes of solutions of a map, namely, 
fixed-points, periodic points, and dense sets of points on closed loops. 
The orbit of a fixed point is the fixed point itself, while the orbit of 
a period4 point is a set of k discrete points. When the iterates of 
a map are densely packed on a closed loop, the orbit of each point 
on this loop is the closed loop. Hence, in the above three classes, 
the associated orbits are well defined and in a sense regular. Another 
class of solutions of a map is what is called chaotic solutions. These 
solutions are characterized by erratic orbits and some special features 
as illustrated by the examples given below. 

Example 5.1. For 0 < a _< 1, the one-dimensional noninvertible map 
(1.1.4) maps the unit interval onto itself. In Figure 5.1.1, the orbits of 
the attractors of (1.1.4) for three different values of a are shown. It is 
clear that there is a period-one solutjon a t  a = 0.7 and two period-two 
solutions at a = 0.8. The orbit of Figure 5.1.lc, which is irregular, 
corresponds to an aperiodic or a chaotic attractor. 

To determine how the chaotic solution arises, we examine the 
bifurcations experienced by the solutions of (1.1.4) when a is used as a 
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(b) 

Figure 5.1.1: Orbits of the logistic map: (a) CK = 0.7, (b) a = 0.8, and (c) 
CK = 0.92. 

0 

control parameter. As a is gradually increased from 0.7, the nontrivial 
fixed point of (1.1.4) experiences a period-doubling bifurcation at 

= 0.75, giving rise to two stable period-two solutions. As Q 

is increased further, each period-two solution experiences a period- 
doubling bifurcation at  az 2 0.8623795. This results in the birth of 
four stable period-four solutions. Each of these periodic solutions 
experiences a period-doubling bifurcation at a3 N 0.8860225. As 
a is increased further, period-doubling bifurcations occur at a4 II 
0.8911018, and so on. With each successive bifurcation, the period 
of the realized attractor increases. Eventually, the sequence culminates 
in an infinite-period or aperiodic attractor at a, II 0.8924864. The 
point a, is an accumulation point of the period-doubling sequence. 
This aperiodic solution continues for a > am. The sequence of period- 

. . . .  . . *  . . . . . . . . . . . . . . . . . .  
. . *  

* . *  . . . . . . . . . . . . . . . . . . .  . . . . 
J 
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Figure 5.1.2: Bifurcation diagram for the logistic map. 

doubling bifurcations leading up to the chaotic solution is bifurcatiori 
illustrated in Figure 5.1.2. In this numerically constructed diagram, 
the unstable solutions are not shown. 

For a smooth singlehump map F ( s )  with continuous first deriva- 
tive and nonvanishing second derivative at its extremum (i.e., has a 
quadratic maximum), such as (1.1.4), Feigenbaum (1978) showed that 
the sequence of period-doubling control-parameter values scales ac- 
cording to the law 

lim *' - = 6 = 4.66292016. - (5.1.1) 

The important result is that 6 is the same for all period-doubling se- 
quences associated with smooth maps having a quadratic maximum; 
that is, b is universal. This universal constant is called the Feigen- 
baum number. 

In Figure 5.1.2, we note that we do not have aperiodic solutions for 
all a 2 am. In fact, the presence of period-six attractors in a window 

k - c a  a k + l  - a k  
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about a = 0.91, period-five attractors in a window about a = 0.93, and 
period-three attractors in a window about a = 0.96 are quite clear. The 
window of the  period-three attractors is the largest. A finer resolution 
will reveal the presence of other periodic windows. According to 
related analyses, periodic windows corresponding to the periods 6, 12, 
5, 3, 6, 12, 8, 7, and 5 are expected to occur in that order, with the 
period-three window being the largest (Metropolis, Stein, and Stein, 
1973; May, 1976; Ott, 1981, 1993). Furthermore, it can be numerically 
verified that the period-three solutions arise through a saddle-node 
bifurcation at a N 0.957 and exist in the interval 0.957 < a < 0.9625. 
As a is increased beyond 0.9625, the period-three solutions experience 
period-doubling bifurcations, as seen in Figure 5.1.2. 

Alligood, Yorke, and Yorke (1987) investigated the conditions un- 
der which period-doubling cascades occur. The period-doubling se- 
quence to chaos has also been observed in many continuous-time 
systems. A partial list includes the studies of Huberman and Crutch- 
field (1979), Crutchfield, Farmer, Packard, Shaw, Jones, and Donnelly 
(1980), Linsay (1981), D’Humieres, Beasley, Huberman, and Libcliaber 
(1982), Novak and Frelich (1982), Testa, Perez, and Jeffries (1982), 
Swinney (1983), Bergd, Pomeau, and Vidal (1984), Raty, Isomaki, 
and von Boehm (1984), Thompson and Stewart (1986), Moon (1987), 
Seydel (1988), Zavodney and Nayfeh (1988), Jackson (1989), Nayfeh 
and Sanchez (1989), Parker and Chua (1989), Zavodney, Nayfeh, and 
Sanchez (1989), Nayfeh, Hamdan, and Nayfeh (1990), and Kim and 
Noah (1991). 

Next, we consider two points close to the period-two attractor at 
a = 0.8, which is shown in Figure 5.1.lb. The separation do between 
these points is 0.1. For the evolutions initiated from these points, the 
separation dk varies with the iterate number k, as shown in Figure 
5.1.3a. On the average, the decay of dk to zero follows 

(5.1.2) 

where 7 represents the average slope in the logdk versus k graph. Here, 
y is obviously negative. The exponent 7, which is determined through 
(5.1.2), represents the Lyapunov exponent of the one-dimensional 
map (1.1.4). (A detailed disc.ussion of Lyapunov exponents is given in 
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- -  0 20 k 

Figure 5.1.3: Sensitivity to initial conditions: (a) a = 0.8 and (b)  a = 0.92. 

Section 7.8.) We note that the Lyapunov exponent associated with a 
periodic orbit of a one-dimensional map is negative. 

To construct Figure 5.1.3b, we considered the initial points 0.875660 
and 0.875661 close to the chaotic orbit of Figure 5 .1 .1~  at a = 0.92. 
(Note that the initial conditions are chosen close to the attractor, so 
that the corresponding transient phases are as short as possible.) In this 
case, do = The separation dk increases exponentially for k < 35 
before leveling off. This leveling off occurs because dk cannot grow 
any larger than the size of the unit interval [0, 1). In the intermediate 
regime, dk is modeled by (5.1.2), with 7 being positive. The exponential 
separation seen in Figure 5.1.3b between iterates initiated from two 
close initial conditions is often described as sensitivity to initial 
conditions. 

To understand why such exponential separations occur, we illustrate 
the action of the logistic map for a N 1 in Figure 5.1.4. We note that 
F ( z  = 0) = 0, F ( z  = 5) = a, and F ( z  = 1) = 0. The interval 
[0, i] is mapped to an interval nearly twice its size; that is [0, a]. The 
interval [i, 1) is also mapped to an interval [ O ,  a] nearly twice its size. 
However, the orientation is reversed. Hence, the action of the map can 
be interpreted as a two-step process. In the first step, the unit interval 
is uniformly stretched to an interval nearly twice its size. In the second 
step, the stretched interval is folded so that the resulting segment 
is confined to the unit interval, as illustrated in Figure 5.1.4. The 
stretching action is responsible for exponential divergence of adjacent 
orbits. This action alone will lead to an unbounded object. Hence, 

1 
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strdchlng 

Figure 5.1.4: Illustration of the action of the logistic map when a N 1. 

the folding action is necessary to keep the attractor bounded. We note 
that the folding action causes the map to be a two-to-one map and, 
consequently, a noninvertible map. In other words, it is always possible 
to go forward from 2, to z,+1 but not possible to return from z,+~ 
to its precedent. Because stretching and folding actions are necessary 
to create a chaotic solution, a one-dimensional invertible map cannot 
have this solution. 

Chaotic solutions are known to occur in one-dimensional and 
higher noninvertible maps and in two-dimensional and higher invertible 
maps (Collet and Eckmann, 1980; Ott, 1981, 1993; Eckmann and 
Ruelle, 1985; Ruelle, 1989a). Further, one or more positive Lyapunov 
exponents are a distinguishing characteristic of a chaotic solution. An 
attractor with two or more positive Lyapunov exponents is called 
hyperchaos (Etiissler, 1979a). Due to these positive exponents, there is 
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sensitivity to initial conditions and, consequently, orbits initiated from 
two nearby points on a chaotic attractor move away from each other at 
an exponential rate until the separation reaches the size of the attractor. 
From a practical standpoint, this is an important point to reckon with. 
Because of finite precision and noise, there is always some uncertainty 
in specifying an initial condition. If this initial condition is located 
on a chaotic orbit, long-time prediction of the evolution initiated from 
this point is not possible because the uncertainty gets amplified due 
to the positive Lyapunov exponents. Hence, despite the fact that a 
chaotic solution is governed by a deterministic system, finite precision 
and noise limit one in predicting the observed evolution. Of course, in 
theory, with infinite precision, a chaotic solution is deterministic and 
predictable. 

Example 5.2. The Hdnon may (1.1.5) and (1.1.6) is a two-dimensional 
invertible map for p # 0. When I ,f3 I < 1, this map is dissipative 
and hence contracts areas in the z - -y  plane. We choose (Y = 1.4 
and /3 = 0.3. For these values, d = Det (DxF]  = -0.3. Because the 
determinant d is negative, the map is orientation reversing, and because 
I d I < 1, the map is dissipative. Numerical calculations show that 
the forward iterates of this map are attracted to the object shown in 
Figure 5.1.5a. We show 15,000 iterates on the attractor obtained after 
initiation from (z, y )  = (0.185,0.191). There is a banded structure 

Figure 5.1.5: (a) Attractor of the HQnon map for (Y = 1.4 and /3 = 0.3 and 
(b)  enlargement of box shown in a. 
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with the iterates falling on lines separated by gaps. In Figure 5.1.5b, 
which is an enlargement of the box shown in Figure 5.1.5a, we see the 
same structure. When a region of Figure 5.1.5b is enlarged, a similar 
structure is again observed. Objects such as the attractor of Figure 
5.1.5a are examples of fractal objects (Mandelbrot, 1977, 1983). The 
structure of a fractal object is invariant with respect to different scales. 
Attractors that have fractal geometry are called strange attractors. 

Next, we choose the points (0.6000,0.1940) and (0.599999,0.194000) 
close to the attractor shown in Figure 5.1.5, initiate evolutions from 
these points, and obtain the graph shown in Figure 5.1.6. We see that 
the separation dk grows exponentially from the initial separation do = 

before leveling off at the size of the attractor. For 10 < k < 30, 
the growth of d k  follows 

dk !? doer1 

where 71 is positive. This exponent characterizes the stretching action 
of the map. Due to sensitive dependence on initial conditions, the 
attractor of Figure 5.1.5 is a chaotic attractor. As in this case, in 
many case8 a chaotic attractor is also a strange attractor. Therefore, 
in the literature, the words strange and chaotic are often used 
interchangeably. 

0 so 
k 

Figure 5.1.6: Sensitivity to initial conditions on the HQnon attractor realized 
for a = 1.4 and ,f3 = 0.3. 
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Because the HCnon map is two-dimensional, there are two Lyapunov 
exponents 71 and 72 associated with an orbit of this map (see Section 
7.8). These exponents govern the local growth or decay of an area 
in the x - y plane. Since the map is dissipative, the iterates of 
(1.1.5) and (1.1.6) are attracted to a subset of the x - y space. The 
contracting action of the map is described by 7 2 ,  which is negative. 
In numerical simulations, the contracting action is observable during 
the transients leading up to the attractor, its shown in Figure 5.1.7. 
In one iteration, the rectangle ABCD in Figure 5.1.7a is stretched 
in the horizontal direction, contracted in the vertical direction, and 
folded into the horseshoe shown in Figure 5.1.7b. Thus, each iterate of 
the HCnon map is characterized by stretching, folding, and contracting 
actions. Repeated stretching, folding, and contracting actions result in 
the attractor shown in Figure 5.1.5a. 

b 

c> D A  

L 

Example 5.3. We consider the two-dimensional dissipative horse- 
shoe map, which is due to Smale (1967, 1980). The first iteration 
of this map, which maps the plane onto itself, is illustrated in Figure 
5.1.8a. During this iteration, the unit square ABCD is stretched by a 
factor greater than two along the vertical direction and contracted by 

I 

Figure 5.1.7: illustration of the action of the HQnon map when a = 1.4 and 
/3 = 0.3. 
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a factor larger than two along the horizontal direction into a rectangle. 
This rectangle is then folded into a horseshoe. Only the rectangular 
regions V, and V, of the horseshoe remain inside the unit square. 
Because a portion of the horseshoe is outside the unit square, the square 
is not mapped onto itself. (If the stretching factor is less than two, the 
horseshoe will lie inside the unit square, and the square is mapped 
onto itself.) Furthermore, since the map is dissipative, the area of the 
horseshoe is less than one. There are two Lyapunov exponents rl and 
72 associated with an orbit of the horseshoe map. The exponent 71 is 
positive and associated with the stretching action, while the exponent 
72 is negative and associated with the contracting action. 

Repeated applications of the horseshoe map to the unit square leads 
to a fractal object. To illustrate this point, in Figure 5.1.8b we show 
the cross sections along the line FF' for the first two iterations of the 

D C  B A  

Figure 5.1.8: Horseshoe map. 
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mapping. Prior to the first iteration, the cross section is a line of 
unit length. After the first iteration, the cross section consists of two 
segments with a gap separating them. Following the second iteration, 
the cross section consists of four segments, which are again separated 
by gaps. Thus, after the third iteration, we obtain eight segments 
with gaps between consecutive segments and so on. The fractal object 
obtained after n iterations can be constructed as follows. To obtain 
the cross section at the end of the first iteration, we delete portions 
from the middle and the ends of the unit line to obtain two segments. 
For the second iteration, we repeat this procedure with each of the 
two segments obtained at the end of the first iteration to obtain four 
segments. Thus, repeated applications of this procedure results in  a 
fractal object, which is an example of a Cantor set. 

The solutions and dynamics of the horseshoe map have been exten- 
sively studied and documented ( h a l e ,  1967, 1980; Guckenheinier and 
Holmes, 1983; Wiggins, 1990). In many rigorous studies, the concept of 
chaos is built on the basis of this map. In these studies, to prove that 
the considered continuous-time system exhibits chaos, one shows that 
an associated Poincar6 map exhibits a dynamics qualitatively similar 
to that of the horseshoe ma.p. 

5.2 CONTINUOUS-TIME SYSTEMS 

Chaotic solutions represent another class of dynamic solutions besides 
periodic and quasiperiodic solutions. The orbits of periodic and 
quasiperiodic solutions are regular, while the orbit of a chaotic solution 
is erratic. As in the case of maps, there is sensitivity to initial conditions 
on a chaotic attractor of a continuous-time system. (Poincark was 
aware of this sensitivity to initial conditions.) In other words, minute 
differences in input can quickly be amplified to create overwhelming 
differences in output. This is usually referred to as the butterfly 
effect; that is, a small perturbation created by the wings of a butterfly 
today in Beijing, China, can produce a torrential rainstorm next month 
in California. 
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Example 5.4. We consider the following three-dimensional system 
(Rossler, 1976a): 

x = -(y + z) 

y = z + a y  
i. = b + (z - c)z  

(5.2.1) 
(5.2.2) 
(5.2.3) 

This system, which is characterized by the states z, y, and z ,  has a 
quadratic nonlinearity. We set a = 0.55, b = 2, and c = 4 and 
numerically integrated these equations from (0.1,O.l) 0.1). After the 
transients had died out, the solution of this system settled on the 
attractor shown in Figure 5.2.la. To examine the cross section of 
this attractor, we chose the two-sided Poincark section z = 4. The 
discernible fractal structure in Figure 5.2.lb is indicative of a strange 

Y 

-2 

a 

d 

I 
40 80 I 120 

Figure 5.2.1: Attractor of the Rossler equations: (a) two-dimensional 
projection, (b) two-sided Poincar6 section, (c) power spectrum of 2, and 
(d) sensitivity to initial conditions on the attractor. 
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attractor. The power spectrum associated with the state 2, which is 
displayed in Figure 5.2.lc, has a broadband character. In Figure 
5.2.ld, we display how the separation d between evolutions initiated 
from two points separated by do = lo-' varies with time. Both of the 
initial points are located close to the attractor. The exponential growth 
of separatiqn for t < 90 is clearly noticeable. The separation saturates 
at the size of the attractor for t 2 90. From Figure 5.2.1, we conclude 
that there is sensitivity to initial conditions on the attractor. Hence, 
this attractor is chaotic. In this case, the attractor is both strange and 
chaotic. The broadband character observed in the power spectrum is 
another distinguishing characteristic of a chaotic solution. 

There are n Lyapunov exponents associated with an orbit of an 
n-dimensional autonomous system. As explained in Section 7.8, these 
exponents provide a measure of the orbital divergence in the vicinity of 
an orbit. Furthermore, one of the exponents associated with a periodic, 
quasiperiodic, or chaotic attractor is always zero. This corresponds to 
a direction tangent to the orbit. In the case of an orbit of the Rossler 
system, there are three Lyapunov exponents. From Figure 5.2.ld, it is 
clear that one of these exponents 71 is positive, indicating a stretching 
action in the formation of the attractor. Because there is dissipation, 
one of the other exponents, say 72, needs to be negative to account for 
the accompanying contracting action. The third exponent 73 is zero. 
To illustrate the stretching and folding actions, in Figure 5.2.2, we 
show the three-dimensional attractor. Because of a noticeable funnel- 
shaped structure in Figures 5.2.la and 5.2.2, Abraham and Shaw (1992, 
Chapter 9) call this attractor the Rossler funnel. 

For an orbit of a dissipative system, the sum of the Lyapunov 
exponents is always negative (see Section 7.8). Hence, for a chaotic 
orbit of an autonomous system, one of the Lyapunov exponents is 
zero, the sum of the Lyapunov exponents is negative, and one or 
more of the Lyapunov exponents are positive. This means that chaotic 
solutions can only occur in three-dimensional and higher autonomous 
systems. Moreover, for three-dimensional dissipative systems, only 
one of the Lyapunov exponents can be positive. However, for four- 
and higher-dimensional dissipative systems, two or more Lyapunov 
exponents can be positive and the corresponding motions are called 
hyperchaos (Riissler, 1979a). Kapitaniak and Steeb (1991) studied 
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Figure 5.2.2: Three-dimensional plot of the Rassler funnel. 

numerically harmonically excited two coupled van der Pol oscillators 
and found attractors with two positive Lyapunov exponents. In planar 
autonomous systems, the PoincarkBendixson theorem (Coddington 
and Levinson, 1955; Hale, 1969) rules out the possibility of irregular 
solutions. However, aa illustrated in the next example, chaotic solutions 
can occur in two-dimensional nonau tonomous systems. 

Example 6.6. We consider the following parametrically excited 
nonlinear oscillator (Zavodney, Nayfeh, and Sanchez, 1989): 

x + w;x t c [2pi + 6z2 + g cos (Rt)Z] + 2ax3 = 0 (5.2.4) 

Here, 6 is a small positive parameter and R = 2wo + co. This 
two-dimensional nonautonomous system can be rewritten as a three- 
dimensional autonomous system. h r the r ,  when p > 0, the system is 
dissipative. For c = 0.1, g = 0, wo = 1 ,  6 = 5.0, and a = 4.0, the 
system has two stable and one unstable equilibrium positions. Because 
of the presence of two stable equilibrium positions in the unforced case, 
this system is referred to as a two-well potential system. 

If we set wo = 1, R = 2.0, and p = 1 and use g as a control 
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parameter, one of the periodic solutions of this system experiences a 
sequence of period-doubling bifurcations, culminating in an aperiodic 
attractor. The periodic attractor realized at g = 4.0 is illustrated in 
Figure 5.2.3a. In Figure 5.2.3b, we show the periodic attractor realized 
at  g = 4.7 subsequent to the first period-doubling bifurcation. In 
Figure 5.2.3c, we display the attractor realized at g = 5.15 following the 
second period-doubling bifurcation. The aperiodic attractor realized at 
g = 5.40, after a sequence of period-doubling bifurcations, is shown in 
Figure 5.2.3d. The appearance of subharmonics in the power spectrum 
following each period-doubling bifurcation is clearly noticeable. The 
power spectrum associated with the aperiodic attractor has a distinctive 
broadband character. 

To construct a Poincark section for an orbit of the oscillator, we used 
one-half of the excitation frequency as the sampling frequency. Hence, 
we obtain one point on this section for the attractor realized before the 
first period-doubling bifurcation, two points for the attractor realized 
after the first period-doubling bifurcation, and so on. We illustrate 
the sequence of period-doubling bifurcations in Figure 5.2.4. In this 
numerically constructed bifurcation diagram, the discrete points on 
the Poincark section of the attractor realized at each value of g are 
displayed. 

To verify that the attractor realized at g = 5.40 is chaotic, one 
needs to show sensitivity to initial conditions on this attractor. To this 
end, we chose two points separated by do = close to the attractor 
and initiated evolutions from them. The variation of the separation d 
with time t is illustrated in Figure 5.2.5. The separation clearly grows 
exponentially in the range 110 < t < 310 before leveling off at the size 
of the attractor. Consequently, there is a positive Lyapunov exporient 

associated with the aperiodic orbit at g = 5.40. The other Lyapunov 
exponent 72 is negative to account for the dissipation. 

We note that, in the parameter range 4 < g < G, another periodic 
solution of the oscillator also experiences a sequence of period-doubling 
bifurcations. Chaotic solutions of two-well potential systems have been 
extensively studied (e.g., Holmes, 1979; Holmes and Moon, 1983; Moon 
and Li, 1985; Dowell and Pezeshki, 1988; Zavodriey and Nayfeh, 1988; 
Szempliriska-Stupnicka, Plaut and Hsieh, 1989; Abou-Rayan, Nayfeh, 
Mook, and Nayfeh, 1993). 
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Figure 5.2.3: Phase portraits and associated power spectra: (a) g = 4.0, (b) 
g = 4.7, (c) g = 5.15, and (d) g = 5.40. 
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Figure 5.2.5: Sensitivity to initial conditions on the attractor realized at 
g = 5.4. 
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From the preceding sections, it is clear that a strange attractor has 
a fractal geometry while a chaotic attractor is characterized by one or 
more positive Lyapunov exponents. In a general situation, to determine 
whether an attractor is fractal or not, one needs to compute what is 
called the dimension of an attractor. The dimension of an attractor 
determines the minimum number of essential variables required to 
describe the dynamics on the attractor. When the considered attractor 
is fractal, the dimension is not an integer but a real number. In Section 
7.9, we provide some definitions for dimension and discuss methods to 
compute it. 

In the examples we have discussed, the strange attractors are chaotic 
too. However, this is not always the case. Strange and nonchaotic at- 
tractors have been found in quasiperiodically forced systems (Grebogi, 
Ott, and York, 1985; Awrejcewicz and Rheinhardt, 1990; Brindley and 
Kapitaniak, 1991a). In these cases, the attractors have a fractal struc- 
ture but are not associated with any positive Lyapunov exponents. 
Further, they have some unique spectral characteristics (Romeiras and 
Ott, 1987). Besides the studies mentioned above, other relevant stud- 
ies include those of Romeiras, Bondeson, Ott, Antonsen, and Gre- 
bogi (1987), Ding, Grebogi, and Ott (1989), Brindley and Kapitaniak 
(1991b), Brindley, Kapitaniak, and El Naschie (1991), and Kapitaniak 
(1991). 

5.3 PERIOD-DOUBLING SCENARIO 

Currently, there are many fairly well-understood transitions to chaotic 
solutions. Some of these transitions, such as the period-doubling se- 
quence, are associated with local bifurcations, while the other transi- 
tions are associated with global bifurcations. 

In the period-doubling scenario, as a control parameter is gradually 
varied, we proceed from a periodic solution to a chaotic solution 
via a sequence of period-doubling bifurcations. The period-doubling 
sequence to chaos was first found in the context of onedimensional 
noninvertible maps (e.g., Feigenbaum, 1978; Collet and Eckmann, 
1980). As discussed in Sections 5.1 and 5.2, it is now known to occur 
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in two-dimensional and higher invertible maps and three-dimensional 
and higher continuous-time systems. 

The period-doubling sequence to chaos has also been observed 
in many experimental studies. A partial list includes the studies of 
Maurer and Libchaber (1979), Giglio, Musazzi, and Perine (1981), 
and Libchaber, Fauve, and Laroche (1982) on the Rayleigh-BCnard 
convection; Linsay (1981), Testa, Perez, and Jeffries (1982), Van 
Buskirk and Jeffries (1985), and Matsumoto, Chua, and Tokunaga 
(1987) on electrical circuits; Jorgensen and Rutherford (1983) on 
chemical reactions; and Levin, Pompe, Wilke, and Koch (1985) on 
pendulums. In some of these studies, the appearance of subharmonics 
in the power spectrum is used to discern the occurrence of a period- 
doubling bifurcation. In many numerical and experimental studies, 
the control-parameter values corresponding to the period-doubling 
bifurcations scale according to (5.1.1). On the basis of the first four 
bifurcations, Giglio, Musazzi, and Perine (1981) obtained b N 4.3; 
Linsay (1981) obtained 6 z 4.5; and Libchaber, Fauve, and Laroche 
(1982) obtained 6 N 4.4. 

In the absence of noise, an infinite number of period-doubling bifur- 
cations takes place in the transition to chaos (e.g., Feigenbaum, 1978; 
Eckmann, 1981). However, in practice, noise is always present. In the 
presence of noise, some of the higher period-doubling bifurcations are 
suppressed, resulting in a finite sequence of bifurcations. The influence 
of noise on the period-doubling scenario has been investigated in the 
studies of Crutchfield and Huberman (1980), Crutchfield, Nauenberg, 
and Rudnick (1981), Eckmann (1981), Mayer-Kress and Haken (1981), 
and Shraiman, Wayne, and Martin (1981). 

5.4 INTERMITTENCY 
MECHANISMS 

A second route to chaos observed frequently in physical experiments is 
the onset via intermittency. Intermittency in fluid mechanics refers 
to the state in which the laminar flow is interrupted by turbulent 
outbreaks or bursts at irregular intervals. In fact, spatial-temporal 
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intermittency is a well-known phenomenon that can be observed in 
interior and exterior boundary layers, pipe flow, flow between rotating 
cylinders, and fully developed turbulent flows. In this book, we focus 
on temporal intermittency, which can occur in low-order dynamical 
sys tems. 

Next, we describe the main features of this route. For values of a 
control parameter r less than a critical value r;, the dynamical system 
has an attracting limit cycle. Thus, the system oscillates in a regular 
fashion and is stable to small perturbations. An example is given in 
Figure 5.4.la, which shows the time trace of the velocity measured 
by Bergd, Dubois, Manneville, and Pomeau (1980) in the Rayleigh- 
Bknard convection at the Rayleigh number R/R,  = 270. As r slightly 
exceeds the threshold value r, (the intermittency threshold), the system 
response consists of lorig stretches of oscillations (laminar phases) that 
appear to be regular and closely resemble the oscillatory behavior for 
r < r;,  but this regular behavior is intermittently interrupted by chaotic 
outbreaks (turbulent bursts) at  irregular intervals. An example is 

1 
2 
3 

3 pyr 
Y t h o  1 vz mm /s 10 mln’ 

Figure 5.4.1: Experimentally observed intermittency in Rayleigh-BQnard 
convection: Prandtl number = 130, aspect ratios rl = 2.0 and rz = 1.2. The 
turbulent bursts occur with increasing frequency as the Rayleigh number is 
increased. Reprinted with permiosion from BergQ, Dubois, Manneville, and 
Pomeau (1980). 
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shown in Figure 5.4.lb for the velocity measured by Bergd, Dubois, 
Manneville, and Pomeau (1980) in the Rayleigh-Bknard convection 
at  R/Rc = 300. With increasing r, the laminar phases between two 
consecutive bursts become shorter and shorter and more and more 
difficult to recognize, as shown in Figure 5 .4 .1~  for the Rayleigh- 
Bknard experiment at R/Rc = 335. As r is increased further, eventually 
the laminar phases disappear and the response becomes fully irregular 
(chaotic). 

As aforedescribed, in the intermittency mechanism, as a control pa- 
rameter r exceeds the intermittency threshold r; , the system response 
explodes into a larger attractor with the old periodic attractor being a 
subset of the new chaotic attractor. Thus, as a result of the bifurcation, 
a periodic orbit is replaced with chaos rather than with a nearby stable 
periodic orbit. This is implied by the fact that, during the bursts, the 
trajectory goes “far” away from the vicinity of the periodic orbit that 
exists for r < r ; .  Three types of generic bifurcations meet these require- 
ments, namely, cyclic-fold, subcritical Hopf, and subcritical period- 
doubling bifurcations. Consequently, Manneville and Pomeau (1979) 
and Pomeau and Manneville (1980) labeled the intermittency mecha- 
nisms associated with these bifurcations as type I, type 11, and type 
I11 intermittency, respectively. The loss of stability of a periodic orbit 
via one of the aforementioned three generic bifurcations is not sufficient 
for intermittency to occur. The other necessary condition is the exis- 
tence of a global “relaminarization” mechanism that repeatedly rein- 
jects the trajectory in the neighborhood of the original periodic orbit 
(ghost or phantom orbit). Otherwise, the trajectory will never revisit 
the ghost orbit. 

In one-dimensional (noninvertible) maps, chaos through types I 
and I11 intermittencies can occur. However, chaos through type I1 
intermittency is not possible. Chaos through all three intermittency 
mechanisms is possible in two-dimensional or higher invertible maps 
and three-dimensional or higher continuous systems. By using one- 
dimensional maps as prototypes, Bergk, Pomeau, and Vidal (1984, 
Chapter IX) provide a detailed illustration of types I, 11, and I11 inter- 
mittencies. Experimental reports of type I intermittency include those 
of Bergk, Dubois, Manneville, and Pomeau (1980) in the Rayleigh- 
Bknard convection; Pomeau, ROUX, Rossi, Bachelart, and Vidal (1981) 
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and Roux, Rossi, Bachelart, and Vidal(l981) in the Belousov-Zhabotin- 
sky reaction; Jeffries and Perez (1982) in electronic oscillators; Mullin 
and Darbyshire (1989) and Price and Mullin (1991) in the Taylor- 
Couette flow; and Tang, Li, and Weiss (1992) in a coherently pumped 
laser. In analog and digital computer simulations, Ben-Jacob, Gold- 
hirsch, Imry, and Fishman (1982), Seifert (1983), and Yeh and Kao 
(1983) observed type I intermittency in Josephson junctions. Stein- 
tuch and Schmidt (1988) found type I intermittency in their analysis 
of ammonia oxidation on a platinum wire. 

Huang and Kim (1987), Herzel, Plath, and Svensson (1991), and 
Ringuet, h i e ,  and Gouesbet (1993) reported experimental observa- 
tions of type I1 intermittency in an electronic oscillator, the oxidation 
of methanol on zeolithe-supported palladium, and a hydrodynamic sys- 
tem, respectively. Aubry, et al. (1988) identified a regular form of type 
I1 intermittency in the wall region of a turbulent boundary layer. Ex- 
perimental reports of type 111 intermittency include those of Dubois, 
Rubio, and Berg6 (1983) in the Rayleigh-Bknard convection; Baier, 
Wegmann, and Hudson (1989) and Kreisberg, McCormick, and Swin- 
ney (1991) in the Belousov-Zhabotinsky reaction; Pujol, Arjona, and 
Corbalin (1993) in laser systems; and Richter, Peinke, Clauss, Rau, 
and Parisi (1991) in a semiconductor system. Theoretical reports of 
type 111 intermittency include those of Yang and Sethna (1991) in 
parametrically excited nearly square plates, Malasoma, Lamarque, and 
Jezequel (1 994) in a parametrically excited single-degree-of-freedom 
system with quadratic and cubic nonlinearities, and Paidoussis and 
Botez (1995) in a three-degree-of-freedom articulated cylinder system 
subjected to annular axial flow and impacting on the outer pipe. 

Recently, Price and Mullin (1991) experimentally observed a new 
type of intermittency mechanism in a variant of the Taylor-Couette 
flow problem. The main features of their observations are the extreme 
regularity of bursting and the presence of a hysteretic transition be- 
tween singly periodic and intermittent flows in some ranges of the con- 
trol parameters. In contrast, the preceding intermittency mechanisms 
are characterized by nonhysteretic transitions and irregular reinjection 
mechanisms. In another recent work, Platt, Spiegel, and Tresser (1993) 
defined a process called On-Off Intermittency. In this process, there 
is aperiodic switching between a static state and irregular bursts of 0s- 
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cillations. In contrast, in all of the preceding cases, switching occurred 
between regular or periodic oscillations and irregular oscillations. In the 
context of an n-dimensional system of equations, the numbei of state 
variables k that exhibit on-off intermittency can be less than n. On-off 
intermittency has been observed in the work of Malasoma, Lamarque, 
and Jezequel (1994), who considered a parametrically excited single- 
degree-of-freedom system (Example 5.8, below). 
5.4.1 Type I Intermittency 
Next, we discuss a theoretical model for the interpretation of type I 
intermittency. An experimental observation of this type is sliowri in 
Figure 5.4.1. At the bifurcation point, one of the Floquet multipliers 
associated with the periodic solution leaves the unit circle through + l .  
Similarly, one of the eigenvalues of the corresponding fixed point on 
the Poincard map exits the unit circle through +1. Tile manifold 
corresponding to this eigenvalue contains the essential information 
relating to the intermittency because there is dissipation along all of 
the other directions. Therefore, we consider tlie one-dimensional map 

associated with this manifold, where 6 is a control parameter that 
passes through zero a t  the onset of intermitt,ency. This map can be 
approximated in the bifurcation region as 

(5.4.2) 2 z,+1 = 2, + z, + 6 + . . . 
When 6 < 0, it is clear from Figure 5.4.2a that the return map intersects 
the identity map z,+~ = z, in two points: a stable fixed point z, and 
an unstable fixed point 2,. These fixed points correspond to  coexisting 
stable and unstable limit cycles of the dynamical system. An orbit 
initiated in the basin of attraction of the stable solution converges to it 
as time increases. Iterations started from z > xu diverge rapidly from 
z,, whereas iterations started from z < xu converge to z,, as indicated 
by the arrows. 

As t is increased to zero, the two fixed points approach each other 
arid coalesce a t  the fixed point z*, as shown in Figure 5.4.2b. Because 
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(b): E = O  

rein ection rein ection 

Figure 5.4.2: A set of onedimensional iterative maps illustrating the type 
I intermittent transition. (a) Stable and unstable fixed points coexist. (b) 
Fixed points coalesce, threshold for onset of intermittency. (c) Fixed points 
disappear, “ghost” of limit cycle with reinjection bursts. 

the return map is tangent to the identity map x,+1 = z,, the associated 
bifurcation is called tangent bifurcation. Iterations started from 
z > z+ diverge rapidly from I+, whereas iterations started from z c z* 
converge to z*. 

When c > 0, the return map does not intersect the identity niap 
z,+~ = z,, and there are no fixed points in the neighborhood of this 
part of the map, a8 shown in Figure 5 .4 .2~ .  Instead, for small positive 
values of e, a narrow corridor or channel or sluice emerges between the 
return map and the identity map. Whenever any trajectory approaches 
the channel closely, it will drift slowly through the channel, with the 
successive iterates accumulating in the narrowest part of the channel. 
The time taken to traverse the channel depends on the channel width, 
which in turn depends on the value of e. The narrower the channel is, 
the longer is the laminar time; that is, the longer is the time during 
which the orbit is trapped in the channel. As aforementioned, the 
tangent bifurcation is a necessary condition for intermittency. The 
other necessary condition is the reinjection via a global mechanism 
of the escaped trajectory to the vicinity of the channel, as shown in 
Figure 5.4.2~. While outside the channel, the orbit oscillates irregularly 
(chaotically) until it is reinjected into the channel when by chance the 
chaotic orbit approaches the channel. BergC, Pomeau, and Vidal (1984) 
discuss reinjection mechanisms in the context of (a) flow on a torus, (b) 
baker’s transformation, and (c) Smale’s transformation. 
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To calculate the time taken by the orbit to traverse the channel, we 
assume that 6 is a small positive number so that the steps in x with 
successive iterates in the channel are very small; that is, x,+~ - x, is 
small. This allows us to approximate xntl - x, by d x / d n  and then 
replace the difference equation (5.4.2) with the differential equation 

_ -  d x  2 - € + x  
dn 

(5.4.3) 

Thus, for an orbit that is reinjected into the channel at x = xo << -q 
the number of iterations needed to traverse the channel is given by 

21 dx [arctan ($) - arctan (?)I (5.4.4) 

As xo -t -w and xj -+ 00, n = ~/fi. Therefore, the number of 
iterations and hence the approximate time necessary to traverse the 
channel is O ( C - ' / ~ ) .  This means that the bursts of irregular oscillations 
will be separated by approximately periodic intervals of duration 
O(C-'/~). The relaminarization comes about through reinjection into 
the channel. An alternate method, based on renormalization group 
analysis, is used by Hu and Rudnick (1986) to determine the channel 
transit time. 

Example 5.6. Following Manneville and Pomeau (1979), we consider 
the three-dimensional Lorenz system to illustrate type I intermittency. 
This system is given by 

x = a(y - 4 
y = px - y - x z  
2 = -pz  + xy 

( 5.4.5) 

(5.4.7) 
(5.4.6) 

We set u = 10 and p = f and use p aa the control parameter. At 
p = 166.0, this system has a periodic attractor. The corresponding 
oscillations in the state x are depicted in Figure 5.4.3a. As p is 
gradually increased, a cyclic-fold bifurcation occurs at pc II 166.06. 
Subsequently, chaotic oscillations follow for p > pc .  In Figure 5.4.3b, 
finite intervals of regular oscillations are interrupted by intermittent 
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Figure 5.4.3: Transition to chaos through intermittency in the Lorenz 
equations for u = 10 and p = i. The time histories of the state z are 
shown for the following caes:  (a) p = 166.0, (b) p = 16G.1, (c) p = 166.5, 
and (d) p = 167.0. 
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bursts of irregular oscillations. The regular oscillations are similar to 
those seen in Figure 5.4.3a. The bursts of irregular oscillations are more 
prominent in Figures 5 . 4 . 3 ~  and 5.4.3d, with the duration of regular 
oscillations decreasing in size and the bursts becoming more frequent 
as p is increased. 

Example 5.7. We use the logistic map 

x,+1 = F(x,)  = ax,( 1 - x,) (5.4.8) 

to illustrate that chaos through intermittency can also occur in maps. 
The period-three orbits of (5.4.8) are solutions of 

x = F3(x) (5.4.9) 

These solutions first appear at 
1 
4 

For a 2 a,, i n  addition to the period-one solutions 

0, = -( 1 + 2 J z )  M 0.9571068 

z = O  and x = l - - a  1 -1  (5.4 . lo )  

there are six other solutions. These solutions correspond to an unstable 
period-three orbit and a stable period-three orbit. The stable period- 
three orbit realized at  a = 0.959 is shown in Figure 5.4.4a. At  the 
critical point a = a,, the stable and unstable period-three orbits 
coincide, and the map F3(z) is tangent to the identity map. Therefore, 
a = a, corresponds to  a tangent bifurcation point. For a just below a,, 
the only real solutions of (5.4.9) are those given by (5.4.10). Near the 
tangent points, which occur at a = a,, there are three narrow channels 
between the map F 3 ( x )  and the identity map. An orbit initiated in 
one of these channels spends a long time nearly trapped in this channel 
before it eventually escapes from this chaniiel. After coming out of 
the channel, the orbit oscillates chaotically until it agaiii enters one 
of the three channels. The processes of entrapment (laminar phase), 
escape, irregular oscillations (burst,s), and reinjection into oiie of the 
t h e e  cliaiiriels continues indefinit,ely. This is an exarnple of type I 
intermittency. In Figure 5.4.4b, we show a time history exhibiting this 
type of intermittency at a = 0.956. 

4 
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Figure 5.4.4: Transition to chaos through intermittelicy in the logistic map. 
The orbits are shown for the following cues: (a) a = 0.959 and (b) 
a = 0.956. The discrete points that make up each orbit are connected 
by straight lines. 

5.4.2 Type I11 Intermittency 

Type I11 intermittency is associated with a su-critical period-doubling 
or flip bifurcation. An experimental example is shown in Figure 5.4.5. 
It represents the time variation of the horizontal temperature gradient 
near the threshold of type I11 intermittency in the Rayleigh-B6nard 
convection, as measured by Dubois, Rubio, and Berg6 (1983) at the 
Rayleigh number R / R ,  = 416.5. For a Rayleigh number below the 
threshold intermittency value R;, we have a stable limit cycle. As R 
exceeds R;, the behavior is quite close to a periodic (laminar) one most 
of the time. However, it is interrupted from time to time by turbu- 
lent bursts. It is clear from Figure 5.4.5 that the amplitude of the 
subharmonic progressively increases while the amplitude of the funda- 
mental harmonic progressively decreases with each successive oscilla- 
tion. When the amplitude of the subharmonic exceeds a critical value, 
a kind of final catastrophe occurs, interrupting the laminar phase and 
marking the beginning of the turbulent burst. Subsequently, a global 



306 CHAOS 

I 

Figure 5.4.5: Type 111 interniittency in the Rayleigh-BQnard convection 
at R / R ,  M 416.5. Shown is the time trace of the horizontal temperature 
gradient. Reprinted with permission from Dubois, Rubio, and Berg6 (1983). 

mechanism, such as baker’s transformation or h a l e ’ s  transfortnation, 
reinjects the orbit near the ghost or phantom (former) periodic attrac- 
tor, and the process contiriues indefinitely. 

To estimate the time of the laminar phase, we first note that this 
intermittency is associated with a Floquet multiplier or an eigenvalue 
of a fixed point of the Poincari return map exiting the unit circle 
through -1.  Next, we consider the manifold corresponding to this 
eigenvalue because it contains the essential information relating to 
the intermittency because there is dissipation along all of the other 
directions. Thus, the map associated with this manifold has the form 
of the one-dimensional map (5.4.1), which can be approximated near 
the intermittency threshold as 

where the constants a1 and cr2 depend on the dynamical system under 
consideration. Here, z = 0 is a fixed point of this map for all c. For 
slightly positive values of E the fixed point z = 0 is unstable, whereas 
for slightly negative values of c the fixed point z = 0 is stable. To 
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analyze the mapping (5.4.11),  we use its second iterate; that  is, 

Sirice we are interested i n  sniall I .x I aiid I L 1, we can simplify the 
second return map to 

x,,+2 = (1 + %)z, t ax: t . . . (5.4.12) 

where Q = -2(cr2 t a:). 
For small values of 6, the steps i i i  x with successive iterates in the 

laminar phase are very small; that is, x,+2 - x, is small. Hence, 
we approximate x,+2 - x, by dx/dn and then replace the difference 
equation (5.4.12) with the differential equation 

dx 
dn 
- = 262 + ax3 (5.4.13) 

which is the normal form of a pitchfork bifurcation. The bifurcation 
is supercritical if Q is negative and subcritical if  Q is positive. Con- 
sequently, type 111 intermittency is possible only when Q > 0, so that 
(5.4.13) does not have stable fixed-point solutions for e > 0 and it has 
a single stable fixed-poilit solution for c < 0. 

Scaling 2 by m u  and n by k(2e)-', we rewrite (5.4.13) as 

- d u = u(1 t u') 
dk 

I 

where 
k 

x = uJ? and n = - 
a 26 

(5.4.14) 

(5.4.15) 

Equation (5.4.14) is a universal form. The index n = k / 2 6 ,  which is 
the count of the number of iterations at the fundamental frequency, is a 
measure of time. The scaling indicates that  the duration of the laminar 
phase during type 111 intermittency is O(6-l) as opposed t o  O(E- ' /~)  
during type I intermittency. 
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The solution of (5.4.14) can be expressed as 

u’( 1 + U i )  

ui( 1 + u’) 
2k = In (5.4 .l6) 

where u = uo when k = 0. As x -+ 00,u + 00 and (5.4.16) becomes 

1 + u: 1 1+u; 2k = In so that n = --In - 
4€ u; 210 

(5.4.17) 

Example 6.8. Following Malasoma, Lamarque, and Jezequel (1994), 
we consider the parametrically excited single-degree-of-freedom sys- 
tem 

(5.4.18) 

In the bifurcation analyses, w is used as a control parameter while 
F is held fixed. The trivial fixed point (x,i) = (0,O) is a solution 
of the system for all w. Malasoma, Lamarque, and Jezequel (1994) 
numerically constructed Poincark sections for orbits of this system by 
using the excitation frequency w. For each orbit, the discrete points 
[z(nT) , i (nT)]  were collected at time intervals of T = 27r/w. The 
bifurcation diagram shown in Figure 5.4.6 was generated by keeping 
F fixed at 0.85 and incrementing the control parameter w in steps of 
Aw = 0.0002. In this diagram, the values i ( n T )  corresponding to the 
attractor realized at each value of w are plotted. (For each value of w ,  
the first 3,000 points on the Poincark section were discarded, and the 
next 1,000 points were collected.) 

It is clear from Figure 5.4.6 that, as w is increased past wc = 
1.6067, there is an abrupt transition from the trivial point attractor 
to an aperiodic attractor. A subcritical Hopf bifurcation of the 
trivial fixed point occurs at WH “N 1.60670376591. Therefore, the local 
bifurcation associated with the transition from the trivial solution to 
the aperiodic solution appears to be a subcritical Hopf bifurcation. 
Associated with this bifurcation is an intermittent transition to chaos 
as evident from Figure 5.4.7, where the time history of the velocity is 
shown for a particular w. We see small (pseudoperiodic) oscillations 
of increasing amplitude with random interruptions in the form of 

3 -+ 0.25 + x + 1.52’ + 0.5~’ + Fx cos w t  = 0 
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Figure 5.4.6: Illustration of bifurcations on the Poincark section when 
F = 0.85. Reprinted with permission from Malasoma, Lamarque, and 
Jezequel (1994). 

irregular or chaotic-like bursts. As the frequency is increased further 
from the intermittency threshold w,, the pseudoperiodic oscillations 
are interrupted more frequently, indicating a fully chaotic state. As 
the frequency is decreased toward w,, the average duration between the 
intermittent bursts becomes longer and longer and the amplitude of 
the pseudoperiodic oscillations becomes smaller and smaller. As w is 
decreased below w,, the intermittent bursts disappear, and the system 
response returns to the equilibrium state (z, i) = (0,O). The results in 
Figure 5.4.7 are indicative of on-off intermittency. 

As w is increased past OF M 1.685481, a subcritical period-doubling 
bifurcation occurs. As a consequence of this local bifurcation, there is 
the possibility of a transition of type I11 intermittency from a periodic 
solution to a chaotic solution. The time history shown in Figure 
5.4.8 is indicative of this transition. The amplitude of one harmonic 
associated with the period-two motion increases while the amplitude of 
the other harmonic decreases. The pseudoperiodic oscillations (laminar 
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Figure 5.4.7: Intermittent transition from a fixed point to chaos associated 
with a subcritical Hopf bifurcation in the parametrically excited single- 
degree-of-freedom system (5.4.18) for F = 0.85 and w = 1.6068. Reprinted 
with permission from Malasoma, Lamarque, and Jezequel (1994). 

stretches) are interrupted by chaotic-like bursts. When w is increased 
toward W F ,  the durations of the laminar stretches become longer and 
longer and the chaotic bursts disappear for w > WF. 

In Figure 5.4.9, we show a bifurcation diagram of the system 
(5.4.18) for F = 1.0, determined with a control-parameter increment 
Aw = 0.0001. As w is increased past WH x 1.528781, the system 
undergoes a supercritical Hopf bifurcation, resulting in the birth of two 
stable small-amplitude period-two limit cycles. They are destroyed in 
a cyclic-fold bifurcation at w, x 1.5293183. The postbifurcation state 
is a chaotic attractor. The results displayed in Figure 5.4.10 indicate 
that a type I intermittency is associated with this local bifurcation. 
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Figure 5.4.8: Type 111 intermittency in the response of the parametrically 
excited single-degree-of-freedom system (5.4.18) for F = 0.85 and w = 
1.68525. Reprinted with permission from Malasoma, Lamarque, and Jezequel 
(1994). 

5.4.3 Type I1 Intermittency 

When two complex-conjugate Floquet mu1 tipliers or two complex- 
conjugate eigenvalues of the Poincark return map exit the unit circle 
away from the real axis, a Hopf bifurcation of the fixed point of the map 
occurs. If this bifurcation is subcritical, there is a possibility of type 
I1 intermittency. An experimental observation of this intermittency is 
provided in Figure 5.4.11. Shown is the time history of the temperature 
measured by Herzel, Plath, and Svensson (1991) during the oxidation 
of methanol on zeolithe-supported palladium catalyst. The time series 
consists of laminar stretches of pseudoquasiperiodic oscillations with 
interruptions in the form of chaotic bursts, characteristic of type I1 
intermi ttency. 
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*” 

Figure 5.4.9: Illustration of bifurcations on the Poincarb section for F = 1.0. 
Reprinted with permission from Malasoma, Lamarque, and Jezequel(l994). 

To determine the duration of the laminar stretches associated 
with this intermittency, we consider the dynamics on the manifold 
corresponding to the pair of complex-conjugate eigenvalues leaving the 
unit circle. This manifold contains the essential information relevant 
to the considered intermittency because of the dissipation in all of the 
other directions. The two-dimensional map governing this dynamics is 
given by 

rn+l = ( 1  t e)rn + ar i  (5.4.19) 

dn+l = 8, t w t Pr: (5.4.20) 

where a,p, and w are real constants that depend on the dynamical 
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Figure 5.4.10: A time series indicating type I intermittency in the response 
of the parametrically excited single-degree-of-freedom system (4.14.18) for 
F = 1.0 and w = 1.53. Reprinted with permission from Malasoma, 
Lamarque, and Jezequel (1994). 
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Figure 5.4.11: A time series indicating type 11 intermittency measured 
during the oxidation of methanol on zeolithe supported Pd. Reprinted with 
permission from Herzel, Plath, and Svensson (1991). 
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system under consideration, and c is a control parameter that passes 
through zero at the onset of the intermittency. For small values of c, 
the steps in r with successive iterates in the laminar phase are small; 
that is, rntl - r ,  is small. This allows us to approximate T , + ~  - T ,  by + and then replace the difference equation (5.4.19) with the differential 
equation 

i. = cr i- ar3 (5.4.21) 

For type I1 intermittency to occur, the bifurcation must be subcritical; 
that is, Q must be positive. For c < 0, there are three fixed-point 
solutions of (5.4.21): the trivial solution, which is stable, and 

which are unstable. For c > 0, there is only one fixed-point solution of 
(5.4.21), which is unstable. Thus, as the control parameter c is increased 
through zero, the system undergoes a subcritical Hopf bifurcation in 
which two unstable limit cycles of the corresponding continuous system 
are destroyed. Introducing the scaling 

r = u E a n d  t = -  I- 

c 
(5.4.22) 

we transform (5.4.21) 

The scaling suggests 

into the universal form 

du 
- = u(l + u’) (5.4.23) 
d7 

that the duration of the laminar stretches is 
O(e-’) as in type 111 intermittexicy as opposed to O(c-’/’) for type 
I intermittency. 

5.5 QUASIPERIODIC ROUTES 

At the present time, there are many analytically and numerically 
established quasiperiodic transitions to chaos. Some of these transitions 
have also been experimentally observed. 
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5.5.1 Ruelle-Takens Scenario 
Motivated to seek an explanation for hydrodynamic turbulence (see 
Landau and Lifschitz, 1959), Landau (1944) proposed one of the first 
scenarios for transition to an aperiodic motion (turbulence). In this 
scenario, first, a Hopf bifurcation of an equilibrium solution occurs, 
leading to the birth of a periodic attractor. Subsequently, this periodic 
attractor undergoes a secondary Hopf bifurcation, leading to the birth 
of a two-period quasiperiodic attractor. This attractor undergoes 
another Hopf bifurcation, resulting in a three-period quasiperiodic 
attractor. Thus, a sequence of Hopf bifurcations takes place with each 
bifurcation, adding a fundamental frequency. Hence, after the (k - 1)th 
Hopf bifurcation, the state z, associated with the motion is described 
by 

XI = f ,(wlt,w2t, * - ,&) (5.5.1) 

where the wj are incommensurate and fi is periodic with period 
one in its k arguments. As k increases, the motion becomes more 
irregular or “turbulent.” So, in the Landau scenario, an infinite 
sequence of Hopf bifurcations is required in the transition to a turbulent 
motion, which is characterized by the presence of an infinite number 
of incommensurate frequencies. Therefore, a large number of states 
is required to characterize a turbulent motion resulting through the 
Landau scenario. It is to be noted that Hopf (1948) advocated 
a similar scenario with mathematical rigor. The irregular motion 
at the culmination of the Landau scenario can be called chaotic if 
there is sensitivity to initial conditions. However, as pointed out by 
Ruelle (1989a), an irregular motion with just an infinite number of 
incommensurate frequencies is not characterized by sensitivity to initial 
conditions. 

In 1971, Ruelle and Takens demonstrated with mathematical rigor 
that a quasiperiodic flow on an N-torus, where N 2 4, can be per- 
turbed under fairly general conditions to produce a robust cliaotic at- 
tractor. This theory was further extended in the work of Newhouse, 
Ruelle, and Takens (1978). An arbitrary perturbation of a quasiperiodic 
flow on an N-torus, where N 2 3, may lead to (a) the persistence of 
the quasiperiodicity with N incommensurate frequencies, (b) frequency 
locking during which the associated orbit is either periodic or quasiperi- 
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Figure 5.5.1: Power spectrum associated with a three-period quasiperiodic 
attractor. The incommensurate frequencies have been marked. Reprinted 
with permission from Gollub and Benson (1980). 

odic with less than N incommensurate frequencies, or (c) chaos. The 
theoretical results of Ruelle and Takens (1971) and Newhouse, Ruelle, 
and Takens (1978) form the basis for the RuelleTakens scenario, 
which is in remarkable contrast to the scenario proposed by Landau 
and Hopf. In the Ruelle-Takens scenario, a finite number of successive 
Hopf bifurcations can lead from an equilibrium solution to a chaotic at- 
tractor. Specifically, this attractor can be observed after the birth of a 
three-period quasiperiodic attractor. At the present time, there are no 
theoretical means to predict the critical values at which three-period 
quasiperiodic and chaotic attractors, respectively, appear. In contrast 
with the Landau scenario, a small number of states are sufficient to 
characterize a complex aperiodic attractor. This means that chaos is 
possible in finite-dimensional systems. 

Many experimentally observed transitions to chaos have been inter- 
preted by using the Ruelle-Takens scenario. Gollub and Swinney (1975) 
and Swinney and Gollub (1978) presented power spectra tu illustrate 
the transitions observed in the Taylor-Couette flow and the Rayleigh- 
Bhnard convection experiments. This quasiperiodic transition to chaos 
was also observed in the Rayleigh-Bdnard convection experiment of 
Gollub and Benson (1980). In Figure 5.5.1, the power spectrum as- 
sociated with the three-period quasiperiodic attractor observed in the 
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transition is shown. Three-period quasiperiodic motions were also ob- 
served in the experiments of Gorman, Reith, and Swinney (1980) and 
Tavakol and Tworkowski (1984). The transition to chaos observed in 
the experiments of Martin, Leber, and Martienssen (1984) can be in- 
terpreted in terms of the Ruelle-Takens scenario. A good experimental 
illustration of this scenario is provided by the study of Cumming and 
Linsay (1988) with a nonlinear electronic oscillator. The influence of 
noise on the Ruelle-Takens scenario has been addressed by Eckmann 
(1981) and the references mentioned therein. 

While the studies mentioned in the previous paragraph illustrate 
that a chaotic motion can be observed subsequent to the observation 
of a three-period quasiperiodic motion, there are otlier studies that 
indicate that an observation of a three-period quasiperiodic motion 
does not always mean that a chaotic motion is to follow. In this regard, 
we note the numerical studies of Grebogi, Ott, and Yorke (1983~) 1985) 
with maps. Through extensive studies, they showed that a “weak” to 
“moderate” perturbation of a three-period quasiperiodic flow rarely 
leads to a strange attractor. This perturbation often results in either 
a quasiperiodic or a periodic flow. However, as the strength of the 
perturbation increases, the likelihood of realizing a chaotic attractor 
also increases. Walden, Kolodner, Passner, and Surko (1984) illustrated 
through a Rayleigh-BCnard experiment that stable four-period and 
five-period quasiperiodic oscillations can be observed in experiments. 

5.5.2 Torus Breakdown 
In the preceding scenario, a three-period quasiperiodic attractor can 
be perturbed to produce a chaotic attractor. In contrast, here, a 
chaotic attractor appears following the appearance of a two-period 
quasiperiodic attractor. In each of these routes, first a point attractor 
loses stability due to a supercritical Hopf bifurcation, resulting in a 
periodic attractor. Subsequently, this periodic attractor experiences 
a supercritical secondary Hopf bifurcation, resulting in a two-period 
quasiperiodic attractor (two-torus). On an associated Poincari section, 
the intersection points densely fill up a closed loop. The associated 
evolution of the continuous system can be characterized in  terms of two 
oscillatory modes with incommensurate frequencies. As the considered 
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control parameter is further varied, a rich variety of bifurcations of 
the torus can take place. The postbifurcation state can be one of the 
following: (1) a complex periodic attractor (phase-locked oscillations 
or mixed-mode oscillations); (2) a nonstrange attractor whose 
corresponding orbit exhibits the feature of intermittent excursions 
similar to those discussed in the context of intermittency mechanisms 
in Section 5.4; and (3) a chaotic attractor. 

If the coupling between the two oscillatory modes is strong enough, 
the quasiperiodic attractor loses stability, resulting in a phase-locked 
attractor. On the considered Poincard section, the closed loop is broken 
up, resulting in a discrete number of points. In this case, we have 
synchronization. As discussed in Section 4.5, synchronization can be 
studied for weak nonlinearities by using a perturbation method, such 
as the method of multiple scales, method of averaging, or method of 
normal forms. As the control parameter is further varied, the transition 
from the periodic attractor to a chaotic attractor can take place through 
either a period-doubling scenario or an intermittency scenario. 

Let us suppose that the quasiperiodic flow is characterized by the 
frequencies w2 and w1. An application of a suitable small perturbation 
to this flow can result in the replacement of this flow by a flow 
asymptotic to attracting periodic orbits with a rational frequency ratio 
p / q .  As discussed in Section 4.5, this phenomenon is called frequency 
locking or synchronization because the frequency ratio wz/wl locks 
into a rational number p / q .  When wz/wI  is close to p / q ,  an interesting 
nonstrange attractor can be the postbifurcation state. An orbit on this 
attractor spends a long time near the ghost or phantom of the phase- 
locking orbit, from which it occasionally unlocks. 

A third way the system may evolve as the control parameter is 
varied is the destruction of the torus and the emergence of a chaotic 
attractor. This transition to chaos through a two-period quasiperiodic 
attractor is often described as chaos via torus breakdown. 

To understand the routes described in this section, we consider a 
Poincar6 section associated with the dissipative flow on the two-torus. 
The corresponding dissipative map is two-dimensional, which can be 
put in the form 

Bi+l = Pi(Oi,ri) (mod 2 ~ )  (5.5.2) 
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where 8 and r are angular and radial coordinates, respectively, and 8 
is restricted to the interval [0,27r) by using the mod 27r operation. We 
consider a location close to the secondary Hopf bifurcation point. Fur- 
thermore, we assume that dissipation occurs due to strong contraction 
in the radial direction and that, after transients die out, there is a sim- 
ple attracting closed curve on the PoincarC section. In this case, we 
have ri = g ( 8 , ) ,  and the two-dimensional Poincard map reduces to 

(5.5.4) 

which resembles the circle map of Section 4.2. For a quasiperiodic 
attractor, the rotation number associated with (5.5.4) is irrational. 
As discussed earlier, one way in which the system can evolve as the 
control parameter is varied beyond the secondary Hopf bifurcation 
point is the destruction of the torus and the emergence of chaos. In 
this scenario, the closed curve in the Poincar6 section deforms, then 
develops wrinkles, becomes fractal, and finally breaks down. Thus, 
the transition to chaos from the two-period quasiperiodic attractor 
occurs through the destruction of the closed curve in the Poincard 
section. Although the Poincard map associated with the evolution is an 
invertible map, the reduced map, such as (5.5.4), becomes noninvertible 
after wrinkles develop in the Poincar6 section. When the reduced map 
becomes noninvertible, the rotation number is not well defined. This 
means that the associated evolution need not be either quasiperiodic or 
periodic; that is, chaos is possible. Therefore, the loss of invertibility 
of the reduced map is a landmark for torus breakdown and the ensuing 
emergence of chaos. 

For illustration, we consider the circle map described by 

I( 
2a 

zntl = F(z,) = 2, + R - -sin (27rz,) (5.5.5) 

where z, is restricted to the interval [0, 1) by using the mod 1 operation. 
The parameter I( determines the strength of the nonlinearity of the 
map. There are two parameters in this equation, namely, I( and R. 
In Figure 5.5.2, we depict how the nature of this one-dimensional map 
changes with respect to I( when R is held constant at 0.2 (Jensen, Bak, 
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Figure 5.5.2: Circle map for R = 0.2: (a) K = 0.9, (b) A' = 1.0, and (c) 
K = 1.2. The map is invertible in (a) and (b) and noninvertible in (c). 

and Bohr, 1984). For X = 0.9, the map is invertible. Furthermore, 
numerical simulations show that forward iterates of this map settle on a 
quasiperiodic orbit; that is, the winding number is irrational. At K = 1, 
there is an inflection point at z = 0. ( A  Taylor series expansion of the 
trigonometric term in the vicinity of z = 0 indicates that this inflection 
is due to a cubic nonlinearity.) The circle ma.p is still invertible at 
K = 1.  However, in this case, numerical simulations show that forward 
iterations of this map settle on a phase-locked orbit; that is, the 
corresponding winding number is rational. As A' is increased beyond 
1, the circle map becomes noninvertible as illustrated by Figure 5.5.2~. 
(The horizontal line F = 0.2 intersects the graph at  two locations, 
indicating that the map is no longer one-to-one.) As a consequence, 
the rotation number is no longer well defined, which means that chaos 
is possible. Numerical simulations indicate that forward iterates of this 
map settle on an irregular orbit, indicating chaos. 

From the extensive studies that have been carried out (e.g., Jensen 
et al., 1984), it is now known that the line K = 1 separates two 
regions in the I( - R plane, as shown in Figure 4.2.1. For K < 1,  
as R varies at a fixed K, the Arnold tongues are separated and the 
map displays both periodic and quasiperiodic motions. As 11' -t 1, the 
widths of the Arnold tongues increase; that is, the rational intervals and 
hence the mode-locking regions increase in size. At the critical value 
I( = 1 ,  Jensen et al. (1984) found that the set of rational intervals 
is fractal. Consequently, the different mode-locking intervals form a 
Cantor set whose dimension is about 0.87. Hence, on 11' = 1, the 
probability that the winding number is rational for a random choice of 
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R is almost 1 .  For I( > 1,  the mode-locking regions overlap, which 
implies that many different periodic motions can coexist for given 
( I ( ,  R), depending on the initial conditions. Moreover, the rotation 
number, which characterizes the periodicity or quasiperiodicity of the 
considered motion, becomes undefined. An undefined rotation number 
means that chaos is possible. For the circle map, which is invertible 
for I( _< 1 and noninvertible for I( > 1 ,  the line K = 1 represents the 
critical boundary. In the case of other maps, the critical boundary may 
not be a straight line. The study of Bohr, Bak, and Jensen (1984) serves 
as a good example. They constructed Poincari maps for a periodically 
forced, damped oscillator and reduced them to one-dimensional maps. 
The numerically found critical boundaries for these one-dimensional 
maps are well-defined curves in the two-parameter plane. The study of 
Aronson, McGehee, Kevrekidis, and Aris (198G) is illustrative of how 
complex the critical boundary can be in higher-dimensional maps. The 
critical boundary is not well defined in many higher-dimensional maps. 

In the transition to chaos, the sequence of bifurcations that takes 
place depends on how the parameters are varied in the two-parameter 
plane, the structure of the mode-locking regions, and the critical 
boundary. To fix ideas, we consider a hypothetical onedimensional 
map with the two parameters K and R. Three mode-locking regions 
and the critical boundary of this map are depicted in Figure 5.5.3. 
This map is invertible below the critical curve and noninvertible above 
it. Along route 1 ,  R is held fixed a t  an irrational number while I( 
is gradually varied. Along this route, we proceed from quasiperiodic 
motions to phase-locked motions to chaos. The phase-locked motions 
occur at the location where the critical boundary is crossed. In some 
cases, because of the fractal nature of the critical boundary, it is 
possible to go directly from quasiperiodic motions to chaos without 
phase locking. Both I( and R need to be varied to follow routes 2 
and 3. In the case of route 2, we go from phase-locked motions to 
chaos. On the other hand, in the case of route 3, we alternate between 
quasiperiodic and phase-locked motions before the emergence of chaos. 
In another system, it may be possible to realize routes 2 and 3 by 
varying a single parameter such as I ( .  The realization depends on the 
structure of the phase-locking regions and the critical boundary for the 
considered map. 
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Figure 5.5.3: Three possible routes to chaos in the X - R plane. 

Curry and Yorke (1977) considered a dissipative two-dimensional 
map and numerically illustrated that phase locking occurs before the 
emergence of the chaotic attractor. A detailed exposition of the work 
of Curry and Yorke is provided in Chapter VII of the book by Berg&, 
Pomeau, and Vidal (1984). Aronson, Chory, Hall, and McGehee (1982) 
also conducted interesting numerical studies with maps in the plane. 
The scaling behavior in the route to chaos via torus breakdown was 
investigated by Feigenbaum, Kadanoff, and Shenker (1982), Rand, 
Ostlund, Sethna, and Siggia (1982), Shenker (1982), and Ostlund, 
Rand, Sethna, and Siggia (1983). 

Sano and Sawada (1983) considered a fourth-order autononious sys- 
tem of differential equations with cubic nonlinearities and examined 
bifurcations by using a single control parameter. They numerically il- 
lustrated a quasiperiodic transition to chaos by using PoincarC maps, 
which were reduced to onedimensional maps in terms of an angular 
coordinate. Sano and Sawada showed that the one-dimensional map is 
invertible prior to the emergence of chaos and noninvertible after the 
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emergence of chaos, thus linking the destruction of the two-torus with 
the noninvertibility of the one-dimensional map. Matsumoto, Chua, 
and Tokunaga ( 1987) considered a three-dimensional autonomous sys- 
tem of differential equations representing a nonlinear electrical circuit. 
Through detailed analysis and experimental and numerical simulations, 
they illustrated chaos through two different quasiperiodic routes. In one 
of the routes, as the control parameter was varied, quasiperiodic and 
phase-locked oscillations appeared and disappeared alternately before 
chaos emerged through a cyclic-fold bifurcation of a phase-locked solu- 
tion. In another route, as the control parameter was varied, quasiperi- 
odic and phase-locked oscillations appeared and disappeared alter- 
nately before chaos emerged through a period-doubling sequence from 
a phase-locked oscillation. Choi and Noah (1992a) also observed this 
transition to chaos in the study of a rotating machinery. Furthermore, 
above criticality, Guevara, Glass, and Shrier (1981), Perez and Glass 
(1982), Glass, Guevara, Shrier, and Perez (1983), Schell, Fraser, and 
Kapral(1983), Mackay and Tresser (1984), and BClair and Glass (1985) 
observed that the phase-locked oscillations within a mode-locking re- 
gion experience period-doubling bifurcations leading to chaos. 

The theorems of Afmimovich and Shilnikov (1983a) address the 
destruction of two-tori in RN for N 2 3 in the presence of two or more 
control parameters. 

Experimental observations of chaos via torus breakdown include 
those of Fenstermacher, Swinney, and Gollub (1979), Roux (1983), 
BergC, Pomeau, and Vidal (1984, Chapter VII), Anishchenko, Letch- 
ford, and Safonova (1985), Argoul and Roux (1985), Stavans, Heslot, 
and Libchaber (1985), Argoul, Arneodo, Richetti, and Roux (1987), 
Basset and Hudson (1989), and Xu and Schell (1990). 

Example 5.9. We consider, after Steinmetz and Larter (1991) and 
Larter, Olsen, Steinmetz, and Geeat (1993), the following four-dimen- 
sional system: 

A = -klABX - k3ABY + k ,  - k-,A 

X = klABX - 2k2X2 + 2k3ABY - k iX  + ke 

(5.5.6) 

(5.5.8) 
B = -klABX - k3ABY + ka (5.5.7) 
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Figure 5.5.4: Bifurcation diagram for the peroxidase-oxidase reaction The 
primary Hopf bifurcation shown i n  (a) separates the region of oscillatory 
solutions from the region of stable steady states. The region in (a) enclosed 
in the box is enlarged in (b), and both of the Hopf bifurcations are indicated 
along with the three regions they define i n  (b). The dashed line in (b) is the 
one para.meter path chosen for studying the transition to chaos. Reprinted 
with permission from Steinmetz and Larter (1991). 

Y = -k3ABY + 2 k z X 2  - kaY (5.5.9) 

This system represents a model of the peroxidase-oxidase reaction. 
SteiIimetz and Larter (1991) performed a bifurcation analysis by letting 

0.1175, and ks = 0.5. In the bifurcation set shown in Figure 5.5.4a1 
the loci of the primary Hopf bifurcation (PHB) and secondary Hopf 
bifurcation (SHB) points are displayed in the k ,  - kl  plane. The PHB 
curve separates equilibrium solutions from dynamic solutions, which 
may be periodic, quasiperiodic, or chaotic. By examining the stability 
of the periodic solutions just to the left of the PHR curve, Steinrnetz 
and Larter determined the SHB curve, which is shown together with an 
enlargement of the PHB curve in Figure 5.5.4b. Thus, between the two 
I-Iopf bifurcation curves, the solutions are periodic, and immediately to 
the left of the SBH curve the solutions are two-period quasiperiodic. 
The corresponding oscillations occur 011 a two-torus attractor. A n  
example is shown in Figure 5.5.5. 

Fixing k7 at 0.775 and decreasing kl slowly from a value to the 
right of the PHB curve in Figure 5.5.4b, one finds that the solution 

kz = 1250, k3 = 0.046875, kq = 20, kg = 1.104, ks = 0.001, k-7 = 
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Figure 5.5.5: Quasiperiodicity on a two-torus in the peroxidase-oxidase 
reaction: kl = 0.2 and k7 = 0.775. Reprinted with permission from Larter 
et al. (1993). 

is constant. As kl is decreased to cross the PHB curve, the solutions 
become periodic. As kl is decreased below k s H B  = 0.206, the solutions 
become two-period quasiperiodic. The two-torus realized at  Icl = 0.2 is 
shown in Figure 5.5.5. Immediately to the left of the SHB curve, a t  each 
kl, a PoincarC section provides a cross section of the associated two- 
torus. The intersections with a Poincard section fill up a closed curve 
uniformly and densely. In Figure 5.5.6a1 we show it Poincark section 
of the two-torus attractor realized at  kl = 0.205. The cross section 
of the two-torus attractor is elliptical. As Icl is decreased further, 
the elliptical section grows without distortion. As Icl is substantially 
decreased below k S H B ,  the ellipse gets distorted through flattening 
at one end and bulging at the other end, it8 shown in Figure 5.5.6b 
at Icl = 0.170. This distortion results in the wrinkles seen in Figure 
5.5.6b. Moreover, the intersections with the Poincard section cover the 
closed curve nonuniformly. The highly wrinkled torus is associated 
with the development of an inflection point in the (reduced) circle map 
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Figure 5.5.6: The four stages of the torus in the peroxidase-oxidase reaction. 
The Poincart! sections are shown for (a) the smooth, undistorted torus at 
Icl = 0.205; (b) the wrinkled torus at Icl = 0.170; (c) the fractal torus 
at k1 = 0.1634; and (d) the broken torus at k1 = 0.1178. Reprinted with 
permission from Steinmetz and Larter (1991). 

constructed from the Poincark section (Fig. 5.5.7~). The presence of 
the inflection point means that the inverse of the map may be multi- 
valued, which in turn means that the rotation number is undefined. 
Therefore, chaos is possible. As Icl is decreased further, the torus 
gets further distorted. The coverage of the closed curve of the points 
of intersection with the Poincarb section becomes increasingly more 
nonuniform, and then the torus becomes fractal, as shown in Figure 
5 . 5 . 6 ~  at Icl = 0.1634. The fractal structure of the Poincar6 map 
emphasizes the landmark of folding and stretching of trajectories on 
the two-torus. The fractal torus is associated with the development of 
a region of negative slope in the circle map, as seen in Figure 5.5.7d. 
The negative slope makes the one-dimensional map noninvertible and, 
consequently, chaos is possible. As Icl is decreased further, the torus is 
destroyed, as illustrated in Figure 5.5.6d at  Ic1 = 0.1178. In fact, the 
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Figure 5.5.7: Circle maps illustrating the transition from quasiperiodicity to 
chaos. The corresponding values of kl are (a) 0.2057, (b) 0.190, (c) 0.170, and 
(d) 0.1634. Reprinted with permission from Steinmetz and Larter (1991). 

graph is a section through a strange attractor. Therefore, chaos has 
emerged as a result of the destruction of the torus. 

The transition from a fractal torus to a broken torus can be 
characterized through Poincark sections as discussed in the previous 
paragraph. There is an alternative way to characterize this transition. 
Thus far, the discussed states of the peroxidase-oxidase reaction beyond 
the SHB curve are either quasiperiodic or chaotic. For kl < k S H B ,  
Larter and Steinmetz (1991) also found periodic states alternating 
between quasiperiodic and chaotic states. These periodic states can be 
used to characterize the transition from a fractal torus to a broken torus. 
The time traces and PoincarC sections for three such states are depicted 
in Figure 5.5.8. These complex periodic states cannot be characterized 
in terms of a single frequency as simple periodic oscillations can be. 
The finite number of points in the Poincark sections shown in Figures 
5.5.8d-f confirm the periodicity of these states. The section shown in 
Figure 5.5.8d corresponds to a phaselocked motion on a smooth two- 
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Figure 5.5.8: Phase-locked and mixed-mode oscillations in a model of 
the peroxidase-oxidase reaction. The corresponding k1 values are (a) 
0.193762205, (b) 0.1621, and (c) 0.1033. Reprinted with permission from 
Larter and Steinmetz (1991). 

torus. The corresponding reduced map is invertible. The periodic 
oscillations associated with Figures 5.5.8b and 5.5.8e correspond to a 
phaselocked motion on a wrinkled torus. At the corresponding value 
of k1, the reduced map is not invertible. The periodic oscillations 
in Figure 5.5.8~ occur at a value of kl at  which the torus is broken. 
The corresponding PoincarC section in Figure 5.5.8f is indicative of 
phase-locking on a broken torus. In this case, the periodic oscillations 
are quite complex. One can clearly distinguish between the large- 
and small-amplitude oscillations in Figure 5.5.8~. However, no such 
clear distinction can be made for the oscillatory states occurring on 
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a wrinkled or fractal torus. Periodic oscillations, such as those seen 
in Figure 5 . 5 . 8 ~ ~  where there is a clear disparity between small- 
amplitude and large-amplitude oscillations, are called mixed-mode 
oscillations. The appearance of these oscillations marks the transition 
from the fractal torus to the broken torus. 

In the literature, the following two notations have been commonly 
used to characterize mixed-mode oscillations: Ls and Pf (e.g., Marek 
and Schreiber, 1991; Field and Gyorgyi, 1993). In both of these 
notations, L is the number of large-amplitude oscillations and S is the 
number of small-ampli tude oscillations per cycle. Thus, the periodic 
state in Figure 5.5.8~ can be denoted by either 51° or Pio. The rotation 
number of this state is (S + L)-' or k. 

The rotation number is also helpful in characterizing the transitions 
from the smooth torus to the wrinkled torus; from the wrinkled torus 
to the fractal torus; and from the fractal torus to the broken torus. 
In Figure 5.5.9, we display the variation of the rotation number with 
respect to the parameter k{ = ksHB - k l .  The interval corresponding 
to the smooth or undistorted torus is too small to be discerned. The 

0.095 1 I I  

I 1  . .  I I  

0.015 
0.075 0.15 

ki 

Figure 5.5.9: The rotation number as a function of Ici = k s ~ ~  - & I .  The 
number of large oscillations in each of the cascades on the broken torus is 
indicated. Reprinted with permission from Larter and Steinmetz (1991). 
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transition from this torus to the wrinkled one corresponds to the 
minimum that occurs a t  a very small value of ki. Furthermore, the 
transition from the wrinkled torus to the fractal torus cannot be easily 
identified from the variation of the rotation number with I c : .  However, 
aa discussed earlier, this transition can be easily identified from the 
variation of the reduced or circle map with Ic: because it corresponds 
to the development of an inflection point in this map. The transition 
from the fractal torus to the broken torus can be easily identified from 
the variation of the rotation number with ki, as seen in Figure 5.5.9. 
This trarisition is marked by the appearance of the six devil staircases, 
which are labeled with the sequence numbers 6, 5,4, 3 , 2 ,  and 1. These 
numbers represent the number of large-amplitude oscillations L per 
cycle in each of the cascades of phase-locking states on the broken 
torus. In Figure 
5.5.10, the 5-sequence staircase is illustrated. Many of the steps in the 
staircases are associated with very complex periodic states of the form 

Each staircase is referred to as an &sequence. 

5 ’ O  

* 510511 - 
5” 
! - 511512 - 

Figure 5.5.10: Variation of the rotation number p with Ici for the 5-sequence 
staircase The primary and secondary states are labeled. Reprinted with 
permission from Steinmetz and Larter (1991). 
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(Pf)m(Pttl)n. These complex states are referred to as concatenated 
states. They are formed by combining the two primary states Pf and 
Pttl. The rotation number for such a complex state is given by 

m t n  
= m(L t S) + n(L t s + 1) 

(5.5.1 0) 

The steps within each staircase follow a Farey tree construction, as 
noted by Steinmetz and Larter (1991) and Larter, Olsen, Steinmetz, 
and Geest (1993). Maselko and Swinney (1986, 1987) observed mixed- 
mode oscillations in  the Belousov-Zhabotirisky reaction, which they 
explained in terms of a Farey tree construction. Petrov, Scott, and 
Showalter ( 1992) examined the development of mixed-mode oscillations 
in a chemical system. 

The mixed-mode oscillations may become chaotic via, for example, 
a period-doubling scenario or an intermittericy scenario. The resulting 
chaotic states are random mixtures of nearby periodic states. The 
chaotic state that is a mixture of P t ,  and Pft' is denoted by C, , 
where C stands for chaos. In Figures 5.5.11b-d we display the 
three periodic states P f ,  P; and P:, and in Figure 5.5.11e we display 
the chaotic state C:l3 observed in an experiment on the Beiousov- 
Zhabotinsky reaction by Turner, ROUX, McCormick, and Swinney 
(1981). Each chaotic regime can contain many subintervals that are 
periodic, and chaotic states exist between periodic orbits, as seen in 
Figure 5.511a. The result is what is called an alternating periodic- 
chaotic sequence. Such sequences are prevalent in chemical reactions 
(e.g., Swinney, 1983; Marek and Schreiber, 1991; Field and Gyorgyi, 
1993). 

s,st 1 

5.5.3 Torus Doubling 
A second scenario by which a two-period quasiperiodic motion bifur- 
cates into chaos is torus doubling. In this scenario, a fixed-point 
solution loses stability as a control parameter is varied via a supercrit- 
ical Hopf bifurcation, leading to the birth of a stable periodic solution 
characterized by the frequency w l .  There is a point attractor in a corre- 
sponding Poincark section. As the control parameter is further varied, 
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Figure 5.5.11: (a) An alternating periodic-chaotic sequence in the Belousov- 
Zhabotinsky reaction. (b)-(d) Time series for the states P f ,  P; ,  and P:. (e) 
A time series for the third chaotic state C;l3, where the number of small- 
amplitude oscillations following each large-amplitude oscillation is either 
two or three, but is unpredictable. Reprinted with permission from Turner, 
ROUX, McCormick, and Swinney (1981). 

the periodic solution loses stability via a supercritical secondary Hopf 
bifurcation, prqducing a second (incommensurate) frequency w2. The 
resulting two-period quasiperiodic attractor is a two-torus. The inter- 
sections with a Poincar6 section of this attractor densely fill a closed 
curve when wz/wI is irrational. As the control parameter is further 
varied, the two-torus attractor undergoes a cascade of period-doubling 
bifurcations in which the period 2n/wz is doubled in each bifurcation. 
After each period-doubling bifurcation, the postbifurcation state is a 
new torus that forms two loops around the original torus. 

There are two possibilities: The cascade is either complete or 
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incomplete. In the latter case, the system undergoes a transition to 
chaos, as in the preceding section, on a deformed torus, as observed by 
Anishchenko, Letchford, and Safonova (1985) and Bassett and Hudson 
(1989). When the cascade is complete, chaos emerges at  the end of the 
sequence, and the system response is a chaotically modulated motion. 
An experimental example is provided in Figure 5.5.12. These results, 
which show a sequence of period-doubling tori culminating in chaos, 
were obtained by Balachandran and Nayfeh (1991). They excited 
a two-beam two-mass structure (see Fig. 7.9.4), near the primary 
resonance of the second vibration mode at  a constant excitation level 
of 30 mili g rms. The response was monitored with two strain gauges, 
which were mounted along the axes of the horizontal and vertical 
beams, as shown in Figure 7.9.4. The results shown in Figure 5.5.12 
are PoincarC sections of the motion obtained by stroboscoping the 
strain-gauge outputs at  the excitation frequency. The intersections 
in Figure 5.5.12a uniformly fill up, a closed curve, indicating a smooth 
or undistorted two-torus. We see two loops of intersection points in 
Figure 5.5.12b. Each of these loops is similar to the single loop seen in 
Figure 5.5.12a. It appears that two asymmetric attractors (the one 

Figure 5.5.12: Torus doublings observed in an experiment with a two-beam 
two-mass structure. Shown are PoincarC sections of the motion. Reprinted 
with permission from Balachandran and Nayfeh (1991). 
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associated with Fig. 5.5.12a and its reflected version) merged to 
form the attractor associated with Figure 5.5.12b. The attractor 
associated with Figure 5.5.12b undergoes a sequence of torus-doubling 
bifurcations that result in the creation of a chaotic state. Poincari! 
sections of the attractor after the first, second, and third bifurcations 
are shown in Figures 5.5.12~-e, respectively. Figure 5.5.12f corresponds 
to the chaotic attractor observed at the culmination of the scenario. 
The power spectra obtained in the experiments are also illustrative of 
this sequence (Balachandran and Nayfeh, 1991). 

In the experiments of Anishchenko, Letchford, and Safonova (1985), 
the two-torus attractor realized after the first torus-doubling bifurca- 
tion was destroyed by the subsequent bifurcations, resulting in chaos. 
In other experiments with a nonlinear circuit , Anishchenko, Astakhov, 
Letchford, and Safonova ( 1983a) observed a complete torus-doubling 
sequence to chaos. Torus doubling wits also observed in the string ex- 
periments of Molteno and Tufillaro (1990) and Molteno (1993). Both 
incomplete and complete sequences of torus doublings have also been 
observed in many analytical and numerical studies. A partial list in- 
cludes the studies of Arneodo, Coullet, and Spiegel (1983), fianceschini 
(1983), Kaneko (1984), Miles (1984), Tousi and Bajaj (1985), Nayfeh 
and Zavodney (1986), Gu and Sethna (1987), Nayfeh (1987a,b, 1988), 
Nayfeh and Nayfeh (1990), Nayfeh and Raouf (1987), Streit, Bajaj, and 
Krousgrill(1988), Johnson and Bajaj (1989), Umeki and Kambe (1989), 
Bajaj and Johnson (1990, 1992), Bajaj and Tousi (1990), Miles and 
Henderson (1990), Pai and Nayfeh (1990), Raouf and Nayfeh (1990a,b) 
Nayfeh, Raouf, and Nayfeh (1991), Restuccio, Krousgrill, and Bajaj 
(1991), and Steindl and Troger (1991). 

5.6 CRISES 

The term crisis was introduced by Grebogi, Ott, and Yorke (1983a) to 
describe certain sudden qualitative changes in the chaotic dynamics of 
dissipative dynamical systems as a control parameter is varied. A crisis 
occurs when a chaotic attractor comes into contact with an unstable 
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periodic solution. It is to be noted that when a chaotic attractor comes 
into contact with the stable manifold of either an unstable periodic 
solution or a saddle point, due to the nature of the stable manifold, 
it comes into contact with the unstable periodic motion or the saddle 
point. 

Grebogi, Ott, Romeiras, and Yorke (1987) distinguished three 
types of crises, according to the nature of the discontinuity induced 
in the chaotic attractor. In the first type, the chaotic attractor is 
suddenly destroyed as the control parameter a passes through its 
critical crisis value a,; this is called a boundary or an exterior 
crisis. In the postbifurcation state, the motion is transiently chaotic 
before it tends to either a bounded motion (i.e., fixed point, periodic 
solution, quasiperiodic solution, or chaotic solution) or an unbounded 
solution. A boundary crisis is an example of what is called a blue 
sky catastrophe or dangerous bifurcation. This catastrophe refers 
to the sudden disappearance of an attractor from the state space of a 
system (Abraham, 1985; Thompson and Stewart, 1986; Abraham and 
Shaw, 1992). 

In the second type, the size of the chaotic attractor suddenly 
increases as a is varied through a,; this is called an interior crisis. 
During this crisis, the chaotic attractor collides with an unstable 
equilibrium or periodic solution that is in the interior of the basin 
of attraction. In the third type, two or more chaotic attractors of 
a system with symmetries merge to form one chaotic attractor as a 
is varied through a,; this is called an attractor merging crisis. 
The new chaotic attractor can be larger in size than the union of the 
chaotic attractors before the crisis. As the paxameter a is varied in 
the other direction, the inverse of these crises occurs; that is, a sudden 
creation, shrinking, or splitting of a chaotic attractor occurs. The latter 
two crises are sometimes called explosive bifurcations (Thompson, 
Stewart, and Ueda, 1994). In each of these crises, the postbifurcation 
state is characterized by a certain temporal behavior. This behavior 
has been quantified in terms of time scales by Grebogi, Ott, Romeiras, 
and Yorke (1987). 

Crises have been observed in many experimental and numerical 
studies (e.g., fissler, 197Gb; Sim6, 1979; Huberman and Crutchfield, 
1979; Ueda, 1980a; Grebogi, Ott, and Yorke, 1983a; Jeffries and Perez, 
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1983; Brorson, Dewey, and Linsay, 1983; Ikezi, deGrassie, and Jensen, 
1983; Gaapard and Nicolis, 1983; Rollins and Hunt, 1984; Gwinn 
and Westervelt, 1985; Iansiti, Hu, Westervelt, and Tinkham, 1985; 
Dangoisse, Glorieux, and Hennequin, 1986; Ishii, Fujisaka, and Inoue, 
1986; Carroll, Pecora, and Rachford, 1987; Gu and Sethna, 1987; Streit, 
Bajaj, and Krousgrill, 1988; Bajaj, 1991; Bajaj and Johnson, 1992; 
Wang, Abed, and Hamdan, 1994; and Nayfeh and Chin, 1994). 

Next, we give several examples of crises in discrete- and continuous- 
time systems. 

Example 6.10. 
consider the one-dimensional quadratic map 

Following Grebogi, Ott, and Yorke (1983a), we 

2 (5.6.1) x,+1 = a - x,, 

Its bifurcation diagram is shown in Figure 5.6.1. The fixed points of 
this map are given by 

x = a - - 2  2 (5.6.2) 

Hence, when a < - f ,  there are no fixed points, and all orbits initiated 
from I z I < 00 tend to --oo as n tends to 00. As a is increased from a 
value less than - f ,  a tangent bifurcation occurs at a = -: at which a 
stable and an unstable fixed point are created. The eigenvalue of the 
Jacobian of the map is given by 

x = -2x 

For the fixed point z,, 

X = l - J i T G  (5.6.4) 

and hence it is stable for - f  < a < :. On the other hand, for the fixed 
point x* , 

X = l + J r n  (5.6.5) 
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Figure 5.6.1: Bifurcation diagram for the quadratic map. 

and hence it is unstable for all a > - f .  The evolutiuns for ah initial 
conditions greater than I z* I diverge to -m and for all initial conditions 
less than I z* I converge to 2,. In other words, the basin of attraction 
of the periodic orbit z, is I 2 I _< -z*;z* is plotted as a dashed curve 
in Figure 5.6.1. 

As a is increased past i, the stable fixed point undergoes a period- 
doubling bifurcation because A exits the unit circle through -1, result- 
ing in the creation of two period-two orbits and an unstable period-one 
orbit. Further increases in a lead to a whole cascade of period doublings. 
This sequence has a finite accumulation point a t  a = am = 1.40095. 
At this point, there is an infinite number of unstable periodic orbits 
because each period-doubling bifurcation gives rise to an unstable pe- 
riodic orbit. As a is increased beyond a,, a chaotic attractor emerges. 
The basin of attraction is again I z I 5 -z*. There are many small 
intervals of a values between am and 2 for which the unique stable so- 
lution is periodic, repeating exactly after rn iterates. In other words, 
there are many small windows of periodic solutions, as seen in Figure 
5.6.1. As a -+ 2, the periodic windows become narrower and chaotic 
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Figure 5.6.2: Return maps of the quadratic map: (a) a = 1.97 and (b)  a = 
1.99. 

solutions predominate. The basin of attraction of the periodic and 
chaotic orbits for - f  < a < 2 is given by 12 1 5 -2.. 

As a is increased past 2, the attracting chaotic orbit is destroyed, 
and all initial conditions tend to orbits that approach -m. In 
other words, the chaotic attractor experiences a crisis or a blue sky 
catastrophe at a = 2. It is clear from Figure 5.G.1 that as a t 2 
the size of the chaotic attractor increases, and at a = 2 it touches the 
unstable fixed point x*. This can be seen more clearly in Figure 5.6.2, 
where we show the return maps for a = 1.97 and 1.99. The small circle 
on the identity map x,+1 = 2, is the unstable point x+. The heavy dots 
are 1,000 long-term iterates computed from (5.6.1) after discarding the 
first 500 iterates. Comparison of parts a and b of Figure 5.6.2 shows 
that the left edge of the chaotic attractor moves closer to the unstable 
point x+ as a -+ 2. For the one-dimensional map under corisideration, 
the left edge of a chaotic attractor is the second image of 5 = 0; that 
is, x = a - a'. Hence, the distance between the left edge of the chaotic 
attractor at a and the unstable fixed point 2* at a is (Stewart and 
Lansbury, 1992) - 

d = a - a * + - +  ; + u  
2 \I' (5.6.6) 

which is a continuous function of a. It is easily seen that d = 0 when 
a = 2. Thus, the destruction of the chaotic orbit coincides with its 
collision with the unstable fixed point x* on its basin boundary. As a 
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Figure 5.6.3: Time series z,, for the quadratic map near the boundary crisis: 
(a) a = 1.99 and (b)  a = 2.01. 

result, both the chaotic attractor and its basin are destroyed. This is an 
example of a boundary or an exterior crisis (Grebogi, Ott, and Yorke, 
1983a) or a blue sky catastrophe (Abraham, 1985; Abraham and Shaw, 
1992). 

Beyond a = 2, the chaotic attractor is unstable to perturbations, 
and for all initial conditions the iterates ultimately diverge to -w. The 
result is a discontinuous or catastrophic disappearance or death of the 
chaotic attractor. However, it leaves behind a definite signature called 
transient chaos. An example is shown in Figure 5.6.3b. For values of a 
slightly larger than 2, typical orbits started with initial conditions in the 
region formerly occupied by the destroyed chaotic attractor appear to 
bounce around in this region (ghost or phantom of the chaotic attractor) 
in a chaotic fashion, which is indistinguishable from the behavior (Fig. 
5.6.3a) for values of a slightly less than 2. This behavior may extend 
for a possibly long time, depending on the initial conditions, but the 
orbit will eventually move away from the region of the ghost attractor 
and diverge to -00. This phenomenon, where the initial dynamics of 
the system appears to be chaotic, is called transient chaos (Yorke 
and Yorke, 1979; Parker and Chua, 1987). The time length of a chaotic 
transient depends sensitively on the initial conditions. However, looking 
at a very large ensemble of initial conditions in the basin of the ghost or 
phantom attractor close to a,, one finds that the time length of chaotic 
transients is given by the exponential probability density (Grebogi et 
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Figure 5.6.4: Enlargement of the bifurcation diagram in the region of the 
period-three window. 

al., 1987) 

( 5  .6. 7) 

where TO is the characteristic transient life time. 
As u is decreased through 2 (i-e., the control parameter (I! is varied 

through (I!~ in the other direction), the crisis creates rather than destroys 
a chaotic attractor. 

During a second type of crisis (namely, interior crisis) in the 
quadratic map, the chaotic attractor collides with an unstable orbit 
within its basin of attraction. To illustrate this, we enlarge the period- 
three window in Figure 5.6.1. The result is shown in Figure 5.6.4. 
Period-three orbits are solutions of 

z = f3(z;u)  where f ( z ; u )  = u - 2 2 (5 .6.8)  

There are two obvious solutions of (5 .6.8) ,  namely, the period-one 
solutions given by (5.6.3). In this range of a, both of them are unstable. 
The other solutions can be obtained graphically or numerically. In 
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Figure 5.6.5: Third iterated maps of the quadratic map: (a) a = 1.74, (b) 
a = 1.75, and (c) a = 1.76. 

Figure 5.6.5, we plot the functions f3(2), the third return map, and z 
for three values of a: (a) at  the left of the window where a = 1.74, (b) 
at the start of the window where a = 1.75, and (c) inside the window 
where a = 1.76. At the left of the window, the curve f3(z) intersects 
the curve y = z twice: once at  zd and the other at z*, both of which are 
unstable at this value of a. At the start of the window, the curve f3(2) 
is tangent to the curve y = z at three values of z. These three points are 
the cyclic steady-state values at the start of the window. As discussed 
earlier, this type of bifurcation is called tangent bifurcation. For 
values of a slightly larger than 1.75, one can expect intermittent chaos, 
as discussed in Section 5.4. For a slightly larger than 1.75, in addition 
to the two isolated intersections found for a < 1.75, the curve f3(z) 
intersects the curve z at three pairs of values of 2. The slopes of f 3 ( z )  
in the neighborhood of three of the latter six points (one from each 
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close pair) are sufficiently steep that the trajectory wanders away from 
them. In other words, the eigenvalues of the Jacobian of f3(x) at these 
points are outside the unit circle, and hence they are unstable. The 
dashed curves in Figure 5.6.4 denote the unstable period-three orbit 
created at the tangent bifurcation. On the other hand, the eigenvalues 
of the Jacobian of f3(z) at the other three points are inside the unit 
circle, and hence they are stable. Consequently, the cyclic behavior 
initiated by the tangent bifurcation continues to be stable. 

As a increases past 1.7692, the stable period-three orbit undergoes 
a sequence of period-doubling bifurcations, resultiiig in chaotic bands 
at a M 1.7806. We note that, for a range of values of a less than a 
critical value a: 2[ 1.790327492, the chaotic attractor lies within three 
distinct bards, but that, as a increases beyond a:, the three chaotic 
bands wideri to form a single chaotic band. This widening coincides 
with the three chaotic bands simult,aneously colliding witli the unstable 
period-three orbit (dashed curves in Fig. 5.6.4) created at a = 1.75, 
the location of the tangent bifurcation that initiated the period-three 
window. This bifurcation is called an interior crisis by Grebogi, Ott, 
and Yorke (1983a) because the sudden change in the chaotic attractor 
is the result of its collision with an unstable orbit within its basin 
boundary ( I  5 I 5 -z*). Such an interior crisis was first documented in 
a differential equation by Ueda (1980a,b, 1991). 

As a is decreased below a;,  the single chaotic attractor splits 
into three chaotic bands. Interior crises are examples of explosive 
bifurcations. 

An iriterior crisis is accompanied by what Grebogi, Ott, and Yorke 
(1983a) call a crisis-induced intermittency. For a value of a slightly 
larger than a:, the orbit on the attractor spends long stretches of time 
in the region to which the old (ghost) attractor was confined before 
the crisis. Following these stretches of time, the attractor bursts from 
the ghost region and bounces around in the new enlarged region. It 
then returns back to the ghost region for another stretch of time and 
then bursts again, and so on. In Figure 5.6.6a1 we plot the time series 
obtained for every third iterate of the map for a = 1.7903 < a: just 
before the crisis. At this value of a, the orbit cycles through the three 
chaotic bands. Because every third iterate is plotted, the orbit in Figure 
5.6.6a is confined to one of the three bands. In Figures 5.6.6b and 5 . 6 . 6 ~ ~  
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Figure 5.6.6: Time series ~3~~ for the quadratic map iiear the crisis teriiii- 
natiiig the period-three window: (a) u = 1.7903, (b)  a = 1.79033, and ( c )  
a = 1.7904. 

we plot the orbits for tlie two values 1.79033 arid 1.7904 of a above aj. 
When a is slightly larger than nj, i t  is clear from Figure 5.6.6b that for 
long stretches of time the orbit remains in one band arid occasionally 
bursts out of it, but the orbit returns back to this band or t,o one of 
the other bands. As a increases further away from a;, as is the case i n  
Figure 5 . 6 . 6 ~ )  the time stretch during wliich tlie orbit remains in one 
Land decreases arid tlie frequency of the bursts increases. 

Similar interior crises, resulting in the widening of a cliaotic attrac- 
tor, are associated with other tangent bifurcations. In Figure 5.67, we 
plot the functions f 5 ( x )  and 2 for three values of a near the start of 
the period-five window: (a) at the left of the window where a = 1.615, 
(11) a t  the start of the wiridow where a = 1.624399, and (c) inside the 
window where a = 1.64. At tlie left of the window, the curve f ' ( 2 )  
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Figure 5.6.7: Fifth iterated maps of the quadratic map: (a) a = 1.615, (b) 
a = 1.624399, and (c) a = 1.64. 

crosses the curve J at the two isolated points z+ and J,, which are un- 
stable at  this value of a.  At the start of the window, the curve f5(z) 
is tangent to the curve 5 at five values of 2. Again, these five points 
are the cyclic steady-state values at the start of the window. This is 
a tangent bifurcation, which is also associated with intermittent chaos, 
as discussed in Section 5.4. Inside the window (Fig. 5 . 6 . 7 ~ ) ~  in addition 
to the two isolated crossings that are unstable, the curve f5(z) crosses 
the curve J a t  five pairs of values of 2. Five of these points (one from 
each close pair) correspond to an unstable period-five orbit denoted by 
a broken curve in the enlarged bifurcation diagram in Figure 5.6.8, and 
the other five points correspond to a stable period-five orbit. 

It follows from Figure 5.6.8 that, for a range of values of a less 
than the critical value a; x 1.633359, the chaotic attractor lies within 
five distinct bands, As a increases beyond a; ,  the five chaotic bands 
suddenly widen to form a single band. This sudden change coincides 
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Figure 5.6.8: Enlargement of the bifurcation diagram in the region of the 
period-five window. 

precisely with the collision of the five chaotic bands with the unstable 
period-five orbit, which lies within the basin of attraction of the five- 
band attractor. As a decreases through a;, the single chaotic attractor 
undergoes a reverse interior crisis, resulting in the splitting of the 
attractor into five chaotic bands. 

Again, the interior crisis at  the end of the period-five window is 
associated with a crisis-induced intermittency. In Figure 5.6.9a, we 
plot the time series obtained for every fifth iterate just before the crisis. 
The attractor in this case cycles through five bands, and, because the 
fifth iterate is plotted, the trajectory is confined to one band. For 
a = 1.63336, which is slightly larger than a;, the trajectory remains in 
one band for a long stretch of time before it bursts out of it and then 
the orbit returns back to this band or to one of the other four bands. 
As a is increased further, the bursting frequency increases, as is evident 
in Figure 5.6.9~ at a = 1.63337. 

The third type of crisis present in the dynamics of the quadratic 
map is what Grebogi, Ott, and Yorke (1987) call attractor merging 
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Figure 5.6.9: Time series z6,, for the quadratic map near the crisis termi- 
nating the period-five window: (a) a = 1.63335, (b) a = 1.63336, and (c) 
a = 1.63337. 

crisis. To describe this crisis, we show in Figure 5.6.10 an enlargement 
of the bifurcation diagram in Figure 5.6.1. For a slightly less than 
0 3  M 1.4070, there are eight chaotic bands, while for a slightly larger 
than a3, there are four chaotic bands. For u < u3, an orbit initiated in 
one of these bands will return to that band after eight iterates. Thus, 
a band can be thought of as an attractor of fe(x), the eighth-iterated 
map. Similarly, the band with which it merges at a3 can be thought of 
as an attractor of f6(z). Thus, at a = a3,  we have simultaneous crises 
of these two bands in which they collide with the unstable period- 
four orbit between these bands. In Figure 5.6.11, we show the eight- 
band attractor a t  a = 1.403 and the unstable period-four orbit denoted 
by the crosses. As a is increased past a3, the bands collide with the 
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Figure 5.6.10: Enlargement of the bifurcation diagram of the quadratic map 
illustrating the attractor merging crisis. 
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Figure 5.6.11: Illustration of attractor merging crises. 
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unstable period-four orbit, resulting in their merger. The resulting 
four-band chaotic attractor at  a = 1.41 is shown. 

The four-band chaotic attractor increases in size as a is increased 
past 1.41 and gets closer to the unstable period-two orbit marked by the 
crossea in Figure 5.6.11. At  a = a2 M 1.4297, the bands collide with the 
unstable periodic orbit between them, resulting in their merger. The 
resulting two-band chaotic attractor at  a = 1.43 is shown. 

Again, as a is increased beyond 1.43, the two bands increase in size 
and move closer to the unstable period-one orbit marked by the cross 
in Figure 5.6.11. At a = a1 M 1.5425, the two bands collide with the 
unstable periodic orbit between them, resulting in their merger. The 
resulting single-band attractor at a = 1.55 is also shown in Figure 
5.6.1 1. 

Example 5.11. Following Abraham and Stewart (1986), we consider 
the velocity-forced van der Pol oscillator 

i = 0 . 7 ~  + lOs(0.1 - y2) (5.6.9) 

9 = -s t 0.25 sin (1.5t) + C (5.6.10) 

In Figure 5.6.12a, we show the Poincard section at a driving angle ?r for 
C = 0.08. At this value of C, the system has a chaotic (Birkhoff-Shaw) 
attractor and a saddle limit cycle. The Poiricard section of this limit 
cycle is the saddle point represented by the asterisk symbol *. The 
stable manifold of the saddle limit cycle is a smooth two-dimensional 
surface whose Poincard section is the one-dimensional stable manifold 
of the saddle point, as shown in Figure 5.6.12a. The chaotic attractor is 
represented by 1,000 return points computed from a single trajectory. 
The stable manifold of the saddle limit cycle forms the basin boundary 
of the chaotic attractor. As C is increased, the saddle limit cycle and 
its stable manifold move closer to the chaotic attractor. Moreover, the 
stable manifold develops a finger that also moves closer to the chaotic 
attractor, as seen in the Poincard section in Figure 5.6.1213 at C = 0.09. 
As C is increased further to a critical value C,, the chaotic attractor 
collides with the stable manifold of the saddle limit cycle (its basin 
boundary). As a result, the chaotic attractor and its basin of attraction 
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Figure 5.6.12: Poincarb sections of the orbits of the asymmetrically forced 
van der Pol equations (5.6.9) and (5.6.10) showing a blue sky disappearance 
of a Birkhoff-Shaw chaotic attractor by collision with an unstable periodic 
orbit (Thompson and Stewart, 1986). 
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are destroyed in a boundary crisis. For C > C,, the chaotic attractor no 
longer exists but is replaced with a chaotic transient. In Figure 5 . 6 . 1 2 ~ ~  
we show the Poincark section at  C = 0.097, which is slightly larger than 
the crisis value C,. If one starts a trajectory with an initial condition 
that is contained in the basin of attraction of the chaotic attractor that 
exists for C < C,, one will find that this trajectory typically moves 
toward the region in the phase space of the C < C, attractor (ghost 
attractor), bounces around in this region chaotically for a period of 
time that depends on the initial conditions and the closeness of C to 
C,, suddenly leaves this region, and moves off toward infinity, a chaotic 
transient. In Figure 5.6.13a1 we show the time history of the chaotic 
attractor at C = 0.096, and in Figure 5.6.13b we show the chaotic 
transient at C = 0.097. 
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I 

Figure 5.6.13: Typical temporal evolutions of s( t ) :  (a) C = 0.096 and (b)  
C = 0.097. 
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Figure 5.6.14: Phase portraits for the solutions of (5.6.11) demonstrating (a) 
period doubling at R = 0.6200, (b) period quadrupling at R = 0.6130, (c) 
chaotic motion at R = 0.6117, and (d) unbounded motion at R = 0.6116. 

Example 5.12. We consider, after Nayfeh and Khdeir (1986a,b), the 
roll response of a ship in beam seas modeled by 

e + (o .70q2(e  - 0.5988~ - 0.9398~) + 0.0455Q + 0 . 2 6 ~  
= (0.7037)~(8, - 0.5988; - 0.939e,") + 0.15 cos ~t (5.6.11) 

when 8, = 0.13963 radians. Starting from a value of R = 0.8, one 
finds that the response is periodic with the period T = 27r/R. As R 
is decreased, the period-one limit cycle deforms and increases in size. 
As R is decreased below approximately 0.626, the motion undergoes 
a sequence of period-doubling bifurcations, culminating in chaos at 
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n M 0.6117. In Figures 5.6.14a-c, we show the phase portrait u - ti, 
where u = 8 - 8,, of the period-two, period-four, and chaotic motions 
for R = 0.6200,0.6130, and 0.6117. As R is decreased below a critical 
value R,, which is very close to 0.6117, the chaotic attractor collides 
with the boundary of its basin of attraction. As a result, the chaotic 
attractor and its boundary are destroyed. Considering a trajectory with 
the same initial conditions as in Figure 5.6.14~ and setting R = 0.61 16, 
which is slightly below R,, we obtain the orbit shown in Figure 5.6.14d. 
The presence of a chaotic transient is clear. The associated orbit 
is initially attracted to the phase-space region formerly occupied by 
the chaotic attractor for R < 0,. It bounces around in this region 
apparently for a long time, but suddenly moves away from this region 
and approaches a distant solution, which is infinity in this case. 

Example 6.13. We follow Nayfeh, Hamdan, and Nayfeh (1990) and 
consider the response of a single-machine quasi-infini te busbar power 
system modeled by 

4 + 0.20254 = 1 - 1.969(1 -I- 0.1 cosRt)sin(8 - 0.1 sin fit) (5.6.12) 

Starting from a value of R larger than 9, we find that the response is 
periodic, having the period T = 2n/R. As R is decreased, the period- 
one orbit deforms, increases in size, and then undergoes a sequence 
of period-doubling bifurcations, culminating in chaos. The phase 
portraits of the period-two, period-four, and chaotic orbits found at 
R = 8.4,8.28, and 8.274 are shown in Figures 5.6.15a-c. As R is 
decreased to R,, which is slightly less than 8.274, the chaotic attractor 
collides with the boundary of its basin of attraction. As a result, the 
attractor and its basin are destroyed. For an R < R,, such as 8.26, the 
orbit bounces around chaotically in the phase-space region formerly 
occupied by the chaotic attractor for R > R,, but eventually moves 
away from this region and approaches infinity. 

Example 5.14. Following Thompson and Stewart (1986), we consider 
the velocity-forced van der Pol oscillator 

x = y - B sin( 1.9t) (5.6.13) 
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Figure 5.6.15: Phase portraits of (5.6.12): (a) R = 8.4, (b) R = 8.28, (c) 
52 = 8.274, and (d) R = 8.26. Reprinted with permission from Nayfeh, 
Hamdan, and Nayfeh (1990). 

y = --2 + (1 - 2 ) y  (5.6.14) 

In Figure 5.6.16a, we show the Poincard sections of the attractors at 
t = 0 and B = 1.0. The attractors, which are two in number, are in 
the form of Rossler bands. The associated intersections of a trajectory 
with the Poincard section jump alternatively between pairs of opposite 
bands. The Poincard section is also transverse to an unstable period- 
two orbit of the saddle type. In Figure 5.6.16, we mark each intersection 
of this saddle limit cycle with the Poincard section by the asterisk 
symbol *. On this section, between a pair of adjacent pieces, there 
is a saddle point. The stable manifold of the saddle limit cycle is very 
close to the banded attractors. As B is increased to a critical value 
B, x 1.02, the two attractors simultaneously collide with the stable 
manifold of the saddle limit cycle. As a consequence of this crisis, the 
two chaotic attractors merge to form a single larger attractor of the 
Birkhoff-Shaw type, as shown in Figure 5.6.16b at  B = 1.03. 

Example 5.15. Following Ishii, Fujisaka, and Inoue (1986), we 
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Figure 5.6.16: Poincar6 sections illustrating a crisis in equations (5.6.13) 
and (5.6.14). There are banded chaotic attractors preceding the crisis and a 
Birkhoff-Shaw bagel following the crisis (Thompson and Stewart, 1986). 

consider the response of a damped single-degree-of-freedom sys tem 
to a harmonic excitation; that is, 

x t x - 1Oz t 100z3 = F sin(4.5t) (5.6.1 5) 

The potential energy of this system has a maximum at z = 0 (saddle) 
and two minima at z = k m  (centers). In other words, the potential 
has two wells. In the presence of damping, z = 0 remains a saddle, 
but the centers become stable foci. For values of F slightly less than 
F, M 0.8495, there are two symmetrically disposed chaotic attractors, 
one confined to each well. One of the symmetric attractors is shown in 
Figure 5.6.17a for F = 0.8492. As F is increased, the two symmetric 
attractors enlarge, and at  F = F, both touch simultaneously the 
stable manifolds of the two period-three saddle limit cycles, which 
form the boundary separating their basins of attraction. In other 
words, they collide simultaneously with the saddle limit cycles on their 
basin boundary. For F > F,, the two chaotic attractors experience 
an attractor merging crisis and become a single attractor, subsuming 
the two single attractors, which exist for F < F', as shown in Figure 
5.6.17b. The orbit following the crisis switches intermittently from one 
well to the other. In Figure 5.6.18a, we show the time history of one 
of the symmetric attractors for F = 0.849 < F,. Clearly, it is confined 
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Figure 5.6.17: Typical phase space portraits of (5.6.15) for (a) F = 0.8492 < 
F, and (b) F = 0.865 > F,. For F = 0.8492, there is another chaotic 
attractor for t < 0 statistically the same as in (a), which is realized for 
different initial conditions. Reprinted with permission from Ishii, Fujiska, 
and Inoue (1986). 
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Figure 5.6.18: Typical temporal evolutions s(l) for (a) F = 0.849, (b) 
F = 0.853, and (c) F = 0.865. Reprinted with permission from Ishii, Fujiska, 
and Inoue (1986). 
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to the right well. In Figure 5.G.18b1 we show the time history of the 
attractor for F = 0.853, which is slightly larger than the crisis value 
F,. Clearly, the attractor switches chaotically from the right to the left 
well. As F is increased to 0.865, which is further from F, than in the 
previous case, the frequency of switching of the attractor from one well 
to the other increases, as is evident from comparing parts b and c of 
Figure 5.G.18. 

5.7 MELNIKOV THEORY 

In Section 2.1.3, we defined homoclinic and heteroclinic orbits to 
saddle points. These definitions can be generalized to orbits that are 
homoclinic or heteroclinic to general invariant sets Z;, such as limit 
cycles. If the orbit of a point p in phase space of a mappirig or a flow 
approaches an invariant set I as t approaches f o o l  then the orbit of 
p is said to be homoclinic to I .  On the other hand, if the orbit of a 
point p in phase space of a mapping or a flow approaches an invariant 
set Zl as t approaches +oo and approaches another invariant set Z2 as 
t approaches -00, then the orbit of p is said to be heteroclinic to ZI 
and I*. 

5.7.1 Homoclinic Tangles 
To describe homoclinic tangles, we consider the system 

x - x + x3 + 0.125i = Fcos Rt  (5.7.1) 

where F is a constant. The potential energy of the system has two 
minima and one maximum, a two-well potential. The phase portrait of 
the undamped and unforced system is shown in Figure 5.7.la. There 
is a saddle S at (x,i) = ( O , O ) ,  corresponding to the maximum of the 
potential energy, and two centers C1 and Cz, corresponding to the two 
minima of the potential energy, at (z, i) = ( f l ,  0). The orbit labeled I' 
approaches the saddle M t approaches dxx.~, and hence I' is homoclinic 
to the saddle point. The stable and unstable manifolds W" and W" of 
the saddle intersect nontransversely (they are tangent to each other). 
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Figure 5.7.1: Undamped and damped phase trajectories for the nonlinear 
oscillator (5.7.1) when F = 0. There are two stable equilibrium states and 
one unstable equilibrium state. 

Including the damping term destroys the homoclinic orbit, as shown 
in Figure 5.7.lb. The saddle remains a saddle S, but the centers C1 
and Cz become the stable foci Fl and Fz, respectively. Now, the stable 
and unstable manifolds W" and W" of the saddle do not intersect, and 
the stable manifold of S divides the phase space into two regions. The 
region to the right of W" is the basin of attraction of the right focus 
Fz (motions confined to the right well of the potential), whereas the 
region to the left of W" is the basin of attraction of the left focus Fl 
(motions confined to the left well of the potential). 

If the system is driven by a weak periodic excitation (i.e., a 
small F), the same diagram in Figure 5.7.lb can be regarded as the 
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Figure 5.7.2: Illustration of the homoclinic tangle occurring at a hyperbolic 
saddle point. The tangle forms with an infinite number of intersections 
Io, 11, 1 2 , .  - * .  Two nearby points may be mapped far apart, as is the case on 
a chaotic attractor. 

Poincari section of the three-dimensional phase space (2, i, t ) ,  except 
that each line should be regarded as a sequence of dots corresponding 
to successive intersections of a trajectory with the Poincar6 section 
because an orbit of a Poincar6 map is a sequence of points. As 
the excitation amplitude F is increased with R being kept fixed, the 
unstable and stable manifolds move closer to each other, and at  a 
critical value F, of F they may touch or intersect at a point l o ,  as shown 
in Figure 5.7.2. We note that the actual trajectories in the (z1,x2,t) 
space do not intersect each other, but the stable and unstable manifolds 
can intersect each other in the Poincard section because they are not 
trajectories but sequences of points. Because the stable manifold W" is 
invariant, every point 10 on W" is mapped into a new point 11 = P(l0) 
on W", where P is the Poincar6 map. Similarly, because lo is also on 
W", which is also invariant, 1-1 = P-'(lo) must also be on W". Hence, 
1-1 represents another intersection of W' and W" closer to the saddle. 
Continuing this reasoning, we conclude that if the stable and unstable 
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manifolds intersect once they must intersect infinitely many times at 
the points I ,  = P"(I0) and I - ,  = P-"(ZO) for n = 1 , 2 , 3 , . . .  . Each 
point of transversal intersection l i  is called a transversal homoclinic 
point, and the orbit of this intersection point under the Poincard map 
produces a so-called (transversal) homoclinic orbit. 

The intersection of the stable and unstable manifolds of the sad- 
dle has far-reaching consequences on the complexity of the dynamics, 
as can be seen in Figure 5.7.2. As the unstable manifold approaches 
the saddle point, the loops between adjacent homoclinic points are 
stretched parallel to the local unstable manifold W" and contracted 
parallel to the local stable manifold W". The fate of the stable mani- 
fold is similar in reverse iterations, resulting in the homoclinic tangle 
shown in Figure 5.7.2. Because of the strong bending of the manifolds 
near the saddle point, a small parallelogram of the plane near 1, will 
suffer stretching and folding much like that seen in the context of the 
horseshoe map. (The Smale-Birkhoff Homoclinic Theorem [e.g., 
Guckenheimer and Eiolmes, 1983; Wiggins, 1988, 1990) implies that 
the dynamics near a transverse homoclinic point of a diffeomorphism 
is similar to that of a horseshoe map.) As a result, two points that are 
initially close together will be found far apart after a few iterations, re- 
sulting in unpredictability or sensitive dependence on initial conditions, 
which is a hallmark of chaos. Therefore, a transverse intersection of W" 
with W" implies chaos-like behavior in a neighborhood of the intersec- 
tion. Moreover, the boundary of respective regions of initial conditions 
in phase space that result in trajectories tending to the left or right 
well (i.e., basin boundary) becomes fractally divided in a neighborhood 
of the phase space surrounding the transverse intersections (i.e., trans- 
verse homoclinic points). 

5.7.2 Heteroclinic Tangles 
To describe heteroclinic tangles, we consider the system 

X + x - x3 + 0.4x = F cos Rt (5.7.2) 

The phase portrait of the undamped unforced system is shown in Figure 
5.7.3. The potential energy of the system has two maxima and one 
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Figure 5.7.3: Phase portrait for the oscillator j: t z - x3 = 0. 

minimum, a one-well potential. There is a center C at (2, i) = ( O , O ) ,  
corresponding to the minimum of the potential energy, and two saddle 
points S1 and S2 at (z,i) = ( f1 ,0 ) ,  corresponding to the two maxima 
of the potential energy. The orbit that leads to S1 as t ---t -XI 

(its unstable manifold) and to Sz as t 4 00 (its stable manifold) 
is a heteroclinic half-orbit; it is denoted by rl. They intersect 
nontransversely. Similarly, the orbit that leads to S1 as t + 00 and to 
Sz as t 4 -00 is another heteroclinic half-orbit; it is denoted by rz. 
The union of rl and r2 is called a heteroclinic orbit. Including the 
damping term destroys the heteroclinic half-orbits and transforms the 
center into a stable focus F and leaves the saddles as saddles. The stable 
and unstable manifolds W” and W” of the saddles do not intersect. The 
stable manifolds of the two saddle points divide the phase space into 
three regions. Evolutions initiated in the regions to the right of the 
stable manifold of S2 and to the left of the stable manifold of S1 are 
attracted to infinity. The region bounded by 5’1 and Sz is the basin of 
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Figure 5.7.4: The formation of a heteroclinic tangle in the Poincarb map 
of (5.7.2). (a) The unstable and stable orbits barely touch, signaling the 
beginning of chaos. (b) and (c) The tangle forms with an infinite number of 
intersections l o , I ~ ,  1 2 , .  . . Two nearby points may be mapped far apart, as 
is the case on a chaotic attractor. 

attraction of the focus F .  

In the presence of a weak excitation (i.e., small F), the diagram 
in Figure 5.7.3 may be regarded as a Poincark section of the three- 
dimensional trajectory, except that each line should be regarded as a 
sequence of dots corresponding to successive intersections of a trajec- 
tory with the Poincari section. As the excitation amplitude is increased 
while the excitation frequency is kept fixed, the stable and unstable 
manifolds of the two saddle points move closer to each other. As F is 
increased to a critical value F,, the two manifolds approach each other 
and touch (Fig. 5.7.4a) or even intersect (Fig. 5.7.4b) at some point 
l o .  Due to the invariant property of W" and W", once they intersect 
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once, they must intersect infinitely many times because 

if I. E W" n W" then Pm(Io)  E W s  n W" (5.7.3) 

for any integer rn. Each point of transversal intersection is called a 
transversal heteroclinic point, and the orbit of this intersection 
point under the Poincarh map produces a (transversal) heteroclinic 
orbit. Consequently, the manifolds oscillate wildly because the images 
of heteroclinic points are heteroclinic points. 

As the unstable manifold of S1 approaches Sz, the loops between 
adjacent heteroclinic points are stretched parallel to the local unstable 
manifold W" and contracted parallel to the local stable manifold W",  
as shown in Figure 5.7.4~. The resulting configuration is called a het- 
eroclinic tangle. Because of the strong folding and stretching near 
the saddle points, a small parallelograrn near I .  will suffer stretching 
and folding similar to that seen in the context of a horseshoe-type map. 
Once again, horseshoe-type maps lead to unpredictability or sensitivity 
to initial conditions, which is a hallmark of chaos. Moreover, the basin 
boundary separating initial conditions that lead to bounded (safe) and 
unbounded (unsafe) motions becomes fractally divided in a neighbor- 
hood of the phase space surrounding the transverse intersections (i.e., 
transverse heteroclinic points). 

In Figure 5.7.5, we show, after Nayfeh and Sanchez (1989)) a series 
of basin-boundary metamorphoses as the level of F is increased for 
R = 0.8. We note that as F increases from 0.3, the once smooth 
basin boundary develops fingers (parts a and b) following the scenario 
described by Grebogi, Ott, and Yorke (1986). The white region 
represents the basin of attraction of bounded solutions, and the dark 
region represents the set of initial conditions that take the system to 
an unbounded solution. The entanglement of the two regions becomes 
complicated and possibly fractal as F increases, as shown in parts 
c-el and the basin of attraction of bounded solutions fades away, as 
shown in part f. In the studies of Soliman and Thompson (1989) and 
Thompson and Soliman (1990), the erosion of a basin of attraction has 
been quantified in terms of a measure. 

The disappearance of the basin of attraction of bounded solutions is 
associated with the point of escape from the potential well, as no initial 
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Figure 5.7.5: Basin boundary nietamorphoses for R = 0.8 : F increases from 
left to right and from top to bottom in the sequence (0.30, 0.32, 0.33, 0.345, 
0.38, 0.394) labeled a to f. Reprinted with permission from Nayfeh and 
Sanchez (1989). 

conditions can take the system to a solution other than infinity. Each of 
the basins in Figure 5.7.5 was numerically generated by examining the 
outcomes of numerical integrations initiated from a grid of 500 x 500 
initial conditions. This type of identification of the proper initial 
conditions is not generally feasible, but perhaps other techniques such 
as cell-to-cell mapping (Hsu, 1980, 1981, 1987, 1992) or boundary 
mapping would be more appropriate. In any case, the computational 
effort is considerable. 

5.7.3 Numerical Prediction of Manifold 
Intersect ions 

The intersection of the stable and unstable manifolds of the saddle 
points in a Poincari map may be directly observed by numerically 
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computing the manifolds of the system 

x = f(x) + €g(x, t )  (5.7.4) 

where f is a planar vector field; 6 provides an explicit measure of the 
smallness of g; and g(x, t + 7') = g(x, t ) .  The algorithm of Parker and 
Chua (1989, Chapter 6) is applied to (5.7.4) to  generate the manifolds 
of interest, as described below. 

Before using the aforementioned algorithm to compute the man- 
ifolds, we need to find approximations to the saddle points of the 
Poincard map describing (5.7.4). For future reference, the exact loca- 
tions of the saddles are denoted by x+. As a first step, we characterize 
the local behavior of the Poincar6 map in the neighborhood of the sad- 
dle point x: of the associated conservative system. Thus, wc express 
the solution of (5.7.4) near xz as 

x,(t) = x; + € U ( t )  (5.7.5) 

Substituting (5.7.5) into (5.7.4) and equating the coefficients of 6 on 
both sides, we obtain 

u = Df(xE)u + g(xZ, t )  + * * .  (5.7.6) 

Equation (5.7.6) is a system of linear first-order nonhomogeneous 
differential equations with constant coefficients that may be solved 
analytically using an integrating factor. If we subsequently realize that 
a fixed point of the PoincarC map requires that u(0) = u(0 i- T), then 
the perturbed saddle can be approximated according to (Li and Moon, 
1990a) as 

where 0 specifies the PoincarC section, T is the period of the excitation, 
and I is the identity matrix. The above expression may be computed 
numerically. In some caaes, this approximation may be inadequate. 
A more accurate approximation can be obtained by using a modified 
Mooke and Jeeves algorithm. 

To compute the manifolds given four saddle-point approximations 
in regions I, 11, 111, and IV, as shown in Figure 5.7.6, we apply an 
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Figure 5.7.6: Phase space near a saddle point. 

algorithm presented by Parker and Chua (1989). The basic idea of the 
algorithm is quite simple. First, the map P(x) is applied to one of the 
saddle-point approximations, which is denoted by x,. The resulting 
point marks the start of one of the half-manifolds. Second, the map is 
applied to a succession of points (xi, i = 1 , 2,3 , .  a )  starting near x, to 
create the half-manifold. This procedure is repeated to create all the 
half-manifolds of interest. 

A major limitation makes this simple technique ineffective without 
some modification. An arbitrary P(x;+l) might not be “close enough” 
to P(x,), meaning that the approximation of the manifold will be crude. 
To overcome this problem, Parker and Chua suggest that the distance 
between P(x,) and P(x;+,) be computed. If the distance is greater 
than some tolerance, then the corresponding points xi and xitl are 
interpolated to obtain a new value x j ,  to which P is applied, and the 
resulting point is tested for proximity to P(x;). If this distance is again 
too large, further interpolations are executed as necessary to satisfy the 
tolerance. A noteworthy feature of this algorithm is that an arbitrary 
iterate P(xi) is only accepted as part of the manifold when a P(xj) 
close enough to P(xi) is determined. The iteration procedure and the 
refinement just described are illustrated in Figure 5.7.7. 

At this point, we note again the need to approximate the saddle 
point accurately. Earlier, it was noted that the linearized approxima- 
tion may be inadequate. To appreciate why, we recall that P(x,), not 
XI, is the first point of the manifold generated. As a result, both the 
approximation and its first iterate must be “close” to the actual saddle 
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Figure 5.7.7: Parker and Chua's algorithm: A manifold is computed by 
applying the Poincark map P to successive points on the manifold, beginning 
with the saddle-point estimate x,. If two computed points are too far 
apart, an intermediate point is calculated by interpolating the two points 
whose iterates were those computed points and then applying P. Here, for 
example, P(xj+l) is too far from P(xi), so Xi and Xi+l are interpolated to 
obtain xj and thus P(xj). Since P(xj) is close enough to P(x,), P(x,) is 
accepted as part of the manifold approximation. The dashed line indicates 
that acceptance of P(xj) hinges on the proximity of P ( X ~ + ~ ) .  

point x'. Otherwise, a substantial portion of the manifold is omitted, 
possibly including the segment containing the transverse intersections 
sought. Yet, due to the sensitive nature of this Poincard map, the first 
iterates of points reasonably close to  x*, such as xL, tend to  be quite 
distant from either point. 

5.7.4 Analytical Prediction of Manifold 
Intersections 

Melnikov (1963) developed a global analysis technique that yields a con- 
dition on the occurrence of a heteroclinic (or homoclinic) bifurcation. 
Such a bifurcation is said to have occurred if a heteroclinic (homoclinic) 
set is either created or destroyed as a parameter is varied. As discussed 
in the preceding two sections, the occurrence of these bifurcations can 
lead to major changes in the basins of attraction of qualitatively differ- 
ent types of motion, the onset of chaos, and the mixing or intermingling 
between the safe and unsafe regions. The Melnikov criterion helps in an 
indirect way in ascertaining the values of the different parameters for 
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which the heteroclinic or homoclinic bifurcations occur and, hence, for 
which chaos is to be expected or for which the basins of bounded and 
unbounded regions are likely to be intermingled. To provide a flavor 
for applications, we mention that this intermingling is not desirable in 
the context of the capsizing of a ship or the synchronization of a power 
sys tem. 

Next, we derive the so-called Melnikov function for the system 
(5.7.4) when t << 1 and the unperturbed system is Hamiltonian; that 
is, 

3 H  
x 2  = f i ( X l , X 2 )  = -- 

OX 1 

( 5.7 A) 

(5.7.9) 

where H is a scalar-valued smooth function, the Hamiltonian. Thus, 
H ( s 1 , s z )  is constant on trajectories. The Melnikov function is a 
measure of the distance between stable and unstable manifolds when 
that distance is small (Guckenheimer and Holmes, 1983; Wiggins, 1988, 
1990; Arrowsmith and Place, 1990). 

The parameter t: is an explicit measure of the smallness of the 
perturbation g and may be equated to unity if g is sufficiently small. 
For the purposes of this derivation, the only restriction placed on f and 
g, other than the smoothness characteristics and that g(x,t + T) = 
g(x, t ) ,  is that the two-dimensional state space of the unperturbed 
system x = f(x) contains at least one homoclinic orbit in two- 
dimensional phase space. The case of heteroclinic orbits can be treated 
similarly. 

At this point, two additional parameters are defined in order to 
describe fully the three-dimensional manifold structures associated 
with both the unperturbed and perturbed continuous-time systems. 
First, the symbol 8 denotes the particular Poincar6 section chosen; 
it may vary in the iriterval spanning the period of g, namely, (O,T]. 
Second, t E (-00, +00) is defined as the time required for a chosen 
point on the discrete-time manifold in section 0 to be reached by the 
trajectory beginning at a given initial condition. Although B and t are 
both values of time, 0 refers only to the Poincard section chosen, while 
t is the elapsed time describing a particular trajectory. As an example, 
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- I = 2z/n 

section I = e 

Figure 5.7.8: A generic unperturbed homoclinic invariant-manifold structure 
in threedimensional phase space is illustrated. The arbitrary point Q on 
the surface is specified by selecting a particular Poincari section B and the 
time t required to travel from the reference point Qo to the point Q. 

we consider the unperturbed continuous-time manifolds illustrated in 
Figure 5.7.8; any point on the surface can be located by specifying 0 
and t .  

Unlike the unperturbed system, for which all Poincark sections are 
identical, the perturbed system is described by Poincark sections that 
are distinct for each value of 8 in the interval spanning the period of 
the forcing function g. Any value of 8 outside this interval may be 
identified with a 8 value that is inside the interval and that is also an 
integral multiple of T distant from the original value. This identification 
is possible because any point located on one of the two sections will 
eventually appear on the other. Thus, for any perturbed system, only 
the Poincark sections defined for an interval of the forcing period are 
unique. 

We will not focus on the three-dimensional continuous-time man- 
ifolds, but instead on the discrete-time manifolds found in particular 
two-dimensional Poincarh sections. Such a section is illustrated in Fig- 
ure 5.7.9, which contains schematics of both the homoclinic orbit of the 
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Figure 5.7.9: The invariant manifolds for both the unperturbed system (solid 
curve) and the damped, forced system (broken curves) are pictured. Note 
that the stable and unstable manifolds coincide for the unperturbed c a e ,  
creating a homoclinic orbit. 

unperturbed system and the broken manifolds that result when damp- 
ing or forcing is added. The saddle is assumed to be at the origin so 
that f(0) = 0. 

A distance function that characterizes the proximity of the per- 
turbed manifolds is now constructed. During the upcoming develop- 
ment, it may be helpful to refer to the illustration in Figure 5.7.10. 
First, we consider the unperturbed homoclinic orbit in the Poincar6 
section defined by an arbitrary value 8. Then, we draw a perpendic- 
ular line L to the orbit at an arbitrary but fixed location xc, defined 
to be the value of the timevarying function x,(t - 8 )  when t = 8. 
The quantity x,(t - 8 )  is a vector that traces out the unperturbed ho- 
moclinic orbit as t varies. Next, the curves x " ( t ; 8 )  and x"(i!;O) are 
defined as the perturbed stable and unstable manifolds in the section 
8 that correspond to the homoclinic orbit. These manifolds intersect 
the line L at the respective locations A" and A" when t = 8. While 
the curves may intersect L more than once, the points A" and A" are 
those closest to the point xc. If the time t is fixed at 8,  the distance 
between the manifolds projected along L is simply the separation vec- 
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I -  

- xi) sin a 
= d(t;  8) 

Figure 5.7.10: Construction of the time-dependent distance function d ( t ;  e) 
is shown. (a) The points A" and A" represent the points on each of the 
stable and unstable manifolds closest to the point xc. They are defined to 
occur at the elapsed time t = 0 .  Two other arbitrary trajectories (x; and 
x:) with 1 > B are shown as well. Note that the vector f(xc) is the time 
derivative of x evaluated at  x, and is thus tangent to the curve at this point. 
(b) The projection of the separation between the two arbitrary trajectories 
along L is clearly the labeled quantity (xr - xg)sina, hence the definition 
of d ( t ;  0). 

tor xu(& 8 )  - x"(8; 8 ) .  If the time t is no longer constrained to be 8, 
the distance between the manifolds projected along the line L may be 
expressed as a function of time. We note that this distance is by defini- 
tion minimized for the particular section and the chosen value of xc if 
t is set equal t o  8. However, we wish to  consider all locations on every 
possible Poincark section to determine conclusively whether transverse 
intersections occur in the perturbed system. To do this, we need to ex- 
amine the function d ,  which depends on both the time t and the section 
8 and is defined as 

(5.7.10) 

The wedge symbol A denotes a vector cross product of which only the 
magnitude is significant. Its computation is identical to the standard 
cross product identified by the x symbol, except that  the result is a 
scalar rather than a vector. With this definition in mind, the truth 
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of (5.7.10) may be readily established through examination of the 
geometry presented in Figure 5.7.10b. Although our interest in the 
function d ( t ;  0) concerns only the value at the time t = 8, since that is 
by definition when the manifolds approach most closely for the section 
8, the definition of d as a time-dependent function is necessary to 
transform the crucial value d(8 ;B)  from a function of the perturbed 
manifolds (through the trajectories xu and x”) to a function of only 
the unperturbed manifolds. 

The existence of real zeros of the function d(B;B) in the interval 
(0, T ]  indicates conclusively that transverse intersections are predicted 
to occur. If two manifolds are to intersect, they must do so in a one- 
dimensional homoclinic trajectory, a curve that converges to the path 
traced by the saddle point of the PoincarC map as the section varies. 
Because every point on the stable (unstable) manifold will eventually 
approach the trajectory of the perturbed saddle point x* as the system 
moves forward (backward) in time, any point on an intersection of 
the manifolds will approach the perturbed saddle trajectory as one 
moves either forward or backward in time. The implication is that an 
intersection point will travel roughly “around” the homoclinic orbit of 
the unperturbed system. Because only the Poincari sections defined by 
one repetition of the interval (O,T] are unique, all of the information 
about the journey of the intersection point in question around the 
homoclinic orbit must be contained in these sections. The conclusion is 
that the arbitrary choice x, where w e  decided to draw the perpendicular 
line L is unimportant. If all nonredundant values of 0 are considered, 
then any existing transverse intersections will pass through that section 
and be detected by our calculation of d(d;  e). 

The next step in developing the Melnikov function consists of 
expressing the trajectories xu and x” in terms of only unperturbed 
quantities. To this end, we consider the function Ac, which is related 
to the function d ( t ; O )  and is defined aa 

Thus, we expand the quantities xu and x” in terms of e aa 

(5.7.11) 
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Substituting this expansion into (5.7.4) and separating powers of c, we 
obtain 
Order LO 

QukU 

i , ( t  - e) = f[xc(t - e)] (5.7.13) 

At the same time, we also substitute the expansions (5.7.12) into the 
expression (5.7.11) for At and obtain 

Substituting for xc(t - 0) and (T”‘t,e) from (5.7.13) and (5.7.14) into 
(5.7.16) yields 

Next, we appeal to the identity 

A x  A y + x A A y  = (TrA)(x A y) (5.7.18) 

where A is a 2 x 2 matrix and TrA is the trace of A. This identity can 
be proven by direct computation. Using (5.7.18), we rewrite (5.7.17) 
as 
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It follows from (5.7.8) and (5.7.9) that 

(5.7.20) 

Hence. Tr {Df[x,(t - e)]} 0 and (5.7.19) reduces to 

A: = f[xc(t - d ) ]  A g[xc(t - 81, t ]  (5.7.21) 

Following a similar procedure, we have 

A: = q X e ( t  - e)] A g[xc(t - q , t ]  (5.7.22) 

Integrating (5.7.21) and (5.7.22) from -00 to 8 and 8 to +oo, respec- 
tively, we obtain 

A:(-oo,8) = lim {f[xc(t - 8) ]  A $"'t; 0 ) )  ( 5.7.2 5) 
t+-W 

But lirnt+m[xc(t - O)] = 0, the saddle. Since f(0) = 0 and qu(--0o, e) 
is bounded, A:( -oo,O) = 0. A similar reasoning gives A:(oo, 6 )  = 0. 
Adding (5.7.23) and (5.7.24) and recalling that A:(-oo;B) = 0 and 
A:(oo;O) = 0, we rewrite (5.7.15) as 

At(& 8 )  = Jtm ef[x,(t - O ) ]  A g[xc(t - B), t ]  dt + O(f') (5.7.26) 
- W  

This simplified result leads us to the definition of the Melnikov function, 
which is 
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or equivalently 

M ( 0 )  = Im f (xc(i)f A g [xc(t), t + @] dt (5.7.28) 

The functional dependence in these equations is solely on the section 
level 8, where 0 < 8 5 T. We note from (5.7.10), (5.7.11), (5.7.27), 
and (5.7.28) that M ( 8 )  is approximately proportional to d ( 8 ; d ) .  Let 
us suppose that M(B)  oscillates about zero and has simple zeros at the 
8,; that is, M = 0 and dM/d6’ # 0 at 0 = 8,. At these locations, the 
stable and unstable manifolds of the perturbed system intersect each 
other transversely. 
5.7.5 

In this section, we apply Melnikov’s method to three examples. 

-m 

Application of Melnikov’s Met hod 

Example 6.16. We construct the Melnikov function for the externally 
forced Duffing oscillator 

2 - 5 + 2 = r[Fcos(flt) - 2p4 (5.7.29) 

When 6 = 0, (5.7.29) reduces to 

2 - 2 i- 2 = 0 (5.7.30) 

which has a saddle at (z,;i) = ( O , O ) ,  two centers at  (z,i) = (kl,O), 
and two homoclinic orbits, as shown in Figure 5.7.1. Letting z = z1 
and 5 = 22, we rewrite (5.7.30) as 

Hence, the system is Hamiltonian with 

(5.7.31) 

(5.7.32) 

(5.7.33) 

The level set of H = 0 consists of the two homoclinic orbits, and the 
saddle point z1 = 21 = 0. 
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To compute the homoclinic orbits, we solve H = 0 for z2 in terms 
of z1 and obtain 

1 
2 

22 = *\l.: - -x; (5.7.34) 

which intersects the z1 axis at z1 = A&, corresponding to the 
homoclinic orbits in the right- and left-half planes. In terms of x 
and x, we rewrite (5.7.34) as 

(5.7.35) 

Using separation of variables and considering the negative sign, we have 

2 dx 
- t + c =  (5.7.36) 

where c is a constant. Letting z = sech(u) in (5.7.36), we obtain 
u = - t  + c. Hence, x = sech(t - c) .  Choosing the time origin so 
that z = fi at t = 0, we have c = 0 and hence z = fi sech(t). 
Consequently, the homoclinic orbit x, = (~1,zz)~ in the right-half 
plane is given by 

z1 = hsech(2 )  and z2 = - h s e c h ( t )  tanh(t) (5.7.3 7) 

A similar calculation gives the homoclinic orbit in the left-half plane 

(5.7.38) 
as 

2 1  = - h s e c h ( t )  and 22 = fisech(t)  tanh(2) 

Using z1 and 52, we rewrite (5.7.29) as 

z1 = 22 (5.7.39) 

x 2  = 51 - x; t c[Fcos(iIt) - 2 p 2 ]  (5.7.4 0) 
Hence, 

T 
f = [52, z1 - z:] and g = [0, Fcos(iIt) - 2 ~ x 2 1 ~  (5.7.41) 

Using (5.7.37) and substituting for f and g into (5.7.28) yields 
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M ( 8 )  = - J " J m  sech(t) tanh(t){Fcos[R(t + B ) ]  
- W  (5.7.42) + 2 h p  sech(t) tanh(t)}dt 

or 

M ( 8 )  = - fiFcos(ln8) Jm sech(t) tanh(t) cos(0t)dt 
- W  

+ f i F  sin(R8) Jm sech(t) tanh(t) sin(nt)dt (5.7.43) 

- 4p 1: sech2(t) tanh2(t)dt 

-m 

The first integral is zero because the integrand is odd, the second 
integral can be evaluated using the method of residues (see Exercise 
5.12) to be ?rR sech ( ~ O T )  , and the last integral can be easily evaluated 
to be $. Therefore, 

(5.7.44) 
8 M ( 8 )  = - 3 p  + 2 h 7 r R F  sin(R8) sech 

Consequently, if 

(5.7.45) 

then M ( 8 )  has simple zeros, and hence transverse homoclinic points 
must occur. On the other hand, if the reverse of the inequality (5.7.45) 
is satisfied, M(B)  is bounded away from zero, and hence there are no 
homoclinic points. When the inequality (5.7.45) is replaced by an 
equality, M ( 8 )  has a double zero at 08 = fr. This corresponds to 
W" and W" meeting tangentially rather than transversely. 

In Figure 5.7.11a, we show the stable and unstable manifolds of 
the saddle point near (0,O) for R = 1 . 0 , ~ ~  = 0.125, and CF = 0.11. 
In this case, the reverse of the inequality is satisfied, and hence M ( 8 )  
is bounded away from zero. Consequently, there are no homoclinic 
points according to the Melnikov criterion. This is confirmed in Figure 
5.7.12a. As cF is increased to 0.19, the inequality is replaced with an 
equality, and hence the stable and unstable manifolds are predicted to 
meet tangentially. This is confirmed by the results in Figure 5.7.11b. 
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Figure 5.7.11: The stable and unstable manifolds of the saddle of (5.7.29): 
(a) rF = 0.11; (b) EF = 0.19; and (c) rF = 0.30. 

M 

0.0 3.14 0 6.28 0.0 3;14 6.28 

Figure 5.7.12: Melnikov functions for the Duffing equation: (a) C F  = 0.11 
and (b) rF = 0.19. The minimum of the Meliiikov function is far away from 
zero in (a) and very close to zero in (b). 
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As CP is increased past 0.19, the inequality is satisfied, and the stable 
and unstable manifolds are predicted to intersect transversely. Such a 
transversal intersection is shown in Figure 5 . 7 . 1 1 ~  for cF = 0.30. 

Example 5.17. We consider a parametrically excited single-degree- 
of-freedom system with a single-well potential. Specifically, we con- 
sider the system 

(5.7.46) 
1 
2 

x + -(z - x3) = -€[h cos(Rt) + 2 p i ]  

Letting z = q and x = z2, we rewrite (5.7.4G) as 

I1 = 22 (5.7.47) 

The unperturbed system is 

where 

d H  
2 1  = I2 = - 

3x2 
1 1 a H  i2 = - - 2 1 +  - 2 3  - -- 
2 2 l -  aZl 

1 1 1 
2 4 H = - (.: i- - -z:) 

(5.7.49) 

(5.7.50) 

(5.7.5 1 )  

Hence, the unperturbed system is Hamiltonian. The level set of H = 
consists of the two saddles (f1,0), the heteroclinic orbit, and the stable 
and unstable manifolds of the saddles, as shown in Figure 5.7.3. 

To compute the heteroclinic orbit, we solve H = f for 52 in terms 
of $1 and obtain 

(5.7.52) 

1 
2 

or 
i = f - ( 1  - 2’) (5.7.53) 
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where the plus and minus signs correspond to the I?+ and r- half- 
orbits. Using separation of variables, we obtain 

dx 
1 -x2 

f 2t t c = I=- - - tanh-lx (5.7 -54) 

Hence, z = f tanh(2t t c). Choosing the time origin so that z = 0 
when t = 0, we have c = 0 and therefore x = f tanh(2t). Consequently, 
the heteroclinic orbit is given by 

x1 = f tanh(2t) and zz = f 2  sech2(2t) (5.7.55) 

Referring to (5.7.47) and (5.7.48), we conclude that 

1 I T  
f = [x2, -2"' t -z:] and g = [0, -Fzl cos(Rt)-2pz2IT (5.7.56) 2 

Substituting for f and g from (5.7.56) into (5.7.28), we have 

M ( e )  = - Jm z 2 [ ~ x l  cos q t  t e) + 2pz2]dt (5.7.57) 
-00 

which, upon using (5.7.55) with the plus signs, becomes 

M ( 8 )  = - 2Fcos(RB) Jm tanh(2t)sech2(2t) cos(0t)dt 
- W  

t 2Fsin(R8) Im tanh(2t) sech2(2t) sin(0t)dt (5.7.58) 
- W  

- 8p LI sech4(2t)dl 

The first integral is zero because the integrand is odd, the second 
integral can be evaluated using the method of residues (see Exercise 
5.14) to be R2n/16 sinh (ion) , and the last integral can be evaluated 
by letting ti = tanh2t to be f .  Hence, 

16 FR2n sin(R0) 
8 sinh ( inn )  M ( q  = -3p + (5.7.59) 

Consequently, if 
F 128 sinh ( fnn )  
- >  (5.7.60) 
P 3R2n 
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then simple zeros of M ( 8 )  and, hence, transverse heteroclinic points are 
possible. On the other hand, if the reverse of the inequality (5.7.60) 
is satisfied, M ( 8 )  is bounded away from zero, and hence there are no 
heteroclinic points. When the inequality (5.7.60) is replaced with an 
equality, M ( 0 )  has a double zero and the stable and unstable manifolds 
of the saddles S1 and Sz meet tangentially rather than transversely. 

Example 5.18. Following Kreider (1992), we consider the behavior oi 
a single-degree-of-freedom system with a three-well potential, linear 
and nonlinear damping, and a harmonic parametric excitation. Specif- 
ically, we consider 

4 + 4 - 1.9@ + 0.722d5 -+ 0.24 + 0.2$ + hdcost = 0 (5.7.61) 

The potential function of tliis system has three minima at 4 = 0 and 
q5 M f1.38 and two maxima at  4 M f0.854. Thus, the undamped and 
unforced system has two homoclinic orbits ericircling the centers at 
r$ M f1.38 and a heteroclinic orbit encircling the origin. 

Li and Moon (1990a,b) calculated manifolds of two- and three- 
well potential oscillators and discussed the order in which homoclinic 
and heteroclinic bifurcations occur, as well as transient chaos and how 
to predict it. Falzarano (1990) examined manifold tangles as they 
pertain to a ship-roll equation with cubic (and quintic) nonlinearities. 
Falzarano, Shaw, and Troesh ( 1992) obtained closed-form expressions 
for the Melnikov function for the heteroclinic and homoclinic cases when 
the nonlinearity is cubic and discussed the application of lobe dynamics. 
Bikdash, Balachandran, and Nayfeh (1994) introduced the concept of 
the Melnikov equivalent damping as a global measure of the system 
damping and conducted a detailed analysis of this quantity, including 
a sensitivity analysis. Based on this new concept, they proposed a 
procedure in which the linear-plus-quadratic damping model can be 
approximated by a linear-plus-cubic damping model that yields the 
same Melnikov predictions and very similar steady-state and transient 
responses. 

We let q5 = 41 and 4 = $2 and rewrite (5.7.61) it9 a system of two 
first-order equations in the form 

41 = ($2 (5.7.62) 
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Figure 5.7.13: The homoclinic orbit is approximated by selecting an initial 
guess point xg near the unperturbed saddle xE and inside the homoclinic 
orbit and then integrating numerically until the curve closes on itself. 

$2 = -dl + 1.94: - 0.7224; - 0.242 - 0.24; - hdl cos(t) (5.7.63) 

In this case, 
T 

f = [ 4 2 ,  -4, + 1.94; - O.7224;] 

g = [0, -0.242 - 0.24; - h& cos(t)] 

(5.7.64) 

(5.7.65) 
T and 

The undamped and unforced system is Hamiltonian with 

1.9 0.722 H = -4; 1 t i$; 1 - T4; + -4; 
2 6 

(5.7 56) 

Substituting for f and g from (5.7.64) and (5.7.65) into (5.7.28) yields 
the Melnikov function 

Next, we discuss homoclinic tangles, heteroclinic tangles, and so-called 
mixed tangles (they are described later). Whereas in the preceding two 
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Figure 5.7.14: A heteroclinic orbit has two possible approximations for use 
in computing the Melnikov function. The use of the upper inside curve 
predicts the intersections of the two upper curves, while the lower inside 
curve forecasts the intersections of the two lower curves. Note that, as 
for the homoclinic case, the beginning and end points of the approximate 
trajectories must lie near the corresponding saddle points. 

examples we were able to determine the homoclinic and heteroclinic 
orbits of the unperturbed system analytically and hence compute the 
Melnikov function exactly, in the present example we compute these 
orbits numerically. 

For homoclinic tangles, we approximately compute the homoclinic 
orbit by numerically integrating the unperturbed equation (5.7.61) from 
an initial guess point xg inside the homoclinic curve and near the 
unperturbed saddle point x: to some final point also near x:. This 
procedure is pictured schematically in Figure 5.7.13. Practically, the 
integral over (-m, +m) is carried out by applying the trapezoidal rule 
(or another numerical integration technique) with an appropriate step 
size At between the two points established as the “beginning” and 
“end” of the orbit. We note that At is fixed implicitly by the calculation 
of the homoclinic orbit; the time step cannot be freely chosen in the 
evaluation of the integral, but must be selected during the calculation of 
the homoclinic orbit. In addition, although both of the two endpoints 
of the interval are theoretically identical to the unperturbed saddle 
xz, one needs to use approximations at  either end of the trajectory to 
compute M ( 8 )  because use of the exact saddle point will result in a 
degenerate trajectory consisting only of the saddle itself. 
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Figure 5.7.15: Pictured is the unperturbed trajectory used in the Melnikov 
ntegrd when predicting intersections of one homoclinic manifold and one 
aeteroclinic manifold in the perturbed map. 

For heteroclinic tangles, we approximate the heteroclinic half-orbit 
in the upper half plane numerically proceeding from a point close to 
the unperturbed left saddle point to a point close to the unperturbed 
right saddle point, as shown in Figure 5.7.14. As might be intuitively 
expected, the use of the upper curve in Figure 5.7.14 in the Melnikov 
integral will lead to the detection of the intersection between the 
unstable manifold of the left saddle point and the stable manifold of 
the right saddle point. Analogously, the lower curve corresponds to 
intersections of the left stable and right unstable manifolds. 

If it is possible to detect both homoclinic and heteroclinic intersec- 
tions using the Melnikov function, what about finding mixed intersec- 
tions? The occurrence of intersections of one heteroclinic manifold and 
one homoclinic manifold has been documented in the work of Falzarano 
(1990). Kreider (1992) used the Melnikov function to predict these in- 
tersections. 

The key to computing the Melnikov function for predicting mixed 
intersections lies with the choice of unperturbed trajectory over which 
the computation is carried out. In the homoclinic case, the manifolds 
that intersect correspond to an unperturbed homoclinic orbit, the curve 
along which the Melnikov function is calculated. Similarly, in the het- 
eroclinic case, the intersecting manifolds originate from a heteroclinic 
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Figure 5.7.16: (a) The manifolds of the saddles of (5.7.61) for low forcing 
h = 0.05 and (b)  the homoclinic Melnikov function. As expected, M ( 0 )  does 
not approach zero. 

half-orbit, which is used to compute M ( d ) .  For detecting mixed tan- 
gles, then, it seems reasonable to use the unperturbed mariifolds that 
later result in a mixed intersection when the perturbation is added. A 
trajectory that closely approximates a homoclinic orbit and a hetero- 
clinic half-orbit fits this description; an example of such a trajectory is 
illustrated in Figure 5.7.15. 

Next, we examine the effects of increasing the excitation amplitude 
on the invariant manifolds of the saddles of the Poincari map for the 
model represented by (5.7.61). We begin with a low excitation level 
( h  = 0.05). The Melnikov function displayed in Figure 5.7.16b does 
not have zeros. The corresponding manifold structure does not exhibit 
any intersections or other unusual characteristics, it9 seen from Figure 
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Figure 5.7.17: (a) The manifolds of the saddles of (5.7.61) for h = 0.08 and 
(b) the homoclinic Melnikov function. This function has a minimum close 
to zero as homoclinic intersections are imminent. 

5.7.16a. The manifolds resemble the trajectories of a damped, unforced 
phase portrait. Fixed-point solutions occur near 4 = 0 and f1.38. 
These solutions are fixed points of the Poincarh map and therefore 
correspond to periodic solutions of the original continuous-time system. 

When the forcing amplitude is increased to h = 0.08, the qualitative 
nature of the homoclinic manifolds changes, as is illustrated in Figure 
5.7.17a. Rather than spiraling smoothly to fixed points as they did in 
the previous caae, the unstable homoclinic manifolds bend and twist as 
they spiral inward. It is clear from Figure 5.7.17b that the homoclinic 
Melnikov function has a minimum close to zero. 

The bending and twisting of the homoclinic manifolds act it9 a pre- 
cursor to transverse intersections, which are first observed for an ex- 
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Figure 5.7.18: (a) The manifolds of the saddles of (5.7.61) for h = 0.085 aid 
(b) the homoclinic Melnikov function. As homoclinic intersections begin to 
occur, the zeros of the Melnikov function are closely spaced. 

citation level very near h = 0.085. As illustrated in Figure 5.7.18a1 
the intersections are pending at two different locations for each homo- 
clinic structure: near the points (f0.2, ~ 1 . 1 )  and also near each of the 
saddles. We note that the minimum absolute value of M is very close 
to zero in Figure 5.7.18b. The four parts in Figures 5.7.17 and 5.7.18 
indicate that Melnikov’s method predicts the homoclinic tangles. Mel- 
nikov’s theory is effective if the perturbations are small enough. The 
success of the method in this case tends to indicate that the perturba- 
tions are small enough. We recall that the significance of the onset of 
these intersections is the concurrent incidence of fractal regions in the 
transient basin. The heteroclinic manifolds in this case remain qualita- 
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Figure 5.7.19: Well-developed homoclinic manifold intersections for h = 
0.10. At larger forcing, the intersections of the manifolds is more easily 
discernible. 

tively like those seen in the earlier cases, spiraling smoothly to a fixed 
point at  the origin. 

An excitation level of h = 0.10 is used to show more well-developed 
homoclinic manifold intersections. Several such crossings are clearly 
evident in Figure 5.7.19. By this time, it should be obvious that the 
Poincark section for this system is symmetric about the origin, meaning 
that successive reflections of any point on the manifold structure across 
both coordinate axes generate a point also on the structure. (This 
behavior is due to the fact that [(5.7.61)] is an odd function of both 
4 and 4.) Consequently, any feature associated with one homoclinic 
manifold will also appear on the other. This symmetry will be taken 
for granted in the following development, in which only the left-most 
feature will be referenced. 

Next, we consider mixed intersections. The results are summarized 
in Figure 5.7.20, which contains the Melnikov graphs arid manifolds 
for h = 0.215. As the The technique seems to work quite well. 
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Figure 5.7.20: (a) The manifolds of the saddles of (5.7.61) for h = 0.215 and 
(b) a mixed Melnikov function. As mixed tangles develop, the minimum 
of the Meliiikov function decreases slightly. The prediction in this case is 
slightly conservative. 

homoclinic unstable manifold and heteroclinic stable manifold approach 
one another and then intersect (h  = 0.215), the Melnikov function 
exhibits closely spaced roots in each case. Thus, Melnikov’s method 
is slightly conservative, predicting intersections at a marginally lower 
forcing amplitude (just smaller than h = 0.21) than that a t  which 
tangles first occur (just larger than h = 0.21). 

Further confirmation of Melnikov’s method is sought by examining 
the heteroclinic intersections, which occur near h = 0.34. Once again, 
variation of M closely parallels the approach of the stable and unstable 
manifolds. Heteroclinic tangles are approaching but have yet to occur 
when h = 0.32. This behavior is predicted by the Melnikov function 



MELNIKOV THEORY 389 

2 

b 
0 

-2 

\ I  

-2 -1 0 1 2 

- b  

4 

I I I I I I I 

0 1.57 3.14 4.71 6.28 e 

Figure 5.7.21: (a) The manifolds of the saddles of (5.7.61) for h = 0.34 and 
(b) the heteroclinic Melnikov function. When heteroclinic tangles are first 
established, the Melnikov function exhibits a minimum near zero. 

pictured in Figure 5.7.21 along with the manifolds. In Figure 5.7.21a, 
the incidence of heteroclinic intersections is definitely established, and 
the plot of M in Figure 5.7.21b has two closely spaced roots, indicating 
a minimum near zero and thus good agreement. The intersections 
illustrated in Figure 5.7.21a indicate that the safe area surrounding 
the origin could be starting to diminish rapidly (e.g., Thompson and 
Solirnan, 1990). 

To summarize, we recall that homoclinic intersections were observed 
first at an excitation level of approximately 0.085, followed by mixed 
intersections at h = 0.215, and then heteroclinic intersections at 
h = 0.34. These different intersections are predicted by Melnikov’s 
met hod. 
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5.7.6 Comments 
In all the cases discussed thus far, the unperturbed system is not 
dissipative. There are studies in which a Melnikov analysis has been 
conducted for cases where the unperturbed system is dissipative (e.g., 
Salam, 1988). Melnikov’s method has also been used to determine 
transverse homoclinic intersections in the context of averaged systems 
of equations (e.g., Holmes, 1980; Sanders, 1982; Guckenheimer and 
Holmes, 1983; Wiggins, 1988, 1990). Melnikov analyses have also 
been conducted in the context of multi-degree-of-freedom systems and 
infinite-degree-of-freedom sys tems (Holmes and Marsden, 1981, 1982; 
Wiggins, 1988). The analyses discussed in the previous sections are 
sometimes called homoclinic or heteroclinic Melnikov analyses 
to distinguish them from what are called subharmonic Melnikov 
analyses. In Chapter 3, we pointed out that there is a coritinuurn 
of periodic orbits enclosed within homoclinic and heteroclinic orbits. 
Subharmonic Melnikov analyses (e.g., Wiggins, 1988, 1990) are useful 
in understanding the influence of perturbatioris on these periodic orbits. 

5.8 BIFURCATIONS OF 
HOMOCLINIC ORBITS 

In contrast with the preceding section, where we considered pertiirba- 
tions of homoclinic and heteroclinic orbits of two-dimensional Hamil- 
tonian systems, in this section we consider bifurcations of orbits ho- 
moclinic or heteroclinic to saddles of autonomous systems. In three- 
dimensional and higher systems, the presence of a homoclinic orbit may 
imply the existence of chaotic behavior, horseshoes, and infinitely many 
nearby bifurcations, depending on the eigenvalues of the Jacobiari ma- 
trix of the flow at the saddle point and on any symmetries that might 
be present in the system. In Section 5.8.1 we consider plaiiar systems, 
in Section 5.8.2 we consider three-dimensional systems with the sad- 
dle having three purely real eigenvalues, in Section 5.8.3 we consider 
three-dimensional systems having orbits homoclinic to a saddle focus, 
and in Section 5.8.4 we discuss higher-dimensional systems. 
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5.8.1 Planar Systems 
We follow Andronov, Leontovich, Gordon, and Maier (1971) and 
consider planar systems governed by 

x = XlZ + f l (2 ,  y; f )  
Y = -As?/ + fl(z1Y; 4 

(5.8.1) 
(5.8.2) 

where A1 and A2 are positive, f1 and fl are O(z2 + y2), f1 and f2 are C' 
where r 2 2, and c is a small dimensionless parameter. We assume that 
the system possesses an orbit homoclinic to the saddle (z, y)  = (0 ,O) 
when c = 0 and that the homoclinic orbit is broken on both sides of 
c = 0. We note that, without loss of generality, the saddle has been 
transformed to the origin, and the local stable and unstable manifolds 
of the saddle have been used as coordinates. 

In Figure 5.8.lb, we show the situation when c = 0; there is an 
orbit homoclinic to the saddle at the origin. In Figures 5.8.la and 
5 . 8 . 1 ~ ~  we show the aituation when the system is slightly perturbed 
so that the homoclinic orbit breaks in a transverse manner, resulting 
in the stable and unstable manifolds of the saddle missing each other. 
Without loss of generality, we assume that c is normalized so that the 
unstable manifold passes just to the left of the stable manifold when 
c c 0 and to its right when c > 0, as shown in parts a and c, respectively. 

To determine the nature of the orbit structure near the homoclinic 
orbit for c w 0, we construct a small box B (I z I 5 a and I y 1 _< a, 
where a is small) around the saddle, as shown in Figure 5.8.2. Because 
a is small, the flow can be assumed to be linear inside the box, and 
hence the equations governing the motion there are 

x = Xlx and y = -X,y (5.8.3) 

whose general solutions can be expressed as 

z = cleXlt and y = ~ z e - ' ~ '  (5.8.4) 

where c1 and cl are constants. Starting a trajectory at ( z , , a )  on the 
top edge of the box with z, > 0, we have 

z = z,eX1' and y = ae-A2t (5.8.5) 
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(a):&<O ( b ) : E =  0 (I$:&> 0 

Figure 5.8.1: Three phase portraits for a two-dimensional system. There is 
a homoclinic orbit in part b. After small perturbations of the system there 
may be no periodic orbits as in part a or one stable periodic orbit that passes 
close to the saddle point as in part c. 

Figure 5.8.2: Analysis of the behavior near the liomoclinic orbit in Figure 
5.8.1. It is assumed that the behavior is linear in a small box B around 0 
and that a trajectory started at the point z,, on the edge of B will next hit 
the edge of B at points y,, and x,+1. 
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Thus, the time of flight T needed for this trajectory to reach the right 
edge of the box is given by 

1 
a = xneAIT or T = - ln (e) 

A 1  
(5.8.6) 

Consequently, this trajectory will emerge from the right edge of the box 
at 

(5.8.7) 

where 6 = X2/Xl.  
Under the flow, a trajectory started at (a, yn) can be described by 

5 = g(Y; a,  Yni (5.8.8) 

where g is a smooth function of y,a,yn, and c. The homocliiiic orbit 
can be obtained from (5.8.8) by setting yn = 0 and e = 0; that is, 

because it emerges from the right edge of the box at (u ,O) .  It reenters 
the box at its top edge at ( 0 , a ) .  Hence, 

g(a; a, 0,O) = 0 (5.8.10) 

We note that the time taken by a trajectory started at (zn,a) to pass 
through the box is very long compared with the time taken to get from 
(u,yn) to the point (xn+l,a) because the velocity of the flow is near 
zero within the box. Moreover, because of the smoothness of the flow 
with respect to c and the initial conditions, we can approximate the 
trajectory (5.8.8) in terms of the homoclinic orbit by using a Taylor 
series expansion. The result is 

Because this trajectory reaches the top edge of the box at (x,,+~, a), 

Xn+1 = g(a; a,  0,O) t ayn t @€ (5.8.1 2) 
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where 
a9 a9 

ayn aE a = - (a ;  a,O,O) and ,d = - (u ;  a,O,O) (5.8.14) 

The parameters a and ,O depend on properties of the global flow. 
Because trajectories cannot cross in the plane, a is positive. To 
determine the sign of p, we let yn = 0 and obtain rntl = D c .  In 
order that this expression be consistent with the three phase portraits 
in Figure 5.8.1, /3 must be positive. 

Combining (5.8.7) and (5.8.13), we obtain the map 

zntl = Icz: + per where Ic = (YU'-~ (5 .8. 15) 

which relates z,+~ to 5, in Figure 5.8.2. We reiterate that (5.8.15) is 
valid only for small c and only for trajectories that pass close to the 
saddle. Moreover, the constants Ic and p depend on properties of the 
global flow, but they are positive. With this information, we can use 
this map to study the qualitative features of the flow provided that E 

is small and we consider only trajectories that pass close to the saddle. 
To study the dynamics generated by (5.8.15), we distinguish two 

cases: 6 > 1 and 6 < 1. When 6 > 1, the map has a fixed point z* 
when e > 0 and no fixed points when e < 0, as shown in Figure 5.8.3. 
Provided E is sufficiently small, r* is small and the Jacobian I c 6 ~ * ~ - '  
of the map is larger than zero but less than unity. Hence, the fixed 
point z* is stable, and (z*, u )  lies on a stable periodic orbit of the flow. 
Consequently, when 6 > 1, the system (5.8.1) and (5.8.2) has a stable 
periodic orbit when c > 0 and no periodic orbits when E < 0. 

When 6 < 1, the map has a fixed point a t  z* when c < 0 and none 
when c > 0, as shown in Figure 5.8.4. For sufficiently small E , Z *  is 
small and the Jacobian I c 6 ~ * ~ - '  of the map at  the fixed point is larger 
than unity. Hence, the fixed point is unstable and corresponds to an 
unstable periodic orbit. Consequently, when 6 < 1, the system has an 
unstable periodic orbit when E < 0 and no periodic orbits when c > 0. 

The global bifurcation discussed in this section is an example of a 
blue sky catastrophe in which a limit cycle disappears through collision 
with a saddle equilibrium point. When 6 > 1, there is a stable periodic 
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Figure 5.8.3: Return maps of (5.8.15) when 6 > 1, L = 1.0,p = 1.0, and 
6 = 1.5. The three cases shown correspond to c = -0.1,0, and 0.1. The 
identity map y = 2 is also shown. 

-0.2' 
0.1 0.2 0.3 

X 
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Figure 5.8.4: Return maps of (5.8.15) when 6 < 1, L = 1.0,p = 1.0, and 
6 = 0.65. The three cases correspond to E = -0.1,0, and 0.1. The identity 
map is also shown. 
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orbit for 6 > 0. As (5 decreases, the limit cycle and the saddle move closer 
to each other, and at E = 0 the limit cycle and a branch of both the 
stable and unstable manifolds of the saddle point coincide, forming a 
homoclinic connection, which is doubly asymptotic to the saddle point. 
In other words, a trajectory starting on this orbit approaches the saddle 
as t + f m .  Thus, the homoclinic orbit can be thought of as a limit 
cycle with an infinite period. As 6 decreases below zero, the limit 
cycle abruptly vanishes from the state space, hence, the name blue 
sky catastrophe. When 6 < 1, the blue sky catastrophe involves the 
abrupt disappearance of an unstable limit cycle through collision with 
a saddle equilibrium point. 

When 6 = 1, the present first-order analysis fails. Andronov, Leon- 
tovich, Gordon, and Maier (1971) state that,, in this case, multiple pe- 
riodic solutions bifurcate from the homoclinic orbit and present results 
for special cases. Dangelmayr and Guckenheimer (1987) developed a 
method that can be used to treat this case. 

The planar results discussed in this section are applicable to higher- 
dimensional systems without symmetry provided that the following 
conditions are satisfied. First, the system has an orbit homoclinic to a 
saddle point; that  is, an orbit that approaches the saddle as t -+ foo .  
Second, the eigenvalues of the Jacobian matrix associated with the 
saddle have a special structure. Out of all of the eigenvalues in the 
right-half of the complex plane, the closest to  the imaginary axis is a 
real eigenvalue XI. And out of all of the eigeiivalues in the left-half of 
the complex plane, the closest to the imaginary axis is a real eigenvalue 
- A 2 .  Thus, the dynamics of the system near the homoclinic orbit can be 
reduced to that of a planar system because the eigenvalues - A 2  and X i  
determine how the homoclinic orbit approaches and leaves the saddle 
point. 

Example 5.19. Following Diener (1984), we consider the system 

x = Icy + px(6  - y 2 )  (5.8.16) 
$ = - " + a  (5.8.1 7) 

where k , p , a ,  and 6 are positive constants. The fixed poirits of this 
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system are given by 

The Jacobian of the system is 

1 p(6 - y2) k - 2pay 
-1 0 J =  [ 

(5.8.18) 

(5 A.19) 

whose eigenvalues are 

X2 - p ( b  - y2)X + k - 2pay = 0 

A 2  + !!A U 'F {E- 4p2a2 + 6 = O  (5.8.2 1) 

Therefore, the fixed point corresponding to the positive sign in (5.8.18) 
is a saddle and the one corresponding to the iiegative sign is an unstable 
focus. Moreover, the sum of the eigenvalues is - k y / a ,  which is negative 
for the saddle because y is positive for it. Hence, X I  - A 2  is negative, 
which implies that X 2  > A1 or 6 > 1. When a = a,  M 0.12, the system 
has a n  orbit homoclinic to the saddle; this is shown in Figure 5.8.5b. 
Because 6 > 1, the system has a stable periodic orbit on one side of 
the homocliriicity condition (such an orbit is shown in Fig. 5.8.5a for 
a = 0.1) and no periodic orbits on the other side, as shown in Figure 
5.8.5~ for n = 0.14. In other words, as a increases past the critical 
value a,  at which a homoclinic connection exists, the stable limit cycle 
abruptly disappears from the state space in a blue sky catastrophe. 

(5.8.20) 

or 

5.8.2 Orbits Homoclinic to a Saddle 
In this section, we consider three-dimensional systems with symmetry 
and possessing orbih homoclinic to a saddle with three purely real 
eigenvalues. Transforming the saddle too the origin and using the 
eigerivectors of the saddle as coordinates, we write the equations 
governing the motions of these systems as 

a: = -X1Z + f l ( 5 ,  y, 2; E )  

Y = - X 2 Y  + f 2 ( s , y , z ;  4 
i = A 3 2  t f + , Y ,  2; f )  

(5.8.22) 
(5.8.23) 
(5.8.24) 
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Figure 5.8.5: Phase portraits illustratiiig a blue sky catastrophe of a lirnit 
cycle i n  the acceleration-forced van der Pol equations (5.8.16) and (5.8.17) 
with DC bias (Thompson and Stewart, 1986): k = 0 . 7 , ~  = 10, and 6 = 0.1. 

where the A, are positive and the f, are Cz alid variish along with tlieir 
first derivatives at (x, y, z,  6 )  = ( O , O ,  0,O). 

When the system (5.8.22)-(5.8.24) has 110 symmetries, one call 

reduce this system to a planar syst,em. Then, one can use a technique 
similar to that used in the preceding section to show tliat for 6 # 0 
and sufficiently small, a periodic orbit bifurcates from the lioinocliriic 
orbit. For systems without symmetries, Wiggins (1988) proved that 
the periodic orbit is 

(a) a sink for A 1  > A3 arid A 2  > A,; 

(b) a saddle for A1 i- A 2  > A 3 , A I  < A3 and/or A 2  < A3; 

( c )  a source for A 1  + Xz < X3. 
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In the presence of symmetries, we assume that A1 > A2 and let 
6 = AZ/A3 .  Again, one can use a technique similar to that used in 
the preceding section to prove the following theorem (Afraimovich, 
Bykov, and Shilnikov, 1977; Kaplan and Yorke, 1979c; Sparrow, 
1982; Arneodo, Coullet, and Tresser, 1981; Wiggins, 1988). When 
6 < 1, there is no recurrent behavior near the saddle on one side 
of the homoclinicity, and there exists an unstable strange invariant 
set containing a horseshoe on the other side. When 6 > 1, a stable 
symmetric periodic orbit exists on one side of the homoclinicity, and 
two stable but nonsymmetric orbits exist on the other side. All three 
periodic orbits have periods that tend to infinity as the homoclinicity 
is approached. 

Example 5.20. We consider the Lorenz system 

i = --b(x - y) 
y = px - y - 22 
i = xy - pz  

(5.8.25) 
( 5.8.26) 
(5.8.2 7) 

where u, p,  and b are positive constants. The fixed points of this system 
are 

x = O ,  y = O ,  and z = O  (5.8.28) 

x = y = k \ /p (p -  l),  and z = p -  1 (5.8.29) 

Nontrivial solutions exist only when p > 1. The stability of these 
fixed points is determined by the eigenvalues of the Jacobian matrix 

-u u 0 
(5.8.30) 

To study the stability of the trivial fixed point, we let x = y = z = 0 
in J and find that the eigenvalues of J are 
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or 

x 1 , x z  = -$a 1 t 1) f &--- a - 1)2 t ap ,  A3 = -p  (5.8.32) 

Hence, when p < 1, all of the eigenvalues are purely real arid negative, 
and the origin is a sink. When p > 1, one of the eigenvalues is positive 
and the other two eigenvalues are negative, and hence the origin is a 
saddle. Thus, at p = 1 ,  we have a pitchfork bifurcation, where a stable 
fixed point loses stability and gives rise to two other stable fixed points. 

To study the stability of the nontrivial fixed points, we substitute 
(5.8.29) into (5.8.30) and find that the eigenvalues of the Jacobian 
matrix are given by 

x3 t (a t p t 1)X2 + P(.  + p ) X  t 2 4 %  - 1) = 0 (5.8.33) 

According to the Routh-Hurwitz criterion, all three roots have negative 
real parts, and hence the nontrivial fixed points are stable if 

(0 t P t t p )  - 2a(p  - 1) > 0 (5.8 -34) 

(5.8.35) 

All of the roots of (5.8.33) are real if 

and one root is real and two roots are complex conjugates if the 
inequality is reversed. 

and 10 used by Lorenz 
and exarnirie the behavior of the unstable manifold of the origin as 
p is increased from zero. When 0 < p < 1, the origin is globally 
stable, as shown in Figure 5.8.Ga. As p is increased past unity, one 
of the eigenvalues of the origin becomes positive, with the other two 
eigenvalues remaining negative. Simultaneous with the loss of stability 
of the origin, the two nontrivial fixed points C1 and C2 are born with 

Next, we fix the values of P and a at 
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(c) #table manlfold (b) 

Figure 5.8.6: Evolution of the fixed points and the unstable maiiifold of the 
saddle of the Loreiiz equations. 

all of their eigenvalues being purely real and negative. Consequently, 
the unstable manifold of the origin is slightly curved, leading from the 
saddle directly to the attracting fixed points C1 and Cz, as shown in 
Figure 5.8.6b. The stable manifold of the saddle separates the basin 
boundaries of the fixed points C1 and C,. As p is increased further, two 
of the eigenvalues of each of C1 and Cz approach each other, coalesce 
at  p = pa M 1.346, and become complex conjugates with negative real 
part past ps .  Hence, as p exceeds p s ,  the unstable manifold of the origin 
spirals into C1 and Cz, as shown in Figure 5.8.6~.  

As p is increased past 10, the spiraling becomes more pronounced. 
The imaginary part of the complex eigenvalues increases in magnitude, 
while its real part becomes less negative. As a result, the unstable 
manifold of the saddle makes wider turns and settles more slowly to 
C1 and Cz, as shown in Figure 5.8.7a. As p is increased further, the 
unstable arid stable manifolds of the saddle get closer and closer to 
each other and at p = p h  M 14.926 intersect noiitransversely to form a 
trajectory I' that  approaches the saddle for t --t -oo and for t --t t o o .  
In  other words, 1' is a homoclinic orbit. This is shown in Figure 
5.8.7b. The  eigenvalues of the saddle a t  p = p h  are -18.13,-2.67, 
and 7.14. Thus, 6 = 2.67/7.13 = 0.37 < 1. Hence, according to the 
theorem, there is no recurrent behavior near the saddle on one side 
of the hornoclinicity ( p  < p h  in this case), and there is an unstable 
strange invariant set contaiiiiiig a horseshoe on the other side ( p  > p h  

in this case). However, as pointed out by Kaplan and Yorke (1979~)  
and Yorke and Yorke (1979), the resulting chaos is not attracting but 
transient. The nontrivial fixed points C1 and Cz continue to be the 
only attracting sets (see Fig. 5 .8 .7~)  until p exceeds pc M 24.06, where 
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N b l r  menlfold of 0 

I 

‘1 Nble rninlhld of 0 

Figure 5.8.7: Behavior of the unstable manifold of the saddle of tlie Loreiiz 
equations: (a) p < F h ,  (b) p = p h ,  and ( c )  p > ph.  

the transient chaos is converted into a chaotic attractor by a crisis. 
As p increases past p = p~ sz 24.74, tlie nontrivial fixed points lose 
stability via a subcritical Iiopf bifurcation. Therefore, in the small 
interval pc < p < p ~ ,  there are three attractors: the iiontrivial fixed 
points C1 and C, and a chaotic attractor. 

5.8.3 Orbits Homoclinic to a Saddle Focus 
In contrast wi th  the preceding case in which tlie eigenvalues of the fixed 
point are purely real, we consider in this section three-dimerisional sys- 
tems with orbits homoclinic t,o a fixed point with one real eigenvalue and 
two complex-conjugate eigeiivalues; that is, a saddle focus. Specifically, 
we consider after Shilnikov (1965, 1968, 1970) t,he three- dirnerisiorial 
sys tern 

j. = - p ” - W y + f l ( x r y , 2 ; E )  (5.8.37) 

i = xz + f & , Y , Z ; t )  (5.8.39) 
Y = wx - PY + f z ( G  912; 4 (5.8.38) 
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where w ,  p,  A ,  and c are constants and fi, f2, and f3 are C2 and vanish 
together with their first derivatives at (z,y,z,e) = (O,O,O,O). Here, 
p , ~ ,  and A are positive. We assume that the system (5.8.37)-(5.8.39) 
has a single orbit homoclinic to the origin (it is a saddle focus) when 
6 = 0. We let 6 = p / A .  Shilnikov (1965, 1968, 1970) proved the following 
theorem. If 6 > 1 ,  the system has a periodic orbit on one side of the 
homoclinicity and no recurrent behavior on the other side. The period 
of the orbit tends to infinity as e -+ 0. If 6 < 1,  then for e = 0 there 
is a countable infinity of unstable periodic orbits in a neighborhood of 
the homoclinic orbit. In fact, the system has a countable infinity of 
horseshoes. Moreover, Gaspard (1983) and Glendinning and Sparrow 
(1984) showed that, if S < 1 and 6 # 0, finitely many of the horseshoes 
persist and on one side of the homoclinicity there is a countable 
infinity of more complicated homoclinic orbits at parameter values 
e l ,  t2,.  . . , en, . .  . tending to zero. This theorem also applies if both p 
and A are negative by time reversal. 

In the presence of the symmetry (z, y, z )  -+ (-z, -y, - z ) ,  Glendin- 
ning (1984) showed that, for 6 > 1 ,  each homoclinic bifurcation con- 
tributes three periodic orbits to the bifurcation diagram far from e = 0: 
two asymmetric orbits on one side of the homoclinicity and a symmetric 
orbit on the other side. 

The three-dimensional results discussed in this section are appli- 
cable to higher-dimensional systems provided that the following con- 
ditions are satisfied. First, the system has an orbit homoclinic to a 
saddle-focus point. This orbit approaches the saddle focus as t --t foo ,  
Second, the eigenvalues of the Jacobian matrix associated with the sad- 
dle focus have a special structure. Out of all of the eigenvalues in the 
right-half of the complex plane, the closest to the imaginary axis is a 
real eigenvalue A. And out of all of the eigenvalues in the left-half of 
the complex plane, the closest to the imaginary axis is a pair of com- 
plex conjugate eigenvalues - p  f iw ,  where w # 0. Consequently, the 
dynamics of the higher-dimensional system near the saddle focus can 
be reduced to the three-dimensional system (5.8.37)-(5.8.39) because 
the three mentioned eigenvalues determine how the homoclinic orbit 
approaches and leaves the saddle-focus point. By reversing time, the 
results also apply to the case in which the eigenvalues closest to the 
imaginary axis are p f iw and - A ,  where p and A are positive. 
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In addition to the aforementioned references, we refer the reader to 
the following references: Arneodo, Coullet, and Tresser (1982)) Gas- 
pard, Kapral, and Nicolis (1984), Tresser (1984a,b), Wiggins (1988)) 
Fowler (1990a,b), and Palis and Takens (1993). Homoclinic bifurca- 
tions in n dimensions are considered in detail by Wiggins (1988) and 
Fowler (1990a). 

Example 5.21. We consider, after Chin, Nayfeh, and Mook (1W3), 
the system 

(5.8.41) 

(5.8.42) 
* l  

71 = P2 - P1 and 7 2  = 

d 2  = 2"' COST1 (5.8.43) 

(5.8.44) - P2 - PI 

where p1 = p2 = 1.2334,a = 4.0835,A = -11.4792,~~ = 0.4972, and 
f = 0.0235F. This system has an orbit homoclinic to a saddle focus 
when F = Fh M 340.854. The eigenvalues of the saddle focus are 
0.4656, -1.2334 f 4.20363, and -2.9324. Hence, S = 1.2334/0.4656 = 
2.G49 > 1. Therefore, according to the Shilnikov theorem, the systeni 
has a stable limit cycle on one side of the homoclinicity and no 
recurrent behavior on the other side. Two-dimensional projectioiis of 
the unstable manifolds of the saddle focus are shown iii Figure 5.8.8. 
When F = 330, the unstable manifold leads to a limit cycle in one 
direction and to a sink in the other, as shown in Figure 5.8.8a. As F is 
increased, the limit cycle and saddle focus move closer to each other, as 
shown in Figure 5.8.8b at F = 335. When F = Fh, there is an  orbit that 
is asymptotic to the saddle focus in forward and backward time; that 
is, an orbit homoclinic to the saddle focus has been formed, as shown 
in Figure 5.8.8~. As F is increases through F h ,  there is no recurrent 
behavior nearby, and the unstable manifold of the saddle focus leads to 
the sink in both directions. 
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Figure 5.8.8: A two-dimensional projection of an unstable manifold onto the 
a2 - a1 plane for (a) F = 330 (both directions are included), (b) F = 335, 
(c) F = 340.853, and (d) F = 350 : t denotes a saddle and * denotes a sink. 

Example 5.22. We consider, after Nayfeh and Chin (1994), the system 

(5.8.45) 

3 t - f c o s p )  1 (5.8.46) 
2 

u1= v1 (5.8.4 7) 
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1.4 “4 

1.0. 

Figure 5.8.9: (a) A two-dimensional projection of the twin limit cycles onto 
the a - u1 plane, (b) the FFT of a at u = -0.55799, (c) a two-dimensional 
projection of the chaotic attractor onto the a - u1 plane, and (d)  the FFT 
of a at o = -0.558. In (a) and (c), + denotes the saddle focus. 

(5.8.48) 

when p1 = 0 . 2 5 , ~ ~  = 0.5, f = 2 . 5 , ~ ~ ~  = a 3  = 1,az = -2, and 
a4 = 4. There is an orbit homoclinic to a saddle focus when u = 
ah x -0.55799. The eigerivalues of the saddle focus at  0 = Uh are 
0.644, -0.5 f 0.8552, and -1.148. Hence, 6 = 0.5/0.644 = 0.776 < 1. 
Therefore, according to the Shilnikov theorem, the trajectories of the 
system in the neighborhood of the homoclinic orbit form a homoclinic 
structure that contains a countable set of saddle periodic orbits, arid 



BIFURCATIONS OF HOMOCLINIC ORBITS 407 

hence a state trajectory wanders “randomly” between the unstable 
periodic trajectories. In other words, the system behavior is chaotic. In 
Figures 5.8.9a and 5.8.9b we show the two twin period orbits and their 
spectrum that exist at u = -0.55799, just before the formation of the 
homoclinic orbit, and in Figures 5 .8 .9~  and 5.8.9d we show the chaotic 
attractor and its spectrum at (T = -0.558, just after the formation of 
the homoclinic orbit. The broad spectrum of this attractor shown in 
Figure 5.8.9d and its Lyapunov exponents (0.015,0.0, -0.982, -1.195) 
confirm its chaotic nature. 

5.8.4 Comments 
Shilnikov (1967, 1970) also proved the following theorem. Let a four- 
dimensional system have an orbit homoclinic to a saddle focus when a 
parameter E = 0. Assume that the eigenvalues of the Jacobian matrix 
associated with the saddle focus are p1 f iwl and -pz f iwz, where w1 

and w2 # 0, p1 and p2 > 0, and p1 = pz. Then, for e = 0, there is 
a countable infinity of horseshoes in a neighborhood of the homoclinic 
orbit. At least thus far it appears that researchers have not encountered 
examples of natural systems exhibiting this homoclinicit1y. 

We note that the theorems discussed in Sectioris 5.8.1-5.8.3 do 
riot give a complete picture of the systenis under consideration. The 
tlieorems are local in nature. Even if they predict complexity, such 
complexity may not be observed i n  numerical simulations or may be 
observed for parameter values far away from homoclinicity (Arneodo, 
Coullet, and Tresser, 1982; Glendinning and Sparrow, 1986), as is 
evident in the next example. 

Example 5.23. We consider, after Arneodo et al. (1982), the piece- 
wise linear system 

x = y  (5.8.49) 
y = z  (5.8.50) 
2 = -y - p z  + f ( x )  (5.8.5 1) 

where 
S(x) = 1 t ax if z 5 0 (5.8.52) 
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f(z) = 1 - pz  if z 2 0 (5.8.53) 

and p, a, and p are positive constants. 
The system has two equilibria: A = (-u-’,O,O) in the left-half 

plane, and B = ( p - l ,  0,O) in the right-half plane. The eigenvalues of 
the Jacobian matrix a t  A are given by 

s3 + ps2  + 3 - a = 0 (5.8.54) 

We denote the three roots of (5.8.45) by X and p f iw, where p,w, and 
X are real. Then, 

A t p + iw + p - iw = -p  

X(p + iw) (p  - iw) = a 

(5.8.55) 

( 5.8.5 7) 
X(p + i ~ ) +  A(p - Z W )  + ( p  4- L ) ( p  - Z W )  = 1 (5.8.56) 

Similarly, the eigenvalues of the Jacobian matrix at B are given by 

9 3 + p s 2 t 3 t p = 0  (5.8.58) 

If we denote these eigenvalues by L and R f in, then 

L+2R = -p 
2LR+R2 + R2 = 1 
X(R2 +R2) = - p  

(5.8.59) 
(5.8.60) 
(5.8.6 1 ) 

For simplicity, we choose the parameters p,w, and R instead of P y a ,  
and p .  Then, A, p, a, L, R, and p are given in terms of p,w, and R as 

L = - p - 2 R ,  R 2 = 1 - R 2 - 2 R L ,  p =  - L ( R ~  + 02) (5.8.63) 

To illustrate the consequences of the Shilriikov theorem, we fix p 
and w so that the fixed point A is a saddle focus with the desired 
value of 6 =I p/A 1 . Then, we choose R so that the unstable manifold 
of A nontransversely intersects its stable manifold, thereby forming a 
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homoclinic orbit to A. To accomplish this, we write the general solution 
of the system in the region 2 5 0 as 

1 
2 = (c1 coswt + c2 sinwt)eP' + c3eAt - - 
y = p(cI cos wt  + c2 sin wt)eP' 

z = ( p 2  - w2)(c1 cos wt + c2 sin wt)eP' 

(5.8.64) 
a 

-w(cl sinwt - c2 coswi)eP' + c3~e'! 

-2wp(cl sinwt - c2 coswt)eP' + c3A2eAf 

(5.8.65) 

(5.8.66) 

Consequently, the unstable manifold of the saddle is given by 

(5.8.67) 

It intersects the plane z = 0 at the point M when c3eAt = u-',  which 
corresponds to y = Au-' and z = A'a-'. The stable manifold of A is 
given by 

A t  2 A! 1 
x = c3ext - -, y = c 3 ~ e  , z = c 3 ~  e 

a 

1 
z = (cl cos wt  + c2 sin wt)eP' - - 
y = p(cl cos wt -+ c2 siriwt)eP' - w(c1 shut  - c2 coswt)ePf 
z = (p' - w2)(c1 coswt + c2 sinwt)eP' 

-Zwp(cl sin wt - c2 coswt)eP' 

(5.8 5 8 )  

(5.8.69) 

(5.8.70) 

U 

This manifold intersects the plane 5 = 0 along the line D. To determine 
D, we subtract 2p times (5.8.G9) from (5.8.70) and obtain 

z - 2py = - ( p 2  + wz)(cl coswt + c2 sinwt)eP' (5.8.71) 

Setting 2 = 0 in (5.8.68) yields 

( 5.8.7 2) 
1 

(q cos wt + c2 sin wt)ePL = - 
U 

Combining (5.8.71) and (5.8.72) gives the following equation for D: 

2 - 2py = - ( p 2  t w2).-' = 2p(p2 + w2 - 1)-1 (5.8.73) 

on account of (5.8.62). 
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The general solution in the region z 2 0 is given by 

(5.8.74) 
1 

x = (61 cos Rt t 62 sin Rt)eR1 + b3eL' - - 
P 

y = R(6, cos Rt + 62 sin nt)eR' 
-R(bl sin Rt - 62 cos Rt)eRt + 63LeL' 

z = (R2 - R2)(6, cos Rt + 62 sin Rt)eR' 
-2RR(bl sin Rt - 62 cos Rt)eR' + 63L2eLt 

(5.8.75) 

(5.8.76) 

To continue the unstable manifold from the left-half to the right-half 
plane, we start the trajectory in the right-half plane from the point M 
at t = 0. Hence, 

For a = 0.633625 and /3 = 0.3375, p = -0.4, w = 1 . 1 ,  and 
X = 0.4G25, and hence 6 = p / A  = 0.8649 < 1. When R = Rh x 0.3982, 
there is an orbit homoclinic to the saddle focus A. Although all of the 
conditions of the Shilnikov theorem are satisfied, Arneodo, Coullet, and 
Tresser (1982) found that all trajectories quickly wander off to infinity 
for values of R near Rh. In fact, chaos is first numerically observed at 
R M 0.1740, which is very far from the homochicity value Rh. 

For a = 0.224635 and /3 = 0.3375, p = -0.27, w = 1.018, and 
A = 0.2024. Hence, 6 = p/X = 1.3347 > 1 .  Although not all of the 
conditions in Shilnikov's theorem are fulfilled for chaotic behavior to 
occur, Ameodo, Coullet, and Tresser (1982) numerically found chaos. 

5.9 EXERCISES 

6.1. When a = 1,  use the transformation z, = sin2(n8,) to transform 
the logistic map 

zn+l = 4 a ~ , ( l  - z,) 
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into 
On+, = 28, mod (1) 

5.2. Consider the one-diniensional map 

Set a = 11.5 and show that as b is varied from -5 to 0 there is an 
incomplete period-doubling cascade (Bier and Bountis, 1984). You 
will find that there is a finite number of period-doubling bifurcations 
followed by a. finite number of reverse period-doubling bifurcations. 

5.3. Consider the I Ihon  map, which is described by 

2 
z k + l  = 1 + Y k  - Q x k  

Y k + l  = 0 . 3 X k  

Choose a as a control parameter and gradually decrease it froin a N 

1.22G3. Verify that periodic and chaotic attract,ors occur at a = 1.22G2 
and a = 1.2260, respectively. Examine the mechanism leading to the 
chaotic solution at a = 1.2260. 

5.4. Consider the following quasiperiodically forced van der Pol 
oscillator (Kapitaniak, 1991): 

x1 = 5 2  

i 2  = -z1 t a(l  - x 3 . 2  F cos(w,t) c o s ( w 2 t )  

Set (Y = 5.0, F = 5.0, and w1 = & + 1.05 and numerically determine 
the asymptotic state of this system in each of the following cases: ( i )  
w2 = 0.002 and (i i )  w2 = 0.006. Discuss the characteristics of the two 
attractors by using PoiricarC sections and power spectra and examining 
sensitivity to initial conditions. 

5.5. Consider the circle map (5.5.5): 
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(a) Noting that the rotation number is zero in the wedge 0/1 of Figure 
4.2.1, examine the dynamics of this map. 

(b) Set R = 0.2 in (5.5.5) and construct the graph of F ( z )  versus x 
for each of the following cases: (i)  Ii' = 0.9, (ii) K = 1.0, and (iii) 
It' = 1 . 1 .  Discuss the nature of these graphs. Also, examine the 
solutions of the map in each case. Determine the rotation number 
in the first two cases. (If you try to determine the rotation number 
in the third case, you will find that the limit (4.2.2) does not exist. 
You will obtain different values of p for different 20.  The rotation 
number is not unique for K > 1.) 

(c) In the interval (0,1] choose an irrational number and verify that 
there is a continuous curve in the K - R plane that originates 
from this irrational number on the R axis and extends to the line 
IC = 1.  

5.6. Consider the following two-dimensional map treated by Holmes 
(1979): 

(a) Set b = 0.2, vary d in the range [2.0,2.8] and display the different 
attractors obtained in a plot of Y k  versus d .  Discuss the bifurca- 
tion diagram. 

(b) Examine the attractor obtained at d = 2.71 and discuss its 
characteristics. 

5.7. Consider the Lorenz equations (5.4.5)-(5.4.7) and set Q = 10 and 
p =  f. 

(a) For these parameter values, a subcritical Hopf bifurcation occurs 
at pc 24.74. Verify that unstable periodic solutions exist for 
P < P C .  
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(b) At p = 28, numerically ascertain that the asymptotic solution 
is chaotic by examining the state-space portrait, an associated 
PoincarC section, and the frequency spectrum of one of the states. 

(c) At p = 28, consider the points (2, y ,  z )  on the chaotic solution that 
satisfy the condition xy - p z  = 0. These points correspond to the 
extrema of z because i. = 0. Of these points, choose t4he maxima, 
let Zk represent the kth maximum of z ,  and construct the graph 
zk+l versus Zk .  

(d) Close to the attractor determined at p = 28, choose two initial 
points separated by a distance of Construct a graph to 
show how the separation between the evolutions initiaied from 
these two points changes with time. Discuss this graph. 

The aperiodic asymptotic solution realized at p = 28 is called the 
Lorenz attractor. This attractor is also known as the Lorenz mask 
(Abraham and Shaw, 1992, Chapter 9). Maps such as those constructed 
in part c are called return maps. In the present case, you will firid, 
as Lorenz did in 1963, that the return map lias a simple structure. The 
iterates of the map fall on a one-dimensional curve with a maximum 
and resemble the tent map of Exercise 2.1 for a < i. This suggests that 
the features of the dynamics of the Lorenz equations may be captured 
by the onedimensional map Z k + l  = f(zk). A n  extensive study of the 
Lorenz equations was conducted by Sparrow (1982). 

5.8. Consider equations (3.4.1)-(3.4.3) and verify that symmetry- 
breaking and period-doubling bifurcatioris of periodic solutions take 
place at p N 0.30 and p 21 0.44, respectively. Examine the bifurcations 
that take place as p is increased beyond 0.45. 

5.9. Consider the Rossler equations (5.2.1)-(5.2.3). 

(a) Set b = 2 and c = 4 .  In the range 0.3 5 a < 0.4, verify that a 
sequence of period-doubling bifurcations occurs, culminating in 
an aperiodic motion at a N 0.387. 
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(b) Through numerical integration, determine the asymptotic aperi- 
odic solution at a = 0.2, b = 0.2, and c = 5.7. On the chaotic 
solution, consider the points that satisfy y t z = 0. These points 
correspond to the extrema of 2 because x = 0. Of these points, 
choose the maxima and let 2 k  represent the kth maximum of 2. 
Then, plot Zk+l versus zk. Discuss the gra.ph. (You will find that 
this graph is remarkably similar to Figure 2.2.2a constructed for 
the map [1.1.4].) 

Rossler (1976a,b, 1979b) classifies some of the strange attractors of the 
Rossler equations iw screw-type and spiral-type attractors. The 
attractor obtained in part b is an example of a spiral-type attractor. 

5.10. Consider the following externally excited oscillator ( Raty, 
Isomaki, and von Boehm, 1984; Raty, von Boehm, and Isomaki, 1986); 

2 t 0.4 x t 2 - Pz2 - 4 2  = 0.115 cos(Rt) 

(a) For p = 0, as R is gradually decreased from 0.54, verify that a 
symmetry-breaking bifurcation occurs followed by a sequence of 
period-doubling bifurcations culminating in a chaotic motion. 

(b) Numerically verify that periodic and chaotic attractors coexist by 
using phase portraits and PoincarC sections in the following cases: 
(i) P = 0 and R = 0.5255 and (ii) ,B = 0.1 and R = 0.5281. 

5.11. Consider the following parametrically excited single-degree-of- 
freedom system (Zavodney and Nayfeh, 1988): 

x 4- w,22 + e [2p1 t 6x2 + g2cos(Rt)] + e 2 a 2  = 0 

Also, 
= wQ + c2u 

Assume that e is a small and positive parameter and p,  6, a, 9, and u 
are all independent of e.  
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(a) Construct a second-order approximation for periodic oscillations 
about the origin by using the method of multiple scales. 

(b) Compare the perturbation results with the results obtained through 
direct numerical integrations for wo = 1, u = 0, a = 4, 6 = 3, 
p = 1, g = 11, and e = 0.10. Discuss the comparison. 

(c) Construct the state-space portrait and verify that a periodic 
attractor and a point attractor coexist for wg = 1, Q = 0, a = 4, 
6 = 5, p = 1, g = 2.5, and e = 0.10. (You will find that the 
boundaries of the basins of attraction for the two attractors are 
smooth. ) 

(d) Construct the state-space portrait and verify that two periodic 
attractors and a point attractor coexist for wo = 1, Q = 0, a = 4, 
6 = 5, p = 1, g = 5, and c = 0.10. (You will firid that the 
boundaries of the basins of attraction for the three attractors are 
smooth.) 

The state-space portraitas for g = 2.5 and g = 5.0 are different, because a 
global bifurcation takes place at the critical value gc, which lies between 
2.5 and 5.0. When the boundaries of basins of attraction are smooth, 
as in parts c arid d, there is a clear demarcation of the domains of 
attraction of the different attractors. However, this is not so when 
the boundaries are fractal. Fractal basin boundaries have been found 
in many studies (e.g., Grebogi, Ott, and Yorke, 1983a,b, 1986, 1987; 
Moor1 and Li, 1985; Thompson, Bishop, and Leung, 1987; Ueda and 
Yoshida, 1987; Zavodney, 1987; Pezeshki and Dowell, 1988; Nayfeh and 
Sanchez, 1989; Zavodney, Nayfeh, and Sanchez, 1989; Li and Moon, 
1990a,b; Nayfeh, Harridan, and Nayfeh, 1990, 1991; Ueda, 1991; Rega, 
Salvatori, and Benedettirii, 1992). 

5.12. Show that 
a, 

sech(t) tanh(t) sin(0t)dt = TR sech 

Hint: Why is the following integral zero? 

sech(t) tanh(t) cos(0t)dt = 0 



416 CHAOS 

Figure 5.9.1: Contour of integration. 

Then, show that 

1 ,  I = [, e"'' sech(t) tanh(2)dt 

or 

Let et = u and obtain 

Show that 

and hence 

To evaluate the integral, use the method of residues, choose the path -y 
in Figure 5.9.1, and show that 

uin u2 - 1 zz - 1 dz = f(z)dz = 27riR 
00 

du = A zin 
= L, (u2 + 1)' (2' + 1)' 

where R is the residue of the integrand at the twofold singularity at z 
= i. Use the formula 

dm-1 
lim - [ (z  - a)mf(z)] 

1 Residue of j (  z )  at z = a = 
(m  - l)! z4t.l dzm-1 
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where f(z) has an m-fold singularity at z = a ,  to show that 

Finally, show that 

I = dl sech ( :Or)  

5.13. Show that 
00 U A  

I = [, sech2(t) cos(u2)dt = 
sinh ( ~ u T )  

00 
Hint: Show that 

I = 1, eiut sech2(t)dt 

Let e' = u and obtain 

5.14. Show that 

00 027T 
tanh(2t) sech'(2t) sin(Rt)dt = 

16 sinh ( f o x )  

Hint: Show that 

1 0 0  I = :  eln* tanh(2t) sech2(2t)dt 
a 1, 
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Then, let ezt = u and show that 

where u = $I. Then, show that 

Show that 

Hence, show that 
RZn 

16sinh ( i n n )  
I =  

5.15. Consider an externally excited pendulum modeled by 

x t sin z = c[F cos(Rt) - 2pi] 

(a) Show that the unperturbed system has saddle connection orbits 

(b) Show that rt can be expressed as 

I'* between (kn,O). 

1 t  z1 = z = 4 tan- (e ) - n and z2 = x = 2 sech(t) 

where the origin of t is chosen so that z(0) = 0. 

(c) Show that the Melnikov function is given by 

-8p lw sech2(t)dt 
00 
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(d) Use the method of residues and show that 

sech(t) cos(0t)dt = ?r sech 

( e )  Hence, show that 

5.16. Consider a parametrically excited pendulum modeled by 

x + sin z = --E [Fsin(z) cos(Slt) + 2pS] 

(a) Show that the unperturbed system has saddle connection orbits 
I?* between the saddle points ( h r ) O ) .  

(b) Show that I?+ can be expressed as 

1 t  11 = I = 4 tan- (e ) - A and z2 = x = 2 sech(t) 

where the origin of t is chosen so that s(0) = 0. 

(c) Show that the Melnikov function can be expressed as 

M(B) = 4Fsin(SlB) /m tanh(t) sech2(t) sin(Rt)dt 
M 

W 

-8p sech2(t)dt 
J--00 

(d) Use the results of Exercise 5.14 to evaluate the first integral and 
obtain 

sin(R0) 
sinh (!$I) 

M ( B )  = 27rR2F - 1Gp 

5.17. Consider the damped SineGordon equation 

x + sin I = c(u + F cos Slt - 2 p i )  
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Use the expression for the heteroclinic half-orbit of the unperturbed 
system derived in Exercise 5.16 to show that the Melnikov function is 
given by 

iM(8) = 2an - 16p + 2Fn cos(R0) sech -On (; ) 
5.18. Consider the system 

1 
2 

X + -(z - x 3 )  = €[F cos(Rt) - 2pi]  

(a) Show that the Melnikov function can be expressed as 

or 
16 

-M 3 
M ( 0 )  = 2F cos(R8) Jm sech2(2t) cos(Qt)dt - - p  

(b) Use the method of residues and show that 

M Rn [, sech2(2t) cos(Qt)dt = 
4 sinii ( f a n )  

( c )  Hence, show that 

16 F R T  
M(O) = --p + 

2 sink1 (ion) 

5.19. Consider the system 

X - 2 + x3  = ~ [ F Z  COS(R~) - 2pi] 

(a) Show that the Melnikov function can be expressed as 

M ( e )  = - 2~ J m  tanh(t) secli2(t) c o s [ ~ ( t  + e ) p t  
-m 
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(b) Use the results of Exercise 5.14 to evaluate the first integral and 
hence show that 

8 sin( 0 0 )  
M ( e )  = - i p  i- F R Z ~  

sinh ( $ 0 ~ )  

5.20. Consider the family of mappings 

Use a numerical algorithm to determine the universal constant 

when N = 2,3,4 . . . )  8. 
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Chapter 6 

NUMERICAL METHODS 

In this chapter, we present algorithms pertaining to fixed point and 
periodic solutions of continuous-time systems. In Section 6.1 continu- 
ation schemes for tracing branches of fixed point solutions in a given 
state-control space are discussed. We consider direct schemes for de- 
termining static and IIopf bifurcation poirits in Sections 6.2 and 6.3. In 
Section 6.4 we present hornotopy algorithms for determining the roots 
of an algebraic system of equations. Numerical construction of peri- 
odic solutions of autonomous and nonautoiiomous systems is discussed 
in Section 6.5. Finally, in Section 6.6 we consider continuation schemes 
for tracing branches of periodic solutions in a given state-cont,rol space. 

6.1 CONTINUATION OF FIXED 
POINTS 

Continuation schemes are used to determitie how solutions of a system, 
such as (2.1.1), vary with a certain parameter. Tliese schemes are 
based on the implicit function theorem. Let us consider the fixed- 
point solutions determined from (2.1.2). The state vector x E R", the 
parameter vector M E R", and the vector field F maps R" x R" into 
72". Let F be C', where r 2 1 ,  and let x = xo be the solution of (2.1.2) 
when M = Mo. Then, according to the implicit function theorem, 
if the Jacobian matrix D,F(xo, Mo) is not singular (i.e., does not have 

423 
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any zero eigenvalues), then there exists a neighborhood around (xo, Mo) 
in R" x R" such that, for each M in this neighborhood, (2.1.2) has 
a unique solution x. Further, this solution can be written in the form 
x = G(M), where xo = G(Mo). A proof of the implicit function 
theorem is provided in many textbooks (e.g., Hale, 19G9, Chapter 0). 

In Section 2.3 where we considered codimension-one bifurcations, 
we saw that D,F (in this chapter, we use F, to denote D x F )  is singular 
at saddlenode, pitchfork, and transcritical bifurcation points. To fix 
ideas, we revisit Examples 2.12-2.14. 

Example 6.1. We find from (2.3.1) that 

F, = 0 and F,, = 1 

at the saddle-node bifurcation point (0 ,O).  Therefore, it follows from 
the implicit function theorem that the dependence of 2 on p is not 
unique in the neighborhood of the saddle-node bifurcation point. 
However, there exists a unique function p = p ( z )  = z2 such that 
p ( 0 )  = 0 and F [ s ; p ( z ) ]  = 0 in a neighborhood of this bifurcatioii 
point. 

Example 6.2. We find from (2.3.2) that at both supercritical and 
subcritical pitchfork bifurcation points 

F, = 0 and F,, = 0 

Hence, it follows from the implicit function theorem that neither the 
dependence of z on p nor that of p on 2 is unique in a neighborhood 
of subcritical and supercritical pitchfork bifurcation points. 

Example 6.3. We find from (2.3.3) that at the transcritical bifurcation 
point 

F, = 0 and F,, = 0 

Therefore, it follows from the implicit function theorem that neither the 
dependence of z on p nor that of p on z is unique in a neighborhood 
of the transcritical bifurcation point. 
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In the literature, the turning points and branch points addressed 
thus far are referred to as simple turning points and simple branch 
points, respectively. We present a method for locating these points in 
Section 6.2 and Hopf bifurcation points in Section 6.3. Away from 
turning and branch points, the implicit function theorem implies that 
a continuation of the solutions is possible. In this section, we describe 
methods for the continuation of the solutions of (2.1.2) as one of the 
parameters a E M is varied while the rest of the parameters are held 
constant. Specifically, we consider variation of the solutions of 

F ( x ;  a)  = 0 (6.1.1) 

with respect to the scalar parameter a E 72'. In the (n+l)-dimensional 
(x, a) space, there may be many branches of fixed points. However, the 
dependence of x on a on each branch is unique. A globally convergent 
homotopy algorithm for calculating all solutions of F ( x ; a o )  = 0 at a 
given a. is described in Section 6.4. Here, we assume that at least one 
solution xo has been calculated at a. and that the Jacobian matrix F ,  
at ( ~ 0 ,  (YO) is nonsingular so that the implicit function theorem holds 
locally. Then, the continuation or path-following method is an 
algorithmic procedure for tracing out the branch of fixed points that 
passes through (xo, ao) in the state-control space. 

There are essentially two categories of continuation methods. The 
first category consists of predictor-corrector methods, and the sec- 
ond category consists of piece-wise-linear or simplical methods. 
In the predictor-corrector methods, one approximately follows a branch 
of solutions. On the other hand, in piece-wise-linear methods, one ex- 
actly follows a piece-wise-linear curve that approximates a branch of 
solutions (Allgower and Georg, 1980, 1990). Only predictor-corrector 
methods are considered here. These methods usually consist of a pa- 
rameterization strategy, a predictor, a corrector, and a step-length con- 
trol. 
6.1.1 Sequential Continuation 
The simplest continuation method is the sequential scheme (Kubicek 
and Marek, 1983). This scheme is also known as natural parameter 
continuation (Doedel, Keller, and Kernevez, 1991a) when (Y is used 
as the continuation parameter. The interval of cy is divided into closely 
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spaced intervals defined by the grid points ao, a ] ,  az,. . . , an. Then, the 
solution xj at aj is used as the predicted value or initial guess for 
the solution xj+l at This predicted value is corrected through a 
Newton-Raphson iteration scheme. Thus, 

(6.1.2) 

where the superscript k is the iteration number and 

= xj 

Further, r ,  which is such that 0 < r 5 1 or equivalently T E (0,1], 
is called the relaxation parameter and Axk is the solution of the n 
linear algebraic equations 

(6.1.3) 

which are obtained from the Newton-Raphson method. The relaxation 
parameter r is chosen such that 

(6.1.4) 

If the relation (6.1.4) is satisfied for r = 1,  then r is set equal to 1 
in (6.1.2); otherwise, r is halved until (6.1.4) is satisfied. If the grid 
points aj are sufficiently close, few iterations (one or two) are sufficient 
for obtaining an accurate solution at each aj.  If the vector function F 
is not C', where r >_ 1, then the components of the matrix F, have to 
be evaluated numerically using fini te-difference schemes. 

In Figure 6.1.la we show a turning point, and in Figure 6.1.lb we 
show a branch point. Clearly, this sequential scheme will fail at such 
points where two or more branches meet because the Jacobian Fx is 
singular there, and hence one cannot solve the algebraic set of equations 
(6.1.3). This problem can be avoided at turning points by choosing a 
different continuation parameter. Let us suppose that a turning point 
occurs, say, at a = a,. Then, locally, there are no solutions beyond 
the turning point at a,. Consequently, the sequential scheme using cy 
it9 a continuation parameter would fail for all values of a beyond a, in 
the direction of continuation. Because a is a unique or a single-valued 
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Figure 6.1.1: Branches of fixed points meeting at (a) turning point and (b) 
branch point. 

furiction of the states xi and the rank of [F, I Fa] is n, the sequential 
sclieiiic can be modified to carry out the continuatioil past the turning 
point. In the modified scheme, one of the variables zj is used as 
a continuation parameter instead of a. In general, any indeperideiit 
variable or a parameter can be chosen as a continuation parameter. In 
Sections 6.1.3 and 6.1.4, the arclength along a branch of solutions is 
used as a continuation parameter. 

In practice, it is sometimes possible to carry out a sequential 
continuation through a branch point because F, is generally not 
singular at fixed points located in the vicinity of the branch point. 
A Newton-Raphson method can be used to locate the fixed points 
surrounding a branch point if the initial estimates are close enough 
to them. However, this depends on the radius of convergence of the 
Newton-Raphson method in the neighborhood of the considered branch 
point. For illustration, let us assume that we are on branch 1 in Figure 
6.1 . lb  and that we take a step to step over the brarich point to get 
onto branch 4. Then, the Newton-Raphson method can converge to a 
fixed point on branch 4 if the initial estimate is within the radius of 
convergence of this method. 
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6.1.2 Davidenko-Newton-Raphson Continuation 
In this scheme, the control parameter a is used as the continuation pa- 
rameter. First, a method devised by Davidenko (1953) is used as a pre- 
dictor, and then a Newton-Raphson method is used as a corrector. Be- 
cause the predictor is based on solving a system of ordinary-differential 
equations, it is also called an ordinary-differential equation pre- 
dictor (e.g., Seydel, 1988). 

Differentiating (6.1 .I) with respect to cr yields 

Fx(x, a)- dx = -F,(x, a) 

d a  ((3.1.5) 

which constitutes a system of n linear algebraic equations for the 
unknowns dxlda. Hence, if the Jacobian F x ( x , a )  is regular in the 
interval [ao, a,], then 

- dx = -F;'(x, a) F,(x, a )  
d a  

Then, given the solution 
X(Q0) = xo 

(6.1.6) 

(6.1.7) 

one can solve (6.1.6) subject to the initial condition (6.1.7) using any 
ordinary-differential equation solver, such as a Runge-Kutta method, 
to determine the dependence of x on a. The predicted values obtained 
from the integration are likely to deviate from the true solutions of 
(6 , l . l )  due to truncation error. Hence, the predicted values are used 
as initial guesses for a Newton-Raphson scheme to obtain corrected 
values. Again, this continuation method will fail at  turning and branch 
points because the Jacobian matrix is singular at such points. 

6.1.3 Arclength Continuation 
In this scheme, the arclength s along a branch of solutions (see Fig. 
6.1.2) is used as the continuation parameter. So, x and a are considered 
to be functions of s; that is, x = x(s) and a = a(.). 

On the path parameterized by the arclength s, we seek x and CY 

such that 
F(x(s),a(s)l = 0 (6.1.8) 
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Figure 6.1 2: Illustration for arclength continuation scheme. 

Thus, differentiating (6.1.8) with respect to s yields 

Fx(x, a)x‘ + F,(x, a)a‘ = 0 (6.1.9) 

where x‘ = dx/ds and a‘ = d a / d s .  Equation (6.1.9) may be rewritten 
as 

[F, I Fa] { :i } = (F, I Fa] t = 0 

where the (n + 1 )  vector t is the tangent vector at (x ,a)  on the path. 
The system (6.1.9) consists of n linear algebraic equations in the (n+ 1) 
unknowns x’ and a’. To specify these unknowns uniquely, we supple- 
ment (6.1.9) with a nonhomogeneous equation. A convenient additional 
equation is specified by the Euclidean arclength normalization 

which implies that the tangent vector t has unit length. Keller (1977) 
proposed many non-Euclidean normalizations in place of (6.1.10). The 
initial conditions for (6.1.9) and (6.1.10) are given by 

x = xo and a = a. at s = 0 (6.1.11) 

If the Jacobian F, is nonsingular and F, is a zero vector, (6.1.9) 
and (6.1.10) yield 

[X’T a’] = f [ O  0 * * * 0 11 
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If the Jacobian Fx is nonsingular and Fa is a nonzero vector, one can 
solve (6.1.9) and (6.1.10) to determine the tangent vector t as follows. 
First, one solves the system of n linear algebraic equations 

F ~ ( x ,  CY)Z = -Fa(x, 0) (G.1 . la)  

for the vector z. Then, owing to the linearity of (6.1.9) in x’ and a’, 

x‘ = zcy’ (6.1.13) 

where a’ is still unknown. 
condition (6-1.10) yields 

Substituting (6.1.13) into the arclength 

a‘ = &( 1 + z*z)-1’9 (6.1.14) 

where the plus and minus signs determine the direction of the contin- 
uation. Having determined the tangent vector t, we use it to predict 
values of x and CY at s + As by taking an Euler step; that is, 

x = xo + x’As and CY = ct0 + a‘As 

This predictor is called the tangent predictor. The tangent predictor 
falls under the class of first-order predictors, while the predictor 
used during sequential continuation falls under the class of zero-order 
or trivial predictors (e.g., Seydel, 1988, Chapter 4). In order to obtain 
good predicted values, higher-order predictors have been proposed 
(e.g., Schwetlick and Cleve, 1987). However, a higher-order predictor 
may not be desirable in regions of large curvatures on the path. 

If a higher-order predictor produces results of sufficient accuracy, 
then there is no need for a corrector. However, when a tangent 
predictor is used, a corrector is usually necessary. The predicted values 
are usually corrected through a Newton-Raphson scheme, and the 
predictor-corrector scheme is continued until the branch is traced. 

The choice of the step size As depends on several factors, two of 
which are the convergence of the corrector and the curvature of the 
path. The chosen step size should be such that the initial guess or 
estimate is within the radius of convergence of the corrector. Moreover, 
if the number of iterations needed by a corrector to achieve the desired 
accuracy is larger than a specified optimal number, it will be necessary 
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to decrease the step size. To follow the path closely in regions of large 
curvature, one needs to use small steps. Further, the step size may have 
to be adaptively varied during the course of the continuation. This has 
prompted the development of sophisticated algorithms for step-length 
control (e.g., Den Heijer and Rheinboldt, 1981; Schwetlick and Cleve, 
1987). 

Like the sequential method, the arclength continuation scheme is 
bound to break down a t  turning points and other bifurcation points, 
where F, is singular. Again, continuation past branch points may be 
achieved by stepping over them, so-to-speak. In this scheme, it is 
possible to overshoot past turning points and end up at values of a 
where there are no solutions. To overcome this problem, we describe 
the so-called pseudo-arclength continuation scheme proposed by 
Keller (1977, 1987) in Section 6.1.4. 

In the rest of this section, we describe a modified arclength scheme 
proposed by Kubicek (1976) to carry out continuation along branches 
with turning points; this scheme is used in the continuation software 
DERPAR (Kubicek, 1976; Kubicek and Marek, 1983). The basic idea 
underlying the scheme of Kubicek is the fact that, although F, is 
singular at a turning point and hence has a rank less than n, the 
augmented n x (n  + 1) matrix [F, I Fa] has a rank of n. Therefore, one 
can find an n x n nonsingular submatrix by deleting the kth column, 
which is found by using a Gaussian elimination scheme with pivoting. 
We treat a as an additional state and let 

x: = p i x i  for i = 1, 2, - . a ,  k -  1, k + 1 ,  a s . ,  n + l  (6.1.15) 

Substituting (6.1.15) into (6.1.10) yields 

(6.1.16) 
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Figure 6.1.3: Illustration for pseudo-arclength continuation scheme. 

where, again, the plus and minus signs determine the direction of 
continuation. After choosing the direction of continuation, we use an 
ordinary-differential-equation solver to integrate numerically (6.1 . I  5) 
and (6.1.1G) subject to the initial conditions (6.1.11). Kubicek (1976) 
has suggested the use of the Adams-Bashforth method (e.g., Stoer 
and Bulirsch, 1980) €or carrying out the numerical integration. Again, 
the predicted values are likely to deviate from the true solutions of 
(6.1.1) due to truncation error. Hence, the predicted values need to be 
corrected by using a corrector, such as a Newton-Raphson scheme. 

6.1.4 Pseudo-Arclength Continuation 
This procedure, which also uses an arclength parameterization, was 
developed by Keller (1977, 1987) and is used in the continuation 
software AUTO developed by Doedel (1986). 

In Figure 6.1.3, the turning point is marked by a dot. Near the 
turning point, at a = a*, we obtain ( x + , a + )  by using (6.1.11), (6.1.13), 
and (6.1.14). Next, we use the tangent predictor to determine the 
prediction (x l ,a l )  at a+ f As; that is, 

a1 = a* + a*'Aa 
x1 = X* + x * ' A ~  

(6.1.17) 
(6.1.18) 

where the step length Aa can be freely specified. 
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At this stage, if one were to use a Newton-Raphson method for 
correction one would seek a solution along the vertical line shown 
through ( x l , a I )  in Figure 6.1.3. The corrector would break down in 
the vicinity of the turning point because there are no solutions on the 
vertical line. To overcome this problem, we seek a correction to ( X I ,  a1) 

along a solution path that is normal to the tangent vector t at (XI  , 0 1 ) .  

This path is shown as a broken line in Figure 6.1.3. On the solution 
path, (x, a) satisfies 

F(x,a) = 0 ( G .  1.19) 

and is such that the vector 

is normal to the tangent vector t;  that is, 

XTt = 0 (6.1 -20) 

Substituting (6.1.17) and (6.1.18) into (6.1.20) and using the definition 
oft,  we obtain 

T * I  (x - x * ) ~ x * '  + ( a  - a*)a*' - (a*'2 + (X ) x ]As = 0 

or 
g(x, a )  = ( X  - x t ) T x + ( a  - a*)a*' - AS = 0 (6.1.21) 

because 
a * ' 2  + (X*))TX*' = 1 

Equations (6.1.19) and (6.1.21) constitute the pseudo-arclength 
continuation scheme. In this scheme, one solves the n + 1 nonlinear 
algebraic equations (6.1.19) and (6.1.21) for the n + 1 unknowns (x, a). 
If we apply a Newton-Raphson scheme to (G.l.19) and (6.1.21), then 
at each iteration of this scheme the equations are 

(6.1.22) 
(6.1.23) 
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where r is a relaxation parameter and Axk+' and Aakt' are determined 
from 

Fx(xkl ak)Axk+' -+ F,(xk, ak)Aakt' = -F(xk, ak)  

(x*' )~AX~+'  + a*'Aaktl = -g(xk,ak) 
(G.1.24) 
(6.1.25) 

If F, is nonsingular, one can solve (6.1.24) by using the so-called 
bordering algorithm (Keller, 1987; Doedel, Keller, and Kernevez, 
1991a), which is based on the method of superposition. First, one 
solves the systems 

Fx(xk,ok)z2 = -F,(xk, ak) 

and 
k k  k k  F ~ ( x  ,(Y ) ~ 1  = -F(x ,a ) 

Then, it follows from (6.1.24) that 

Axkt1 = z1 + zZAak+' 

Substituting (6.1.28) into (6.1.25) yields 

Aak+l = - [&k, ak )  t ZTX"] 

[a*' + z;X*'] 

Once Aaktl is known, Axkt1 can be determined 

(6.1.26) 

(6.1.27) 

(6.1.28) 

(6.1.29) 

from (G.1.28), and 
the iterations are continued until the required convergence is achieved 
in the Newton-Raphson procedure. After (x ,a)  is determined on the 
branch, we move on to determine another point on the branch. The 
step size A3 can be reduced if the convergence is slow and increased if 
the convergence is rapid. 

In the arclength continuation scheme of the software CANDYS/QA, 
Feudel and Jansen (1992) use a combination of linear and cubic 
predictors and the corrector described in this section. Furthermore, 
Feudel and Jansen implement a step-length control based on the 
curvature of the path being followed. 
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6.1.5 Comments 

The algorithms described in Sections 6.1.3 and 6.1.4 also experience 
difficulties at  a branch point. At such a point (x, a), Fa belongs to the 
range of F, and the n x (n t 1) matrix [Fx I Fa] has a rank of (n - 1). 
Hence, there are at least two independent solutions v1 and v2 such that 

Each n + 1 vector vj provides the direction of a branch at the branch 
point and, thus, choosing a vj specifies the direction of continuation. 
Details on how to determine the vj are provided by Kubicek and 
Marek (1983, Chapter a), Seydel (1988, Chapter 5 ) ,  Doedel (1986), 
and Doedel, Keller, and Kernevez (1991a). The branch-switching algo- 
rithms are generally quite involved because they require computation 
of the second derivatives of F(x; a). 

A simpler approach to branch switching is to add a small pertur- 
bation to F(x;cr) as the branch point is approached. The perturba- 
tion only slightly changes the obtained values, but it breaks pitchfork 
and transcritical bifurcations because they are structurally unstable, 
aa discussed in Sections 2.3.7 and 2.3.8. (In the perturbed system, 
there are nonbifurcating branches.) Consequently, the continuation 
scheme smoothly tracks the solutions from the original branch to the 
new branch. Once a solution along a new branch has been determined, 
one can restart the continuation along that branch after removing the 
perturbation. 

Again, for simplical continuation methods, the reader is referred 
to the works of Allgower and Georg (1980, 1990). The reader can find 
related material and additional information on continuation methods in 
the works of Garcia and Zangwill (1981), Keller (1977, 1987), Kubicek 
and Marek (1983), Seydel (1988), Allgower and Georg (1990), Doedel, 
Keller, and Kernevez (1991a,b), and Feudel and Jansen (1992), among 
others. 
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6.2 SIMPLE TURNING AND 
BRANCH POINTS 

Turning and branch points can be determined either through an indi- 
rect method or a direct method. Indirect methods typically yield 
the bifurcation points as a by-product of the continuation procedure. 
In these methods, the eigenvalues and/or the rank of the Jacobian ma- 
trix Fx are monitored as the fixed points are determined with respect 
to the continuation parameter a or s. When one of the eigenvalues is 
zero, and consequently the rank of the matrix F, is n - 1, the pres- 
ence of a static bifurcation is detected. Further, the rank of the matrix 
(F, I Fa] is used to determine if the bifurcation point is a turning or 
a branch point. In comparison to indirect methods, direct methods 
are usually more expensive, but they are more accurate and effective in 
determining surfaces of bifurcation points in the s tate-control space. 

Here, we describe an algorithm developed by Moore and Spence 
(1980) for the direct calculation of turning and branch points. The 
basic idea underlying this method is the fact that F, is singular at static 
bifurcation points so that F,u = 0 has nontrivial solutions. Thus, these 
bifurcation points are given by 

F(x, a) = 0 
Fx(x, (Y)U = 0 

u u = l  T 

(6.2.1) 
(6.2.2) 
(6.2.3) 

The normalization condition (6.2.3) ensures that the vector u is non- 
trivial. Seydel (1979b) used (6.2.1), (6.2.2), and a non-Euclidean nor- 
malization instead of (6.2.3). 

Equations (6.2.1)-(6.2.3) are solved by using a Newton-Raphson 
procedure. Thus, at each iterate k, one obtains the following linear 
system of equations: 

F ~ A x  t FtAa = -Fk (6.2.4) 
(6.2.5) 

(6.2.6) 

[F;,uk] AX + [Fkauk] Act + F ~ A U  = -Fkuk 
T k  2uTAu= 1 - (u u) 
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In (6.2.4)-(6.2.6), the superscript k on the increments has been omitted. 
In (6.2.5), F,, represents the matrix of second partial derivatives with 
respect to x, and Fxa represents the matrix of second partial derivatives 
with respect to x and a. As mentioned in Section 2.3, one can check 
if the bifurcation point in question is a turning or branch point by 
examining the rank of the matrix (F, I F,]. 

To solve (6.2.4)-(6.2.6) efficiently, we use the principle of superpo- 
sition. To this end, first we compute the solutions of 

Fizz = -Fa A (6.2.7) 

and 
F i z l  = -FA 

Then, it follows from (6.2.4) that 

(6 -2.8) 

AX = 21 + ZZACI (6.2.9) 

Substituting (6.2.9) into (6.2.5) yields 

([F:,U~]ZZ + [F:,uk]) Aa t F ~ A u  = -F;uk - [Fk,uk]al (6.2.10) 

Again, we solve (6.2.10) for A u  in terms of Acu by using the principle 
of superposition. Thus, we calculate the solutions of 

Fkz4 = - [ F ~ , u ~ ] z ~  - [Fkauk] (6.2.11) 

and 
Fiz3 = -[F;uk] - [F:,uk]zl (6.2.12) 

Then, it follows from (6.2.10) that 

AU = 23 + ~ 4 A a  (6.2.13) 

Substituting (6.2.13) into (6.2.6) and solving the resulting equation for 
Acu yields 

1 - (UTU)k - 2UT23 ha = 
2uTz4 

(6.2.14) 
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Having calculated Ax, Au, and Aa ,  one updates the values of xk, uk, 
and ak as 

xkt' = x k  + TAX 
uktl = uk + ~ A u  

= ak -t rAa  

(6.2.15) 
(6.2.16) 
(6.2.17) 

where r E (0,1] is again a relaxation parameter. 
There ace also other algorithms to determine turning and branch 

points (e.g., Griewank and Reddien, 1984; Menzel, 1984; Ponisch, 1985; 
Weber, 1981). 

HOPF BIFURCATION POINTS 

One can determine Hopf bifurcation points by using an indirect method 
as a by-product of a continuation scheme by monitoring the eigenvalues 
of the Jacobian matrix. Here, we present a direct method proposed 
by Griewank and Reddien (1983) for numerically calculating Hopf 
bifurcation points. At a Hopf bifurcation point (x*, a*), the Jacobian 
matrix Fx(x*, a*) has a pair of purely imaginary eigenvalues f i w ,  with 
all the other eigenvalues having nonzero real parts. To determine x*, a*, 
and w ,  we assume that the eigenvector corresponding to the eigenvalue 
io is p + iq, where p and q are real. Then, 

Fx(x, a ) ( p  + 2s) = iw(P -t (6.3.1) 

Separating ( 6 3 . 1 )  into real and imaginary parts and using the fact that 
F, is real, we have 

Fxp + = 0 (6.3.2) 

and 
Fxq - = 0 (6.3.3) 

To ensure that p and q are nontrivial and that they are linearly 
independent, we use the normalization conditions 

w T p = o  (6.3.4) 
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(6.3.5) 
where w is a specified vector. Hence, the problem of calculating the 
Hopf bifurcation points of 

T w q - 1 = 0  

F(x,a) = 0 (6.3.6) 

is transformed into finding the solutions x,p,q,a,  and w of (6.3.2)- 
(6.3.6). 

To compute the solutions of (6,3.2)-(6.3.G) efficiently, we use a 
Newton-Raphson procedure. At the kth iteration, we have 

xktl = xk  + rAx 
pkt* = pk + rAp 
qkt' = qk + rAq 
ak+' = ak -+ rAa 
uktl = wk -+ rAw 

( 6.3.7) 
(6.3.8) 
(6.3.9) 

( 6.3.1 0) 
(G.3.11) 

where the superscript 12 on the increments has been omitted and 
r E (0,1] is a relaxation parameter. Substituting (6.3.7)-(6.3.11) into 
(6.3.2)-(6.3.6) and linearizing the results in the increments, we have 

F ~ A x  -t- FkAa = -Fk (6.3.12) 

= -[Fxp + w d k  (6.3.13) 
+FkAq - wkAp - pkAw 
= - P x q  - UP1 k (6.3.14) 

[FXxplkAx + [FX,plkAa + FtAp + wkAq + qkAu 

[FxXdkAx + [FX,qlkAa 

wTAp = -W T k  p (6.3.15) 
wTAq=l-W T k  q (6.3.16) 

To solve the linear system of equations (6.3.12)-(6.3.16) efficiently, 
we use the principle of superposition. To this end, we solve the systems 
of equations 

Fkzl = -Fk (6.3.17) 

(6.3.18) 
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Then, it follows from (6.3.12) that 

AX = 21 + ZZAQ (6.3.19) 

Substituting (6.3.19) into (6.3.13) and (6.3.14) yields 

A [  = -  

where 

-Pk qk ]Aw 

A =  1 -wkI Ff: w k l l  Ff: (6.3.21) 

In (6.3.21), I is the n x n identity matrix. Multiplying (6.3.20) from 
the left by A-' ,  we obtain 

where 

A [  :;I = -  

A [  ::I=- 

(6.3.22) 

(6.3.23) 

(6.3.24) 

(6.3.25) 

(6.3.26) 

Substituting (6.3.22) and (6.3.23) into (6.3.15) and (6.3.16), we arrive 
at 

wT24Aa + wTz&Aw = -wTpk - wT23 (6 .3.2 7) 
wT27Aa +- wTzeAw = 1 - W T k  q - w T 26 (6.3.28) 
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which can be solved for Aa and Aw. Then, one can calculate Ax 
from (6.3.19), Ap from (6.3.22), and Aq from (6.3.23). Substituting 
these increments into (6.3.7)-(6.3.11), one computes x, p, q, a, and w.  
The procedure is repeated until the specified convergence criterion is 
satisfied. 

Holodniok and Kubicek (1984a,b) and Roose (1985) developed a 
system of lower dimension than (6.3.2)-(6.3.6) by eliminating either p 
or q from (6.3.2) and (6.3.3). If q is eliminated, the result is 

[Fx]’p t w’p = 0 (6.3.29) 

Then, the problem of calculating the Hopf bifurcation points of (6.3.6) is 
reduced to solving (6.3.6) and (6.3.29) for the 211 t 2 known ~ 1 ~ x 2 , .  . . , 
x,,a, w 2 , p I , p 2 ,  . . . ,pn.  Thus, we can impose two constraints on this 
system, such as choosing two components of the vector p arbitrarily. 
Then, the resulting 212 + 2 equations can be solved for the 271 + 
2 unknowns by using a Newton-Raphson procedure. The scheme 
proposed by Holodiiiok and Kubicek (1984a,b) and Roose (1985) is used 
in CANDYS/QA (Feudel and Jansen, 1992). Seydel (1979a, 1981) has 
also proposed a direct scheme for computing Hopf bifurcation points. 
An indirect scheme for determining Hopf bifurcation points has been 
discussed by Guckenheimer and Worfolk (1993). 

In Sections 6.2 and 6.3, we discussed schemes for determining codi- 
mension-one bifurcation points. There are also schemes to determine 
codimension-two bifurcation points and other more degenerate bifurca- 
tion points (e.g., Brindley, Kaas-Petersen, and Spence, 1989; DeDier, 
Roose, and van Rompay, 1990; Griewank and Reddien, 1984; Ponisch, 
1987; Roose and Piessens, 1985; Spence and Werner, 1982; Werner and 
Janovsky, 1991). 

6.4 HOMOTOPY ALGORITHMS 

In Section 6.1, we showed that once a solution xo of (G.l.1) at  a = a0 
has been calculated, one can use a continuation scheme to trace the 
branch passing through (x0 ,ao)  if the Jacobian matrix Fx(xO,ao) is 
nonsingular. The question arises as to how one can calculate all possible 
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solutions of (6.1.1) at  ao. A straightforward approach would be to 
guess values for the solutions and use a Newton-Raphson procedure 
to improve on these guesses until the procedure converges to within a 
specified tolerance. This procedure may converge slowly or diverge if 
the initial guesses are poor. One can randomly generate guesses for x 
and examine if the procedure converges or diverges for each of these 
guesses. If a sufficiently large number of guesses are used, then there 
is a high probability of success in finding some or all of the roots of 
F(x;ao) = 0. However, for highly nonlinear problems, the number of 
random initial guesses needed might be very high. Alternatively, one 
can use homotopy methods, which are powerful, robust, accurate, 
numerically stable, and almost universally applicable, but also often 
prohibitively expensive (Watson, 1986, 1990; Watson, Billups, and 
Morgan, 1987; Allgower and Georg, 1990). Homotopy algoritlims are 
applicable when F in (6.1.1) is at least C2. 

The basic idea underlying a homotopy method is to deform a 
simple solvable problem continuously into the given (hard to solve) 
problem, while solving a continuous sequence of deformed problems. 
The function that specifies the continuous deformation is called a 
homotopy map. The solutions to the deformed problems are related 
and tracked as the deformation proceeds. 

Let us suppose that the system G(x, QO) = 0 is a simple version of 
F(x,aO) = 0 and has an easily obtainable unique solution xo. Then, 
one possible homotopy map is 

By using one of the continuation techniques described i n  Section 
6.1, one tracks the solutions (x,X) of H(x;ao,X) = 0 starting from 
(x,X) = (xo,O) as X goes from 0 to 1. If everything works out well, 
one will obtain a solution (x, A) = (X, 1) such that F(x; a o )  = 0. This 
approach, which is called the standard approach, is likely to fail if 
any of the following conditions occur: (a) there are no solutions at a 
particular value of A, (b) the solutions diverge as X -+ 1, and (c) the 
homotopy has branch points. At the values of X corresponding to the 
branch points, H(x; (YO, A) = 0 is singular and the rank of the matrix 
(H, I HA] is less than n.  
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Figure 6.4.1: Variation of the roots of (6.4.3) with A .  

For illustration, we consider the problem of finding the roots of 

F ( z )  = z3 - 2 = 0 (6.4.2) 

We choose G(z) = z and construct the homotopy map 

H = A(S3 - 3) + (1 - A)z ( 6.4.3) 

The solutions of H ( z ;  A )  = 0 are 

(6.4.4) 

which are plotted in Figure 6.4.1. Clearly, in the z - X space there 
is a pitchfork bifurcation at (.,A) = (0,;). At  this point, the rank 
of [H,  I HA] = [ O , O ]  is zero. Consequently, the problem H ( z ,  A)  = 0 
is singular at A = 3, and the standard approach is expected to fail 
as A --t f. To overcome this difficulty, one can use the artificial 
parameter A and modify the homotopy map H such that it has 
smooth nonbifurcating curves for 0 5 X 5 1. Alternatively, one can 
construct a homotopy map that involves additional parameters a so 
that bifurcations are not encountered during the continuation. This is 
essentially what is done in modern homotopy methods. 

To describe this procedure, we return to (6.4.3)) introduce a scalar 
parameter a, and obtain 

H ( z ;  A,  u )  = A(z3 - z) + (1 - A)(z - u )  (6.4.5) 
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Figure 6.4.2: Zeros of (6.4.5) versus A: (a) a = -0.01 and (b) (I = 0.01. 

When a # 0 there are no bifurcations in the x - A space for 0 5 A < 1. 
Based on the discussion in Section 2.3.8, this is to be expected because 
the pitchfork bifurcation in (6.4.3) a t  X = 5 is structurally unstable 
to the perturbation -a(l - A )  included in (6.4.5). In Figure G.4.2, we 
show the solutions of H ( z ; A , a )  = 0 for a = 0.01 and u = -0.01. 
This figure illustrates clearly how the inclusion of a eliminates the 
pitchfork bifurcation seen in Figure 6.4.1. Further, we note that by 
changing the value of a, one can generate some or all of the solutions 
of F ( z )  = 0. Moreover, owing to the absence of bifurcations, the 
continuation scheme will not encounter any singularities, and hence 
it is guaranteed to converge to one of the solutions of F ( x )  = 0. 

Returning to our original problem F(x, ( Y O )  = 0, we can construct a 
homotopy map as 

H(x; ao, A, a) = AF(x; ao) + ( 1  - A)(x - a) ( 6.4.6) 

Thus, one can randomly pick an a E R", which uniquely determines ~0 
to be a, and then track the solutions (x, A) of H(x; cro, A, a)  = 0 from 
(x,A) = (xolO) to (x,A) = (x , l ) .  The transversality homotopy 
theorem from differential topology (e.g., Guillemin and Pollack, 1974; 
Morgan, 1987) guarantees that the homotopy (6.4.6) will have smooth, 
nonbifurcating curves for randomly chosen values of a. Hence, modern 
homotopy methods are called probability-one hornotopy methods. 
In addition, because modern homotopy methods converge to a solution 
for any arbitrarily chosen initial condition, they are said to be globally 
convergent. 
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Using modern homotopy methods, Watson, Billups, and Morgan 
(1987) developed a software program called HOMPACK, which includes 
a suite of codes for Brouwer fixed-point problems, polynomial systems, 
certain classes of zero-finding and nonlinear programming problems, 
and discretization of two-point boundary-value problems based on 
shooting schemes, finite-differences, spline collocation, and finite el- 
ements. In particular, the subroutines FIXPDF, FIXPNF, FIXPQF, 
FIXPDS, FIXPNS, and FIXPQS from HOMPACK can be used to find 
a solution of F(x; ao) = 0. The subroutine POLSYS from HOMPACK 
can be used to determine all the solutions (including the complex ones) 
of F(x; 0 0 )  = 0.  

6.5 CONSTRUCTION OF PERIODIC 
SOLUTIONS 

The simplest numerical method of constructing periodic solutions of 
an autonomous system, such as (3.2.1), or a nonautonomous system, 
such as (3.2.46), is the so-called brute-force approach. In this 
approach, one chooses an initial condition, integrates the system for 
a long time, and ultimately converges to an attractor. It is clear 
that this approach is easy to program and very general (it can locate 
fixed points, periodic solutions, quasiperiodic solutions, and chaotic 
solutions), However, there is no guarantee that the integration will 
converge to the desired attractor. Moreover, the brute-force approach 
has several disadvantages: (a) the convergence can be very slow for 
lightly damped systems, (b) only some of the unstable solutions can be 
realized by reversing the direction of integration, and (c) achievement 
of steady-state conditions may be difficult to ascertain. To overcome 
these shortcomings, direct approaches in the frequency domain and 
time domain have been proposed. 

Here, we concentrate on the methods proposed for determining pe- 
riodic solutions of a system of first-order differential equations. In 
the frequency-domain formulation, the method of harmonic bal- 
ance (e.g., Mees, 1981; Kundert, Sangiovanni-Vincentelli, and Sug- 
awara, 1987; Kim and Noah, 1990) and generalized versions of this 
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method (Neymeyr and Seelig, 1991) are commonly used. In the time- 
domain formulation, finite-difference schemes (Rinzel and Miller, 
1980; Parker and Chua, 1989), shooting techniques (Keller, 1968; Aprille 
and Trick, 1972; Chua and Lin, 1975; Mees, 1981; Seydel, 1988; Parker 
and Chua, 1989), and Poincarh map methods (Curry, 1980; Parker 
and Chua, 1989) are commonly used. As illustrated by Samoilenko 
and Ronto (1979), collocation methods can also be used to construct 
periodic solutions. The method of harmonic balance can be used to 
construct periodic soh tions of a weakly nonlinear system. 

In what follows, we only describe the time-domain approaches. In 
these approaches, the initial-value problem is converted into a two- 
point boundary-value problem. Thus, one seeks an initial condition 
x(0) = 9 and a solution x(t; 9) with a minimal period T such that 

x(T,??) = 9 (G.5.1) 

6.5.1 Finite-Difference Met hod 
In this section, we describe finitedifference schemes for determining 
periodic solutions of autonomous and nonautonomous systems. 

Autonomous Systems 

For a periodic solution of an autonomous system, the period T is an 
unknown quantity, and it is determined along with the states. The 
two-point boundary-value problem is given by (3.2.1) and (6.5.1). For 
convenience, one may change the independent, variable t in (3.2.1) to a 
new independent variable T such that t = Tr, where T is the period of 
the solutiori. Then, (3.2.1) and ((5.5.1) become 

dx 
- = T F(x; M) 
d r  

(6.5.2) 

(6.5.3) 

where X(T; 9, T) has the period unity. Thus, the problem of calculating 
periodic solutions of (3.2.1) is converted into the two-point boundary- 
value problem defined by (6.5.2) and (6.5.3). 
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To implement the finite-difference method, first we choose a suffi- 
ciently dense set of uniform time steps 

where h is a small number. Then, at the midpoint of an interval, the 
derivative dx/dr is approximated by using a central-difference scheme, 
and the function F is approximated by using the trapezoidal rule. The 
chosen scheme converts (6.5.2) into 

' 1  
2 

xi+'' - X' = -hT [F(xit'; M) + F(xi; M)] (65.4) 

where xi is the value of x at  the grid point ri = ih. The periodicity 
condition (6.5.3) takes the form 

(65.5) 

Therefore, we have the nonlinear system of nN algebraic equations 
(6.5.4) to solve for the ( n N  i- 1) unknowns 

xo , xl, xz, ..., xN-', and T 

and an additional equation is needed for closure. 
We recall that a periodic solution of an autonomous system is 

invariant to linear shifts in the time origin; that is, if ~ ( r )  is a solution, 
then X ( T  i- T ~ )  is also a solution for any arbitrary TO. In other words, the 
"phase" is arbitrary. To remove this arbitrariness, we use an additional 
equation to impose a phase condition. To this end, one of the nN + 1 
variables other than T is fixed, after ensuring that this choice is within 
the solution range. From a practical point of view, there is really no 
systematic way for determining the variable to be fixed. Let us suppose 
that the first component of xo is fixed and that go represents the vector 
of the remaining n - 1 components. Then, (6.5.4) is solved for 

j io, x', xz, ..., xN-', and T 

by using a Newton-Raphson scheme. For computational efficiency, one 
can take advantage of the banded structure of (6.5.4). Of course, this 
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approach will surely fail if the periodic solution does not intersect the 
hyperplane z1 = zy. On the other hand, specifying zy may force the 
algorithm to converge to one attractor instead of another if a priori 
information about the two attractors is available. 

Here, we used a central-difference scheme because it is usually more 
accurate than a forward- or backward-difference scheme. Further , we 
have assumed that the chosen time step does not lead to any numerical 
instabilities. However, in some cases, numerical instabilities may be 
unavoidable. For example, Rinzel and Miller (1980) found that a 
central-difference scheme was not appropriate for their problem because 
of numerical instabilities. Hence, they used a backward-difference 
scheme. 

Nonautonomous Systems 

Here, the two-point boundary-value problem is given by (3.2.46) and 
(6.5.1). Let the explicit time-dependent terms in (3.2.46) have the 
least common perkd T,. Then, the period T of the sought solution is a 
rational multiple of T, and, hence, a known quantity. For convenience, 
again, we change the independent variable t in (3.2.46) to a new 
independent variable r such that t = T T .  Then, (3 .2 .46)  and (6.5.1) 
become 

dx 
- = T F(x ,TT;  M) ( 6 .5.6) 
d T  

x(l; 91 T )  = q (6.5.7) 

Again, to implement the finite-difference method, we first choose a 
where X(T; q, T) has the period unity. 

sufficiently dense set of uniform time steps 

where h is a small number. Then, at the midpoint of an interval, the 
time derivative is approximated by using a central-difference scheme, 
and the function F is approximated by using the trapezoidal rule. The 
chosen scheme converts (6.5.6) into 

1 
2 

xi'' - xi = -hT [F(x"*,Tr,+l; M )  + F ( x i ,  TT,; M)] (6.5.8) 
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where xi  is the value of x at the grid point T, = ih. The periodicity 
condition is given by (6.5.5). The system (6.5.8) and (6.5.5) represents 
nN algebraic equations in the nN unknowns 

xo , 1 2  x , x 1 . . a 1  

XN-l  

To solve this algebraic system, we use a Newton-Raphson scheme. 
In comparison with the shooting method discussed in the next 

section, in general, a finite-difference scheme is more suitable to 
determine a highly unstable periodic solution because it is less sensitive 
to initial conditions. 

6.5.2 Shooting Method 
In this section, we describe shooting methods for finding periodic 
solutions of autonomous and nonautonomous systems. 

Autonomous Systems 

Here, (3.2.1) and (6.5.1) represent the two-point boundary-value prob- 
lem. In Figure 6.5.1, we graphically illustrate the shooting method 
when (3.2.1) is two-dimensional. The trajectory that runs from 77 at 
t = 0 to the same location at t = T represents the desired periodic so- 
lution. The other trajectory represents the solution obtained by using 
the initial guess (To, qo) for (T, 7 ) .  Because this initial guess is off the 
mark, it needs correction. The correction is accomplished through a 
Newton-Raphson scheme as described below. 

We seek 
69 = 77 - ' l o  and 6T = T - To 

such that (6.5.1) is satisfied to within a specified tolerance; that is, 

Expanding (6.5.9) in a Taylor series and keeping only linear terms in 
6 q  and 6T, we arrive at  
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Figure 6.5.1: Depiction of the shooting method for a two-dimensional 
autonomous system. 

where ax/aq is an n x n matrix, I is the n x n identity matrix, and 
ax/aT is an n x 1 vector. It follows from (3.2.1) that 

If equations (6.5.2) and (6.5.3) were used instead of (3.2.1) and 
(6.5.1), then equations (6.5.9)-(6.5.11) would be replaced by 

To proceed further, the matrix &/dq evaluated at (To,qo) needs 
to be determined. Assumhg that the vector function F(x;M) is C', 
where r- 2 1, we differentiate both sides of (3.2.1) with respect to q and 
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obtain (8) = D,F(x; M)- ax 
all 

(6.5.12) 

Also, differentiation of the initial condition x(0) = q with respect to q 
leads to 

ax -(O) = I 
all 

(6.5.13) 

Thus, after x is determined, we can solve the linear initial-value 
problem (6.5.12) and (6.5.13) from zero to To and evaluate axla9 at 
(qo,To). Instead of solving (3.2.1) subject to x(0) = qo, saving the 
solution x(t) for 0 5 t 5 To, and then solving (6.5.12) and (6.5.13), we 
can solve both problems simultaneously, thereby obtaining x(t, qo) and 
ax/aq(To, qO) simultaneously. 

If one or more components of F(x; M) are nondifferentiable, then 
the components of the matrix ax/aq need to be calculated numerically. 
To this end, we solve (3.2.1) subject to the two initial conditions 

4 0 )  = 90 (6.5.14) 

Xk(0)  = q o  + 6ek (6.5.15) 

where ek is the kth column of the identity matrix and 6 is a small 
number. Then, 

xk(TO, + 6ek) - X(T0,qo) (6.5.16) 

Once the matrix &/a77 evaluated at ( 9 0 ,  To) is known, then (6.5.10) 
constitutes a system of n equations in the n + 1 unknowns 6 q  and 
6T. As mentioned in Section 6.5.1, there is an arbitrariness in the 
phase associated with a periodic solution of an autonomous system. 
To remove this arbitrariness, we specify a phase condition in one of the 
following ways: 

ax 
-(vo,To) %k = 6 

(a) By fixing one of the components of the initial vector qo, say, flk 

(Aluko and Chang, 1984; Holodniok and Kubicek, 1984a). 

(b) By setting the kth component I"k(x; M) of the vector field F(x; M) 
equal to zero (Seydel, 1981, 1988). 
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( c )  By requiring the corrections 6 9  to be normal to the vector field F 
(Mees, 1981); that is, FT 69 = 0. This condition is called the 
orthogonality condition. 

(d) By using an integrated form of the orthogonality condition (Doedel 
and Heinemann, 1983; Doedel, 1986; Doedel, Keller, and Kern- 
evez, 1991b). 

Each of the conditions (a), (b), and (c) essentially defines a Poincard 
section g(z) = 0 for an orbit of (3.2.1). Hence, the above algorithm 
will fail to converge if no periodic orbit intersects the chosen section. 
Therefore, if one of these conditions is chosen, we have the following 
(n t 1)-dimensional system to solve for (T, 77) :  

x(T,d - T I =  0 
g(x = 9)  = 0 

If we choose (To, qo) as the initial guess for a Newton-Raphson scheme, 
we obtain (6.5.10) and the equation 

to solve for the corrections (6T,6q) to (To,qo). 

equations: 
When condition (b) is used, we have the following system of ( n  + 1) 

On the other hand, when the orthogonality condition (c) is used, we 
have the following system: 

After determining the corrections, we check if the convergence criterion 
11 69 11 < €1 and I 6T I < €2 is satisfied, where the c, are specified 
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tolerances. If the criterion is not satisfied, we update the initial guess 
(To, qo) to (TO + 6T, qo + 6 q )  and repeat the procedure. 

We have successfully used the conditions proposed by Seydel (1981, 
1988) and Mees (1981). The stable periodic solutions of (3.4.1)-(3.4.3), 
shown in Figures 3.4.3 and 3.5.1, were obtained by using the condition 
proposed by Mees. The stable and unstable periodic solutions of 
(3.4.4)-(3.4.7), shown in Figures 3.4.4 and 3.4.5, were obtained by using 
the condition proposed by Seydel. 

The following remarks regarding the shooting method are worth 
noting. Because a fixed point of (3.2.1) satisfies (6.5.1), it is possible 
for the method to converge to a fixed point. Furthermore, even when 
a periodic solution is located, the computed period T may not always 
be the minimal period of the determined solution. This is so because 
we do not impose any condition in the shooting scheme to restrain the 
period T to be the minimal period. To check whether the computed 
period is minimal or not, we check whether x(T/integer) = x(0). 

In general, the shooting method is more sensitive to initial condi- 
tions than the finite-difference method. In particular, the sensitivity of 
the shooting method is pronounced when the sought periodic solution 
is highly unstable. Because of roundoff and truncation errors, one is 
likely to deviate from an unstable periodic solution even if the initial 
conditions are precisely specified. The shooting method is very efFective 
when the sought solution is not highly unstable and when the different 
sources of errors are tightly controlled. 

As a by-product of the shooting technique, one can obtain the 
monodromy matrix from 

(6.5.1 7) 

and hence determine the stability of the calculated periodic solution by 
examining the eigenvalues of ip .  To prove (G.5.17), we proceed along 
the lines of Seydel (1988, Chapter 7). We let + ( t ;  17) be the solution of 
(3.2.1) subject to x(0) = 9 and + ( t ;  9 + do) be the solution of (3.2.1) 
subject to the perturbed initial condition x(0) = q+do. Then, at  t = T, 
the separation d ( T )  between the two solutions is 

d ( T )  = +(T; 77 + do) - V) (G. 5.1 8) 
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which for small 11 do 11 can be approximated by 

(6.5.19) 

Therefore, the matrix M determines whether the initial perturbation 
do provided to the orbit 4(t;q)  grows or decays. Since (b(0) = 9, 

%(O) = I 
a9 

(6.5.20) 

Hence, a+/aq is the solution of (6.5.12) and (6.5.13). These equations 
are identical to (3.2.5) and (3.2.8), which define the monodromy matrix 
(I?. 

Nonautonomous Systems 

In this case, (3.2.46) and (6.5.1) represent the two-point boundary- 
value problem. Let the explicit time-dependent terms in (3.2.46) have 
the least common period T,. Then, the period T of the sought solution 
is a rational multiple of T,. 

To implement the shooting method, we proceed along the lines 
discussed for the autonomous system. However, here, the period of 
the solution is not an unknown quantity. We provide an initial guess 
‘lo for 7 and require the difference 6rj = 9 - qo to satisfy a specified 
tolerance so that 

x(T,  ?lo + 6 4  - (90 -I- 69) = 0 (6.5.21) 

We expand (6.5.21) in a Taylor series, retain only linear terms in 677, 
and obtain [ gv, 90) - 1 69 = 9 0  - x(T, 770) (6.5.22) 

The components of the n x n matrix ax/aq evaluated at  ( T , q O )  can 
be determined as discussed earlier. Once ax/aq is known, we have a 
system of n algebraic equations, namely, (6.5.22), to solve for the n 
unknowns 69. Then, the initial guess qo is updated, and the procedure 
is repeated until the specified convergence criterion is satisfied. Then, 
the stability of the computed periodic solution is determined from the 
eigenvalues of the monodromy matrix d x / d q  evaluated at (T, ?lo). 

I 
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6.5.3 Poincarh Map Method 
In the PoincarC map method, the problem of determining a periodic 
solution of a continuous-time system is reduced to the problem of 
determining the fixed point of a Poincard map (Curry, 1980; Parker 
and Chua, 1989). This map describes the dynarnics on an appropriately 
constructed one-sided PoincarC section. 

For nonautonomous systems, the Poincard map method is identical 
to the shooting method described above. However, the Poincard map 
method differs from the shooting method for autonomous systems. To 
outline this method, we consider a periodic orbit of (3.2.1) and let 
x = 9 represent a point on this orbit. At this point, let the section 

g(x) = 0 
be transverse to the orbit. Restricting this section to be one sided, we 
let P represent the corresponding Poincard map. Then, the fixed point 
of this map is a solution of the following algebraic system: 

P(9) - 17 = 0 

P(17,) = x(m17.l) 
where 

and ~ ( q )  is the unique return time. Using a Newton-Raphson scheme 
to solve this system, we obtain 

Xk+l = Xk - (DP - 11-l [P(Xk) - xk] 
where the matrix DP is computed as discussed in Section 3.3.2. 

Here, one needs to provide an initial guess xo that satisfies g(x) = 0. 
On the other hand, in the shooting method, one needs to provide an 
initial guess for a point on the orbit and the period of the orbit. Further, 
PoincarC map methods will not converge to the fixed points of (3.2.1) 
unless the PoincarC section contains the fixed point (an unlikely event). 

6.6 CONTINUATION OF PERIODIC 
SOLUTIONS 

Here, we consider continuation schemes for the periodic solutions of 
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(3.2.1). These schemes provide algorithmic procedures to generate 
a continuum of periodic solutions x ( T ; a )  with respect to a control 
parameter a. The branch of solutions is typically initiated near a Hopf 
bifurcation point in the state-control space. By using the analytical 
methods of Section 3.5, one can determine an approximation for the 
periodic solutions near the Hopf bifurcation point. This approximation 
can be used as an initial guess for either the finite-difference scheme or 
the shooting scheme, described in Section 6.5,  to determine the starting 
point on the branch along which continuation is desired. Next, we 
discuss three commonly used continuation schemes. 

6.6.1 Sequential Continuation 

As in the case of fixed points, one can use a sequential scheme to 
carry out the continuation (e.g., Ririzel and Miller, 1980; Seydel, 1981). 
In this scheme, the scalar control parameter a is the Continuation 
parameter, and the periodic solution determined in the previous step 
is used as an initial guess for the periodic solution to be determiried in 
the next step. This algorithm fails to go past a cyclic-fold bifurcation 
point (a turning point) in the state-control space. To remedy this, we 
interchange the continuation parameter a and one of the states 2; (e.g., 
Rinzel and Miller, 1980). 

6.6.2 Arclength Continuation 

In this section, we discuss the scheme used by Holodniok and Kubicek 
(1984a) in the software program DERPER. Here, the problem of finding 
periodic solutions of (3.2.1) is posed as a two-point boundary-value 
problem. The arclength s is used as the continuation parameter, and 
a periodic solution x [ t , q ( s ) ;  a ( s ) ]  of (3.2.1) with period T ( s )  is sought 
such that 

with the initial condition 
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Differentiating (6.6.1) with respect to s, we obtain 

where the prime indicates the derivative with respect to s, aG/aq is 
an n x n matrix, dG/8T is an n x 1 matrix, and dG/& is an n x 1 
matrix. The system (G.G.3 )  consists of n linear algebraic equations 
in the (n t 2) unknowns (~7 '~ ,T ' ,a ' ) .  Hence, we need two additional 
equations for closure. 

We recall that in the shooting scheme in Section G.5.2 we had a 
system of n equations in the (n + 1) unknowns ( r f , T ) .  To close that 
system, we specified an additional equation in the form of a phase 
condition. Here, one additional equation specifies a phase condition. 
This equation fixes one of the states q k  in the vector 9 along the 
continuation path; that is, 

(6.6.4) 

An additional equation is specified by the Euclidean arclength normal- 
ization 

~ ' ~ q '  t TI2 + = 1 (6.6.5) 

The matrices aG/aq, BG/BT, and aG/& can be evaluated by 
using (3.2.1), (6.6.1), and (6.6.2). We note that 

(6.6.6) 

(6.6.7) 

8X 
(6.6.8) 

To determine aG/aa, we differentiate (3.2.1) and (6.6.2) with respect 
to a and obtain 

8G 
&T,77; 4 = &Tl 9; 4 = Fb(T19; 4; a1 

ax 
aa - = 0  at t = O  

(6.6.9) 

(6.6.10) 
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Integrating (6.6.9) and (6.6.10) from t = 0 to t = T, we obtain ax/& 
and hence aG/aa. 

We let 

and let the 11 x (n - 1 )  matrix obtained from aG/dq by deleting the 
kth column be aG/aq. Then, using (6.6.4) and (6.6.11), we rewrite 
(6.6.3) and (6.6.5) as 

- I - I - ] . = O  aG aG aG , [ a9 aT aa (6.6.12) 

(6.6.1 3) ‘T I z z = 1  

Thus, the problem of the continuation of periodic solutions along a 
branch amounts to determining the continuation of the vector z from 
the algebraic system (6.6.12) and (6.6.13). For this purpose, the 
arclength continuation program DERPAR (see Section 6.1.3) is used. 
Depending on the problem, the index k in (6.6.4) may have to be 
adaptively varied so that one stays on a periodic solution. 

At a particular point on the branch, the eigenvalues of the matrix 
ax/aq provide information about the stability of the corresponding 
periodic solution. As in Section 6.1.3, the arclength continuation 
scheme experiences difficulties near branch points. Another point to 
note is that the branch of periodic solutions being followed might end 
at a Hopf bifurcation point. The program DERPER is eyuipped to 
detect such cases. 

6.6.3 Pseudo-Arclengt h Continuation 
This continuation scheme, which is also based OII an arclength parame- 
terization, is used by Doedel (1986) in the software program AUTO. A 
solution x [ t , q ( s ) ; a ( s ) )  of (3.2.1) with period T ( s )  is sought such that 

(G.6.14) 

In this continuation scheme, the system (3.2.1) subject to the 
boundary condition (6.6.14) constitutes a set of n differential equations 
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in the ( n  + 2) unknowns (qT, T, a). To close this system, we need two 
additional equations. 

The first equation specifies a phase condition in the form of an 
integral. Let us suppose that the periodic solutions at two consecutive 
points so and s on the branch are xo = x(T0, qo; ao) and P, respectively. 
Since (3.2.1) is autonomous, if k(t) is a solution, then so is k(t + u )  
for any u. Then, the phase condition is obtained by requiring that the 
distance 11 k - xo 11 be minimized with respect to the time translation 
u. Hence, we desire the solution that minimizes 

Setting dDldu  to zero, we obtain 

which is satisfied, say, at  u = u*. Thus, we arrive at 

1 T 

2 

= - 1 xfxd t  = 0 

[x(  t )  - xg( t )]T Xd t  = -XTX 1; - X,TXdt 
( 6 -6.1 5) J,' T 

where x ( t )  
we obtain 

j<(t +a*). Integrating (6.6.15) by parts and using (3.2.1), 

T JOT xTX0 dt = x*F[x(T', qo; 00); ao]dt = 0 (6.6.1 6) 

The second equation is given by the pseudo-arclength constraint 

/OT(x - X O ) ~ ~ ;  dt + (T - To)T~ + (a - aO)ah = As (6.6.17) 

where the prime denotes the derivative with respect to the arclength s 
and As represents the step along the continuation path. 

In the program AUTO, the derivatives in (6.6.17) are approximated 
by backward differences. Further, the system (3.2.1), (6.6.14), (6.6.16), 
and (6.6.17) is discretized by using a collocation scheme. More details 
on this discretization scheme can be found in the publications of Doedel 
(1986) and Doedel, Keller, and Kernevez (1991b). 
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6.6.4 Comments 
The software program CANDYS/QA (Feudel and Jansen, 1992) is also 
equipped to carry out continuation along a branch of periodic solutions. 
All the continuation schemes are likely to experience difficulties at bifur- 
cation points other than cyclic-fold bifurcation or turning points. The 
bifurcation points can be determined either indirectly by monitoring 
the Floquet multipliers or directly through special schemes (Holodniok 
and Kubicek, 1984b, 1987). Indirect schemes are used in DERPER and 
AUTO, while direct schemes are used in CANDYS/QA. The program 
AUTO has provisions for branch switching at transcri tical, pitchfork, 
and period-doubling bifurcation points. Furthermore, schemes for nu- 
merically computing heteroclinic and homoclinic orbits are also avail- 
able in AUTO (Doedel, 1986; Doedel, Keller, and Kernevez, 1991b). 
Other relevant studies include those by Beyn (1990), Chow and Lin 
(1990), and Guckenheimer and Worfolk (1993). The computation of 
these orbits is often necessary in global bifurcation studies. 
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Chapter 7 

TOOLS TO ANALYZE 
MOTIONS 

Here, we discuss different tools that can be used to characterize the 
responses of nonlinear systems. In Chapters 3, 4, and 5 we used time 
histories, Fourier spectra, state-space plots, and Poincard sections and 
maps as tools to study periodic, quasiperiodic, and chaotic motions. 
There exists a number of other tools to characterize responses; promi- 
nent among them are autocorrelation functions, Lyapunov exponents, 
and dimension calculations. The Melnikov and Shilnikov analyses of 
Sections 5.7 and 5.8 may be described as analytical tools for predict- 
ing parameter values at  which chaotic motions are likely to occur. In 
Section 7.1 we discuss signal types and signal noise and introduce the 
terminology and bmic ideas. Time histories are used to characterize 
motions in the next section. We illustrate the use of state-space por- 
traits in Section 7.3. In Section 7.4 we discuss the method of delays and 
the construction of a space of delayed coordinates. In Section 7.5 we 
discuss how the Fourier transform can be used to analyze motions and 
point out its limitations, PoincarC sections and details of their practical 
implementation are addressed in Section 7.6. Autocorrelation functions 
are treated in the subsequent section. In Section 7.8 we examine Lya- 
punov exponents and discuss their computation in both analytical and 
experimental situations. We discuss dimension calculations in Section 
7.9 and introduce polyspectra in Section 7.10. 

46 1 
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7.1 INTRODUCTION 

In this section, we introduce some notions, definitions, and topics 
relevant to the sections that follow. A signal obtained for analysis 
can be classified as either an analog or a digital signal. An analog 
signal is continuous in time, whereas a digital signal is composed 
of a discrete number of points, with each point corresponding to a 
discrete value of time. Digital signals are commonly encountered in 
digital-computer simulations and/or experimental situations. On the 
other hand, analog signals are encountered in analytical work, analog- 
computer simulations, and certain experimental situations. In the 
context of a system of equations, a signal can be the time history of one 
of the independent coordinates. In an experimental situation, a signal 
can be the output from a sensor or a transducer. 

The evolutions observed in both digital simulations and experiments 
are influenced by noise and errors. Finite precision leads to numeri- 
cal errors  in digital simulations and measurement  errors in experi- 
ments. For instance, before processing, the continuous arialog signal is 
typically fed into an analog-to-digital (A/D) converter of a computer, 
which then samples the time series at  regular time intervals and COII- 

verts the signal at predetermined time intervals into a set of binary 
numbers. The time between samples is referred to as the sampling 
time 7,. As a consequence, the continuous analog signal is converted 
into a sequence of numbers that are sampled with a finite precision. 
When an m bit A /D converter is used over a range of n volts, the num- 
ber of quantization levels is 2” and the resolution is + volts. The 
resolution becomes better as n becomes small or rn becomes large. Be- 
cause A/D converters have finite precision, errors are made in measur- 
ing the magnitude of the signal. These errors are called quantization 
errors. Other factors to consider in an experimental situation include 
environmental  noise and instrument  noise. Additional informa- 
tion on A/D converters, quantization errors, and sources of noise can 
be found in the books of Oppenheim and Schafer (1975) and Horowitz 
and Hill (1980). 

Because the presence of noise limits the amount of information 
that one can obtain from a signal, methods for noise reduction and 
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signal separation are of considerable interest. Traditionally, for noise 
reduction, information in the frequency domain is examined, and linear 
analog or digital filters are used to eliminate the unwanted frequency 
components from a signal. For instance, a 60 Hz component in the 
spectrum due to line noise may be eliminated by using a filter. One 
should note that a linear filter, which is used to reduce noise in a signal 
that is not highly oversampled, generally distorts the signal. 

However, frequency-domain techniques are quite well suited for 
signal separation in cases where the signal of interest and the noise 
are confined to different frequency bandwidths. The results of Badii, 
Broggi, Derighetti, Ravani, Ciliberto, Politi, and Rubio (1988) and 
Mitschke, Moller, and Lange (1988) indicate that one has to be careful 
in using filters to separate chaotic signals from noise. For weakly 
dissipative systems, Badii et al. (1988) examined the dimension values 
for signals passed through a linear low-pass filter. They found that the 
dimension value increases as the cut-off frequency is lowered below 
a certain critical value. Mitschke (1990) discussed how dimension 
enhancement due to filtering could be avoided through proper scaling 
of the data. Recently, some novel approaches for noise reduction have 
been proposed in the physics literature (e.g., Farmer and Sidorowich, 
1988, 1991; Kostelich and Yorke, 1990; Hammel, 1990; Grassberger, 
Schreiber, and Shaffrath, 1991; Abarbanel, Brown, Sidorowich, and 
Tsimring, 1993; Kostelich and Schreiber, 1993; Schreiber, 1993). In 
these time-domain approaches, information in the state space of the 
system is examined, and its dynamics is used to determine and correct 
errors that result from noise. 

The data obtained from a deterministic system can be classified 
as either periodic or nonperiodic data. Nonperiodic data may 
correspond to a quasiperiodic, transient, or chaotic motion. Unlike 
other motions, transient motions occur only over a finite length of time. 
The free oscillation of a damped oscillator is an example of a transient 
motion. When the damping is light, as in space structures, a transient 
motion can persist over a long interval of time. 

A set of equations represents a random system if any of the vari- 
ables and/or parameters has a random character. In a practical sit- 
uation, one may subject a system to a deterministic excitation and 
examine the repeatability of a certain outcome under identical condi- 
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tions. If the data obtained from the experiment are not repeatable 
within the bounds of the experimental error under identical conditions, 
then the corresponding system can be called a random system. We 
call the data obtained from a random system random data. Deter- 
ministic components of random data may be recovered by averaging 
over a long period of time. 

A signal from a deterministic or random system can be classified as 
being either stationary or nonstationary. Loosely speaking, for a 
stationary signal, the relevant properties remain the same for all time. 
A signal from a deterministic system can be considered to be stationary 
if the spectral locations of the different peaks and the associated Fourier 
amplitudes do not change in time. A signal corresponding to a transient 
motion of a deterministic system is an example of a nonstationary 
signal. 

A signal from a random system is classified as stationary or non- 
stationary depending on whether its statistical quantities, such aa the 
mean and the autocorrelation function, associated with this signal 
are time-independent or time-dependent. Let us suppose that there 
is an ensemble of time histories obtained from a series of identical ex- 
periments. By choosing N different initial conditions, one can obtain 
N different frames of data. Then, an ensemble average is defined as 
an average over these different records at a given instant in time. The 
mean value p, at any instant t l  is given by 

(7.1.1) 

where z, represents the value of z ( t )  a t  the instant 1 = t l  in the ith 
frame of data. The autocorrelation function R,, is given by 

If p= and R,, are independent of t l ,  then the corresponding data are 
said to be (weakly) stationary. For stricter definitions of stationarity, 
we have to consider higher-order averages. Stationary random data 
are called ergodic if the ensemble average is equal to the time average 
obtained from one of the time histories, and the time average obtained 
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from one frame to the next is the same. It is to be noted that the 
assumption of ergodicity may be violated in the presence of periodic 
components. When the random data are stationary and ergodic, a 
long-time history would suffice to analyze the data in question. 

Some nonstationary data can be analyzed by techniques closely re- 
lated to those used for stationary data. There are specialized techniques 
available for the analysis of nonstationary data, An example of such 
techniques is the time-frequency domain technique that uses functions 
called wavelets (e.g., Combes, Grossman, and Tchamitchian, 1990). 
By and large, the time-domain and frequency-domain techniques pre- 
sented here are suitable for the analysis of stationary signals. 

7.2 TIME HISTORIES 

As a first step in characterizing a motion, oiie can examine the time 
history of a signal from the system in question. We concentrate on 
time histories of deterministic motions here. The time series may be 
examined over a length of time to ascertain if a motion has reached 
a steady state or not. When the motion settles down to either a 
constant or periodic state, it should be possible to distinguish steady- 
state motions from transient motions. However, it will be difficult to 
do so for nonperiodic motions. 

The time series of a periodic motion has the appearance of a uniform 
trace, and the corresponding spectrum has one basic frequency. Let us 
suppose that a dissipative system is subjected to a single frequency 
excitation. If the response spectrum contains a spectral line at the 
excitation frequency, we refer to the motion as a linear periodic 
motion. On the other hand, if the response spectmm contains spectral 
lines at a basic frequency and its harmonics and/or subharxnonics, we 
refer to the motion as a nonlinear periodic motion. A motion whose 
associated response spectrum contains a spectral line at a frequency 
other than the excitation frequency is also called a nonlinear periodic 
motion. A time history z,,(t) associated with a periodic motion can be 
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expanded in a Fourier series as 

where w is the basic or fundamental radian frequency of the motion. In 
theory, the series can have an infinite number of terms; that is, N + 00. 
However, in practice, N is limited to a finite number. 

In some cases, by examining the time series one can infer the 
presence or absence of harmonics. As discussed in Section 3.4.1, a 
time series z ( t )  of a periodic motion with period T is said to possess a 
reflection or inversion symmetry when 

1 
~ ( t )  = - ~ ( t  -+ 5T)  (7.2.2) 

This condition is satisfied when the signal contains the basic frequency 
2 n f T  and its odd harmonics. 

It is also helpful to examine the envelope of a time series. When 
the envelope is flat, we have a periodic motion. Otherwise, we have 
a motion that is periodic, quasiperiodic, or chaotic. An example of 
a periodic oscillation, whose envelope is not flat, is the mixed-mode 
oscillation discussed in Section 5.5.2. It is not easy to detect the 
presence of more than one basic period by examining the time series. 
So for motions that contain more than one basic period, examining 
the time series may not be sufficient to  characterize the motion. It is 
difficult to distinguish between three- or higher-period quasiperiodic 
motions and chaotic motions by examining the time history. 

As illustrated in Figure 7.2.1, time histories are used generally along 
with other tools such as frequency spectra and state-space plots. In 
Figures 7.2.1 and 7.2.2, we present results obtained by numerically 
integrating 

P i  = - [PIP1 t V l Q l  + Al(PZQ1 - PlQZ)] 
q; = - [PI% - YIP1 + Al(PlP2 t Q l Q Z ) ]  

P;  = - [PZPZ t "2Q2 - 2~ZPlQ11  

a; = - (11292 - "2P2 t M P :  - q ; )  - h] 

(7.2.3) 
( 7.2.4) 
( 7.2.5) 
(7.2.6) 
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yre  7.2.1: Two periodic solutions of (7.2.3)-(7.2.7): (a) u2 = -0.4570 
d (b) ~2 = -0.3800. 
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where 
1 
2 v1 = -(u1 + u2) ; v2 = 0 2  (7.2.7) 

for A, = 294.732,A2 = 2213.729, pl = 0.09, p2 = 0.22, u1 = 1.131, 
and f2 = 0.003936. The different parameter values correspond to a 
structure treated by Nayfeh, Balachandran, Colber t, and Nayfeh (1989) 
and Balachandran (1990). The results in Figure 7.2.la correspond to 
u2 = -0.4570, those in Figure 7.2.lb correspond to u2 = -0.3800, and 
those in Figure 7.2.2 correspond to u2 = -0.2300. The initial conditions 
are (0.00059,0.00119,0.00300,0.00350) for the motions shown in Figure 
7.2.1 and (0.00010, 0.00000, 0.00599, 0.00574) for the motions shown 
in Figure 7.2.2. (The integrations were carried out by using the IMSL 
subroutine DIVPRK from the IMSL MATH/LIBRARY (19891.) In each 
case, the data obtained during the first 5000 seconds of integration were 
discarded. 
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Figure 7.2.2: A chaotic solution of (7.2.3)-(7.2.7) for 0 2  = -0.2300. 
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The results in Figures 7.2.la and 7.2.lb correspond to periodic oscil- 
lations, while those in Figure 7.2.2 correspond possibly to nonperiodic 
oscillations. In each case, we show the time series for the evolution of 
the variable il = Examining the time series in Figure 7.2.la, 
we infer that the envelope is flat and that there is a d.c. (i.e., constant) 
offset. Since the form of the signal appears to be sinusoidal, we expect 
the harmonics of the basic frequency if any to be small. Due to the 
d.c. offset, the signal does not satisfy the inversion symmetry condi- 
tion. The time series shown in Figure 7.2.1 b has a flat envelope and no 
d.c. offset. Because the signal is not sinusoidal in form, we expect this 
signal to contain harmonics of the basic frequency. The time series in 
Figure 7.2.2 is not periodic in the record length shown. 

The time history of a two-period quasiperiodic motion is shown in 
Figure 7.2.3a. This signal, which has the appearance of a periodically 
modulated waveform, can be described by 

zqp( t )  = (UO + a ,  COSLQ,~) COS(LQ,~  + 70 + ym cosw,t) (7.2.8) 

where the two incommensurate frequencies are w, and w,. The 
signal x q p  is an example of an amplitude- and phase-modulated 
waveform. When the frequencies w, and w, are commensurate, the 
Corresponding motion is periodic, and the time history of this periodic 
motion is similar to that shown in Figure 7.2.3a. The signal 

n 

( 7.2.9) 
i=l 

where the n frequencies w, are incommensurate is an example of a n- 
period quasiperiodic signal. 

A time trace of a chaotic motion, observed during one of the 
experiments of Anderson, Balachandran, and Nayfeh (1992), is shown 
in Figure 7.2.3b. This and other chaotic time histories cannot be 
described by standard mathematical functions. We note that the 
expressions for periodic and quasiperiodic motions consist of discrete 
frequency components, which, in turn, correspond to discrete lines in 
the corresponding spectra. However, the spectrum associated with a 
chaotic motion has a continuous or broadband character. This is also 
true of the spectra of transient and random motions. 
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Figure 7.2.3: Time histories of (a) a two-period quasiperiodic motion and 
(b) a chaotic motion. 
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The signal 
1 
2 

zns(i) = acos(o0t + -at2 + p)  ( 7.2.1 0) 

where w0,a ,  and p are constants, is an example of a deterministic 
nonstationary signal. Here, the frequency is a linear function of 
time. In the associated spectrum, the location of the peak changes 
with time. The time histories associated with random motions cannot 
be described by simple mathematical expressions. 

As discussed in Chapter 5, time histories can be very useful in char- 
acterization of the types of intermittent transitions to chaos, mixed- 
mode oscillations and alternating periodic-chaotic sequences, and crises 
terminating chaotic motions. For example, the time trace shown in Fig- 
ure 5.4.la for the Rayleigh-Bknard convection describes a periodic 0s- 
cillation. The time trace shown in Figure 5.4.lb consists of long laminar 
stretches of oscillations that appear to be regular and closely resemble 
the time trace in Figure 5.4.la, but this regular behavior js intermit- 
tently interrupted by chaotic outbreaks at irregular intervals. Conse- 
quently, we infer that this intermittent transition to chaos is the result 
of a cyclic-fold bifurcation, and therefore the intermittency mechanism 
is of type I. 

A time history indicating another type of intermittent transition 
to chaos in the Rayleigh-Bdnard convection is shown in Figure 5.4.5. 
In this case, the laminar stretches consist of a fundamental harmonic 
and its subharmonic of order one-half. In each laminar stretch, the 
amplitude of the fundamental harmonic decreases with each successive 
oscillation, whereas the amplitude of its subharmonic increases. When 
the latter exceeds a threshold, a chaotic outbreak occurs. Hence, this 
intermittent transition to chaos is associated with a period-doubling 
bifurcation, and consequently the intermittency mechanism is of type 
111. 

A time history indicating a third type of intermittent transition to 
chaos is shown in Figure 5.4.11. In this case, the laminar stretches 
consist of quasiperiodic oscillations. Hence, this intermittent transition 
to chaos is associated with a Hopf bifurcation, and consequently the 
intermittency mechanism is of type 11. A time history indicating an 
on-off intermittent transition to chaos is shown in Figure 5.4.7. In this 
case, the laminar stretches correspond to constant motions rather than 
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periodic or quasiperiodic motions. 
The time history can also be useful in identifying mixed-mode 

oscillations and alternating periodic-chaotic responses. Comparing the 
time trace in part c with those in parts a and b of Figure 5.5.8, one 
finds a clear disparity between small-amplitude and large-amplitude 
oscillations, and hence the trace in part c is an example of a mixed- 
mode oscillation. As discussed in Section 5.5.2, such a mixed-mode 
oscillation is represented as Pf, where L and S are the numbers of 
large- and small-amplitude oscillations per cycle. Using this notation, 
one can identify the mixed-mode oscillations in parts b-d in Figure 
5.5.11 as Pp,P,', and P:. Again, by using the time history, one can 
identify the chaotic state in Figure 5.5.11e as a motion consisting of a 
random mixing of P; and P;" motions. 

Further, the time histories can also be useful for characterizing 
transient motions resulting from crises. The time histories shown 
in Figures 5.6.3 and 5.6.13 describe transient chaos associated with 
boundary crises. The time series shown in Figures 5.6.6 and 5.6.9 
describe transient chaos resulting from the termination of the period- 
three and period-five windows of the quadratic map, and the time 
histories shown in Figure 5.6.18 describe transient chaos resulting from 
an attractor merging crises. 

7.3 STATE SPACE 

In this section, we discuss how the state space can be used to character- 
ize different motions either determined as solutions of known systems 
of equations or observed in experiments. The reader is probably famil- 
iar with a state space defined in terms of rectangular coordinates. But 
in studies of dynamical systems, angular coordinates are also used in 
defining a state space. When these variables are used, we visualize mo- 
tions on objects such as cylindrical spaces and tori. Examples of these 
objects are provided in Figure 1.2.2. Local areas of these objects have 
features of Euclidean spaces. In general, we study a statespace plot 
along with its associated time series and frequency spectrum to char- 
acterize a motion. State-space plots can be used with ease to visualize 
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motions that evolve in a three-dimensional or lower space. For motions 
that evolve in higher dimensions, one has to examine their projections 
onto a two- or three-dimensional space. Often, crossings/twistings are 
seen in these projections. It is difficult to visualize motions that occur 
in a k-dimensional space, where k is greater than three. Other tools 
will be necessary to characterize such motions. 

The space defined by the independent coordinates required to de- 
scribe a motion is called a state space, and the independent coordi- 
nates are called state variables. For a given system of equations, the 
coordinates of the state space are well defined. The motion of a dis- 
crete system, such as a pendulum or a spring-mass system, is governed 
by a finite-dimensional system of ordinary-differential equations. The 
associated state space has a finite dimension. The motion of a con- 
tinuous or distributed-parameter system, such as a beam or a plate 
or a flow, is governed by a finite system of partial-differential equa- 
tions. There is an associated finite-dimensional function space. (The 
elements of a function space are functions.) Because the system of 
partial-differential equations translates to an infinite-dimensional sys- 
tem of ordinary-differential equations, there is an associated infinite- 
dimensional state space. In the presence of dissipation, attractors asso- 
ciated with the motions of many distributed-parameter systems exist in 
low-dimensional spaces. Consequently, to make the problem tractable, 
in practice, one often models them by a finite number of ordinary- 
differential equations. This choice, which depends on the problem at 
hand, is made difficult by nonlinear resonances and interactions (Nayfeh 
and Balachandran, 1995). 

An n-dimensional autonomous system describes a continuous time 
evolution (trajectory) in the space defined by n state variables. The 
system of equations (7.2.3)-(7.2.6) is an example of an autonomous 
system. These equations describe the nonlinear evolution of the 
variables p1,  ql, p l ,  and q2 in a four-dimensional space. In this case, 
it should be apparent that we have four state variables and a four- 
dimensional state space R4. 

An n-dimensional nonautonomous system describes a continuous 
time evolution in the space defined by n state variables and time t. In 
the context of 

61 + q v 1  2 = f 1 ( ~ 1 , ~ 1 , ~ 2 , ~ 2 )  (7.3.1) 
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6 2  + 4 v 2  = f2(.1, 211, 2)2, 212) -I- g cos Rt (7.3.2) 

the two-dimensional space constructed with the coordinates v1 and v2 
is called a configuration space because these coordinates define the 
configuration of the system. We can also rewrite (7.3.1) and (7.3.2) 
as a system of four first-order ordinary-differential equations using the 
variables vl ,  61, v2, and v2. There is an associated four-dimensional 
Cartesian space. As discussed in Section 1.2, this four-dimensional 
nonautonomous system of equations can be made autonomous by in- 
troducing the variable B = Rt mod 27r. Then the coordinates of the 
associated space are q, 61, v2, i)2, and B .  This space, which is repre- 
sented by R4 x S' , is an example of a cylindrical state space. Cylindrical 
spaces are useful for studying motions composed of oscillations at one 
or more basic frequencies. 

Now, we address how different motions can be characterized in the 
state space. The fixed poiut (discussed in detail in Chapter 2) of a 
system of differential equations corresponds to a point in the state 
space. In the context of an experimental situation, a static equilibrium 
position of a structure would correspond to a point in the state space. 
As an example, we consider the static buckling of a perfect rod. Prior 
to buckling, the rod remains straight and has only one equilibrium 
position that corresponds to a fixed point in the state space. After 
buckling, the rod can assume a buckled position about either side of 
the initially unbuckled position. The buckled states correspond to new 
fixed points in the state space. 

As discussed in Chapter 3, a periodic solution of a given autonomous 
or nonautonomous system of differential equations corresponds to a 
closed trajectory in the state space. In Figures 7.2.1 and 7.2.2, w e  
show projections of the four-dimensional motion described by equations 
(7.2.3)-(7.2.7) onto the two-dimensional space $2 - jl, where $1 = 
dmpl and $2 = AIpZ. If the state variables are periodic and contain 
just one frequency component, then their corresponding cross plot will 
be a straight line, a circle, or an ellipse. The presence of harmonics 
leads to distortions in the cross plot, as in Figures 7.2.la and 7.2.lb. 
The crossing in Figure 7.2.lb is a consequence of a projection onto a 
two-dimensional space. Many crossings and loops can be seen in the 
state space of Figure 7.2.2. The corresponding motion appears to be 
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nonperiodic. The broadband character, which is seen in the associated 
spectrum, is a signature of chaotic motions. 

In Figures 7.3.la and 7.3.lb, we show projections of a periodic 
attractor of the four-dimensional system (7.2.3)-(7.2.7) onto three- 
dimensional and two-dimensional spaces, respectively. The apparent 
crossings in these figures are a consequence of the projection. When the 
motion consists of one basic frequency, a single angular coordinate, say, 
01, can be used to describe the corresponding motion, as is illustrated 
in Figure 7.3.1~. There is a one-to-one correspondence between the 
points on the limit cycle and the points in the interval running from 
0 to 2n. For example, the point marked by a cross on the limit cycle 
corresponds to the point labeled 8 on the line in Figure 7 . 3 . 1 ~ .  

Although a point on a periodic orbit can be located by using a 
single angular coordinate, at least a two-dimensional Euclidean space 
is required to visualize the geometry of a periodic orbit. The dimension 
of the Euclidean space should be large enough so that there is no loss 

A 

Figure 7.3.1: A periodic attractor of (7.2.3)-(7.2.7) for A1 = 294.732,& = 
2213.729, ~1 = 0.09, ~2 = 0.22, 01 = 1.131, 02 = -0.2540, and 
f2 = 0.003936. 
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of information. In Figure 7.3.lb, the crossings in the two-dimensional 
projection of the periodic orbit indicate that some information is lost. 
If there are no crossings when a periodic orbit is visualized in a two- 
dimensional Euclidean space, then this space is large enough to capture 
the periodic orbit. Otherwise, a higher-dimensional space is required. 
As discussed in Chapter 4, two angular coordinates can be used to 
locate a point on a two-period quasiperiodic orbit on a two-torus. To 
visualize the geometry of a two-torus, a three-dimensional or higher 
Euclidean space is necessary. The above statements regarding the 
dimension d of a Euclidean space Rd required to capture the geometry 
of the object follow from the theory of embedding in differential 
topology (Whitney, 1936; Guillemin and Pollack, 1974). Considerations 
for the embedding theory are quite independent of the dynamics of the 
considered system. 

In Figure 7.3.2, some of the experimental observations reported 
by Nayfeh, Balachandran, Colbert, and Nayfeh (1989) are shown. In 
this case, two strain-gauge signals labeled as SGV and SGH serve as 
“independent” coordinates for the construction of a state space. The 
state space thus constructed is sometimes referred to as a pseudo- 
phase plane because the coordinates of a phase plane are usually 
displacement and velocity. Since this motion occurs in a space whose 
dimension is greater than two, the plots in the pseudo-phase plane are 
projections onto a two-dimensional space. In Figure 7.3.2b, a crossing 
occurs due to the presence of a one-half subharmonic of the frequency 
f. The “eight-shaped” pattern is the result of this crossing. During 
the experiments, the associated pattern in the pseudo-phase plane of 
a periodic motion wits observed to remain steady. The trajectory of a 
modulated motion is shown in Figure 7.3.2~. In this case, the pattern in 
the pseudo-phase plane did not remain steady, and an evolving “eight- 
shaped” pattern was observed in real time. The corresponding Fourier 
spectrum is indicative of a two-period quasiperiodic motion; this is 
further discussed in Section 7.5. 

The state-space plot in Figure 7.2.2a possibly pertains to a chaotic 
motion. As discussed in Chapter 5 ,  in dissipative continuous-time 
systems, such motions can only occur in three or higher dimensions. 
By studying trajectories in state space, it may be possible to find 
out if a motion is periodic or otherwise. It is however difficult to 
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Figure 7.3.2: Cross plots of two strain-gauge signals and associated fre- 
quency spectra: (a) linear periodic motion, (b) nonlinear periodic motion, 
and (c) quasiperiodic motion. 
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distinguish between “long-period” motions and nonperiodic motions. 
The trajectories of a nonperiodic attractor do not conform to any simple 
geometrical form in the state space. 

In most experimental situations, the “independent” coordinates 
required to construct a state space are not well defined, and establishing 
the “proper” state space is not an easy task. However, as discussed 
in the next section, certain systematic approaches are available for 
constructing such spaces. 

7.4 PSEUDO-STATE SPACE 

In the preceding section, we assumed that one can determine either 
theoretically or experimentally all of the variables x(l) that describe the 
behavior of the dynamical system of interest. However, in experiments, 
typically one observes only one or a t  best a few of the dynamical 
variables that govern the behavior of the desired system. Let us assume 
that we can only measure one component or, more generally, one scalar 
function s, = ~ ( t )  = s ( t 0  + nr,) of the state vector; that is, 

s, = S ( t )  = S[x(t)] (7.4.1) 

where t o  is some initial time and T~ is the sampling time of the 
instrument used in the experiment. The observable scalar may be a 
voltage from a strain gauge or an accelerometer attached to a structure, 
a temperature or pressure in a fluid, a voltage or current in a nonlinear 
circuit, or a voltage from an optical sensor. Then, the question arises 
whether one can use this scalar or univariate observation to construct 
a multivariate state space that describes the attractor, especially in 
the absence of any a priori knowledge of the dimension of the state 
space required to describe the motion of the system. In the context of 
topology, this is an example of an embedding problem. The issue is 
to find a one-to-one mapping between points on the (original) attractor 
in the full system state space and the attractor in the reconstructed 
state space. This mapping is called an embedding. Here, the mapping 
should also preserve information about the derivatives of the flow. In 
1936, Whitriey showed that a smooth C2 m-dimensional manifold may 
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be embedded in RZmtl space. This result about the existence of an 
embedding is quite independent of the dynamics of the system. 

Work done over the last decade in the area of dynamical systems 
theory suggests that a measurement of a scalar signal would suffice 
to carry out an embedding. From the works of Packard, Crutchfield, 
Farmer, and Shaw (1980) and Takens (1981)) which were motivated by 
experiments in fluid mechanics, and the many publications that have 
followed them, it is now known that a state space can be reconstructed 
from a scalar time signal such that the dynamics in the reconstructed 
state space is equivalent to the original dynamics. Considering a deter- 
ministic three-dimensional autonomous system, Packard et al. (1980) 
demonstrated the equivalence through numerical simulations. Takens 
(1981) considered a deterministic finite-dimensional autonomous sys- 
tem and proved the equivalence with mathematical rigor, assuming 
that an infinite amount of noisefree data was available in the analysis. 
As a consequence of the equivalence, an attractor in the reconstructed 
state space has the same invariants, such as Lyapunov exponents and 
dimension, as the original attractor. Hence, measures such as the Lya- 
punov exponents and dimension can be obtained for the motion in the 
reconstructed state space. 

When measures, such as Lyapunov exponents, are preserved, the dif- 
ferential structure of the original attractor is also said to be preserved 
in the reconstruction (Sauer, Yorke, and Casdagli, 1991). For this rea- 
son, the associated embedding is called a differentiable embedding. 
When there is only a one-to-one correspondence between the vectors 
in the reconstructed state space and the vectors in the full state space, 
the associated embedding is called a topological embedding. 

Different methods have been proposed for construction of the “in- 
dependent” coordinates for the state space. According to the method 
proposed by Packard et al. (1980)) the time derivatives of a signal can 
be used along with it to construct a state space. (An analog differen- 
tiator [e.g., Horowitz and Hill, 19801 or a digital computer may be used 
to obtain the time derivatives.) Thus, using the time series, one can 
approximate the derivatives of ~ ( t )  by using finite differences and hence 
generate the variables needed to describe the behavior of the system. 
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For example, 

(7.4.2) 

d23 3[to + (n + 1)7.,] - 23( to  + nra) + S [ t o  + ( n  - l)Ta] 
- ( t o t  n7a) = 
dt2 7,' 

(7.4.3) 
Similarly, one can write down approximations to the higher derivatives. 
However, with finite ra and the presence of noise contamination, (7.4.2) 
is a crude approximation of the first derivative. Moreover, (7.4.3) 
represents an even poorer approximation of the second derivative. The 
quality of the approximation deteriorates even further for the higher 
derivatives, 

Examining the finite-difference formulas for the derivatives, we 
note that, at each step of the differentiation, we are adding the 
new information already contained in the measurement at other time 
steps lagged or advanced by multiples of the sampling time T ~ .  This 
observation led Packard et al. (1980), Ruelle (1989a), and Takens 
(1981) to conclude that one does not need the derivatives to form a 
coordinate system that describes the structure of orbits in phase space. 
Instead, one can use directly the time advanced variables s ( t  + n ~ ) ,  
where n = 1,2, .  . . , d and r = ha is an appropriately chosen time 
delay, as discussed in Section 7.4.2. and define the so-called delay- 
coordinate vectors 

or 
(7.4.4) T 

Yn = 3 n + k  %+kd-k] 

The space constructed by using the vectors y,, is called the recon- 
structed space. According to a theory of Takens (1981) and Man6 
(1981), the geometric structure of the dynamics of the system from 
which the 3, were measured can be observed in the reconstrti.,tcd d- 
dimensional Euclidean space if d 2 2d, + 1, where d,  is the di:iiension 
of the attractor of interest. Recently, Sauer et al. (1991) extended the 
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work of Takens and showed that if d, is the box-counting dimension, 
then choosing d > 2d, suffices for an embedding. The parameter T is 
called time delay, the integer d is called the embedding dimension, 
the constructed coordinates are called delayed coordinates, and this 
method of constructing coordinates is called the method of delays. 

Given the equations x = F(x) describing the (deterministic) system 
dynamics and given the state x ( t )  of the system at t = t o ,  one can, in 
principle, integrate these equations forward in time by an amount kr, 
and obtain x(t0 + ha). In other words, x(t0 t h,) is a unique function 
of x(t0). Hence, 

which, upon substitution into (7.4.1), yields 

x(i0 + b) = L[x(to)] ( 7.4.5) 

(7.4.6) 

Therefore, the reconstructed vector y is related to the state vector x 
by a smooth nonlinear relationship of the form 

Y = H(x) (7.4.7) 

Consequently, the vector y can serve as a coordinate basis for the 
system dynamics because any smooth coordinate transformation can 
serve the purpose. 

Abarbanel, Brown, Sidorowich, and Tsimring (1993) integrated the 
Lorenz equations (5.8.25)-(5.8.27) for p = 45.92, /3 = 4.0, and u = 16.0 
using a fourth-order Runge-Kutta scheme with the time step rs = 0.01. 
In Figure 7.4.la, we show a three-dimensional plot of the obtained 
chaotic attractor. Using a time delay 7 = 207, = 0.2, Abarbanel et al. 
(1993) reconstructed the orbit in phase space by using the time series 
of the variable z and ail embedding dimension d of three; that is, 

(7.4.8) 

The reconstructed attractor in the pseudo-state space is shown in 
Figure 7.4.lb. Comparing Figure 7.4.lb with Figure 7.4.la, we see that, 
although distorted as expected because of the nonlinear transformation, 
the reconstructed geometric object is similar in appearance to the 
original geometric object obtained by using the state variables. 
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Figure 7.4.1: The Lorenz attractor in three-dimensional state space: (a) 
constructed from z ( t ) ,  y(2), and ~ ( 1 ) ;  and (b)  constructed from z(t ) ,  z(t + T ) ,  

and z(1 + 2 ~ ) ,  where T = 0.2. Reprinted with permission from Abarbanel, 
Brown, Sidorowich, and Tsimring (1993). 

In principle, if d is large enough and if the dimension of the attractor 
of interest is finite, then one can capture the dynamics by using the 
delay vectors y ( t ) .  The key idea in the reconstruction is that orbits 
generated by autonomous systems of equations do not intersect in the 
full state space. In fact, we have repeatedly noted that the intersections 
found in some of the plots in Chapters 3-5 are the result of projections 
onto a subset of the state space. Consequently, the dimension d of 
the pseudo-state space must be large enough so that the reconstructed 
orbit does not overlap with itself. When this happens, d is called an 
embedding dimension. In the next section, we discuss methods of 
choosing the embedding dimension. 

In theory, the time delay can be arbitrary if one has an infinite 
amount of noise-free data. When this is so, it can be said that 
successive measurements contain new information for any nonzero time 
interval that separates them. But, in practice, one is limited by 
factors such as finite data, finite precision, and noise. Therefore, many 
considerations have to be taken into account in choosing the time delay. 
In principle, we require a time delay T that will produce “independent” 
delayed coordinates. If T is too small, the trajectories in the pseudo- 
state space of y ( t )  and y(t + T )  stack up on the diagonal because the 
delayed Coordinates are highly correlated. On the other hand, if T is 
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too large, an artificial decorrelation is introduced and the delayed 
coordinates become uncorrelated. When T is chosen to be equal to one 
of the basic periods of the system, one constructs a PoincarB section in 
the space of the delayed coordinates. So, if T is close to any of the basic 
periods of the system, the corresponding periodic component will not 
be well represented in the space of the delayed coordinates. In Section 
7.4.2, we discuss methods of choosing T .  

Assuming that a time delay has been chosen, one can proceed with 
the construction of the space of delayed coordinates. The issue of state 
space reconstruction in the presence of noise is addressed in detail 
by Casdagli, Eubank, Farmer, and Gibson (1991) and Kostelich and 
Schreiber (1993), among others. 

7.4.1 Choosing the Embedding Dimension 
The objective of the reconstruction is to find a Euclidean space Rd that 
is large enough so that the set of points of dimension d,, which describe 
the attractor, can be unfolded without ambiguity. In other words, if two 
points of the set lie close to each other in some dimension d, they do so 
because of the property of the attractor rather than because of the small 
value of d in which the attractor is being examined. This means that 
the value of d should be large enough so that the asymptotic state of the 
motion can be captured (embedded) in this d-dimensional space. Based 
on the gerieral existence theorem for embeddings in Euclidean space, 
given by Whitney (1936), that a smooth C2 rn-dimensional manifold 
may be embedded in Rzm+', in theory it is sufficient that d 2 2d, + 1, 
where d, is the dimension associated with the observed motion. Sauer, 
Yorke, and Casdagli (1991) show that d > 2da is sufficient when a 
delay coordinate embedding is used. For some caaea, it has been found 
that d 2 d, is sufficient (e.g., Eckmann and Ruelle, 1985; Abarbanel, 
Brown, and Kadtke, 1990; Buzug, Reimers, and Pfister, 1990). In 
practice, d, is not known a priori in most situations. Here, we discuss 
three approaches for estimating d. 

Saturation of System Invariants 

The basic idea underlying the saturation of the attractor of system in- 
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variants is that, if the attractor is unfolded by using a large enough 
embedding dimension d ,  then the invariant properties of the attractor, 
such a8 the Lyapunov exponents and dimension, calculated from the 
reconstructed trajectory do not change if one increases d. In other 
words, there is a dimension d beyond which all invariant properties of 
the desired attractor saturate. 

To carry out this approach, we pick a value for d and then calculate 
one of the invariants of the attractor. Then, we increase d by one, 
recalculate the invariant, and compare the result with the preceding 
value. If the difference is within a specified tolerance, we conclude 
that d is the appropriate value. Otherwise, we repeat the process until 
there is relatively little change in the calculated invariant. Methods for 
calculating Lyapunov exponents and attractor dimensions are discussed 
in Sections 7.8 and 7.9. In this section we explain this approach by using 
the moments of the number density. 

The number of points on the attractor within a sphere of radius r- 
from the point x, in the phase space is given by 

I Nn 
(7.4.9) 

where No is the total number of sampled points and H is the Heaviside 
step function defined by 

(7.4.10) 

The average of powers of Pm(r) over all points x, yields the correlation 
function 

1 No 
(7.4.1 1) 

where q is an integer. Measures, such as (7.4.11), are quite well known 
in statistics (e.g., Renyi, 1970). Furthermore, since these measures 
are independent of initial conditions, they can be used to characterize 
attractors (Abarbanel, Brown, Sidorowich, and Tsimring, 1993). 

To determine the embedding dimension d, we calculate (Grassberger 



PSEUDO-STATE SPACE 485 

and Procaccia, 1983a,b) 

(7.4.1 2) 

as a function of d and determine when d, becomes independent of d. 
(As discussed in Section 7.9, d,  is defined in the limit as r tends to 
zero. However, in practice, the finite number of data points and noise 
place a lower bound on the values of r that can be used to calculate 
d, . )  Therefore, one often plots log[C,(r)) versus log( r )  and estimates 
d, from the slope. In Figure 7.4.2, we show variation of log[Cz(r)] with 
log(r) for data generated from the Lorenz equations as a function of d. 
Clearly, the slope of the plot and hence the value of d a  are independent 

Figure 7.4.2: Variation of log[Cz(r)] with log(r) for z, = ~ ( t )  = z(to t n.r,) 
data for the Lorenz attractor using the embedding dimension values d = 3 
and 4. Reprinted with permission from Abarbanel (1995). 
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Figure 7.4.3: Illustration of the lack of saturation of the dimension for the 
dynamics associated with random noise. 

of the value of d for d 2 3. Hence, the embedding dimension according 
to the saturation criterion is 3, in contrast with the sufficient integer 
dimension of 5 .  According to the discussion in Section 7.9, the saturated 
slope is the attractor dimension d,. In this case, d, = 2.06, and hence 
the sufficient integer dimension is 5 because d 1 2d, + 1 according to 
the embedding theorem. 

We note that for random noise, the correlation function continues 
to increase as the embedding dimension is increased; in other words, 
the dimension does not saturate. In Figure 7.4.3, we show variation 
of In(P(r)] with In(r)  for random noise. (The definition for P ( r )  is 
provided in Section 7.9.) Clearly, the slope of the plot does not saturate, 
and in fact it increases with increasing d. 

Singular Value Analysis 

Broomhead and King (1986) and Broomhead and Jones (1989) de- 
veloped phase-space reconstructions by using the singular system ap- 
proach, which is based on the Karhunen-Loeve theorem (Loeve, 1977). 
This technique w a ~  developed to deal with noise and errors that arise 
from finitely sampling data, and hence, it is ideally suited for experi- 
mental data. The key idea underlying this a.pproach is that the mean- 
square distance between points on the reconstructed attractor should 
be maximized. The approach used by Landa and Rosenblum (1991), 
which is based on Neymark algorithm, is closely related to the sin- 
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gular system approach. 
Using the sampled data sj ,  choosing a large enough space dimension 

n, and assuming noise-contaminated data, we construct the trajectory 
matrix Y as 

( 7.4 .I 3) 

where N = No - ( n  - l ) ,  NO is the total number of sampled data points, 

(7.4.14) T 
yi = [Si sit1 si+2 * si tn-11 

and 

(7.4.15) 

Next, we calculate the dimension of the subspace of Rn that contains 
the reconstructed attractor. To accomplish this, we need to determine 
the number of linearly independent vectors that can be generated from 
the y; - yaw in the space R". We note that 

(7.4.1 6) 

where the e, are the standard basis vectors in RN; they correspond to 
columns of the N x N identity matrix. Moreover, we note that any 
vector w in RN can be expressed in terms of the ei as 

i=l 
(7.4.17) 

Hence, 
N 

WTY = c w ;  (YT - Y:") (7.4.18) 
i=l 

In other words, vectors in RN give rise to linear combinations of the 

We consider a set of vectors b; E RN that give rise to linearly 
YT - Y 5  

- 

independent vectors c; for i = 1 ,  2 , .  . . , n in R", which we assume, 
without loss of generality, to be orthonormalized. Thus, 

( 7.4.1 9) bTY = ~ i c i  T 



488 TOOLS TO ANALYZE MOTIONS 

where the a; are real constants that are chosen to fix the orthonormal- 
ization of the c,. Taking the transpose of (7.4.19) yields 

YTbj = ~ j c j  ( 7.4.20) 

Combining (7.4.19) and (7.4.20), we have 

(7.4.21) 

on account of the orthonormality of the c,. Equation (7.4.21) can be 
solved by determining the eigenvectors of the N x N real, symmetric 
matrix YYT;  that is, 

The a; are the singular values of the so-called structure matrix Y Y T ;  
they are non-negative definite. It follows from (7.4.19) that, at most, 
n of the a, are nonzero. Therefore, the rank of the structure matrix is 
less than or equal to n. Next, we show that the associated eigenvalues 
are also the eigenvalues of the so-called covariance matrix C. 

YYTb, = oTb, (7.4.22) 

Multiplying (7.4.20) from the left with Y ,  we obtain 

YYTbj = ~ j Y c j  (7.4.23) 

which, upon using (7.4.22), becomes 

Ycj = ojbj (7.4.24) 

Multiplying (7.4.24) from the left with YT yields 

YTYc, = uJYTbj = U ~ C ,  2 (7.4.25) 

on account of (7.4.20). The matrix I= = YTY is called the covari- 
ance matrix. It is an n x n real symmetric non-negative definite ma- 
trix. Hence, its eigenvalues a: are non-negative definite. Multiplying 
(7.4.25) from the left with bfc? and making use of the orthonormality 
of bfc, leads to 

(YCj)T(YC,)  = a, a 

In a perfect world, the number of nonzero eigenvalues a; of YTY 
give the dimensionality of the subspace containing the embedded 
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attractor and hence the embedding dimension d. Moreover, the vectors 
c; corresponding to these nonzero eigenvalues span the embedding 
subspace. (This approach of deriving a set of basis vectors based on the 
covariance matrix is the essence of the Karhunen-Loeve method used 
in the areas of signal processing and pattern recoginition.) However, as 
explained by Broomhead and King (1986), if the data are noisy and the 
variance of the noise is u;, then every singular value Oi will be shifted by 
u,,. This shifting means that the noise causes all the singular values of 
the covariance matrix to be nonzero. Consequently, noise will dominate 
any eigenvector c, whose singular value ul is comparable to a,,, and 
hence such vectors must be discarded. This results in the reduction of 
the dimension of the embedding subspace from n to d = n - rn, where 
m is the number of singular values comparable to u,,. Broomhead and 
King (1986) note that rn increases as rw = nr, increases, where 7, 

is the sampling time. To limit the size of m, they suggest selecting 
rw = 27r/w*, where w* is the band-limiting frequency. The time 
rw corresponds to the first zero crossing of the second derivative of the 
au tocorrelation function 

C(7) =< S ( t ) S ( t  t T )  > (7.4.2G) 

To illustrate their approach, Broomhead and King (198G) integrated 
the Lorenz equations (5.8.25)-(5.8.27) for a particular set of parameters 
by using a Runge-Kutta scheme. The broadband character in the power 
spectrum of Figure 7.4.4 is indicative of the chaotic nature of ~ ( t ) .  

Using r, = 0.009, T~ = 0.063, and n = 7, they calculated 
the singular values of the covariance matrix C = YTY and their 
corresponding eigenvectors. The spectrum of the eigenvalues and 
the first three singular eigenvectors are shown in Figure 7.4.5. The 
spectrum of the eigenvalues has two distinct parts: one part, which 
can be associated with the noise floor, and a second part, which is 
associated with the deterministic component of the data. The noise 
floor can be distinguished by its magnitude and flatness; the magnitude 
corresponds to round-off errors in the computations. Thus, from the 
data in Figure 7.4.5, we conclude that the dynamics will be confined 
to a four-dimensional subspace of the embedding seven-dimensional 
space. 
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Figure 7.4.4: A time trace and associated power spectrum of the state 
variable ~ ( t )  obtained by integrating the Lorenz equations (5.8.25)-(5.8.27) 
for 0 = 10, p = i, and p = 28 by using a fourth-order Runge-Kutta scheme 
with a time step of 0.009 units. Reprinted with permission from Broomhead 
and King (1986). 

i 
0 8 

i 

Figure 7.4.5: The first three singular values and their corresponding eigen- 
vectors calculated for the covariance matrix constructed from the data in 
Figure 7.4.4. Reprinted with permission from Broomhead and King (1986). 
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Broomhead and Jones (1 989) carried out the above analysis locally 
by considering the covariance matrix over a neighborhood of a point 
specified by the reconstructed state vector yn. We let NB be the number 
of nearest neighbors yt) of y,. Then, we define the covariance matrix 
COV, as 

where 

(7.4.27) 

(7.4.28) 

The matrix COV, will have dL eigenvalues arising from the variation 
of the slightly contaminated real signal about its mean and n - d t  
eigenvalues due to the noise. The eigenvectors associated with the d~ 
eigenvalues can be used to construct a local pseudo-state space. The 
local embedding dimension d~ is less than or equal to the global 
embedding dimension d .  

False Nearest Neighbors 

The basic idea underlying the false nearest neighbors approach is to 
find an embedding space of dimension d in which all false crossings 
of the orbit with itself that arise because of the projection onto a 
low-dimension space are eliminated. When d is not large enough, 
points that are far apart in the full or original state space are brought 
close together in the reconstruction space, resulting in false nearest 
neighbors. To determine these neighbors, one needs to examine 
if two states are neighbors because of the dynamics or because of 
the projection onto a low-dimension space. Thus, by determining 
neighbors in increasing embedding dimensions, one can eliminate false 
neighbors and hence establish the embedding dimension. Kennel, 
Brown, and Abarbanel (1992) proposed using a kd-tree search routine 
for finding nearest neighbors among N points. This routine takes 
Nlog N operations. 

In dimension d and time advance kr,, we assume that the recon- 
structed vector y, given by (7.4.4) has the nearest neighbor specified 
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by the vector 

The Euclidean distance &(d)  between yn and yn is given by 
y n  = [ i n  in+k * * * i n + k d - k l T  (7.4.29) 

(7.4.30) 

This distance is assumed to be small. In dimension d + 1 ,  the distance 
between these two points becomes 

d t l  

i=l 
Rt(d + 1 )  = C ( i n t i k - k  - Sn+ik-k)2 

or 
(7.4.3 1 )  

If R,(d + 1) is large compared with Rn(d), we can presume that this 
is so because Yn and Pn are false neighbors in dimension d. In the 
calculations, we select a threshold RT and decide whether the two 
neighbors Yn and f n  are false nearest neighbors or not, depending on 
whether the following inequality is satisfied or not: 

2 R:(d + 1) = R:(d) t ( i n + k d  - 3n+kd) 

(7.4.32) 

Abarbanel, Brown, Sidorowich, and Tsimring (1993) suggest values for 
RT in the range 10 5 RT 5 50. 

(1993) used the 
aforementioned procedure to determine variation of the percentage of 
false nearest neighbors with the embedding dimension. The results are 
shown in Figure 7.4.6. Clearly, the number of false nearest neighbors 
drops to zero at d = 3, whereas the sufficient dimension from the 
embedding theorem is 5.  

Again, the aforementioned procedure is good in a perfect world 
where an infinite amount of noise-free data are available. In the 
presence of noise, Abarbanel et al. (1993) suggest using the criterion 

For the data in Figure 7.4.1, Abarbanel et al. 

(7.4.33) 
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Embedding Dimension 

Figure 7.4.6: Variation of the percentage of false nearest neighbors with the 
embedding dimension calculated for the data in Figure 7.4.1. Reprinted with 
permission from Abarbanel et al. (1993). 

for false nearest neighbors, where 

with saw being the average of the sn defined by 

l N  
* n=l saw = - C s n  

(7.4.34) 

(7.4.35) 

We note that RA is a measure of the size of the attractor. In Figure 
7.4.7, we show, after Abarbanel et al. (1993), the influence of adding 
uniform random numbers lying in the interval [-L, L]  to the z signal 
from the Lorenz system, shown in Figure 7.4.1. For this system, 
RA x 12 and the different contamination levels L I R A  considered are 
indicated in the figure. Clearly, for values of LIRA up to 0.5, a 
definite indication of a low-dimensional signal is discernible. When 
the contamination level is low, the residual percentage of false nearest 
neighbors provides an indication of the noise level. According to 
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Figure 7.4.7: Influence of noise on variation of the percentage of false nearest 
neighbors with the embedding dimension calculated by for the data in Figure 
7.4.1. The rms values of LIRA corresponding to the open circles, open 
squares, open diamonds, open triangles, stars, solid diamonds, and solid 
circles are 0.0, 0.005, 0.01, 0.05, 0.1, 0.5, and 1.0, respectively. Reprinted 
with permission from Abarbanel et al. (1993). 

Abarbanel et al. (1993), one may choose the embedding dimension 
to correspond to that at which false nearest neighbors drop to below, 
say, 1%. 

Like the scheme discussed above, the schemes of Aleksic (1991) and 
Liebert, Pawelzik, and Schuster (1991) are based on topological consid- 
erations. Aleksic (1991) determines the minimum embedding dimen- 
sion to be the dimension at which the dynamics in the reconstructed 
space is described by a continuous mapping (in a continuous mapping, 
images of close points are close). Liebert et al. (1991) provide a cri- 
terion for optimal embedding in term9 of the distances between neigh- 
boring points on the reconstructed attractor for different embedding 
dimensions. Buzug and Pfister (1992) use what is called a fill-factor 
method to carry out a reconstruction. ROUX, Simoyi, and Swinney 
(1983) have suggested that d can be systematically increased until the 
trajectories in the reconstructed state space no longer appear to cross or 
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intersect. Application of this criterion becomes difficult i ~ s  d ,  becomes 
large. Typically, we use the first method described in this section, sat- 
uration of system invariants. Thus, we calculate the dimension for a 
particular motion in the space of the delayed coordinates for different 
values of d and systematically increase d until the dimension values for 
the different d saturate to a common value. 

7.4.2 Choosing the Time Delay 
For an infinite amount of noise-free data, one can arbitrarily choose the 
time delay 7 according to the embedding theorem of Man6 (1981) and 
Takens (1981). However, using experimental data, ROUX, Simoyi, and 
Swinney (1983) showed that the quality of the reconstructed portraits 
depends on the value of T.  For small 7, s ( t )  and s( t  + 7) are very close 
to each other in numerical value, and hence they are not independent 
of each other. On the other hand, for large values of T ,  s ( t )  and s ( t + ~ )  
are completely independent of each other, and any connection between 
them in the case of chaotic attractors is random because of the butterfly 
effect. Consequently, we need a criterion for an intermediate choice that 
is large enough so that s ( t )  and s ( t  -t T )  are independent but not so 
large that s ( t )  and s ( t  + r )  are completely independent in a statistical 
sense. Moreover, the time delay must be a multiple of the sampling 
time re because the data are available at these times only and any 
interpolation may introduce errors, as in the case of estimating the 
derivatives. For delay coordinate reconstructioris with nonuniformly 
sampled data, we refer the reader to Breedon and Packard (1992). 
There are many systematic approaches for choosing the time delay. 
In this section, we discuss three of these approaches. 

Autocorrelation Function 

The autocorrelation function of the sampled data set s, = s ( t o  + Z T ~ ) ,  

where re is the sampling time and i = 1,2,  - . , No, is given by 
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where 

(7.4.37) 

Then, if the autocorrelation function C(T)  has a zero crossing at T ,  the 
corresponding value of the time delay is chosen to be T ,  Otherwise, the 
first local minimum of the autocorrelation function is used to specify 

We note that the autocorrelation function provides only a linear 
measure of the independence between the coordinates .(to + kd) and 
s ( t o  t kr8 + 7). To illustrate this, we assume that these coordinates are 
connected by the linear relation 

(7.4.38) 

Then, we determine C(T)  by minimizing the average of the square of 
the error over the observations; that is, by minimizing the mean-square 
error 

7 .  

S ( t 0  + k 7 a  t T )  - 3au = c ( T )  [ s ( h  + k7s)  - sau] 

k= 1 

Setting the derivative of e with respect to C ( T )  equal to zero yields 
(7.4.36). Consequently, choosing r to be the first zero of C ( T )  would, 
on the average, make s( to  t k ~ ,  t T )  and s( to  t h.,) linearly independent. 

In Figure 7.4.8, we show variation of the autocorrelation function 
C ( T )  with the time lag T for the Lorenz data of Figure 7.4.1. Clearly, 
the first zero crossing occurs at T w 307,. 

At the current time, the autocorrelation function is quite widely 
used to determine the time delay. In our limited experience, we have 
found the delay corresponding to the first zero crossing of the auto- 
correlation function or integer multiples of it to be adequate for the 
dimension calculations. We hasten to add that, when the autocorre- 
lation function decays very slowly, there might be problems in choos- 
ing a delay (e.g., Gershenfeld, 1992). Moreover, aa aforementioned, 
choosing T to correspond to the first zero is the optimum linear choice 
from the point of view of the predictability in a least-squares sense of 
s ( t 0  t k ~ ,  t T )  from a knowledge of s( to  + k~,). Consequently, a number 
of researchers question its adequacy to determine the correlation due 
to the nonlinear process relating them (e.g., Abarbanel, 1995). 
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Figure 7.4.8: Variation of the autocorrelation function with the time lag 
calculated by for the data in Figure 7.4.1. Reprinted with permission from 
Abarbanel (1995). 

Average Mutual Information 

Fraser and Swinney (1986) used concepts of information theory and 
suggested that one should use the time delay corresponding to the first 
local minimum of the quantity called mutual information, which 
is a function of both linear and nonlinear dependencies between two 
variables. In the present context, the mutual information is a measure 
of the information (or predictability) that s ( t )  can provide about 
s ( t  -j- T ) .  The two-dimensional approach of Fraser and Swinney was 
extended to  higher dimensions by Fraser (1989a,b). He introduced 
a quantity called redundancy and suggested choosing a time delay 
corresponding to minimum redundancy. 

Our present discussion follows along the lines of Abarbanel, Brown, 
Sidorowich, and Tsimring (1993). The idea underlying this approach is 
to identify how much information we can obtain about a measurement 
ui drawn from a set A from a measurement bj drawn from another set 
B. We assume that the probability of observing ai out of the set A is 
P ~ ( a i ) ,  that the probability of observing bj out of the set B is Pe(bj),  
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and that the joint probability of observing a, from the set A and bj from 
the set B is PAB(a;,bj). Then, according to Shannon’s idea of mutual 
information (Gallager, 196S), the amount of information one learns in 
bits about a measurement of ai from a measurement of bj is given by 

(7.4.40) 

Then, the average mutual information I A B  between the sets of 
measurements A and B is given by 

(7.4.4 1 )  

To apply the mutual information theory to the data set Sk = s ( t o  +- 
ha), we take the set A to be made up of the measurements ~ ( t o  t i T a j  
and the set B to be made up of the measurements s(to + ZT,  + T ) .  Then, 
(7.4.41) becomes 

1 ( 7 )  = p [s(tO + i T a ) , S ( t O  t i T a  t T ) ]  
i 

P [s(to + iTa),  s( to  + iTa + T ) ]  

P [s(to + i T a ) ]  P [s(to t + T ) ]  
x 1% { 

with Z(r) >_ 0. When T is large, the measurements .(to + 27, + T )  and 
s ( t o  + ird) are completely independent for a chaotic signal and hence 

P [ s ( t o  t ZT, + T ) ,  s ( t 0  + kd)] = P [ s ( t o  t iT, t T ) ]  P (s(to t i~.,)] 
(7.4.43) 

Therefore, Z ( T )  + 0 as T + 00. 

To evaluate P[s ( ta+ i r , ) ] ,  we project the time series back onto the 3 

axis. Then, the histogram formed by counting the frequency with which 
any of the values of s appears, when normalized, yields P[3(to + Z T ~ ) ] .  
To evaluate P[s( to  t ir, + T ) ] ,  we note that, if the time series is long 
and stationary, then 

P[s(to + 27, + T ) ]  = + ( t o  + 2T.J (7.4.44) 
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Figure 7.4.9: Variation of the average mutual information with the time 
lag calculated for the data in Figure 7.4.1. Reprinted with permission from 
Abarbanel (1995). 

To evaluate the joint probability P[s( to  t ZT, + ~ ) , s ( t o  t 2 ~ ~ ) ] ,  we form 
the two-dimensional histogram and count the number of times a box in 
the plane s ( t o + i ~ , + 7 )  versus s( to+i7,)  is occupied arid then normalize 
this distribution. 

Fraser and Swinney (1986) suggest selecting the value of 7 that 
corresponds to the minimum of 1 ( ~ ) .  In Figure 7.4.9, we show 
variation of the average mutual information 1 ( ~ )  with the time lag 
7 for the Lorenz data of Figure 7.4.1. The first minimum of the 
mutual information occurs at T = ~ O T , ,  whereas the first zero of 
the autocorrelation occurs at 7 = 307,. Fraser and Swinney (1986) 
found that the visual picture of the reconstructed attractor for low- 
dimensional systems, such as the Lorenz attractor, changes smoothly 
for variations around the minimum of 1 ( ~ ) .  

There are situations in which 1 ( ~ )  does not have a minimum. 
These situations include evolutions described by maps and evolutions of 
continuous-time systems determined with "large" integration steps or 
sampling times. Abarbanel, Brown, Sidorowich, and Tsimring (1993) 
suggest using T = 1 or 2 if the data comes from a map or choosing T 
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so that I (T) M i I ( 0 ) .  

Generalized Correlation Integral 

Liebert and Schuster (1989) showed that the first minimum of the 
logarithm of the generalized correlation integral provides an easily 
calculable criterion for the proper choice of the time delay T .  Further, 
they examined the relationship between the correlation integral and the 
average mutual information. Their scheme requires a relatively smaller 
amount of data and seems to be easier to implement than the average 
mutual information scheme. As discussed later, the concept of the 
correlation integral is useful for certain types of dimension calculations. 

The probability P,,,(r) of finding other &dimensional states xk 
within a sphere of radius T centered around the state x, is given by 
(7.4.9). This probability is a function of T because the reconstructed 
orbit depends on T .  Using (7.4.9), we define the so-called generalized 
correlation integral C,”(r, T )  as 

Using data from the Rossler system, the Mackey-Glass equation, and 
voltage measurements on barium sodium niobate crystals, Liebert 
and Schuster (1989) concluded that the first local minimum of the 
correlation integral with respect to T together with the corresponding 
minimum of the mean-square deviations around the straight line 
defined by 

log Cl(r) = Dlln(r) as r -+ 0 (7.4.46) 

provide a practical and easy way to calculate a criterion for the best 
choice of the time delay needed to reconstruct an orbit in state space 
from a scalar time series. 

7.4.3 Two or More Measured Signals 
In some experimental situations, it may be possible to obtain two 
or more different signals from the system in question. These signals 
may be used it9 coordinates for construction of a state space. Often 
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in structural dynamics studies, signals from transducers mounted at 
different locations on a structure can be used to construct a state space. 
This construction may be explained as follows. Let w(z, t )  describe the 
displacement at time t and spatial location s on the structure. Further, 
let 

n 
(7.4.47) 

where n represents the number of modes used in the approximation, 
I++ represents the mode shape of the i th mode, and v, represents the 
temporal function associated with the ith mode. We have implicitly 
assumed that the spatial and temporal informations are correlated. The 
n states v j  and their time derivatives represent the 2n state variables 
required to describe the motion of the structure. Let us suppose that 
a measurement of 20 taken at  location s = s j  yields the signal 

(7.4.48) 

where the C, are calibration constants that depend on the sensor. If 
the location z = zj corresponds to the node of a mode shape, there 
will not be any contribution from the corresponding mode to the signal 
wj. The collection of n signals obtained from n different locations 
essentially represents a set of n coordinates obtained by applying a 
rotational transformation to the n coordinates v i e  

In structural dynamics, the idea of using different spatial locations 
to generate “independent” coordinates was first employed in the study 
of Nayfeh and Zavodney (1988). They used signals obtained from two 
strain gauges, mounted at different locations on a harmonically forced 
structure, to construct a state space. Following them, Balachandran 
(1990), Balachandran and Nayfeh (1991), and Anderson, Balachandran, 
and Nayfeh (1992) also employed this construction. In all of these 
studies, projections of motions onto a two-dimensional space were used 
to characterize the different motions. An example is provided in Figure 
7.3.2. In the work of Guckenheimer and Buzyna (1983), simultaneous 
measurements in a fluid mechanics experiment were used to construct 
an embedding space and carry out dimension calculations. 
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Multiple measurements can often be exploited to reduce noise. Let 
us suppose that there are m measured signals w,, where the mea- 
surement errors associated with the different signals are independent. 
Then, a linear combination of the m signals can be chosen so that the 
signal-to-noise ratio is high by using procedures similar to singular 
value analysis (e.g., Preisendorfer, 1988). Sauer, Yorke, and Casdagli 
(1991) provide a theoretical basis for state-space reconstruction by us- 
ing m signals. The integer in should be greater than 2d,, where d, 
is the box-counting or capacity dimension of the original attractor. 
Sauer et al. (1991) also discuss how a mixture of independent (mea- 
sured) coordinates and delayed coordinates can be used to carry out a 
reconstruct ion. 

7.5 FOURIER SPECTRA 

The Fourier or frequency spectra help in distinguishing among 
periodic, quasiperiodic, and chaotic motions and are typically used to 
study stationary signals. The frequency spectrum can be either an 
amplitude or a power spectrum. In an amplitude spectrum, the 
Fourier amplitude is displayed at each frequency. On the other hand, 
in a power spectrum, the square of the Fourier amplitude per unit  time 
is displayed at each frequency. 

The Fourier transform of a signal ~ ( t )  is defined as 

X ( j )  = ltm X(t )e -2 '" '% 
J-a, 

(7.5.1) 

where f denotes the frequency and X ( j )  is a complex quantity. In 
writing (7.5.1), we have assumed that z ( t )  is integrable; that is, 

(7.5.2) 

In theory, the Fourier transform can be used to determine the frequency 
content of a signal z(t) if it is known for -00 < t < +oo and is 
integrable. However, a stationary signal that exists for all 1 is not 
integrable. Besides, in practice, z ( t )  is known for only a finite length 
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of time T,, and hence the so-called finite Fourier transform is used. 
It is given by 

X ( f ,  T,) = IT' 0 ~ ( t ) e - * ~ ~ " d t  ( 7.5.3) 

where, again, X ( f ,  T,) is a complex quantity. 
The finite Fourier transform provides a mechanism for representing 

a signal as the sum of simple sine and cosine functions. These functions 
correspond to discrete lines in the frequency spectrum. In the present 
context, the signal may be a time series obtained from either a physical 
experiment or a numerical integration of equations. Let us suppose 
that a time series is collected over a finite time T, and consists of a 
discrete number of points obtained at a chosen sampling frequency. 
We can model these data as a sum of sine and cosine functions of 
time t with the period being an integer submultiple of T,. The 
Fourier transform of these discrete finiteextent data is obtaiiied by 
using the discrete Fourier transform (DFT). A special case of 
the DFT is the fast Fourier transform (FFT). It is essentially 
an efficient computational scheme that takes advantage of certain 
symmetry properties in the cosine and sine functions at their points 
of evaluation in order to achieve speed over conventional methods. 
If the number of data points is N, then the FFT requires Nlog,N 
operations, whereas conventional techniques require N2 operations. 
The development of FFT is attributed to Cooley and Tukey (1965). 
There are many commercial software packages available for determining 
the FFT of a given signal (e.g., IMSL subroutines FFTRF, FFTCF etc; 
MATLAB, 1989). 

A signal may consist of a periodic function whose period T does 
not exactly equal an integer submultiple of T,. Further, let T,/T N n, 
where n is an integer. In such a case, the FFT coiisists of finite- 
amplitude peaks at  n/T, and adjacent lines of resolution; that is, there 
are dominant peaks surrounded by "small" peaks. These peaks at 
adjacent lines of resolution are called sidelobes. This process, where 
energy at a certain frequency leaks to adjacent frequencies, is referred 
to as leakage and is a consequence of finiteextent data. Of course, 
if the period of a signal is known, then the time length of the data 
can be chosen to coincide with an integer multiple of the period of the 
signal and there would not be any leakage. However, this is usually 
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not the case in practice. To reduce the leakage one uses windows, 
which are weighting functions applied to the data in the time domain. 
We commonly use flat-top windows for periodic motions and Hanning 
windows for nonperiodic motions. Besides windows, one needs to take 
many things into considerations, such as the sampling frequency, noise, 
filtering, and resolution bias errors, in determining and interpreting the 
FFT (Oppenheim and Schafer, 1975; Harris, 1978; Bendat and Piersol, 
1980; Horowitz and Hill, 1980). Here, we primarily limit ourselves to 
the interpretation of the FFT in the context of a studied motion. 

We next define a power spectrum. Autospectrum, autospectral 
density function, and power spectral density function are other 
names for a power spectrum. Let us consider a stationary signal ~ ( t ) .  
The two-sided spectral density function S,, is defined as 

dr  (7.5.4) -2 in / r  

where R,, is the autocorrelation function. It is defined as 

R,,(T) = lim f dT z( t )z( t  + 7 ) d t  
T-00 

(7.5.5) 

where r is called the time delay. In practice, T is a finite quantity. It 
follows from definition (7.5.5) that R,,(-T) = R,,(T),  and hence 

and 
S&) = 2 I m  R,,(r) cos(2tfr)dr (7.5.7) 

0 

Equation (7.5.7) implies that S,, is a real-valued function. The inverse 
transformation yields 

(7.5.8) 

It should be noted that the power spectrum is also defined as 
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The above definition and (7.5.4) are equivalent when R,, decays rapidly 
in time. The equivalence is established by the Wiener-Khinchin 
relations (e.g., Bendat and Piersol, 1980, 1986). 

It follows from (7.5.8) that 

(7.5.9) 

which means that the value of the autocorrelation function for zero 
time delay corresponds to the total power in a spectrum. Also R,,(O) 
is called the mean-square value of a signal z ( t ) ,  and its square root 
yields the root-mean-square (rms) value. 

In reality, one does not have negative frequencies (i.e., f 2 0). So 
a single-sided spectral density function G,,(f) is defined such that 

G,,(f) = 2S,,(f) for f 2 0 
(7.5.10) 

G d f )  = 0 for f < 0 (7.5.11) 

It follows from (7.5.7) that 

The spectrum of a periodic motion consists of a single basic fre- 
quency. In Figures 7.2.la and 7.2.lb, we show power spectra of periodic 
oscillations on a log scale. The power spectrum in Figure 7.2.2 corre- 
sponds possibly to a nonperiodic motion. In each case, the ordinate 
represents the power in units of decibels (the square of the Fourier am- 
plitude, power P, expressed in decibels = 10 log,,P) and has a range 
of 90 decibels. The log scale is useful to discern the presence of har- 
monics and frequency components with low power. We mention that 
no windows were used in computing the spectra of Figures 7.2.1 and 
7.2.2; this is why the peaks are not sharp in these figures. 

When the spectrum has n basic frequencies (i.e., n incommensurate 
frequencies), the corresponding motion is no longer periodic and is 
called an n-period quasiperiodic motion. The spectrum of a three- 
period quasiperiodic motion is shown in Figure 5.5.1. The spectrum of 
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a chaotic motion has a continuous or broadband character. Examples 
are shown in Figures 5.2.lc, 5.2.3d1 and 7.2.213. 

The spectra of random motions such as noise also have a continuous 
or broadband character, but chaotic motions can be distinguished from 
noise by using the character of the spectrum and tools, such as dimen- 
sion calculations and Lyapunov exponents. In embedding-dimension 
calculations for (purely) random data, the measured dimension always 
equals the dimension of the embedding space. For the spectrum as- 
sociated with a chaotic motion, the Fourier amplitudes are frequency 
dependent in the broadband region. These amplitudes scale as l/f", 
where f is the frequency and cr is a positive integer. For the spectrum 
associated with a random motion, the Fourier amplitudes in the broad- 
band region are either frequency independent or frequency dependent 
and do not follow the l/f" scaling law. In experimental situations, it is 
important to keep in mind that the noise generated by elements such as 
transistors and resistors in electronic circuits also has a l /f  spectrum. 
So, it is advisable to use the Fourier spectrum along with some of the 
other tools to determine the character of a motion. 

The amplitude spectra shown in Figures 7.3.2 and 7.5.1 were ob- 
tained by using a signal analyzer during the experiments of Balachan- 
dran (1990). In each case, the signal was obtained from a strain gauge 
mounted on a harmonically excited structure. For each spectrum, a 
flat top window and 1,280 lines of resolution in a 20 Hz baseband were 
used. The spectra in Figures 7.3.2a and 7.3.2b correspond to linear and 
nonlinear periodic motions, respectively. In Figure 7 . 3 . 2 ~ ~  the spectrum 
of a quasiperiodic motion is displayed. The responses of the structure 
corresponding to Figures 7.3.2b1 7 . 3 . 2 ~ ~  and 7.5.1 are a consequerice of 
nonlinear interactions. 

In Figure 7.5.la, the spectrum consists of discrete peaks (note 
that each peak has a width equal to the resolution frequency) at 
the frequencies f and 2f. The corresponding signal z p ( t )  can be 
approximated by 

2 

zp ( t )  N c a j  cos(2jnft i- pj )  (7.5.13) 
j = 1  

where the aj and pj are real constants. The approximation sign is 
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igure 7.5.1: Frequency spectra: (a) periodic motion, (b) two-period 
uasiperiodic motion, and (c) chaotically modulated motion. 
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used to reflect the fact that the actual signal contains noise besides the 
harmonic components. 

As discussed in Section 3.4.1, Fourier spectra can also be used 
to determine if a particular periodic motion possesses an inversion 
symmetry. A signal does not satisfy this symmetry property in the 
presence of even harmonics and/or a d.c. (zero frequency) component. 
The limit cycle shown in Figure 3.4.6a possesses an inversion symmetry, 
and its power spectrum consists of odd harmonics. On the other hand, 
the limit cycle shown in Figure 3.4.613 is asymmetric, and its power 
spectrum consists of odd as well as even harmonics, including a d.c. 
component. In this regard it is worth noting that, in experimental 
situations, an improper calibration of a sensor like the strain gauge can 
also produce a d.c. component in the spectrum. 

Although a Fourier spectrum can indicate whether the signal in 
question is periodic or aperiodic, it may not be able to reveal the 
source of the different frequency components in the spectrum. To 
illustrate this point, let us consider a two-degree-of-freedom system 
that is modeled by the following system of equations: 

(7.5.14) 

v 2  $- w;v, -4- p2v2 -I- a,v; 4- a2v12)2 = Fcos(Rt) (7.5.15) 

The v, are the modal coordinates (amplitudes), w2 2~ 2wl, and R N w2. 

We assume that the observable w of the system has contributions from 
both v1 and v2 and is given by 

where the ci are constants that depend on the measurement location. 
We numerically integrated the quadratically coupled differential 

equations (7.5.14) and (7.5.15) for the following parameter values: 
w1 = 3.14, w2 = 6.28, p1 = 0.1, p2 = 0.2, 6, = ai = 4.0, F = 2.0, and 
R = 6.28. Further, we chose w = 0 . 4 ~ 1  + 0 . 2 ~ 2 .  The initial condition 
for the integration is (vl, irl, v2, I j 2 )  = (1.0, 0.2, 0.0, 0.0). The power 
spectra of vl, v2, and w, after the motions had settled down, are shown 
in Figure 7.5.2. The peaks in the figure are not sharp because we did not 
use any windows. In all of the three spectra, we observe peaks at R/4a ,  
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Figure 7.5.2: The power spectra of the response of two nonlinearly coupled 
oscillators with a two-to-one internal resonance: (a) first mode, (b) second 
mode, and (c) a linear combination of both modes. 

R/27r, and 3R/47r. In the power spectrum of 211, the peaks at R/27r and 
3R/47r are due to the nonlinearities, and in the power spectrum of 
v2, the peaks at R/4n and 3R/47r are due to the nonlinearities. The 
motions in both modes (i.e., v1 and v2) contribute to each of the peaks 
in the spectrum of w. If one did not have any a priori knowledge of 
the system, it would be difficult to discern the sources of the different 
peaks in the w signal. In any case, even with a priori knowledge of 
the system, some analysis is necessary to determine the contributions 
of the two modes from the spectrum of w. 

In the power spectra of 211 and 212, the magnitudes of the peaks 
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due to the nonlinearities depend on the strength of the nonlinearities. 
If the nonlinearities are weak, in the spectrum of the w signal, the 
peak at R/4n can be assumed to be due to the first mode (q) and 
the peak at R/27r can be assumed to be due to the second mode (vz ) .  
For weakly nonlinear motions, it may be assumed that the frequency 
component close to the natural frequency of a particular mode is due 
to the participation of that mode in the forced response. 

Next, we consider the spectrum of an amplitude- and phase- 
modulated signal that is given by 

5 ( t )  = a( t )  cos[wt + P ( t ) ]  (7.5.16) 

where 

a ( t )  = a,  [I + acos(w,t + O ) ]  and P ( t )  = ~ocos(wmt)  (7.5.17) 

The relative phase between the amplitude and phase modulations is 
expressed by 8. Using properties of the Bessel functions, one can show 
that 

00 r l  

>> + cos { ,n7r - 8 + [w - (n + l)wm]t 
1 

(7.5.18) 

where Jn is Bessel’s function of order n of the first kind. When the 
signal is either purely amplitude modulated (i.e., Po = 0 in the above 
equation) or purely phase modulated (i.e., a = 0 in the above equation), 
the magnitudes of the peaks at  the frequencies w - nw, and w t nw, 
would be the same. This would imply a symmetric sideband structure 
about w. In the presence of amplitude and phase modulations, the 
sideband structure about w is asymmetric. 

The spectrum in Figure 7.5.lb contains sidebands, uniformly spaced 
Sf apart, around the frequencies f and 2f. This spectrum corresponds 
to a two-period quasiperiodic motion that consists of the incommen- 
surate frequencies f and 6f. Further, 6f << f, and the ratio of the 
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two frequencies is an irrational number (it needs to be noted that the 
determination of the frequency ratio is limited by finite precision). The 
corresponding signal xqp(  t ) can be approximated by 

where in this case the real quantities aj and pj vary periodically at the 
frequency Sf. The motion, whose spectrum is shown in Figure 7.5.1b1 
is composed of oscillations that occur on two different time scales: One 
is a fast-time scale and the other is a slow-time scale. Moreover, 
the motion is composed of two periodically modulated sinusoids. The 
frequencies f and 2f can be called the carrier frequencies, while 
the frequency Sf can be called the modulation frequency. There 
may be cases where the ratio f / b f  is a rational number. In these 
cases, the corresponding motions are periodic and are called phase- 
locked motions. The spectra of such phase-locked motions resemble 
the spectrum in Figure 7.5.lb. One should note that “sufficient1’ 
frequency resolution is necessary to discern the sideband structure. 
In addition, one should ensure that the sidebands are well above the 
sidelobes produced due to leakage before characterizing the signal as 
quasiperiodic. 

There could also be other types of quasiperiodic motions for which 
all the incommensurate frequencies occur on the fast-time scale. An 
example of such a spectrum, reported by Nayfeh, Nayfeh, and Mook 
(1994), is shown in Figure 7.5.3. The corresponding signal was obtained 
from a strain gauge mounted on a structure. The spectrum consists 
of the incommensurate frequencies fi and f2. The peaks occur at 
I mlf1 + m2fz 1, where the mj are integers. If the frequencies fl and 
f2 are commensurate and their ratio f l / fz  is l / k ,  where 1 and k are 
positive integers that do not have a common factor, then the peaks in 
the spectrum will be harmonics of the frequency fb = f l / l  = f 2 / k .  In 
general, a spectrum of a k-period quasiperiodic motion can have peaks 
at I mlfi -i- mzf2 + - - a  + m k f k  I, where the mj are integers and the f j  

are the incommensurate frequencies. An example of the spectrum of 
a three-period quasiperiodic motion, reported by Gollub and Benson 
(1980) in a Rayleigh-Bknard convection experiment, is shown in Figure 
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Figure 7.5.3: A power spectrum of a two-period quasiperiodic motion in 
which the ratio of the two basic frequencies f l / fz  is not small. 

5.5.1. The spectrum has peaks at  I mlf1 t mzfz + m3f3 I . We note 
that, for k-period quasiperiodic motions, where k is greater than two, 
it may not be possible to discern all the k independent frequencies in 
a physical or numerical experiment. 

Examining the spectrum shown in Figure 7.5.lc, we note a broad- 
band character around each of the frequencies f and 2f. The broad- 
band feature (continuous character) is a characteristic of chaotic mo- 
tions. The corresponding signal has the form 

where the aj and /?j vary in a chaotic manner. They modulate the 
sinusoids at the carrier frequencies f and 2f. The chaotic modula- 
tion leads to a continuous character in a narrow bandwidth about each 
carrier frequency. Further, this motion is a culmination of a series of 
changes that occur on the slow-time scale. The reader should note 
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that this spectrum is in marked contrast with other “typical” spectra 
of chaotic motions, like the spectra in Figures 5 .2 .1~  and 7.2.2 (com- 
monly shown in other books and the literature), where one observes a 
broadband character over the whole frequency bandwidth of interest. 
In most of these cases, the chaotic motions occur through a series of 
changes on the fast-time scale. One can argue that the spectrum in 
Figure 7.5. l c  either corresponds to an n-period quasiperiodic motion, 
where n 2 2, or appears to have a broadband character because of 
insufficient frequency resolution. The resolution can be increased by 
examining the spectrum in a zoom span around a carrier frequency. 
However, to resolve the issue, we have to use tools such as dimension 
calculations and Lyapunov exponents. It is important to bear in mind 
that a Fourier spectrum can indicate that a certain motion is aperiodic, 
but it may not be able to reveal the source of this aperiodicity (i.e., if 
it is due to noise or to the dynamics of the system in question). 

We cite the books of Bendat and Piersol (1980, 1986) as references 
for discussions on the spectrum. Chapter I11 of the book by Bergk, 
Pomeau, and Vidal (1984) contains a detailed discussion of the use 
of Fourier spectra for characterizing nonlinear motions. The Fourier 
spectrum serves as an important diagnostic tool for detecting faults 
in rotating machinery, where one commonly encounters modulated 
motions of one sort or another (Lyon, 1987). 

The following remarks are also worth noting. Fourier analysis is 
not well suited for signals with transient events that occur over a short 
period of time because it is not localized in time. This problem can 
partly be overcome by conducting Fourier analyses in different time 
windows. The location of the time window adds a time dimension to 
the overall analysis. For a signal with short-lived transient events, it 
is desirable to use functions, such as wavelets, that are localized in 
time and frequency to represent the signal rather than sine and cosine 
functions that extend over all time. Applications of wavelets in diverse 
fields can be found in the volume edited by Combes, Grossman, and 
Tchamitchian (1990). 
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7.6 POINCARE SECTIONS AND 

In Section 3.3, we introduced the concepts of Poincark sections and 
maps in the context of stability of periodic solutions. Here, we 
primarily discuss how Poincark sections can be used to distinguish 
among periodic, quasiperiodic, and chaotic motions. By and large, the 
use of first Poincard sections is limited to systems whose asymptotic 
behavior is restricted to an n-dimensional space where typically n 5 3. 
For n > 3, one usually uses two- and three-dimensional projections 
of the PoincarC section to ascertain whether a motion is chaotic or 
two-period quasiperiodic. AII example of a two-dimensional projection 
of a three-dimensional Poincark section is shown in Figure 3.4.15b. 
It is difficult to distinguish a three- or higher-period quasiperiodic 
motion from a chaotic motion by using a Poincark section. However, 
as discussed in Section 4.1.2, second Poincark sections can prove useful 
for characterizing certain aperiodic motions. 
7.6.1 Systems of Equations 
The construction of a Poincark section for an orbit of a continuous-time 
system can be carried out as discussed in Section 3.3. Let us suppose 
that a known period T is used to construct a Poincark section. Then, 
the Poincark section acts like a stroboscope, freezing the components 
of the motion commensurate with the period 2'. If we have a collection 
of k discrete points on the Poincark section, the corresponding motion 
is periodic with the period kT. 

For illustration, let us consider a motion that is characterized by 
the frequencies f, and fe = R/2a. In addition, let fl /fe = j/k, where 
j and k are positive integers that do not have any common factor, 
j < k, and the sampling frequency for the chosen section be le. This 
section will consist of k points, and the order of the locations in which 
the points fall is determined by the ratio j/k. For j = k - 1, it can 
be verified numerically that the positions are filled up in a sequential 
manner. When the ratio of the frequencies fl/fe is not a rational 
number, we have a two-period quasiperiodic motion, and the points on 
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Figure 7.6.1: The Poincarb section of the response of a lightly damped 
system, showing a cloud of points. 

a corresponding Poincari section fill up a closed smooth curve densely. 
An example is given in Figure 4.1.1. 

The pattern on a Poincari section for either a chaotic motion or a 
three- or higher-period quasiperiodic motion does not correspond to 
any simple geometrical form. Therefore, if the Poincard section does not 
consist of either a finite number of discrete points or closed curves, the 
motion may be chaotic. For undamped or lightly damped systems, the 
Poincard section of chaotic motions appears as a cloud of unorganized 
points. Such motions are sometimes called “stochastic”. In Figure 
7.6.1, a Poincard section of the response of a lightly damped system 
with a two-to-one internal resonance to a primary excitation is shown 
(Nayfeh and Nayfeh, 1990). There is some discernible structure in 
this section. In moderate to heavily damped systems, the pattern of 
intersections of a chaotic orbit with a Poincard section is quite well 
organized. The structure seen in the section is usually scale invariant; 
that is, the same structure is seen at different levels of magnification. 
An example of a Poincard section of a chaotic orbit is shown in Figure 
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5.2.1. 
Because PoincarC maps share the different properties of the asso- 

ciated continuous-time systems, in many situations one can also use 
Poincard sections to ascertain if the transients have died out in dissi- 
pative systems. 

7.6.2 Experiments 
In experimental situations, where the coordinates of the state space and 
its dimension are well defined, a Poincard section can be constructed 
along the lines described previously. However, in many experimental 
situations, the construction is difficult, as one does not have a complete 
a priori knowledge of the state space associated with a system. 

Let us assume that we have constructed a state space with the 
delayed coordinates s ( t ) ,  s ( t  + T ) ,  . . . , s ( t  t m ~ ) ,  where rn is an integer. 
In this space, the surface s ( t + k T )  = sko, where k is an integer and sko is 
a constant, can be used to form the Poincard section. This construction 
is similar to that described for autonomous systems. Alternatively, if 
the system in question is being forced by an excitation of period T, one 
can use this period to construct the PoincarC section 

where to is the initial time and 2+ is the set of positive integers. 
Typically, one views the projection of C onto a two-dimensional space. 

One can also construct a state space with the coordinates s ( t ) ,  i ( t ) ,  
i ( t ) ,  and so on. In this case, for the Poincar6 section, we can collect 
the points [ ~ ( t ) ,  s( t ) ,  s ( t ) ,  . -1 for the values of t = to  -t ( n  - 1)T, where 
n is an integer. The initial time of collection of the points is specified 
by t = to.  A projection of this section may be examined on the two- 
dimensional plane with coordinates s ( t )  and s ( t ) .  Poincard sections can 
also be used in experiments to determine whether transients have died 
out during a certain time evolution. 

Next, we consider the details of construction of a Poincard section for 
the motion of a harmonically excited system. If one has access to either 
a dual-channel analog or a dual-channel digital storage oscilloscope, 
two signals either corresponding to the displacement s ( t )  and velocity 
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s(l) or to the delayed coordinates ~ ( t )  and s ( t  t T )  can be fed into 
the oscilloscope channels. In the case of a digital oscilloscope, a square 
wave synchronous with the excitation signal can be used to externally 
set the sampling (clock) frequency (most function generators or wave 
synthesizers generate a square wave synchronous with the requested 
signal). In some digital oscilloscopes, due to the manner in which the 
points are stored in the scope, the effective sampling frequency used to 
form the Poincard section is one-half the clock frequency. In the case 
of an analog oscilloscope, the synchronous signal can be fed into the 
input channel for the z-axis. The intensity of the display on the screen 
is controlled by the signal fed to the z-axis. The display on the screen 
becomes brighter whenever the synchronous signal externally triggers 
the oscilloscope. One may also construct Poincark sections on a plotter 
by using external triggering. 

In the experiments of Balachandran (1990) and Balachandran and 
Nayfeh (1991), signals were obtained from two strain gauges mounted 
at different locations on a harmonically forced structure. These strain- 
gauge signals were used to construct a pseudo-state space, and the exci- 
tation frequency fe was used as the sampling (clock) frequency for con- 
structing a Poincark section. In Figure 7.6.2, we show two-dimensional 
projections of the experimentally obtained Poincark sections. On each 
section, we have a collection of 512 points. 

The points in the sections of Figures 7.6.2a and 7.6.2b lie on a 
closed curve, indicating that the corresponding motion is two-period 
quasiperiodic. Further, in Figure 7.6.2b, the points lie on a “figure 
eight” shaped curve. The apparent intersection or crossing in the two- 
dimensional space indicates that the corresponding Poincark map has to 
be at least three-dimensional and is a consequence of a projection onto 
a two-dimensional space. In the present case, the motions pertaining 
to Figures 7.6.2a-c contain two basic frequencies f and Sf and Sf << f. 
Further, the ratio of the two frequencies is an irrational number, and 
the spectrum has the features of Figure 7.5.lb. For the motions 
corresponding to Figures 7.6.2a and 7.6.2b, the period of the fast-time 
scale l/f is equal to the period of the clock l/fe, and there is only a 
loop of points on the Poincard section. In Figure 7.6.2a, a smooth curve 
drawn through the collection of points corresponds to the intersection 
of the associated TZ torus with the Poincark section. For the motion 
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Figure 7.6.2: A collection of experimentally obtained Poincard sections: (a) 
quasiperiodic motion, (b) quasiperiodic motion, (c) quasiperiodic motion 
(d) phase-locked motion, (e) chaotically modulated motion, and ( f )  chaoti. 
cally modulated motion. 



POINCARE SECTIONS AND MAPS 519 

corresponding to Figure 7.6.2c, the period of the fast-time scale is twice 
the period of the clock. Hence, Figure 7.6.2~ has two loops of points. 
In Figure 7.6.2d, we see a discrcte cluster of points in the PoincarC 
section, indicating that the corresponding motion is periodic. This 
motion contains two frequencies f and bf such that f/bf is a rational 
number. The associated spectrum has the features of Figure 7.5.lb. 

The pattern of points observed in Figures 7.6.2e and 7.6.2f indicates 
that the corresponding motion in each case is neither periodic nor 
two-period quasiperiodic and that it is irregular. When we observed 
different sets of 512 points on the Poincar6 section for the chaotic 
motions corresponding to Figures 7.6.2e and 7.6.2f, we did not observe 
any periodicity. 

7.6.3 Higher-Order Poincarh Sections 
Here, we provide some material to supplement the discussion provided 
in Section 4.1.2 on second Poincar6 sections. Let us coiisider a system 
that is being forced at the two incommensurate frequencies fi and fz. 
In addition, let f l / fz  N j / k ,  where j and k are integers and have 
no common factors. In order to construct a first PoincarC section, we 
can sample at either of the excitation frequencies. By choosing f1, we 
obtain a string of points sampled at time intervals of l/fi. Let the nth 
point in this string be identified by the positive integer n. In the next 
step, we choose points from this string for which n = mj/k, where m 
is a positive integer, to obtain the second Poincard section. A finite 
number of points in this section indicates a two-period quasiperiodic 
motion. A dense collection of points on a closed loop indicates a three- 
period quasiperiodic motion. It should be noted that the construction 
of higher-order Poincard sections depends on the availability of a large 
amount of data and on the closeness of the ratio of the incommensurate 
frequencies to a rational number. 

7.6.4 Comments 
As discussed in Chapter 5 ,  Poincard maps play a key role in global 
analysis, where typically one is interested in trajectories near homo- 
clinic and/or heteroclinic orbits. A detailed treatment of PoincarC sec- 
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tions is also provided by Bergk, Pomeau, and Vidal(l984, Chapter IV). 
The books by Moon (1987, 1992) are good references for experimental 
construction of Poincark maps. 

7.7 AUTOCORRELATION 
FUNCTIONS 

We introduced the autocorrelation function R,,(T) or C ( T )  in earlier 
sections. The autocorrelation function is a measure of correlation 
between z ( t )  and z( t  + T ) ,  where T is a time delay. In the literature, 
a plot of R,, versus T is also known as an autocorrelogram (e.g., 
Bendat and Piersol, 1986). For a given signal, the autocorrelation 
function R,,(T) can be determined by using either (7.5.5) or (7.5.8). 
On the basis of (7.5.8), R,, can be determined as an inverse Fourier 
transform of the power spectrum. In practice, only finite-length data 
are available for computing R,,. One uses a discretized version of 
either (7.5.5) or (7.5.8) for the computation. Typically, in signal 
analyzers, R,, is determined through an inverse Fourier transform 
of the power spectrum. Most analyzers use a window, called a 
correlation window, on the input data to get rid of wrap-around 
effects that arise as a result of the implied periodicity. (In determiriing 
the FFT, we assume that the data are periodic with a period equal 
to the chosen time-window length.) The function R,, may also be 
determined by using a commercial software package (e.g., MATLAB). 
The MATLAB function XCORR uses a discretized version of (7.5.5) 
for computation. 

The autocorrelation functions R,,(T) for some standard ~ ( t )  are as 
follows: 
(1) z ( t )  = C, a constant; R,, = C2 

(2) z ( t )  = asin(wt); R,, = !p2cos(w~) 

(3) Broadband random noise of spectral density G,, = G in bandwidth 
B; R,, = E s i n ( 2 s B ~ )  
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(4) Band limited random noise of spectral density G,, = G in a narrow 
bandwidth B centered at  fc; R,, = $ s i n ( n B ~ )  c0s(2nfc~). 

It is instructive to plot R,, versus T for the above-discussed signals. 
For any signal, one of the values of T for which &, has its maximum 
value is 7 = 0. For random signals, R,, decays to zero as T increases. 
The autocorrelation function of an irregular signal decays with T with 
the rate of decay giving a measure of the degree of irregularity. However, 
for a periodic signal or a signal with a periodic component, R,, does 
not decay to zero and is oscillatory. The envelope of R,, is useful in 
determining the nature of a motion. The autocorrelation function for 
a periodic signal may give a less confusing representation of the data 
than the power spectrum, especially, when there is a high-frequency 
component in the signal. 

For most nonperiodic signals, the autocorrelation function also 
decays to zero as T increases. The exceptions include nonperiodic 
signals with periodic components. As an example, we consider a two- 
period quasiperiodic signal, which is of the form 

2 ( t )  = a(t)cos(wt t p )  
where p is a constant and 

a ( t )  = a, [l + CY cos(wmt)] 

We assume that the frequencies w and w, are incommensurate. By 
using (7.5.5), one can show that 

From the above expression, it is clear that R,, is oscillatory, is two- 
period quasiperiodic, and does not decay to zero. If the signal is 
amplitude- and phase-modulated like (7.5.16), then one would have 
to use (7.5.16) in (7.5.5) to obtain the corresponding &,. A phase- 
modulated signal is a special case of (7.5.16). For both phase- 
modulated and amplitude- and phase-modulated signals, R,, would be 
an infinite sum of periodic components. The amplitudes of the different 
components depend on J,,(po), where J,, is Bessel’s function of order 
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n of the first kind and Po is the amplitude of the phase modulation. 
By induction, it follows that R,, of an n-period quasiperiodic signal is 
also n-period quasiperiodic. 

To fix ideas, we consider the signal 

z ( t )  = sin(7rt) + sin(3t) 

The autocorrelation function for this signal can be analytically com- 
puted using (7.5.5) t o  be 

&,(T) = O . ~ C O S ( T T )  + 0.5 C O S ( ~ T )  

The function R,, is two-period quasiperiodic, does not decay, and 
has the form of a modulated waveform. Next, we consider a finite- 
record length of z ( t )  obtained by collecting 8,192 points a t  a sampling 
frequency of 8.0 Hz. The MATLAB function XCORR is used for the 
computation, and the results are displayed in Figure 7.7.1. The value 
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Figure 7.7.1: The autocorrelation function of a quasiperiodic signal. 
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Figure 7.7.2: The spectrum and the autocorrelation function for a periodi- 
cally modulated motion. 

of A,, at T = 0 is normalized so that it has a value of one. We note that 
the autocorrelogram has the appearance of a modulated waveform. A 
careful examination of the envelope indicates a decay in the amplitudes 
of the peaks. This is a consequence of finite-record length. One should 
note that R,, of any finite-length data will decay to zero as T becomes 
large. 

In Figure 7.7.2, we show the spectrum and the associated autocor- 
relogram for a periodically modulated motion of a structure studied 
by Balachandran (1990). Both the spectrum and the autocorrelogram 
were computed by a signal analyzer. The spectrum has 1,280 lines 
of resolution in the 20 Hz baseband and is shown on a linear scale. 
It is indicative of a periodically modulated motion, and the associated 
autocorrelogram has the appearance of a regularly or periodically mod- 
ulated waveform. Here, R,, serves as a tool to establish the presence 
of quasiperiodic motions. We expect R,, of a chaotically modulated 
signal to be an irregularly modulated waveform. 
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Figure 7.7.3: The spectrum and the autocorrelation function for a chaotically 
modulated motion. 

The spectrum and the autocorrelogram associated with an aperiodic 
motion of a cantilever beam is shown in Figure 7.7.3. The aperiodic 
motion was observed in one of the experiments of Anderson, Balachan- 
dran, and Nayfeh (1992). The spectrum has 1,280 lines of resolution in 
the 40 Hz baseband, is shown on a log scale, and was determined by a 
signal analyzer. The function R,, was determined using the MATLAB 
function XCORR. We used 40,000 points sampled at  120 Hz for the 
computation. Examining the spectrum, we note a continuous charac- 
ter in many frequency bandwidths. The envelope of R,, has the ap- 
pearance of an irregularly modulated waveform. The associated motion 
may very well be a chaotically modulated motion. 

We remark that R,, of a chaotic signal does not always decay to 
zero. The autocorrelation function R,, of a chaotically modulated 
signal, which can be obtained from a system of coupled oscillators, 
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does not always decay to zero. Another example is R,, of a signal 
from a system with two or more equilibrium positions, where the 
forced oscillations chaotically jump from regular oscillations around one 
equilibrium position to regular oscillations around another equilibrium 
position. 

7.8 LYAPUNOV EXPONENTS 

Let us consider a trajectory described by a certain evolution. The 
Lyapunov exponents (also known as characteristic exponents) 
associated with a trajectory are essentially a measure of the average 
rates of expansion and contraction of trajectories surrounding it. They 
are asymptotic quantities, defined locally in state space, and describe 
the exponential rate at which a perturbation to a trajectory of a sys- 
tem grows or decays with time at a certain location in the state space. 
Analyses conducted with Lyapunov exponents are called Lyapunov 
stability analyses. Here, we describe how these exponents are deter- 
mined for solutions of known systems of equations and experimental 
data. They are useful in characterizing the asymptotic state of an evo- 
lution (attractors in dissipative systems). Using Lyapunov exponents, 
we can distinguish among fixed points, periodic motions, quasiperiodic 
motions, and chaotic motions. 

7.8.1 Concept of Lyapunov Exponents 

We begin by defining Lyapunov exponents for a given system of 
equations. Let X(t) such that X ( t  = 0) = XD represent a trajectory 
of the system governed by the following n-dimensional autonomous 
system: 

X = F(x; M) (7.8.1) 

where the vector x is made up of n state variables, the vector function 
F describes the nonlinear evolution of the system, and M represents a 
vector of control parameters. Denoting the perturbation provided to 
X(t) by y ( t )  and assuming it to be small, we obtain an equation after 
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linearization in the disturbance terms. The perturbation is governed 
by 

-- dy(t) - Ay(t) 
dt 

( 7.8.2) 

where, in general, A = D,F[x(t);M) is an n x n matrix with time- 
dependent coefficients. If we consider an initial deviation y(O), its 
evolution is described by 

where @ ( t )  is the fundamental (transition) matrix solution of (7.8.2) 
associated with the trajectory X(t). 

The steps carried out thus far are identical to those carried out 
in a linear stability analyses of fixed points and periodic solutions. 
In the stability analysis for fixed points, described in Chapter 2, the 
trajectory X(t) is the fixed point itself, and the Jacobian matrix A has 
constant coefficients. The eigenvalues of A provide information about 
the stability of the associated fixed point. In the stability analysis 
for limit cycles, described in Chapter 3, the trajectory X ( t )  closes on 
itself, X ( t )  = X(t i- T) where T is the period of the limit cycle, and 
the Jacobian matrix A has periodic coefficients. The information over 
one period of the limit cycle is used to determine the orbital stability of 
X ( t ) .  In carrying out the steps, we first formed the fundamental matrix 
@ ( t ) ,  then chose initial conditions such that @ ( t  = 0) = I, the identity 
matrix, and determined the matrix cP(T), called the monodromy 
matrix. The eigenvalues of @ ( T )  are used to determine the stability 
of the associated limit cycle. 

The eigenvalues of the monodromy matrix provide a measure of 
the local orbital divergence near the considered limit cycle. For 
an orbit not constrained to close upon itself, the eigenvalues of the 
fundamental matrix in (7.8.3) provide a measure of the local divergence 
near the considered orbit. The procedure used to determine Lyapunov 
exponents can be considered to be a generalization of linear stability 
analyses. An interesting and detailed discussion on the relationship 
between linear stability analyses and Lyapunov stability analyses can 
be found in the paper of Goldhirsch, Sulem, and Orszag (1987). They 
argue that the Lyapunov exponents are global quantities associated 
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with an attractor even though they are defined only locally in the state 
space. 

For an appropriately chosen y(0) in (7.8.3), the rate of exponential 
expansion or contraction in the direction of y(0) on the trajectory 
passing through Xo is given by 

( 7.8.4) 

where the symbol 11 11 denotes a vector norm and In stands for the 
natural logarithm. The asymptotic quantity x i  is called the Lyapunov 
exponent. 

Since the state space is n-dimensional, we can use a set of n linearly 
independent vectors yl, yz, . . . , yn to form the basis for this space. 
Choosing an  initial deviation along each of these n vectors, we can 
determine n Lyapunov exponents x;(yi). Following Lyapunov (1947), 
the basis y1,y2, . . . , yn is called a normal basis if 

n n 

(7.8.5) 

where z1,z2, . . . , zn is any other basis of the n-dimensional state 
space. There is no unique normal basis. Further, the x i  depend on Q 
and not on the choice of the normal basis. We can order the y; such 
that 

i 1  2 i z  2 2 in ( 7.8.6) 
The set of n numbers x, is called the Lyapunov spectrum. We have 
n Lyapunov exponents associated with an n-dimensional autonomous 
system. It can be shown that if the trajectory X ( t )  corresponds to 
a motion other than a fixed point, then one of the x; is always zero 
(Haken, 1983). 

Following Lyapunov (1947), the fundamental matrix @ ( t )  is called 
regular if 

1 

lim Aln I det@(t) I 
t+oo t 

exists and is finite and if there exists a normal basis of the n- 
dimensional state space such that 

n 1 
t-+oo t = lim -In I detQ(t) I 

i= 1 
(7.8.7) 
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If @(t)  is regular, then, according to a theorem of Oseledec (1968), the 
asymptotic quantity defined in (7.8.4) exists and is finite for any initial 
deviation y(0) belonging to the n-dimensional space. As a consequence 
of the assumption of ergodicity in Oseledec’s theorem, the Lyapunov 
exponents are independent of the initial condition X(t = 0) on the 
attractor. Further, Oseledec’s theorem guarantees the existence of 
higher-order Lyapunov exponents, which are discussed next. 

The asymptotic quantity A,, given by (7.8.4), is also known as a 
one-dimensional exponent.  Extending the notion to p-dimensinns, 
a p-dimensional Lyapunov exponent  XP is defined as 

where A is an exterior or vector cross product. The asymptotic 
quantity defined by (7.8.8) can be viewed as describing the expansion or 
contraction rate of a p-dimensional parallelepiped along the trajectory 
X ( t ) .  Also, 

U 

(7.8.9) 
i= 1 

where the X, have been ordered as in (7.8.6). 
Next, we present the relationship between the eigenvalues obtained 

in a linear stability analysis and the Lyapunov exponents. For a fixed 
point of an autonomous system, the Lyapunov exponents are defined 
as 

1 
l-rca t 1, = lim -Re(A,i) (7.8.10) 

where Re denotes the real part and A, is an eigenvalue of the Jacobian 
matrix. When all Lyapunov exponents are negative, the attractor is a 
stable fixed point. 

For a limit cycle of an autonomous system, one of the Lyapunov 
exponents is always zero. This exponent corresponds to an initial 
deviation or perturbation y,(O) provided along a tangent to the orbit 
X(t). Moreover, for a stable periodic orbit, all other Lyapunov 
exponents are negative. The negative exponents essentially correspond 
to perturbations provided along directions normal to the orbit X(t) and 
imply that, locally, trajectories separated from the limit cycle in these 
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directions converge toward it. For an m-torus, m Lyapunov exponents 
are zero because there are m tangential directions to the torus along 
which there is no growth or decay. By using (7.8.7), one can show 
that the sum of the Lyapunov exponents is negative in the case of 
dissipative systems. In such systems, chaotic motions are characterized 
by one or more positive Lyapunov exponents. These positive exponents 
correspond to perturbations provided alorig some directions normal to 
a trajectory and imply that, locally, trajectories separated from the 
trajectory in question diverge from it along these directions. 

7.8.2 Autonomous Systems 

It is not straightforward to compute all the 11 Lyapunov exponents 
for the motion associated with an n-dimensional autonomous system 
using (7.8.1), (7.8.2), and (7.8.4). Choosing an initial deviation yi(0) at 
random and carrying out a numerical integration of (7.8.2) to determine 
y , ( t )  for large t leads to overflow errors on a digital computer. This is 
a consequence of exponential expansions along the chosen direction. 
Even if we choose an initial direction along which we expect only 
contractions to occur, numerical errors during the integration of (7.8.2) 
would align the y i ( t )  along the exponentially expanding direction. To 
overcome these difficulties, one needs to carry out the integration in 
steps and form a new basis of vectors at the end of each step as outlined 
next (Shimada and Nagashima, 1979; Benettin, Galgani, Giorgilli, and 
Strelcyn, 1980a,b). 

We numerically integrate (7.8.1) and (7.8.2) and subsequently use 
(7.8.4) to compute the first m Lyapunov exponents associated with 
an orbit X(2) initiated at Xo. For the linear system (7.8.2), we 
choose rn orthonormal initial vectors yi such that y1 = (1 ,0 ,0, .  . .), 
y2 = (0, 1,0, . . .), and so on. For each of these initial vectors, we 
integrate (7.8.1) and (7.8.2) for a finite time Tf  and obtain a set 
of vectors y l ( T j ) ,  y2 (T j ) ,  . . . ,  y m ( T f ) .  This new set of vectors is 
orthonormalized using the Gram-Schmidt procedure to produce 
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and 
(7.8.1 1) 

where (x a y) denotes a scalar (dot) product of the vectors x and y. 
Subsequently, using X(t = T,) it9 an initial condition for (7.8.1) and 
using each of the 9i as an initial condition for (7.8.2), we integrate 
(7.8.1) and (7.8.2) again for a finite time T, and carry out the Gram- 
Schmidt procedure to obtain a new set of orthonormal vectors. We 
denote the norm in the denominator by N f ,  where the superscript refers 
to the kth time step and the subscript refers to the j t h  vector. After 
repeating the integrations arid the Gram-Schmidt orthonormalizations 
r times, we obtain the Lyapunov exponents from . . .  

(7.8.12) 

The number of orthonormalizations r required and the choice of the 
finite-time length T, vary from problem to problem. Wolf, Swift, 
Swinney, and Vastano (1985) use the above described approach in their 
algorithm to determine the Lyapunov exponents. To determine the 
largest Lyapunov exponent, Wolf, Swift, Swinney, and Vastano (1985) 
follow a pair of nearby points to determine N;k in (7.8.12). 

Implementing this scheme, for a chaotic attractor of the equations 
(Rossler, 197Ga) 

x = - - y - z  

y = x -t 0 . 1 5 ~  
i = 0.2 t 2 ( x  - 10) 

Wolf, Swift, Swinney, and Vastano (1985) obtained the following 
Lyapunov exponents with units of bits/sec. (the logarithm is taken 
with base two): A 1  = 0.13,/\2 = 0.00, and A3 = -14.1. And for a 
chaotic attractor of the Lorenz system 

X = 16(y - X) 
j l  = ~(45.92 - 2) - y 

x = xy - 42 
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they obtained A1 = 2.16,Az = 0.00, and As = -32.4 in bits/sec. And 
for a chaotic attractor of the equations (Rossler, 1979a) 

x = - y - z  
= x t 0 . 2 5 ~  t w 

i = 3 + z z  
W = 0 . 0 5 ~  - 0.52 

they obtained A1 = O . l G , A z  = 0.03,A3 = 0.00, and A4 = -39.0 in 
bi ts/sec. 

7.0.3 Maps 
Here, we describe the computation of n Lyapunov exponents for an 
evolution described by an n-dimensional differentiable map. To this 
end, we consider a differentiable map F(x) such that 

xk+l = F(Xk)  (7.8.13) 

where F maps R" into R". The sequence of points xo,x1,. . . , xk, . . . 
represents an orbit of the map initiated at the point x = xo. We let 
&F(Xk) represent the n x n matrix of first partial derivatives of F 
evaluated at x = xk. 

As in Section 7.8.2, to determine rn out of the n Lyapunov expo- 
nents, we first choose rn orthonormal vectors y:. In the first stage, we 
compute the set of rn vectors y,' using the relation 

Y: = DxF(%)yP , i = 1 , 2 , .  . . ,rn (7.8.14) 

These rn vectors are orthonormalized using the Gram-Schmidt pro- 
cedure to produce the nt orthonormal vectors 9;. Subsequently, we 
compute the rn vectors yf from the relation 

yf = DXF(x1)S.f , i = 1 , 2 , .  . . , rn (7.8.15) 

The vectors y' are orthonormalized using the Gram-Schmidt procedure 
as described in Section 7.8.2. At the r th  stage, we have 

yr = DxF(x,-l)91-' , i = 1 ,2 , .  . . , rn ( 7.8.1 6) 
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During the orthonormalization process, let the symbol N j  represent 
the norm in the denominator associated with the j t h  vector in the kth 
stage. After carrying out the above process r times, we compute the rn 
Lyapunov exponents from 

(7.8.17) 

Alternatively, to study the stability of the orbit {xo,xl,. . . ,xk,. . .} 
of (7.8.13), we add a small perturbation wk to x k ,  linearize in the 
perturbation, and obtain the variational equation 

After L iterations, the evolution of Wk can be written as 

or 
wk+L = DFL(Xk)Wk (7.8.1 9) 

where DFL(x) stands for the composition of L Jacobian matrices DF(x) 
along the orbit {xo,x1,. . . , x k , .  . .} . According to the multiplicative 
ergodic theorem of Oseledec (1968), 

0s = L - t w  lim [OSL(s, L ) ] h  = L-m lim [ [DFL(x)JT [DFL(x)]}' 

exists and is independent of x for almost all values of x in the basin of 
attraction of the attractor to which the orbit belongs. Consequently, the 
eigenvalues exp(X1) >_ exp(A2) >_ . . . 2 exp(X,) of 0s are independent 
of 2 for almost all I within the basin of attraction of the attractor. The 
A; are called the global Lyapunov exponents  (Abarbanel, Brown, 
Sidorowich, and Tsimring, 1993). Because they are independent of 
where one starts within the basin of attraction, they are invariant 
characteristics of the dynamics and not particular to the observed orbit. 
If one or more of the A, are positive, the corresponding orbit is chaotic. 
For a dissipative system, XI + A2 + . . . + A,, < 0. 

Although the above formal definition of the global Lyapunov expo- 
nents is straightforward, calculating them using this definition poses 
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some difficulties. The chief difficulty stems from the fact that each Ja- 
cobian D F  has the eigenvalues exp(A,), the composition of L Jacobians 
has the eigenvalues exp(LAi), and, because A1 > A 2  > A s . .  . > A,,, the 
matrix DFL is terribly ill-conditioned as L becomes large. Because 
standard Q R  decomposition routines do not work very well, Eckmann 
and Ruelle (1985) and Eckmann, Kamphorst, Ruelle, and Ciliberto 
(1986) developed the following recursive Q R  decomposition algorithm. 
Each Jacobian is written in its decomposition form as 

DF(xi) * &;-I = Q; . R; (7.8.20) 

where Qo = I, the identity matrix; Q, are orthogonal matrices; and Ri 
are upper triangular elements with positive diagonal elements. Thus, 

DF(xz) * Q I  = Q z  . Rz (7.8.22) 

It follows from (7.8.21) that 

Qi' DF(x1) = R1 (7.8.23) 

Hence, combining (7.8.22) and (7.8.23) yields 

Continuing the composition, we have 

DF(x3) * DF(xz) * DF(x1) = Q3 * R3 * Rz * R1 (7.8.25) 

and 
L)FL(xl) = QL * n;=lRk (7.8.26) 

We note that, at each step of this recursive algorithm, no matrix Rk is 
much larger than exp(AI), and hence the condition number is more or 
leas exp(A1 - An), a reasonable number for numerical accuracy. 

Abarbanel, Brown, and Kennel (1991) defined local rather than 
global Lyapunov exponents directly from the positive symmetric 0 s -  
eledec matrix 

OSL(x, L )  = [DFL(x)] . [DFL(x)IT (7.8.27) 
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whose eigenvalues behave approximately as exp [2LA,(x, L)] , with the 
X,(x,L) being the local Lyapunov exponents. They can be eval- 
uated by using the aforementioned recursive Q R decomposition algo- 
rithm. According to the multiplicative ergodic theorem of Oseledec, 

lim A,(x,L) = A,, (7.8.28) 
L-00 

the global Lyapunov exponent. Clearly, the local Lyapunov exponent 
X,(x,L) depends on the time length L and the position x in phase 
space and hence the particular orbit being examined. Consequently, 
one can define average local Lyapunov exponents x i (  L) by averaging 
the X,(x, L )  over many orbits as 

(7.8.29) 

7.8.4 Reconstructed Space 
Once the data have been used to reconstruct a pseudo-state space by 
using the method of delays, we use it to construct a local map at Yk as 
follows (Eckmann and Ruelle, 1985; Sano and Sawada, 1985; Eckmann 
et a]., 1986; Abarbanel, 1995). First, we find its NB nearest neiglibors 
yp’, r = 1,2,. . . , N B .  Under the dynamics, each yf’ will evolve into a 
known state Y k + l ( T ) ,  which is in the neighborhood of Yk+l.  We note 
that Yk+l(r) may not be the rth nearest neighbor to Y k + l .  Then, we 
represent Y k + l ( f )  as a linear combination of a set M of basis furictions 
4 m  [Yt’]  as 

(7.8.30) . .  
m=l 

The basis set 4,,, may or may not be polynomials (Briggs, 1990; Bryant, 
Brown, and Abarbanel, 1990; Brown, Bryant, and Abarbanel, 1991; 
Parlitz, 1992; Abarbanel, Brown, Sidorowich, and Tsimring, 1993). To 
determine the Cmk, we use the method of least squares and minimize 
the following square of the residuals: 

r = l  m = l  
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This results in the set of algebraic equations 

for n = 1,2, .  . . , M. Having determined the Cmk, we differentiate the 
local map (7.8.30) and determine its Jacobian as 

M 
DF(yk) = CmkU$m(X) Ix=yk ( 7.8.32) 

If the basis functions are polynomials, then the Jacobian of the local 
map is the linear term in (7.8.30). 

(1993), the 
variation of the average local Lyapunov exponents x; (L)  with L by 
using the time series 2, obtained for a chaotic attractor of the Lorenz 
system (5.8.23)-(5.8.27). This time series was used to construct 
a three-dimensional pseudo-state space, which is used in turn to 
evaluate the local Jacobians, as indicated above. Then, the local 
Lyapunov exponents Xi(yk,  L )  were evaluated by using the recursive 
QR decomposition of the required product of the local Jacobians, which 
are averaged over the attractor to determine i , ( L ) .  Clearly, one of the 
exponents is zero, corresponding to perturbations along the orbit, one 
is positive, and the third is negative. When L = 10, these exponents 
are A1 = 1.51, X2 = 0, and X3 = -19.0. The zero exponent is indicative 
of the fact that the data comes from a flow instead of a mapping, 
while the positive exponent indicates that the attractor is chaotic. 
The Lyapunov dimension calculated in accordance with the definition 
provided in Section 7.9 is 2.08. 

In Figure 7.8.2, we show, after Abarbanel (1995), the variation 
of r\,(L) with L for the Lorenz system obtained by reconstructing a 
four-dimensional rather than a three-dimensional pseudo-state space 
from the t, times series. In this case, we have four rather than three 
Lyapunov exponents. In Figure 7.8.2, we also show negative of the 
Lyapunov exponents obtained for time reversed data. The true expon- 

m = l  

In Figure 7.8.1, we show, after Abarbanel et al. 
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Figure 7.8.1: Average Lyapunov exponents for a chaotic attractor of the 
Lorenz equations (5.8.23)-(5.8.27). The time history of 2 used iii the 
calculations consists of 50,000 data points. Local cubic neighborhood to 
neighborhood maps are made with the linear term giving the required local 
Jacobian to use in the Oseledec matrix OSL. An embedding dimension d = 4 
is used in the calculations with a local dimension d~ = 3 as determined by 
local false nearest neighbors. With d = 3, the calculated values change little. 
There are three Lyapunov exponents. One of them is positive, one is zero, 
and the remaining exponent is negative. Reprinted with permission from 
Abarbanel (1995). 

ents will change sign with time reversal, whereas spurious or false expo- 
nents behave otherwise (Parlitz, 1992). Clearly, three of the expoitents 
change sign under time reversal, whereas the oiie corresponding to A3 

in forward time and X2 in reverse time does not. Consequently, we 
have three true exponents and one spurious exponent. Several exam- 
ples of detecting spurious Lyapunov exponents by using the exponents 
determined for time reversed data are provided by Parlitz (1992). 
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Figure 7.8.2: Average Lyapunov exponents for a chaotic attractor of the 
Lorenz system (5.8.23)-(5.8.27). The time history of 2 with 50,000 points is 
used for the calculations. Local cubic neighborhood to neighborhood maps 
are made with the linear term giving the required local Jacobian to use in the 
Oseledec matrix. An embedding dimension d = 4 is used in the calculations 
with a local dimension d L  = 4. Four Lyapunov exponents are evaluated 
for the original data (i.e, forward time), and four Lyapunov exponents 
are evaluated for the time reversed data. The negative of the exponents 
determined for the time reversed data are shown. True exponents change 
sign under this operation, and we see that there are three true exponents. 
Reprinted with permission from Abarbanel (1995). 

7.8.5 Comments 
In information theoretic terms, the Lyapuriov exponents are  a measure 
of the rates at which information is created or destroyed during an 
evolution. Because digital information is expressed in bits, in the 
definition of Lyapunov exponents in (7.8.12) and (7.8.17) some use the 
base 2 logarithm instead of the natural logarithm. When the base 2 
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logarithm is used, the units for the exponents are bits/sec or bits/orbit 
for an autonomous system and bits/iteration for a map. Often, for data 
obtained in experimental situations, the signal-to-noise levels may not 
permit one to determine the negative Lyapunov exponents. In the 
next section, we discuss how the Lyapunov spectrum can be used to 
determine the dimension of the corresponding motion. 

7.9 DIMENSION CALCULATIONS 

As discussed in Chapter 5, the geometric structures generated by 
chaotic systems are extremely complex. Regions in state space are 
stretched, contracted, folded, and remapped into a compact region of 
the original space whose volume shrinks to zero for a dissipative system, 
leaving gaps in the state space. Typically, the PoincarC section of a 
chaotic attractor consists of an infinite number of infinitely thin layers. 
Consequently, the orbits tend to fill up less than an integer subspace 
in state space. Sets with noninteger dimensions are called fractals 
(Mandelbrot, 1983) and attracting sets with noninteger dimensions 
are called s t range a t t rac tors  (e.g., Ruelle and Takens, 1971). In 
this section, we describe a number of definitions of noninteger or 
fractal dimension. For comprehensive reviews and critiques of fractal 
dimensions, we refer the reader to Young (1982, 1983), Farmer, Ott, 
and Yorke (1983), Badii and Politi (1985), Mayer-Kress (1985), Theiler 
(1990), Ott (1993), and Abarbanel, Brown, Sidorowich, and Tsimring 
(1993). 

7.9.1 Capacity Dimension 
The simplest and most appealing way of assigning a dimension to a 
set that can yield a fractal dimension to certain kinds of sets is the 
so-called capacity or box-counting dimension Do. We assunie 
that we have a set No of points that lies in a &dimensional Cartesian 
space. We cover the set with cubes of edge length T. When d = 2, the 
“cubes” are squares, and when d = 1, the “cubes” are intervals. We 
let N ( r )  be the minimum number of cubes needed to cover the set. 
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We repeat the process for successively smaller values of r.  Then, the 
capacity dimension Do is given by 

InN(r) Do = lim ~ 

r-to In( 1 / r )  
(7.9.1) 

if the limit exists; otherwise, Do is undefined. 
Because an rn-dimensional manifold locally resembles R", Do of 

such a manifold is equal to rn, which is an integer. Thus, the capacity 
dimension of a limit cycle is 1, that of a two-period quasiperiodic orbit 
is 2, and that of an rn-period quasiperiodic orbit is rn. For objects that 
are not manifolds, Do may take noninteger values. Next, we consider 
two examples with integer and noninteger capacity dimensions. 

Example 7.1. We evaluate the capacity dimensions of the three sets 
lying in the plane (Fig. 7.9.1). The set in Figure 7.9.la consists of 
two points, and hence the minimum number of squares needed to cover 
them is always 2, irrespective of the value of r. Hence, 

In2 Do = lim - = o  
r-0 In( l /r)  

The set in Figure 7.9.lb consists of a curve segment of length 1. The 
minimum number of squares of edge length r needed to cover it is / / r .  
Hence, 

The set in Figure 7.9.1~ consists of the area A inside a closed curve. 
The minimum number of squares with edge length r needed to cover 
this set is A/r2.  Hence, 

In(A/r2) Do = lirn = 2  
r - a  ln(l /r)  

Example 7.2. We consider an elementary example of a fractal set, 
namely, the middle-third Cantor set shown in Figure 7.9.2. The set is 
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Figure 7.9.1: Illustration of calculation of the capacity dimension for three 
sets: (a) two points, (b) a curve, and (c) an area enclosed by a closed curve. 

constructed iteratively by using a single operation on a straight line of 
unit length. First, the middle third of the unit interval is removed. 
Second, the middle third of each of the two remaining intervals is 
removed. Third, the middle third of each of the remaining four intervals 
is removed. Fourth, the middle third of each of the remaining c:iglit 
intervals is removed. At the nth iteration, the number of remaining 
segments is 2", and the length of each remaining segment is 1/3". 
Hence, as the number of iterations tends to  infinity, the number of the 
remaining segments tends to infinity and the length of each segment 
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Figure 7.9.2: Construction of the Cantor set. 

tends to zero. Thus, 

ln(2") In2 
n--*m ln(3") ln3 

Do = lirn - - - - M 0.6309 

7.9.2 Pointwise Dimension 
We assume that we have sampled a long-time trajectory in a d- 
dimensional Cartesian space and obtained a large number No of points 
xi.  We then place a sphere of radius r a t  some point xm on the trajectory 
and count the number N ( r , x m )  of points within the sphere; that is, 

No 
( 7.9.2) 

where H is the Heaviside function defined in (7.4.10). 
probability P ( r , x m )  of finding a point in this sphere is given by 

Thus, the 

Then, the pointwise dimension is defined by 

(7.9.4) 

which, in general, depends on the chosen point x, on the attractor. 
Consequently, an averaged pointwise dimension is usually used. To 
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this end, we randomly select a set of points M < No distributed around 
the attractor and calculate P(rlxm) at each of these points. Then, we 
can calculate an averaged pointwise dimension in two ways. First, we 
calculate Dp(xm) for rn = 1,2,. . . , M ,  average them over all values of 
M ,  and obtain the averaged pointwise dimension 

i M  
(7.9.5) 

Second, we average P(r,x,) over the randomly selected set M and 
obtain the averaged probability P ( r )  as 

Then, we define the averaged pointwise dimension as 

InP(r) D, = lim - 
7-0 Inr 

(7.9.7) 

We note that (a) P ( r )  and hence D, are functions of the dimension 
d used to reconstruct the state space; (b) P ( r )  can be defined for any 
time series (chaotic, noisy, or mixed); and (c) P ( r )  is a function of r ,  
which allows us to explore the structure of the attractor at different 
scales in state space. Moreover, large amounts of data and good signal 
to noise ratios are necessary to obtain accurate pointwise dimensions. 
Clearly, the number of data points must scale as some function of the 
attractor dimension. Furthermore, the number of reference points M 
must be large enough and reasonably distributed over the attractor in 
order to produce accurate averaged P ( r ) .  

In practice, one cannot estimate D, from (7.9.7) because, if r is too 
small, no points will fall within the sphere because the number NO of 
available data points is finite and P ( r )  is always dominated by noise. 
Consequently, the standard practice is to plot InP(r) versus Inr for a set 
of increasing values of d and to identify a scaling region at intermediate 
values of r where the slope approaches a constant as d increases. In 
the scaling region, r is smaller than the size of the considered object 
and larger than the smallest spacing between points. For values of the 
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embedding dimension less than that required to unfold the attractor, 
the data will fill the entire reconstruction space, and the slope is equal 
to the embedding dimension. For low-dimensional attractors, the slope 
will saturate as the embedding dimension increases at a value equal to 
the attractor dimension. 

In Figure 7.9.3, we show a family of plots of ln[p(r)] versus ln(r), 
encountered by Balachandran and Nayfeh (1991) when estimating the 
pointwise dimension of the response of a two-beam two-mass structure 

Figure 7.9.3: Variation of ln[P(r)] with ln(r) for various embedding dimen- 
sions for data collected from the response of the structure shown in Figure 
7.9.4. Here, P ( r )  = M N , P ( r ) .  Reprinted with permission from Bdachan- 
dran and Nayfeh (1991). 
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Figure 7.9.4: A two-beam two-mass structure tuned so that fi M 2 j l .  

(Fig. 7.9.4) to a primary excitation of the second mode. For this plot, a 
scalar time series of 60,000 points was collected at a sampling frequency 
of 120 Hz. A family of d-dimensional pseudo-state spaces were 
constructed for a delay time 7 = 3.5 seconds and for d = 1,2, .  . . ,8. 
The probability of finding a point in a sphere of radius r was calculated 
for each of 100 randomly selected points of the 60,000 points. These 
probabilities were averaged to obtain i ) ( r ) ,  and lni)(r) is plotted in 
Figure 7.9.3. For large r (the order of the size of the attractor), all 
points fall within the sphere, and hence p ( r )  is independent of r and 
in turn the slope of the curve is constant. For very small values of r ,  
no data points are within the sphere, and again the slope is constant. 
For intermediate values of r ,  the slope increases as d increases and 
saturates at approximately 2.748 when d exceeds 4. Varying the delay 
time between 1.6 and 4.2 seconds, Balachandran and Nayfeh (1991) 
found that D, varied within a range of f0.2 around 2.748. 

In the algorithm used by Balachandran and Nayfeh (1991), the 11 
norm was used instead of the Euclidean norm. This norm is defined as 
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This norm was found to improve the computational efficiency of the 
algorithm. Another norm that is attractive from a computational 
standpoint is defined as 

The noise level in the data used for Figure 7.9.3 is quite low. In 
other cases, this may not be so. The presence of a knee in a In - In plot 
used for dimension calculations is often due to the presence of noise. If 
the magnitude of the noise is 9 ,  there will be a knee at about 9.  The 
slope above the knee will provide the correct dimension, while the slope 
below the knee will be equal to the considered embedding dimension. 

7.9.3 Information Dimension 
The capacity dimension is a purely metric concept and does not utilize 
any information about the dynamical system. It gives the scaling of 
the number of cubes needed to cover the attractor, irrespective of the 
number of points in each cube. However, for a strange attractor, the 
frequency of visitation of the trajectory varies vastly from cube to cube. 
In fact, as r -+ 0, typical orbits will spend most of their time in a small 
number of the cubes needed to cover the attractor. Consequently, the 
box-counting scheme treats all cubes needed to cover the attractor 
equally, irrespective of their importance. Moreover, although the box- 
counting scheme is simple, it is inefficient. As we sweep over the 
embedding dimension, we need to construct and check the emptiness of 
the order of ( l / ~ ) ~  cubes at each resolution r. Clearly, the computation 
effort increases very rapidly as r --t 0 and as d increases. However, it is 
to be noted that there are fast algorithms to determine the dimension 
of an attractor by the box-counting scheme (e.g., Leibovitch and Toth, 
1989). 

To overcome the shortcomings of the box-counting scheme, Grass- 
berger (1983) and Hentschel and Procaccia (1983) introduced other 
definitions that account for the relative frequency of visitation of a typ- 
ical trajectory to the different cubes needed to cover the attractor and 
are also more efficient than the box-counting scheme. In this section 
we describe the information dimension, in Section 7.9.4 we describe the 
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correlation dimension, and in Section 7.9.5 we describe the generalized 
correlation dimension. 

As in the box-counting scheme, we cover the set No whose dimen- 
sion is desired by a set 1 , 2 , .  . , , N of spheres of radius T. Then, we count 
the number N,(r) of points in each of the spheres i and determine the 
probability Pi(.) of finding a point in the i th sphere by 

Clearly, 
N 

p # ( r )  = 1 

(7.9.8) 

( 7.9.9) 
i= 1 

Then, the information entropy is 

N 
I ( r )  = - C P,(r)InP;(r) (7.9.10) 

The quantity I ( r )  can be interpreted as the average amount of infor- 
mation required to specify the considered system's state to an accuracy 
of P. (This state is assumed to be on the attractor of interest.) When 
the base 2 logarithm is used, I(r) has the units of bits. In terms of 
I ( . ) ,  the information dimension D1 is defined by 

i=l 

If the points in the set are equally distributed, then 
1 

and 

Hence, 
lnN(r) D1 = lim- = DO 

r - a  In( 1 / r )  
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according to (7.9.1). 
Again, in estimating the information dimension, we cannot use the 

definition (7.9.11) and take the limit as r --.) 0 because of the finite 
amount of data and the fact that for small r the data are dominated by 
noise. Hence, the standard practice is to plot - I ( r )  versus ln(r) and 
find a scaling region for intermediate values of r such that the slope of 
the plot approaches a constant as the embedding dimension d increases. 

7.9.4 Correlation Dimension 

The correlation dimension is another probabilistic measure of dimen- 
sion. Again, this measure can be calculated more efficiently than the 
capacity dimension, and it takes into account the relative frequency of 
visitation of the trajectory to each sphere. Grassberger and Procaccia 
(1983a,b) give an extensive account of this measure. 

To estimate the correlation dimension of a set x1,x2,. . . ,XN, where 
N is large, we first calculate the distances [;, between each pair of 
points xi and xj by using, say, the Euclidean measure [ij = ][xi - xjJI. 
Then, we define a correlation function C ( r )  by 

1 C ( r )  = lim - [number of points ( i , j )  with distance [;, < r ]  
(7.9.12) 

Alternatively, the correlation function C ( r )  can be calculated more 
efficiently by constructing a sphere of radius r around each point x; 
in state space and counting the number of points within the sphere; 
that is, 

N-oc  NZ 

where H is the Heaviside function defined 
correlation dimension D2 is defined as 

J 

in (7.4.10) 

lnC(r) 
D2 = lim - 

r-0 ln(r) 

(7.9.13) 

Then, the 

(7.9.14) 
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Again, to estimate D2, we plot lnC(r) versus lnr and find a scaling 
region for intermediate values of r in which the slope of the plot ap- 
proaches a constant, which is the correlation dimension, as d increases. 

Comparing (7.9.6) and (7.9.7) with (7.9.13) and (7.9.14)) we con- 
clude that the correlation dimension D2 differs from the averaged point- 
wise dimension D, in that the sum is performed about every point of 
the set. 

7.9.5 Generalized Correlation Dimension 
The capacity, information, and correlation dimensions have been con- 
solidated into the following general definition of dimension of order q: 

(7.9.15) 

where Pi(,) is defined in (7.9.8). Thus, for q > 0, spheres with larger 
P have more influence in determining D,. 

When q = 0, (7.9.15) reduces to Do, the capacity dimension defined 
in (7.9.1). To evaluate (7.9.15) at q = 1, we use L’Hospital’s rule to 
determine the limit and obtain 

in agreement with the information dimension defined in (7.9.1 1). When 
q = 2, (7.9.15) becomes 

which is equivalent to the correlation dimension defined in (7.9.14) 
(Parker and Chua, 1989). 

We note that D, decreases as q increases except in the case when the 
points are distributed fairly uniformly on the attractor. In the latter 
case, D, = Do, the capacity dimension. 
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7.9.6 Lyapunov Dimension 
Kaplan and Yorke (1979a,b) and Fredickson, Kaplan, Yorke, and 
Yorke (1983) proposed an interesting relationship between the attractor 
dimension and its Lyapunov exponents A 1  1 A 2  1 A3 2 . . . 2 An. For 
dissipative systems, volumes in state space contract with time, and as 
t + 00, the volume of the attractor in the original state space is zero. 
Consequently, the sum of the Lyapunov exponents is negative. 

To define the Lyapunov dimension, we note that if we can find an 
integer rn such that Ell  X i  = 0, then the volume in a subspace R" of 
R" is constant and hence there is an rn-dimensional attractor in R". 
For a strange attractor, we cannot find such an rn. Therefore, we find 
the largest A4 such that 

M M+l 

i= 1 i= 1 

Thus, the volume shrinks in RMt', but it is undefined in RM. To make 
the volume constant in some subspace, Kaplan and Yorke proposed 
to take into account a fraction of the contracting Lyapunov exponent 
X M + ~  and defined the Lyapunov dimension DL as 

E E ~  X i  

I XMtl I & = M +  

Because all other negative Lyapunov exponents have been neglected, 
DL is an upper limit for the capacity dimension Do; that is, DL 1 Do. 

7.9.7 Comments 
In the pointwise and correlation dimension calculations discussed above, 
the number of points in spheres of different chosen radii about any 
number of arbitrary reference points is counted, and then these counts 
are used to determine the dimension. In an alternative approach, 
the dimension of an attractor is estimated as follows (Termonia and 
Alexandrowicz, 1983). Spheres centered about arbitrary reference points 
with chosen numbers of points are considered, and the radii correspond- 
ing to the different chosen counts are estimated. Then, the dimension is 



550 TOOLS TO ANALYZE MOTIONS 

determined from a plot of radius versus count. This latter approach is 
an example of constant mass methods, while the earlier mentioned 
approaches are examples of constant volume methods.  

The issue of what the length of a data set should be for a correlation 
dimension calculation is addressed by Eckmann and Ruelle (1992). 
They show that the dimension determined for data with N points 
cannot exceed 2log,,N. As discussed earlier, noise is also an important 
factor to reckon with during dimension calculations (e.g., Abarbanel, 
Brown, Sidorowich, and Tsimring, 1993; Kostelich and Schreiber, 
1993). Methods for noise reduction need to be used with caution 
during dimension calculations (e.g., Badii, Broggi, Derighetti, Ravani, 
Ciliberto, Politi, and Rubio, 1988; Mitschke, Moller, and Lange, 1988). 

7.10 HIGHER-ORDER SPECTRA 
As discussed in Section 7.5, one of the most useful tools to charac- 
terize nonlinear motions is the power spectrum. We recall that for a 
real-valued finite-duration stationary signal ~ ( t )  with zero mean, the 
second-order autocorrelation function is defined by 

R&) = E [.(t)z(t t 4) = &l T i T z ( t ) x ( t  + 7 ) d t  (7.10.1) 

where E(. . .] denotes the expected value. The autospectrum S,, is then 
obtained by taking the Fourier transform of Rt2(7);  that is, 

where 3 denotes the Fourier transform. Alternatively, the discrete 
autospectrum, appropriate for discretely sampled data, is given by 

(7.10.3) 

where X ( j )  is the complex Fourier transform of ~ ( i ) ,  the asterisk 
represents the complex conjugate, and T is the time-record length. 

While the auto-power spectrum gives an estimate of the distribution 
of power among the frequency components of the signal, it has no 
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phase information and hence it cannot differentiate between modes 
that are independently excited (i.e., modes whose phases are random 
relative to each other) from those that are nonlinearly coupled (i.e., 
modes that interact, resulting in a coupling of their phases). Such 
a distinction can be made by using higher-order spectra, also 
called polyspectra, because they isolate and quantify any nonlinearly 
induced phase coupling among Fourier modes. 

The autospectrum &(f) is an example of second-order spectra. 
In the hierarchy of polyspectra, the next higher-order spectrum is the 
third-order spectrum called auto-bispectrum (Brillinger, 1965, 
1981; Kim and Powers, 1979; Papoulis, 1990; Nikias and Petropulu, 
1993). The auto-bispectrum is formally defined as the two-dimensional 
Fourier transform of the third-order correlation function; that is, 

where 
&sz(Ti, T j )  = E [ ~ ( t ) ~ ( t  t ~ i ) ~ ( t  + ~ j ) ]  (7.10.5) 

is the third-order correlation function. Alternatively, the discrete auto- 
bispectrum, appropriate for discretely sampled data, is 

Next, we let 
~ ( f , )  =I X ,  I eiem (7.10.7) 

where I X, I and dm are the magnitude and phase of X(fm). Then, we 
rewrite (7.10.6) as 

Sszz(fi,fj) = E [I  Xk 11 Xi 11 Xj I .i(e'-es-eJ)] (7.10.8) 

where fk = f, t f j .  Clearly, the auto-bispectrum measures the degree of 
coherence among the modes i, j ,  and k = itj. If the three modes having 
the spectral components X ( f k ) ,  X (  f,), and X ( f j )  are independently 
excited, then their phases B k , 8 , ,  and 8, are statistically independent 
random functions. Hence, the phase difference d k  - 8i - 8, is randomly 
distributed over [0, -2n). Consequently, carrying out the statistical 
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averaging indicated in (7.10.8) yields a zero value for Szzz(fi, fj). On 
the other hand, if the three modes are fully coupled through a quadratic 
nonlinearity, then the phase difference B k - O i - B j  is not random although 
each of the individual phases e k , & ,  and 8j is random. Under these 
conditions, (7.10.8) can be rewritten as 

Consequently, carrying out the statistical averaging in (7.10.9) yields a 
nonzero value for S,,,( f f ,  f j )  if I Xk 1, I Xi 1, and I X j  I are not zero. 
If the three modes are partially coupled, then (7.10.8) can be split into 
two parts: one part with a random phase difference and the other with 
a coherent phase difference. Consequently, Szzz(fj, fj) # 0. 

Because X ( - f , )  = X * ( f , ) ,  the auto-bispectrum possesses the 
following symmetry relations (Kim and Powers, 1979): 

S( f i ,  fj) = S ( f j ,  f i )  = S*(-fi ,  -fj) = S(- f i  - fj, fj) = S ( f i ,  -fi - fj) 
(7.10.1 0) 

Therefore, the auto-bispectrum is uniquely described by its values 
within a triangle in the fi - fz plane with the vertices (0,0),(0,j~) 
and ( f f ~ ,  f f ~ )  , where fp, = 1 / 2 ~ #  is the Nyquist frequency with T* 

being the sampling time. 
The auto-bispectrum is usually normalized with the amplitudes of 

the individual spectral components to yield the auto-bicoherence 
defined as 

We note that 0 5 6' 5 1 by Schwartz inequality. A near zero value 
for the auto-bicoherence b'(f; ,  fj) of three modes indicates that they 
are not quadratically coupled, whereas a value near one for b'(f,, fj) 
indicates perfect quadratic coupling. Any value for b 2 ( f , ,  fj) between 
zero and one indicates partial quadratic coupling. 

To illustrate how the bicoherence measures the degree of phase 
coherence among three modes, we consider the time series 
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where n ( t )  is a white Gaussian noise (-20 dB) and the frequencies of 
the modes are 

We generated 64 records of ~ ( t )  with each record containing 128 data 
points. A small-amplitude white Gaussian noise was added to each 
record. The phases f l l , 82 ,  and e3 were chosen from a set of random 
numbers that are uniformly distributed over the interval [0,2?r). The 
resulting time records are expected to have Gaussian statistics. In 
Figure 7.10.1 we show the power spectrum of one of the records. There 
are three peaks corresponding to f ~ ,  fz, and fa. Because the power 
spectrum is independent of the phases of the modes, all records will 
have identical power spectra. On the other hand, it is clear from Figure 
7.10.2 that the bicoherence is nearly zero, thereby reflecting the lack of 
phase coherence among the three modes. 

1 o-2 e 10-3 

n B 
i 0-4 

I 0-5 
0.0 0.2 0.4 0.6 0.8 1 .o 

Normalized Frequency 

Figure 7.10.1: The power spectrum of the time series defined in (7.10.12): 
fl/fN = 15/64,fz/f~ = 20164, and f3/ fh, = 35/64. 
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1 
.O 

0.0 0.5 

Figure 7.10.2: The bicoherence of the time series defined in (7.10.12) and 
Figure 7.10.1 when the 6, are uniformly distributed random numbers over 
[0,2r). 

Next, we generated G4 records with 128 points per record as in the 
previous case. Again, the phases O1 and 6 2  were chosen from a set of 
random numbers that are uniformly distributed over [0,27r), but 6 s  was 
chosen to be equal to 81+02. Because the power spectrum is independent 
of the phases of the modes, the power spectra in this case are identical 
to that in Figure 7.10.1. However, because of the phase coherence in 
this case, the bicoherence is nearly unity, as shown in Figure 7.10.3. 

The above definitions of the third-order correlation function and 
auto-bispectrum can be extended to define a fourth-order correlation 
function and its Fourier transform, the auto-trispectrum. The auto- 
trispectrum can also be expressed as 

1 
s = z c z ( f i , f j , f k )  = ,$$m TE[xZ'(f i  + f j  d- fk)x~(fi)x~(fj)x~(fk)] 

(7.10.1 3) 
The auto-trispectrum and its normalized value, the auto-tricoher- 
ence, can then be used to investigate cubic nonlinearities. 
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0.0 0.5 

Figure 7.10.3: The bicoherence of the time series defined in (7.10.12) and 
Figure 7.10.1 when the 81 and 82 are uniformly distributed randoin numbers 
over [0,2n) and O3 = 81 t 82. 

In many cases, it is required to study the nonlinear relations 
between two time series, such as the excitation z ( t )  and the response 
y(t) of a nonlinear system. In these cases, one can define cross- 
correlation functions and their Fourier transforms, cross-bispectra 
and cross-trispectra. These transforms can be normalized to yield 
cross-bicoherence and cross-tricoherence. The cross-bispectrum 
is defined by 

(7.10.14) 

For illustration, we consider the quadratically coupled oscillators 
(7.5.14) and (7.5.15) and set w1 = 1.0, w2 = 2.05, p~ = p2 = 0.001, 
61 = 0, 62 = 0.002, a1 = 0.001, a2 = 0, F = 270, and R = 2.03. 
We numerically integrated (7.5.14) and (7.5.15) from a chosen initial 
condition. For computing the bispectra, we collected (steady-state) 
time histories after 1 = 19,000 units with a sampling frequency of 
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2 Hz. Thirty two records with 2,048 points each were used for 
the computations. In Figures 7.10.4a and 7.10.4b the steady-state 
time history of u l ( t )  and associated power spectrum are depicted, 
respectively. Both the time history and power spectrum indicate 
that the corresponding oscillations are periodic. In Figure 7.10.5a the 
following digital cross-bispectrurn is depicted: 

and in Figure 7.10.5b the cross-bicoherence is depicted. There is 

20 

-20 1 
J 

0 50 100 
I 

1 05 

PO loo 

1 0-5 

0 0.4 0.8 

f (W 

Figure 7.10.4: (a) Time series of 211 and (b )  power spectrum. 

a peak a t  ( G ,  n n  z) in Figure 7.10.5a, indicating a quadratic coupling 

between u1 and u2.  Although the oscillator governing u1 is not directly 
excited by the forcing, u1 has a non-zero steady-state response due to 
the quadratic coupling between u1 and 142.  

There are many studies in which the bispectrurn has been used 
to investigate nonlinear motions. A partial list includes those of 
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Figure 7.10.5: (a) Cross-bispectrum and (b) cross-bicoherence, 

Sato, Sasaki, and Nakamura (1977), Kim and Powers (1979), Kim, 
Beall, and Powers (1980), Choi, Chang, Stearman, and Powers (1984), 
Choi, Powers, and Miksad (1985), Miller (1986), Nikias and Raghuveer 
(1987), Ritz and Powers (1986), Ritz, Powers, Miksad, and Solis (1988), 
Gifford and Tomlinson (1989), and Hajj, Miksad, and Powers (1992). 

7.11 EXERCISES 

7.1. Show that if x(t) = c+ acosf t  t bsinft then 
1 

Z(t)X(t t T )  = cz t 2("2 + b2)cosft 

and that if x(t) = c t al cos fit + a2 cos fat for fi # kfi then 
1 1 
2 2 

x(t)x(i + T )  = cz t -a: cosflt + -a: cosf2t 

7.2. Show that the nonautonomous first-order equation 
dx 
- = --2 + E cos t 
dt 

is equivalent to the autonomous second-order system 
dx de - = -X t C C O S O ,  - = 1, with i3(to) = to  
dt dt 
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Represent the orbit {x(t)} C S' x R with cylindrical coordinates 
(r,O,x) as points [l,O(t),x(t)] on the surface of a cylinder with unit 
radius, so that (1,O, z) and (1, O + 2 n r ,  x) coincide for n = f l ,  f2, . . . . 
Then construct the Poincar6 map P : C --t C, where C = { ( r ,  0, x )  : 
r = 1 , O  = 0 0 )  is the line of intersection of the orbits with the half-plane 
0 = O,, deducing that 

I 1 
P(1,  e,, .) = 1, eo, xe-2a i- -c( 1 - e-zn)(cos e, + sin 6,) [ 2 

Find the fixed point X of P and show that X -+ 0 as 6 -+ 0 for all 
8,. For what values of Oo and L is X stable? 

7.3. Consider the tent map 

Use the fact that for a one-dimensional map the Lyapunov exponent 
is defined by 

to show that, for a = 1, the Lyapunov exponent for the tent map is 
X = ln2. 
Hint: Use the chain rule of differentiation to show that 

7.4. Construct a fractal that is similar to the Cantor set, but instead 
remove the middle f from each previous section. Show that its 
dimension is f .  

7.5. Construct a fractal that is similar to the Cantor set, but instead 
remove the middle x fraction from each previous section. Show that its 
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Figure 7.11.1: Construction of the Koch snowflake. 

capacity dimension is 

ln2 
In2 - In( 1 - x) 

D, = 

7.6. Show that the capacity dimension of the Koc,, snowflake, w 
construction is indicated in Figure 7.11.1, is 

lose 

21x12 
In3 

Do = - x 1.2618 

7.7. Let So be the interior of an equilateral triangle with sides of length 
1. Regard So as the union of the interiors of four equilateral triangles 
with sides of length fl, and define S1 as So less the interior of the middle 
of four triangles. Similarly, remove the middles of the three triangles of 
S1 to coiistruct 5’2, and so forth (SW Fig. 7.11.2). Define S = c=oS,. 

Show that the box dimension of S is D = ln3/ln2 = 1.58496. 

7.8. Define self-similar sets S, C RE as follows for n = 0, 1,. . . . 
First define SO = {(x,y) : 0 5 z ,y  5 1) , the unit square; S, = 
{ (5, y) : (5, y) $ So and z or y E ( f ,  i)} , i.e., S1 is the union of eight of 
the nine subsquares of So with sides of length 5,  the central subsquare 
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Figure 7.11.2: A sketch of the sets for Exercise 7.7. 

being removed; 5’2 as S1 with the central subsquare of side $ removed 
from each subsquare of 5’1, as shown in Figure 7.11.3; and so forth. 
Hence, define S = nr=P=o S,. 

Figure 7.11.3: A sketch of the sets for Exercise 7.8. 

Show that the area of S is zero and that the box dimension of S is 
D = ln8/ln3 = 1.8928. 

7.9. The Cantor set may be used to study some properties of 
information dimension. Assuming that each line segment is equally 
probable at each iteration. Show that the information dimension 
D1 = ln2/ln3. 

7.10. Repeat the calculation of Exercise 7.8, but do not assume equal 
probabilities. At every iteration of the set, let the right segment have 
twice the probability of the left segment. For example, when there are 
four segments the probabilities are, from left to right, f ,  i, i, and i. 
Show that Dl = -1 t 2(ln2/ln3). 
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7.11. By finding the maximum of the function I = - xzl PilnPi, show 
that D1 is maximized when D1 = Do. 

7.12. Determine the autocorrelation functions of 

(a) z ( t )  = acos(wt i- p)  

(b) ~ ( t )  = a1 C O S W ~  + a2 c 0 ~ 2 o t  

(c) . ( t )  = a0 i- a1 coswt + a2 cos2wt 

(d) ~ ( t )  = a1 cos + ~2 coswt 

( e )  z ( t )  = al coswlt + a2cosw2t 

7.13. Show that the Lyapunov exponent of the tent map 

1 
for 2, < - 

2 
x,+~ = 27-5, 

1 
for 2, 2 ;; .,+I = 2r(l - x,,) 

is ln2r. 

7.14. Show that the Lyapunov exponent of the Bernoulli map 

%+I =2x, (mod 1) 

is ln2. 

7.15. Show that the Lyapunov exponent of the logistic map 

xn+1 = 4 ~ c , ( l -  xn) 

is ln2. 
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Chapter 8 

CONTROL 

8.1 CONTROL OF BIFURCATIONS 

As discussed in the preceding chapters, bifurcations can be broadly 
classified into two categories: (a) continuous and (b) discontinuous or 
catastrophic bifurcations. During continuous bifurcations, the states 
of the system vary continuously or in a gradual manner as a system 
parameter is varied in a quasistationary manner across the bifurcation 
points. Examples of these bifurcations are supercritical pitchfork, tran- 
scritical, and supercritical Hopf bifurcations of fixed points and limit 
cycles. On the other hand, during discontinuous bifurcations, the state 
of the system experiences a jump as a system parameter is varied in 
a quasistationary manner across the bifurcation points. Examples of 
these bifurcations are saddle-node bifurcations of equilibrium points, 
cyclic-fold bifurcations of limit cycles, and subcritical pitchfork and 
Hopf bifurcations of fixed points and limit cycles. In a discontinu- 
ous case, the postbifurcation states cannot be determined from local 
considerations alone. The discontinuous bifurcation may lead to an un- 
bounded motion, an oscillatory behavior, or an intermittent or steady 
chaotic behavior unless appropriate controls are applied. 

In the context of ship motions, the unbounded motions resulting 
from a discontinuous bifurcation can lead to capsizing (Thompson, 
Rainey, and Soliman, 1990; Nayfeh and Sanchez, 1990; Sanchez and 
Nayfeh, 1990; Soliman, 1993). In the context of power systems, dis- 

563 
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continuous bifurcations can result in a loss of synchronism (Nayfeh, 
Hamdan, and Nayfeh, 1990, 1991) or a voltage collapse (Abed, Ham- 
dan, Lee, and Parlos, 1990; Abed, Wang, Alexander, Hamdan, and 
Lee, 1993; Chiang, Dobson, Thomas, Thorp, and Fekih-Ahmed, 1990; 
Vu and Liu, 1990; Ajjarapu and Lee, 1992; Chow, Fischl, and Yan, 
1990; Dobson and Chiang, 1989; Kwatny, Pasrija, and Bahar, 1986; 
Rajagopalan, Sauer, and Pai, 1989; Venkatasubramanian, Schattler, 
and Zaborszky, 1992). Furthermore, discontinuous bifurcations can re- 
sult in low-performance operations in aircraft systems (Abed and Lee, 
1990) and axial flow compressors (Greitzer, 1976; Moore aiid Greitzer, 
1986; Davis and O’Brien, 1987; Abed, Houpt, and Hosny, 1993). 

Different methods can be used to control the discontinuous bifrirca- 
tions to achieve desirable nonlinear dynamics (e.g., Abed and Fu, 198G, 
1987; Cibrario and Lbvine, 1991; Singer and Bau, 1991; Singer, Wang, 
and Bau, 1991; Abed, Wang, Alexander, Hamdan, and Lee, 1993; Ado- 
maitis and Abed, 1993; Day, 1993; Wang, Abed, and Hamdan, 1992a,b; 
Wang and Abed, 1992, 1993, 1994; Abed and Wang, 1994). These 
methods fall under the category of bifurcation control methods, which 
are commonly used for one or more of the following purposes: (a) shift- 
ing the bifurcation points in the state-control space, (b) suppressing 
the bifurcations in a sequence, (c) changing the nature of a bifurcation, 
and (d) changing the character of a bifurcation set. Effectively, the 
control inputs modify the bifurcation characteristics associated with 
the system. The control schemes may be implemented either with or 
without feedback. In the latter case, we have open-loop control. In the 
study of Tung and Shaw (1988), open-loop control has been suggested 
for achieving desirable dynamics of impacting print hammers, in which 
chaotic motions have been observed (Hendriks, 1983). Braiman and 
Goldhirsch (1991) examined open-loop control of chaotic dynamics of 
a nonlinear system by applying weakly periodic perturbations. Here, 
we follow the work of Abed and co-workers to describe feedback-based 
bifurcation control met hods. 

8.1.1 Static Feedback Control 
In static feedback control, the feedback is used to achieve desirable 
nonlinear dynamics. For instance, one can suppress discontinuous 
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bifurcations in systems of the form 

x = F(x;p) + u 
where x is the n-dimensional state vector, p is the scalar parameter 
with respect to which the bifurcations are studied, and u is the static 
feedback given by 

u = u(x) 

Abed and Fu (1986, 1987) illustrated how u can be chosen to 
suppress discontinuous bifurcations of fixed points such as subcritical 
Hopf bifurcations. Here, we consider conversion of a subcritical Hopf 
bifurcation into a supercritical Hopf bifurcation by using a nonlinear 
static feedback. In the system (3.5.48)) let the matrix J have the pair of 
purely imaginary eigenvalues f i w .  To this system, we add the nonlinear 
control 

e Q u ( y , y )  + E ~ C ~ ( Y , Y , Y )  
and obtain 

(8.1.1) 

Using the method of multiple scales and carrying out an analysis similar 
to that conducted in Section 3.5.3, we find that y1 is still given by 
(3.5.53) and y2 is given by 

Y = JY + ~ [ Q ( Y , Y )  + Q ~ ( Y , Y ) ~  
t t 2  [ C ( Y , Y , Y )  + C U ( Y , Y , Y ) l +  * * *  

y2 = 2 ( 2 0  + wo) A A  t 2(22 + w2)A 2 e 2iwTo + cc (8.1.2) 

where zo and 2 2  are given by (3.5.59) and (3.5.60), and 

JWO = - ~ Q " ( P ,  1 P) (8.1.3) 

Then, the equation governing A is given by 
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where 81 is given by (3.5.63), 

6 2  = P2 t A (8.1.6) 

and 

Expressing A in the polar form iaexp(i0) and separating real and 

a' = pPlra t ,&,a3 (8.1.8) 

ao' = p&ia + /32ia3 (8.1.9) 

Consequently, to transform the subcritical Hopf bifurcation in which 
,& > 0 into a supercritical Hopf bifurcation, we need to choose the 
feedback control so that Real (P2 + A) < 0. 

imaginary parts in (8.1.5), we obtain 

Example 8.1. Following Wang and Abed (1994), we consider the 
power niodel of Dobson and Chiang (1989). The system dynamics is 
governed by the following four-dimensional system: 

6, = w (8.1.10) 

(8.1.11) 
. 50 1 

w = -Vsin(6 - 6, t 0.0873) - --w t 1.8807 
3 6 

500 
I/ C O S ( ~  - 0.2094) - -V C O S ( ~  - 6, - 0.0873) 

2000 j= -- 
3 3 

280 100 130 
3 3 

t496.8718V' - -V t -j-Q + - (8.1.12) 

V = -78.7638V2 + 26.2172V cos(6 - 6, - 0.0124) 
+104 .8689V~0~(6  - 0.1346) -+ 14.5229V 
-5.22889 - 7.0327 (8.1.13) 

In Figure 8.1.1, we show the bifurcation diagram generated by Wang 
and Abed (1994) when Q is used as the bifurcation parameter. The 
symbols HB, CFB, PDB, and SNB represent Hopf, cyclic-fold, period- 
doubling, and saddle-node bifurcations, respectively. The solid and 
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Figure 8.1.1: Bifurcation diagram for the uncontrolled power model. 
Reprinted with permission from Wang and Abed (1994). 

dashed lines are used to depict the loci of stable and unstable equilib- 
rium states, respectively. The solid and open circles are used to denote 
stable and unstable oscillatory states, respectively. The parameter Q 
takes the value Q1 at the subcritical Hopf bifurcation point HBI and Qa 
at the supercritical Hopf bifurcation point HB6. As Q is varied grad- 
ually from 10.70, the system remains in a static state until Q exceeds 
& I ,  where a subcritical Hopf bifurcation occurs. The postbifurcation 
state quickly becomes unbounded, resulting in what is called a voltage 
collapse. 

To control the subcritical Hopf bifurcation, Wang and Abed (1994) 
introduced the nonlinear feedback control law 

U~ = [o 0 0 -kW3] (8.1.14) 

where k is the feedback control gain. Using the gain of 0.7003, Wang 
and Abed obtained the bifurcation diagram shown in Figure 8.1.2. 
The subcritical Hopf bifurcation at Q1 has been transformed into a 
supercritical Hopf bifurcation, the unstable limit cycles have been 
eliminated, and the amplitudes of the stable limit cycles born as a 
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I 

5 

Figure 8.1.2: Bifurcation diagram for the controlled power model. Reprinted 
with permission from Wang and Abed (1994). 

result of the Hopf bifurcation are small. Consequently, voltage collapse 
has been delayed to the saddle-node bifurcation point. 

d’AndrCa-Novel and Abichou (1992) used static feedback to control 
a pitchfork bifurcation in an inverted-pendulum system. For other 
applications of static feedback control, we mention the studies of Liaw 
and Abed (1990), Henrich, Mingori, and Monkewitz (1992), Badmus, 
Chowdhury, Eveker, Nett, and Rivera (1993a,b), and Mohamed and 
Emad (1993). 

8.1.2 Dynamic Feedback Control 
In some cases, static feedback is not desirable because the locations 
of equilibria are affected in the controlled system. When dynamic 
feedback control is used, it is possible to preserve the equililuium 
positions in the controlled system (e.g., Hyotyniemi, 1991; Abed and 
Wang, 1994; Wang and Abed, 1992, 1994). Abed and co-workers 
implemented dynamic feedback by using what are called washout 
filters. Let us suppose that we have the following uncontrolled n- 
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dimensional autonomous system. 

X = F(x;p) 

where p is the scalar parameter with respect to which we study the 
bifurcations. When a washout filter is used for dynamic feedback, the 
controlled system takes the form 

The differential equation describing z, governs the washout filter used 
for the state variable 2,. The equation describing y; is called the 
output equation. It is easy to verify that the equilibrium positions 
are preserved in the controlled system. 

Example 8.2. Again, following Wang and Abed (1994), we consider 
the convection model (Singer, Wang, and Bau, 1991) 

i l  = -PS1 t PS2  

22 = - 2 2  - 21x3 
i 3  = -23 + 2 1 2 2  - r 

(8.1.15) 
(8.l.lG) 
(8.1.17) 

where p and r are positive constants. In Figure 8.1.3, we show the 
bifurcation diagram for p = 4.0. Again, the solid and dashed curves 
are used to represent the loci of the stable and unstable equilibria, 
respectively. The solid and open circles represent the stable and 
unstable limit cycles, respectively. Clearly, there is a subcritical Hopf 
bifurcation at r = 16. Singer, Wang, and Bau (1991) employed a linear 
feedback control to delay the occurrence of the Hopf bifurcation and as 
a result suppressed chaotic motions. 

To transform the subcritical Hopf bifurcation into a supercritical 
Hopf bifurcation, Wang and Abed (1994) used a linear feedback aided 
with a washout filter for the state 23 and obtained the closed-loop 
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Figure 8.1.3: Bifurcation diagram for the uncontrolled convection model. 
Reprinted with permission from Wang and Abed (1994). 

system 

x1 = - p 1  +px2 
22 = - X 2  - 21x3 

x 3  = -x3 + 21x2 - r -t u 

X4 = 2 3  - dxq 

(8.1.1 8) 
(8.1.1 9) 
(8.1.20) 
(8.1.21) 

where x4 is the washout filter state and the control law is of the form 

u = - k y  3 (8.1.22) 

with y an output variable given by 

y = x3 - dx4 (8.1.23) 

Here, k is a scalar feedback gain. 
For p = 4.0, Wang and Abed (1994) generated the bifurcation 

diagram in Figure 8.1.4 for different values of the feedback gain k. 
Clearly, using gain values equal to or larger than 0.025 transforms 
the subcritical Hopf bifurcation into a supercritical Hopf bifurcation. 
Moreover, increasing the value of k reduces the amplitude of the limit 
cycles born as a result of the bifurcation. 
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Figure 8.1.4: Bifurcation diagram for the controlled convection model: (a) 
k = 0.009, (b) 12 = 0,025, (c) k = 0.1, and (d) k = 2.5. Reprinted with 
permission from Wang and Abed (1994). 

8.1.3 Comments 
In recent work, Abed, Wang, and Chen (1994) described feedback 
control schemes for controlling period-doubling bifurcations in discrete 
systems. By using the Hdnon map as an example, they illustrated how 
a control scheme can be used to suppress a period-doubling cascade to 
chaos. 

8.2 CHAOS CONTROL 

In practice, chaos may be desirable or undesirable, depending on the 
application. In combustion applications, chaos is desirable because it 
enhances mixing of air and fuel and hence leads to a better performance. 
On the other hand, in aerodynamic and hydrodynamic applications, 
chaos (turbulence) is undesirable because it dramatically increases the 
drag of vehicles and results in increased operational cost. In mechanical 
and structural systems, chaos may lead to irregular operations and 
fatigue failure. Moreover, chaos can restrict the operating range of 
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many electronic and mechanical devices. As an example, we mention 
the study of Hendriks (1983), where the dynamics of impact printers 
was considered. 

In the preceding section, we discussed different bifurcation control 
methods. These methods can be used to control the bifurcations 
(e.g., period-doubling, Hopf, cyclic-fold bifurcations) in transitions to 
chaos and, hence, keep the system dynamics away froin chaos. In 
Section 8.2.1, we describe an approach developed by 0 t , Grebogi, 
and Yorke (1990a,b) for controlling chaos by utilizing the butterfly- 
effect cliaracteristic of chaos. This approach is usually referred to as 
the OGY scheme. In Section 8.2.2 we describe some experimental 
implementations of the OGY scheme, and in Sections 8.2.3 and 8.2.4 
we discuss the pole placement technique and some of the traditional 
control schemes. 

8.2.1 The OGY Scheme 
The OGY approach (Ott, Grebogi, and Yorke, 1990a,b; Shinbrot, Gre- 
gobi, Ott, and Yorke, 1993; Ott, 1993) exploits the following char- 
acteristics of chaotic attractors: butterfly effect, recurrent behavior, 
and presence of an infinite number of unstable periodic orbits and the 
absence of any stable ones. The main goal of this approach is the sta- 
bilization of an unstable periodic orbit embedded within the chaotic 
attractor by means of a small time-dependent change in an accessible 
system parameter. This can be accomplished because of the extreme 
sensitivity of the attractor to small perturbations and its recurrent be- 
havior, as discussed next. 

The first step in this approach is the identification of the unstable 
periodic orbits. To accomplish this, we let XI, x2, * * - , xn, . - * , XN be 
the vectors specifying the intersections of the chaotic trajectory with a 
chosen one-sided Poincark section C . Thus, we define a Poincark map 
that maps the nth intersection xn of the trajectory with this section 
into the subsequent intersection xnf1 by 

with M being a set of control parameters at our disposal. In general, 
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the map P is not known explicitly. However, local approximations to 
P can be determined using the available points x,, as described below. 

We note that a periodic orbit corresponds to a finite number of 
points on the Poincard section. Therefore, to determine the locations 
of the unstable periodic orbits from the above points of intersection 
of the trajectory with the Poincard section, we choose a small positive 
number c. Then, for each vector xi, we find the smallest index j > i 
such that 

11 xi - xj 11 < 
Then, typically there is a period-p orbit, where p = j-i,  near xi and x,. 
For example, there is a period-one orbit near xm if 11 x30 - ~ 3 1  11 < tz, 

and there is a period-two orbit near x30 if 11 x30 - x32 11 < c but 
11 xm - ~ 3 1  II> 6 .  In this way, we identify approximately the locations 
of the periodic orbits. 

To get a better approximation to the location of a selected orbit 
of, say, period p, we first find the first pair Xi and Xi+p where i + p is 
the smallest index such that 11 xi - xitP 11 < c. Then, we search the 
succeeding data for all pairs xk and x k t P  such that 11 xk -xi 11 < €2 and 
11 x k + p  - xi ( 1  < c2, where tz2 is another chosen small positive number. 
We label the resulting points by t1, &, * . , &. Then, we fit these points 
with a linear relationship of the form 

Ltp = A€n + c (8.2.2) 

In the presence of noise, a least-squares fit can be used. The fixed point 
(* of (8.2.2) is given by 

(* = A(* + c (8.2.3) 

or 
(* = ( I  - A)-'c  ( 8.2.4) 

Moreover, the stable and unstable eigenvectors associated with <* 
are the eigenvectors of A corresponding to the eigenvalues inside and 
outside the unit circle, respectively. 

We note that the location (* of the periodic orbit on the Poincard 
section depends on the control parameters M. To effect the control, 
we need to vary as many control parameters as there are unstable 
eigenvectors associated with (*. For further description, we assume that 
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Figure 8.2.1: A schematic of the OGY control method. 

the dynamical system is three-dimensional, and hence the Poincark 
section is two-dimensional. Consequently, unstable periodic orbits of 
the dynamical system correspond to saddle points on the section with 
one stable and one unstable eigenvector. We assume that the accessible 
control parameter is a and that the fixed point €'(a') corresponds to 
a = a'. In Figure 8.2.la, we show a schematic of the location of the 
fixed point and its accompanying stable and unstable directions, which 
are approximations to the stable and unstable manifolds of the fixed 
point. Also shown is a state of the system &, approaching the vicinity 
of <(a') along its stable manifold. 

The basic idea is to vary a in the neighborhood of a' when the 
uncontrolled trajectory comes close to €'(a'). The recurrent property 
of the chaotic attractor guarantees that it will frequently approach the 
vicinity of the chosen unstable fixed point and then move away again. 
The approach is always along the stable manifold, and the departure is 
always along the unstable manifold, as shown in Figure 8.2.1. However, 
the time taken for the trajectory to come on its own close to ('(a') 
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may be long. To shorten this time, one can take advantage of the 
extreme sensitivity of the chaotic attractor to small perturbations and 
utilize a so-called targeting scheme to steer the chaotic trajectory to 
the vicinity of <*(a*) by using small controls (Shinbrot, Ott, Grebogi, 
and Yorke, 1990; Shinbrot, Gregobi, Ott, and Yorke, 1992; Kostelich, 
Grebogi, Ott, and Yorke, 1993). When the state of system comes close 
to (*(a*), we want to vary a quickly by a small amount in such a way 
that the subsequent state of the system will land on the stable manifold 
of the original fixed point (*(a*), and consequently the evolution will 
approach it as t + 00. 

In Figure 8.2.1a7 we show the state <, of the system approaching the 
vicinity of (*(a*) along the stable manifold. Without control, this state 
would approach the vicinity of <*((Y+) along the stable manifold and 
then move away from (*(a*)  along the unstable manifold. Therefore, 
to prevent this state from leaving the vicinity of (*(a*) (and in fact 
forcing it to land on the stable manifold), we quickly perturb the control 
parameter from a* to a, to move the old unstable fixed point and its 
accompanying manifolds to the new location (*(a,.,), as shown in Figure 
8.2.lb. Consequently, the state of the system will approach the vicinity 
of the new fixed point <*(a,) along its stable manifold and move away 
from it along its unstable manifold. However, this departure is in the 
direction of the stable manifold of the old fixed point. By properly 
choosing a,, one can make the subsequent state of the system 
fall precisely on the stable manifold of <*(a*) and then immediately 
remove the perturbation of the control parameter, as shown in Figure 
8.2.1~. Subsequently, in a perfect world, the state of the system would 
approach (*(a*)  and stay there forever. However, in the presence of 
noise or a small error in calculating a,, the state of the system would 
not stay at <*(a*), To overcome these problems, the control is repeated 
once each period. 

To determine a,, we approximate the map in the neighborhood of 
(*(a,) by the linear map 

( 8.2.5) 

where D P is the Jacobian of the map evaluated at a,. Because a, is € 



5 76 

close to a*, the new fixed point can be related 

€*(an) - €*(a*) 
a, - a* g =  

or 

CONTROL 

to the old fixed point by 

(8.2.6) 

€*(an) = €*(a*) + (an - a*)g (8.2.7) 

The vector g can be calculated ahead of time. The position of the 
unstable fixed point is determined numerically from a model or is 
measured experimentally for several values of a just slightly different 
from a*. Then, these values are used in (8.2.6) to determine g. Because 
a, is close to a*, D P can be approximated by its value A at a*. We 
denote the stable and unstable unit eigenvectors of A corresponding to 
the eigenvalues Am and A,, where I A, I < 1 and I A, I > 1 by e, and e,. 
Moreover, we denote the corresponding contravariant basis vectors by 
fm and f,. They are related to e, and e, by 

€ 

fa e,  = f, e, = 1 and f, . e, = f,, e, = 0 (8.2.8) 

Using the unit vectors and their contravariant basis vectors, we express 
A M  

A = Aueufu t Asesfs 

Using (8.2.7) and (8.2.9), we rewrite (8.2.5) as 

(8.2.9) 

where 6a, = a, - a*. 
In order that 

we choose ban so that 
fall precisely on the stable manifold of <*(a*), 

f, . [€,+I - €*(a*)] = 0 (8.2.1 1) 

Hence, taking the inner product of (8.2.10) with f, and using (8.2.11), 
we obtain 
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or 

or 
h a ,  = Cf, * [En - €*(a*)] 

where 

(8.2.12) 

(8.2.13) 

(8.2.14) 

Equation (8.2.13) yields the perturbation in the control parameter 
needed to control the system. Due to noise or errors in the calculations, 
such as the influence of nonlinearities, ha, is updated every period 
to keep the trajectory on the desired orbit. We note that ban is 
proportional to the projection of the distance of the state (,, of the 
system from the unstable fixed point (‘(a*) onto the unstable direction 
f,. The gain C can be calculated ahead of time by using X,,f,, arid 
g, which can be determined from experimental or numerical data, 
as described above. Alternatively, if a period of adjustment in an 
experiment can be tolerated, one might guess a value for C and then 
adjust it empirically until control is satisfied (e.g., Hunt, 1991; Singer, 
Wang, and Bau, 1991; Gills, Iwata, Roy, Schwartz, and Triandaf, 1992; 
Rajarshi, Murphy, Maier, Gills, and Hunt, 1992; Garfinkel, Spano, 
Ditto, and Weiss, 1992; Petrov, Gaspar, Masere, and Showalter, 1993). 

In summary, the characteristics of chaotic attractors permit the 
use of small feedback perturbations to control trajectories in chaotic 
systems, thereby effecting a large beneficial change in the long-term 
system behavior. Moreover, using a similar reasoning, we conclude 
that one can switch between different orbits by again using small 
perturbations. 

8.2.2 Implementation of the OGY Scheme 
Ditto, Rauseo, and Spano (1990) implemented the OGY scheme experi- 
mentally with a parametrically excited cantilever ribbon about 100 mm 
long, 3 mm wide, and 0.025 mm thick, as shown in Figure 8.2.2. This 
ribbon is made of an amorphous magnetoelastic material whose Young’s 
modulus of elasticity varies nonlinearly with an applied magnetic field. 



578 CONTROL 

Rlbbon 

H ( r )  = HLL + H,cos(lnjl) 

Figure 8.2.2: A schematic of the magnetoelastic ribbon experiment. 

Initially, the ribbon buckles under the influence of the gravity field. 
Ditto et al. (1990) applied a magnetic field H to the ribbon in the 
vertical direction of the form 

H = H d c  -k Ha, cos (21rft) (8.2.15) 

where Hdc is a constant field and Ha, and f are the amplitude and 
frequency of the oscillatory field. In this experiment, Hdc,Ha,,  and f 
are accessible control parameters. Ditto et al. set Ha, = 2.050 Oe and 
f = 0.85 Hz and used Hdc as the accessible control parameter. 

The position of the ribbon was measured at a point near its base 
by means of an optical sensor. The output of the sensor consisted of 
time-series voltages. The voltages were sampled at the drive period 
T = l/f of the oscillatory part of the field (at times t ,  = n/f) by 
triggering a voltmeter from the ac signal, resulting in the sampled 
voltages V, = V ( t , ) .  

When Hdc = 0.112, the motion of the ribbon is chaotic. In 
Figure 8.2.3a, we show variation of the position of the ribbon with 
respect to time. The data shown for t ,  < 2,350 correspond to the 
uncontrolled motion, while the data shown for t ,  > 2,350 correspond 
to the controlled motion. Clearly, the uncontrolled motion is chaotic. 
This is also evident from the associated return map shown in Figure 
8.2.3b. Applying the OGY scheme to stabilize the period-one orbit, 
Ditto et al. obtained the controlled motion illustrated in Figure 8.2.3a. 
In the associated return map, we have a point attractor. This attractor 
is located at  about (3.4, 3.4) in Figure 8.2.3b. 

The empirical version of the OGY scheme has been used to control 
chaos in a number of physical systems. Hunt (1991) used occasional 
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Figure 8.2.3: Experimental observations of the ribbon motion: (a) variation 
of the ribbon position with time and (b) return map of the ribbon position. 
Reprinted with permission from Ditto, Rauseo, and Spano (1990). 
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proportional feedback to stabilize many higher-order periodic orbits in 
a periodically driven diode resonator. He sampled the peak current I,,, 
and if it was within a given window, he modulated the drive voltage 
with a signal proportional to the difference between I ,  and the center of 
the window. Peng, Petrov, and Showalter (1991) and Petrov, Peng, and 
Showalter (1992) used a similar proportional feedback scheme to stabi- 
lize periodic orbits in the chaotic regime of a chemical system, which 
was modeled by a three-dimensional autonomous system. Petrov, Gas- 
par, Masere, and Showalter (1993) also used the same approach to con- 
trol chaos in the Belousov-Zhabotinsky reaction. Roy, Murphy, Maier, 
and Gills (1992) used a proportional feedback scheme to stabilize com- 
plex periodic waveforms in the output intensity of a chaotic multimode 
laser. As a result, they were able to operate the laser in a stable man- 
ner at power levels exceeding by as much as a factor of 15 those that 
might be attained without control. Singer, Wang, and Bau (1991) used 
a proportional feedback scheme to suppress chaotic flow in a thermal 
convection loop. Garfinkel, Spano, Ditto, and Weiss (1992) used an 
empirical version of the OGY scheme to stabilize cardiac arrhythmias 
induced by the drug ouabain in rabbit ventricle. By administering elec- 
trical stimuli to the heart at irregular times determined by using the 
OGY scheme, they converted the arrhythmia to periodic beating. 

As aforementioned, one can easily use small perturbations in the 
control and switch from one periodic orbit to another. In Figure 8.2.4, 
the results of Ditto et al. show switching from chaos to period-four 
to period-one to period-two to period-one and finally to period-four. 
There are interludes of chaos between each section of control because 
Ditto et al. waited until the state of the ribbon came on its own to 
the vicinity of the desired orbit. These interludes of chaos can be 
significantly reduced by using the targeting scheme discussed earlier. 

8.2.3 Pole Placement Technique 
The OGY scheme described in Section 8.2.1 is a special case of the 
general technique called pole placement in control theory. We return 
to the n-dimensional map (8.2.1) and consider the case in which the 
state of the dynamical system depends on a single control parameter a. 
We let x = x(a*) be the unstable fixed point of the map corresponding 
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Figure 8.2.4: The ability of the OGY scheme to switch from controlling one 
periodic orbit to controlling another. Reprinted with permission from Ditto, 
Rauseo, and Spano (1990). 

to the unstable periodic motion we wish to stabilize. Linearizing the 
map (8.2.1) around x* and a*, we have 

6~,+1 = A ~ x ,  + (8.2.16) 

where 
6Xm = X, - x*(Q*), = a, - a* (8.2.17) 

Here, A is an n x n constant matrix and b is an n-dimensional vector 
given by 

(8.2.18) 
aP aP 

A = -(x*, a*) and b = -(x*, a*) ax aa 
We assume that b satisfies the so-called controllability condition 

4 - b  # 0 (8.2.19) 

where q stands for any of the left eigenvectors of A. Then, we consider 
the case of a linear feedback of the form 

6a, = kT6x, (8.2.20) 
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where k is an n-dimensional gain vector. Substituting for 6a, from 
(8.2.20) into (8.2.16) yields the closed loop problem 

6x,+1 = [A t bkT] 6x, (8.2.2 1 )  

To stabilize x*(a*), we need to choose the control gains so that all of the 
eigenvalues of the n x n matrix [ A t  bkT] are inside the unit circle in the 
complex plane. This is possible because b satisfies the controllability 
condition (8.2.19). The choice 6a, in Section 8.2.1 corresponds to a 
special choice of the control gain k, where one of the eigenvalues of 
[A -t bkT] is zero while the other eigenvalue is unaltered. Again, in the 
implementation of this scheme, one can either wait for the state of the 
system to come close to the desired unstable state x* on its own or use 
a targeting scheme to steer the state quickly to the vicinity of x*. Then, 
one varies the control so that all of the eigenvalues of [A t bkT] are 
inside the unit circle. Romeiras, Grebogi, Ott, and Dayawansa (1992) 
implemented the pole placement technique to stabilize fixed points in 
a chaotic four-dimensional map representing the kicked double rotor. 

Dressler and Nitsche (1992) pointed out that, when the attractor 
is reconstructed from a time series using time delay coordinates, the 
relevant Poincar6 map representing the dynamics of the system depends 
on both the current value a, of the control parameter and the previous 
value an-l; that is, 

Consequently, the proportional feedback control law is modified to 

(8.2.23) 

where k and r are constant vector and scalar parameters. Rollins, 
Parmananda, and Sherard (1993) implemented this modified scheme 
to stabilize periodic orbits in chaotic biological and chemical systems. 

8.2.4 Traditional Control Methods 
The schemes described in Sections 8.2.1-8.2.3 take advantage of the 
characteristics of chaotic attractors and utilize small changes in one 
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or more control parameters when the state of the system comes close 
to the desired orbit on its own or due to targeting. In contrast, 
one can influence the chaotic dynamics by using traditional control 
techniques (e.g., Hubler, 1989; Hubler and Luscher, 1989; Luscher and 
Hubler, 1989; Jackson and Hubler, 1990; Jackson, 1991a,b; Jackson 
and Kodogeorgiou, 1992). To illustrate this approach, we assume that 
the dynamics of the uncontrolled system is given by 

X = F(x, t ;  M) (8.2.24) 

and that x*(t) represents the goal dynamics; that is, the trajectory 
that we are interested in stabilizing. Then, we introduce an additive 
feedback control term u(t) to (8.2.24) and obtain 

X = F(x, t ;  M) + ~ ( t )  (8.2.25) 

The objective of the control is to choose ~ ( t )  so that x(t) + x*(t) as 
t -+ 00. Thus, u(t)  can be expressed as 

~ ( t )  = G(x - x*, t ;  M) (8.2.26) 

where G is, in general, nonlinear. 
The control objective can be accomplished by the simple choice 

~ ( t )  = X* - F(x*, t ;  M) (8.2.27) 

With this choice, (8.2.25) becomes 

X - X* = F(x, t ;  M) - F(x*, t ;  M) (8.2.28) 

Clearly, x ( t )  = x*(t) is a solution of the controlled problem. However, 
it is not clear whether 11 x ( t )  - x * ( t )  11 -+ 0 as t + 00. The latter 
depends on the vector function F as well as on the initial conditions. 
Jackson (1991b) addresses the convergence to the goal dynamics in 
the context of flows, while Jackson and Kodogeorgiou (1992) address 
convergence to the goal dynamics in the context of two-dimensional 
maps. The control is initiated only when the system is in the basin of 
“entrainment” of the desired solution. 
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8.3 SYNCHRONIZATION 

Many physical phenomena can be modeled by dynamical systems driven 
by external forces and moments. Such systems can be represented by 
systems of first-order equations having the form 

w = f(w; v) (8.3.1) 

where the vector w has k components and the vector v has m compo- 
nents and stands for the external forces and moments that drive the 
system. In general, these forces and moments are the output of a second 
dynamical system, called the drive system, which can be represented 
by a system of first-order equations having the form 

u = g(u,v) (8.3.2) 

V = h(u, V) (8.3.3) 

The vector u has 1 components. The system (8.3.1)-(8.3.3) is called 
the combined system; it is n-dimensional, where n = Ic + m + 1. 
The system (8.3.2) and (8.3.3) is called the drive system, whereas 
the system (8.3.1) is called the response system. The behavior of the 
response system depends on the behavior of the drive system, but the 
drive system is not influenced by the response system. We have split 
the drive system into two parts. The first part represents the variables 
u that are not involved in driving the response system, and the second 
part represents the variables v that are actually involved in driving the 
response system. 

As discussed in this and the preceding chapters, the behavior 
of the drive system (8.3.2) and (8.3.3) may be constant, periodic, 
quasiperiodic, or chaotic. In the accompanying chapters, we have 
considered systems that are driven by harmonic forces and moments. 
In such cases, the drive system can be represented by 

u = v and v = -RZu (8.3.4) 

where $2 is the drive or excitation frequency. 
In this section, we consider drive systems whose behavior is chaotic 

so that the response is driven by chaotic forces and moments. Moreover, 
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Figure 8.3.1: A schematic diagram of a synchronizing chaotic system. The 
response system is a duplicate of part of the drive system. The response 
system is driven by the signal that came from the remaining part of the 
system. 

we investigate whether the behavior of the response system can be 
synchronized to that of the drive system. Here, by synchronization 
we mean that the two systems follow the same trajectory in phme space, 
in contrast with the notion we used earlier to describe the phenomenon 
in which two self-excited oscillators have the same frequency or the 
response of a self-excited oscillator is at the same frequency as the 
excitation. 

Typically, due to sensitivity to initial conditions, two isolated 
chaotic systems cannot synchronize. In fact, if we were to construct two 
chaotic systems that are virtually identical but separate, we would find 
that they would quickly fall out of step because any minute differences 
in the initial conditions would cause the two trajectories to diverge 
exponentially with time. However, Pecora and Carroll (1990, 1991) 
discovered that a chaotic system could be built in such a way that its 
parts could act in perfect synchrony. A schematic of such a system is 
shown in Figure 8.3.1. 

The key to synchronization is that the response system is identical 
to a part of the drive system and that the response system is stable, as 
described later. As an example, we consider the Lorenz system 

x = a ( y  - z) (8.3.5) 



586 CONTROL 

0 1 2 

Tlme 
3 

Figure 8.3.2: Comparison of the time series obtained froni the response 
system with that obtained from the drive system. The two converge in a 
few cycles of the drive. Reprinted with permission from Pecora and Carroll 
(1991). 

y = -xz t pz - y 
i = xy - p z  

(8.3.6) 
(8.3.7) 

where Q = 1G,p = 4,  and p = 45.92 as the drive system. For the 
response system, we choose a subsystem consisting of the z and z 
equations; that is, 

(8.3.8) 
(8.3.9) 

The response system (8.3.8) and (8.3.9) is driven by the variable y 
obtained from the drive system (8.3.5)-(8.3.7). Pecora and Carroll 
(1991) found that the z' variable in the response system converges to 
the z variable in the drive system within a few cycles of the drive, as 
shown in Figure 8.3.2. 
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Synchronization could also be achieved if the subsystem consisting 
of the y and z equations is used as the response system (Pecora and 
Carroll, 1991); that is, 

3;' = -xz' + pz - y' 
i' = xy' - pz' 

(8.3.10) 
(8.3.11) 

In this case, the response system is driven by the z variable from the 
drive system (8.3.5)-(8.3.7). However, a subsystem consisting of the z 
and y equations does not synchronize with the drive system because 
this subsystem is unstable, whereas the subsystems (2, z )  and (y, z )  are 
s table. 

For the response subsystem to be stable and hence synchronize 
to the drive system, we demand that, for a fixed set of drive initial 
conditions, wherever w(t) is initiated it will always converge to the 
same trajectory and each point in time will always be at the same 
predictable position in phase space on that trajectory. In the case of 
multiple basins of attraction, the w initiations need to be in the same 
basin of attraction. Consequently, for a given drive v, if w1 and w2 are 
two trajectories corresponding to two nearby initial conditions, then 
6w = w2 - w1 must tend to zero as t + 00. Letting w = w1 + 6w in 
(8.3.1), expanding for small 6w, and keeping linear terms, we obtain 

6W = Dwf(wl; v)6w + ... (8.3.12) 

Then, the subsystem (8.3.1) is stable if all of the k Lyapunov exponents 
calculated from (8.3.1)-(8.3.3) and (8.3.12) are negative. These expo- 
nents are called conditional Lyapunov exponents  because they are 
neither the same as nor a subset of the Lyapunov exponents calculated 
from (8.3.1)-(8.3.3) alone. We note that there are n Lyapunov expo- 
nents associated with an orbit of (8.3.1)-(8.3.3). 

Carroll and Pecora (1993) showed that one can cascade several 
dynamical systems together and achieve synchronization in all of them 
by using the same drive. For example, because there are two possible 
stable subsystems that can be used a8 response systems in the Lorenz 
system, one can cascade these systems as shown in Figure 8.3.3. The 
y signal from the drive system drives the ( d , z ' )  subsystem, whose 
x' signal in turn drives the ( y " , ~ " )  subsystem. The signal y" from 
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Figure 8.3.3: A block diagram of cascading the synchronized chaotic Lorenz 
equations. 

the (y”,~”) subsystem matches the y signal from the drive system. 
Consequently, one can think of the cascaded response system as a black 
box whose input and output are chaotic. If the response systems are 
synchronized with the drive system, then the chaotic output y” of the 
cascaded system matches the input signal y’. However, if a parameter 
is changed in the drive system, synchronism will be lost aud the output 
and input signals of the black box do not match. Therefore, Carroll 
and Pecora (1993) propose the use of chaotic signals as carriers for 
communication. 
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Direction of continuation, 427, 435 
Discontinuous bifurcation, 68, 86, 

Discrete, 
188 

Fourier transform, 503 
systems, 2-6 
time evolution, 1 

Dissipation, 15-19 
Divergence, 17 

local, 526 
orbital, 161 
theorem, 16 
of vector field, 152 

Domain of attraction, 29, 30 
Double point, 266 
Double rotor, 582 
Doubling, 

Drag, 571 
Drive system, 584 
Duffing, 

equation, 22 
oscillator, 83, 88, 132, 157, 

see Period-doubling 

374-380 
Dynamic, bifurcation, 76-81 

Dynamical solutions, 1, 30 
Dynamical system, 1 

see Hopf 

Eigenspace, 47-58 
Eigenvalues, 37 
Eigenvector, 47-51 
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generalized, 39, 48, 97 
Electrical power, 27, 56 
Electronic, 

devices, 572 
noise, 506 
oscillator, 299, 317 

Embedding, 478 
differentiable 479 
optimal, 494 
problem, 478 
theory of, 476 
topological, 479 

choosing, 483-495 
Embedding dimension, 481, 482 

Ensemble average, 464 
Entrained, 263 
Entrainment, 583 
Entropy, 546 
Equations, see Duffing; Lorenz; 

Rossler; Swing; van der Pol 
Equilibrium position, 36 
Equilibrium solutions, 1, 22, 

bifurcation of, 68-82 
calculation of, 441-445 
classification of, 39-47 
continuation of, 423-441 
hyperbolic, 39 
nonhyperbolic, 39 
stability of, 36-58 

35-145 

Ergodic, 464 
Erratic orbits, 278 
Errors, 

measurement, 462 
numerical, 462 
quantization, 462 

Escape, 362 

Euclidean, 2 
arclength, 429 
norm, 2 
space, 2 

Euler step, 430 
Evolution, 1 

equation, 9 
operator, 4 

Exchange of stability, 205 
Existence of solutions, 10 
Expansion, 43 
Expected value, 550 
Experimental, 

Poincare sections and maps, 516 
state space, 478 

Explosive bifurcation, 68, 69, 188, 
335 

Exponent, 
characteristic, 37, 38, 166, 525 
spurious, 536 
true, 535 
see Lyapunov 

Exterior crisis, 35 

False nearest neighbors, 491-495 
Farey tree, 247, 330, 331 
Fast Fourier transform (FFT), 503 
Fatigue failure, 571 
Feedback, 

perturbation, 577 
proportional, 580 

Feedback control, 
dynamic, 568 
static, 564 

Feigenbaum number, 280 
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Fill-factor method, 494 290 
Filter , Force-response curve, 85 

linear, 463 Forward iterates, 3 
washout, 569 Fourier modes, 551 

Fingers, Fourier series, 466 
in basin boundary, 362 

Finite-difference method, 446-449 
for autonomous equations, 
446-448 discrete, 503 
for nonautonomous equations, fast, 503 
448-449 two-dimensional, 551 

bifurcation of, 121-128 
definition of, 35, 61 
hyperbolic, 39, 62 
of maps, 61-67 
nonhyperbolic, 63 
stability of, 61-67 torus, 326 
see ulso Equilibrium solutions Fractals, 538 

see also Period-doubling band-limiting, 489 
bifurcation bandwidth, 513 

form, 165 clock, 268, 513 
multiplier, 161-172, 187 domain, 465 
theory, 158-172 modulation, 51 1 

Nyquist, 552 
autonomous system, 163 sampling, 504 

spectra, 502 
in pipe, 297 see also Detuning; Locking 
on a torus, 301 Frequency-response, 

Fourier spectra, 502-513 
limitation of, 513 

Fourier transform, 502, 550 

Fixed point, 1, 21 Fractal, 
basin boundary, 415 
dimension, 277, 538 
mode-locking regions, 246 
object, 285, 288 
set, 539, 559, 560 

Flip bifurcation, 127 Frequency, 

Floquet , carrier, 511 

Floquet multipliers of an 

Flow, 13, 14, 18, 173 

Flutter, 77, 221 curve, 88 
Focus, 39 equation, 84 
Fold, 85 Function space, 473 

see also Cyclic; Saddle-node 
bifurcation regular, 527 

Folding and stretching, 282, 283, 

Fundamental matrix, 159 

solution, 526 
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Funnel , 
Rossler, 290 

Gain vector, 582 
Galloping, 77 
Gastrointestinal, 221, 270 
Gaussian, 

elimination, 431 
noise, 553 
statistics, 553 

correlation dimension, 548 
correlation integral, 500 
eigenvector, 39, 48, 97 

Generic bifurcation, 82, 298 
Geodesics, 61 
Ghost orbit, 68, 298 

chaotic, 350, 352 
limit cycle, 197, 201 
quasiperiodic, 206 

bifurcation, 121, 415 
embedding dimension, 491 
Lyapunov exponents, 532 
mechanism, 301 
section, 178 

Globally convergent, 444 
Goal dynamics, 583 
Governor, centrifugal, 78 
Gram-Schmidt procedure, 529 
Green’s theorem, 152 

Generalized, 

Global, 

Half-orbi t , 55 
Hamiltonian, 17, 27 

Hardening-type response, 88 
Harmonic balance, 251-253, 255, 

446 
Hartman-Grobman theorem, 42, 

63, 115 
Heart, 580 
Heaviside step function, 484, 541 
Helix, 236 
Heriori map, 4, 5, 20, 66, G7, 133, 

41 1 
chaos in, 284-286 
Lyapunov exponent for, 285 

bifurcation, 121, 366 
definition of, 356 
orbit, 55, 153, 360 
tangle, 359-363, 389 

Heteroclinic, 55 

Heteroclinic orbits computation, 460 
Higher-order spectra, 550-557 
Hill’s determinant, 166, 220 
Homeomorphism, 3, 43 
Homoclinic, 55 

connection, 136 
definition of, 356 
intersection, 386, 387 
orbit, 55, 153, 359 
orbit, to a saddle, 397-402 
orbit, to a saddle focus, 

tangle, 356-359 
402-407 

Homoclinic bifurcation, 121, 366, 

in planar systems, 391-397 
Homoclinic orbits computation, 460 
Homoclinicity, 401, 403 
Homotopy, 96 

397-402,402-407 

algorithm, 44 1-445 
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map, 442 
HOMPACK software, 96, 445 
Hopf bifurcation, 76-81, 128 

control of, 565, 567 
degenerate, 76 
normal form of, 82 
subcritical, 78, 402 
supercritical, 78, 212 
see also Secondary 

Horizontal steps, 246 
Horseshoe map, 286-288, 359 
Hydrodynamic, 299, 571 
Hyperbolic, 

fixed point, 39, 62 
periodic solution, 164, 165, 170 

Hyperchaos, 283, 290 
Hyperplane, 181 
Hypersurface, 176 
Hysteresis, G9, 86, 188 
Hysteretic transition, 299 

Impact, 138 
Impacting print hammers, 5G4 
Imperfect beam, 119 
Implicit function theorem, 182,423 
IMSL software, 468, 503 
Inclusion, 2 
Incommensurate, 231, 315, 51 1 
Incomplete sequence, 333, 334 
Indecomposability, 30 
Indirect method for calculating, 

branch points, 436 
Hopf points, 438, 441 
turning points, 436 

Information, 

average mutual, 497-500 
dimension, 545, 560 
entropy, 546 
theory, 537 

Initial condition, 7 
Integral curve, 6 
Interact ions, nonlinear, 4 75 
Interior crisis, 335, 340, 342 
Intermittency, 29G-314, 318 

classification of, 298, 299 
crisis-induced, 342 
on-off, 299, 471 
spatic-temporal, 296 
temporal, 296 
type I, 197, 300-305 
type 11, 206, 311-314 
type 111, 201, 305-311 

G9 
see also Intermittency 

Intermittent transition to chaos, 

Internal resonance, 509 
Intersection, 11 

analytical prediction of 
manifold, 366-390 
heteroclinic, 389 
homoclinic, 386, 387 
mixed, 384, 387 
nontrarisversal, 53, 58 
numerical prediction of 
manifold, 363-366 
transversal, 53 

Invariance, 29 
Invariant, 

local, manifold, 51 
manifold, 47-61 
saturation of system, s, 
483-486 
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scale, 515 
set, 18, 19 
strange set, 401 
subspace, 48, 49 
time, 11 
under transformation, 89, 192 

Inversion symmetry, 193, 466 
Inverted pendulum, 568 
Invertible, 2, 3 
Irrational number, 231, 247, 511 
Irreducibility, 30 
Irregular, 

burst, 197, 201, 206 
interval, 296 
solutions, 291 

Isolated periodic solution, 148 

Jacobian, 36, 47, 98 
Joint probability, 498 
Jordan canonical form, 38 
Josephson junction, 299 
Jump, 197 

Karhunen-Loeve theorem, 486 
Kd-tree, 491 
Kicked double rotor, 582 
Koch snowflake, 559 
Krasovskii’s theorem, 28, 29, 33, 

34 

Lagrange stability, 27 
Laminar, 197, 201, 206 

flow, 296 
Landau’s scenario of 

turbulence, 315 
Laser, 221, 299, 580 
Leaka.ge, 503 
L’Hospital’s rule, 548 
Limit cycle, 

definition of, 148 
nonhyperbolic, lG5 
saddle, 165 
see Periodic solutions 

Limit point, 85 
see Saddle-node bifurcation 

Linear periodic motion, 465 
Linearization, 

about an equilibrium solution, 
36-39 
about a nonhyperbolic fixed point, 
45 
about a periodic soltuions, 
159-172 

Liouville theorem, 17 
Lipschitz, 44 
Lobe dynamics, 380 
Local , 

bifurcations of fixed points, 

bifurcations of periodic 
solutions, 187- 108 
center manifold, 98 
divergence, 526 
embedding dimension, 491 
Jacobian, 535 
Lyapunov exponent, 534 
manifold, 51 
map, 534 
pseudo-state space, 491 

70-83 
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section, 178 
stability, 37 

frequency, 315,318 
phase, 318 

129, 410 
chaos in, 278-284 
intermittency in, 304, 305 
Lyapunov exponent of, 561 
period-doubling in, 279, 280 

Locking, 243-248, 37 

Logistic map, 4, 64-66, 126, 128, 

Lorenz attractor, 482 
Lorenz equations, 3 1, 14 1 , 

399-402,412, 585-587 
data for, 482, 490 
intermittency in, 302, 303 

Lorenz mask, 413 
Lorenz sections, 240 
Loss of synchronism, 588 
Lunar orbital dynamics, 77 
Lyapunov, 

dimension, 535, 549 
function, 27-29, 45 
second method, 31 
stability, 20-23 
stability through , function, 

theorem, 27 
Lyapunov exponents, 281,295,525 

for autonomous systems, 529 
for Bernoulli map, 561 
calculation of, 529-538 
conditional, 587 
for dissipative systems, 532 
fixed points, 528 
global, 532 

27-29 

for limit cycle, 528 
local, 534 
for logistic map, 282, 561 
for Lorenz equations, 531 
for m-torus, 529 
numerical errors, 529 
for one-dimensional maps, 528 
p-dimensional, 528 
for Rossler equations, 530, 531 
spectrum, 527 
spurious or false, 536 
for tent map, 558, 561 
true, 535 

Lyapunov-S chmid t reduction , 108 
Lyapunov spectrum, 527 
Lyapunov stability analyses, 525 

Mackey-Glass equation, 500 
Magnetic field, 577 
Magnetoelas tic , 577 
Manifold, 

analytical construction of, 

center, 50, 97 
definition of, 8 
global, 51 
intersections, 363-390 
invariant , 47-61 , 98 
local, 51, 98 
of periodic solution, 172 
stable, 50 
unstable, 50 

bifurcation of solutions of, 

58-61 

Map, 2-6 
- 

for HBnon map, 285 121-128 
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chaotic solution of, 278-288 
cubic, 130 
differentiable, 3 
horseshoe, 286 
invertible, 2 
local, 534 
Lyapunov exponent for, 531 
noninvertible, 3 
orbit of, 3 
quadratic, 4, 130 
sine, 242 
standard, 242 
tent, 128, 558 
see Circle; HCnon; Logistic; 
One-to-one; Two-to-one 

Mapping, 2 
Marginally stable, 40 
Mask, Lorenz, 413 
Mathieu oscillator, 220 
MATLAB software, 503, 520, 522 
Matrix, 

banded structure, 447 
covariance, 488 
decomposition of, 533 
fundamental, 526 
Jacobian, 36 
monodromy, 160, 171, 526 
Oseledec, 533 
structure, 488 
trajectory, 487 

Mean, 464 
Mean-square value, 505 
Measurement , 

errors, 462 
multiple, 500-502 
single, 478-483 

Melnikov function. 373. 374 

Melnikov method, 366-374 
applied to Duffing oscillator, 
374-380 
for multidegree-of-freedom 
systems, 390 
applied to roll motion, 380-389 
subharmonic, 390 

Melnikov theory, 356-390 
Metamorphoses, 

basin boundary, 362 
Methanol, 

oxidation of, 299 
Method of averaging, 248 
Method of delays, 481 
Method of harmonic balance, 255, 

Method of least squares, 534 
Method of Lyapunov, 31 
Method of multiple scales, 83, 89, 

248, 
for periodic motions, 209-212, 

for quasiperiodic motions, 

applied to Rayleigh oscillator, 

as a reduction method, 

446 

217-219 

249-251 

26 1-263 

108-1 15 
Method of normal forms, 43, 44, 

Method of residues, 416 
Method of superposition, 434 
Minimal period, 171, 453 
Mixed intersections, 384, 387 
Mixed-mode oscillations, 318, 

215, 217 

329-331 
Mixed tangles, 384, 388 
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Mod, definition of, 234 
Mode locking, 243 

see also Locking 
Modulated , 

amplitude, 510 
amplitude- and phase-, 469, 
510 
chaotically, 507 
motion, 268 
periodically, 51 1 
phase, 510 

Modulation, 510 
equations, 89 
frequency, 5 1 1 

Monodromy matrix, 160, 170-172, 
453, 526 

Multiple scales, 83 
see Method of 

Multiplicative ergodic theorem, 
532 

Multiplier, see Floquet 
Multivariate state space, 478 
Mutual information, 497 

Natural parameter continuation, 

Neighbor, false nearest, 491-495 
Neimark bifurcation, 

Neimark-Sacker bifurcation 

Neutrally stable, 40, 46 
Newton-Raphson, 96, 426,427 
Neymark algorithm, 486 

425 

see Secondary Hopf bifurcation 

see Secondary Hopf bifurcation, 

Noise, 
contamination, 480 
dimension of, 486 
electronic, 506 
environmental, 4G2 
Gaussian, 553 
influence on false nearest 
neighbors, 493, 494 
influence on outcome of 
bifurcation, 69 
influence on period doubling, 
296 
influence on Ruelle-Takens 
scenario, 31 7 
influence on singular values, 
489 
instrumental, 462 

Noriau tonomous, 6 
Nonbifurcating, 131, 435 
Nonchaotic, strange, 295 
Nonhyperbolic, 

fixed point, 39, 63 
periodic solution, 165, 170 

Noninvertible map, 3, 283 
Noninteger dimension, 538 
Nonlinear damping, 52 
Nonlinear feedback, 567 
Nonlinear periodic motion, 465 
Nonlinear resonance, 473 
Nonlocal bifurcation, 121 
Nonperiodic data, 463 
Nonstable, 40 
Nonstationary, 464 
Nonstrarige at t ractor, 3 18 
Nontransversal intersection, 53, 

116 
Node, 39,40 Norm 
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Euclidean, 2 
L1,544 

Normal basis, 527 
Normal form, 81, lG5 

for Hopf bifurcation, 81 
for pitchfork bifurcation, 81 
for saddle-node bifurcation, 81 
for transcritical bifurcation, 81 

Euclidean, 429 
non-Euclidean, 429, 436 

Numerical errors, 462 
Numerical methods, 423-4G0 
Nyquist frequency, 552 

Normalization, 

Observable, 478 
OGY scheme, 572-580 
Oil-film journal bearing, 221 
On-off intermittency, 299, 471 
One-to-one map, 2 
Onto, 2 
Open-loop control, 564 
Optical sensor, 578 
Orbit, 6, 7, 55, 115 

half-, 55 
heteroclinic, 55 
homoclinic, 55 
homoclinic to a saddle, 
397-402 

convergence, 161 
divergence, 161, 526 
stability, 26 

Orbits homoclinic to a saddle, 

Orbits homoclinic to a saddle 

Ordinary-differential-equation 

Orientation-preserving, 175, 239 

Orthogonality phase condition, 452 
Orthonormalization, 488, 530 
Oscillators, coupled, 508, 524, 

Oscilloscope, 517 
Oseledec matrix, 533 
Oseledec’s theorem, 528 
Outabain, 580 
Outbreak, chaotic, 296 
Oxidation, 299 

397-402 

focus, 402-4 10 

predictor, 428 

Hknon map, 284 

555-557 

Parameterization, 432 
Parametric resonance, 88 
Parametrically excited, 88, 291, 

299, 300, 308-312, 414,418, 
577 

Path following, 425 
Pendulum, 5G, 138, 144, 22G, 418, 

homoclinic to a saddle focus, 
402-4 10 Perfect, 575 
of a map, 3 
quasiperiodic, 235 Period-doubling bifurcation, 127, 

568 

beam, 119 

structure, 115 200-204, 292, 293 
Orbital, route to chaos, 295, 296 
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sequence to chaos, 279-281 
subcritical, 143 

Period-five window, 345 
Period, minimal, 171, 453 
Period-six window, 280 
Period-three window, 340 
Periodic, 

attractor, 150 
data, 463 
point, 64 

analytical construction of, 

asymptotically stable, 165 
bifurcation of, 187-208 
calculation of, 445-455 
continuation of, 455-460 
definition of, 147-158 
hyperbolic, 164, lG5, 170 
isolated, 148 
nonhyperbolic, 170 
repellor, lG5 
stability of, 158-18G 

Periodic window, 280, 281 
Peroxidase, 324 
Phantom, 

see Ghost 
Phase, 

coherence, 553 
condition, 45, 452 
coupling, 552 
locked, 511 
locking, 243 
portrait, 13, 54 
random, 552, 553 
space, 6 

Periodic solutions, 22 

208-2 19 

Piecewise linear methods, 425 

Pitchfork bifurcation, 71, 125 
normal form of, 82 
structural stability of, 118 
subcritical or reverse, 73,74,94 
supercritical, 73, 74 

Pivoting, 431 
Plateaus, 246 
Plates, 221, 299 
Poincark Andronov-Hopf 

PoincarkBendixson theorem, 156, 

PoincarkLyapunov theorem, 44, 

Poincar6 map, 3, 148, 514 

bifurcation, 77 

29 1 

45 

for autonomous systems, 

method, 248, 253, 446, 455 
for nonautonomous systems, 

for periodic solutions, 172-186 
for quasiperiodic solutions, 233, 
253, 254, 317 
second-order, 240, 241 
section, 514 

18 1-1 86 

176-181 

Poincar6 sections, 173, 174, 
5 14-519 
for chaotic motions, 289, 515 
definition of, 173 
for experiments, 516 
global, 178 
higher-order, 519 
for a lightly damped system, 
515 
local, 178 
one-sided, 174 
for periodic motions, 514 
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for quasiperiodic motions, 237, local, 491 

679 

515 
two-sided, 174 

Poincard stability, 25, 26 
Pointwise dimension, 541-545 
Polar form of modulation 

equations, 89 
Pole placement method, 580 
Polyspectra, 551 

see Hisher-order spectra 
Portrait, phase, 13, 54 
Potential, 135 

single-well, 378 
three-well, 380 
two-well, 291, 292, 374 

Power series, 43 
Power spectrum, 194, 502, 504 
Power systems, 27, 56, 352, 563 
Predictor, 

-corrector, 425 
first-order, 430 
ordinary-differential- 
equation, 428 
tangent, 430 
zero-order, 430 

Preserve volume, 18 

Q machines, 221 
bifurcation diagram for, 337 
crises in, 336-348 

QR decomposition, 533 
Quadratic coupling, 552 
Quadratic map, 4, 130 
Quadratic maximum, 280 
Quadruple, 198 
Quantization error, 462 
Quantization level, 462 
Quasiperiodic, 205, 231, 469 

attractor, 208 
k-period, 231 
three-period, 255 

Quasiperiodic route to chaos, 
Landau scenario, 315 
Ruelle-Takens scenario, 

torus breakdown, 31 7-331 
torus doubling, 331-334 

Quasiperiodic solutions, 231-275 

315-31 7 

analytical construction of, 

definition of, 231, 232 
PoincarC map for, 233-241, 

Principal parametric resonance, 88 
Probability, 

density, 246,339, 340,497, 500 
joint, 498 

444 stability of, 254, 255 

248-254 

Probability-one homotopy methods, 305, 306 

Pseudo arclength continuation , 
for fixed points, 431-434 
for periodic solutions, 458-459 

three-period, 317 
two-period, 208, 235, 325 
see also Circle map 

Quasiperiodically forced, 271, Pseudo-phase space, 476 
Pseudo-state space, 478 295, 411 
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Rabbit, 580 
Radius of convergence, 427 
Random, 

data, 464 
dimension of, data, 486 
system, 463 

Rational number, 245-248 
Rayleigh-Benard convection, 

296-299 
Ruelle-Takens scenario, 3 16 
quasiperiodic motions in, 317 

Rayleigh oscillator, 261-270 
Reaction, chemical, 296 
Reconstructed space, 480 
Reconstruction of attractor, 482 
Reconstruction of space, 

Recurrence, 30 
Recurrent behavior, 572 
Reduction to normal form, 

see Embedding, theory 

by center manifold, 96-107 
by Lyapunov-Schmidt 
method, 108 
by method of multiple scales, 
108-115 

Redundancy, 497 
Reference points, 542 
Reflection symmetry, 466 
Reinjection, 301 

Relaminization, 298, 302 
Relaxation parameter, 426 
Repellor, 31, 151, 165, 170 
Residue theorem, 416, 417 
Resolution frequency, 506 
Resonance, 44 

irregular, 299 

nonlinear, 473 

primary, 271 

curve, 88 
equation, 84 
synchronized, 263 
system, 584 

Return map, 182, 413 
see also Poincard map 

Reverse interior crisis, 345 
Reverse pitchfork bifurcation, 

see Subcritical pitchfork 
bifurcation 

Response, 

Ribbon, 577 
RMS, 505 
Roll, 

angle, 139 
motion, 52, 351, 380 

Rossler equations, 32, 141 , 
289, 413 

Rossler funnel, 290, 291 
Rotating cylinders, 297 
Rotating machinery, 248 
Rotation number, 238, 239, 

271, 329 
of mixed-mode oscillations, 
330 

Rotor, kicked double, 582 
Routes to chaos, 

intermi ttency, 2913-3 14 
period-doubling, 295, 296 
see Crises; Homoclinic 
bifurcations; Quasiperiodic 

Routh-Hurwitz criterion, 80 
Ruelle-Takens-Newhouse theory 

Ruelle-Takens scenario, 315-317 
Runge-Kutta method, 428, 490 

315-317 
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Saddle, 
approximation to, 364 
cycle, 165, 170 
degenerate, point, 137 
point, 39, 40, 62 

Saddle focus, 402-407 
Saddle-node bifurcation, 71, 

72, 124 
normal form of, 82 
structural stability of, 117 

Safe bifurcation, 93 
Sampling, 

frequency, 504 
time, 462, 489 

Saturation of dimension, 486 
Saturation of system invariants, 

Scale invariant, 515 
Scaling region, 542 
Schwartz inequality, 552 
Screw-type attractor, 414 
Second-order, 

483-486 

correlation function, 550 
Poincar6 map, 240, 241 
spectra, 551 

Secondary Hopf bifurcation, 187, 
188, 205-208, 269, 332 

Sensitive dependence on initial 
conditions, 278 
in HCnon map, 285 
in logistic map, 282 
in parametrically excited 
system, 294 
in Rossler system, 289 

Separatrices, 55 
Sequence of, 

alternating periodic- 
chaotic, 331, 332 
L-sequence, 329 
period-doubling bifurcations, 203 

Sequential continuation, 
of fixed points, 425 
of periodic solutions, 456 

attracting, 15-20 
fractal, 539, 559, 5GO 
strange invariant, 401 

Shell, 221 
Shilnikov theory, 402-407 
Ship, 351 

dynamics, 52, 380 
motion, 52, 563 

449-454 

Set, 2 

Shooting method, 193, 446, 

in peroxidase-oxidase reaction, 
324 for nonautonomous, 454 

Section, ort(hogona1ity condition, 452 
Lorenz, 240 
Poincari, 178 Side, 
second-order, 240, 241 

for autonomous, 449-454 

Shoshitaishvili theorem, 42, 97 

band, 268, 510 
Self-excited oscillator, 263 lobes, 503 
Self-similar, 247, 285 
Semiconductor, 299 Signal-to-noise ratio, 502 
Semiflow, 14 Simple, point, 

Signal analyzer, 506 
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branch, 425, 436-438 
turning, 425, 436-438 

Simplical methods, 425 
Sine-Gordon equation, 419 
Sine map, 242 

Singular, 
see Circle map 

point, 12, 36 
value analysis, 486-491 

Singular-value decomposition, 

Sink, 39, G3 
Sluice, 301 
Smale-Birkhoff homoclinic 

Smale’s transformation, 301 
Snowflake, 559 
Softening-type response, 88 
Solvability condition, 114 
Source, 39, 63 
Space, 2, 8 
Spatio-temporal intermittency, 29G 
Spectra, higher-order, 550-557 
Spectral-balance method, 248, 

Spectral density, 

486-491 

theorem, 359 

251-253 

single-sided, 505 
two-sided, 504 

Spectrum, 502 
amplitude, 502 
auto, 504 
of chaos, 489 
of chaotically modulated 
motion, 507, 524 
I/f, 506 
of periodically modulated 

power, 502 
quasiperiodic, 231 , 512 
second-order, 551 
third-order, 551 
of three-period quasiperiodic 
attractor, 316 

Speed-control system, 134 
Spherical space, 8, 9 
Spinning particle, 140 
Spiral- type at trac tor, 4 14 
Stability, 

asymptotic, 23, 24 
of bifurcations, 116-1 19 
boundaries, 55 
bounded, 27 
concepts of, 20-29 
of equilibrium solutions, 
39-47 
exchange of, 205 
Lagrange, 27 
local, 37 
Lyapunov, 20-23 
through Lyapunov function, 

orbital, 26 
of periodic solutions, 158-186 
PoincarC, 25, 26 
of quasiperiodic solutions, 
232, 254 
region, 31, 45 
structural, 115-1 19 
of torus, 315, 316 
uniform, 22 

asymptotically, 23, 24, 26, 27 
boundedly, 27 

27-29 

Stable, 

motion, 477, 507, 523 focus, 39 
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limit cycle, 165 
locally, 37 
manifold, 50 
marginally, 40 
neutrally, 40, 46 
orbitally, 26 
subspace, 48 

Staircase, Devil’s, 247, 248, 

Standard approach, 442 
Standard map, 242 
State-control space, 68, 73 
State space, 6, 473 
State variables, 473 
Static bifurcation, 70-75 

329-33 1 

see Pitchfork; Saddle-node; 
Transcrit ical 

Stationary, 1, 11 
solution, 36 

Stationary point, 
see Equilibrium solutions 

Statistical averaging, 552 
Steady-state, 1, 36 

Step-length control, 425, 431, 434 
Stochastic, 515 
Strain gauge, 333, 476 
Strange attractor, 285, 290, 538 

see Fractal dimension 
Strange invariant set, 401 
Strange-nonchaotic a t  tractor, 295 
Stretching and folding, 282, 283, 

String, 334 
Stroboscopic, 333, 514 
Structural stability, 115-119 

see Equilibrium solutions 

285, 290 

of quasiperiodic motions, 255 

Structurally, 
different, 87, 116 
stable, 115 
unstable, 115 

Structure matrix, 488 
Subcritical bifurcation, 298 

leading to intermittency, 298 
Hopf, 298, 308 
period-doubling, 298, 305 
pitchfork, 298 

Subharmonic Melnikov analysis, 
292 

Submultiple, 176 
Subset operator, 2 
Subspace, 48 
Surface of section, 

Surface waves, 191 
Suspension trick, 102 
Swing equation, 56 
Switching, 

see Poincar6 ma.p; Sections 

branch, 435, 460 
from well-to-well, 356 

Symmetric solution, 90, 190 
Symmetry, 

-breaking bifurcation, 92, 94, 

inversion, 466 
reflection, 466 

Synchronism, 
loss of, 255, 268, 564 

Synchronization, 248, 255, 318, 
584 
of chaotic systems, 584-588 
of periodic motions, 255-269 
see also Locking, 

187-195, 414 

Synchronization, loss of, 588 
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Synchronized motions, 271 broken, 329 
Synchronous, 5 17 development, 236 
Synthesizer, 517 doubling, 331-334 

fractal, 329 
n-, 8, 241 

196, 301 
for quadratic map, 341 
see Saddlenode bifurcation 

Tangent plane, 9 
Tangle, 

mixed, 388 
see Heteroclinic; Homoclinic 

Targeting, 575, 583 
Taylor-Couette flow, 299 

Tent map, 128, 558, 561 

Theory of embedding, 47G 
Third-order, 

Ruelle-Takens scenario, 31 6 

Lyapunov exponent for, 558 

correlation function, 551 
spectra, 551 

domain, 465 
independent, 11 
invariant, 11 
lag, 497 
scale, 511 
series, 465 

Time delay, 481 
choosing, 495-500 

Tongues, Arnold, 244, 245, 272 
Topological embedding, 479 
Toroidal space, 8, 9 
Torus, 8, 235 

Time, 

breakdown, 317-331, 329 

stability of, 315, 31G Tangent bifurcation, 85, 122, 124, two-, 8, 236 
wrinkled, 325, 326 
see also Quasiperiodic solutions 

Tracing a curve or branch, 425 
Trajectory, 6 

Transcritical bifurcation, 71, 75, 
matrix, 487 

124, 187, 188, 204 
normal form of, 82 
structural stability of, 117, 118 

nonlinear, 43 

chaos, 339, 401 
life time, 340 
solution, 1 
state, 1 

Transition, 
hysteretic, 299 
intermittent, to chaos, 197 
matrix solution, 526 

lieteroclinic point, 362 
homoclinic point, 359 
intersection, 53, 116, 359 

condition, 76 
homotopy theorem, 444 

Transverse to the flow, 173 
Trapezoidal rule, 447 
Tricoherence, 554, 555 

Transformation, 2 

Transient , 

Trans versa1 , 

Transversality, 
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Trispectrum, 554, 555 
Turbulence, 315, 571 
Turbulent 

Vertical tangency, 87 
Voltage collapse, 564, 567 

boundary layer, 197, 299 
flow, 297 

Turbulent bursts, 69 
Turning point, 85, 196, 206, 

266, 296 
simple, 425, 436-438 
see Saddle-node bifurcations 

Two-point boundary-value 
problem, 446 

Two-to-one internal resonance, 
509 

Two-to-one map, 4, 283 
Two-period quasiperiodic, 233, 

469, 510 

Washout filters, 569 
Wave, 191 
Waveform, 469 

periodically modulated, 523 
Wavelets, 465, 513 
Weakly nonlinear motions, 510 
Wedge, 244 
Whitney’s theorem, 483 
Wiener-Khinchin relations, 505 
Winding, 

number, 238, 239 
time, 238, 239 

Window, 504 
Hamming, 504 
period-five, 281 

Uniqueness of solutions, 10 period-three, 281 
Univariate observation, 478 Wingrock, 139,140 
Universal constant, 280 Wrap-around effects, 520 
Unstable, 280, 421 

focus, 39 
limit cycle, 165, 170 
manifold, 50 
subspace, 48 

van der Pol, 
equation, 138 
oscillator, 220, 221, 230, 249, 
269, 270, 271, 291, 348, 352, 
411 

Vector field, 6 
Vehicle dynamics, 221 




