CHAPTER 2:

CONVEX SETS

2.1 Let $x \in \operatorname{conv}\left(S_{1} \cap S_{2}\right)$. Then there exists $\lambda \in[0,1]$ and $x_{1}, x_{2} \in S_{1} \cap S_{2}$ such that $x=\lambda x_{1}+(1-\lambda) x_{2}$. Since x_{1} and x_{2} are both in S_{1}, x must be in $\operatorname{conv}\left(S_{1}\right)$. Similarly, x must be in $\operatorname{conv}\left(S_{2}\right)$. Therefore, $x \in \operatorname{conv}\left(S_{1}\right) \cap$ $\operatorname{conv}\left(S_{2}\right)$. (Alternatively, since $S_{1} \subseteq \operatorname{conv}\left(S_{1}\right)$ and $S_{2} \subseteq \operatorname{conv}\left(S_{2}\right)$, we have $\quad S_{1} \cap S_{2} \subseteq \operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right) \quad$ or that $\operatorname{conv}\left[S_{1} \cap S_{2}\right] \subseteq$ $\left.\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right).\right)$

An example in which $\operatorname{conv}\left(S_{1} \cap S_{2}\right) \neq \operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right)$ is given below:

Here, $\operatorname{conv}\left(S_{1} \cap S_{2}\right)=\varnothing$, while $\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right)=S_{1}$ in this case.
2.2 Let S be of the form $S=\{x: A x \leq b\}$ in general, where the constraints might include bound restrictions. Since S is a polytope, it is bounded by definition. To show that it is convex, let y and z be any points in S, and let $x=\lambda y+(1-\lambda) z$, for $0 \leq \lambda \leq 1$. Then we have $A y \leq b$ and $A z \leq b$, which implies that

$$
A x=\lambda A y+(1-\lambda) A z \leq \lambda b+(1-\lambda) b=b,
$$

or that $x \in S$. Hence, S is convex.
Finally, to show that S is closed, consider any sequence $\left\{x_{n}\right\} \rightarrow x$ such that $x_{n} \in S, \forall n$. Then we have $A x_{n} \leq b, \forall n$, or by taking limits as $n \rightarrow \infty$, we get $A x \leq b$, i.e., $x \in S$ as well. Thus S is closed.
2.3 Consider the closed set S shown below along with $\operatorname{conv}(S)$, where $\operatorname{conv}(S)$ is not closed:

Now, suppose that $S \subseteq \mathbb{R}^{p}$ is closed. Toward this end, consider any sequence $\left\{x_{n}\right\} \rightarrow x$, where $x_{n} \in \operatorname{conv}(S), \forall n$. We must show that $x \in \operatorname{conv}(S)$. Since $x_{n} \in \operatorname{conv}(S)$, by definition (using Theorem 2.1.6), we have that we can write $x_{n}=\sum_{r=1}^{p+1} \lambda_{n r} x_{n}^{r}$, where $x_{n}^{r} \in S$ for $r=1, \ldots, p+1, \forall n$, and where $\sum_{r=1}^{p+1} \lambda_{n r}=1, \forall n$, with $\lambda_{n r} \geq 0, \forall r, n$. Since the $\lambda_{n r}$-values as well as the x_{n}^{r}-points belong to compact sets, there exists a subsequence K such that $\left\{\lambda_{n r}\right\}_{K} \rightarrow \lambda_{r}, \forall r=1, \ldots, p+1$, and $\left\{x_{n}^{r}\right\} \rightarrow x^{r}, \forall r=1, \ldots, p+1$. From above, we have taking limits as $n \rightarrow \infty, n \in K$, that

$$
x=\sum_{r=1}^{p+1} \lambda_{r} x^{r} \text {, with } \sum_{r=1}^{p+1} \lambda_{r}=1, \lambda_{r} \geq 0, \forall r=1, \ldots, p+1,
$$

where $x^{r} \in S, \forall r=1, \ldots, p+1$ since S is closed. Thus by definition, $x \in \operatorname{conv}(S)$ and so $\operatorname{conv}(S)$ is closed.
2.7 a. Let y^{1} and y^{2} belong to $A S$. Thus, $y^{1}=A x^{1}$ for some $x^{1} \in S$ and $y^{2}=A x^{2}$ for some $x^{2} \in S$. Consider $y=\lambda y^{1}+(1-\lambda) y^{2}$, for any $0 \leq \lambda \leq 1$. Then $y=A\left[\lambda x^{1}+(1-\lambda) x^{2}\right]$. Thus, letting $x \equiv \lambda x^{1}+(1-\lambda) x^{2}$, we have that $x \in S$ since S is convex and that $y=A x$. Thus $y \in A S$, and so, $A S$ is convex.
b. If $\alpha \equiv 0$, then $\alpha S \equiv\{0\}$, which is a convex set. Hence, suppose that $\alpha \neq 0$. Let αx^{1} and $\alpha x^{2} \in \alpha S$, where $x^{1} \in S$ and $x^{2} \in S$. Consider $\alpha x=\lambda \alpha x^{1}+(1-\lambda) \alpha x^{2}$ for any $0 \leq \lambda \leq 1$. Then, $\alpha x=\alpha\left[\lambda x^{1}+\right.$ $\left.(1-\lambda) x^{2}\right]$. Since $\alpha \neq 0$, we have that $x=\lambda x^{1}+(1-\lambda) x^{2}$, or that $x \in S$ since S is convex. Hence $\alpha x \in \alpha S$ for any $0 \leq \lambda \leq 1$, and thus αS is a convex set.
$2.8 \quad S_{1}+S_{2}=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq 1,2 \leq x_{2} \leq 3\right\}$.

$$
S_{1}-S_{2}=\left\{\left(x_{1}, x_{2}\right):-1 \leq x_{1} \leq 0,-2 \leq x_{2} \leq-1\right\} .
$$

2.12 Let $S=S_{1}+S_{2}$. Consider any $y, z \in S$, and any $\lambda \in(0,1)$ such that $y=y_{1}+y_{2}$ and $z=z_{1}+z_{2}$, with $\left\{y_{1}, z_{1}\right\} \subseteq S_{1}$ and $\left\{y_{2}, z_{2}\right\} \subseteq S_{2}$. Then $\lambda y+(1-\lambda) z=\lambda y_{1}+\lambda y_{2}+(1-\lambda) z_{1}+(1-\lambda) z_{2}$. Since both sets S_{1} and S_{2} are convex, we have $\lambda y_{i}+(1-\lambda) z_{i} \in S_{i}, i=1,2$. Therefore, $\lambda y+(1-\lambda) z$ is still a sum of a vector from S_{1} and a vector from S_{2}, and so it is in S. Thus S is a convex set.

Consider the following example, where S_{1} and S_{2} are closed, and convex.

Let $x_{n}=y_{n}+z_{n}$, for the sequences $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ shown in the figure, where $\left\{y_{n}\right\} \subseteq S_{1}$, and $\left\{z_{n}\right\} \subseteq S_{2}$. Then $\left\{x_{n}\right\} \rightarrow 0$ where $x_{n} \in S, \forall n$, but $0 \notin S$. Thus S is not closed.

Next, we show that if S_{1} is compact and S_{2} is closed, then S is closed. Consider a convergent sequence $\left\{x_{n}\right\}$ of points from S, and let x denote its limit. By definition, $x_{n}=y_{n}+z_{n}$, where for each $n, y_{n} \in S_{1}$ and $z_{n} \in S_{2}$. Since $\left\{y_{n}\right\}$ is a sequence of points from a compact set, it must be bounded, and hence it has a convergent subsequence. For notational simplicity and without loss of generality, assume that the sequence $\left\{y_{n}\right\}$ itself is convergent, and let y denote its limit. Hence, $y \in S_{1}$. This result taken together with the convergence of the sequence $\left\{x_{n}\right\}$ implies that $\left\{z_{n}\right\}$ is convergent to z, say. The limit, z, of $\left\{z_{n}\right\}$ must be in S_{2}, since S_{2} is a closed set. Thus, $x=y+z$, where $y \in S_{1}$ and $z \in S_{2}$, and therefore, $x \in S$. This completes the proof.
2.15 a. First, we show that $\operatorname{conv}(S) \subseteq \hat{S}$. For this purpose, let us begin by showing that S_{1} and S_{2} both belong to \hat{S}. Consider the case of S_{1} (the case of S_{2} is similar). If $x \in S_{1}$, then $A_{1} x \leq b_{1}$, and so, $x \in \hat{S}$ with $y=x, z=0, \lambda_{1}=1$, and $\lambda_{2}=0$. Thus $S_{1} \cup S_{2} \subseteq \hat{S}$, and since \hat{S} is convex, we have that $\operatorname{conv}\left[S_{1} \cup S_{2}\right] \subseteq \hat{S}$.

Next, we show that $\hat{S} \subseteq \operatorname{conv}(S)$. Let $x \in \hat{S}$. Then, there exist vectors y and z such that $x=y+z$, and $A_{1} y \leq b_{1} \lambda_{1}, A_{2} z \leq b_{2} \lambda_{2}$ for some $\left(\lambda_{1}, \lambda_{2}\right) \geq 0$ such that $\lambda_{1}+\lambda_{2}=1$. If $\lambda_{1}=0$ or $\lambda_{2}=0$, then we readily obtain $y=0$ or $z=0$, respectively (by the boundedness of S_{1} and S_{2}), with $x=z \in S_{2}$ or $x=y \in S_{1}$, respectively, which yields $x \in S$, and so $x \in \operatorname{conv}(S)$. If $\lambda_{1}>0$ and $\lambda_{2}>0$, then $x=\lambda_{1} y_{1}+\lambda_{2} z_{2}$, where $y_{1}=\frac{1}{\lambda_{1}} y$ and $z_{2}=\frac{1}{\lambda_{2}} z$. It can be easily verified in this case that $y_{1} \in S_{1}$ and $z_{2} \in S_{2}$, which implies that both vectors y_{1} and z_{2} are in S. Therefore, x is a convex combination of points in S, and so $x \in \operatorname{conv}(S)$. This completes the proof
b. Now, suppose that S_{1} and S_{2} are not necessarily bounded. As above, it follows that $\operatorname{conv}(S) \subseteq \hat{S}$, and since \hat{S} is closed, we have that $c \ell \operatorname{conv}(S) \subseteq \hat{S}$. To complete the proof, we need to show that $\hat{S} \subseteq \operatorname{clconv}(S)$. Let $x \in \hat{S}$, where $x=y+z$ with $A_{1} y \leq b_{1} \lambda_{1}$, $A_{2} z \leq b_{2} \lambda_{2}$, for some $\left(\lambda_{1}, \lambda_{2}\right) \geq 0$ such that $\lambda_{1}+\lambda_{2}=1$. If $\left(\lambda_{1}, \lambda_{2}\right)>0$, then as above we have that $x \in \operatorname{conv}(S)$, so that $x \in c \ell \operatorname{conv}(S)$. Thus suppose that $\lambda_{1}=0$ so that $\lambda_{2}=1$ (the case of $\lambda_{1}=1$ and $\lambda_{2}=0$ is similar). Hence, we have $A_{1} y \leq 0$ and $A_{2} z \leq b_{2}$, which implies that y is a recession direction of S_{1} and $z \in S_{2}$ (if S_{1} is bounded, then $y \equiv 0$ and then $x=z \in S_{2}$ yields $x \in \operatorname{c\ell conv}(S))$. Let $\bar{y} \in S_{1}$ and consider the sequence

$$
x_{n}=\lambda_{n}\left[\bar{y}+\frac{1}{\lambda_{n}} y\right]+\left(1-\lambda_{n}\right) z, \text { where } 0<\lambda_{n} \leq 1 \text { for all } n .
$$

Note that $\bar{y}+\frac{1}{\lambda_{n}} y \in S_{1}, \quad z \in S_{2}, \quad$ and \quad so $\quad x_{n} \in \operatorname{conv}(S), \quad \forall n$. Moreover, letting $\left\{\lambda_{n}\right\} \rightarrow 0^{+}$, we get that $\left\{x_{n}\right\} \rightarrow y+z \equiv x$, and so $x \in c \ell \operatorname{conv}(S)$ by definition. This completes the proof.
2.21 a. The extreme points of S are defined by the intersection of the two defining constraints, which yield upon solving for x_{1} and x_{2} in terms of x_{3} that
$x_{1}=-1 \pm \sqrt{5-2 x_{3}}, x_{2}=\frac{3-x_{3} \mp \sqrt{5-2 x_{3}}}{2}$, where $x_{3} \leq \frac{5}{2}$.
For characterizing the extreme directions of S, first note that for any fixed x_{3}, we have that S is bounded. Thus, any extreme direction must have $d_{3} \neq 0$. Moreover, the maximum value of x_{3} over S is readily verified to be bounded. Thus, we can set $d_{3}=-1$. Furthermore, if $\bar{x} \equiv(0,0,0)$ and $d=\left(d_{1}, d_{2},-1\right)$, then $\bar{x}+\lambda d \in S, \forall \lambda>0$, implies that

$$
\begin{equation*}
d_{1}+2 d_{2} \leq 1 \tag{1}
\end{equation*}
$$

and that $4 \lambda d_{2} \geq \lambda^{2} d_{1}^{2}$, i.e., $4 d_{2} \geq \lambda^{2} d_{1}^{2}, \forall \lambda>0$. Hence, if $d_{1} \neq 0$, then we will have $d_{2} \rightarrow \infty$, and so (for bounded direction components) we must have $d_{1}=0$ and $d_{2} \geq 0$. Thus together with (1), for extreme directions, we can take $d_{2}=0$ or $d_{2}=1 / 2$, yielding $(0,0,-1)$ and $\left(0, \frac{1}{2},-1\right)$ as the extreme directions of S.
b. Since S is a polyhedron in R^{3}, its extreme points are feasible solutions defined by the intersection of three linearly independent defining hyperplanes, of which one must be the equality restriction $x_{1}+x_{2}=1$. Of the six possible choices of selecting two from the remaining four defining constraints, we get extreme points defined by four such choices (easily verified), which yields $\left(0,1, \frac{3}{2}\right),\left(1,0, \frac{3}{2}\right)$, $(0,1,0)$, and $(1,0,0)$ as the four extreme points of S. The extreme directions of S are given by extreme points of $D \equiv\left\{\left(d_{1}, d_{2}, d_{3}\right)\right.$: $\left.d_{1}+d_{2}+2 d_{3} \leq 0, d_{1}+d_{2}=0, d_{1}+d_{2}+d_{3}=1, d \geq 0\right\}$, which is empty. Thus, there are no extreme directions of S (i.e., S is bounded).
c. From a plot of S, it is readily seen that the extreme points of S are given by $(0,0)$, plus all point on the circle boundary $x_{1}^{2}+x_{2}^{2}=2$ that lie between the points $(-\sqrt{2 / 5}, 2 \sqrt{2 / 5})$ and $(\sqrt{2 / 5}, 2 \sqrt{2 / 5})$, including the two end-points. Furthermore, since S is bounded, it has no extreme direction.
2.24 By plotting (or examining pairs of linearly independent active constraints), we have that the extreme points of S are given by $(0,0),(3,0)$, and $(0,2)$. Furthermore, the extreme directions of S are given by extreme points of $D=\left\{\left(d_{1}, d_{2}\right): \quad-d_{1}+2 d_{2} \leq 0 \quad d_{1}-3 d_{2} \leq 0, \quad d_{1}+d_{2}=1, \quad d \geq 0\right\}$, which are readily obtained as $\left(\frac{2}{3}, \frac{1}{3}\right)$ and $\left(\frac{3}{4}, \frac{1}{4}\right)$. Now, let

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]+\lambda\left[\begin{array}{l}
3 / 4 \\
1 / 4
\end{array}\right], \text { where }\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2}
\end{array}\right]=\mu\left[\begin{array}{l}
3 \\
0
\end{array}\right]+(1-\mu)\left[\begin{array}{l}
0 \\
2
\end{array}\right],
$$

for $(\mu, \lambda)>0$. Solving, we get $\mu=7 / 9$ and $\lambda=20 / 9$, which yields

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\frac{7}{9}\left[\begin{array}{l}
3 \\
0
\end{array}\right]+\frac{2}{9}\left[\begin{array}{l}
0 \\
2
\end{array}\right]+\frac{20}{9}\left[\begin{array}{l}
3 / 4 \\
1 / 4
\end{array}\right] .
$$

2.31 The following result from linear algebra is very useful in this proof:
(*) An $(m+1) \times(m+1)$ matrix G with a row of ones is invertible if and only if the remaining m rows of G are linearly independent. In other words, if $G=\left[\begin{array}{cc}B & a \\ e^{t} & 1\end{array}\right]$, where B is an $m \times m$ matrix, a is an $m \times 1$ vector, and e is an $m \times 1$ vector of ones, then G is invertible if and only if B is invertible. Moreover, if G is invertible, then $G^{-1}=\left[\begin{array}{ll}M & g \\ h^{t} & f\end{array}\right]$, where $M=B^{-1}\left(I+\frac{1}{\alpha} a e^{t} B^{-1}\right), g=-\frac{1}{\alpha} B^{-1} a$, $h^{t}=-\frac{1}{\alpha} e^{t} B^{-1}$, and $f=\frac{1}{\alpha}$, and where $\alpha=1-e^{t} B^{-1} a$.

By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D if and only if the matrix $\left[\begin{array}{c}A \\ e^{t}\end{array}\right]$ can be decomposed into $\left[B_{D} N_{D}\right]$ such that $\left[\begin{array}{l}d_{B} \\ d_{N}\end{array}\right]$, where $d_{N}=0$ and $d_{B}=B_{D}^{-1} b_{D} \geq 0$, where $b_{D}=\left[\begin{array}{l}\mathbf{0} \\ 1\end{array}\right]$. From Property (*) above, the matrix $\left[\begin{array}{c}A \\ e^{t}\end{array}\right]$ can be decomposed into $\left[B_{D} N_{D}\right]$, where B_{D} is a nonsingular matrix, if and only if A can be decomposed into [$\left.\begin{array}{ll}B & N\end{array}\right]$, where B is an $m \times m$ invertible matrix. Thus, the matrix B_{D} must
necessarily be of the form $\left[\begin{array}{cc}B & a_{j} \\ e^{t} & 1\end{array}\right]$, where B is an $m \times m$ invertible submatrix of A. By applying the above equation for the inverse of G, we obtain

$$
d_{B}=B_{D}^{-1} b_{D}=\left[\begin{array}{c}
-\frac{1}{\alpha} B^{-1} a_{j} \\
\frac{1}{\alpha}
\end{array}\right]=\frac{1}{\alpha}\left[\begin{array}{c}
-B^{-1} a_{j} \\
1
\end{array}\right]
$$

where $\alpha=1-e^{t} B^{-1} a_{j}$. Notice that $d_{B} \geq 0$ if and only if $\alpha>0$ and $B^{-1} a_{j} \leq 0$. This result, together with Theorem 2.6.6, leads to the conclusion that d is an extreme point of D if and only if d is an extreme direction of S.

Thus, for characterizing the extreme points of D, we can examine bases of $\left[\begin{array}{c}A \\ e^{t}\end{array}\right]$, which are limited by the number of ways we can select $(m+1)$ columns out of n, i.e.,

$$
\binom{n}{m+1}=\frac{n!}{(m+1)!(n-m-1)!}
$$

which is fewer by a factor of $\frac{1}{(m+1)}$ than that of the Corollary to Theorem 2.6.6.
2.42 Problem P : Minimize $\left\{c^{t} x: A x=b, x \geq 0\right\}$.
(Homogeneous) Problem D : Maximize $\left\{b^{t} y: A^{t} y \leq 0\right\}$.
Problem P has no feasible solution if and only if the system $A x=b$, $x \geq 0$, is inconsistent. That is, by Farkas' Theorem (Theorem 2.4.5), this occurs if and only if the system $A^{t} y \leq 0, b^{t} y>0$ has a solution, i.e., if and only if the homogeneous version of the dual problem is unbounded.
2.45 Consider the following pair of primal and dual LPs, where e is a vector of ones in \mathbb{R}^{m} :
P: Max

$$
e^{t} p
$$

D: $\operatorname{Min} 0^{t} x$
subject to $\quad \begin{aligned} & A^{t} p=0 \\ & \\ & p \geq 0 .\end{aligned}$
$A x \geq e$
x unres.

Then, System 2 has a solution $\Leftrightarrow P$ is unbounded (take any feasible solution to System 2, multiply it by a scalar λ, and take $\lambda \rightarrow \infty) \Leftrightarrow D$
is infeasible (since P is homogeneous) $\Leftrightarrow \nexists$ a solution to $A x>0 \Leftrightarrow$ \nexists a solution to $A x<0$.
2.47 Consider the system $A^{t} y=c, y \geq 0$:

$$
\begin{array}{r}
2 y_{1}+2 y_{2}=-3 \\
y_{1}+2 y_{2}=1 \\
-3 y_{1}=-2 \\
\left(y_{1}, y_{2}\right) \geq 0
\end{array}
$$

The first equation is in conflict with $\left(y_{1}, y_{2}\right) \geq 0$. Therefore, this system has no solution. By Farkas' Theorem we then conclude that the system $A x \leq 0, c^{t} x>0$ has a solution.
$2.49(\Rightarrow)$ We show that if System 2 has a solution, then System 1 is inconsistent. Suppose that System 2 is consistent and let y_{0} be its solution. If System 1 has a solution, x_{0}, say, then we necessarily have $x_{0}^{t} A^{t} y_{0}=0$. However, since $x_{0}^{t} A^{t}=c^{t}$, this result leads to $c^{t} y_{0}=0$, thus contradicting $c^{t} y_{0}=1$. Therefore, System 1 must be inconsistent.
(\Leftarrow) In this part we show that if System 2 has no solution, then System 1 has one. Assume that System 2 has no solution, and let $S=\left\{\left(z_{1}, z_{0}\right)\right.$: $\left.z_{1}=-A^{t} y, z_{0}=c^{t} y, y \in \mathbb{R}^{m}\right\}$. Then S is a nonempty convex set, and $\left(z_{1}, z_{0}\right)=(0,1) \notin S$. Therefore, there exists a nonzero vector $\left(p_{1}, p_{0}\right)$ and a real number α such that $p_{1}^{t} z_{1}+p_{0} z_{0} \leq \alpha<p_{1}^{t} 0+p_{0}$ for any $\left(z_{1}, z_{0}\right) \in S$. By the definition of S, this implies that $-p_{1}^{t} A^{t} y+p_{0} c^{t} y \leq \alpha<p_{0}$ for any $y \in \mathbb{R}^{m}$. In particular, for $y=0$, we obtain $0 \leq \alpha<p_{0}$. Next, observe that since α is nonnegative and $\left(-p_{1}^{t} A^{t}+p_{0} c^{t}\right) y \leq \alpha$ for any $y \in \mathbb{R}^{m}$, then we necessarily have $-p_{1}^{t} A^{t}+p_{0} c^{t}=0$ (or else y can be readily selected to violate this inequality). We have thus shown that there exists a vector $\left(p_{1}, p_{0}\right)$ where $p_{0}>0$, such that $A p_{1}-p_{0} c=0$. By letting $x=\frac{1}{p_{0}} p_{1}$, we concluce that x solves the system $A x-c=0$. This shows that System 1 has a solution.
2.50 Consider the pair of primal and dual LPs below, where e is a vector of ones in \mathbb{R}^{p} :
P: Max
$\begin{array}{ll}\text { subject to } & A^{t} u+B^{t} v=0 \\ & u \geq 0, v \text { unres } .\end{array}$
$\begin{array}{lll}\text { D: } & \text { Min } & 0^{t} x \\ & \text { subject to } & A x \geq e \\ & B x=0 \\ & x \text { unres. }\end{array}$

Hence, System 2 has a solution $\Leftrightarrow P$ is unbounded (take any solution to System 2 and multiply it with a scalar λ and take $\lambda \rightarrow \infty) \Leftrightarrow D$ is infeasible (since P is homogeneous) \Leftrightarrow there does not exist a solution to $A x>0, B x=0 \Leftrightarrow$ System 1 has no solution.
2.51 Consider the following two systems for each $i \in\{1, \ldots, m\}$:

System I: $A x \geq 0$ with $A_{i} x>0$
System II: $A^{t} y=0, y \geq 0$, with $y_{i}>0$,
where A_{i} is the i th row of A. Accordingly, consider the following pair of primal and dual LPs:
P: Max $\quad e_{i}^{t} y$
subject to $A^{t} y=0$
$y \geq 0$
D: $\operatorname{Min} \quad 0^{t} x$
subject to $A x \geq e_{i}$ x unres,
where e_{i} is the i th unit vector. Then, we have that System II has a solution $\Leftrightarrow P$ is unbounded $\Leftrightarrow D$ is infeasible \Leftrightarrow System I has no solution. Thus, exactly one of the systems has a solution for each $i \in\{1, \ldots, m\}$. Let $I_{1}=\left\{i \in\{1, \ldots, m\}\right.$: System I has a solution; say $\left.x^{i}\right\}$, and let $I_{2}=\left\{i \in\{1, \ldots, m\}\right.$: System II has a solution; say, $\left.y^{i}\right\}$. Note that $I_{1} \cup I_{2}=\{1, \ldots, m\}$ with $I_{1} \cap I_{2}=\varnothing$. Accordingly, let $\bar{x}=\sum_{i \in I_{1}} x^{i}$ and $\bar{y}=\sum_{i \in I_{2}} y^{i}$, where $\bar{x} \equiv 0$ if $I_{1}=\varnothing$ and $\bar{y} \equiv 0$ if $I_{2}=\varnothing$. Then it is easily verified that \bar{x} and \bar{y} satisfy Systems 1 and 2, respectively, with $A \bar{x}+\bar{y}=\sum_{i \in I_{1}} A x^{i}+\sum_{i \in I_{2}} y^{i}>0$ since $A x^{i} \geq 0, \quad \forall i \in I_{1}$, and $y^{i} \geq 0$, $\forall i \in I_{2}$, and moreover, for each row i of this system, if $\forall i \in I_{1}$ then we have $A_{i} x^{i}>0$ and if $i \in I_{2}$ then we have $y^{i}>0$.
2.52 Let $f(x)=e^{-x_{1}}-x_{2}$. Then $S_{1}=\{x: f(x) \leq 0\}$. Moreover, the Hessian of f is given by $\left[\begin{array}{cc}e^{-x_{1}} & 0 \\ 0 & 0\end{array}\right]$, which is positive semidefinite, and so, f is a convex function. Thus, S is a convex set since it is a lower-level set of a convex function. Similarly, it is readily verified that S_{2} is a convex set. Furthermore, if $\bar{x} \in S_{1} \cap S_{2}$, then we have $-e^{-\bar{x}_{1}} \geq \bar{x}_{2} \geq e^{-\bar{x}_{1}}$ or $2 e^{-\bar{x}_{1}} \leq 0$, which is achieved only in the limit as $\bar{x}_{1} \rightarrow \infty$. Thus, $S_{1} \cap S_{2}=\varnothing$. A separating hyperplane is given by $x_{2}=0$, with $S_{1} \subseteq\left\{x: x_{2} \geq 0\right\}$ and $S_{2} \subseteq\left\{x: x_{2} \leq 0\right\}$, but there does not exist any strongly separately hyperplane (since from above, both S_{1} and S_{2} contain points having $x_{2} \rightarrow 0$).
2.53 Let $f(x)=x_{1}^{2}+x_{2}^{2}-4$. Let $X=\left\{\bar{x}: \bar{x}_{1}^{2}+\bar{x}_{2}^{2}=4\right\}$. Then, for any $\bar{x} \in X$, the first-order approximation to $f(x)$ is given by
$f_{F O}(x)=f(\bar{x})+(x-\bar{x})^{t} \nabla f(\bar{x})=(x-\bar{x})^{t}\left[\begin{array}{l}2 \bar{x}_{1} \\ 2 \bar{x}_{2}\end{array}\right]=\left(2 \bar{x}_{1}\right) x_{1}+\left(2 \bar{x}_{2}\right) x_{2}-8$.
Thus S is described by the intersection of infinite halfspaces as follows:

$$
\left(2 \bar{x}_{1}\right) x_{1}+\left(2 \bar{x}_{2}\right) x_{2} \leq 8, \forall \bar{x} \in X,
$$

which represents replacing the constraint defining S by its first-order approximation at all boundary points.
2.57 For the existence and uniqueness proof see, for example, Linear Algebra and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc., 1988).

If $L=\left\{\left(x_{1}, x_{2}, x_{3}\right): 2 x_{1}+x_{2}-x_{3}=0\right\}$, then L is the nullspace of $A=\left[\begin{array}{lll}2 & 1 & -1\end{array}\right]$, and its orthogonal complement is given by $\lambda\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$ for any $\lambda \in \mathbb{R}$. Therefore, \mathbf{x}_{1} and \mathbf{x}_{2} are orthogonal projections of \mathbf{x} onto L, and L^{\perp}, respectively. If $\mathbf{x}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, then $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\mathbf{x}_{1}+\mathbf{x}_{2}$ where $\mathbf{x}_{2}=\lambda\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$.

Thus, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]^{t}\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\lambda\left\|\begin{array}{c}2 \\ 1 \\ -1\end{array}\right\|^{2} \Rightarrow \lambda=\frac{1}{6} . \quad$ Hence, $\quad \mathbf{x}_{1}=\frac{1}{6}\left(\begin{array}{lll}4 & 11 & 19\end{array}\right) \quad$ and $\mathbf{x}_{2}=\frac{1}{6}\left(\begin{array}{lll}2 & 1 & -1\end{array}\right)$.

CHAPTER 3:

CONVEX FUNCTIONS AND GENERALIZATIONS

3.1 a. $\left[\begin{array}{rr}4 & -4 \\ -4 & 0\end{array}\right]$ is indefinite. Therefore, $f(x)$ is neither convex nor concave.
b. $\quad H(x)=e^{-\left(x_{1}+3 x_{2}\right)}\left[\begin{array}{rr}x_{1}-2 & 3\left(x_{1}-1\right) \\ 3\left(x_{1}-1\right) & 9 x_{1}\end{array}\right]$. Definiteness of the matrix $H(x)$ depends on x_{1}. Therefore, $f(x)$ is neither convex nor concave (over R^{2}).
c. $H=\left[\begin{array}{rr}-2 & 4 \\ 4 & -6\end{array}\right]$ is indefinite since the determinant is negative.

Therefore, $f(x)$ is neither convex nor concave.
d. $H=\left[\begin{array}{rrr}4 & 2 & -5 \\ 2 & 2 & 0 \\ -5 & 0 & 4\end{array}\right]$ is indefinite. Therefore, $f(x)$ is neither convex nor concave.
e. $\quad H=\left[\begin{array}{rrr}-4 & 8 & 3 \\ 8 & -6 & 4 \\ 3 & 4 & -4\end{array}\right]$ is indefinite. Therefore, $f(x)$ is neither convex nor concave.
$3.2 f^{\prime \prime}(x)=a b x^{b-2} e^{-a x^{b}}\left[a b x^{b}-(b-1)\right]$. Hence, if $b=1$, then f is convex over $\{x: x>0\}$. If $b>1$, then f is convex whenever $a b x^{b} \geq(b-1)$, i.e., $x \geq\left[\frac{(b-1)}{a b}\right]^{1 / b}$.
3.3 $f(x)=10-3\left(x_{2}-x_{1}^{2}\right)^{2}$, and its Hessian matrix is $H(x)=6\left[\begin{array}{rr}-6 x_{1}^{2}+2 x_{2} & 2 x_{1} \\ 2 x_{1} & -1\end{array}\right]$. Thus, f is not convex anywhere and for f to be concave, we need $-6 x_{1}^{2}+2 x_{2} \leq 0$ and $6 x_{1}^{2}-2 x_{2}-4 x_{1}^{2} \geq 0$, i.e., $3 x_{1}^{2} \geq x_{2}$ and $x_{1}^{2} \geq x_{2}$, i.e., $x_{1}^{2} \geq x_{2}$. Hence, if $S=\left\{\left(x_{1}, x_{2}\right)\right.$: $\left.-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1\right\}$, then $f(x)$ is neither convex nor concave on S.

If S is a convex set such that $S \subseteq\left\{\left(x_{1}, x_{2}\right): x_{1}^{2} \geq x_{2}\right\}$, then $H(x)$ is negative semidefinite for all $x \in S$. Therefore, $f(x)$ is concave on S.
$3.4 f(x)=x^{2}\left(x^{2}-1\right), \quad f^{\prime}(x)=4 x^{3}-2 x$, and $\quad f^{\prime \prime}(x)=12 x^{2}-2 \geq 0 \quad$ if $x^{2} \geq 1 / 6$. Thus f is convex over $S_{1}=\{x: x \geq 1 / \sqrt{6}\}$ and over $S_{2}=\{x: x \leq-1 / \sqrt{6}\}$. Moreover, since $f^{\prime \prime}(x)>0$ whenever $x>1 / \sqrt{6}$ or $x<-1 / \sqrt{6}$, and thus f lies strictly above the tangent plane for all $x \in S_{1}$ as well as for all $x \in S_{2}, f$ is strictly convex over S_{1} and over S_{2}. For all the remaining values for $x, f(x)$ is strictly concave.
3.9 Consider any $x_{1}, x_{2} \in R^{n}$, and let $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$ for any $0 \leq \lambda \leq 1$. Then
$f\left(x_{\lambda}\right)=\max \left\{f_{1}\left(x_{\lambda}\right), \ldots, f_{k}\left(x_{\lambda}\right)\right\}=f_{r}\left(x_{\lambda}\right) \quad$ for \quad some $\quad r \in\{1, \ldots, k\}$, whence $f_{r}\left(x_{\lambda}\right) \leq \lambda f_{r}\left(x_{1}\right)+(1-\lambda) f_{r}\left(x_{2}\right)$ by the convexity of f_{r}, i.e., $f\left(x_{\lambda}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad$ since $\quad f\left(x_{1}\right) \geq f_{r}\left(x_{1}\right) \quad$ and $f\left(x_{2}\right) \geq f_{r}\left(x_{2}\right)$. Thus f is convex.

If f_{1}, \ldots, f_{k} are concave functions, then $-f_{1}, \ldots,-f_{k}$ are convex functions $\Rightarrow \max \left\{-f_{1}(x), \ldots,-f_{k}(x)\right\} \quad$ is convex i.e., $-\min \left\{f_{1}(x), \ldots, f_{k}(x)\right\} \quad$ is convex, i.e., $f(x) \equiv \min \left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is concave.
3.10 Let $x_{1}, x_{2} \in \mathbb{R}^{n}, \lambda \in[0,1]$, and let $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$. To establish the convexity of $f(\cdot)$ we need to show that $f\left(x_{\lambda}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$. Notice that

$$
\begin{aligned}
f\left(x_{\lambda}\right) & =g\left[h\left(x_{\lambda}\right)\right] \leq g\left[\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)\right] \\
& \leq \lambda g\left[h\left(x_{1}\right)\right]+(1-\lambda) g\left[h\left(x_{2}\right)\right] \\
& =\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) .
\end{aligned}
$$

In this derivation, the first inequality follows since h is convex and g is nondecreasing, and the second inequality follows from the convexity of g. This completes the proof.
3.11 Let $x_{1}, x_{2} \in S, \lambda \in[0,1]$, and let $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$. To establish the convexity of f over S we need to show that $f\left(x_{\lambda}\right)-\lambda f\left(x_{1}\right)-(1-\lambda) f\left(x_{2}\right) \leq 0$. For notational convenience, let
$D(x)=g\left(x_{1}\right) g\left(x_{2}\right)-\lambda g\left(x_{\lambda}\right) g\left(x_{2}\right)-(1-\lambda) g\left(x_{\lambda}\right) g\left(x_{2}\right)$. Under the assumption that $g(x)>0$ for all $x \in S$, our task reduces to demonstrating that $D(x) \leq 0$ for any $x_{1}, x_{2} \in S$, and any $\lambda \in[0,1]$. By the concavity of $g(x)$ we have

$$
\begin{array}{r}
D(x) \leq g\left(x_{1}\right) g\left(x_{2}\right)-\lambda\left[\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)\right] g\left(x_{2}\right)- \\
(1-\lambda)\left[\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)\right] g\left(x_{1}\right) .
\end{array}
$$

After a rearrangement of terms on the right-hand side of this inequality we obtain

$$
\begin{aligned}
D(x) & \leq-\lambda(1-\lambda)\left[g\left(x_{1}\right)^{2}+g\left(x_{2}\right)^{2}\right]+2 \lambda(1-\lambda) g\left(x_{1}\right) g\left(x_{2}\right) \\
& =-\lambda(1-\lambda)\left[g\left(x_{1}\right)^{2}+g\left(x_{2}\right)^{2}\right]+2 \lambda(1-\lambda) g\left(x_{1}\right) g\left(x_{2}\right) \\
& =-\lambda(1-\lambda)\left[g\left(x_{1}\right)^{2}+g\left(x_{2}\right)^{2}-2 g\left(x_{1}\right) g\left(x_{2}\right)\right] \\
& =-\lambda(1-\lambda)\left[g\left(x_{1}\right)-g\left(x_{2}\right)\right]^{2} .
\end{aligned}
$$

Therefore, $D(x) \leq 0$ for any $x_{1}, x_{2} \in S$, and any $\lambda \in[0,1]$, and thus $f(x)$ is a convex function.

Symmetrically, if g is convex, $S=\{x: g(x)<0\}$, then from above, $\frac{1}{-g}$ is convex over S, and so $f(x)=1 / g(x)$ is concave over S.
3.16 Let x_{1}, x_{2} be any two vectors in R^{n}, and let $\lambda \in[0,1]$. Then, by the definition of $h(\cdot)$, we obtain $h\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=\lambda\left(A x_{1}+b\right)+$ $(1-\lambda)\left(A x_{2}+b\right)=\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)$. Therefore, $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=g\left[h\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\right]=g\left[\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)\right]$ $\leq \lambda g\left[h\left(x_{1}\right)\right]+(1-\lambda) g\left[h\left(x_{2}\right)\right]=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$,
where the above inequality follows from the convexity of g. Hence, $f(x)$ is convex.

By multivariate calculus, we obtain $\nabla f(x)=A^{t} \nabla g[h(x)]$, and $H_{f}(x)=$ $A^{t} H_{g}[h(x)] A$.
3.18 Assume that $f(x)$ is convex. Consider any $x, y \in R^{n}$, and let $\lambda \in(0,1)$. Then

$$
f(x+y)=f\left[\lambda\left(\frac{x}{\lambda}\right)+(1-\lambda)\left(\frac{y}{1-\lambda}\right)\right] \leq \lambda f\left(\frac{x}{\lambda}\right)+(1-\lambda) f\left(\frac{y}{1-\lambda}\right)
$$

$$
=f(x)+f(y)
$$

and so f is subadditive.
Conversely, let f be a subadditive gauge function. Let $x, y \in R^{n}$ and $\lambda \in[0,1]$. Then
$f(\lambda x+(1-\lambda) y) \leq f(\lambda x)+f[(1-\lambda) y]=\lambda f(x)+(1-\lambda) f(y)$, and so f is convex.
3.21 See the answer to Exercise 6.4.
3.22 a. See the answer to Exercise 6.4.
b. If $y_{1} \leq y_{2}$, then $\left\{x: g(x) \leq y_{1}, x \in S\right\} \subseteq\left\{x: g(x) \leq y_{2}, x \in S\right\}$, and so $\phi\left(y_{1}\right) \geq \phi\left(y_{2}\right)$.
3.26 First assume that $\bar{x}=0$. Note that then $f(\bar{x})=0$ and $\xi^{t} \bar{x}=0$ for any vector ξ in R^{n}.
(\Rightarrow) If ξ is a subgradient of $f(x)=\|x\|$ at $x=0$, then by definition we have $\|x\| \geq \xi^{t} x$ for all $x \in R^{n}$. Thus in particular for $x=\xi$, we obtain $\|\xi\| \geq\|\xi\|^{2}$, which yields $\|\xi\| \leq 1$.
(\Leftarrow) Suppose that $\|\xi\| \leq 1$. By the Schwarz inequality, we then obtain $\xi^{t} x \leq\|\xi\|\|x\| \leq\|x\|$, and so ξ is a subgradient of $f(x)=\|x\|$ at $x=0$.
This completes the proof for the case when $\bar{x}=0$. Now, consider $\bar{x} \neq 0$. (\Rightarrow) Suppose that ξ is a subgradient of $f(x)=\|x\|$ at \bar{x}. Then by definition, we have

$$
\begin{equation*}
\|x\|-\|\bar{x}\| \geq \xi^{t}(x-\bar{x}) \text { for all } x \in R^{n} \tag{1}
\end{equation*}
$$

In particular, the above inequality holds for $x=0$, for $x=\lambda \bar{x}$, where $\lambda>0$, and for $x=\xi$. If $x=0$, then $\xi^{t} \bar{x} \geq\|\bar{x}\|$. Furthermore, by employing the Schwarz inequality we obtain

$$
\begin{equation*}
\|\bar{x}\| \leq \xi^{t} \bar{x} \leq\|\xi\|\|\bar{x}\| . \tag{2}
\end{equation*}
$$

If $x=\lambda \bar{x}, \quad \lambda>0$, then $\|x\|=\lambda\|\bar{x}\|$, and Equation (1) yields $(\lambda-1)\|\bar{x}\| \geq(\lambda-1) \xi^{t} \bar{x}$. If $\lambda>1$, then $\|\bar{x}\| \geq \xi^{t} \bar{x}$, and if $\lambda<1$, then
$\|\bar{x}\| \leq \xi^{t} \bar{x}$. Therefore, in either case, if ξ is a subgradient at \bar{x}, then it must satisfy the equation.

$$
\begin{equation*}
\xi^{t} \bar{x}=\|\bar{x}\| . \tag{3}
\end{equation*}
$$

Finally, if $x=\xi$, then Equation (1) results in $\|\xi\|-\|\bar{x}\| \geq \xi^{t} \xi-\xi^{t} \bar{x}$. However, by (2), we have $\xi^{t} \bar{x}=\|\bar{x}\|$. Therefore, $\|\xi\|(1-\|\xi\|) \geq 0$. This yields

$$
\begin{equation*}
1-\|\xi\| \geq 0 \tag{4}
\end{equation*}
$$

Combining (2) - (4), we conclude that if ξ is a subgradient of $f(x)=\|x\|$ at $\bar{x} \neq 0$, then $\xi^{t} \bar{x}=\|\bar{x}\|$ and $\|\xi\|=1$.
(\Leftarrow) Consider a vector $\xi \in R^{n}$ such that $\|\xi\|=1$ and $\xi^{t} \bar{x}=\|\bar{x}\|$, where $\bar{x} \neq 0$. Then for any x, we have $f(x)-f(\bar{x})-\xi^{t}(x-\bar{x})=\|x\|-\|\bar{x}\|-$ $\xi^{t}(x-\bar{x})=\|x\|-\xi^{t} x \geq\|x\|(1-\|\xi\|)=0$, where we have used the Schwarz inequality $\left(\xi^{t} x \leq\|\xi\|\|x\|\right)$ to derive the last inequality. Thus ξ is a subgradient of $f(x)=\|x\|$ at $\bar{x} \neq 0$. This completes the proof. In order to derive the gradient of $f(x)$ at $\bar{x} \neq 0$, notice that $\|\xi\|=1$ and $\xi^{t} \bar{x}=\|\bar{x}\|$ if and only if $\xi=\frac{1}{\|\bar{x}\|} \bar{x}$. Thus $\nabla f(\bar{x})=\frac{1}{\|\bar{x}\|} \bar{x}$.
3.27 Since f_{1} and f_{2} are convex and differentiable, we have
$f_{1}(x) \geq f_{1}(\bar{x})+(x-\bar{x})^{t} \nabla f_{1}(\bar{x}), \quad \forall x$.
$f_{2}(x) \geq f_{2}(\bar{x})+(x-\bar{x})^{t} \nabla f_{2}(\bar{x}), \quad \forall x$.
Hence, $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$ and $f(\bar{x})=f_{1}(\bar{x})=f_{2}(\bar{x})$ give

$$
\begin{array}{ll}
f(x) \geq f(\bar{x})+(x-\bar{x})^{t} \nabla f_{1}(\bar{x}), & \forall x \\
f(x) \geq f(\bar{x})+(x-\bar{x})^{t} \nabla f_{2}(\bar{x}), & \forall x \tag{2}
\end{array}
$$

Multiplying (1) and (2) by λ and $(1-\lambda)$, respectively, where $0 \leq \lambda \leq 1$, yields upon summing:

$$
f(x) \geq f(\bar{x})+(x-\bar{x})^{t}\left[\lambda \nabla f_{1}(\bar{x})+(1-\lambda) \nabla f_{2}(\bar{x})\right], \quad \forall x,
$$

$\Rightarrow \quad \xi=\lambda \nabla f_{1}(\bar{x})+(1-\lambda) \nabla f_{2}(\bar{x}), 0 \leq \lambda \leq 1$, is a subgradient of f at \bar{x}.
(\Rightarrow) Let ξ be a subgradient of f at \bar{x}. Then, we have,

$$
\begin{equation*}
f(x) \geq f(\bar{x})+(x-\bar{x})^{t} \xi, \quad \forall x \tag{3}
\end{equation*}
$$

But $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}=$

$$
\begin{align*}
\max \{ & f_{1}(\bar{x})+(x-\bar{x})^{t} \nabla f_{1}(\bar{x})+\|x-\bar{x}\| 0_{1}(x \rightarrow \bar{x}), \\
& \left.f_{2}(\bar{x})+(x-\bar{x})^{t} \nabla f_{2}(\bar{x})+\|x-\bar{x}\| 0_{2}(x \rightarrow \bar{x})\right\}, \tag{4}
\end{align*}
$$

where $0_{1}(x \rightarrow \bar{x})$ and $0_{2}(x \rightarrow \bar{x})$ are functions that approach zero as $x \rightarrow \bar{x}$. Since $f_{1}(\bar{x})=f_{2}(\bar{x})=f(\bar{x})$, putting (3) and (4) together yields

$$
\begin{align*}
& \max \left\{(x-\bar{x})^{t}\left[\nabla f_{1}(\bar{x})-\xi\right]+\|x-\bar{x}\| 0_{1}(x \rightarrow \bar{x}),\right. \\
& \left.\quad(x-\bar{x})^{t}\left[\nabla f_{2}(\bar{x})-\xi\right]+\|x-\bar{x}\| 0_{2}(x \rightarrow \bar{x})\right\} \geq 0, \quad \forall x . \tag{5}
\end{align*}
$$

Now, on the contrary, suppose that $\xi \notin \operatorname{conv}\left\{\nabla f_{1}(\bar{x}), \nabla f_{2}(\bar{x})\right\}$. Then, there exists a strictly separating hyperplane $\alpha x=\beta$ such that $\|\alpha\|=1$ and $\alpha^{t} \xi>\beta$ and $\left\{\alpha^{t} \nabla f_{1}(\bar{x})<\beta, \alpha^{t} \nabla f_{2}(\bar{x})<\beta\right\}$, i.e.,

$$
\begin{equation*}
\alpha^{t}\left[\xi-\nabla f_{1}(\bar{x})\right]>0 \text { and } \alpha^{t}\left[\xi-\nabla f_{2}(\bar{x})\right]>0 . \tag{6}
\end{equation*}
$$

Letting $(x-\bar{x})=\varepsilon \alpha$ in (5), with $\varepsilon \rightarrow 0^{+}$, we get upon dividing with $\varepsilon>0$:

$$
\begin{align*}
& \max \left\{\alpha^{t}\left[\nabla f_{1}(\bar{x})-\xi\right]+0_{1}(\varepsilon \rightarrow 0),\right. \\
& \left.\qquad \alpha^{t}\left[\nabla f_{2}(\bar{x})-\xi\right]+0_{2}(\varepsilon \rightarrow 0)\right\} \geq 0, \forall \varepsilon>0 . \tag{7}
\end{align*}
$$

But the first terms in both maxands in (7) are negative by (6), while the second terms $\rightarrow 0$. Hence we get a contradiction. Thus $\xi \in \operatorname{conv}\left\{\nabla f_{1}(\bar{x})\right.$, $\left.\nabla f_{2}(\bar{x})\right\}$, i.e., it is of the given form.

Similarly, if $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$, where f_{1}, \ldots, f_{m} are differentiable convex functions and \bar{x} is such that $f(\bar{x})=f_{i}(\bar{x})$, $\forall i \in I \subseteq\{1, \ldots, m\}$, then ξ is a subgradient of f at $\bar{x} \Leftrightarrow \xi \in \operatorname{conv}\left\{\nabla f_{i}(\bar{x}), i \in I\right\}$. A likewise result holds for the minimum of differentiable concave functions.
3.28 a. See Theorem 6.3.1 and its proof. (Alternatively, since θ is the minimum of several affine functions, one for each extreme point of X, we have that θ is a piecewise linear and concave.)
b. See Theorem 6.3.7. In particular, for a given vector \bar{u}, let $X(\bar{u})=\left\{x_{1}, \ldots, x_{k}\right\}$ denote the set of all extreme points of the set X that are optimal solutions for the problem to minimize $\left\{c^{t} x+\bar{u}^{t}(A x-b): x \in X\right\}$. Then $\xi(\bar{u})$ is a subgradient of $\theta(u)$ at \bar{u} if and only if $\xi(\bar{u})$ is in the convex hull of $A x_{1}-b, \ldots, A x_{k}-b$, where $x_{i} \in X(\bar{u})$ for $i=1, \ldots, k$. That is, $\xi(\bar{u})$ is a subgradient of $\theta(u)$ at \bar{u} if and only if $\xi(\bar{u})=A \sum_{i=1}^{k} \lambda_{i} x_{i}-b$ for some nonnegative $\lambda_{1}, \ldots, \lambda_{k}$, such that $\sum_{i=1}^{k} \lambda_{i}=1$.
3.31 Let $\quad \mathbf{P}_{1}: \min \{f(x): x \in S\} \quad$ and $\quad \mathbf{P}_{2}: \min \left\{f_{s}(x): x \in S\right\}$, and let $S_{1}=\left\{x^{*} \in S: f\left(x^{*}\right) \leq f(x), \forall x \in S\right\} \quad$ and $\quad S_{2}=\left\{x^{*} \in S: f_{s}\left(x^{*}\right) \leq\right.$ $\left.f_{s}(x), \forall x \in S\right\}$. Consider any $x^{*} \in S_{1}$. Hence, x^{*} solves Problem P_{1}. Define $h(x)=f\left(x^{*}\right), \forall x \in S$. Thus, the constant function h is a convex underestimating function for f over S, and so by the definition of f_{s}, we have that

$$
\begin{equation*}
f_{s}(x) \geq h(x)=f\left(x^{*}\right), \forall x \in S \tag{1}
\end{equation*}
$$

But $f_{s}\left(x^{*}\right) \leq f\left(x^{*}\right)$ since $f_{s}(x) \leq f(x), \forall x \in S$. This, together with (1), thus yields $f_{s}\left(x^{*}\right)=f\left(x^{*}\right)$ and that x^{*} solves Problem P_{2} (since (1) asserts that $f\left(x^{*}\right)$ is a lower bound on Problem P_{2}). Therefore, $x^{*} \in S_{2}$. Thus, we have shown that the optimal values of Problems P_{1} and P_{2} match, and that $S_{1} \subseteq S_{2}$.
$3.37 \nabla f(x)=\left[\begin{array}{cc}4 x_{1} e^{2 x_{1}^{2}-x_{2}^{2}} & -3 \\ -2 x_{2} e^{2 x_{1}^{2}-x_{2}^{2}} & +5\end{array}\right], \nabla f\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}4 e-3 \\ -2 e+5\end{array}\right]$
$H(x)=2 e^{2 x_{1}^{2}-x_{2}^{2}}\left[\begin{array}{cc}8 x_{1}^{2}+2 & -4 x_{1} x_{2} \\ -4 x_{1} x_{2} & 2 x_{2}^{2}-1\end{array}\right], H\left[\begin{array}{l}1 \\ 1\end{array}\right]=2 e\left[\begin{array}{cc}10 & -4 \\ -4 & 1\end{array}\right]$,
with $f\left[\begin{array}{l}1 \\ 1\end{array}\right]=e+2$.
Thus, the linear (first-order) approximation of f at $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is given by $f_{1}(x) \equiv(e+2)+\left(x_{1}-1\right)(4 e-3)+\left(x_{2}-1\right)(-2 e+5)$,
and the second-order approximation of f at $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is given by

$$
\begin{array}{r}
f_{2}(x) \equiv(e+2)+\left(x_{1}-1\right)(4 e-3)+\left(x_{2}-1\right)(-2 e+5)+ \\
e\left[10\left(x_{1}-1\right)^{2}-8\left(x_{1}-1\right)\left(x_{2}-1\right)+\left(x_{2}-1\right)^{2}\right] .
\end{array}
$$

f_{1} is both convex and concave (since it is affine). The Hessian of f_{2} is given by $H\left[\begin{array}{l}1 \\ 1\end{array}\right]$, which is indefinite, and so f_{2} is neither convex nor concave.
3.39 The function $f(x)=x^{t} A x$ can be represented in a more convenient form as $f(x)=\frac{1}{2} x^{t}\left(A+A^{t}\right) x$, where $\left(A+A^{t}\right)$ is symmetric. Hence, the Hessian matrix of $f(x)$ is $H=A+A^{t}$. By the superdiagonalization procedure, we can readily verify that $H=\left[\begin{array}{ccc}4 & 3 & 4 \\ 3 & 6 & 3 \\ 4 & 3 & 2 \theta\end{array}\right] . H$ is positive semidefinite if and only if $\theta \geq 2$, and is positive definite for $\theta>2$. Therefore, if $\theta>2$, then $f(x)$ is strictly convex. To examine the case when $\theta=2$, consider the following three points: $x_{1}=(1,0,0), x_{2}=(0,0$, 1), and $\bar{x}=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}$. As a result of direct substitution, we obtain $f\left(x_{1}\right)=f\left(x_{2}\right)=2$, and $f(\bar{x})=2$. This shows that $f(x)$ is not strictly convex (although it is still convex) when $\theta=2$.
$3.40 f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2}$ and $f^{\prime \prime}(x)=6 x \geq 0, \forall x \in S$. Hence f is convex on S. Moreover, $f^{\prime \prime}(x)>0, \forall x \in \operatorname{int}(S)$, and so f is strictly convex on $\operatorname{int}(S)$. To show that f is strictly convex on S, note that $f^{\prime \prime}(x)=0$ only for $x=0 \in S$, and so following the argument given after Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at any point \bar{x} must touch it only at $[\bar{x}, f(\bar{x})]$, or else this would contradict the strict convexity of f over int (S). Note that the first nonzero derivative of order greater than or equal to 2 at $\bar{x}=0$ is $f^{\prime \prime \prime}(\bar{x})=6$, but Theorem 3.3.9 does not apply here since $\bar{x}=0 \in \partial(S)$. Indeed, this shows that $f(x)=x^{3}$ is neither convex nor concave over R. But Theorem 3.3.9 applies (and holds) over $\operatorname{int}(S)$ in this case.
3.41 The matrix H is symmetric, and therefore, it is diagonalizable. That is, there exists an orthogonal $n \times n$ matrix Q, and a diagonal $n \times n$ matrix D such that $H=Q D Q^{t}$. The columns of the matrix Q are simply normalized eigenvectors of the matrix H, and the diagonal elements of the matrix D are the eigenvalues of H. By the positive semidefiniteness of H, we have $\operatorname{diag}\{D\} \geq 0$, and hence there exists a square root matrix $D^{1 / 2}$ of D (that is $D=D^{1 / 2} D^{1 / 2}$).

If $x=0$, then readily $H x=0$. Suppose that $x^{t} H x=0$ for some $x \neq 0$. Below we show that then $H x$ is necessarily 0 . For notational convenience let $z=D^{1 / 2} Q^{t} x$. Then the following equations are equivalent to $x^{t} H x=0$:

$$
\begin{aligned}
& x^{t} Q D^{1 / 2} D^{1 / 2} Q^{t} x=0 \\
& \Leftrightarrow \quad z^{t} z=0, \text { i.e., }\|z\|^{2}=0 \\
& \Leftrightarrow \quad z=0 .
\end{aligned}
$$

By premultiplying the last equation by $Q D^{1 / 2}$, we obtain $Q D^{1 / 2} z=0$, which by the definition of z gives $Q D Q^{t} x=0$. Thus $H x=0$, which completes the proof.
3.45 Consider the problem

$$
\begin{array}{ll}
\text { P: } & \text { Minimize } \\
& \left(x_{1}-4\right)^{2}+\left(x_{2}-6\right)^{2} \\
& \text { subject to } \\
& x_{2} \geq x_{1}^{2} \\
& x_{2} \leq 4 .
\end{array}
$$

Note that the feasible region (denote this by X) of Problem P is convex. Hence, a necessary condition for $\bar{x} \in X$ to be an optimal solution for Problem P is that

$$
\begin{equation*}
\nabla f(\bar{x})^{t}(x-\bar{x}) \geq 0, \quad \forall x \in X \tag{1}
\end{equation*}
$$

because if there exists an $\hat{x} \in X$ such that $\nabla f(\bar{x})^{t}(\hat{x}-\bar{x})<0$, then $d \equiv(\hat{x}-\bar{x})$ would be an improving (since f is differentiable) and feasible (since X is convex) direction.

For $\bar{x}=(2,4)^{t}$, we have $\nabla f(\bar{x})=\left[\begin{array}{l}2(2-4) \\ 2(4-6)\end{array}\right]=\left[\begin{array}{l}-4 \\ -4\end{array}\right]$.

Hence,
$\nabla f(\bar{x})^{t}(x-\bar{x})=[-4,-4]=\left[\begin{array}{l}x_{1}-2 \\ x_{2}-4\end{array}\right]=-4 x_{1}-4 x_{2}+24$.
But $\quad x_{1}^{2} \leq x_{2} \leq 4, \quad \forall x \in X \Rightarrow x_{2} \leq 4 \quad$ and $\quad-2 \leq x_{1} \leq 2, \quad$ and \quad so $-4 x_{1} \geq-8$ and $-4 x_{2} \geq-16$. Hence, $\nabla f(\bar{x})^{t}(x-\bar{x}) \geq 0$ from (2).

Furthermore, observe that the objective function of Problem P (denoted by $f(x)$) is (strictly) convex since its Hessian is given by $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, which is positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1) is also sufficient for optimality to P , and so $\bar{x}=(2,4)^{t}$ (uniquely) solves Problem P.
3.48 Suppose that λ_{1} and λ_{2} are in the interval $(0, \delta)$, and such that $\lambda_{2}>\lambda_{1}$. We need to show that $f\left(x+\lambda_{2} d\right) \geq f\left(x+\lambda_{1} d\right)$.

Let $\alpha=\lambda_{1} / \lambda_{2}$. Note that $\alpha \in(0,1)$, and $x+\lambda_{1} d=\alpha\left(x+\lambda_{2} d\right)+$ $(1-\alpha) x$. Therefore, by the convexity of f, we obtain $f\left(x+\lambda_{1} d\right) \leq$ $\alpha f\left(x+\lambda_{2} d\right)+(1-\alpha) f(x)$, which leads to $f\left(x+\lambda_{1} d\right) \leq f\left(x+\lambda_{2} d\right)$ since, by assumption, $f(x) \leq f(x+\lambda d)$ for any $\lambda \in(0, \delta)$.

When f is strictly convex, we can simply replace the weak inequalities above with strict inequalities to conclude that $f(x+\lambda d)$ is strictly increasing over the interval $(0, \delta)$.
$3.51(\Leftrightarrow)$ If the vector d is a descent direction of f at \bar{x}, then $f(\bar{x}+\lambda d)-$ $f(\bar{x})<0$ for all $\lambda \in(0, \delta)$. Moreover, since f is a convex and differentiable function, we have that $f(\bar{x}+\lambda d)-f(\bar{x}) \geq \lambda \nabla f(\bar{x})^{t} d$. Therefore, $\nabla f(\bar{x})^{t} d<0$.
(\Leftrightarrow) See the proof of Theorem 4.1.2.
Note: If the function $f(x)$ is not convex, then it is not true that $\nabla f(\bar{x})^{t} d<0$ whenever d is a descent direction of $f(x)$ at \bar{x}. For example, if $f(x)=x^{3}$, then $d=-1$ is a descent direction of f at $\bar{x}=0$, but $f^{\prime}(\bar{x}) d=0$.
$3.54(\Rightarrow)$ If \bar{x} is an optimal solution, then we must have $f^{\prime}(\bar{x} ; d) \geq 0$, $\forall d \in D$, since $f^{\prime}(\bar{x} ; d)<0$ for any $d \in D$ implies the existence of improving feasible solutions by Exercise 3.5.1.
(\Leftarrow) Suppose $f^{\prime}(\bar{x} ; d) \geq 0, \forall d \in D$, but on the contrary, \bar{x} is not an optimal solution, i.e., there exists $\hat{x} \in S$ with $f(\hat{x})<f(\bar{x})$. Consider $d=(\hat{x}-\bar{x})$. Then $d \in D$ since S is convex. Moreover, $f(\bar{x}+\lambda d)=$ $f(\lambda \hat{x}+(1-\lambda) \bar{x}) \leq \lambda f(\hat{x})+(1-\lambda) f(\bar{x})<f(\bar{x}), \quad \forall 0<\lambda \leq 1$. Thus d is a feasible, descent direction, and so $f^{\prime}(\bar{x} ; d)<0$ by Exercise 3.51 , a contradiction.

Theorem 3.4.3 similarly deals with nondifferentiable convex functions.
If $S=R^{n}$, then \bar{x} is optimal $\Leftrightarrow \nabla f(\bar{x})^{t} d \geq 0, \forall d \in R^{n}$
$\Leftrightarrow \nabla f(\bar{x})=0$ (else, pick $d=-\nabla f(\bar{x})$ to get a contradiction).
3.56 Let $x_{1}, x_{2} \in R^{n}$. Without loss of generality assume that $h\left(x_{1}\right) \geq h\left(x_{2}\right)$. Since the function g is nondecreasing, the foregoing assumption implies that $g\left[h\left(x_{1}\right)\right] \geq g\left[h\left(x_{2}\right)\right]$, or equivalently, that $f\left(x_{1}\right) \geq f\left(x_{2}\right)$. By the quasiconvexity of h, we have $h\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq h\left(x_{1}\right)$ for any $\alpha \in[0,1]$. Since the function g is nondecreasing, we therefore have, $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)=g\left[h\left(\alpha x_{1}+(1-\alpha) x_{2}\right)\right] \leq g\left[h\left(x_{1}\right)\right]=f\left(x_{1}\right) . \quad$ This shows that $f(x)$ is quasiconvex.
3.61 Let α be an arbitrary real number, and let $S=\{x: f(x) \leq \alpha\}$. Furthermore, let x_{1} and x_{2} be any two elements of S. By Theorem 3.5.2, we need to show that S is a convex set, that is, $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \alpha$ for any $\lambda \in[0,1]$. By the definition of $f(x)$, we have

$$
\begin{equation*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=\frac{g\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}{h\left(\lambda x_{1}+(1-\lambda) x_{2}\right)} \leq \frac{\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)}{\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)}, \tag{1}
\end{equation*}
$$

where the inequality follows from the assumed properties of the functions g and h. Furthermore, since $f\left(x_{1}\right) \leq \alpha$ and $f\left(x_{2}\right) \leq \alpha$, we obtain

$$
\lambda g\left(x_{1}\right) \leq \lambda \alpha h\left(x_{1}\right) \text { and }(1-\lambda) g\left(x_{2}\right) \leq(1-\lambda) \alpha h\left(x_{2}\right) .
$$

By adding these two inequalities, we obtain $\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right) \leq$ $\alpha\left[\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)\right]$. Since h is assumed to be a positive-valued function, the last inequality yields

$$
\frac{\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)}{\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)} \leq \alpha
$$

or by (1), $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \alpha$. Thus, S is a convex set, and therefore, $f(x)$ is a quasiconvex function.
Alternative proof: For any $\alpha \in R$, let $S_{\alpha}=\{x \in S: g(x) / h(x) \leq \alpha\}$. We need to show that S_{α} is a convex set. If $\alpha<0$, then $S_{\alpha}=\varnothing$ since $g(x) \geq 0$ and $h(x) \geq 0, \forall x \in S$, and so S_{α} is convex. If $\alpha \geq 0$, then $S_{\alpha}=\{x \in S: g(x)-\alpha h(x) \leq 0\}$ is convex since $g(x)-\alpha h(x)$ is a convex function, and S_{α} is a lower level set of this function.
3.62 We need to prove that if $g(x)$ is a convex nonpositive-valued function on S and $h(x)$ is a convex and positive-valued function on S, then $f(x)=g(x) / h(x)$ is a quasiconvex function on S. For this purpose we show that for any $x_{1}, x_{2} \in S$, if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$, then $f\left(x_{\lambda}\right) \leq f\left(x_{1}\right)$, where $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$, and $\lambda \in[0,1]$. Note that by the definition of f and the assumption that $h(x)>0$ for all $x \in S$, it suffices to show that $g\left(x_{\lambda}\right) h\left(x_{1}\right)-g\left(x_{1}\right) h\left(x_{\lambda}\right) \leq 0$. Towards this end, observe that
$g\left(x_{\lambda}\right) h\left(x_{1}\right) \leq\left[\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)\right] h\left(x_{1}\right)$ since $g(x)$ is convex and $h(x)>0$ on S;
$g\left(x_{1}\right) h\left(x_{\lambda}\right) \geq g\left(x_{1}\right)\left[\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)\right]$ since $h(x)$ is convex and $g(x) \leq 0$ on S;
$g\left(x_{2}\right) h\left(x_{1}\right)-g\left(x_{1}\right) h\left(x_{2}\right) \leq 0$, since $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ and $h(x)>0$ on S.

From the foregoing inequalities we obtain

$$
\begin{aligned}
& g\left(x_{\lambda}\right) h\left(x_{1}\right)-g\left(x_{1}\right) h\left(x_{\lambda}\right) \\
& \leq\left[\lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right)\right] h\left(x_{1}\right)-g\left(x_{1}\right)\left[\lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)\right] \\
& =(1-\lambda)\left[g\left(x_{2}\right) h\left(x_{1}\right)-g\left(x_{1}\right) h\left(x_{2}\right)\right] \leq 0,
\end{aligned}
$$

which implies that $f\left(x_{\lambda}\right) \leq \max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}=f\left(x_{1}\right)$.
Note: See also the alternative proof technique for Exercise 3.61 for a similar simpler proof of this result.
3.63 By assumption, $h(x) \neq 0$, and so the function $f(x)$ can be rewritten as $f(x)=g(x) / p(x)$, where $p(x) \equiv 1 / h(x)$. Furthermore, since $h(x)$ is a concave and positive-valued function, we conclude that $p(x)$ is convex and positive-valued on S (see Exercise 3.11). Therefore, the result given in Exercise 3.62 applies. This completes the proof.
3.64 Let us show that if $g(x)$ and $h(x)$ are differentiable, then the function defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62 and 3.63 are similar.) To prove this, we show that for any $x_{1}, x_{2} \in S$, if $\nabla f\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \geq 0$, then $f\left(x_{2}\right) \geq f\left(x_{1}\right)$. From the assumption that $h(x)>0$, it follows that $\nabla f\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \geq 0 \quad$ if and only if $\left[h\left(x_{1}\right) \nabla g\left(x_{1}\right)-g\left(x_{1}\right) \nabla h\left(x_{1}\right)\right]^{t}\left(x_{2}-x_{1}\right) \geq 0$. Furthermore, note that $\nabla g\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \leq g\left(x_{2}\right)-g\left(x_{1}\right)$, since $g(x)$ is a convex and differentiable function on S, and $\nabla h\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \geq h\left(x_{2}\right)-h\left(x_{1}\right)$, since $h(x)$ is a concave and differentiable function on S. By multiplying the latter inequality by $-g\left(x_{1}\right) \leq 0$, and the former one by $h\left(x_{1}\right)>0$, and adding the resulting inequalities, we obtain (after rearrangement of terms):

$$
\left[h\left(x_{1}\right) \nabla g\left(x_{1}\right)-g\left(x_{1}\right) \nabla h\left(x_{1}\right)\right]^{t}\left(x_{2}-x_{1}\right) \leq h\left(x_{1}\right) g\left(x_{2}\right)-g\left(x_{1}\right) h\left(x_{2}\right)
$$

The left-hand side expression is nonegative by our assumption, and therefore, $\quad h\left(x_{1}\right) g\left(x_{2}\right)-g\left(x_{1}\right) h\left(x_{2}\right) \geq 0, \quad$ which implies that $f\left(x_{2}\right) \geq f\left(x_{1}\right)$. This completes the proof.
3.65 For notational convenience let $g(x)=c_{1}^{t} x+\alpha_{1}$, and let $h(x)=c_{2}^{t} x+\alpha_{2}$. In order to prove pseudoconvexity of $f(x)=\frac{g(x)}{h(x)}$ on the set $S=\{x: h(x)>0\}$ we need to show that for any $x_{1}, x_{2} \in S$, if $\nabla f\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \geq 0$, then $f\left(x_{2}\right) \geq f\left(x_{1}\right)$.

Assume that $\nabla f\left(x_{1}\right)^{t}\left(x_{2}-x_{1}\right) \geq 0$ for some $x_{1}, x_{2} \in S$. By the definition of f, we have $\nabla f(x)=\frac{1}{[h(x)]^{2}}\left[h(x) c_{1}-g(x) c_{2}\right]$. Therefore, our assumption yields $\left[h\left(x_{1}\right) c_{1}-g\left(x_{1}\right) c_{2}\right]^{t}\left(x_{2}-x_{1}\right) \geq 0$. Furthermore, by adding and subtracting $\alpha_{1} h\left(x_{1}\right)+\alpha_{2} g\left(x_{1}\right)$ we obtain $g\left(x_{2}\right) h\left(x_{1}\right)-$ $h\left(x_{2}\right) g\left(x_{1}\right) \geq 0$. Finally, by dividing this inequality by $h\left(x_{1}\right) h\left(x_{2}\right)(>0)$, we obtain $f\left(x_{2}\right) \geq f\left(x_{1}\right)$, which completes the proof of pseudoconvexity of $f(x)$. The psueoconcavity of $f(x)$ on S can be shown in a similar way. Thus, f is pseudolinear.

