
Green's theorem
In mathematics, Green's theorem gives the relationship between a line integral around a simple closed curve C and a double integral over the plane region D
bounded by C. It is named after George Green, though its first proof is due to Bernhard Riemann[1] and is the two-dimensional special case of the more general

Kelvin–Stokes theorem.
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Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on

an open region containing D and have continuous partial derivatives there, then[2][3]

 

where the path of integration along C is anticlockwise.

In physics, Green's theorem is mostly used to solve two-dimensional flow integrals, stating that the sum of fluid outflows from a volume is equal to the total

outflow summed about an enclosing area. In plane geometry, and in particular, area surveying, Green's theorem can be used to determine the area and centroid of

plane figures solely by integrating over the perimeter.

The following is a proof of half of the theorem for the simplified area D, a type I region where C1 and C3 are curves connected by vertical lines (possibly of zero

length). A similar proof exists for the other half of the theorem when D is a type II region where C2 and C4 are curves connected by horizontal lines (again,

possibly of zero length). Putting these two parts together, the theorem is thus proven for regions of type III (defined as regions which are both type I and type II).

The general case can then be deduced from this special case by decomposing D into a set of type III regions.

If it can be shown that

and

are true, then Green's theorem follows immediately for the region D. We can prove (1) easily for regions of type I, and (2) for regions of type II. Green's theorem

then follows for regions of type III.
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Assume region D is a type I region and can thus be characterized, as pictured on the right, by

where g1 and g2 are continuous functions on [a, b]. Compute the double integral in (1):

Now compute the line integral in (1). C can be rewritten as the union of four curves: C1, C2, C3, C4.

With C1, use the parametric equations: x = x, y = g1(x), a ≤ x ≤ b. Then

With C3, use the parametric equations: x = x, y = g2(x), a ≤ x ≤ b. Then

The integral over C3 is negated because it goes in the negative direction from b to a, as C is oriented positively (anticlockwise). On C2 and C4, x remains constant,

meaning

Therefore,

Combining (3) with (4), we get (1) for regions of type I. A similar treatment yields (2) for regions of type II. Putting the two together, we get the result for regions

of type III.

We are going to prove the following

Theorem. Let  be a rectifiable, positively oriented Jordan curve in  and let  denote its inner region. Suppose that  are continuous

functions with the property that  has second partial derivative at every point of ,  has first partial derivative at every point of  and that the functions , 

 are Riemann-integrable over . Then

We need the following lemmas:

Lemma 1 (Decomposition Lemma). Assume  is a rectifiable, positively oriented Jordan curve in the plane and let  be its inner region. For every positive

real , let  denote the collection of squares in the plane bounded by the lines , where  runs through the set of integers. Then, for this ,

there exists a decomposition of  into a finite number of non-overlapping subregions in such a manner that

(i) Each one of the subregions contained in , say , is a square from .

(ii) Each one of the remaining subregions, say , has as boundary a rectifiable Jordan curve formed by a finite number of arcs of  and parts of the

sides of some square from .

(iii) Each one of the border regions  can be enclosed in a square of edge-length .

If D is a simple region with its boundary consisting
of the curves C1, C2, C3, C4, half of Green's
theorem can be demonstrated.

Proof for rectifiable Jordan curves

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Parametric_equation
https://en.wikipedia.org/wiki/File:Green%27s-theorem-simple-region.svg


(iv) If  is the positively oriented boundary curve of , then .

(v) The number  of border regions is no greater than , where  is the length of .

Lemma 2. Let  be a rectifiable curve in the plane and let  be the set of points in the plane whose disance from (the range of)  is at most . The outer

Jordan content of this set satisfies .

Lemma 3. Let  be a rectifiable curve in  and let  be a continuous function. Then

 and  are where  is the oscillation of  on the range of .

Now we are in position to prove the Theorem:

Proof of Theorem. Let  be an arbitrary positive real number. By continuity of ,  and compactness of , given , there exists  such that

whenever two points of  are less than  apart, their images under  are less than  apart. For this , consider the decomposition given by the previous

Lemma. We have

Put .

For each , the curve  is a positively oriented square, for which Green's formula holds. Hence

.

Every point of a border region is at a distance no greater than  from . Thus, if  is the union of all border regions, then ; hence 

, by Lemma 2. Notice that

 This yields

 for some .

We may as well choose  so that the RHS of the last inequality is 

The remark in the beginning of this proof implies that the oscillations of  and  on every border region is at most . We have

.

By Lemma 1(iii),

Combining these, we finally get

for some . Since this is true for every , we are done.

The hypothesis of the last theorem are not the only ones under which Green's formula is true. Another common set of conditions is the following:

The functions  are still assumed to be continuous. However, we now require them to be Fréchet-differentiable at every point of . This implies

the existence of all directional derivatives, in particular , where, as usual,  is the canonical ordered basis of . In

addition, we require the function  to be Riemann-integrable over .

It suffices to prove this for squares which are contained in  and have sides parallel to the axes. The proof then follows the lines of the method employed to prove

the Cauchy-Goursat Theorem for triangles.

As a corollary of this, we get the Cauchy Integral Theorem for rectifiable Jordan curves:

Validity under different hypothesis



Theorem (Cauchy). If  is a rectifiable Jordan curve in  and if  is a continuous mapping holomorphic throughout the

inner region of , then

the integral being a complex contour integral.

Proof. We regard the complex plane as . Now, define  to be such that  These functions are clearly continuous.

It is well-known that  and  are Fréchet-differentiable and that they satisfy the Cauchy-Riemann equations: .

Now, analysing the sums used to define the complex contour integral in question, it is easy to realize that

the integrals on the RHS being usual line integrals. These remarks allow us to aply Green's Theorem to each one of these line integrals, finishing the proof.

Green's formula also holds when, besides continuity assumptions,

(i) The functions , are defined at every point of , with the exception of a countable subset.

(ii) The function  is Lebesgue-integrable over .

Theorem. Let  be positively oriented rectifiable Jordan curves in  satisfying

where  is the inner region of . Let

Suppose  and  are continuous functions whose restriction to  is Fréchet-differentiable. If the function

is Riemann-integrable over , then

.

Green's theorem is a special case of the Kelvin–Stokes theorem, when applied to a region in the xy-plane:

We can augment the two-dimensional field into a three-dimensional field with a z component that is always 0. Write F for the vector-valued function 

. Start with the left side of Green's theorem:

Kelvin–Stokes Theorem:

The surface  is just the region in the plane , with the unit normals  pointing up (in the positive z direction) to match the "positive orientation" definitions for

both theorems.

The expression inside the integral becomes

Measure-theoretic assumptions

Multiply-connected Regions
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Thus we get the right side of Green's theorem

Green's theorem is also a straightforward result of the general Stokes' theorem using differential forms and exterior derivatives:

Considering only two-dimensional vector fields, Green's theorem is equivalent to the two-dimensional version of the divergence theorem:

  

where  is the divergence on the two-dimensional vector field , and  is the outward-pointing unit normal vector on the boundary.

To see this, consider the unit normal  in the right side of the equation. Since in Green's theorem  is a vector pointing tangential along the curve,

and the curve C is the positively oriented (i.e. anticlockwise) curve along the boundary, an outward normal would be a vector which points 90° to the right of this;

one choice would be . The length of this vector is  So 

Start with the left side of Green's theorem:

Applying the two-dimensional divergence theorem with , we get the right side of Green's theorem:

Green's theorem can be used to compute area by line integral.[4] The area of D is given by . Then if we choose L and M such that , the

area is given by .

Possible formulas for the area of D include:[4] 

Planimeter
Method of image charges – A method used in electrostatics that takes advantage of the uniqueness theorem (derived from Green's theorem)
Shoelace formula – A special case of Green's theorem for simple polygons

1. George Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Nottingham, England: T. Wheelhouse,
1828). Green did not actually derive the form of "Green's theorem" which appears in this article; rather, he derived a form of the "divergence theorem", which
appears on pages 10-12 (https://books.google.com/books?id=GwYXAAAAYAAJ&pg=PA10#v=onepage&q&f=false) of his Essay. 
In 1846, the form of "Green's theorem" which appears in this article was first published, without proof, in an article by Augustin Cauchy: A. Cauchy (1846)
"Sur les intégrales qui s'étendent à tous les points d'une courbe fermée" (https://archive.org/stream/ComptesRendusAcademieDesSciences0023/ComptesRe
ndusAcadmieDesSciences-Tome023-Juillet-dcembre1846#page/n254/mode/1up) (On integrals that extend over all of the points of a closed curve), Comptes
rendus, 23: 251-255. (The equation appears at the bottom of page 254, where (S) denotes the line integral of a function k along the curve s that encloses the
area S.) 
A proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural dissertation: Bernhard Riemann (1851) Grundlagen für eine
allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (https://books.google.com/books?id=PpALAAAAYAAJ&pg=PP5#v=onepage&q&f
=false) (Basis for a general theory of functions of a variable complex quantity), (Göttingen, (Germany): Adalbert Rente, 1867); see pages 8 - 9.

Relationship to the divergence theorem

Area calculation

See also

References

https://en.wikipedia.org/wiki/Differential_form
https://en.wikipedia.org/wiki/Exterior_derivative
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Planimeter
https://en.wikipedia.org/wiki/Method_of_image_charges
https://en.wikipedia.org/wiki/Shoelace_formula
https://books.google.com/books?id=GwYXAAAAYAAJ&pg=PA10#v=onepage&q&f=false
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://archive.org/stream/ComptesRendusAcademieDesSciences0023/ComptesRendusAcadmieDesSciences-Tome023-Juillet-dcembre1846#page/n254/mode/1up
https://en.wikipedia.org/wiki/Bernhard_Riemann
https://books.google.com/books?id=PpALAAAAYAAJ&pg=PP5#v=onepage&q&f=false


2. Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN 978-0-521-86153-3
3. Vector Analysis (2nd Edition), M.R. Spiegel, S. Lipschutz, D. Spellman, Schaum’s Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-161545-7
4. Stewart, James. Calculus (6th ed.). Thomson, Brooks/Cole.

Ayres, F.; Mendelson, E. (2009). Calculus. Schaum's Outline (5th ed.). ISBN 978-0-07-150861-2.
Wrede, R.; Spiegel, M. R. (2010). Advanced Calculus. Schaum's Outline (3rd ed.). ISBN 978-0-07-162366-7.

Green's Theorem on MathWorld (http://mathworld.wolfram.com/GreensTheorem.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Green%27s_theorem&oldid=826998215"

This page was last edited on 22 February 2018, at 04:50.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and
Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Further reading

External links

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-521-86153-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-161545-7
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-150861-2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-07-162366-7
http://mathworld.wolfram.com/GreensTheorem.html
https://en.wikipedia.org/w/index.php?title=Green%27s_theorem&oldid=826998215
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

