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CHAPTER 2: 

 

CONVEX SETS 

2.1 Let 
1 2

( )x conv S S  . Then there exists [0,1]   and 
1 2 1 2
,x x S S   

such that 
1 2

(1 )x x x    . Since 
1

x  and 
2

x  are both in 
1

S , x must be 

in 
1

( )conv S . Similarly, x must be in 
2

( )conv S . Therefore, 
1

( )x conv S   

2
( )conv S . (Alternatively, since 

1 1
( )S conv S  and 

2 2
( )S conv S , we 

have 
1 2 1 2

( ) ( )S S conv S conv S    or that 
1 2

[ ]conv S S   

1
( )conv S 

2
( )conv S .)  

      An example in which 
1 2

( )conv S S   
1

( )conv S   
2

( )conv S  is given 

below: 

    

1
S

2
S

 
 
 Here, 

1 2
( )conv S S   , while 

1 2 1
( ) ( )conv S conv S S   in this case. 

 
2.2 Let S be of the form { : }S x Ax b   in general, where the constraints 

might include bound restrictions. Since S is a polytope, it is bounded by 
definition. To show that it is convex, let y and z be any points in S, and let 

(1 )x y z    , for 0 1  . Then we have Ay b  and Az b , 

which implies that 

   (1 ) (1 )Ax Ay Az b b b          , 

 or that x S . Hence, S is convex. 
 
      Finally, to show that S is closed, consider any sequence { }

n
x x  such 

that 
n

x S , n . Then we have 
n

Ax b , n , or by taking limits as 

n   , we get Ax b , i.e., x S  as well. Thus S is closed. 
 
2.3 Consider the closed set S shown below along with ( )conv S , where 

( )conv S  is not closed: 
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 Now, suppose that pS    is closed. Toward this end, consider any 
sequence { }

n
x x , where ( )

n
x conv S , n . We must show that 

( )x conv S . Since ( )
n

x conv S , by definition (using Theorem 2.1.6), 

we have that we can write 
1

1

p
r

n nr n
r

x x



  , where r

n
x S  for 

1,..., 1r p  , n , and where 
1

1
1

p

nr
r





 , n , with 0

nr
  , ,r n . 

Since the 
nr
 -values as well as the r

n
x -points belong to compact sets, 

there exists a subsequence K such that { }
nr K r
  , 1,..., 1r p   , 

and { }r r
n

x x , 1,..., 1r p   . From above, we have taking limits as 

n   , n K , that 

  
1

1

p
r

r
r

x x



  , with 

1

1
1

p

r
r





 , 0

r
  , 1,..., 1r p   , 

 where rx S , 1,..., 1r p    since S is closed. Thus by definition, 

( )x conv S  and so ( )conv S  is closed.     

 

2.7 a. Let 1y  and 2y  belong to AS. Thus, 1 1y Ax  for some 1x S  and 
2y  = 2Ax  for some 2x S . Consider 1 2(1 )y y y    , for any 

0 1  . Then 1 2[ (1 ) ]y A x x    . Thus, letting 
1 2(1 )x x x    , we have that x S  since S is convex and that 

y Ax . Thus y AS , and so, AS is convex. 

 
 b. If 0  , then {0}S  , which is a convex set. Hence, suppose that 

0  . Let 1x  and 2x S  , where 1x S  and 2x S . Consider 
1 2(1 )x x x       for any 0 1  . Then, 1[x x     

2(1 ) ]x . Since 0  , we have that 1 2(1 )x x x    , or that 

x S  since S is convex. Hence x S   for any 0 1  , and 
thus S  is a convex set. 

 
2.8 

1 2 1 2 1 2
{( , ) : 0 1, 2 3}.S S x x x x       
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1 2 1 2 1 2

{( , ) : 1 0, 2 1}.S S x x x x          

 
2.12 Let 

1 2
S S S  . Consider any y, z S , and any (0,1)   such that 

1 2
y y y   and 

1 2
z z z  , with 

1 1 1
{ , }y z S  and 

2 2 2
{ , }y z S . 

Then 
1 2 1 2

(1 ) (1 ) (1 )y z y y z z             . Since both sets 

1
S  and 

2
S  are convex, we have (1 )

i i i
y z S    , i = 1, 2. Therefore, 

(1 )y z    is still a sum of a vector from 
1

S  and a vector from 
2

S , 

and so it is in S. Thus S is a convex set.  
 
 Consider the following example, where 

1
S  and 

2
S  are closed, and convex. 

sequence { }
n

y sequence {z }
n

1
S 2

S

 
 
 Let 

n n n
x y z  , for the sequences { }

n
y  and { }

n
z  shown in the figure, 

where 
1

{ }
n

y S , and 
2

{ }
n

z S . Then { } 0
n

x   where 
n

x S , n , 

but 0 S . Thus S is not closed.  
 
      Next, we show that if 

1
S  is compact and 

2
S  is closed, then S is closed. 

Consider a convergent sequence { }
n

x  of points from S, and let x denote its 

limit. By definition, 
n n n

x y z  , where for each n, 
1n

y S  and 

2n
z S . Since { }

n
y  is a sequence of points from a compact set, it must be 

bounded, and hence it has a convergent subsequence. For notational 
simplicity and without loss of generality, assume that the sequence { }

n
y  

itself is convergent, and let y denote its limit. Hence, 
1

y S . This result 

taken together with the convergence of the sequence { }
n

x  implies that 

{ }
n

z  is convergent to z, say. The limit, z, of { }
n

z  must be in 
2

S , since 
2

S  

is a closed set. Thus, x y z  , where 
1

y S  and 
2

z S , and therefore, 

x S . This completes the proof.      
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2.15 a. First, we show that ˆ( )conv S S . For this purpose, let us begin by 

showing that 
1

S  and 
2

S  both belong to Ŝ . Consider the case of 
1

S  

(the case of 
2

S  is similar). If 
1

x S , then 
1 1

A x b , and so, ˆx S  

with y = x, z = 0, 
1

1  , and 
2

0  . Thus 
1 2

ˆS S S  , and since 

Ŝ  is convex, we have that 
1 2

ˆ[ ]conv S S S  .  

       Next, we show that ˆ ( )S conv S . Let ˆx S . Then, there exist 

vectors y and z such that x y z  , and 
1 1 1

A y b  , 
2 2 2

A z b   for 

some 
1 2

( , ) 0    such that 
1 2

1   . If 
1

0   or 
2

0  , then 

we readily obtain y = 0 or z = 0, respectively (by the boundedness of 

1
S  and 

2
S ), with 

2
x z S   or 

1
x y S  , respectively, which 

yields x S , and so ( )x conv S . If 
1

0   and 
2

0  , then 

1 1 2 2
x y z   , where 

1
1

1
y y


  and 

2
2

1
z z


 . It can be easily 

verified in this case that 
1 1

y S  and 
2 2

z S , which implies that both 

vectors 
1

y  and 
2

z  are in S. Therefore, x is a convex combination of 

points in S, and so ( )x conv S . This completes the proof      

 
 b. Now, suppose that 

1
S  and 

2
S  are not necessarily bounded. As above, 

it follows that ˆ( )conv S S , and since Ŝ  is closed, we have that 

ˆ( )c conv S S . To complete the proof, we need to show that 

ˆ ( )S c conv S  . Let ˆx S , where x y z   with 
1 1 1

A y b  , 

2 2 2
A z b  , for some 

1 2
( , ) 0    such that 

1 2
1   . If 

1 2
( , ) 0   , then as above we have that ( )x conv S , so that 

( )x c conv S  . Thus suppose that 
1

0   so that 
2

1   (the case of 

1
1   and 

2
0   is similar). Hence, we have 

1
0A y   and 

2 2
A z b , which implies that y is a recession direction of 

1
S  and 

2
z S  (if 

1
S  is bounded, then 0y   and then 

2
x z S   yields 

( )x c conv S  ). Let 
1

y S  and consider the sequence 

         
1

[ ] (1 ) ,
n n n

n

x y y z 


     where 0 1
n
   for all n. 



 

8 

  Note that 
1

1

n

y y S


  , 
2

z S , and so ( )
n

x conv S , n . 

Moreover, letting { } 0
n
  , we get that { }

n
x y z x   , and so 

( )x c conv S   by definition. This completes the proof.     

 
2.21 a. The extreme points of S are defined by the intersection of the two 

defining constraints, which yield upon solving for 
1

x  and 
2

x  in terms 

of 
3

x  that 

  
31

5 21 xx    , 3 3
2

3 5 2

2

x x
x

 



, where 

3
5

2
x  . 

  For characterizing the extreme directions of S, first note that for any 
fixed 

3
x , we have that S is bounded. Thus, any extreme direction must 

have 
3

0d  . Moreover, the maximum value of 
3

x  over S is readily 

verified to be bounded. Thus, we can set 
3

1d   . Furthermore, if 

(0,0,0)x   and 
1 2

( , , 1)d d d  , then x d S  , 0  , implies 

that  
                                     

1 2
2 1d d   (1) 

  and that 2 2
2 1

4 d d  , i.e., 2 2
2 1

4d d , 0  . Hence, if 
1

0d  , 

then we will have 
2

d   , and so (for bounded direction 

components) we must have 
1

0d   and 
2

0d  . Thus together with 

(1), for extreme directions, we can take 
2

0d   or 
2

1/2d  , yielding 

(0,0, 1)  and 
1

(0, , 1)
2
  as the extreme directions of S. 

 b. Since S is a polyhedron in 3R , its extreme points are feasible solutions 
defined by the intersection of three linearly independent defining 
hyperplanes, of which one must be the equality restriction 

1 2
1x x  . Of the six possible choices of selecting two from the 

remaining four defining constraints, we get extreme points defined by 

four such choices (easily verified), which yields 
3

(0,1, )
2

, 
3

(1,0, )
2

, 

(0,1,0) , and (1,0,0)  as the four extreme points of S. The extreme 

directions of S are given by extreme points of 
1 2 3

{( , , ) :D d d d  

1 2 3
2 0d d d   , 

1 2
0d d  , 

1 2 3
1d d d   , 0}d  , which is 

empty. Thus, there are no extreme directions of S (i.e., S is bounded). 
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 c. From a plot of S, it is readily seen that the extreme points of S are 

given by (0, 0), plus all point on the circle boundary 2 2
1 2

2x x   that 

lie between the points ( 2/5, 2 2/5)  and ( 2/5, 2 2/5) , 

including the two end-points. Furthermore, since S is bounded, it has 
no extreme direction.  

 
2.24 By plotting (or examining pairs of linearly independent active constraints), 

we have that the extreme points of S are given by (0, 0), (3, 0), and (0, 2). 
Furthermore, the extreme directions of S are given by extreme points of 

1 2
{( , ) :D d d  

1 2
2 0d d    

1 2
3 0d d  , 

1 2
1d d  , 0}d  , 

which are readily obtained as 
2 1

( , )
3 3

 and 
3 1

( , )
4 4

. Now, let 

  1

2

4 3/4 ,1 1/4
x
x              

 where 1

2

3 0(1 ) ,0 2
x
x                  

 

 for ( , ) 0   . Solving, we get 7/9   and 20/9,   which yields 

  
7 2 204 3 0 3/4

1 0 2 1/49 9 9
                       

. 

 
2.31 The following result from linear algebra is very useful in this proof: 
 ( )  An ( 1) ( 1)m m    matrix G with a row of ones is invertible if and 

only if the remaining m rows of G are linearly independent. In other words, 

if 
1t

B a
G

e
    

, where B is an m m  matrix, a is an 1m   vector, and e 

is an 1m   vector of ones, then G is invertible if and only if B is 
invertible. Moreover, if G is invertible, then  

 1
t

M g
G

h f
     

, where 1 11
( )tM B I ae B


   , 11

g B a


  , 

11t th e B


  , and 
1

f


 , and where 11 te B a   . 

      By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D 

if and only if the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N  such that 

B

N

d
d
 
 
 

, where 
N

d  = 0 and 1 0
B D D

d B b  , where 1D
b     

0 . From 

Property ( )  above, the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N , 

where 
D

B  is a nonsingular matrix, if and only if A can be decomposed into 

[ ]B N , where B is an m m  invertible matrix. Thus, the matrix 
D

B  must 
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necessarily be of the form 
1

j
t

B a

e

 
 
 

, where B is an m m  invertible 

submatrix of A. By applying the above equation for the inverse of G, we 
obtain 

   

1
1

1

1
1

1 1

j
j

B D D

B a B ad B b 








          

  
 

, 

 where 11 t
j

e B a   . Notice that 0
B

d   if and only if 0   and 

1 0
j

B a  . This result, together with Theorem 2.6.6, leads to the 

conclusion that d is an extreme point of D if and only if d is an extreme 
direction of S. 

 
 Thus, for characterizing the extreme points of D, we can examine bases of 

t
A
e
 
  

, which are limited by the number of ways we can select ( 1)m   

columns out of n, i.e.,  

     !
1 ( 1)!( 1)!

nn
m m n m

   
, 

 which is fewer by a factor of 
1

( 1)m 
 than that of the Corollary to 

Theorem 2.6.6. 
 

2.42 Problem P: Minimize { : , 0}.tc x Ax b x   

 (Homogeneous) Problem D: Maximize { : 0}t tb y A y  . 

 Problem P has no feasible solution if and only if the system Ax b , 
0x  , is inconsistent. That is, by Farkas’ Theorem (Theorem 2.4.5), this 

occurs if and only if the system 0tA y  , 0tb y   has a solution, i.e., if 

and only if the homogeneous version of the dual problem is unbounded.   
 

 
2.45 Consider the following pair of primal and dual LPs, where e is a vector of 

ones in m : 

  
: Max : Min 0

subject to 0
0.  unres.

t t

t
e p x
A p Ax e
p x

 


P D
 

 Then, System 2 has a solution  P	 is	 unbounded	 take	 any	 feasible	
solution	to	System	2,	multiply	it	by	a	scalar	λ,	and	take	   	 	D	
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is	infeasible	 since	P		is	homogeneous 	 	∄	a	solution	to	 0Ax  	 	
∄	a	solution	to	 0Ax  .							 

 

2.47 Consider the system , 0tA y c y  : 

   
1 2

2 2 3y y    

   
1 2

2 1y y   

   
1

3 2y    

   
1 2

( , ) 0y y  . 

 The first equation is in conflict with 
1 2

( , ) 0y y  . Therefore, this system 

has no solution. By Farkas’ Theorem we then conclude that the system 

0Ax  , 0tc x   has a solution. 
 
2.49 ( )  We show that if System 2 has a solution, then System 1 is 

inconsistent. Suppose that System 2 is consistent and let 
0

y  be its solution. 

If System 1 has a solution, 
0

x , say, then we necessarily have 
0 0

0t tx A y  . 

However, since 
0
t t tx A c , this result leads to 

0
0tc y  , thus 

contradicting 
0

1tc y  . Therefore, System 1 must be inconsistent. 

 ( )  In this part we show that if System 2 has no solution, then System 1 

has one. Assume that System 2 has no solution, and let 
1 0

{( , ) :S z z  

1
tz A y  , 

0
tz c y , }my   . Then S is a nonempty convex set, and 

1 0
( , ) (0,1)z z S  . Therefore, there exists a nonzero vector 

1 0
( , )p p  and 

a real number  such that 
1 1 0 0 1 0

0t tp z p z p p     for any 

1 0
( , )z z S . By the definition of S, this implies that 

1 0 0
t t tp A y p c y p     for any my   . In particular, for y = 0, we 

obtain 
0

0 p  . Next, observe that since α is nonnegative and 

1 0
( )t t tp A p c y     for any my   , then we necessarily have 

1 0
0t t tp A p c    (or else y can be readily selected to violate this 

inequality). We have thus shown that there exists a vector 
1 0

( , )p p  where 

0
0p  , such that 

1 0
0Ap p c  . By letting 

1
0

1
x p

p
 , we concluce that 

x solves the system 0Ax c  . This shows that System 1 has a solution. 
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2.50 Consider the pair of primal and dual LPs below, where e is a vector of 

ones in p : 

  

: Max : Min 0
subject to 0 subject to

0,  unres. 0
unres.

t t

t t
e u x
A u B v Ax e
u v Bx

x

  
 

P D

 

 Hence, System 2 has a solution P  is unbounded (take any solution to 
System 2 and multiply it with a scalar λ	 and	 take	    	  	 D	 is	
infeasible	 since	P	is	homogeneous 	 	there	does	not	exist	a	solution	
to	 0Ax  ,	 0Bx  	 	System	1	has	no	solution.						 

 
2.51 Consider the following two systems for each {1,..., } :i m  

 System I:  0Ax   with 0
i

A x   

 System II: 0, 0tA y y  , with 0
i

y  , 

 where 
i

A  is the ith row of A. Accordingly, consider the following pair of 

primal and dual LPs: 
 

 

: Max : Min 0

subject to 0 subject to
0  unres,

t t
i
t

i

e y x

A y Ax e
y x

 


P D

 

 
 where 

i
e  is the ith unit vector. Then, we have that System II has a solution 

  P is unbounded   D is infeasible   System I has no solution. Thus, 
exactly one of the systems has a solution for each {1,..., }i m . Let 

1
{ {1,..., } :I i m   System I has a solution; say }ix , and let 

2
{ {1,..., } :I i m   System II has a solution; say, }iy . Note that 

1 2
{1,..., }I I m   with 

1 2
I I   . Accordingly, let 

1

i

i I
x x


   and 

2

i

i I
y y


  , where 0x   if 

1
I    and 0y   if 

2
I   . Then it is 

easily verified that x  and y  satisfy Systems 1 and 2, respectively, with 

1 2

0i i

i I i I
Ax y Ax y

 
      since 0iAx  , 

1
i I  , and 0iy  , 

2
i I  , and moreover, for each row i of this system, if 

1
i I   then we 

have 0i
i

A x   and if 
2

i I  then we have 0iy  . 
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2.52 Let 1
2

( )
x

f x e x


  . Then 
1

{ : ( ) 0}S x f x  . Moreover, the Hessian 

of f is given by 1 0
0 0

x
e
 

 
 

, which is positive semidefinite, and so, f is a 

convex function. Thus, S is a convex set since it is a lower-level set of a 
convex function. Similarly, it is readily verified that 

2
S  is a convex set. 

Furthermore, if 
1 2

x S S  , then we have 1 1
2

x x
e x e
 

    or 

12 0
x

e
  , which is achieved only in the limit as 

1
x   . Thus, 

1 2
S S  . A separating hyperplane is given by 

2
0x  , with 

1 2
{ : 0}S x x   and 

2 2
{ : 0}S x x  , but there does not exist any 

strongly separately hyperplane (since from above, both 
1

S  and 
2

S  contain 

points having 
2

0x  ). 

 

2.53 Let 2 2
1 2

( ) 4f x x x   . Let 2 2
1 2

{ : 4}X x x x   . Then, for any 

x X , the first-order approximation to ( )f x  is given by 

    1
1 1 2 2

2

2
( ) ( ) ( ) ( ) ( ) (2 ) (2 ) 82

t t
FO

x
f x f x x x f x x x x x x xx

 
         

 
. 

 Thus S is described by the intersection of infinite halfspaces as follows: 
 
    

1 1 2 2
(2 ) (2 ) 8x x x x  , x X  , 

 
 which represents replacing the constraint defining S by its first-order 

approximation at all boundary points. 
 
 
2.57 For the existence and uniqueness proof see, for example, Linear Algebra 

and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc., 
1988). 

 
 If 

1 2 3 1 2 3
{( , , ) : 2 0}L x x x x x x    , then L is the nullspace of 

[2 1 1]A   , and its orthogonal complement is given by 
2
1
1


 
 
  

 for any 

   . Therefore, 
1

x  and 
2

x  are orthogonal projections of x onto L, and 

L , respectively. If x = (1   2   3), then 
1 2

1
2
3

 
 

  
x + x  where 

2

2
1
1


 

  
  

x . 
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Thus, 

21 2 2 1
2 1 1

63 1 1

t

 
   

    
       

= . Hence, 
1

1
(4 11 19)

6
x =  and 

2
1

(2 1 1)
6

x = . 
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CHAPTER 3: 

 

CONVEX FUNCTIONS AND GENERALIZATIONS 

3.1 a. 
4 4
4 0

 
  

 is indefinite. Therefore, ( )f x  is neither convex nor 

concave.  

 b. 1 2( 3 ) 1 1

1 1

2 3( 1)
( )

3( 1) 9
x x x x

H x e
x x

    
   

. Definiteness of the matrix 

( )H x  depends on 
1

x . Therefore, ( )f x  is neither convex nor concave 

(over 2R ). 

 c. 
2 4
4 6

H
    

 is indefinite since the determinant is negative. 

Therefore, ( )f x  is neither convex nor concave. 

 d. 
4 2 5
2 2 0
5 0 4

H
 

 
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 

 e. 
4 8 3
8 6 4
3 4 4

H
 
  
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 
 

3.2 2( ) [ ( 1)].
bb ax bf x abx e abx b      Hence, if b = 1, then f is convex 

over { : 0}.x x   If b > 1, then f is convex whenever ( 1),babx b   i.e., 
1/( 1)

.
bb

x
ab

    
 

 

3.3 2 2
2 1

( ) 10 3( )f x x x   , and its Hessian matrix is 

2
1 2 1

1

6 2 2
( ) 6

2 1

x x x
H x

x

  
  

  
. Thus, f is not convex anywhere and for f to 

be concave, we need 2
1 2

6 2 0x x    and 2 2
1 2 1

6 2 4 0,x x x    i.e., 

2
1 2

3x x  and 2
1 2

x x , i.e., 2
1 2

x x . Hence, if 
1 2

{( , ) :S x x  

1
1 1x   , 

2
1 1}x   , then ( )f x  is neither convex nor concave on S. 
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If S is a convex set such that 2
1 2 1 2

{( , ) : }S x x x x  , then ( )H x  is 

negative semidefinite for all x S . Therefore, ( )f x  is concave on S. 

 

3.4 2 2( ) ( 1)f x x x  , 3( ) 4 2f x x x   , and 2( ) 12 2 0f x x     if 
2 1/6x  . Thus f is convex over 

1
{ : 1/ 6}S x x   and over 

2
{ : 1/ 6}.S x x    Moreover, since ( ) 0f x   whenever 1/ 6x   or 

1/ 6x   , and thus f lies strictly above the tangent plane for all 
1

x S  as 

well as for all 
2

,x S  f is strictly convex over 
1

S  and over 
2

S . For all the 

remaining values for x, ( )f x  is strictly concave. 

 

3.9 Consider any 
1
,x  

2
,nx R  and let 

1 2
(1 )x x x      for any 

0 1.   Then 
 
 

1
( ) max{ ( ),..., ( )} ( )

k r
f x f x f x f x      for some {1,..., },r k  

whence 
1 2

( ) ( ) (1 ) ( )
r r r

f x f x f x      by the convexity of 
r

f , i.e., 

1 2
( ) ( ) (1 ) ( )f x f x f x      since 

1 1
( ) ( )

r
f x f x  and 

2 2
( ) ( ).

r
f x f x  Thus f is convex.  

 
 If 

1
,...,

k
f f  are concave functions, then 

1
,...,

k
f f   are convex functions 

1
max{ ( ),..., ( )}

k
f x f x    is convex i.e., 

1
min{ ( ),..., ( )}

k
f x f x  is 

convex, i.e., 
1

( ) min{ ( ),..., ( )}
k

f x f x f x  is concave. 

 

3.10 Let 
1

x , 
2

nx   , [0,1]  , and let 
1 2

(1 )x x x     . To establish the 

convexity of ( )f   we need to show that 
1 2

( ) ( ) (1 ) ( )f x f x f x     . 

Notice that 
 ( )f x  

1 2
[ ( )] [ ( ) (1 ) ( )]g h x g h x h x       

  
1 2

[ ( )] (1 ) [ ( )]g h x g h x     

  
1 2

( ) (1 ) ( ).f x f x     

 In this derivation, the first inequality follows since h is convex and g is 
nondecreasing, and the second inequality follows from the convexity of g. 
This completes the proof. 

 
3.11 Let 

1
x , 

2
x S , [0,1]  , and let 

1 2
(1 )x x x     . To establish the 

convexity of f over S we need to show that 

1 2
( ) ( ) (1 ) ( ) 0f x f x f x      . For notational convenience, let 
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1 2 2 2
( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( )D x g x g x g x g x g x g x      . Under the 

assumption that ( ) 0g x   for all x S , our task reduces to demonstrating 

that ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  . By the concavity of 

( )g x  we have 

 
1 2 1 2 2

( ) ( ) ( ) [ ( ) (1 ) ( )] ( )D x g x g x g x g x g x        

            
1 2 1

(1 )[ ( ) (1 ) ( )] ( )g x g x g x     . 

 After a rearrangement of terms on the right-hand side of this inequality we 
obtain 

 ( )D x  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) 2 ( ) ( )]g x g x g x g x       

  2
1 2

(1 )[ ( ) ( )] .g x g x      

 Therefore, ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  , and thus 

( )f x  is a convex function.  

 

 Symmetrically, if g is convex, { : ( ) 0}S x g x  , then from above, 
1

g
 

is convex over S, and so ( ) 1/ ( )f x g x  is concave over S.      

 

3.16 Let 
1

x , 
2

x  be any two vectors in nR , and let [0,1]  . Then, by the 

definition of ( )h  , we obtain 
1 2 1

( (1 ) ) ( )h x x Ax b        

2
(1 )( )Ax b  

1 2
( ) (1 ) ( )h x h x   . Therefore, 

 
1 2 1 2 1 2

( (1 ) ) [ ( (1 ) )] [ ( ) (1 ) ( )]f x x g h x x g h x h x              

 
1 2 1 2

[ ( )] (1 ) [ ( )] ( ) (1 ) ( ),g h x g h x f x f x          

 where the above inequality follows from the convexity of g. Hence, ( )f x  

is convex.      

 By multivariate calculus, we obtain ( ) [ ( )]tf x A g h x   , and ( )
f

H x   

[ ( )]t
g

A H h x A . 

 

3.18 Assume that ( )f x  is convex. Consider any x, ny R , and let (0,1)  . 

Then  

 ( ) (1 ) (1 )
1 1

x y x y
f x y f f f   
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                 ( ) ( )f x f y  , 

 and so f is subadditive. 
 

 Conversely, let f be a subadditive gauge function. Let x, ny R  and 

[0,1]  . Then 

 ( (1 ) ) ( ) [(1 ) ] ( ) (1 ) ( )f x y f x f y f x f y             , 

 and so f is convex.  
 
3.21 See the answer to Exercise 6.4. 
 
3.22 a. See the answer to Exercise 6.4. 
 
 b. If 

1 2
,y y  then 

1 2
{ : ( ) , } { : ( ) , },x g x y x S x g x y x S      

and so 
1 2

( ) ( ).y y   

 

3.26 First assume that 0x  . Note that then ( ) 0f x   and 0t x   for any 

vector   in nR .  

 ( ) If   is a subgradient of ( )f x x  at x = 0, then by definition we 

have tx x  for all nx R . Thus in particular for x  , we obtain 

2  , which yields 1  . 

 ( ) Suppose that 1  . By the Schwarz inequality, we then obtain 

t x   x x , and so   is a subgradient of ( )f x x  at x = 0. 

 This completes the proof for the case when 0.x   Now, consider 0.x   

 ( ) Suppose that   is a subgradient of ( )f x x  at x . Then by 

definition, we have 
 

  ( )tx x x x    for all nx R . (1) 

 
 In particular, the above inequality holds for x = 0, for x x , where 

0  , and for x  . If x = 0, then t x x  . Furthermore, by 

employing the Schwarz inequality we obtain  
 

  tx x x   . (2) 

 
 If x x , 0  , then x x , and Equation (1) yields 

( 1) ( 1) tx x     . If 1  , then tx x , and if 1  , then 
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tx x . Therefore, in either case, if   is a subgradient at x , then it 

must satisfy the equation. 
 

  t x x  . (3) 

 

 Finally, if x  , then Equation (1) results in t tx x      . 

However, by (2), we have t x x  . Therefore, (1 ) 0   . This 

yields 
 
  1 0   (4) 

 
 Combining (2) – (4), we conclude that if   is a subgradient of ( )f x x  

at 0x  , then t x x   and 1  . 

 ( ) Consider a vector nR   such that 1   and t x x  , where 

0x  . Then for any x, we have ( ) ( ) ( )tf x f x x x x x       

( ) (1 ) 0t tx x x x x        , where we have used the 

Schwarz inequality ( )t x x   to derive the last inequality. Thus   is 

a subgradient of ( )f x x  at 0x  . This completes the proof.   

 In order to derive the gradient of ( )f x  at 0x  , notice that 1   and 

t x x   if and only if 
1

x
x

  . Thus 
1

( )f x x
x

  . 

 
3.27 Since 

1
f  and 

2
f  are convex and differentiable, we have 

 

 
1 1 1
( ) ( ) ( ) ( ), .tf x f x x x f x x      

 
2 2 2

( ) ( ) ( ) ( ), .tf x f x x x f x x      

 Hence, 
1 2

( ) max{ ( ), ( )}f x f x f x  and 
1 2

( ) ( ) ( )f x f x f x   give 

 

  
1

( ) ( ) ( ) ( ),tf x f x x x f x x      (1) 

  
2

( ) ( ) ( ) ( ), .tf x f x x x f x x      (2) 

 
 Multiplying (1) and (2) by   and (1 ) , respectively, where 0 1  , 

yields upon summing: 
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 1 2
( ) ( ) ( ) [ ( ) (1 ) ( )], ,tf x f x x x f x f x x          

  
1 2
( ) (1 ) ( ), 0 1,f x f x           is a subgradient of f at x . 

 
( ) Let   be a subgradient of f at x . Then, we have, 

 

  ( ) ( ) ( ) , .tf x f x x x x     (3) 

 
 But 

1 2
( ) max{ ( ), ( )}f x f x f x                 

                            
1 1 1

max{ ( ) ( ) ( ) 0 ( ),tf x x x f x x x x x       

                                    
2 2 2

( ) ( ) ( ) 0 ( )},tf x x x f x x x x x       (4) 

 
 where 

1
0 ( )x x  and 

2
0 ( )x x  are functions that approach zero as 

x x . Since 
1 2
( ) ( ) ( )f x f x f x  , putting (3) and (4) together yields 

 

 
1 1

max{( ) [ ( ) ] 0 ( ),tx x f x x x x x       

          
2 2

( ) [ ( ) ] 0 ( )} 0, .tx x f x x x x x x         (5) 

 
 Now, on the contrary, suppose that 

1 2
{ ( ), ( )}conv f x f x    . Then, there 

exists a strictly separating hyperplane x   such that 1   and 

t    and 
1 2

{ ( ) , ( ) },t tf x f x        i.e., 

 

                   
1

[ ( )] 0t f x      and 
2

[ ( )] 0t f x     . (6) 

 

 Letting ( )x x    in (5), with 0  , we get upon dividing with 

0  : 
 

 
1 1

max{ [ ( ) ] 0 ( 0),t f x       

         
2 2

[ ( ) ] 0 ( 0)} 0, 0.t f x           (7) 

 
 But the first terms in both maxands in (7) are negative by (6), while the 

second terms 0 . Hence we get a contradiction. Thus 
1

{ ( ),conv f x    

2
( )}f x , i.e., it is of the given form.  
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 Similarly, if 
1

( ) max{ ( ),..., ( )}
m

f x f x f x , where 
1
,...,

m
f f  are 

differentiable convex functions and x  is such that ( ) ( ),
i

f x f x  

{1,..., },i I m    then   is a subgradient of f at 

{ ( ), }.
i

x conv f x i I     A likewise result holds for the minimum 

of differentiable concave functions. 
 
3.28 a. See Theorem 6.3.1 and its proof. (Alternatively, since   is the 

minimum of several affine functions, one for each extreme point of X, 
we have that   is a piecewise linear and concave.) 

 
 b. See Theorem 6.3.7. In particular, for a given vector u , let 

1
( ) { ,..., }

k
X u x x  denote the set of all extreme points of the set X 

that are optimal solutions for the problem to minimize 

{ ( ) : }.t tc x u Ax b x X    Then ( )u  is a subgradient of ( )u  at 

u  if and only if ( )u  is in the convex hull of 
1

,..., ,
k

Ax b Ax b   

where ( )
i

x X u  for 1,..., .i k  That is, ( )u  is a subgradient of 

( )u  at u  if and only if 
1

( )
k

i i
i

u A x b 


   for some nonnegative 

1
,..., ,

k
   such that 

1
1.

k

i
i




  

 
3.31 Let 

1
: min{ ( ) : }f x x SP  and 

2
: min{ ( ) : },

s
f x x SP  and let 

1
{ : ( ) ( ), }S x S f x f x x S       and 

2
{ : ( )

s
S x S f x     

( ), }.
s

f x x S   Consider any 
1
.x S   Hence, x  solves Problem 

1
P . 

Define ( ) ( ), .h x f x x S    Thus, the constant function h is a convex 

underestimating function for f over S, and so by the definition of 
s

f , we 

have that 
 

 ( ) ( ) ( ), .
s

f x h x f x x S     (1) 

 

 But ( ) ( )
s

f x f x   since ( ) ( ), .
s

f x f x x S    This, together with (1), 

thus yields ( ) ( )
s

f x f x   and that x  solves Problem 
2

P  (since (1) 

asserts that ( )f x  is a lower bound on Problem 
2

P ). Therefore, 
2
.x S   

Thus, we have shown that the optimal values of Problems 
1

P  and 
2

P  

match, and that 
1 2

.S S     
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3.37 

2 2
1 2

2 2
1 2

2
1

2
2

4 3 1 4 3
( ) ,

1 2 5
2 5

x x

x x

x e e
f x f

e
x e





 
                     

 

 
2 2
1 2

2
2 1 1 2

2
1 2 2

8 2 4 1 10 4
( ) 2 , 2 ,

1 4 14 2 1

x x x x x
H x e H e

x x x

                   
 

 with 
1

2.
1

f e     
 

 Thus, the linear (first-order) approximation of f at 
1
1
 
  

 is given by 

 
1 1 2
( ) ( 2) ( 1)(4 3) ( 1)( 2 5),f x e x e x e           

 and the second-order approximation of f at 
1
1
 
  

 is given by  

 
2 1 2

( ) ( 2) ( 1)(4 3) ( 1)( 2 5)f x e x e x e           

                2 2
1 1 2 2

10( 1) 8( 1)( 1) ( 1) .e x x x x         

 
 

1
f  is both convex and concave (since it is affine). The Hessian of 

2
f  is 

given by 
1

,
1

H  
  

 which is indefinite, and so 
2

f  is neither convex nor 

concave. 
 

3.39 The function ( ) tf x x Ax  can be represented in a more convenient form 

as 
1

( ) ( )
2

t tf x x A A x  , where ( )tA A  is symmetric. Hence, the 

Hessian matrix of ( )f x  is tH A A  . By the superdiagonalization 

procedure, we can readily verify that 
4 3 4
3 6 3
4 3 2

H


 
 
 
 

. H is positive 

semidefinite if and only if 2,   and is positive definite for 2.   

Therefore, if 2,   then ( )f x  is strictly convex. To examine the case 

when 2,   consider the following three points: 
1

x  = (1, 0, 0), 
2

x  = (0, 0, 

1), and 
1 2

1 1
.

2 2
x x x   As a result of direct substitution, we obtain 

1 2
( ) ( ) 2,f x f x   and ( ) 2.f x   This shows that ( )f x  is not strictly 

convex (although it is still convex) when 2.   
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3.40 3 2( ) ( ) 3f x x f x x    and ( ) 6 0,f x x x S     . Hence f is 

convex on S. Moreover, ( ) 0, int( )f x x S    , and so f is strictly 

convex on int(S). To show that f is strictly convex on S, note that 
( ) 0f x   only for 0 ,x S   and so following the argument given after 

Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at 
any point x  must touch it only at [ , ( )],x f x  or else this would contradict 

the strict convexity of f over int(S). Note that the first nonzero derivative of 
order greater than or equal to 2 at 0x   is ( ) 6,f x   but Theorem 3.3.9 

does not apply here since 0 ( ).x S    Indeed, this shows that 
3( )f x x  is neither convex nor concave over R. But Theorem 3.3.9 

applies (and holds) over int(S) in this case.  
 
3.41 The matrix H is symmetric, and therefore, it is diagonalizable. That is, 

there exists an orthogonal n n  matrix Q, and a diagonal n n  matrix D 

such that .tH QDQ  The columns of the matrix Q are simply normalized 

eigenvectors of the matrix H, and the diagonal elements of the matrix D 
are the eigenvalues of H. By the positive semidefiniteness of H, we have 

{ } 0,diag D   and hence there exists a square root matrix 1/2D  of D (that 

is 1/2 1/2 ).D D D  

 

 If 0,x   then readily Hx = 0. Suppose that 0tx Hx   for some 0x  . 
Below we show that then Hx is necessarily 0. For notational convenience 

let 1/2 .tz D Q x  Then the following equations are equivalent to 

0tx Hx  : 

    1/2 1/2 0t tx QD D Q x   

    0tz z  , i.e., 2 0z   

    0.z   

 By premultiplying the last equation by 1/2 ,QD  we obtain 1/2 0,QD z   

which by the definition of z gives 0.tQDQ x   Thus Hx = 0, which 

completes the proof.     

 
3.45 Consider the problem 
 

  P: Minimize 2 2
1 2

( 4) ( 6)x x    

   subject to 2
2 1

x x  

    
2

4.x   
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 Note that the feasible region (denote this by X) of Problem P is convex. 

Hence, a necessary condition for x X  to be an optimal solution for 
Problem P is that 

 

  ( ) ( ) 0, ,tf x x x x X      (1) 

 

 because if there exists an x̂ X such that ˆ( ) ( ) 0,tf x x x    then 

ˆ( )d x x   would be an improving (since f is differentiable) and feasible 

(since X is convex) direction. 
 

 For (2, 4) ,tx   we have 
2(2 4) 4

( ) .
2(4 6) 4

f x
             

 

 
 Hence, 
 

 1
1 2

2

2
( ) ( ) [ 4, 4] 4 4 24.

4
t x

f x x x x x
x

 
           

 (2) 

 

 But 2
1 2

4,x x   
2

4x X x     and 
1

2 2,x    and so 

1
4 8x    and 

2
4 16.x    Hence, ( ) ( ) 0tf x x x    from (2). 

 
 Furthermore, observe that the objective function of Problem P (denoted by 

( ))f x  is (strictly) convex since its Hessian is given by 
2 0

,
0 2
 
  

 which is 

positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1) 

is also sufficient for optimality to P, and so (2, 4)tx   (uniquely) solves 

Problem P. 
 
3.48 Suppose that 

1
  and 

2
  are in the interval (0, ),  and such that 

2 1
.   

We need to show that 
2 1

( ) ( ).f x d f x d     

 
 Let 

1 2
/ .    Note that (0,1),   and 

1 2
( )x d x d       

(1 ) .x  Therefore, by the convexity of f, we obtain 
1

( )f x d   

2
( ) (1 ) ( ),f x d f x      which leads to 

1 2
( ) ( )f x d f x d     

since, by assumption, ( ) ( )f x f x d   for any (0, ).   
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 When f is strictly convex, we can simply replace the weak inequalities 
above with strict inequalities to conclude that ( )f x d  is strictly 

increasing over the interval (0, ).  

 
3.51 ( ) If the vector d is a descent direction of f at x , then ( )f x d   

( ) 0f x   for all (0, ).   Moreover, since f is a convex and 

differentiable function, we have that ( ) ( ) ( ) .tf x d f x f x d      

Therefore, ( ) 0.tf x d   

 ( ) See the proof of Theorem 4.1.2.     

 Note: If the function ( )f x  is not convex, then it is not true that 

( ) 0tf x d   whenever d is a descent direction of ( )f x  at x . For 

example, if 3( ) ,f x x  then 1d    is a descent direction of f at 0,x   

but ( ) 0.f x d   

 
3.54 ( ) If x  is an optimal solution, then we must have ( ; ) 0,f x d   

,d D   since ( ; ) 0f x d   for any d D  implies the existence of 

improving feasible solutions by Exercise 3.5.1. 
 ( ) Suppose ( ; ) 0,f x d   ,d D   but on the contrary, x  is not an 

optimal solution, i.e., there exists x̂ S  with ˆ( ) ( ).f x f x  Consider 

ˆ( ).d x x   Then d D  since S is convex. Moreover, ( )f x d   

ˆ ˆ( (1 ) ) ( ) (1 ) ( ) ( ),f x x f x f x f x          0 1.    Thus d is 

a feasible, descent direction, and so ( ; ) 0f x d   by Exercise 3.51, a 

contradiction. 
 
 Theorem 3.4.3 similarly deals with nondifferentiable convex functions. 
 

 If ,nS R  then x  is optimal   ( ) 0,tf x d   nd R   

   ( ) 0f x   (else, pick ( )d f x   to get a contradiction). 

 

3.56 Let 
1
,x  

2
.nx R  Without loss of generality assume that 

1 2
( ) ( ).h x h x  

Since the function g is nondecreasing, the foregoing assumption implies 
that 

1 2
[ ( )] [ ( )],g h x g h x  or equivalently, that 

1 2
( ) ( ).f x f x  By the 

quasiconvexity of h, we have 
1 2 1

( (1 ) ) ( )h x x h x     for any 

[0,1].   Since the function g is nondecreasing, we therefore have, 

1 2 1 2 1 1
( (1 ) ) [ ( (1 ) )] [ ( )] ( ).f x x g h x x g h x f x           This 

shows that ( )f x  is quasiconvex.     
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3.61 Let   be an arbitrary real number, and let { : ( ) }.S x f x    

Furthermore, let 
1

x  and 
2

x  be any two elements of S. By Theorem 3.5.2, 

we need to show that S is a convex set, that is, 
1 2

( (1 ) )f x x      for 

any [0,1].   By the definition of ( )f x , we have 

 

1 2 1 2
1 2

1 2 1 2

( (1 ) ) ( ) (1 ) ( )
( (1 ) ) ,

( (1 ) ) ( ) (1 ) ( )

g x x g x g x
f x x

h x x h x h x

   
 

   

   
   

   
 (1) 

 
 where the inequality follows from the assumed properties of the functions 

g and h. Furthermore, since 
1

( )f x   and 
2

( )f x  , we obtain 

 
  

1 1
( ) ( )g x h x   and 

2 2
(1 ) ( ) (1 ) ( ).g x h x      

 
 By adding these two inequalities, we obtain 

1 2
( ) (1 ) ( )g x g x     

1 2
[ ( ) (1 ) ( )].h x h x     Since h is assumed to be a positive-valued 

function, the last inequality yields 
 

1 2

1 2

( ) (1 ) ( )
,

( ) (1 ) ( )

g x g x

h x h x

 


 

 


 
 

 
 or by (1), 

1 2
( (1 ) ) .f x x      Thus, S is a convex set, and therefore, 

( )f x  is a quasiconvex function.    

 Alternative proof: For any ,R   let { : ( )/ ( ) }.S x S g x h x     We 

need to show that S  is a convex set. If 0  , then S    since 

( ) 0g x   and ( ) 0h x  , x S  , and so S  is convex. If 0,   then 

{ : ( ) ( ) 0}S x S g x h x      is convex since ( ) ( )g x h x  is a 

convex function, and S  is a lower level set of this function.      

 
3.62 We need to prove that if ( )g x  is a convex nonpositive-valued function on 

S and ( )h x  is a convex and positive-valued function on S, then 

( ) ( )/ ( )f x g x h x  is a quasiconvex function on S. For this purpose we 

show that for any 
1

x , 
2

,x S  if 
1 2

( ) ( ),f x f x  then 
1

( ) ( ),f x f x   

where 
1 2

(1 ) ,x x x      and [0,1].   Note that by the definition of 

f and the assumption that ( ) 0h x   for all ,x S  it suffices to show that 

1 1
( ) ( ) ( ) ( ) 0.g x h x g x h x    Towards this end, observe that 
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1 1 2 1

( ) ( ) [ ( ) (1 ) ( )] ( )g x h x g x g x h x      since ( )g x  is convex and 

( ) 0h x   on S; 

 
1 1 1 2

( ) ( ) ( )[ ( ) (1 ) ( )]g x h x g x h x h x      since ( )h x  is convex and 

( ) 0g x   on S; 

 
2 1 1 2

( ) ( ) ( ) ( ) 0,g x h x g x h x   since 
1 2

( ) ( )f x f x  and ( ) 0h x   on S. 

 
 From the foregoing inequalities we obtain 
 

1 1
( ) ( ) ( ) ( )g x h x g x h x   

 
1 2 1 1 1

[ ( ) (1 ) ( )] ( ) ( )[ ( )g x g x h x g x h x      
2

(1 ) ( )]h x  

 
2 1 1 2

(1 )[ ( ) ( ) ( ) ( )] 0,g x h x g x h x     

 
 which implies that 

1 2 1
( ) max{ ( ), ( )} ( ).f x f x f x f x           

 
 Note: See also the alternative proof technique for Exercise 3.61 for a 

similar simpler proof of this result. 
 
3.63 By assumption, ( ) 0,h x   and so the function ( )f x  can be rewritten as 

( ) ( )/ ( ),f x g x p x  where ( ) 1/ ( ).p x h x  Furthermore, since ( )h x  is a 

concave and positive-valued function, we conclude that ( )p x  is convex 

and positive-valued on S (see Exercise 3.11). Therefore, the result given in 
Exercise 3.62 applies. This completes the proof.     

 
3.64 Let us show that if ( )g x  and ( )h x  are differentiable, then the function 

defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62 
and 3.63 are similar.) To prove this, we show that for any 

1
x , 

2
x S , if 

1 2 1
( ) ( ) 0tf x x x   , then 

2 1
( ) ( ).f x f x  From the assumption that 

( ) 0h x  , it follows that 
1 2 1

( ) ( ) 0tf x x x    if and only if 

1 1
[ ( ) ( )h x g x 

1 1 2 1
( ) ( )] ( ) 0.tg x h x x x    Furthermore, note that 

1 2 1 2 1
( ) ( ) ( ) ( ),tg x x x g x g x     since ( )g x  is a convex and 

differentiable function on S, and 
1 2 1 2 1

( ) ( ) ( ) ( ),th x x x h x h x     since 

( )h x  is a concave and differentiable function on S. By multiplying the 

latter inequality by 
1

( ) 0,g x   and the former one by 
1

( ) 0,h x   and 

adding the resulting inequalities, we obtain (after rearrangement of terms): 
 

1 1 1 1 2 1 1 2 1 2
[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ).th x g x g x h x x x h x g x g x h x       
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 The left-hand side expression is nonegative by our assumption, and 
therefore, 

1 2 1 2
( ) ( ) ( ) ( ) 0,h x g x g x h x   which implies that 

2 1
( ) ( ).f x f x  This completes the proof.    

 

3.65 For notational convenience let 
1 1

( ) ,tg x c x    and let 
2 2

( ) .th x c x    

In order to prove pseudoconvexity of 
( )

( )
( )

g x
f x

h x
  on the set 

{ : ( ) 0}S x h x   we need to show that for any 
1
,x  

2
,x S  if 

1 2 1
( ) ( ) 0,tf x x x    then 

2 1
( ) ( ).f x f x  

 

 Assume that 
1 2 1

( ) ( ) 0tf x x x    for some 
1
,x  

2
.x S  By the definition 

of f, we have 
1 22

1
( ) [ ( ) ( ) ].

[ ( )]
f x h x c g x c

h x
    Therefore, our 

assumption yields 
1 1 1 2 2 1

[ ( ) ( ) ] ( ) 0.th x c g x c x x    Furthermore, by 

adding and subtracting 
1 1 2 1

( ) ( )h x g x   we obtain 
2 1

( ) ( )g x h x   

2 1
( ) ( )h x g x 0.  Finally, by dividing this inequality by 

1 2
( ) ( ) ( 0),h x h x   

we obtain 
2 1

( ) ( ),f x f x  which completes the proof of pseudoconvexity 

of ( ).f x  The psueoconcavity of ( )f x  on S can be shown in a similar way. 

Thus, f is pseudolinear.    

 
 
 




