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Equivalent Linear Programs

There are a number of problems that do not appear at first to be candidates for linear
programming (LP) but, in fact, have an equivalent or approximate representation that fits
the LP framework.  In these instances, the solution to the equivalent problem gives the
solution to the original problem.  This appendix describes the transformations that can be
used to convert a nonlinear problem to a linear program for the following three situations:
(i) the objective is to maximize a separable, concave nonlinear function; (ii) the objective
is to maximize the minimum of a set of linear functions; and (iii) there are several
prioritized objectives with specified goals.

A.1 Nonlinear Objective Function
In some cases, linear programming can be used even when nonlinear terms are present.
Consider the following mathematical programming model in compact algebraic form.

Maximize  z = ∑
j=1

n
 fj(xj)

subject to ∑
j=1

n
 aijxj  ≤  bi,   i = 1,…,m

xj ≥ 0,   j = 1,…,n

The m constraints are linear but the objective consists of n nonlinear, separable terms
fj(xj), each a function of a single variable only.  When the objective function can be

written in this manner and each fj(xj) is concave (see below), the above maximization

problem may be approximated with a linear model and solved with a linear programming
algorithm.  When the functions fj(xj) are not all concave this approach will not work.  The

absence of concavity requires the development of an integer programming model, as
described in Chapter 8.

An analogous situation exists when the objective is to minimize a separable,
convex function.  An approximate linear programming model can be developed, but
similarly, minimizing a concave function requires the use of integer variables.

Concave Functions

We first consider the case in which the function fj(xj) is concave.  The

solid line in Fig. 1 depicts the graph of such a function. Later in the book
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the definition of concavity will be made precise but for now we say that a
concave function has the characteristic that a straight line drawn between
any two points on its graph falls entirely on or below the graph.  A
function that has a continuous first derivative is concave if the second
derivative is everywhere nonpositive.
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Figure 1.  Concave function with a piecewise linear approximation

The dotted line in Fig. 1 represents a piecewise linear
approximation to the concave function.  The approximation identifies r
break points along the xj axis: d1, d2,…, dr, and r corresponding points

along the fj axis: c1, c2,…, cr.  Now we have r pieces representing the

objective function with the first starting at the origin.  If fj(0) does not

equal 0, the function fj(xj) can be replaced by fj(xj) – fj(0) without affecting

the optimal solution so we can always put d0= c0 = 0.

The piecewise linear approximation is implemented in a linear
programming model by defining new variables xj1, xj2,…, xjr to represent

the pieces.  The slope of the kth segment is

sjk = (ck – ck–1)/(dk – dk–1)

The piecewise linear approximation to the jth term in the objective
function is

fj(xj) ← ∑
k=1

r
 sjkxjk .

In each constraint, the variable xj is replaced by
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xj ← ∑
k=1

r
 xjk 

and the new variables must satisfy the following bounds

0 ≤ xjk ≤ dk – dk–1,  k = 1,…,r

Of course, when fj(xj) = cjxj no substitution is necessary; otherwise,

each original variable xj must be replaced with rj new variables.  Here rj is

the number of break points along the xj-axis and may vary from one

variable to the next.  When the appropriate substitutions are made, the
approximate model becomes

Maximize  z = ∑
j=1

n
 
 ∑
k=1

r
j

 sjkxjk 

subject to ∑
j=1

n
 
 ∑
k=1

r
j

 aijxjk ≤ bi,   i = 1,…,m

0 ≤ xjk ≤ dk – dk–1,   k = 1,…,rj,  j = 1,…,n

Thus to obtain a linear model, one pays the price in terms of
increased problem size.  The approximation can be made as accurate as
desired by defining enough break points but with a corresponding increase
in dimensionality.

The only remaining issue in the linearization process is whether a
solution to the new problem is equivalent to a solution to the original

problem.  For xj replaced by Σr
k=1xjk, how can we be sure that the pieces of

the approximation will be included in the solution in the proper order?
Evidently, if xjk is greater than 0, the solution will not be valid unless the

variables for all the preceding pieces xjl, where l < k, are at their upper

bounds.  There are no explicit constraints in the model to guarantee this.

Fortunately, when we are maximizing and the individual functions
fj(xj) are concave, the variables will enter in the proper order without

explicit constraints.  This is because the objective coefficients sjk are

decreasing with k.  The goal of maximization will cause the pieces with
the greatest slope to be selected first as the associated xjk variables take on

positive values.
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Convex Functions

Figure 2 depicts a typical convex function which, by definition, has the
property that a straight line drawn between any two points on its graph lies
entirely on or above the graph.  A function that has continuous first and
second derivatives is convex if the second derivative is everywhere
nonnegative.  In general, if fj(xj) is a convex function then – fj(xj) is a

concave function.  One is a reflection of the other around the horizontal
axis.

When the goal is to maximize the objective, the pieces of the
linearized function enter the solution in exactly the reverse of the proper
order.  In this case, supplementary binary variables must be used to
enforce the correct sequence so the resultant model would no longer
satisfy the linear programming assumptions.
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Figure 2.  Piecewise linear approximation of convex function

Minimization Problems

A simple but important observation in optimization worth repeating is that
minimizing a function is equivalent to maximizing the same function with
its sign reversed.  Because a convex term, fj(xj), becomes concave when it

is negated, we can conclude that a minimization problem with convex,
separable terms in the objective can be approximated in the same way as a
concave function when the goal is to maximize.  Reasoning as before,
however, when concave terms appear in a minimization objective, linear
programming cannot be used.



Nonlinear Objective Function 5

Modeling

When maximizing profit, revenue terms in the objective function have a
positive sign and cost terms have a negative sign.  Thus in order to use
linear programming to find a solution, all revenue terms must be concave
functions and all cost terms must be convex functions.  There are
important practical instances where this is evident.  The revenue or benefit
received from the sale of most commodities has a concave shape because
of the principle of decreasing marginal returns.  There are many examples
of price discounts to gain additional sales, as illustrated by airline ticket
discount plans.  On the other hand, cost functions are often convex with
respect to the quantities produced or purchased.  For example, to increase
output in the near term, it may be necessary to pay overtime or use less
efficient means of production.  These circumstances promise an easy
solution to the problem because the model can be approximated with
piecewise linear terms and solved with a linear programming algorithm.

Unfortunately, there are also many practical situations when linear
programming cannot be used.  These most often arise in problems
involving capacity expansion of facilities.  The cost of building and
operating a facility commonly involves economies of scale; the larger the
facility, the smaller the marginal cost.  This relationship implies a concave
cost function that cannot be approximated with a linear programming
model.  To obtain a solution, it would be necessary to develop a model
that used piecewise linear approximations as well as integer variables.
The computational effort to solve such a model would be significantly
greater than that required to solve a standard linear program.

Example

The problem below involves the maximization of a concave, separable
quadratic function over a set of linear constraints.  We use a piecewise
linear approximation for the nonlinear terms in the objective to develop an
LP model.

Maximize z  =  –x1
2 – 2x2

2 + 8x1 + 16x2

subject to 0.9x1  + 1.2x2 <  5

x1 ≤  3

x1 ≥ 0,  x2 ≥ 0

The separable nonlinear terms of the objective are:

f1(x1)  =  – x1
2 + 8x1
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f2(x2)  =  – 2x2
2 + 16x2

We choose to use a piecewise approximation with the integers as break-
points.  Since the second constraint indicates that the upper bound on x1 is

3 and first constraint implies that the upper bound on x2 is 4, we have r1 =

3 and r2 = 4 giving the following breakpoints:

x1 breakpoints x2 breakpoints

k 0 1 2 3 k 0 1 2 3 4
dk 0 1 2 3 dk 0 1 2 3 4

ck 0 7 12 15 ck 0 14 24 30 32

s1k –– 7 5 3 s2k –– 14 10 6 2

The linear programming approximation is then

Maximize z = 7x11 + 5x12 + 3x13 + 14x21 +10x22 + 6x23 + 2x24

subject to 0.9x11 + 0.9 x12 + 0.9x13 + 1.2x21 +1.2 x22 + 1.2 x23 + 1.2x24 ≤  5

x11 + x12 + x13 ≤  3

0 ≤ xik ≤ 1 all i and k

Because all the nonlinear terms are concave and the objective is to
maximize, the solution to the LP model will yield a valid approximation to
the solution of the original model.  Using our Excel add-ins, we find that
the optimum is

x11 = x12 = 1,  x13 = 0,  x21 = x22 = 1,  x23 = 0.667,  x24 = 0

Translating this solution into terms of the original problem gives

x1 = 2,  x2 = 2.667.
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A.2 Maximizing the Minimum
There are a variety of situations where maximizing total profit or minimizing total cost
may not be the preferred course of action.  When resources have to be distributed over
more than a single entity or organization, the goal might be to maximize the minimum
profit that is realized by any of the entities.  Similarly, it might be optimal to set policy so
that the maximum cost that is incurred by any of the organizations is minimized.  In these
scenarios the decision maker is implicitly hedging against the worst possible outcome by
specifying what is respectively called a maximin or minimax strategy.  This type of worst-
case analysis is common when the decision maker is faced with an uncertain outcome and
is risk averse.

A global optimum has no concern for fairness so one entity may be treated poorly
in comparison to another when such a solution is implemented.  For example, the best
locations for fire stations may not be the solution that minimizes total response time, but
rather the one that minimizes the maximum response time over a number of
neighborhoods.  One objective for fitting a line to a set of points is to minimize the total
deviation between the points and the line.  A reasonable alternative would be to minimize
the maximum deviation over the set of points.  Similarly, the corporate problem of
allocating resources to decentralized divisions could be solved to maximize total profit;
however, an alternative approach would be to maximize the minimum profit of the
divisions.  For problems whose constraints are otherwise linear, this kind of objective can
be modeled as linear program.

Maximin Objective

Let us assume that we have a linear programming model defined by a set
of constraints and t objective functions of the following form.

zk = c0k + c1kx1 + c2kx2+ • • • +cnkxn

=  c0k + ∑
j=1

n
 cjkxj,  k = 1,…, t

Each function zk is a hyperplane.  The goal is to find an n-dimensional

vector x = (x1,…, xn) that minimizes the function f(x) given by

f(x) = minimum{c01 + ∑
j=1

n
 cj1xj, c02 + ∑

j=1

n
 cj2xj,…, c0t + ∑

j=1

n
 cjtxj}

subject to the constraints of the problem.  Although f(x) is not given in
explicit form, it can be evaluated easily from the above equation for any
real value of x.

A useful property of f(x) is that it is piecewise linear and concave.
This is illustrated in Fig. 3 for t = 4 and x a scalar.  The implication is that
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the problem of maximizing f(x) subject to linear constraints can be
transformed into a linear programming, even though f(x) is not separable.

f(x)

x

z  = c    + c   x 01 111

z  = c   + c   x 
02 122

z  = c   + c   x 
03 133

z  = c    + c   x 04 144

Figure 3.  Function defined by minimum of several hyperplanes

The transformation is based on the observation that f(x) is equal to
the smallest number, call it z, that satisfies z ≥ c0k + c1kx1 + • • • +cnkxn for

all k.  The equivalent optimization problem is then

Maximize  z

subject to ∑
j=1

n
 cjkxj ≥ z, k  = 1,…, t (Mk)

plus the original linear constraints.  The decision variables are z and xj, j =

1,…,n, which may or may not be restricted to be nonnegative.  Thus in
the transformation we have introduced one new variable z to be
maximized, and t additional linear constraints: (M1), (M2),...,(Mt).

Minimax Objective

Reversing of the above case gives the objective to be minimized as

Maximum {z1,z2,..., zt}.

The equivalent linear program is
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Minimize  z

subject to  ∑
j=1

n
 cjkxj ≤ z, k  = 1,…, t (Mk)

plus the original constraints of the problem.  The added constraints force
all the linear functions, zk, to be less than or equal to the variable z that is

to be minimized.

A One Dimensional Location Problem

At a prominent Texas university, the various engineering departments are
located in buildings along a single street, as shown in Fig. 4.  The
distances given in the figure are in feet from the assumed origin.  The dean
of engineering wants to locate his office somewhere along the street.  All
locations are allowed (i.e., the street can be considered as a continuum of
possible locations).  The weekly number of trips by faculty and others
between the Dean’s office and the departments are listed in the trip table
below.

The following three optimization criteria are being considered.

a. Minimize the total distance traveled.

b. Minimize the maximum distance traveled from any of the
departments.

c. Minimize the total distance traveled, but no department is to be
more than 300 feet from the dean’s office.

 CE  EE    IE  PE  CHE   ME

0 75 150 200 350 400 525

Figure 4.  Map showing the location of engineering departments

Trip table

Department, i CE EE IE PE CHE ME

Trips, wi 137 160 15 76 52 125

Solution Idea

Each of the three problems will be solved in turn.  To begin, define the
location of the dean's office as the decision variable x.  The distance from
this office to a department is computed by considering whether it is to the
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left or to the right of the department.  For the PE department the
appropriate equation is

x + LPE – RPE = 350

where LPE is the distance that the dean's office is to the left of PE and RPE
is the distance the office is to the right of PE.  The distance between the
office and the PE department is

LPE + RPE.

Logically, at most one of these variables will be positive in any solution.

Formal Model

VARIABLE DEFINITIONS

x = coordinate of the dean's office

Li = distance from dean’s office to department i when the office is to
the left

Ri = distance from dean’s office to department i when the office is to

the right

Let subscript i = 1,…,6, have the following association:

1 = CE, 2 = EE, 3 = IE, 4 = PE, 5 = CHE, 6 = ME.

CONSTRAINTS DEFINING DISTANCES

x  + Li – Ri  =  ai   for i = 1,…,6

where ai is the x-coordinate of department i as shown in Fig. 4.

TOTAL DISTANCE TRAVELED

D = 137(L1 + R1) + 160(L2 + R2) + • • • + 125(L6 + R6)

The distance traveled, D, is a function of the left and right variables, Li
and Ri.  It is determined by weighting each pair by the corresponding

values wi in the trip table above, and then summing each term.  In an

optimal solution, at most one of the variables in the pair (Li,Ri) will be

positive.

Criterion a. The goal here is to minimize the single objective of total
distance traveled.  This leads to the following optimization problem.
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Minimize  D = ∑
i=1

6
 wi(Li + Ri)

subject to x  + Li – Ri = ai ,   i = 1,…,6

x ≥ 0,  Li ≥ 0,  Ri ≥ 0,    i = 1,…,6

Solving gives the optimal location x* = 150 with the minimum total
distance traveled D* = 86,100.

Criterion b.  We now wish to minimize the maximum distance traveled
from any of the departments.  Let v denote this distance with the
stipulation that Li + Ri  ≤ v for i = 1,…,6.  The optimization problem is

Minimize  v

subject to x  + Li – Ri = ai ,   i = 1,…,6

Li + Ri  – v ≤ 0,   i = 1,…,6

x ≥ 0,  Li ≥ 0,  Ri ≥ 0,    i = 1,…,6

The optimal location is x* = 300 with v* = 225, and total distance D* =
95,325.  The revised criterion has caused the total distance to increase.

Criterion c.  For this part we use the constraints of part (b) and the
objective of part (a) with the additional stipulation that

v  ≤ 300

Minimizing total distance gives x* = 225, D* = 89,025, and v* =
300.  By specifying a goal for the maximum distance, we have obtained an
intermediate value for total distance.
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A.3 Goal Programming
Most decision-making situations do not proceed from a single point of view or admit a
single objective.  In fact, many decisions must be made in the face of competing interests in
a confrontational environment.  Consider a local zoning commission that must balance the
desires of residents, small businesses, developers, and environmentalists; or a corporate
manager who must allocate the annual budget to several operating divisions; or a recent
college graduate who must weigh salary, location, work environment, and fringe benefits
of several job offers.  The problem of the decision maker is to balance the goals of the
competitors in such a way that most are to some extent satisfied; in other words, to reach a
compromise.  Administrators are always looking for the perfect compromise, the one that
satisfies everyone, but of course this is rarely found.  Rather we rely on committees,
commissions, elections, contests, and even chance as ways to arrive at decisions that, at
best, only partially satisfy the participants.

Up until this point in the chapter, the models presented have been limited to a single
optimization criterion.  The methods of goal programming extend our modeling capabilities
by offering ways to deal with more than one objective at a time.  They do not, however,
provide the complete answer because whenever there are competing goals, it is difficult if
not impossible to conduct a purely objective analysis that yields the "best" decision.  There
will always be a subjective component in the analysis that reflects the decision maker’s
preferences.  Nevertheless, the goal programming approach does provide an organized way
of considering more than one objective at a time and often yields compromise solutions
that are acceptable to the protagonists.  The basic idea is to establish specific numeric goals
for each objective, and then to seek a solution that satisfies all the given constraints while
minimizing the sum of deviations from the stated goals.  Frequently, the deviations are
weighted to reflect the relative importance of each objective function.

Definitions

Objective function (fk(x)): One of several functions of the decision variables,

x = (x1,…, xn), that evaluates the attainment of some measure of

effectiveness.  Only linear functions are considered here.

fk(x) = c1kx1 + c2kx2 + • • • + cnkxn  =  ∑
j=1

n
 cjkxj,   k  = 1,…, t

Lower One-Sided Goal: For the kth objective function, a lower limit, Lk,

that the decision maker does not want to fall below.  It is desired to achieve
a value of "at least" Lk for the objective.  Exceeding this value is

permissible.  The goal might be written as a "greater than or equal to"
constraint:
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fk(x) = ∑
j =1

n
 cjkxj ≥ Lk

In the goal programming methodology, this is not a hard constraint so we
allow solutions x such that fk(x) ≤ Lk.

Upper One-Sided Goal: For the kth objective function, an upper limit, Uk,

that the decision maker does not want to exceed.  It is desired to achieve a
value of "at most" Uk for the objective.  The goal might be written as a "less

than or equal to" constraint:

fk(x) = ∑
j=1

n
 cjkxj ≤ Uk

Again, this is not a hard constraint so we allow solutions that yield values of
fk(x) that exceed Uk if these lead to the best compromise.

Two-Sided Goal: Sets a specific target value, Gk, for the kth objective so the

value of fk(x) should be "equal to" some Gk.  The goal might be written as

an equality constraint:

fk(x) = ∑
j=1

n
 cjkxj = Gk

The solution process will allow for deviations from this goal in either
direction.

A particular objective will usually appear as either a lower one-
sided, upper one-sided, or two-sided goal.   In some cases, though, both
upper and lower goals may be specified for an objective with the range
between them defining a region of indifference.

Goal Constraint: The central construct in goal programming is the deviation
variable.  Let

yk
+ = positive deviation or the amount by which the kth goal is exceeded

yk
- = negative deviation or the amount by which the kth goal is

underachieved

One of the following three constraints is used in the linear programming
model to measure the deviation from the goal.
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1.   ∑
j=1

n
 cjkxj – yk

+ + yk
- = Lk

2.   ∑
j=1

n
 cjkxj – yk

+ + yk
- = Uk

3.   ∑
j=1

n
 cjkxj – yk

+ + yk
- = Gk

As can be seen, each of these constraints has the same form.  This might
seem odd at first but should become clear when we explain how objective
functions are constructed.  If more than one constraint were to be used in a
model, say, to define a region of indifference, it would be necessary to
distinguish each pair of deviation variables.

Penalty Weights (pk
+ and pk

-): Constants that measure the per unit penalty for

violating goal constraint k .  Let

pk
+  =  the penalty applied to the positive component.

pk
-  =  the penalty applied to the negative component.

The three kinds of goals are associated with the following penalty
assignments:

lower one-sided goal: pk
- > 0,  pk

+ = 0,

upper one-sided goal: pk
- = 0,  pk

+ > 0,

two-sided goal:  pk
- > 0,  pk

+ > 0.

When a lower bound is specified for the kth objective, for example, we set

pk
- > 0 because we want to penalize the underachievement of the goal Lk.

We don’t want to penalize its achievement, though, so we set pk
+ = 0.

Similar reasoning applies to the other two types of penalty assignments.  In
the goal programming model, the function to be optimized comprises terms

of the form zk = pk
+yk

+ + pk
-yk

-.

Nonpreemptive Goal Programming:  In this approach, we put all the goals
in the objective function and solve the linear program a single time. The
objective for the problem is the weighted sum of the deviation variables.
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The penalties measure the relative importance of the goals.  The objective is
to

Minimize  z = zk = pk
+yk

+ + pk
−yk

−( )
k =1

n

∑
k =1

n

∑

 Because the goals very often are measured on different scales, the
penalties play the double role of transforming all goals to the same
dimensional units as well as specifying their relative importance.  In this
approach, the subjective step is the determination of the weights.  Different
weights will often yield very different solutions.

Preemptive Goal Programming:  Here the goals are divided into sets and
each set is given a priority; i.e., first, second, and so on.  The assumption is
that a higher priority goal is absolutely more important than a lower priority
goal.  The solution is obtained by initially optimizing with respect to the
first-priority goals without regard to the values of lower priority objectives.
Then, holding constant the value of the first-priority objective function by
adding the constraint z1(y1

+, y1
+) = z*

1, the optimal solution is obtained for the

second-priority goals.  The feasible solution space for this second problem is
the set of alternate optima for the first problem.

The process continues until all priorities are considered.  If no
alternate optima exist at the end of a particular stage, we have reached the
end of the computations so we must be satisfied with the current values of
the lower priority objectives.  If several goals have about the same priority
we include all them in the set in the objective at the appropriate step of the
process. The relative importance of the goals within any set are reflected by
the specification of the penalty weights, as in the nonpreemptive case.  The
subjective part of this procedure is the division of the goals into priority sets
and the selection of penalties within a priority set.

Optimum Portfolio Problem

A mutual fund manager has $200 million to invest and is considering five
alternative investments.  A portfolio is defined by specifying the number of
units of each opportunity purchased.  Each investment has a fixed unit cost,
but its annual return is a random variable.  Therefore, its value is not known
with certainty.  The research department has determined that the expected
return and variance per unit of investment is proportional to the number of
units invested in the opportunity.  All the data are shown in Table 1.  Costs
and annual returns are given in millions of dollars.

The total expected return is the sum of the expected returns of the
individual investments.  Similarly, assuming independence, the total
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variance is the sum of the individual variances. The following three goals
have been established for the portfolio and are listed in priority order.

Goal 1: The annual expected return must be at least $45 million.

Goal 2: The total variance must be no more than $150 million2.

Goal 3: The amount invested in opportunities 2 and 4 should be equal.

The $200 million budget is a hard constraint.  A preemptive goal
programming approach is to be used.

Table 1.  Unit data for investment opportunities

Investment # 1 2 3 4 5

Cost, $ 20 60 30 65 30

Expected return, $ 6 15 6 12 5

Variance, $2 40 50 20 30 20

Model

For the linear programming model we let xj be the number of units of

investment j purchased.  The first technological constraint below limits the
amount of money invested while the next three reflect the three goals.  We
have added constraints to compute the value of the return R and variance V.

Budget: 20x1 + 60x2 + 30x3 + 65x4 + 30x5 ≤ 200

G1: 6x1 + 15x2 +  6x3 + 12x4 +  5x5 – y1
+ + y1

- = 45

G2: 40x1 + 50x2 + 20x3 + 30x4 + 20x5 – y2
+ + y2

- = 150

G3:  60x2 – 65x4 – y3
+ + y3

- = 0

Return: 6x1 + 15x2 +  6x3 + 12x4 +  5x5 – R = 0

Variance: 40x1 + 50x2 + 20x3 + 30x4 + 20x5 – V = 0

xj ≥ 0,   j = 1,...,5;   yk
+ ≥ 0 and yk

- ≥ 0,  k= 1,2,3;  R ≥ 0,  V ≥ 0

G1 is a lower one-sided goal so we adopt the penalties p1
- = 1 and p1

+

= 0, and solve the linear programming problem

Minimize  z1 = y1
- – 0.001R
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subject to the above constraints.  Although not really necessary, we have
added the term involving R to the objective function so that the solution will
deliver the largest return that satisfies G1.  The solution obtained is x1 =10,

y1
+  = 15 and y2

+ = 210, with all other variables 0.  Goal 1 is satisfied with a

return of 60, larger than the goal of 45 (y1
+ = 15).  Goal 2 is not satisfied

because the variance is 400, much larger than the goal of 150 (y2
+ = 250).

Goal 3 is satisfied because both x1 and x2 are zero.

At the second iteration we add a constraint to keep the first goal at
the value obtained in the first iteration:

y1
- = 0.

Since G2 is an upper one-sided goal, we use the penalties p2
- = 0 and p2

+ = 1,

and solve the linear program

Minimize  z2 = y2
+ – 0.001R + 0.001V

subject to the above constraints.  We have added terms in R and V to
encourage a large return and a small variance.  This time the solution does
not use x1 but has x2 =2.06 and x4 = 1.18.  The corresponding return exactly

meets the first goal of 45.  The values of the second set of deviation

variables are y2
- = 11.8 and y2

+ = 0 which indicate that the second goal is

exceeded with a variance of 138.2.  For the third goal, the solution y3
+ =

47.05 indicates that there is a difference in the investments in opportunities
2 and 4.  All other variables are 0.

At the third iteration we add another constraint to keep the second
goal satisfied at its current value; i.e.,

y2
+ = 0.

G3 is a two-sided goal so we use equal penalties p3
- = 1 and p3

+ = 1, and

solve the linear program

Minimize  z3 = y3
+ + y3

- – 0.001R + 0.001V

subject to the above constraints.  Rounded to one decimal point, the solution
now calls for investment in three of the opportunities: x1 =0.7, x2 = 1.7, x4 =

1.3.  All deviation variables are 0 except y3
+ = 13.3.  The goals for return and

variance are exactly met (R = 45 and V = 150) while the goal associated
with  the amounts invested in opportunities 2 and 4 is within 13.3 of being
reached.  This is the best solution possible given the preemptive nature of
the priorities.  The results for iteration 3 are summarized in Table 2.
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Table 2.  Summary of results for final iteration

Opportunity # 1 2 3 4 5 Total

Units bought 0.7 1.7 0 1.3 0 3.7

Cost, $ 13.3 100.0 0 86.7 0 200

Expected return, $ 4.0 25.0 0 16.0 0 45

Variance, $2 26.7 83.3 0 40.0 0 150
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A.4 Fractional Programming
A number of situations arise when it is desirable to optimize the ratio of two functions.  In
productivity analysis, for example, one wishes to maximize the ratio of worker output to
labor-hours expended to perform a task.  In financial planning it is common to maximize
the ratio of the expected return of a portfolio to the standard deviation of some measure of
performance.  When the two functions are linear, and the decision variables are defined
over a polyhedral set, we get the following fractional programming problem

Maximize  f(x) = 
c0 + cx
d0 + dx

subject to   Ax = b, x ≥ 0

where c0 and d0 are scalars, and  c and d are n-dimensional row vectors of coefficients

Under certain conditions, this optimization problem can be transformed into a linear
program.  In particular, we will assume that xj is so restricted that the denominator of the

fraction is strictly positive and that the maximum of f(x) is finite; that is, d0 + dx > 0 and

f(x) < ∞ for all x in {x : Ax = b, x ≥ 0}.  To put the problem into a more manageable form,
we define the variable t as

t ≡  
1

d0 + dx

and write the objective function as

f(x) = c0t + cxt.

By assumption, t > 0 for all feasible xj.  We now make the following change of variables.

yj = xjt or in vector notation, y = xt.

Thus the transformed model becomes the linear program

Maximize c0t + cy

subject to d0t + dy = 1

Ay – bt = 0

y ≥ 0, t ≥ 0

Note that it is permissible to restrict t to be greater than or equal to zero because of our
assumptions.  More generally, when f(x) = f1(x)/f2(x)the same kind of transformation can
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be used to convert a fractional program with concave f1(x) and convex f2(x) to an

equivalent  convex program.
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A.5 The Complementarity Problem
When investigating  the quadratic programming problem in the nonlinear programming
methods chapter, we show that it can be written as a series of linear equations in
nonnegative variables subject to a set of complementarity constraints of the form xjyj = 0

for all j.  A specialized linear programming algorithm can then be used to find a solution.
To describe the more general situation, suppose we are given the vectors x = (x1, x2,…, xn)

and y = (y1, y2,…, yn).   The complementarity problem is to find a feasible solution for the

set of constraints

y = F(x),  x ≥ 0,  y ≥ 0

that also satisfies the complementarity constraint

xTy = 0

where F is a given vector-valued function.  The problem has no objective function so
technically it is not a full-fledged nonlinear program.  It is called the complementarity
problem because of the requirements that either

xj = 0 or yj = 0 (or both) for all j = 1, 2,…,n.

An important special case, which includes the quadratic programming problem, is
the linear complementarity problem (LCP) where F(x) = q + Mx.  Here, q is a given
column vector and M is a given n × n matrix.  Efficient algorithms have been developed for
solving the LCP under suitable assumptions about the properties of the matrix M.  The
most common approach involves pivoting from one basic feasible solution to the next,
much like the simplex method.   Linear and nonlinear applications of the complementarity
problem can be found in game theory, engineering,  and the computation of economic
equilibria.
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A.6 Exercises
1. For the nonlinear objective function example in Section 3.1, change the breakpoints

for the linear approximation as follows: breakpoints for x1 are 0, 2 and 3 and

breakpoints for x2 are 0, 2 and 4.  Set up and solve the resultant LP approximation.

2. The operations manager of an electronics firm wants to develop a production plan
for the next six months.  Projected orders for the company's products are listed
below along with the direct cost of production in each month.  The plan must specify
the monthly amount to produce so that all demand is met.  Shortages are not
permitted.  Any amount produced in excess of demand can be stored in inventory for
later use at a cost of $4/unit/mo.  Initial and final inventories are 0.

Demand Production
Month (units) cost ($/unit)

1 1300 100
2 1400 105
3 1000 110
4 800 115
5 1700 110
6 1900 110

In addition to the direct costs of production and inventory, overhead costs must be
charged for the maximum production level obtained and the maximum inventory
level obtained during the 6-month period.  The following information should be
used.

(i)  Overhead cost for production = $300 × (maximum production level).

(ii) Overhead cost for inventory = $100 × (maximum level of inventory).

These costs are charged only once during the 6-month period.  Set up and solve the
linear programming model that determines the minimum cost plan.

3. Consider the situation described in Exercise 2.  Rather than being concerned about
the overhead costs of production and inventory, it is decided that the problem will be
solved with a goal programming approach.  The following goals have been
established.

G1: The average production cost is to be no more than $109 per unit.

G2: The maximum monthly production level in the six months is to be 1500
units.

G3: The maximum monthly inventory level in the six months is to be 100 units.

a. Assuming that the priority of the goals is in the order given, use the preemptive
sequential procedure to solve the problem.
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b. Assuming the priority of the goals is the reverse of the order given, use the
preemptive procedure to solve this problem.

4. For each of the objective functions listed below, explain whether or not a piecewise
linear approximation solved with a linear programming code will yield an acceptable
solution.  In all cases, the variables are restricted to be nonnegative.

a.   Maximize f (x) = – 2x2
1 + 4x1 x2 – 4x2

2 + 4x1 + 4x2

b.   Maximize f (x) = ln(x1 + 1) + ln(x2 + 1)

c.   Maximize f (x) = x2
1 + 42

2
 – 10x1 + 20x2

d.   Minimize f (x) = x2
1 + 42

2
 – 10x1 + 20x2

e.   Minimize f(x) = ∑
j=1

n
 fj(xj), where fj(xj )  = aj(xj)

–b , with aj > 0 and 0 < b  < 1

f.   Maximize f(x) = ∑
j=1

n
 rj(xj) – ∑

j=1

n
 cj(xj)

where rj = aj (1 – exp(–bjxj)) with aj > 0 and bj > 0;

cj = dj(xj)
b  with dj > 0 and b  > 1

5. Develop a with a piecewise linear approximation for the nonlinear objective function
in the problem given below and solve with an LP code.  Use the integers as
breakpoints.

Maximize  z = –(x1 – 4)2 – (x2 – 4)2 – (x3 – 4)2

subject to x1 + x2 + x3 ≥ 1

x1 + x2 + x3 ≤ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

6. Consider a problem of the form

Minimize   ∑
j=1

n
 cj|xj|
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subject to   ∑
j=1

n
 aijxj ≥ bi,   i = 1,…,m

where the decision variables xj are unrestricted and the cost coefficients cj are all

nonnegative.  The objective function comprises the sum of piecewise linear terms
cj|xj| and can be shown, with not much difficulty, to be convex.

a. Convert the above problem to a linear program by making use of the ideas in
the section on “maximizing the minimum of several linear functions.”

b. Alternatively, convert the above problem to a linear program by making use of
the fact that any unrestricted variable can be replaced with the difference of two
nonnegative variables.  That is, for xj unrestricted, we can make the substitution

xj ≡ x+
j  – x-

j, where x+
j  ≥ 0 and x-

j ≥ 0.  Note that to achieve the desired result,

more than a direct substitution is required.

7. You are given m data points of the form (ai, bi), i = 1,…,m, where ai is an n-

dimensional row vector and bi is a scalar, and wish to build a model to predict the

value of the variable b from knowledge of a specific vector a.  In such a situation, it
is common to use a linear model of the form b = ax, where x is an n-dimensional
parameter vector to be determined.  Given a particular realization of the vector x, the
residual, or prediction error, associated with the ith data point is defined as |bi – aix|.

Your model should “explain” the available data as best as possible; i.e., produce
small residuals.

a. Develop a mathematical programming model that minimizes the maximum
residual.  Convert your model to a linear program.

b. Alternatively, formulate a model that minimizes the sum of the residuals.
Convert this model to a linear program.

8. A government agency has five projects that it wishes to outsource.  After publishing
an announcement containing a request for proposals to perform the work, it received
bids from three contractors.  The bids are shown in the table below.  The goal of the
agency is to minimize its total cost.  Set up and solve the linear programming model
under the following conditions.

a. Each contractor can perform as many as two projects; all five projects must be
done.

b. Each contractor can perform only one project and as many projects as possible
should be done.

c. There is no limit to the number of projects a contractor can perform and all
projects must be done.
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Cost of completing the different projects ($1000)

Project 1 Project 2 Project 3 Project 4 Project 5

Contractor 1 65 37 42 29 28

Contractor 2 59 39 50 29 31

Contractor 3 62 46 33 24 31

9. A production scheduling problem must be solved over a 12-month period.  All
quantities are to be determined on a monthly basis.  Parameter definitions and
related conditions are stated below.  Indices on the parameters and variables range
from 1 to 12.

• Demand in month i is di.  This demand must be satisfied in each month so
shortages are not allowed.

• Cost of production in month i is pi.  The maximum production in month i is Mi.

• Items produced may be either shipped to meet demand or held in inventory to
meet demand in a subsequent month.

• The inventory level at the end of month 12 must equal the initial inventory
level at time zero (when the time horizon begins).  This quantity is to be
determine in the solution process.

• The maximum amount that can be stored from one month to the next is 16
units.

Problem statement: Develop a model to determine the optimal production quantity xi
in each month (i = 1,…,12), and the optimal amount to store in inventory in each
month yi so that total cost is minimized.  Write the model for the four cases below.

Each should be answered independently of the others.

a. The cost of inventory is proportional to the amount stored.  The cost is h dollars
per unit per month.

b. The cost of inventory is a nonlinear function of the amount stored.  The total

inventory cost in month i is h(yi) = a(yi)
2, where a is a constant and has

dimensions of dollars per month.  Use a piecewise linear approximation with the
breakpoints taken as the powers of 2 (i.e., 0, 2, 4, 8, 16).

c. The cost of inventory depends on how many months a unit is stored, and grows
exponentially.  The cost for one month is a dollars per unit, the cost for two
months is 4a per unit, the cost for three months is 8a per unit, and so on.
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d. Ignore the cost of inventory and the limit on the maximum amount that can be
stored, and minimize the maximum inventory over the planning period.

10. A company manufactures two products, X and Y, from a mix of chemicals.  The
products are sold by the pound.  Up to 1000 pounds of X can be sold for $12/lb but
the price must be reduced to $9/lb for sales in excess of 1000 lb up to a maximum of
3000 lb in total sales.  Product Y is sold for $18/lb for any amount up to 2000 lb.  If
more than 3000 lb of X or more than 2000 lb of Y are produced, the excess must be
discarded at a cost of $2/lb.

After processing the mix, the products are withdrawn in the following
proportions: 40% is X, 20% is Y, and 40% is waste that must be discarded at a cost
of $2/lb.  Processing costs are $1.50/lb.

The mix is made up of three raw materials identified by the letters A, B and C, and
must be at least 45% raw material A and no more than 30% C.  Raw material C is
free for up to 1500 lb.  Material C costs $4.50/lb for amounts above 1500 lb.  No
more than 3000 lb of material C is available at any price.  Material A costs $6/lb for
any amount.  There is no limit to the amount of A that can be purchased.  Material B
costs $3/lb up to 2500 lb and $5.50/lb for additional quantities up to a total of 4000
lb.

Write out and solve the linear programming model that will determine the
production and sales plan that maximizes profit.  Define all variables, describe each
constraint, and indicate the transformations used to linearize any nonlinear functions.
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